WO2014083621A1 - Laser-welding material for austenitic stainless steel, and welded joint using same - Google Patents

Laser-welding material for austenitic stainless steel, and welded joint using same Download PDF

Info

Publication number
WO2014083621A1
WO2014083621A1 PCT/JP2012/080666 JP2012080666W WO2014083621A1 WO 2014083621 A1 WO2014083621 A1 WO 2014083621A1 JP 2012080666 W JP2012080666 W JP 2012080666W WO 2014083621 A1 WO2014083621 A1 WO 2014083621A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
stainless steel
laser
austenitic stainless
amount
Prior art date
Application number
PCT/JP2012/080666
Other languages
French (fr)
Japanese (ja)
Inventor
旭東 張
栄次 芦田
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2014549673A priority Critical patent/JP5948435B2/en
Priority to PCT/JP2012/080666 priority patent/WO2014083621A1/en
Publication of WO2014083621A1 publication Critical patent/WO2014083621A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to an austenitic stainless steel laser welding material and a welded joint using the same.
  • Laser welding has a higher energy density of the laser beam of the heat source, so deeper penetration can be obtained compared to arc welding. Furthermore, since a welded joint with low distortion, high speed and high accuracy is obtained, it is used in various directions. However, laser welding has a problem that the gap tolerance is low, and the plate thickness that can be through welded depends on the output. Even in lasers with a maximum output of several kW to several tens of kW that are widely used in general, in order to weld thick plates exceeding 20 mm in thickness, a groove is provided during butt welding, and the laser and welding wire Multi-layer welding is performed by using together. Lasers and welding wires are also used in fillet joints and butt joints where gaps cannot be avoided and welding of lap joints.
  • the welding method using both laser light and a welding wire is applied in place of the conventional arc welding method in many production fields.
  • a shroud which is a structure in a nuclear reactor.
  • Non-Patent Document 1 discloses various components of a welding wire for stainless steel.
  • wires such as 308L, 316L, and 321 which are symbols representing chemical components are often used for arc welding of austenitic stainless steel.
  • solidification cracks are likely to occur in the weld metal part, but solidification cracks can be prevented by adjusting the ferrite content of the weld metal part.
  • An object of the present invention is to make welding cracking difficult when laser welding is performed on austenitic stainless steel using nitrogen gas as a shielding gas.
  • the present invention provides an austenitic stainless steel laser welding material, in mass%, C: 0.01 to 0.08%, Si: 1.0% or less, Mn: 0.5 ⁇ 2.5%, P: 0.03% or less, S: 0.03% or less, Cr: 20.5-24.0%, Ni: 9.0-11.0%, Ti: 0.1 ⁇ Including 1.0%, the following formula is satisfied.
  • the present invention is the one in which the contents of Cr and Ti are mainly adjusted with respect to the austenitic stainless steel described in JIS Z 3321. The contents of Cr and Ti will be described.
  • the composition of the welding wire for austenitic stainless steel disclosed in JIS Z 3321 is considered only in the case of arc welding using almost no nitrogen gas. These wires are adjusted so that the ferrite content of the weld metal is about 5 to 15% at room temperature.
  • the present invention adds Ti having a high affinity for nitrogen. If the amount of Ti added is less than 0.05%, the amount of Ti combined with nitrogen is small, so the effect of preventing austenitization is very small.
  • the welding wire denoted by reference numeral 321 contains 9 ⁇ % C to 1.0% by mass of Ti.
  • the Cr content is 18.5 to 20.5%, it is difficult to increase the ferrite content of the weld metal to 5% or more even when trying to fix the nitrogen with Ti when the nitrogen content of the weld metal is high. It is.
  • the present invention controls the austenitization of the weld metal by adjusting the value of Cr * / Ni * , which is an index of the ease of ferritization. Suppresses and prevents weld cracks in the weld zone.
