WO2014083214A1 - Etapa de conmutación, circuito de conversión de energía, y etapa de conversión para turbinas eólicas que comprende el circuito de conversión de energía - Google Patents

Etapa de conmutación, circuito de conversión de energía, y etapa de conversión para turbinas eólicas que comprende el circuito de conversión de energía Download PDF

Info

Publication number
WO2014083214A1
WO2014083214A1 PCT/ES2012/070843 ES2012070843W WO2014083214A1 WO 2014083214 A1 WO2014083214 A1 WO 2014083214A1 ES 2012070843 W ES2012070843 W ES 2012070843W WO 2014083214 A1 WO2014083214 A1 WO 2014083214A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching stage
cell
terminal
multilevel converter
Prior art date
Application number
PCT/ES2012/070843
Other languages
English (en)
French (fr)
Inventor
Mikel Zabaleta Maeztu
Jesús LÓPEZ TABERNA
Eduardo BURGUETE ARCHEL
Original Assignee
Ingeteam Power Technology, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingeteam Power Technology, S.A. filed Critical Ingeteam Power Technology, S.A.
Priority to PCT/ES2012/070843 priority Critical patent/WO2014083214A1/es
Priority to US14/648,357 priority patent/US9660553B2/en
Priority to CA2894127A priority patent/CA2894127C/en
Publication of WO2014083214A1 publication Critical patent/WO2014083214A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention falls within the technical field of electronic power converters. More specifically, the present invention relates to a multilevel energy converter circuit, especially for its application in the energy conversion of a wind turbine (or wind turbine), and to the switching stage of said converter, with a plurality of levels in The output voltage and large current capacity.
  • the two previous objectives can be achieved through the use of multilevel converters. These converters are capable of working with different voltage levels, to try to obtain an output current with the best possible THD, that is, with the best possible wave quality. They are also able to increase the work stress, which is a desirable feature in order to obtain lower losses.
  • the converter described in "Generalized Multilevel Inverter Topology with Self Voltage Balancing" provides the features specified above for a multilevel converter, but requires a large number of semiconductors and capacities, which greatly increases the size and cost of the converter.
  • Another multilevel converter that provides the aforementioned features is that described in EP0555432A1, which consists of n cells, composed of one capacity and two semiconductors, connected in series one after the other. The increase in the available voltage levels is done by adding or subtracting the capacity tensions.
  • this converter presents the problem of presenting a high size and cost, due to the capabilities, which greatly complicates the electromechanical design. The need for this large size limits the number of levels attainable by this converter since there comes a time when the required volume ceases to make it viable.
  • EP1287609A2 a converter is proposed that reduces the volume of the capacities.
  • the one proposed in EP1287609A2 is formed by cells connected in series, but in this case, each cell is formed by two capacities and three pairs of semiconductors. This allows three voltage levels to be achieved with each cell and, in the case of serializing n cells, 2 * n + 1 levels in total.
  • the problem with this type of cell is that two pairs of semiconductors are placed in series, which complicates the control of the distribution of voltage between them.
  • EP1051799B1 a multilevel converter, called Active Fixed Neutral Point or ANPC (Active Neutral Point Clamped, in English), is formed by a converter of the type Neutral Fixed Point or NPC (Neutral Point Clamped, in English) in which level or anchor fixing diodes ("clamp" diodes) are replaced by controlled semiconductors.
  • NPC Neutral Fixed Point Clamped, in English
  • level or anchor fixing diodes level or anchor fixing diodes
  • the technical problem is to convert the energy obtaining an output voltage and current that minimize conduction losses without increasing the size, complexity or cost of the converter.
  • the present invention serves to solve the aforementioned problem, by means of a switching stage integrable in an energy conversion circuit that reduces the number and / or size of the required capacities, sets the voltage of the switches, reduces the surges suffered by the switches in the commutations, providing a multilevel power converter, with n output voltage levels, both for converting direct and alternating current (DC / AC) and for conversion from alternating to continuous (AC / DC), which presents with respect to
  • the converters of the prior art have considerable advantages due to their smaller size and cost, greater simplicity of design, greater simplicity in operation and control, and improvement in attainable power levels.
  • the present invention is applicable, among other energy conversion systems, in wind turbine systems.
  • One aspect of the invention relates to a switching stage with n output voltage levels, which can be integrated into an energy conversion circuit, formed by a bus with a plurality of m capacities, interconnected between a positive bus voltage terminal and a negative bus voltage terminal, having m-1 intermediate bus voltage terminals between the two previous positive and negative voltage terminals bus
  • the input terminal i of cell 1 is connected to the bus voltage terminal i.
  • the number of intermediate terminals is equal to 1, that is, the number of bus capacities is equal to 2. From this configuration two possible embodiments of the switching stage can be distinguished.
  • a capacity is connected between the positive and intermediate output terminals, and between the intermediate and negative output terminals in all the cells of the switching stage. This embodiment makes it possible to reduce the surges suffered by all switches during commutations and set the voltage of all semiconductors.
  • a capacity is connected between the positive and intermediate output terminals, and between the intermediate and negative output terminals in some of the cells of the switching stage, while only one capacity is connected between the positive and negative output terminals of other of the cells. This last preferred embodiment allows to reduce the overvoltage suffered by many of the switches during commutations, sets the voltage of the switches and distributes the losses of some of the switches.
  • the bus may be formed by 3 or 4 capacities, that is, the number of intermediate voltage terminals of the cells is 2 or 3 respectively.
  • all the cells of the switching stage connect to each capacity between each two adjacent terminals of all the cells, so that the voltage of the switches is fixed and a reduction of the surges suffered by the switches during switching compared to other converters.
  • some of the capabilities of the switching stage may have a series resistance to limit voltage and current oscillations during commutations.
  • the capacities of the cells of the switching stage solve the problem of the surges supported in the semiconductors of some converters of the prior art, such as those described in the documents cited above, EP1287609A2, EP1051799B1, EP1673849A1 and EP1815586A1, since said cell capacities provide paths to the current with a lower inductance than in the aforementioned converters.
  • the switching stage switches can be IGBT (Isolated Gate Bipolar Transistor: Isolated Bipolar Transistor) transistors, IGCT (Integrated Gate Controlled Thyiristor) thyristors: Integrated Door Controlled Thyristor), IEGT (Injection Enhanced Gate Transistor) Transistors: Door Transistor enhanced by injection), GTO thyristors (Gate Turn-Off Thyristor: Gate deactivation thyristor) and any combination thereof, connecting for any of them a diode in antiparallel, thus obtaining semiconductors bidirectional in current and unidirectional in voltage.
  • IGBT Isolated Gate Bipolar Transistor
  • IGCT Integrated Gate Controlled Thyiristor
  • IEGT Injection Enhanced Gate Transistor Transistors: Door Transistor enhanced by injection
  • GTO thyristors Gate Turn-Off Thyristor: Gate deactivation thyristor
  • the switches of the switching stage can be controlled by a pulse width modulation strategy, PWM (Pulse-width modulation, in English), which allows to synthesize an alternating voltage at the AC terminal.
  • PWM Pulse-width modulation, in English
  • Another aspect of the invention relates to a DC / AC or AC / DC power conversion circuit for n output voltage levels, comprising the switching stage described above (with its plurality of cells, each cell formed by m + 1 switches and at least one capacity, the m + 1 output terminals of each cell, including one of positive voltage, another of negative voltage and m-1 intermediate voltage terminals in each chained cell), and which also comprises a multilevel converter with m + 1 voltage terminals, including one of positive voltage, another of negative voltage and m-1 intermediate voltage terminals, which are connected respectively to the output terminals of the switching stage.
  • the conversion circuit proposed here requires a smaller number of semiconductors and the capacities are smaller. Also the proposed circuit has this advantage of requiring a smaller capacity compared to the converter described in EP0555432A1. In addition, this circuit has the advantage of ensuring the distribution of the semiconductor voltage, compared to the converters described in EP1287609A2 and EP1051799B1.
