JP6638529B2 - Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same - Google Patents

Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same Download PDF

Info

Publication number
JP6638529B2
JP6638529B2 JP2016075815A JP2016075815A JP6638529B2 JP 6638529 B2 JP6638529 B2 JP 6638529B2 JP 2016075815 A JP2016075815 A JP 2016075815A JP 2016075815 A JP2016075815 A JP 2016075815A JP 6638529 B2 JP6638529 B2 JP 6638529B2
Authority
JP
Japan
Prior art keywords
welding
laser
gas
weld metal
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016075815A
Other languages
Japanese (ja)
Other versions
JP2017185522A (en
Inventor
修一 中村
修一 中村
仁寿 ▲徳▼永
仁寿 ▲徳▼永
周雄 猿渡
周雄 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016075815A priority Critical patent/JP6638529B2/en
Publication of JP2017185522A publication Critical patent/JP2017185522A/en
Application granted granted Critical
Publication of JP6638529B2 publication Critical patent/JP6638529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、Ni基合金の溶接材料を使用して、溶接トーチを先行させ、その後方にレーザー照射点を配置したレーザー・アークハイブリッド溶接により得られる溶接金属を含む溶接継ぎ手及びその作製方法に関し、溶接金属の靱性に優れ、溶け込み不良、融合不良、及び、高温割れなどの溶接欠陥が生ぜず、かつ、深い溶け込みを得ることで溶接パス数を少なくすることが可能な溶接効率の高い溶接継ぎ手を提供する。   The present invention relates to a welding joint including a welding metal obtained by laser-arc hybrid welding in which a welding torch is preceded and a laser irradiation point is arranged behind the welding torch by using a welding material of a Ni-based alloy, and a method for manufacturing the same. Welding joints with excellent toughness of weld metal, no weld defects such as poor penetration, poor fusion, and hot cracking, and can reduce the number of welding passes by obtaining deep penetration. provide.

近年、地球温暖化排出ガスの少ないエネルギー源として、液化天然ガスの使用量が増加しており、それを貯蔵・運搬するためのLNGタンク、LNG船の建造も活発である。LNGを貯蔵するタンクには、−162℃の極低温でも脆性破壊を起こさない低温靭性が要求される。そのため、強度・低温靭性が優れる6〜9%のNiを含む高Ni鋼が使用されている。また、タンクの大型化のため、高Ni鋼の厚手化も検討されている。   In recent years, the use of liquefied natural gas as an energy source with less global warming exhaust gas has been increasing, and the construction of LNG tanks and LNG vessels for storing and transporting it has been active. The tank for storing LNG is required to have low-temperature toughness that does not cause brittle fracture even at an extremely low temperature of -162 ° C. Therefore, a high Ni steel containing 6 to 9% of Ni, which has excellent strength and low-temperature toughness, is used. Further, to increase the size of the tank, thickening of high Ni steel is also being studied.

高Ni鋼の溶接には、Ni基合金の溶接材料が主に使用されている。高Ni鋼の溶接施工方法として、被覆アーク溶接法、TIG溶接法、サブマージアーク溶接法が使用されている。被覆アーク溶接法、TIG溶接法は、溶接効率化が非常に低く、厚手の高Ni鋼の溶接には適さない。一方、サブマージアーク溶接は溶接効率が高いが、溶接金属に高温割れが発生しやすく、その補修が頻繁に必要になるため、溶接施工コストは依然として高い。   For welding high Ni steels, welding materials of Ni-base alloys are mainly used. Covered arc welding, TIG welding, and submerged arc welding are used as welding methods for high Ni steels. The coated arc welding method and the TIG welding method have very low welding efficiency and are not suitable for welding thick high Ni steel. On the other hand, although submerged arc welding has high welding efficiency, high-temperature cracks are easily generated in the weld metal and repair thereof is frequently required, so that the welding construction cost is still high.

そこで、効率的な溶接方法としては、ガスシールドアーク溶接の適用が考えられる。しかし、安定したアーク状態のガスシールドアーク溶接を行うためには、シールドガスにCO2ガスまたはO2ガスを含む必要があるが、そのシールドガスを使用して得られる溶接金属は酸素を多く含む。
LNGタンクの鋼材、溶接金属に要求されるのは−196℃での靭性であるが、溶接金属の靭性に及ぼす酸素の影響は大きく、酸素が増加するにつれて、靭性は大きく劣化する。
Then, as an efficient welding method, application of gas shielded arc welding can be considered. However, in order to perform gas shielded arc welding in a stable arc state, it is necessary to include CO 2 gas or O 2 gas in the shield gas, but the weld metal obtained using the shield gas contains a large amount of oxygen. .
The toughness at -196 ° C is required for the steel material and the weld metal of the LNG tank, but the effect of oxygen on the toughness of the weld metal is great, and as the oxygen increases, the toughness deteriorates greatly.