  • FIG. 1 is a schematic diagram of narrow groove laser welding in Example 1.
  • Table 1 shows chemical components of a SUS316L rolled plate material (austenite stainless steel welded material, hereinafter referred to as a base material) defined in JIS.
  • This base material does not contain Ti, and Cr * / Ni *, which is a ratio of Cr equivalent (Cr * ) calculated by the formula (1) and Ni equivalent (Ni * ) calculated by the formula (2), is 1.53.
  • Cr * % Cr +% Mo + 1.5 ⁇ % Si
  • Ni * % Ni + 30 ⁇ % C + 30 ⁇ % N + 0.5 ⁇ % Mn
  • Table 2 shows chemical components of the welding materials of Examples and Comparative Examples.
  • the welding materials of Comparative Example 1 and Comparative Example 2 have components 308L and 321 of JIS Z3321. All the welding materials are processed into a solid wire having a diameter of 1.2 mm after vacuum melting. Table 2 also shows Cr * / Ni * of various welding materials.
  • the amount of ferrite (FN) can be calculated using Cr equivalent, Ni equivalent, and the following equation (3).
  • FN ⁇ 30.65 + 3.49 ⁇ Cr * ⁇ 2.5Ni * ... Formula (3) Using the above-mentioned SUS316L base material and the welding materials of Comparative Examples 1 and 2 and Examples 1 to 5, a welded joint welded under the following welding method and welding conditions was prototyped. All welding joints have the same welding conditions except for the wire type.
  • Fig. 1 shows an outline of narrow groove laser welding using both welding material and laser.
  • Laser light 3 is generated from a laser oscillator (not shown), is condensed by a condenser lens via a transfer path, and is irradiated into a groove of a butt joint in which the base materials 1 and 2 are combined.
  • a welding wire 4 is supplied into a groove of the butt joint from a wire feeding device (not shown) via a wire feeding nozzle (not shown).
  • the shielding gas is supplied from a gas cylinder (not shown) through a shielding nozzle (not shown) to the bottom of the groove using nitrogen.
  • the welding method of this example is as follows.
  • One side narrow groove welding as shown in FIG. 1 was performed using a plate material having a thickness of 30 mm.
  • the welding conditions in this example were those with a laser output of 4 to 8 kW and a welding speed of 0.1 m / min to 0.6 m / min.
  • the root surface portion may be welded while supplying the welding wire.
  • the welding wire is supplied again into the narrow groove, and the welding wire is melted using the laser beam to perform the lamination welding to fill the groove, and the two layers as shown in FIG.
  • the weld metal part 6 of the eye was formed.
  • the nitrogen content of the weld metal of this example is 600 ppm to 800 ppm, but there are cases where it differs depending on the difference in the composition of the base metal and welding conditions. For example, the nitrogen content of weld metals carried out under other welding conditions has a result of 500 ppm to 1000 ppm.
  • Table 3 shows the Ti content of the welding materials of the comparative example and the example, the amount of nitrogen dissolved in the welded portion of the welded joint, and the amount of ferrite in the welded portion (the amount of molten ferrite) measured with a ferrite scope.
  • a dye penetration test was conducted to examine the occurrence of cracks on the surface of the weld. Also, with respect to the inside of the welded portion, the cross-section is taken at five locations other than the welding start end portion with respect to the entire weld line, and after polishing and etching work, it is observed with an optical microscope, and cracks are observed inside the welded portion. The presence or absence was examined. The results are shown in Table 4. “With crack” indicates that cracking was observed by PT or cross-sectional observation, and “No crack” indicates that no crack was observed by PT or cross-sectional observation.
  • the base material of the example is welded with a SUS316L butt joint, but SUS304, SUS310, etc. can also be applied.
  • the weld metal contains a ferrite content of 6.2% to 12.3%.
  • the ferrite content of the weld metal is 4.0% to 5.2%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