  • the energy conversion circuit of the present invention has redundant switching states, that is, with different switching states of the semiconductors the same level of output voltage is obtained. However, these redundant switching states have an opposite effect on the voltage capabilities. Therefore, using the redundant switching states, the capacity voltage can be controlled.
  • the energy conversion circuit according to the present invention can preferably be integrated in a three-phase system, where at least one converter circuit according to the invention can be connected for each phase. Another possible implementation option is that the power conversion circuit is integrated in a configuration where at least two three-phase converters share the same DC bus (Back-To-Back configuration), connecting a power conversion circuit according to the invention in the side of the power grid and another energy conversion circuit according to the invention on the side of the power generator.
  • the voltage of the intermediate DC voltage terminal is controllable by the homopolar voltage, that is, using different phase voltages that provide equal line voltages, and having a different effect on the voltage of the intermediate DC voltage terminal, as shown in "A Comprehensive Study of Neutral-Point Voltage Balancing Probiem in Three-Level Neutral-Point-Clamped Voltage Source PWM Inverters" by N. Celanovic, IEEE Transactions on Power Electronics, Vol. 15, pp. 242-249, March 2000.
  • the energy conversion circuit is especially applicable in wind turbine systems and can be integrated into wind turbine conversion stages, so another aspect of the present invention is an energy conversion stage for wind turbines comprising a circuit as it has been previously described. Description of the drawings
  • Figure 1 shows a schematic representation of an example controlled semiconductor of the type of semiconductor used in the present invention
  • Figure 2A shows a switching stage according to a possible embodiment of the invention for an example with 3 output voltage terminals and with a capacity connected between each two adjacent terminals in each cell of the stage.
  • Figure 2B shows a switching stage according to a possible embodiment of the invention for an example with 3 output voltage terminals with a capacity between each two adjacent terminals in some of the cells and a single capacity between the positive and negative terminals of some of the stage cells.
  • Figure 2C shows a switching stage according to a possible embodiment of the invention for an example with 4 output voltage terminals and three cells.
  • Figure 2D shows a switching stage according to a possible embodiment of the invention for an example with 4 output voltage terminals and four cells.
  • Figure 3A shows a conversion circuit with switching stage according to a possible embodiment of the invention for an example with 5 output voltage levels and two cells in the switching stage, connected to an NPC converter with clamp diodes.
  • Figure 3B shows a conversion circuit with switching stage according to another possible embodiment of the invention for an example with 5 output voltage levels and two cells in the switching stage, replacing clamp diodes with controlled semiconductors.
  • Figure 3C shows a conversion circuit with switching stage according to a possible embodiment of the invention for an example with 5 output voltage levels and two cells in the switching stage, with a generalized multi-level inverter connected to the stage.
  • Figure 4A shows a conversion circuit with switching stage according to a possible embodiment of the invention for an example with 7 output voltage levels and four cells in the switching stage, connected to an NPC converter.
  • Figure 4B shows a conversion circuit with switching stage according to a possible embodiment of the invention for an example with 7 output voltage levels and four cells in the switching stage, connected to a generalized multilevel inverter.
  • Figure 4C shows a conversion circuit with switching stage according to a possible embodiment of the invention for an example with 7 output voltage levels and two cells in the switching stage.
  • Figure 5 shows a conversion circuit with switching stage according to a possible embodiment of the invention for an example with 7 output voltage levels and three cells in the switching stage.
  • Figure 6A shows a conversion circuit with switching stage according to a possible embodiment of the invention for an example with 9 output voltage levels and four cells in the switching stage, with DCC converter.
  • Figure 6B shows a conversion circuit with switching stage according to a possible embodiment of the invention for an example with 9 output voltage levels and four cells in the switching stage, with MPC converter.
  • Figure 7 shows a switching stage according to a possible embodiment of the invention for an example with four cells, two bus capacities and some capacities with series resistance.
  • FIG. 1 shows a conventional IGBT controlled semiconductor, comprising a collector (C), a door (P), an emitter (E) and a diode (D), which can perform the function of switch (9) in the different ways of realization of Multilevel energy conversion circuit proposed below.
  • the switches (9) can be bidirectional in current and unidirectional in voltage.
  • Figures 2A, 2B, 2C and 2D show various examples of implementation of a multilevel switching stage according to the invention, comprising a plurality of IGBT controlled semiconductors acting as switches (9) and a capacity bus, for configuration cases with 2, 3 or 4 DC bus capacities (5), ie, for 1, 2 or 3 intermediate DC voltage terminals (2).
  • the multilevel converter that can be connected to the switching stage (300) can be any converter that has 3 terminals, that is, its bus is composed of 2 capacities.
  • this converter configuration with 7 levels and 2-capacity bus two preferred configurations can be distinguished: in one the switching stage is composed of 4 cells and in the other, the switching stage is composed of 2 cells.
  • FIG. 4A shows an embodiment in which the switching stage (410) is composed of 4 cells (41 1, 412, 413, 414) and two DC bus capacities (5), connected one between the positive DC voltage terminal (1) and an intermediate DC voltage terminal (2) and the other between the latter and between the negative DC voltage terminal (3).
  • the switching stage (410) connects a multilevel converter NPC (415), ie, fixed neutral point converter, which has an AC voltage terminal (4) for connecting to the power generation machine, for example, a turbine wind.
  • NPC multilevel converter
  • NPC fixed neutral point converter
  • Figure 4B shows another embodiment of power conversion circuit with 7 voltage levels, where the switching stage (420) is composed also by 4 cells (421, 422, 423, 424) and two DC bus capacities (5), but a generalized multilevel converter (425) -Generalized Multilevel Inverter, in English-, is connected to said switching stage (420). as described by FZ Peng in the above-mentioned background of the prior art.
  • FIG. 4C shows an embodiment of power conversion circuit with 7 levels of voltage and also a switching stage (430) with two DC bus capacities (5) but where said switching stage (430) is composed of only 2 cells (431, 432) and to which a multilevel converter with multiple groups is connected serial switching (435), which can be a 5L-ANPC converter with 5 levels of fixed active neutral point as described according to the aforementioned patent application EP1673849A1, which in the illustrated example comprises two first switching groups (4351 , 4352) connected to each other in parallel and in parallel with a second switching group (4353) and a third switching group (4354), each switching group consisting of a first and a second A controlled semiconductor (9) that are connected in series through a capacity (10).
  • ANPC converter ie, fixed, active neutral point converter
  • the positive output terminal (6) of the switching stage is connected to the positive voltage terminal (12) of the multilevel converter and the negative output terminal (8) of the switching stage is connected to the switching terminal. negative voltage (14) of the multilevel converter.
  • the multilevel converter that is connected to the switching stage (510) it can be any converter that has 4 terminals, that is, that its bus is composed of 3 capacities, for example, a NPC fixed neutral point converter, DCC anchor diode - Diode Clamped Converter, in English - generalized multilevel inverter converter - Generalized Multilevel Inverter, in English -, etc.
  • the switching stage (510) is connected to a DCC anchor diode converter (D) (515).
  • the Multilevel converter that connects to the switching stage (600) can be any converter that has 5 terminals, that is, that its bus is composed of 4 capacities, for example, NPC, DCC, generalized multilevel inverter converter -Generalized Multilevel Inverter , in English-, MPC converter of Multiple Fixed Point -Multi Point Clamped, in English-, etc.
  • the switching stage (600) is connected to a DCC multilevel converter (615), while in Figure 6B, the switching stage (600) is connected to a MPC multilevel converter (625) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