一方で、シールドガスの酸素を極力低減して溶接する方法も考えられる。しかし、溶融した溶接金属の酸素が少ないと、溶融池が広がらないため凸ビード形状になりやすく、溶け込み不良、融合不良、高温割れなどの溶接欠陥が発生しやすい問題がある。これらを解決するために、ガスシールドアーク溶接に適用できるNi基合金のフラックス入りワイヤが開発されている。しかし、高温割れを抑制するために、高価な合金元素が多量に添加されており、加えて、フラックス入りワイヤの製造コストは、ソリッドワイヤと比較して高いため、溶接材料コストが高くなる問題がある。このため、溶接施工効率が高く、かつ、溶接材料コストが安価な溶接施工方法が要望されている。   On the other hand, a method of welding by reducing the oxygen of the shielding gas as much as possible is also conceivable. However, if the molten weld metal has a small amount of oxygen, the molten pool does not spread, so that it tends to have a convex bead shape, and there is a problem that welding defects such as poor penetration, poor fusion, and hot cracking are likely to occur. In order to solve these problems, a flux cored wire of a Ni-based alloy applicable to gas shielded arc welding has been developed. However, in order to suppress hot cracking, a large amount of expensive alloying elements are added, and in addition, the manufacturing cost of flux cored wires is higher than that of solid wires, so that the cost of welding materials is high. is there. Therefore, there is a demand for a welding method that has a high welding efficiency and a low welding material cost.

近年、鋼板の溶接の高効率化を目的として、レーザーとガスシールドアーク溶接を組み合わせたレーザー・アークハイブリッド溶接を用いて狭開先形状の溶接継ぎ手を作製することが検討されている(例えば特許文献1〜5参照)。   In recent years, for the purpose of increasing the efficiency of welding steel sheets, it has been studied to fabricate a welded joint having a narrow groove shape by using laser-arc hybrid welding combining laser and gas shielded arc welding (for example, Patent Document 1). 1-5).

特許文献1には、引張強さが1100MPa以上である4〜12mmの鋼板を、ソリッドワイヤを用いて、レーザーハイブリッド溶接により1パス溶接することで、鋼板表層の溶接金属の幅:W1を2.0〜7.0mm、鋼板表層から板厚の3/4における溶接金属の幅:W2を0.5〜2.4mmとする溶接金属の断面形状を持ち、パラメータCeq(炭素当量)とY={([Si]+[Mn])/40+[Al]+[Ti]}が所定値であるNiを1.0〜9%含む溶接継ぎ手が開示されている。   Patent Document 1 discloses that a steel plate of 4 to 12 mm having a tensile strength of 1100 MPa or more is subjected to one-pass welding by laser hybrid welding using a solid wire, so that the width W1 of the weld metal on the surface of the steel plate is set to 2. The weld metal has a cross-sectional shape of 0 to 7.0 mm, the width of the weld metal from the surface of the steel sheet to 3/4 of the plate thickness: W2 of 0.5 to 2.4 mm, and has a parameter Ceq (carbon equivalent) and Y = {. ([Si] + [Mn]) / 40+ [Al] + [Ti]} discloses a welding joint containing 1.0 to 9% of Ni, which is a predetermined value.

この技術は、文献1中に記載されるように、板厚12mmまでの高強度鋼板を対象とした1パス溶接継ぎ手であり、それ以上の厚手鋼板の溶接に適用することはできない。   As described in Document 1, this technique is a one-pass welding joint for high-strength steel sheets up to a thickness of 12 mm, and cannot be applied to welding thicker steel sheets.

一方、特許文献2〜4では、レーザー照射点を前方とし、後方に溶接トーチを配置したレーザー・アークハイブリッド溶接を採用している。これらの技術は、溶接方向前方よりレーザーを照射し、溶融池前方の開先底面と開先壁面を溶融しながら、アーク溶接を行うものであり、狭開先形状で、かつ低入熱の溶接であっても溶接金属と母材の境界に溶接欠陥が生じない良好な溶接継ぎ手が得られるとされている。しかし、これらの文献2〜4では、深溶け込みの溶接金属を形成した際の梨形ビード割れ、及び、表面割れに関しては検討されていない。   On the other hand, Patent Literatures 2 to 4 employ laser-arc hybrid welding in which a laser irradiation point is set to the front and a welding torch is arranged to the rear. In these technologies, laser welding is performed from the front in the welding direction, and arc welding is performed while melting the groove bottom and groove wall in front of the molten pool.Welding with a narrow groove shape and low heat input Even in this case, it is said that a good welded joint that does not cause welding defects at the boundary between the weld metal and the base material can be obtained. However, these Literatures 2 to 4 do not discuss a pear-shaped bead crack and a surface crack when forming a deep penetration weld metal.