The present invention makes weld cracking less likely when laser-welding austenitic stainless steel using nitrogen gas as the shielding gas. This laser-welding material for austenitic stainless steel contains, in mass%, C in the amount of 0.01-0.08%, Si in the amount of 1.0% or less, Mn in the amount of 0.5-2.5%, P in the amount of 0.03% or less, S in the amount of 0.03% or less, Cr in the amount of 20.5-24.0%, Ni in the amount of 9.0-11.0%, and Ti in the amount of 0.1-1.0%, and is characterized by satisfying this formula. 1.45≤Cr*/Ni*=(%Cr+%Mo+1.5×%Si)/%Ni+30×%C+30×%N+0.5×%Mn≤2.20

Description

オーステナイト系ステンレス鋼のレーザ溶接材料およびそれを用いた溶接継手Laser welding material of austenitic stainless steel and welded joint using the same
 本発明は、オーステナイト系ステンレス鋼のレーザ溶接材料およびそれを用いた溶接継手に関する。 The present invention relates to an austenitic stainless steel laser welding material and a welded joint using the same.
 レーザ溶接は,熱源のレーザビームのエネルギー密度が高いため、アーク溶接に比べ、深い溶込みが得られる。さらに、低歪み、高速度、高精度の溶接継手が得られることから各方面で使用されている。しかしながら、レーザ溶接はギャップ裕度が低い問題点があり、また貫通溶接できる板厚が出力に依存する。世間一般で広く使用されている最大出力数kWから十数kWのレーザにおいても、厚さ20mmを超える厚板の溶接を行うために、突合せ溶接の際に開先を設けて、レーザと溶接ワイヤとの併用により多層溶接が行われている。また,隅肉継手やギャップが避けられない突合せと重ね継手の溶接においても,レーザと溶接ワイヤを併用している。 Laser welding has a higher energy density of the laser beam of the heat source, so deeper penetration can be obtained compared to arc welding. Furthermore, since a welded joint with low distortion, high speed and high accuracy is obtained, it is used in various directions. However, laser welding has a problem that the gap tolerance is low, and the plate thickness that can be through welded depends on the output. Even in lasers with a maximum output of several kW to several tens of kW that are widely used in general, in order to weld thick plates exceeding 20 mm in thickness, a groove is provided during butt welding, and the laser and welding wire Multi-layer welding is performed by using together. Lasers and welding wires are also used in fillet joints and butt joints where gaps cannot be avoided and welding of lap joints.
 レーザ光と溶接ワイヤとを併用した溶接方法は、多数の生産分野において,従来のアーク溶接方法に代わって適用されている。たとえば、オーステナイト系ステンレス鋼が多く使われている原子力分野では、原子炉内の構造物であるシュラウドにも適用されている。 The welding method using both laser light and a welding wire is applied in place of the conventional arc welding method in many production fields. For example, in the nuclear field where austenitic stainless steel is often used, it is also applied to a shroud which is a structure in a nuclear reactor.
 ワイヤの併用によるオーステナイト系ステンレス鋼のレーザ溶接は、従来のアーク溶接に使われていた溶接ワイヤがそのまま用いられている。 ¡Laser welding of austenitic stainless steel using a combination of wires uses the same welding wire used in conventional arc welding.
 例えば非特許文献1には様々なステンレス鋼用の溶接ワイヤの成分が開示されている。そのうち、化学成分を表す記号である308L、316L、321などのワイヤはオーステナイト系ステンレス鋼のアーク溶接によく使われている。オーステナイト系ステンレス鋼のアーク溶接では、溶接金属部の凝固割れが生じ易いが、溶接金属部のフェライト量を調整することで凝固割れの防止が可能である。 For example, Non-Patent Document 1 discloses various components of a welding wire for stainless steel. Among them, wires such as 308L, 316L, and 321 which are symbols representing chemical components are often used for arc welding of austenitic stainless steel. In arc welding of austenitic stainless steel, solidification cracks are likely to occur in the weld metal part, but solidification cracks can be prevented by adjusting the ferrite content of the weld metal part.
 しかしながら、オーステナイト系ステンレス鋼をレーザ溶接する場合、アーク溶接でシールドガスとして通常使用されるアルゴンガスを使用すると、溶接部にポロシティが生じ易い。そのため、アルゴンガスではなく、窒素ガスを使用する必要がある。溶接する際、溶接割れを防止するために溶接部にはフェライト組織が必要であるが、窒素ガスが溶接金属に固溶することで、溶接部がオーステナイト化し易くなり、フェライト化し難くなる。即ち、溶接金属に窒素が添加されることによって溶接部のフェライト量が減少して割れ易くなるという課題がある。 However, when laser welding austenitic stainless steel, if argon gas, which is normally used as a shielding gas in arc welding, is used, porosity is likely to occur in the weld. Therefore, it is necessary to use nitrogen gas instead of argon gas. When welding, a ferrite structure is required in the welded portion in order to prevent weld cracking. However, when the nitrogen gas is dissolved in the weld metal, the welded portion is easily austenitized and difficult to be ferritized. That is, there is a problem that the amount of ferrite in the welded portion is reduced by adding nitrogen to the weld metal and is easily cracked.