Circuito de conversión de energía comprendiendo una etapa de conmutación con un terminal de tensión DC positiva (1), un terminal de tensión DC negativa (3), m- terminales de tensión DC intermedia (2) m capacidades de bus DC (5); y p células encadenadas formadas por m+1 interruptores (9) y al menos una capacidad (10), conectando la célula 1 a los terminales de tensión DC positiva (1), negativa (3) e intermedia (2); y un convertidor multinivel, cuya salida se conecta al terminal de tensión AC (4), con un terminal de tensión positiva (12) y un terminal de tensión negativa (14) del convertidor multinivel y m-1 terminales de tensión intermedia del convertidor multinivel (13), que se conectan respectivamente al terminal de salida positivo de la etapa de conmutación (6), al terminal de salida negativo de la etapa de conmutación (8), y a los m-1 terminales de salida intermedios de la etapa de conmutación (7).

Description

SWITCHING STAGE, ENERGY CONVERSION CIRCUIT, AND CONVERSION STAGE FOR WIND TURBINES COMPRISING THE ENERGY CONVERSION CIRCUIT
Objeto de la invención
La presente invención se encuadra en el campo técnico de los convertidores electrónicos de potencia. Más concretamente, la presente invención se refiere a un circuito convertidor de energía multinivel, en especial para su aplicación en la conversión de energía de un aerogenerador (o turbina eólica), y a la etapa de conmutación de dicho convertidor, con una pluralidad de niveles en la tensión de salida y gran capacidad de corriente.
Antecedentes de la invención
Los convertidores electrónicos son ampliamente utilizados en aplicaciones de generación de energía, como por ejemplo en los aerogeneradores. Entre los requisitos deseados de un convertidor, están el obtener una corriente de salida con el mejor nivel de Distorsión Armónica Total (THD: Total Harmonio Distortion, en inglés) posible y el de obtener una tensión alta, para minimizar las pérdidas de conducción.
Hoy en día, la mayoría de fabricantes de etapas de conversión electrónica están tratando de aumentar la potencia de éstas aumentando el número de niveles de tensión en la tensión de salida. Con esto, no sólo se consigue aumentar la potencia manejada, sino que igualmente se mejora la calidad de la corriente entregada reduciendo enormemente el contenido armónico.
Los dos objetivos anteriores pueden conseguirse mediante la utilización de los convertidores multinivel. Estos convertidores son capaces de trabajar con diferentes niveles de tensión, para tratar de obtener una corriente a la salida con la mejor THD posible, es decir, con la mejor calidad de onda posible. También son capaces de aumentar la tensión de trabajo, que es una característica deseable a fin de obtener menores pérdidas.
Es conocida una gran cantidad de topologías de conversión multinivel en el estado de la técnica, tales como las que se describe en EP0555432A1 , EP1051799B1 , EP1673849A1 , EP1815586A1 , EP1287609A2 y en "Generalized Multilevel Inverter Topology with Self Voltage Balancing" de F.Z. Peng, IEEE Transactions on Industry Applications, Vol. 37, p.p. 61 1 - 618, Marzo/Abril 2001 . No obstante, la gran mayoría de estas topologías implican un diseño electromecánico excesivamente complicado y costoso.
Por ejemplo, el convertidor descrito en "Generalized Multilevel Inverter Topology with Self Voltage Balancing" provee las características anteriormente especificadas para un convertidor multinivel, pero requiere un gran número de semiconductores y capacidades, lo que eleva muy notablemente el tamaño y coste del convertidor. Otro convertidor multinivel que proporciona las características previamente mencionadas es el descrito en EP0555432A1 , que está formado por n celdas, compuestas de una capacidad y dos semiconductores, conectadas en serie una a continuación de la otra. El aumento de los niveles de tensión disponibles se hace mediante la suma o resta de las tensiones de las capacidades. Sin embargo, este convertidor presenta el problema de presentar un elevado tamaño y coste, debido a las capacidades, que complica enormemente el diseño electromecánico. La necesidad de este elevado tamaño limita el número de niveles alcanzable por este convertidor ya que llega un momento en el que el volumen requerido deja de hacerlo viable.
En la EP1287609A2 se propone un convertidor que permite reducir el volumen de las capacidades. Al igual que en el convertidor recogido en EP0555432A1 , arriba descrito, el propuesto en EP1287609A2 está formado por celdas conectadas en serie, pero en este caso, cada celda está formada por dos capacidades y tres pares de semiconductores. Esto permite que con cada celda se consigan tres niveles de tensión y, en el caso de serializar n celdas, 2*n+1 niveles en total. El problema de este tipo de celdas es que aparecen dos parejas de semiconductores puestos en serie, lo que complica el control del reparto de tensión entre ellos.
En la EP1051799B1 , se propone un convertidor multinivel, denominado Punto Neutro Fijo Activo o ANPC (Active Neutral Point Clamped, en inglés), formado por un convertidor del tipo Punto Neutro Fijo o NPC (Neutral Point Clamped, en inglés) en el que los diodos fijadores de nivel o de anclaje (diodos "clamp") se sustituyen por semiconductores controlados. Por otra parte, en caso de desear más de tres niveles en la tensión de salida, se propone intercalar capacidades en la etapa de salida. El principal problema del convertidor descrito en EP1051799B1 es que para obtener un convertidor de n niveles es preciso serializar (n-1 )/2 semiconductores controlados, complicando el reparto de tensiones entre dichos semiconductores. Este problema se intenta resolver en la EP1673849A1 , donde se describe un convertidor multinivel formado a partir de la se alización de varias unidades de conmutación, cada una de éstas compuestas por dos semiconductores controlados puestos en serie a través de una capacidad.
Un problema común a todos los convertidores mencionados son las sobretensiones que aparecen en los semiconductores en las conmutaciones. Estas sobretensiones de deben a las inductancias parásitas y en la práctica disminuyen la capacidad en corriente y la vida útil de los semiconductores. Este fenómeno se trata de mitigar mediante el circuito descrito en la EP1815586A1 que emplea semiconductores y circuitos de limitación de tensión adicionales, pero estos elementos adicionales aumentan el coste y tamaño y añaden complejidad al convertidor.
Por consiguiente, el problema técnico es conseguir convertir la energía obteniendo una tensión y corriente de salida que minimicen las pérdidas de conducción sin aumentar tamaño, complejidad ni coste del convertidor.
Descripción de la invención
La presente invención sirve para solucionar el problema mencionado anteriormente, mediante una etapa de conmutación integrable en un circuito de conversión de energía que reduce el número y/o tamaño de las capacidades requeridas, fija la tensión de los interruptores, reduce las sobretensiones que sufren los interruptores en las conmutaciones, proporcionando un convertidor de energía multinivel, con n niveles de tensión de salida, tanto para convertir corriente continua e alterna (DC/AC) como para conversión de alterna a continua (AC/DC), que presenta con respecto a los convertidores del estado de la técnica anterior considerables ventajas por su menor tamaño y coste, mayor simplicidad de diseño, mayor simplicidad en su funcionamiento y control, y mejora en los niveles de potencia alcanzables. La presente invención es aplicable, entre otros sistemas de conversión de energía, en sistemas aerogeneradores.