また、特許文献5は、先方に溶接トーチを配置したレーザー・アークハイブリッド溶接を開示する。この技術は、凝固が完了した後、溶接金属にレーザーを照射し、溶接金属を再溶融させることで深溶け込みを得る方法であるが、深溶け込み形状で発生しやすい高温割れ(梨形ビード割れ、表面割れ)に関しては一切検討されていない。   Patent Literature 5 discloses laser-arc hybrid welding in which a welding torch is arranged on the front side. This technique is a method of irradiating the weld metal with a laser after solidification is completed and re-melting the weld metal to obtain deep penetration. However, hot cracks (pear-shaped bead cracks, No consideration has been given to surface cracking.

国際公開第2011/155620号International Publication No. 2011/155620 特開2012−020291号公報JP 2012020291A 特開2012−206144号公報JP 2012-206144 A 特開2012−206145号公報JP 2012-206145 A 特開2013−103259号公報JP 2013-103259 A

本発明は、LNGタンクやLNG船などの極低温環境に曝される鋼構造物素材に適用される高Ni鋼等の厚手鋼板母材の溶接において、溶け込み不良、融合不良、及び、高温割れ等の溶接欠陥が発生せず、かつ、母材と溶接金属の界面に融合不良を発生しないレーザー・アークハイブリッド溶接継ぎ手、及び、その作製方法を提供して、溶接の積層数・パス数を減少させ、溶接施工効率及び溶接コストを著しく改善することを目的とする。   The present invention relates to welding of a thick steel base material such as a high Ni steel applied to a steel structure material exposed to a very low temperature environment such as an LNG tank or an LNG ship, in which poor penetration, poor fusion, high-temperature cracking, etc. Arc-hybrid welding joint that does not generate welding defects and does not cause poor fusion at the interface between the base metal and the weld metal, and a method for manufacturing the same, to reduce the number of laminations and the number of passes of welding It aims to remarkably improve welding efficiency and welding cost.

本発明者は、上記技術的課題を解決するために、Ni基合金等のソリッドワイヤ溶接材料を使用したガスシールドアーク溶接の溶接トーチを先行させ、その後方にレーザー照射点を配置したレーザー・アークハイブリッド溶接を用いる場合の溶接条件を種々検討し、溶接金属の靱性に優れ、かつ、溶け込み不良、融合不良、及び、高温割れなどの溶接欠陥が発生せず、溶接効率の高い継ぎ手が得られる溶接法を見出した。
本発明は、下記のとおりである。
In order to solve the above-mentioned technical problem, the present inventor precedes a welding torch for gas shielded arc welding using a solid wire welding material such as a Ni-based alloy, and arranges a laser irradiation point behind the welding torch. We examined various welding conditions when using hybrid welding and found that welding with excellent toughness of the weld metal, no weld defects such as poor penetration, poor fusion, and high temperature cracking, and high welding efficiency could be obtained. I found the law.
The present invention is as described below.

(1)Ni基合金の溶接材料を使用したガスシールドアーク溶接の溶接トーチを先行させ、その後方にレーザー照射点を配置したレーザー・アークハイブリッド溶接を用いた溶接方法で得られる多層盛りの溶接金属を有する溶接継ぎ手において、溶接金属全体の面積をWTAとし、ガスシールドアーク溶接の後続のレーザー溶接によって再溶融された部分の面積の和をSWAとしたとき、面積率SWA/WTAが0.20以上であり、1パス毎に形成される溶接金属の幅をW、高さをHとしたとき、全てのH/Wが0.7未満であり、得られた溶接金属の酸素量が220ppm以下であることを特徴とする溶接継ぎ手。 (1) Multi-layer weld metal obtained by a welding method using laser-arc hybrid welding in which a welding torch for gas shielded arc welding using a Ni-based alloy welding material is preceded and a laser irradiation point is arranged behind the welding torch When the total area of the weld metal is WTA and the sum of the areas of the portions re-melted by laser welding subsequent to gas shielded arc welding is SWA, the area ratio SWA / WTA is 0.20 or more. When the width of the weld metal formed in each pass is W and the height is H, all H / Ws are less than 0.7, and the oxygen content of the obtained weld metal is 220 ppm or less. A welded joint characterized by the following.