 本発明の目的は、シールドガスに窒素ガスを使用してオーステナイト系ステンレス鋼をレーザ溶接する場合に、溶接割れしにくくすることにある。 An object of the present invention is to make welding cracking difficult when laser welding is performed on austenitic stainless steel using nitrogen gas as a shielding gas.
 上記目的を達成するために、本発明は、オーステナイト系ステンレス鋼のレーザ溶接材料において、質量%で、C:0.01~0.08%、Si:1.0%以下、Mn:0.5~2.5%、P:0.03%以下、S:0.03%以下、Cr:20.5~24.0%、Ni:9.0~11.0%、Ti:0.1~1.0%を含み、下記の式を満たすことを特徴とする。
1.45≦Cr*/Ni*=(%Cr+%Mo+1.5×%Si)/(%Ni+30×%C+30×%N+0.5×%Mn≦2.20
 また、オーステナイト系ステンレス鋼のレーザ溶接材料において、質量%で、C:0.01~0.08%、Si:1.0%以下、Mn:0.5~2.2%、P:0.035%以下、S:0.03%以下、Cr:17.0~21.0%、Ni:9.5~14.0%、N:0.04~0.12%、Ti:0.05~0.6%を含み、下記の式を満たすことを特徴とする。
1.40≦Cr*/Ni*=(%Cr+%Mo+1.5×%Si)/(%Ni+30×%C+30×%N+0.5×%Mn≦2.0
 なお、例えば0.01~0.08質量%と表記される場合、0.01質量%と0.08質量%を含むものとする。また、例えば%Crと表記される場合、含まれるCrの質量%を示す。
In order to achieve the above object, the present invention provides an austenitic stainless steel laser welding material, in mass%, C: 0.01 to 0.08%, Si: 1.0% or less, Mn: 0.5 ~ 2.5%, P: 0.03% or less, S: 0.03% or less, Cr: 20.5-24.0%, Ni: 9.0-11.0%, Ti: 0.1 ~ Including 1.0%, the following formula is satisfied.
1.45 ≦ Cr * / Ni * = (% Cr +% Mo + 1.5 ×% Si) / (% Ni + 30 ×% C + 30 ×% N + 0.5 ×% Mn ≦ 2.20)
Further, in the laser welding material of austenitic stainless steel, in mass%, C: 0.01 to 0.08%, Si: 1.0% or less, Mn: 0.5 to 2.2%, P: 0.00. 035% or less, S: 0.03% or less, Cr: 17.0 to 21.0%, Ni: 9.5 to 14.0%, N: 0.04 to 0.12%, Ti: 0.05 It is characterized by satisfying the following formula including -0.6%.
1.40 ≦ Cr * / Ni * = (% Cr +% Mo + 1.5 ×% Si) / (% Ni + 30 ×% C + 30 ×% N + 0.5 ×% Mn ≦ 2.0)
For example, when expressed as 0.01 to 0.08 mass%, it includes 0.01 mass% and 0.08 mass%. Further, for example, when written as% Cr, it indicates mass% of Cr contained.
 本発明は、JIS Z3321に記載されているオーステナイト系ステンレス鋼に対し、主にCrとTiの含有量を調整したものであり、CrとTiの含有量について説明する。 The present invention is the one in which the contents of Cr and Ti are mainly adjusted with respect to the austenitic stainless steel described in JIS Z 3321. The contents of Cr and Ti will be described.
 前述のように、JIS Z3321に開示されているオーステナイト系ステンレス鋼用溶接ワイヤの組成は、窒素ガスをほとんど使わないアーク溶接の場合しか考慮されていない。これらのワイヤは、溶接金属のフェライト量が室温で5~15%程度になるように調整されたものである。しかし、窒素ガスをシールドガスとして利用するレーザ溶接の場合、溶接金属に窒素が固溶してしまうので、窒素による溶接金属組織のオーステナイト化を防ぐ必要がある。そのため、本発明は窒素と親和力の大きいTiを添加する。Tiの添加量は0.05%未満では窒素と結合するTi量が少ないので、オーステナイト化を防ぐ効果が非常に小さい。逆に、1.0%を超えると、溶接金属に形成される窒化物が過多になり、また、窒化物以外にTiの炭化物や硫化物も形成されるため、溶接金属の延性が劣化する。 As described above, the composition of the welding wire for austenitic stainless steel disclosed in JIS Z 3321 is considered only in the case of arc welding using almost no nitrogen gas. These wires are adjusted so that the ferrite content of the weld metal is about 5 to 15% at room temperature. However, in the case of laser welding using nitrogen gas as a shielding gas, since nitrogen is dissolved in the weld metal, it is necessary to prevent the weld metal structure from being austenitized by nitrogen. Therefore, the present invention adds Ti having a high affinity for nitrogen. If the amount of Ti added is less than 0.05%, the amount of Ti combined with nitrogen is small, so the effect of preventing austenitization is very small. On the contrary, if it exceeds 1.0%, the nitride formed in the weld metal becomes excessive, and Ti carbide and sulfide are also formed in addition to the nitride, so that the ductility of the weld metal deteriorates.
 JIS Z3321に開示されている溶接ワイヤの一例として、記号321の溶接ワイヤは、9×%C~1.0質量%のTiを含んでいる。しかし、Cr量が18.5~20.5%であるため、溶接金属の窒素量が高い場合にTiで窒素を固定化しようとしても、溶接金属のフェライト量を5%以上にすることが困難である。本発明は、上記のように窒素と親和力の大きいTiを添加することに加え、フェライト化のし易さの指標となるCr*/Ni*の値を調節することにより、溶接金属のオーステナイト化を抑制し、溶接部の溶接割れを防止する。 As an example of the welding wire disclosed in JIS Z3321, the welding wire denoted by reference numeral 321 contains 9 ×% C to 1.0% by mass of Ti. However, since the Cr content is 18.5 to 20.5%, it is difficult to increase the ferrite content of the weld metal to 5% or more even when trying to fix the nitrogen with Ti when the nitrogen content of the weld metal is high. It is. In addition to adding Ti having a high affinity for nitrogen as described above, the present invention controls the austenitization of the weld metal by adjusting the value of Cr * / Ni * , which is an index of the ease of ferritization. Suppresses and prevents weld cracks in the weld zone.