Un aspecto de la invención se refiere a una etapa de conmutación con n niveles de tensión de salida, que puede integrarse en un circuito de conversión de energía, formada por un bus con una pluralidad de m capacidades, interconectadas entre un terminal de tensión positiva de bus y un terminal de tensión negativa de bus, disponiendo de m-1 terminales de tensión intermedia de bus entre los dos terminales anteriores de tensión positiva y negativa de bus. Esta etapa de conmutación comprende múltiples células encadenadas, formada cada una por m+1 terminales de entrada, m+1 terminales de salida y al menos una capacidad conectada a dos cualesquiera de los m+1 terminales de salida, y m+1 interruptores, estando cada interruptor i (i=1 , 2,..., m, m+1 ), conectado entre el terminal de entrada i y el terminal de salida i de la célula. Y la conexión entre las p (p>=1 ) células de la etapa de conmutación es como sigue:
conectar, para j=1 hasta j=p- 1 , la célula j a la célula j+1 de manera que:
para i=1 hasta i=m+1 , el terminal de salida i de la célula j se conecta al terminal de entrada i de la célula j+1 ;
conectar la célula 1 a las m capacidades de bus DC (5) de la siguiente manera:
para i=1 hasta i=m+1 se conecta el terminal de entrada i de la célula 1 al terminal i de tensión de bus.
La etapa de conmutación que se propone dispone un total de m+1 terminales de salida, contando con el terminal de salida positivo de la etapa de conmutación, m-1 terminales de salida intermedios y el terminal de salida negativo de la etapa de conmutación, y teniendo conectados el terminal de salida i de la etapa de conmutación al terminal de salida i de la célula p, para i=1 (correspondiendo al terminal de salida positivo) hasta i=m+1 (correspondiendo al terminal de salida negativo de la etapa de conmutación).
En una realización preferente, el número de terminales intermedios es igual a 1 , es decir, el número de capacidades de bus es igual a 2. De esta configuración se pueden diferenciar dos realizaciones posibles de la etapa de conmutación. En una posible realización de la invención, se conecta una capacidad entre los terminales de salida positivo e intermedio, y entre los terminales de salida intermedio y negativo en todas las células de la etapa de conmutación. Esta realización permite disminuir las sobretensiones que sufren todos los interruptores durante las conmutaciones y fijar la tensión de todos los semiconductores. En otra posible realización, se conecta una capacidad entre los terminales de salida positivo e intermedio, y entre los terminales de salida intermedio y negativo en algunas de las células de la etapa de conmutación, mientras se conecta sólo una capacidad entre los terminales de salida positivo y negativo de otras de las células. Esta última realización preferente permite disminuir la sobretensión que sufren muchos de los interruptores durante las conmutaciones, fija la tensión de los interruptores y reparte las pérdidas de algunos de los interruptores.
También preferentemente, el bus puede estar formado por 3 ó 4 capacidades, es decir, el número de terminales de tensión intermedios de las células es 2 ó 3 respectivamente. En ambos casos, preferentemente, todas las células de la etapa de conmutación conectan a cada capacidad entre cada dos terminales adyacentes de todas las células, de manera que se consigue fijar la tensión de los interruptores y se obtiene una reducción de las sobretensiones sufrida por los interruptores durante las conmutaciones en comparación con otros convertidores.
Según una posible realización de la invención, opcionalmente, algunas de las capacidades de la etapa de conmutación pueden tener una resistencia en serie para limitar las oscilaciones de tensión y corriente durante las conmutaciones.
Las capacidades de las células de la etapa de conmutación, propuesta como etapa de conmutación que puede formar parte de un convertidor de energía, solventan el problema de las sobretensiones soportadas en los semiconductores de algunos convertidores del estado de la técnica, como los que se describen en los documentos citados anteriormente, EP1287609A2, EP1051799B1 , EP1673849A1 y EP1815586A1 , ya que dichas capacidades de las células proporcionan caminos a la corriente con una inductancia menor que en los convertidores mencionados.
Los interruptores de la etapa de conmutación pueden ser transistores IGBT (Isolated Gate Bipolar Transistor: Transistor bipolar de puerta aislada), tiristores IGCT (Integrated Gate Controlled Thyiristor: Tiristor Controlado por Puerta Integrada), transistores IEGT (Injection Enhanced Gate Transistor: Transistor de puerta mejorada por inyección), tiristores GTO (Gate Turn-Off Thyristor: Tiristor de desactivación por compuerta) y cualquier combinación de los mismos, conectando para cualquiera de ellos un diodo en antiparalelo, obteniendo así semiconductores bidireccionales en corriente y unidireccionales en tensión.
Los interruptores de la etapa de conmutación pueden ser controlados mediante una estrategia de modulación por ancho de pulsos, PWM (Pulse-width modulation, en inglés), que permite sintetizar una tensión alterna en el terminal de AC.
Otro aspecto de la invención se refiere a un circuito de conversión de energía DC/AC ó AC/DC para n niveles de tensión de salida, que comprende la etapa de conmutación descrita anteriormente (con su pluralidad de células, cada célula formada por m+1 interruptores y al menos una capacidad, los m+1 terminales de salida de cada célula, incluyendo uno de tensión positivo, otro de tensión negativo y m-1 terminales de tensión intermedios en cada célula encadenada), y que además comprende un convertidor multinivel con m+1 terminales de tensión, incluyendo uno de tensión positiva, otro de tensión negativa y m-1 terminales de tensión intermedia, que se conectan respectivamente a los terminales de salida de la etapa de conmutación.
Comparando el circuito de conversión de la invención con los ya existentes y comentados en el estado de la técnica, como el convertidor descrito en el documento "Generalized Multilevel Inverter Topology with Self Voltage Balancing" de F.Z. Peng, anteriormente citado, el circuito de conversión aquí propuesto requiere un menor número de semiconductores y las capacidades son de menor tamaño. También el circuito que se propone tiene esta ventaja de requerir un tamaño menor de capacidades en comparación con el convertidor descrito en EP0555432A1 . Además el presente circuito presenta la ventaja de asegurar el reparto de la tensión de los semiconductores, en comparación con los convertidores descritos en EP1287609A2 y EP1051799B1 .
El circuito de conversión de energía de la presente invención dispone de estados de conmutación redundantes, es decir, que con distintos estados de conmutación de los semiconductores se obtiene el mismo nivel de tensión a la salida. Sin embargo, estos estados de conmutación redundantes tienen un efecto contrario en la tensión de las capacidades. Por ello, haciendo uso de los estados de conmutación redundantes, se puede controlar la tensión de las capacidades. El circuito de conversión de energía conforme a la presente invención preferentemente puede estar integrado en un sistema trifásico, donde para cada fase se puede conectar al menos un circuito convertidor conforme la invención. Otra opción de implementación posible es que el circuito de conversión de energía está integrado en una configuración donde al menos dos convertidores trifásicos comparten el mismo bus DC (configuración Back-To-Back), conectando un circuito de conversión de energía conforme a la invención en el lado de la red eléctrica y otro circuito de conversión de energía conforme a la invención en el al lado del generador de energía.