(2)ガスシールドアーク溶接の溶接トーチを先行させ、その後方にレーザー照射点を配置したレーザー・アークハイブリッド溶接をすることによって上記(1)に記載の溶接継ぎ手を作製する方法であって、先行のガスシールドアーク溶接において、シールドガスとして2〜5%のO2ガス、または、5〜25%のCO2ガスを含むArガスからなる混合ガスを用い、溶接入熱量が14.0〜21.5kJ/cmであり、後方のレーザー溶接には、波長が0.78〜1.60μmのレーザーを使用し、レーザー照射狙い位置をP[mm]、溶接速度をV[mm/sec]とし、先行のガスシールドアーク溶接のワイヤ狙い位置を原点0とした場合、ワイヤ狙い位置より溶接進行方向の反対方向にPがV〜10V[mm]の範囲であることを特徴とするレーザー・アークハイブリッド溶接による溶接継ぎ手作製方法。 (2) A method for producing a welding joint as described in (1) above, wherein a welding torch for gas shielded arc welding is preceded and laser-arc hybrid welding is performed with a laser irradiation point disposed behind the welding torch. In the gas shielded arc welding, a mixed gas composed of an Ar gas containing 2 to 5% O 2 gas or 5 to 25% CO 2 gas is used as a shielding gas, and the welding heat input is 14.0 to 21. 5 kJ / cm, and a laser having a wavelength of 0.78 to 1.60 μm was used for the rear laser welding. The target position of laser irradiation was P [mm], the welding speed was V [mm / sec], When the wire aiming position of the gas shielded arc welding is set to the origin 0, it is noted that P is in the range of V to 10 V [mm] in the direction opposite to the welding progress direction from the wire aiming position. It welded joint manufacturing method according to a laser-arc hybrid welding to.

本発明の溶接継ぎ手は、高Ni鋼等の厚手鋼板母材の溶接において、Ni基合金の溶接材料を使用し、溶接トーチを先行させ、その後方にレーザー照射点を配置したレーザー・アークハイブリッド溶接を用いた溶接方法で作成した多層盛りの溶接金属からなる溶接継ぎ手であり、溶接金属の靱性に優れ、かつ、溶け込み不良、融合不良、及び、高温割れ等の溶接欠陥がなく、溶接の積層数・パス数を大幅に減少して、溶接施工効率や溶接コストを大幅に改善することができるので、産業上の効果は極めて大きい。   The welding joint of the present invention is a laser-arc hybrid welding in which a welding material of a Ni-based alloy is used in welding a thick steel base material such as a high Ni steel, a welding torch is arranged ahead, and a laser irradiation point is arranged behind the welding torch. Is a welded joint made of a multi-layered weld metal made by a welding method using, and has excellent toughness of the weld metal, no welding defects such as poor penetration, poor fusion, and hot cracking. -Since the number of passes can be greatly reduced, welding efficiency and welding cost can be greatly improved, and the industrial effect is extremely large.

本発明の溶接継ぎ手から試験片を得る場合の継ぎ手断面図である。It is a joint sectional view at the time of obtaining a test piece from the welding joint of the present invention. 本発明が採用するレーザー・アークハイブリッド溶接方法を説明するための図である。It is a figure for explaining the laser-arc hybrid welding method adopted by the present invention. 溶接後の溶接継ぎ手断面形状を説明するための図である。It is a figure for explaining a welding joint section shape after welding. SWA/WTA比と溶接欠陥個数との相関を示すグラフである。4 is a graph showing a correlation between a SWA / WTA ratio and the number of welding defects. 溶接金属中の酸素量がシャルピー吸収エネルギー値に及ぼす影響を表すグラフである。It is a graph showing the influence which the amount of oxygen in a weld metal has on the Charpy absorbed energy value.