 本発明によれば、シールドガスに窒素ガスを使用してオーステナイト系ステンレス鋼をレーザ溶接する場合に、溶接割れしにくくすることができる。 According to the present invention, when austenitic stainless steel is laser-welded using nitrogen gas as a shielding gas, weld cracking can be made difficult.
実施例1における狭開先レーザ溶接の概要図。1 is a schematic diagram of narrow groove laser welding in Example 1. FIG.
 以下、本発明の実施例について、詳細を説明する。 Hereinafter, details of the embodiments of the present invention will be described.
 表1に、JISに規定されているSUS316L圧延板材(オーステナイトステンレス鋼被溶接材、以下、母材と記す)の化学成分を示す。この母材はTiを含まず、式(1)により計算したCr当量(Cr*)と式(2)により計算したNi当量(Ni*)の比率であるCr*/Ni*が1.53のものである。
Cr*=%Cr+%Mo+1.5×%Si                  ・・・ 式(1)
Ni*=%Ni+30×%C+30×%N+0.5×%Mn  ・・・ 式(2)
 表2に実施例と比較例の溶接材料の化学成分を示す。比較例1と比較例2の溶接材料はJIS Z3321の308Lと321の成分を有する。いずれの溶接材料も真空融解後、直径1.2mmのソリッドワイヤに加工したものである。また、各種の溶接材料のCr*/Ni*も表2に記載されている。
Table 1 shows chemical components of a SUS316L rolled plate material (austenite stainless steel welded material, hereinafter referred to as a base material) defined in JIS. This base material does not contain Ti, and Cr * / Ni *, which is a ratio of Cr equivalent (Cr * ) calculated by the formula (1) and Ni equivalent (Ni * ) calculated by the formula (2), is 1.53. Is.
Cr * =% Cr +% Mo + 1.5 ×% Si Formula (1)
Ni * =% Ni + 30 ×% C + 30 ×% N + 0.5 ×% Mn Formula (2)
Table 2 shows chemical components of the welding materials of Examples and Comparative Examples. The welding materials of Comparative Example 1 and Comparative Example 2 have components 308L and 321 of JIS Z3321. All the welding materials are processed into a solid wire having a diameter of 1.2 mm after vacuum melting. Table 2 also shows Cr * / Ni * of various welding materials.
 また、Cr当量とNi当量、下記の式(3)を用いてフェライト量(FN)を計算できる。
FN=-30.65+3.49×Cr*-2.5Ni*・・・・・・・式(3)
 上記のSUS316Lの母材と、比較例1,2及び実施例1~5の溶接材料を用い、下記のような溶接方法と溶接条件で溶接した溶接継手を試作した。すべての溶接継手は、ワイヤ種類以外の溶接条件がすべて同じである。
Further, the amount of ferrite (FN) can be calculated using Cr equivalent, Ni equivalent, and the following equation (3).
FN = −30.65 + 3.49 × Cr * −2.5Ni * ... Formula (3)
Using the above-mentioned SUS316L base material and the welding materials of Comparative Examples 1 and 2 and Examples 1 to 5, a welded joint welded under the following welding method and welding conditions was prototyped. All welding joints have the same welding conditions except for the wire type.
 図1に溶接材料とレーザを併用した狭開先レーザ溶接の概要を示す。レーザ発振器(図示せず)からレーザ光3を発生させ、転送経路を経由し、集光レンズにより集光し、母材1と2を組合せた突合せ継手の開先内に照射する。開先部分を埋める溶接層を形成するために、ワイヤ送給装置(図示せず)からワイヤ送給ノズル(図示せず)を経由して、突合せ継手の開先内に溶接ワイヤ4を供給する。シールドガスは窒素を用いて、ガスボンベ(図示せず)からシールドノズル(図示せず)を経由し、開先底部まで供給される。 Fig. 1 shows an outline of narrow groove laser welding using both welding material and laser. Laser light 3 is generated from a laser oscillator (not shown), is condensed by a condenser lens via a transfer path, and is irradiated into a groove of a butt joint in which the base materials 1 and 2 are combined. In order to form a weld layer that fills the groove portion, a welding wire 4 is supplied into a groove of the butt joint from a wire feeding device (not shown) via a wire feeding nozzle (not shown). . The shielding gas is supplied from a gas cylinder (not shown) through a shielding nozzle (not shown) to the bottom of the groove using nitrogen.
 本実施例の溶接方法は下記の通りである。厚さ30mmの板材を用い、図1に示したような片側狭開先溶接を実施した。本実施例の溶接条件は、レーザ出力4~8kW溶接速度0.1m/min~0.6m/minの条件であった。まず片側に狭開先の組み立てを行った後、開先底部の中心に集光されたレーザ光を照射し、図1に示すような細く長い形状の初層の溶接金属5を形成し、母材の突合せ部を完全に接合させた。 The welding method of this example is as follows. One side narrow groove welding as shown in FIG. 1 was performed using a plate material having a thickness of 30 mm. The welding conditions in this example were those with a laser output of 4 to 8 kW and a welding speed of 0.1 m / min to 0.6 m / min. First, after assembling a narrow groove on one side, the center of the groove bottom is irradiated with a focused laser beam to form a thin and long initial weld metal 5 as shown in FIG. The butt portion of the material was completely joined.