Para mantener estable la tensión de los terminales de tensión DC intermedia en el sistema trifásico al que se conecta un circuito convertidor conforme la invención en cada fase eléctrica, se requiere hardware adicional de control de la tensión y/o control por modulación. Por ejemplo, para el caso de un bus con dos capacidades en la etapa de conmutación del circuito de conversión, la tensión del terminal de tensión DC intermedia es controlable mediante la tensión homopolar, es decir, haciendo uso de distintas tensiones de fase que proporcionan unas tensiones de línea iguales, y que tienen un efecto distinto en la tensión del terminal de tensión DC intermedia, como se muestra en "A Comprehensive Study of Neutral-Point Voltage Balancing Probiem in Three-Level Neutral-Point-Clamped Voltage Source PWM Inverters" de N. Celanovic, IEEE Transactions on Power Electronics, Vol. 15, p.p. 242-249, Marzo 2000. Para el caso de 2 ó 3 terminales de tensión DC intermedia es preferible una configuración Back-To-Back (dos convertidores trifásicos comparten el mismo bus DC) ya que en esta configuración, existen técnicas para controlar la tensión de dichos terminales, como la mostrada en "An Optimal Controller for Voltage Balance and Power Losses Reduction in MPC AC/DC/AC Converters" de M. Marchesoni, IEEE 31 st Annual Power Electronics Specialists Conference, Vol. 2, p.p., 662-667, 2000.
El circuito de conversión de energía es aplicable especialmente en sistemas aerogeneradores y puede integrarse en etapas de conversión de turbinas eólicas, por lo que otro aspecto de la presente invención es una etapa de conversión de energía para turbinas eólicas que comprende un circuito tal como se ha descrito anteriormente. Descripción de los dibujos
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1 muestra una representación esquemática de un semiconductor controlado ejemplo del tipo de semiconductor empleado en la presente invención;
La figura 2A muestra una etapa de conmutación según una posible realización de la invención para un ejemplo con 3 terminales de tensión de salida y con una capacidad conectada entre cada dos terminales adyacentes en cada célula de la etapa.
La figura 2B muestra una etapa de conmutación según una posible realización de la invención para un ejemplo con 3 terminales de tensión de salida con una capacidad entre cada dos terminales adyacentes en algunas de las células y una sola capacidad entre los terminales positivo y negativo de algunas de las células de la etapa.
La figura 2C muestra una etapa de conmutación según una posible realización de la invención para un ejemplo con 4 terminales de tensión de salida y tres células.
La figura 2D muestra una etapa de conmutación según una posible realización de la invención para un ejemplo con 4 terminales de tensión de salida y cuatro células.
La figura 3A muestra un circuito de conversión con etapa de conmutación según una posible realización de la invención para un ejemplo con 5 niveles de tensión de salida y dos células en la etapa de conmutación, conectada a un convertidor NPC con diodos clamp.
La figura 3B muestra un circuito de conversión con etapa de conmutación según otra posible realización de la invención para un ejemplo con 5 niveles de tensión de salida y dos células en la etapa de conmutación, sustituyendo los diodos clamp por semiconductores controlados. La figura 3C muestra un circuito de conversión con etapa de conmutación según una posible realización de la invención para un ejemplo con 5 niveles de tensión de salida y dos células en la etapa de conmutación, con un inversor multinivel generalizado conectado a la etapa.
La figura 4A muestra un circuito de conversión con etapa de conmutación según una posible realización de la invención para un ejemplo con 7 niveles de tensión de salida y cuatro células en la etapa de conmutación, conectada a un convertidor NPC.
La figura 4B muestra un circuito de conversión con etapa de conmutación según una posible realización de la invención para un ejemplo con 7 niveles de tensión de salida y cuatro células en la etapa de conmutación, conectada a un inversor multinivel generalizado.
La figura 4C muestra un circuito de conversión con etapa de conmutación según una posible realización de la invención para un ejemplo con 7 niveles de tensión de salida y dos células en la etapa de conmutación.
La figura 5 muestra un circuito de conversión con etapa de conmutación según una posible realización de la invención para un ejemplo con 7 niveles de tensión de salida y tres células en la etapa de conmutación.
La figura 6A muestra un circuito de conversión con etapa de conmutación según una posible realización de la invención para un ejemplo con 9 niveles de tensión de salida y cuatro células en la etapa de conmutación, con convertidor DCC.
La figura 6B muestra un circuito de conversión con etapa de conmutación según una posible realización de la invención para un ejemplo con 9 niveles de tensión de salida y cuatro células en la etapa de conmutación, con convertidor MPC.
La figura 7 una etapa de conmutación según una posible realización de la invención para un ejemplo con cuatro células, dos capacidades de bus y algunas capacidades con resistencia en serie.
Realización preferente de la invención
La invención se describe a continuación en referencia a las distintas figuras, que representan, en el caso de las Figuras 2A, 2B, 2C 2D y 7, varios ejemplos de implementación de una etapa de conmutación conforme a la presente invención aplicable en un circuito de conversión multinivel, mientras que en las Figuras 3A, 3B, 3C, 4A, 4B, 4C, 5 y 6A-6B, se ilustran distintas realizaciones del circuito de conversión multinivel con una etapa de conmutación conforme a la invención. En las realizaciones aquí ilustradas, se utilizan como interruptores unos semiconductores controlados, por ejemplo, de tipo IGBT, i.e., transistor bipolar de puerta aislada, como los mostrados en la Figura 1 . En cualquier caso, las figuras y ejemplos no tienen la intención de limitar la invención a unas realizaciones concretas.
En estas Figuras, aparecen referencias numéricas que identifican los siguientes elementos:
terminal de tensión DC positiva
terminal de tensión DC intermedia
terminal de tensión DC negativa
terminal de tensión AC
capacidad de bus DC
terminal de salida positivo de la etapa de conmutación
terminal de salida intermedio de la etapa de conmutación
terminal de salida negativo de la etapa de conmutación
interruptor
capacidad
resistencia
terminal de tensión positiva del convertidor multinivel
terminal de tensión intermedia del convertidor multinivel
terminal de tensión negativa del convertidor multinivel
colector
emisor
puerta
diodo
La Figura 1 muestra un semiconductor controlado IGBT convencional, que comprende un colector (C), una puerta (P), un emisor (E) y un diodo (D), que puede realizar la función de interruptor (9) en las diferentes formas de realización del circuito de conversión de energía multinivel que se proponen a continuación. Los interruptores (9) pueden ser bidireccionales en corriente y unidireccionales en tensión.
Las figuras 2A, 2B, 2C y 2D muestran diversos ejemplos de implementación de una etapa de conmutación multinivel según la invención, que comprende una pluralidad de semiconductores controlados IGBT ejerciendo como interruptores (9) y un bus de capacidades, para los casos de configuración con 2, 3 ó 4 capacidades de bus DC (5), i.e., para 1 , 2 ó 3 terminales de tensión DC intermedia (2).
La figura 2A muestra un ejemplo de etapa de conmutación (210) con p = 4 células (21 1 , 212, 213, 214) y para el caso de tener 2 capacidades de bus (5) con m=2, i.e., m-1 = 1 terminal de tensión DC intermedia (2), conectando una capacidad una capacidad (10) entre cada dos terminales adyacentes de cada célula.
La figura 2B muestra un ejemplo para el caso también de 2 capacidades de bus (5) en una etapa de conmutación (220) de p= 4 células (221 , 222, 223, 224) y conectando una capacidad (10) entre cada dos terminales adyacentes de algunas de las células, pero conectando sólo una capacidad (10) entre los terminales positivo y negativo (6, 8) de algunas de las células (222, 224).
La figura 2C muestra un ejemplo para el caso de 3 capacidades de bus (5), en una etapa de conmutación (230) de 3 células (231 , 232, 233), con m=3, i.e., m-1 = 2 terminales de tensión DC intermedia (2), y conectando una capacidad (10) entre cada dos terminales adyacentes de cada célula.