以下、本発明の実施形態について図面により説明する。
以下に示す製造方法により、溶接継ぎ手を製造し、評価した。図1において、鋼板11は、新日鐵住金(株)製の板厚が20mmの9%Ni鋼を採用し、裏板材12として板厚12mmの9%Ni鋼を使用した。溶接材料6(図2参照)は、JIS規格のZ3334−SNi6082及びZ3334−SNi6276に該当するNi基合金のソリッドワイヤを使用した。[表1−1]に使用した鋼板11の成分を、[表1−2]に溶接材料(溶接ワイヤ)6の成分を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A welding joint was manufactured by the following manufacturing method and evaluated. In FIG. 1, 9% Ni steel having a thickness of 20 mm manufactured by Nippon Steel & Sumitomo Metal Co., Ltd. was used as the steel plate 11, and 9% Ni steel having a thickness of 12 mm was used as the back plate 12. As the welding material 6 (see FIG. 2), a solid wire of a Ni-based alloy corresponding to Z3334-SNi6082 and Z3334-SNi6276 of the JIS standard was used. [Table 1-1] shows the components of the steel plate 11 used, and [Table 1-2] shows the components of the welding material (welding wire) 6.

これらの鋼板と溶接ワイヤSW1、又は、SW2を用いて、JIS規格のZ3111−2005の「溶着金属の引張及び衝撃試験方法」に記載される溶接継ぎ手の作製方法に従い、図1に示す開先形状に組み立て、[表2−1]〜[表2−2]に示す条件(電流、電圧、溶接速度、入熱、シールドガス組成、レーザー媒体、レーザー出力、レーザー照射狙い位置)にて、ガスシールド溶接とレーザー溶接を組み合わせたレーザー・アークハイブリッド溶接を行って、多層盛り溶接継ぎ手を作製した。   Using these steel plates and welding wires SW1 or SW2, the groove shape shown in FIG. 1 was obtained according to the method for producing a welded joint described in “Method of tensile and impact test of welded metal” in JIS Z3111-2005. Under the conditions (current, voltage, welding speed, heat input, shielding gas composition, laser medium, laser output, laser irradiation target position) shown in [Table 2-1] to [Table 2-2], Laser-arc hybrid welding combining welding and laser welding was performed to produce a multi-layer welded joint.

このようにして得られた溶接継ぎ手について、溶接方向に対して垂直方向に切断し、その断面を鏡面研磨・ナイタール腐食によって組織を現出した。それを目視及び光学顕微鏡にて観察を行い、溶接金属の全体の面積を測定してWTAとし、再溶融した部分の面積をそれぞれ測定し、その総和をSWAとし、SWA/WTAを計算した。
溶接欠陥については、溶け込み不良、融合不良、及び、高温割れの個数を数え、その総和を溶接欠陥の個数とした。
さらに、1パス毎の溶接金属の高さと幅をそれぞれ観察し、H/Wが最大になるものを測定した。
観察の結果、図4に示すように、SWA/WTAが0.20以上、即ち、溶接金属全体の面積WTAに対して、ガスシールドアーク溶接に後続するレーザー溶接によって再溶融された部分の面積の和SWAが0.20以上である領域では、溶接欠陥の発生が見られなかった。
The thus obtained welded joint was cut in a direction perpendicular to the welding direction, and a cross section of the welded joint revealed a structure by mirror polishing and nital corrosion. It was visually observed and observed with an optical microscope, the entire area of the weld metal was measured and defined as WTA, the area of the remelted portion was measured, and the sum was defined as SWA, and SWA / WTA was calculated.
Regarding welding defects, the number of poor penetration, poor fusion, and hot cracking were counted, and the total was defined as the number of welding defects.
Further, the height and width of the weld metal for each pass were observed, and the one that maximized H / W was measured.
As a result of the observation, as shown in FIG. 4, SWA / WTA was 0.20 or more, that is, the area WTA of the entire weld metal was reduced by the area of the area remelted by laser welding subsequent to gas shielded arc welding. In the region where the sum SWA was 0.20 or more, no generation of welding defects was observed.

次に、図1に示すように、JIS規格のZ3111−2005に準拠したA1号引張試験片(丸棒)(径=12.5mm)15とZ2242−2005に準拠したシャルピー試験片(2mmVノッチ試験片)14を採取し、それぞれの機械特性試験を行って、溶着金属の引張強度、及び−196℃(液体窒素温度)におけるシャルピー吸収エネルギーvE-196[J]を測定した。 Next, as shown in FIG. 1, a No. A1 tensile test piece (round bar) (diameter = 12.5 mm) 15 based on JIS standard Z3111-2005 and a Charpy test piece (2 mm V notch test) based on Z2242-2005. 14) were sampled, and subjected to mechanical property tests to measure the tensile strength of the deposited metal and the Charpy absorbed energy vE -196 [J] at -196 ° C (liquid nitrogen temperature).