 本実施例では開先ルート面の溶融接合にワイヤを供給せず、レーザ光の照射のみで溶接を行った。なお、溶接金属の組織改善のため、溶接ワイヤを供給しながらルート面部の溶接を実施しても良い。 In this example, welding was performed only by laser beam irradiation without supplying a wire to the fusion bonding of the groove root surface. In order to improve the structure of the weld metal, the root surface portion may be welded while supplying the welding wire.
 初層溶接を終了した後、狭開先内に再度溶接ワイヤを供給しながら、レーザ光を用いて溶接ワイヤを溶融させて開先を埋める積層溶接を行い、図1に示したような2層目の溶接金属部6を形成した。 After the first layer welding is finished, the welding wire is supplied again into the narrow groove, and the welding wire is melted using the laser beam to perform the lamination welding to fill the groove, and the two layers as shown in FIG. The weld metal part 6 of the eye was formed.
 溶接後、溶接線の中央部付近の2層目の溶接金属のサンプルを採取し、不活性ガス融解-熱伝導法(JIS G1228)により溶接部内部の窒素ガス含有量(溶金N量)を測定した。その結果を表3に示す。本実施例の溶接金属の窒素含有量は600ppm~800ppmであるが、母材の成分や溶接条件などの違いにより異なるケースもある。たとえば、ほかの溶接条件で実施した溶接金属の窒素含有量は500ppm~1000ppmの結果もある。 After welding, a sample of the second layer of weld metal near the center of the weld line is taken, and the content of nitrogen gas (the amount of molten metal N) inside the weld is measured using an inert gas melting-heat conduction method (JIS G1228). It was measured. The results are shown in Table 3. The nitrogen content of the weld metal of this example is 600 ppm to 800 ppm, but there are cases where it differs depending on the difference in the composition of the base metal and welding conditions. For example, the nitrogen content of weld metals carried out under other welding conditions has a result of 500 ppm to 1000 ppm.
 表3に、比較例と実施例の溶接材料のTi含有量、溶接継手の溶接部に溶け込んだ窒素量および、フェライトスコープにより測定した溶接部のフェライト量(溶金フェライト量)を示す。 Table 3 shows the Ti content of the welding materials of the comparative example and the example, the amount of nitrogen dissolved in the welded portion of the welded joint, and the amount of ferrite in the welded portion (the amount of molten ferrite) measured with a ferrite scope.
 溶接後、染色浸透探傷試験(PT)を行い、溶接部表面の割れ発生状況を調べた。また、溶接部の内部に対し、溶接全線に対し溶接終始端部以外の5箇所で横断面を採取し、研磨とエッチングの作業を行った後、光学顕微鏡で観察し、溶接部内部に割れの有無を調べた。その結果を表4に示す。「割れあり」はPTまたは断面観察により割れが観察されたことを、「割れなし」はPTまたは断面観察によりいずれも割れが観察されなかったことを示す。 After the welding, a dye penetration test (PT) was conducted to examine the occurrence of cracks on the surface of the weld. Also, with respect to the inside of the welded portion, the cross-section is taken at five locations other than the welding start end portion with respect to the entire weld line, and after polishing and etching work, it is observed with an optical microscope, and cracks are observed inside the welded portion. The presence or absence was examined. The results are shown in Table 4. “With crack” indicates that cracking was observed by PT or cross-sectional observation, and “No crack” indicates that no crack was observed by PT or cross-sectional observation.
 実施例の母材はSUS316L突合せ継手で溶接されているが、SUS304、SUS310などでも適用できる。 The base material of the example is welded with a SUS316L butt joint, but SUS304, SUS310, etc. can also be applied.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~実施例5を用いたレーザ溶接は、いずれも溶接部に割れが生じないことを確認した。また、溶接金属はフェライト量6.2%~12.3%を含有している。これに対し、比較例1と比較例2を用いたレーザ溶接金属に割れが発生していることを確認した。この場合の溶接金属のフェライト量は4.0%~5.2%である。 In the laser welding using Examples 1 to 5, it was confirmed that no cracks occurred in the welded part. In addition, the weld metal contains a ferrite content of 6.2% to 12.3%. In contrast, it was confirmed that cracks occurred in the laser weld metal using Comparative Example 1 and Comparative Example 2. In this case, the ferrite content of the weld metal is 4.0% to 5.2%.
1,2 被溶接材(母材)
3 レーザ光
4 溶接ワイヤ
5 初層の溶接金属
6 2層目の溶接金属
1, 2 Welded material (base material)
3 Laser beam 4 Welding wire 5 First layer weld metal 6 Second layer weld metal