La figura 2D muestra un ejemplo para el caso de 4 capacidades de bus (5) en una etapa de conmutación (240) con p = 4 células (241 , 242, 243, 244) y m=4, i.e., m-1 = 3 terminales de tensión DC intermedia (2), conectando una capacidad (10) entre cada dos terminales adyacentes de cada célula.
Las figuras 3A, 3B y 3C muestran tres realizaciones posibles de la invención para el caso de un circuito de conversión de energía con n=5 niveles de tensión, comprendiendo una etapa de conmutación (300) de p = 2 células (301 , 302) y con un bus de capacidades compuesto por 2 capacidades (5) en los tres ejemplos. Lo que diferencia un ejemplo de realización de la invención del otro, en este caso, es el convertidor multinivel que se conecta a la etapa de conmutación (300) del circuito de conversión de energía: En la figura 3A, se conecta un convertidor multinivel de Punto Fijo Neutro NPC (310) a la etapa de conmutación (300); en la figura 3B, se conecta un convertidor multinivel de Punto Fijo Neutro Activo ANPC (320); y en la figura 3C, la etapa de conmutación (300) se conecta un convertidor inversor multinivel generalizado (330) -Generalized Multilevel Inverter, en inglés-, como el descrito por F.Z. Peng en "Generalized Multilevel Inverter Topology wit Self
Voltage Balancing", IEEE Transactions on Industry Applications, 2001 , mencionado en el estado de la técnica anterior. En general, para este caso de configuración del circuito con 5 niveles de tensión y dos células (301 , 302) encadenadas en la etapa de conmutación, el convertidor multinivel que se puede conectar a la etapa de conmutación (300) puede ser cualquier convertidor que disponga de 3 terminales, es decir, que su bus esté compuesto por 2 capacidades.
Otras posibles realizaciones del circuito de conversión de energía que se describe para el caso m=2 comprende la etapa de conmutación propuesta conectada a un convertidor multinivel TCC -Transistor Clamped Converter, en inglés- o a un convertidor multinivel SMC -Stacked Multi-Cell, en inglés-.
Las figuras 4A, 4B y 4C muestran tres realizaciones posibles de la invención para el caso de un circuito de conversión de energía con n=7 niveles de tensión, comprendiendo una etapa de conmutación con un bus de capacidades compuesto por 2 capacidades (5) en los tres ejemplos. Dentro de esta configuración de convertidor con 7 niveles y bus de 2 capacidades, se pueden diferenciar dos configuraciones preferentes: en una la etapa de conmutación está compuesta por 4 células y en la otra, la etapa de conmutación está compuesta por 2 células.
La figura 4A muestra una realización en la que la etapa de conmutación (410) está compuesta por 4 células (41 1 , 412, 413, 414) y dos capacidades de bus DC (5), conectadas una entre el terminal de tensión DC positiva (1 ) y un terminal de tensión DC intermedia (2) y la otra entre este último y el entre el terminal de tensión DC negativa (3). La etapa de conmutación (410) se conecta un convertidor multinivel NPC (415), i.e., convertidor de punto neutro fijo, que presenta un terminal de tensión AC (4) para conectar a la máquina de generación de energía, por ejemplo, una turbina eólica.
La figura 4B muestra otra realización de circuito de conversión de energía con 7 niveles de tensión, donde la etapa de conmutación (420) está compuesta igualmente por 4 células (421 , 422, 423, 424) y dos capacidades de bus DC (5), pero a dicha etapa de conmutación (420) se conecta un convertidor multinivel generalizado (425) -Generalized Multilevel Inverter, en inglés-, como el descrito por F.Z. Peng en el arriba mencionado antecedente del estado de la técnica anterior. Otra opción de realización puede ser conectar la etapa de conmutación (410, 420) de 4 células a un convertidor ANPC, i.e., convertidor de punto neutro fijo, activo, La figura 4C muestra una realización de circuito de conversión de energía con 7 niveles de tensión e igualmente una etapa de conmutación (430) con dos capacidades de bus DC (5) pero donde dicha etapa de conmutación (430) está compuesta sólo por 2 células (431 , 432) y a la que se conecta un convertidor multinivel con múltiples grupos de conmutación en serie (435), que puede ser un convertidor 5L-ANPC de 5 niveles de punto neutro fijo activo como el descrito según la ya anteriormente mencionada solicitud de patente EP1673849A1 , que en el ejemplo ilustrado comprende dos primeros grupos de conmutación (4351 , 4352) conectados entre sí en paralelo y a su vez en paralelo con un segundo grupo de conmutación (4353) y un tercer grupo de conmutación (4354), cada grupo de conmutación compuesto por un primer y un segundo semiconductor controlado (9) que están conectados en serie a través de una capacidad (10). En todos los casos, el terminal de salida positivo (6) de la etapa de conmutación está conectado al terminal de tensión positiva (12) del convertidor multinivel y el terminal de salida negativo (8) de la etapa de conmutación va conectado al terminal de tensión negativo (14) del convertidor multinivel. Además, la etapa de conmutación dispone de un solo terminal de salida intermedio (7), i.e., m=2, conectado a un terminal de tensión intermedios del convertidor multinivel (13),
La figura 5 muestra una realización preferida de la invención de un circuito de conversión de energía también con 7 niveles de tensión para el caso de una etapa de conmutación (510) formada por 3 capacidades de bus DC (5) y 3 células (51 1 , 512, 513), disponiendo de dos terminales de salida intermedios de la etapa de conmutación (7) que se conectan respectivamente a sendos terminales de tensión intermedios del convertidor (13), es decir, m = 3. El convertidor multinivel que se conecta a la etapa de conmutación (510) puede ser cualquier convertidor que disponga de 4 terminales, es decir, que su bus esté compuesto por 3 capacidades, por ejemplo, un convertidor de punto neutro fijo NPC, de diodos de anclaje DCC - Diode Clamped Converter, en inglés-, convertidor inversor multinivel generalizado - Generalized Multilevel Inverter, en inglés-, etc. En el ejemplo de la Figura 5, la etapa de conmutación (510) se conecta a un convertidor de diodos (D) de anclaje DCC (515).
Las figuras 6A y 6B muestran dos realizaciones preferidas de la invención para el caso de un circuito de conversión de energía de n = 9 niveles de tensión con una etapa de conmutación (600) formada por 4 capacidades de bus DC (5) y 4 células (601 , 602, 603, 604), disponiendo de tres terminales de salida intermedios de la etapa de conmutación (7) que se conectan respectivamente a unos terminales de tensión intermedios del convertidor multinivel (13), es decir, m = 4. El convertidor multinivel que se conecta a la etapa de conmutación (600) puede ser cualquier convertidor que disponga de 5 terminales, es decir, que su bus esté compuesto por 4 capacidades, por ejemplo, NPC, DCC, convertidor inversor multinivel generalizado -Generalized Multilevel Inverter, en inglés-, convertidor MPC de Punto Fijo Múltiple -Multi Point Clamped, en inglés-, etc. Por ejemplo, en la figura 6A, la etapa de conmutación (600) se conecta a un convertidor multinivel DCC (615), mientras que en la figura 6B, la etapa de conmutación (600) se conecta a un convertidor multinivel MPC (625).
La figura 7 muestra una realización preferida de la invención para el caso de una etapa de conmutación (700) con p=4 células (701 , 702, 703, 704), y dos capacidades de bus DC (5), que dispone de un solo terminal de salida intermedio (7), i.e., m=2, contando con algunas capacidades (10) conectadas a resistencias (1 1 ) en serie para limitar las oscilaciones de tensión y corriente en los semiconductores (9) durante las conmutaciones.
Obsérvese que en este texto, el término "comprende" y sus derivaciones (tales como "que comprende", etc.) no debe entenderse en un sentido excluyente, es decir, estos términos no deben interpretarse como que excluyen la posibilidad de que lo que se describe y define pueda incluir elementos, etapas, etc. adicionales