機械特性の評価基準は以下の通りとした。
・引張強度:LNGタンクの電気事業法やガス事業法にて溶接部に要求されている引張強度が660MPa以上を合格とした。
The evaluation criteria for the mechanical properties were as follows.
-Tensile strength: The tensile strength required for the welded part according to the Electricity Business Law and the Gas Business Law of the LNG tank was 660 MPa or more.

・靭性:Z3334−SNi6082のインコネル系溶接材料SW1については、−196℃でのシャルピー吸収エネルギー80J以上を合格とし、Z3334−SNi6276のハステロイ系溶接材料SW2については、−196℃でのシャルピー吸収エネルギー60J以上を合格とした。   -Toughness: Charcoal absorbed energy of 80 J or more at -196 ° C was accepted for the inconel welding material SW1 of Z3334-SNi6082, and Charpy absorbed energy of 60J at -196 ° C for the Hastelloy-based welding material SW2 of Z3334-SNi6276. The above was passed.

溶接金属の酸素量測定は、板厚中央部かつ溶接金属の幅中央部の箇所から溶接継ぎ手の長手方向に溶接金属の酸素測定用の分析試料のピンを切り出し、不活性ガス−溶解赤外線吸収法により測定した。図5に結果を示すように、何れの溶接材料についても、酸素量220ppm以下の領域において、合格範囲のシャルピー吸収エネルギー値が得られている。
以上の試験結果を[表3−1]〜[表3−2]に示す。
The oxygen content of the weld metal is measured by cutting out an analytical sample pin for oxygen measurement of the weld metal from the center of the plate thickness and the center of the width of the weld metal in the longitudinal direction of the weld joint, using an inert gas-dissolved infrared absorption method. Was measured by As shown in the results in FIG. 5, for all the welding materials, the Charpy absorbed energy values in the acceptable range were obtained in the region where the oxygen content was 220 ppm or less.
The above test results are shown in [Table 3-1] to [Table 3-2].

[表3−1]〜[表3−2]の試験結果に示されるように、本発明例である試験番号T1〜T30は、合格であった。一方、比較例である試験番号T31〜T42は、総合判定で不合格となった。   As shown in the test results of [Table 3-1] to [Table 3-2], test numbers T1 to T30, which are examples of the present invention, passed. On the other hand, the test numbers T31 to T42 as comparative examples failed in the comprehensive judgment.

即ち、T31は、レーザー出力が足りず、また、T32は溶接速度が速すぎて、共にレーザー照射による再溶融部分の面積率SWA/WTAが0.20に満たず、溶接欠陥が発生した。
また、T33とT34は、シールドガス中の酸素又は二酸化炭素の含有量が不十分であったため、アークが不安定となり、溶接ビード形状不良に起因する溶接欠陥が生起したため、これらについては引張強度試験、及びシャルピー試験を行うに至らなかった。
That is, in T31, the laser output was insufficient, and in T32, the welding speed was too high, and the area ratio SWA / WTA of the re-melted portion by laser irradiation was less than 0.20, and welding defects occurred.
Further, in T33 and T34, since the content of oxygen or carbon dioxide in the shielding gas was insufficient, the arc became unstable, and welding defects were caused due to poor weld bead shape. , And Charpy test did not occur.

T35〜T38は、T33やT34とは逆に、シールドガス中に過剰の酸素や二酸化炭素を含むか、或いは、100%二酸化炭素のシールドガスにて継ぎ手を溶接した比較例である。これらの比較例においては、溶接金属中の酸素量が何れも220ppm以上となった結果、−196℃におけるシャルピー吸収エネルギー値が60J未満となり、規定の靱性を確保することができなかった。   In contrast to T33 and T34, T35 to T38 are comparative examples in which an excess oxygen or carbon dioxide is contained in the shielding gas or the joint is welded with a shielding gas of 100% carbon dioxide. In these comparative examples, the oxygen content in the weld metal was 220 ppm or more, and as a result, the Charpy absorbed energy value at -196 ° C was less than 60 J, and the specified toughness could not be secured.

T39〜T41は、ガスシールドアーク溶接に後続するレーザー照射位置の不適切により、溶接欠陥を生じた比較例である。T39は狙い位置が近すぎるため、また、T40とT41は狙い位置が遠すぎるために、何れも、適切な再溶融状態を得ることができずに、面積率SWA/WTAが0.2に満たなかったため、溶接欠陥を発生した。
また、T42は、溶接速度との相対的な比較において、過大な電圧、電流であったため、溶接線単位長さ当りの入熱量が過大となった結果、溶着量が増大して再溶融不十分を生じて溶接欠陥を発生し、不合格となった。
T39 to T41 are comparative examples in which a welding defect was caused by an inappropriate laser irradiation position subsequent to gas shielded arc welding. In T39, the target positions are too close, and in T40 and T41, the target positions are too far, and neither can obtain an appropriate remelting state, and the area ratio SWA / WTA is less than 0.2. No welding defect occurred.
Further, T42 was an excessive voltage and current in the relative comparison with the welding speed, so that the amount of heat input per unit length of the welding line became excessive, so that the welding amount increased and remelting was insufficient. And a welding defect was generated, and the test was rejected.