Claims (4)

  1.  オーステナイト系ステンレス鋼のレーザ溶接材料において、質量%で、C:0.01~0.08%、Si:1.0%以下、Mn:0.5~2.5%、P:0.03%以下、S:0.03%以下、Cr:20.5~24.0%、Ni:9.0~11.0%、Ti:0.1~1.0%を含み、下記の式を満たすことを特徴とするレーザ溶接材料。
    1.45≦Cr*/Ni*=(%Cr+%Mo+1.5×%Si)/(%Ni+30×%C+30×%N+0.5×%Mn≦2.20
    In the laser welding material of austenitic stainless steel, in mass%, C: 0.01 to 0.08%, Si: 1.0% or less, Mn: 0.5 to 2.5%, P: 0.03% Hereinafter, S: 0.03% or less, Cr: 20.5 to 24.0%, Ni: 9.0 to 11.0%, Ti: 0.1 to 1.0%, satisfying the following formula A laser welding material characterized by that.
    1.45 ≦ Cr * / Ni * = (% Cr +% Mo + 1.5 ×% Si) / (% Ni + 30 ×% C + 30 ×% N + 0.5 ×% Mn ≦ 2.20)
  2.  オーステナイト系ステンレス鋼のレーザ溶接材料において、質量%で、C:0.01~0.08%、Si:1.0%以下、Mn:0.5~2.2%、P:0.035%以下、S:0.03%以下、Cr:17.0~21.0%、Ni:9.5~14.0%、N:0.04~0.12%、Ti:0.05~0.6%を含み、下記の式を満たすことを特徴とするレーザ溶接材料。
    1.40≦Cr*/Ni*=(%Cr+%Mo+1.5×%Si)/(%Ni+30×%C+30×%N+0.5×%Mn≦2.0
    In the laser welding material of austenitic stainless steel, in mass%, C: 0.01 to 0.08%, Si: 1.0% or less, Mn: 0.5 to 2.2%, P: 0.035% Hereinafter, S: 0.03% or less, Cr: 17.0 to 21.0%, Ni: 9.5 to 14.0%, N: 0.04 to 0.12%, Ti: 0.05 to 0 A laser welding material containing 6% and satisfying the following formula:
    1.40 ≦ Cr * / Ni * = (% Cr +% Mo + 1.5 ×% Si) / (% Ni + 30 ×% C + 30 ×% N + 0.5 ×% Mn ≦ 2.0)
  3.  オーステナイト系ステンレス鋼の母材同士の溶接部を含む溶接継手において、前記溶接部に請求項1のレーザ溶接材料を含むことを特徴とする溶接継手。 A welded joint including a welded portion between base materials of austenitic stainless steel, wherein the welded portion includes the laser welding material according to claim 1.
  4.  オーステナイト系ステンレス鋼の母材同士の溶接部を含む溶接継手において、前記溶接部に請求項2のレーザ溶接材料を含むことを特徴とする溶接継手。 A welded joint including a welded portion between base materials of austenitic stainless steel, wherein the welded portion includes the laser welding material according to claim 2.
PCT/JP2012/080666 2012-11-28 2012-11-28 Laser-welding material for austenitic stainless steel, and welded joint using same WO2014083621A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014549673A JP5948435B2 (en) 2012-11-28 2012-11-28 Welding materials and welded joints
PCT/JP2012/080666 WO2014083621A1 (en) 2012-11-28 2012-11-28 Laser-welding material for austenitic stainless steel, and welded joint using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080666 WO2014083621A1 (en) 2012-11-28 2012-11-28 Laser-welding material for austenitic stainless steel, and welded joint using same