Claims

REIVINDICACIONES
1 .- Una etapa de conmutación (210, 220, 230, 240, 300, 410, 420, 430, 510, 600, 700) para convertidores de potencia multinivel, tanto convertidores DC a AC como convertidores AC a DC, aplicables en sistemas de conversión de energía, comprendiendo:
un bus DC de capacidades con una pluralidad de m, m>1 , capacidades de bus DC (5);
un terminal de tensión DC positiva (1 ) un terminal de tensión DC negativa (3) y m-1 terminales de tensión DC intermedia (2), disponiendo de un total de m+1 terminales de tensión DC numerables desde 1 hasta m+1 , desde el terminal de tensión DC positiva (1 ) hasta el terminal de tensión DC negativa (3);
y teniendo las m capacidades de bus DC (5) interconectadas entre el terminal de tensión DC positiva (1 ) y el terminal de tensión DC negativa (3), y los m-1 terminales de tensión DC intermedia (2);
la etapa de conmutación caracterizada por comprender:
un terminal de salida positivo de la etapa de conmutación (6), un terminal de salida negativo de la etapa de conmutación (8) y m-1 terminales de salida intermedios (7), disponiendo de un total de m+1 terminales de salida;
- un número p, p>=1 , de células encadenadas, cada célula comprendiendo:
m+1 terminales de entrada y m+1 terminales de salida de la célula; al menos una capacidad (10), estando cada capacidad (10) conectada a dos cualesquiera de los m+1 terminales de salida de la célula;
m+1 interruptores (9), numerables desde i=1 hasta i=m+1 , estando el interruptor (9) número i conectado entre el terminal de entrada número i de la célula y el terminal de salida número i de la célula y,
para i=1 hasta i=m+1 ,
estando el terminal de salida número i de la etapa de conmutación conectado al terminal de salida número i de cada célula y número p - estando el terminal de tensión DC número i de la etapa de conmutación conectado al terminal de entrada número i de la célula número 1 ;
y si p>1 , para j=1 hasta j=p-1 , la célula número j está encadenada a la célula número j+1 adyacente de manera que, para i=1 hasta i=m+1 , el terminal de salida número i de la célula número j se conecta al terminal de entrada número i de la célula número j+1 adyacente.
2. - La etapa de conmutación, según la reivindicación 1 , caracterizado por que al menos una célula tiene una única capacidad (10) conectada entre los terminales de salida número 1 y número m+1 de la célula.
3. La etapa de conmutación, según las reivindicaciones 1 -2, caracterizada porque al menos una célula tiene una pluralidad de m-1 capacidades (10), numeradas desde i=1 hasta i=m-1 y estando la capacidad número i conectada entre los terminales de salida número i y número i+1 de la célula.
4. - La etapa de conmutación, según cualquiera de las reivindicaciones anteriores, caracterizada por que al menos una capacidad (10) tiene conectada en serie una resistencia (1 1 ).
5. - La etapa de conmutación, según cualquiera de las reivindicaciones anteriores, caracterizada por que al menos en una célula dos terminales de la célula se conectan entre sí.
6. - La etapa de conmutación, según cualquiera de las reivindicaciones anteriores, caracterizada porque los interruptores (9) son bidireccionales en corriente y unidireccionales en tensión.
7. - La etapa de conmutación, según cualquiera de las reivindicaciones anteriores, caracterizada por que los interruptores (9) están seleccionados entre transistores IGBT, tiristores IGCT, transistores IEGT, tiristores GTO y combinaciones de los mismos, todos ellos con un diodo conectado en antiparalelo.
8. - Un circuito de conversión de energía para múltiples niveles de tensión de salida, que comprende un convertidor multinivel (310, 320, 330, 415, 425, 435, 515, 615, 625) que se selecciona entre convertidor DC a AC y convertidor AC a DC, el convertidor multinivel comprendiendo un terminal de tensión AC (4), un terminal de tensión positiva del convertidor multinivel (12), m-1 terminales de tensión intermedia del convertidor multinivel (13) y un terminal de tensión negativa del convertidor multinivel (14), con un total de m+1 terminales numerados desde 1 hasta m+1 desde el terminal de tensión positiva (12) hasta el terminal de tensión negativa (14), caracterizado por comprender una etapa de conmutación (210, 220,
230, 240, 300, 410, 420, 430, 510, 600, 700) definida según cualquiera de las reivindicaciones 1 a 7 que está conectada al convertidor multinivel de manera que, para i=1 hasta i=m+1 , el terminal de tensión número i del convertidor multinivel se conecta al terminal de salida número i de la etapa de conmutación.
9.- El circuito de conversión de energía, según la reivindicación 8, caracterizado por que el número m de capacidades de bus DC (5) se selecciona entre m=4, m=3 y m=2.
10. - El circuito de conversión de energía, según la reivindicación 9, caracterizado por que el número m de capacidades de bus DC (5) es m=2 y el convertidor multinivel se selecciona entre un convertidor multinivel NPC (310, 415), un inversor multinivel generalizado (330, 425), un convertidor multinivel ANPC (320), un convertidor multinivel DCC, un convertidor multinivel TCC, un convertidor multinivel ANPC de 5 niveles y un convertidor multinivel SMC.
1 1 . - El circuito de conversión de energía, según cualquiera de las reivindicaciones 8-9, caracterizado por que el número m de capacidades de bus DC (5) es m≥3 y el convertidor multinivel es de m+1 niveles que se selecciona entre un convertidor multinivel NPC, un inversor multinivel generalizado, un convertidor multinivel DCC (515,615) y un convertidor multinivel MPC (625).
12. - El circuito de conversión de energía, según cualquiera de las reivindicaciones 8 a 1 1 , caracterizado por que además comprende medios controladores de modulación por ancho de pulsos para sintetizar una tensión alterna en el terminal de tensión AC (4) del convertidor multinivel.
13. - El circuito de conversión de energía, según cualquiera de las reivindicaciones 8 a 12, caracterizado por que además comprende medios estabilizadores de tensión que usan redundancias para mantener estable la tensión de al menos una capacidad (10) y dichos medios estabilizadores de tensión introducen una tensión homopolar para mantener equilibradas la tensión de los terminales de tensión DC intermedias (2)
14.- Una etapa de conversión para una turbina eólica, caracterizada por que comprende un circuito de conversión de energía como el que se define en una cualquiera de las reivindicaciones 8 a 13.
PCT/ES2012/070843 2012-11-30 2012-11-30 Etapa de conmutación, circuito de conversión de energía, y etapa de conversión para turbinas eólicas que comprende el circuito de conversión de energía WO2014083214A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/ES2012/070843 WO2014083214A1 (es) 2012-11-30 2012-11-30 Etapa de conmutación, circuito de conversión de energía, y etapa de conversión para turbinas eólicas que comprende el circuito de conversión de energía
US14/648,357 US9660553B2 (en) 2012-11-30 2012-11-30 Switching stage, energy conversion circuit, and conversion stage for wind turbines comprising the energy conversion circuit
CA2894127A CA2894127C (en) 2012-11-30 2012-11-30 Switching stage, energy conversion circuit, and conversion stage for wind turbines comprising the energy conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/070843 WO2014083214A1 (es) 2012-11-30 2012-11-30 Etapa de conmutación, circuito de conversión de energía, y etapa de conversión para turbinas eólicas que comprende el circuito de conversión de energía