本発明によれば、高Ni鋼等の厚手鋼板母材の溶接において、Ni基合金の溶接材料を使用し、溶接トーチを先行させ、その後方にレーザー照射点を配置したレーザー・アークハイブリッド溶接を用いた溶接方法で作成した多層盛りの溶接金属からなる溶接継ぎ手を形成することで、溶接金属の靱性に優れ、かつ、溶け込み不良、融合不良、及び、高温割れ等の溶接欠陥のない健全な溶接継ぎ手を、溶接の積層数・パス数を大幅に減少して製作することができるので、溶接施工効率や溶接コストを大幅に改善することが可能となる。   According to the present invention, in welding of a thick steel base material such as high Ni steel, laser-arc hybrid welding using a welding material of a Ni-based alloy, preceding a welding torch, and arranging a laser irradiation point behind the welding torch is performed. By forming a welded joint consisting of multiple layers of weld metal created by the used welding method, sound welding with excellent toughness of weld metal and no weld defects such as poor penetration, poor fusion, and hot cracking Since the joint can be manufactured with the number of laminations and the number of passes greatly reduced, welding efficiency and welding cost can be significantly improved.

1 鋼板表裏面
2 溶接金属
3 溶融池
4 移行液滴
5 アーク溶接狙い位置
6 溶接ワイヤ
7 ガスシールドアーク溶接トーチ
8 レーザートーチ
9 レーザー光
10 レーザー照射点
11 鋼板
12 裏当て金
13 溶接金属
14 シャルピー試験片(2mmVノッチ試験片)
15 引張試験片(丸棒)
DESCRIPTION OF SYMBOLS 1 Front and back of steel plate 2 Weld metal 3 Molten pool 4 Transfer droplet 5 Target position of arc welding 6 Welding wire 7 Gas shield arc welding torch 8 Laser torch 9 Laser beam 10 Laser irradiation point 11 Steel plate 12 Backing metal 13 Weld metal 14 Charpy test Piece (2mm V notch test piece)
15 Tensile test piece (round bar)

Claims (2)

Ni基合金の溶接材料を使用したガスシールドアーク溶接の溶接トーチを先行させ、その後方にレーザー照射点を配置したレーザー・アークハイブリッド溶接を用いた溶接方法で得られる多層盛りの溶接金属を有する溶接継ぎ手において、溶接金属全体の面積をWTAとし、ガスシールドアーク溶接の後続のレーザー溶接によって再溶融された部分の面積の和をSWAとしたとき、面積率SWA/WTAが0.20以上であり、1パス毎に形成される溶接金属の幅をW、高さをHとしたとき、全てのH/Wが0.7未満であり、得られた溶接金属の酸素量が220ppm以下であることを特徴とする溶接継ぎ手。   Welding with a multi-layer weld metal obtained by a welding method using laser-arc hybrid welding in which a welding torch of gas shielded arc welding using a Ni-based alloy welding material is preceded and a laser irradiation point is arranged behind it In the joint, when the area of the entire weld metal is WTA and the sum of the areas of the portions re-melted by the subsequent laser welding of gas shielded arc welding is SWA, the area ratio SWA / WTA is 0.20 or more; Assuming that the width of the weld metal formed for each pass is W and the height is H, all H / W is less than 0.7 and the oxygen content of the obtained weld metal is 220 ppm or less. Characterized welding joint. ガスシールドアーク溶接の溶接トーチを先行させ、その後方にレーザー照射点を配置したレーザー・アークハイブリッド溶接をすることによって請求項1に記載の溶接継ぎ手を作製する方法であって、先行のガスシールドアーク溶接において、シールドガスとして2〜5%のO2ガス、または、5〜25%のCO2ガスを含むArガスからなる混合ガスを用い、溶接入熱量が14.0〜21.5kJ/cmであり、後方のレーザー溶接には、波長が0.78〜1.60μmのレーザーを使用し、レーザー照射狙い位置をP[mm]、溶接速度をV[mm/sec]とし、先行のガスシールドアーク溶接のワイヤ狙い位置を原点0とした場合、ワイヤ狙い位置より溶接進行方向の反対方向にPがV〜10V[mm]の範囲であることを特徴とするレーザー・アークハイブリッド溶接による溶接継ぎ手作製方法。 2. A method for producing a welding joint according to claim 1, wherein a welding torch of gas shielded arc welding is preceded and laser-arc hybrid welding is performed with a laser irradiation point disposed behind the welding torch. In welding, a mixed gas composed of Ar gas containing 2 to 5% O 2 gas or 5 to 25% CO 2 gas is used as a shielding gas, and the welding heat input is 14.0 to 21.5 kJ / cm. There is a laser with a wavelength of 0.78 to 1.60 μm for the rear laser welding. The target position of laser irradiation is P [mm], the welding speed is V [mm / sec], and the preceding gas shield arc is used. When the wire aiming position of welding is set to the origin 0, P is in the range of V to 10 V [mm] in the direction opposite to the welding progress direction from the wire aiming position. Weld joint manufacturing method according to the Za-arc hybrid welding.
JP2016075815A 2016-04-05 2016-04-05 Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same Active JP6638529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016075815A JP6638529B2 (en) 2016-04-05 2016-04-05 Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075815A JP6638529B2 (en) 2016-04-05 2016-04-05 Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017185522A JP2017185522A (en) 2017-10-12
JP6638529B2 true JP6638529B2 (en) 2020-01-29