Publications (1)

Publication Number Publication Date
WO2014083621A1 true WO2014083621A1 (en) 2014-06-05

Family

ID=50827297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080666 WO2014083621A1 (en) 2012-11-28 2012-11-28 Laser-welding material for austenitic stainless steel, and welded joint using same

Country Status (2)

Country Link
JP (1) JP5948435B2 (en)
WO (1) WO2014083621A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308364A (en) * 2014-09-05 2015-01-28 南京煜宸激光科技有限公司 Horizontal-8-shaped mould laser welding method
CN105269153A (en) * 2015-11-20 2016-01-27 中国航空工业集团公司北京航空制造工程研究所 Welding wire for multi-wire-filling laser welding of thick plate and welding method of welding wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299834B (en) * 2020-03-13 2022-11-29 中国科学院合肥物质科学研究院 Laser narrow gap welding method for thick plate of 316LN and GH4169 dissimilar materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453798A (en) * 1987-08-25 1989-03-01 Ishikawajima Harima Heavy Ind Filler metal for magnetically agitated arc welding
JPH09308988A (en) * 1996-05-17 1997-12-02 Nippon Steel Corp Gas metal arc welding wire for austenitic stainless steel
JP2003145286A (en) * 2001-11-14 2003-05-20 Kobe Steel Ltd Method for laser beam welding of steel members

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453798A (en) * 1987-08-25 1989-03-01 Ishikawajima Harima Heavy Ind Filler metal for magnetically agitated arc welding
JPH09308988A (en) * 1996-05-17 1997-12-02 Nippon Steel Corp Gas metal arc welding wire for austenitic stainless steel
JP2003145286A (en) * 2001-11-14 2003-05-20 Kobe Steel Ltd Method for laser beam welding of steel members

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308364A (en) * 2014-09-05 2015-01-28 南京煜宸激光科技有限公司 Horizontal-8-shaped mould laser welding method
CN105269153A (en) * 2015-11-20 2016-01-27 中国航空工业集团公司北京航空制造工程研究所 Welding wire for multi-wire-filling laser welding of thick plate and welding method of welding wire

Also Published As

Publication number Publication date
JP5948435B2 (en) 2016-07-06
JPWO2014083621A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
Cao et al. Research and progress in laser welding of wrought aluminum alloys. I. Laser welding processes
EP2546020A1 (en) Laser/arc hybrid welding method and method for producing welded member using same
JP5260268B2 (en) Manufacturing method of core shroud for nuclear power plant and nuclear power plant structure
JP5656802B2 (en) Aluminum can body for secondary battery and manufacturing method thereof
Lisiecki Welding of titanium alloy by different types of lasers
Cui et al. Microstructure inhomogeneity of dissimilar steel/Al butt joints produced by laser offset welding
Guo et al. Laser welding of high strength steels (S960 and S700) with medium thickness
Bolut et al. Yb-fibre laser welding of 6 mm duplex stainless steel 2205
Furuya et al. Improvement of interfacial strength with the addition of Ni in Al/Cu dissimilar joints produced via laser brazing
JP5948435B2 (en) Welding materials and welded joints
JP2017154159A (en) Intermetallic compound alloy, metal member and manufacturing method of clad layer
KR20160130312A (en) Welded metal having excellent strength, toughness and sr cracking resistance
Kessler et al. Extension of the process limits in laser beam welding of thick-walled components using the Laser Multi-Pass Narrow-Gap welding (Laser-MPNG) on the example of the nickel-based material Alloy 617 occ
JP6638529B2 (en) Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same
US20120261459A1 (en) Laser metalworking using reactive gas
WO2018003341A1 (en) Laser welded joint and method for manufacturing laser welded joint
Dillibabu et al. Microstructural studies on laser dissimilar welded Ni and steel alloys for aeronautical turbine applications
JP2006075853A (en) Laser-welded joint of austenitic alloy steel and its production method
KR102428825B1 (en) Welded member having excellent fatigue strength of weld zone and method of manufacturing the same
JP2007024609A (en) Manufacturing method of spent fuel storage rack
Sørensen et al. Double-sided Hybrid Laser-Arc Welding of 25 mm S690QL High Strength Steel
Khan et al. Meeting weld quality criteria when laser welding Ni-based alloy 718
JP2003220492A (en) Cored wire for laser beam welding of steel material and solid wire
Valsecchi et al. Fibre laser cladding of turbine blade leading edges: the effect of specific energy on clad dilution
JP6977409B2 (en) Stable austenitic stainless steel welded material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889175

Country of ref document: EP

Kind code of ref document: A1