Publications (1)

Publication Number Publication Date
WO2014083214A1 true WO2014083214A1 (es) 2014-06-05

Family

ID=47989022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070843 WO2014083214A1 (es) 2012-11-30 2012-11-30 Etapa de conmutación, circuito de conversión de energía, y etapa de conversión para turbinas eólicas que comprende el circuito de conversión de energía

Country Status (3)

Country Link
US (1) US9660553B2 (es)
CA (1) CA2894127C (es)
WO (1) WO2014083214A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476373B2 (en) 2015-11-02 2019-11-12 General Electric Company Electronic apparatus and system and method for controlling series connected switch modules
US10630068B2 (en) 2016-03-30 2020-04-21 General Electric Company System and switch assembly thereof with fault protection and associated method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206118B2 (ja) * 2013-08-02 2017-10-04 株式会社明電舎 マルチレベル電力変換装置
FR3081634B1 (fr) * 2018-05-23 2021-02-26 Nidec Asi Convertisseur de puissance electrique
EP3573227A1 (en) * 2018-05-23 2019-11-27 Nidec ASI S.A. Electric power converter
TWI728503B (zh) * 2019-10-14 2021-05-21 台達電子工業股份有限公司 電力系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555432A1 (fr) 1991-07-25 1993-08-18 Centre Nat Rech Scient Dispositif electronique de conversion d'energie electrique.
EP1287609A2 (fr) 2000-05-26 2003-03-05 Centre National De La Recherche Scientifique (Cnrs) Dispositif de conversion d'energie multicellulaire
EP1482629A1 (de) * 2003-05-26 2004-12-01 ABB Schweiz AG Umrichterschaltung
WO2005036719A1 (de) * 2003-10-17 2005-04-21 Abb Research Ltd Umrichterschaltung zur schaltung einer vielzahl von schaltspannungsniveaus
EP1815586A1 (de) 2004-11-22 2007-08-08 Abb Research Ltd. Umrichterschaltung zur schaltung einer vielzahl von schaltspannungsniveaus
EP1051799B1 (en) 1998-01-27 2008-07-30 Abb Ab A converter device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828965B2 (ja) * 1992-09-02 1996-03-21 日本電気株式会社 電圧変換回路
US5680300A (en) * 1995-12-22 1997-10-21 Analog Devices, Inc. Regulated charge pump DC/DC converter
US6111770A (en) * 1997-10-28 2000-08-29 Lockheed Martin Energy Research Corporation Auxiliary resonant DC tank converter
DE10037379B4 (de) * 2000-08-01 2005-06-16 Alstom Modular aufgebauter Stromrichter
US6337804B1 (en) * 2000-09-26 2002-01-08 General Electric Company Multilevel PWM voltage source inverter control at low output frequencies
US8320141B2 (en) * 2009-08-05 2012-11-27 Apple Inc. High-efficiency, switched-capacitor power conversion using a resonant clocking circuit to produce gate drive signals for switching capacitors
US8441820B2 (en) * 2010-09-29 2013-05-14 General Electric Company DC-link voltage balancing system and method for multilevel converters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555432A1 (fr) 1991-07-25 1993-08-18 Centre Nat Rech Scient Dispositif electronique de conversion d'energie electrique.
EP1051799B1 (en) 1998-01-27 2008-07-30 Abb Ab A converter device
EP1287609A2 (fr) 2000-05-26 2003-03-05 Centre National De La Recherche Scientifique (Cnrs) Dispositif de conversion d'energie multicellulaire
EP1482629A1 (de) * 2003-05-26 2004-12-01 ABB Schweiz AG Umrichterschaltung
WO2005036719A1 (de) * 2003-10-17 2005-04-21 Abb Research Ltd Umrichterschaltung zur schaltung einer vielzahl von schaltspannungsniveaus
EP1673849A1 (de) 2003-10-17 2006-06-28 Abb Research Ltd. Umrichterschaltung zur schaltung einer vielzahl von schaltspannungsniveaus
EP1815586A1 (de) 2004-11-22 2007-08-08 Abb Research Ltd. Umrichterschaltung zur schaltung einer vielzahl von schaltspannungsniveaus

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
F.Z. PENG: "Generalized Multilevel Inverter Topology with Self Voltage Balancing", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2001
F.Z. PENG: "Generalized Multilevel Inverter Topology with Self Voltage Balancing", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, vol. 37, March 2001 (2001-03-01), pages 611 - 618
M. MARCHESONI: "An Optimal Controller for Voltage Balance and Power Losses Reduction in MPC AC/DC/AC Converters", IEEE 31ST ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, vol. 2, 2000, pages 662 - 667, XP000987790, DOI: doi:10.1109/PESC.2000.879896
N. CELANOVIC: "A Comprehensive Study of Neutral-Point Voltage Balancing Problem in Three-Level Neutral-Point-Clamped Voltage Source PWM Inverters", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 15, March 2000 (2000-03-01), pages 242 - 249
THIERRY A MEYNARD ET AL: "Multicell Converters: Derived Topologies", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 49, no. 5, 1 October 2002 (2002-10-01), XP011073773, ISSN: 0278-0046 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476373B2 (en) 2015-11-02 2019-11-12 General Electric Company Electronic apparatus and system and method for controlling series connected switch modules
US10630068B2 (en) 2016-03-30 2020-04-21 General Electric Company System and switch assembly thereof with fault protection and associated method

Also Published As

Publication number Publication date
CA2894127A1 (en) 2014-06-05
US20150295515A1 (en) 2015-10-15
CA2894127C (en) 2017-09-19
US9660553B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
US10447173B2 (en) Single-phase five-level active clamping converter unit and converter
ES2875325T3 (es) Sistema de conversión de energía de CC a CA
US8422257B2 (en) Voltage source converter
US10938317B2 (en) Low loss double submodule for a modular multi-level converter and modular multi-level converter having same
ES2690675T3 (es) Operación de un convertidor de tres niveles
US8730696B2 (en) Multi-level voltage converter
US20170294850A1 (en) Multilevel converter
JP5803683B2 (ja) マルチレベル電力変換回路
US9559523B2 (en) Multilevel electronic power converter
US20130088901A1 (en) Multilevel inverter
US9479075B2 (en) Multilevel converter system
US9800175B2 (en) Five-level converting device
WO2014083214A1 (es) Etapa de conmutación, circuito de conversión de energía, y etapa de conversión para turbinas eólicas que comprende el circuito de conversión de energía
BR102014011275A2 (pt) Conversor de energia multinível, e, sistema de conversão de energia
US9479076B2 (en) Converter cell with reduced power losses, high voltage multilevel converter and associated method
US9065328B2 (en) AC/DC multicell power converter for dual terminal HVDC connection
US20100219692A1 (en) 3N-4-Level voltage inverter
US9667166B2 (en) Five-level converting device
KR20160057912A (ko) 4레벨 전력변환장치
JP2013078204A (ja) 電力変換装置
ES2378865A1 (es) Convertidor de energía eléctrica de enclavamiento activo de cuatro o más niveles y método de control.
CN108604797B (zh) 多电平功率变流器及用于控制多电平功率变流器的方法
EP3462594A1 (en) Five-level converter
CN104410309A (zh) 五电平电压源型变换装置
CN116365906A (zh) 多电平逆变器及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2894127

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14648357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834578

Country of ref document: EP

Kind code of ref document: A1