Family

ID=60046054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075815A Active JP6638529B2 (en) 2016-04-05 2016-04-05 Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6638529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112045310A (en) * 2020-09-04 2020-12-08 山东大学 Ultra-narrow gap welding process method for swing laser-induced gas metal arc welding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410408B2 (en) * 2020-07-08 2024-01-10 日本製鉄株式会社 Method for manufacturing a welded structure with a fillet weld joint and welded structure with a fillet weld joint
CN112318068B (en) * 2020-09-30 2022-08-30 沈阳晨光弗泰波纹管有限公司 Method for manufacturing complex structural member ultrasonic detection test piece with various welding defects

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184081A (en) * 1982-04-23 1983-10-27 Mitsubishi Heavy Ind Ltd Composite tempering welding method using laser
JP5693279B2 (en) * 2011-02-10 2015-04-01 神鋼溶接サービス株式会社 Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112045310A (en) * 2020-09-04 2020-12-08 山东大学 Ultra-narrow gap welding process method for swing laser-induced gas metal arc welding

Also Published As

Publication number Publication date
JP2017185522A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
Pouranvari et al. Dissimilar gas tungsten arc weld-brazing of Al/steel using Al-Si filler metal: Microstructure and strengthening mechanisms
Shanmugarajan et al. Fusion welding studies using laser on Ti–SS dissimilar combination
CA3011332C (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
JP5693279B2 (en) Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby
JP2005144552A (en) High heat input butt-welded joint excellent in resistance to brittle fracture generation
JP2017154156A (en) Narrow groove weld joint using laser arc hybrid weld method and manufacturing method for the same
Sathiya et al. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel
JP6390204B2 (en) Flux-cored wire for gas shielded arc welding
JP6638529B2 (en) Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same
Mazuera Robledo et al. Development of a welding procedure for mil a 46100 armor steel joints using gas metal arc welding
JP2018144071A (en) Flux-cored wire for gas shield arc welding, and method for production of weld joint
JP6801494B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JPWO2018155492A1 (en) Laser brazing method and method of manufacturing lap joint member
JP4745900B2 (en) High strength weld metal with good low temperature toughness, low temperature cracking resistance and bead shape during all position welding
JP5948435B2 (en) Welding materials and welded joints
Bunaziv et al. Application of LBW and LAHW for fillet welds of 12 and 15 mm structural steel
JP2005125348A (en) Large heat input butt welded joint superior in brittle fracture characteristic resistance
JP2022157454A (en) Manufacturing method for flux-cored cut wire and weld joint
JP7469597B2 (en) Flux-cored wire and method for manufacturing welded joint
Sunny et al. A Review on mechanical & microstructural property evaluation of aluminium 5083 alloy weldment
Mirakhorli et al. Hybrid fiber laser–arc welding of 10-mm thick CA6NM stainless steel
Spina et al. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses
JP2019188407A (en) Laser welded joint and method for production thereof
JP7508014B1 (en) Welded joint and manufacturing method thereof
JP7410408B2 (en) Method for manufacturing a welded structure with a fillet weld joint and welded structure with a fillet weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R151 Written notification of patent or utility model registration

Ref document number: 6638529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151