WO2014082526A1 - 无线通信系统中的装置和方法 - Google Patents

无线通信系统中的装置和方法 Download PDF

Info

Publication number
WO2014082526A1
WO2014082526A1 PCT/CN2013/087022 CN2013087022W WO2014082526A1 WO 2014082526 A1 WO2014082526 A1 WO 2014082526A1 CN 2013087022 W CN2013087022 W CN 2013087022W WO 2014082526 A1 WO2014082526 A1 WO 2014082526A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
downlink
uplink
point device
ratio
Prior art date
Application number
PCT/CN2013/087022
Other languages
English (en)
French (fr)
Inventor
崔琪楣
付婷
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Publication of WO2014082526A1 publication Critical patent/WO2014082526A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention generally relates to the field of wireless communications, and more particularly to a universal mobile communication system
  • UMTS Long Term Evolution
  • Universal Mobile Telecommunications System (UMTS) Long Term Evolution (LTE) supports two duplex modes, Frequency Division Duplex (FDD) and Time Division Duplex (TDD). Compared to the frequency division duplex mode, the time division duplex mode does not require paired spectrum resources, thus providing a more flexible system arrangement.
  • the Universal Mobile Telecommunications System (UMTS) Long Term Evolution (LTE) using time division duplex mode can provide 7 different asymmetric uplink and downlink allocation time division duplex subframe configurations (see TS 36.211), these time division duplex subframes. The configuration can provide 40% -90% of downlink subframes and has flexible service adaptation features.
  • cells of the entire network are statically configured with the same uplink and downlink subframe configuration.
  • a homogeneous network when a macro base station is used for coverage, since the macro base station serves more users and the coverage area statistics are relatively stable and consistent, the method of statically setting the same uplink and downlink subframe configuration for all cells is suitable.
  • many low-power access point devices are introduced, such as micro base stations, pico base stations, home base stations, radio remote units, and the like. Therefore, if the above-mentioned uplink and downlink subframe configuration of the entire network is statically set, the throughput of the heterogeneous network will be affected.
  • the inventors of the present application have found through research that in a heterogeneous network, since the number of users served by low-power access point devices is small and mostly covered by hotspots, the dynamics of uplink and downlink traffic in the coverage area are relatively dynamic. Significantly, there will be significant differences in uplink and downlink conditions between different low power access point devices. In view of the above, the inventors of the present application recognize that it is possible to determine the phase for an access point device based on the difference between the uplink and downlink conditions of multiple access point devices.
  • the uplink and downlink subframe configuration should be configured instead of the same uplink and downlink subframe configuration in the whole network.
  • an apparatus in a wireless communication system including: a service ratio calculation unit, configured to: according to a first uplink service ratio or a first of each access point device in a set of access point devices The downlink service ratio calculates an average uplink service ratio or an average downlink service ratio of the access point device set; and an initial subframe configuration determining unit, configured to determine and connect according to an average uplink service ratio or an average downlink service ratio of the access point device set
  • the subframe configuration in which the average uplink traffic ratio or the average downlink traffic ratio of the inbound device set is adapted is configured as the initial subframe configuration of each access point device in the access point device set.
  • the method further includes: a service ratio determining unit, configured to determine a second uplink service ratio or a second downlink service ratio corresponding to the initial subframe configuration; and a subframe configuration adjusting unit, configured to use, according to the first uplink service Adjusting the difference between the ratio and the ratio of the second uplink service, or the difference between the ratio of the first downlink service to the second downlink service, adjusting each access point in the set of access point devices based on the initial subframe configuration Subframe configuration of the device.
  • a service ratio determining unit configured to determine a second uplink service ratio or a second downlink service ratio corresponding to the initial subframe configuration
  • a subframe configuration adjusting unit configured to use, according to the first uplink service Adjusting the difference between the ratio and the ratio of the second uplink service, or the difference between the ratio of the first downlink service to the second downlink service, adjusting each access point in the set of access point devices based on the initial subframe configuration Subframe configuration of the device.
  • the subframe configuration adjustment unit includes: a difference calculation sub-unit, configured to calculate an uplink service ratio difference between the first uplink service ratio and the second uplink service ratio, or a ratio of the first downlink service ratio a downlink service ratio difference between the second downlink service ratios; and a subframe configuration adjustment sub-unit, configured to use the first comparison result of the uplink service ratio difference and the preset first difference threshold, or the downlink service ratio difference
  • a second comparison result of the value and the preset second difference threshold adjusts a subframe configuration of each access point device in the set of access point devices based on the initial subframe configuration.
  • the access point device set is a set of access point devices obtained by dividing a cell in the network according to a coupling loss between cells.
  • the access point device set does not include a special access point device, and the special access point device is such an access point device: the access point device has a low traffic volume in the coverage area, and the resource requirement is adopted. Any sub-frame configuration can be satisfied.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device is compared according to an uplink condition of the user equipment served by the access point device, and a downlink status. owned.
  • the uplink condition of the user equipment is related to the relative uplink traffic of the user equipment, and the relative uplink traffic of each user equipment is obtained by dividing the actual traffic volume of the user equipment by Obtained by the uplink spectrum efficiency of the user equipment;
  • the downlink The link status is related to the relative downlink traffic of the user equipment served by the access point device, and the relative downlink traffic of each user equipment is obtained by dividing the actual downlink traffic of the user equipment by the downlink spectrum of the user equipment.
  • the first uplink service ratio or the first downlink traffic ratio of the access point device is based on the relative uplink traffic of the access point device and the relative downlink traffic of the access point device.
  • the relative uplink traffic of the access point device is obtained according to the sum of the relative uplink traffic of the user equipment served by the access point device, and the relative downlink traffic of the access point device is determined according to the The sum of the relative downlink traffic of the user equipment served by the access point device.
  • the service ratio calculation unit includes: a relative traffic calculation sub-unit, configured to accumulate relative uplink traffic of each user equipment served by each access point device in the set of access point devices The obtained sum is used as the relative uplink traffic of the access point device, and the total sum obtained by accumulating the relative downlink traffic of each user equipment served by each access point device in the set of access point devices is used as the connection.
  • the relative downlink traffic of the ingress device and wherein the traffic ratio calculating unit divides the relative uplink traffic of the access point device by the relative uplink traffic of the access point device with the access point device And obtaining, by the sum of the downlink traffic, the first uplink traffic ratio of the access point device, or by dividing the relative downlink traffic of the access point device by the relative uplink traffic of the access point device, and the The sum of the relative downlink traffic of the access point device is the ratio of the first downlink traffic of the access point device.
  • the service ratio calculation unit includes: a first average service ratio calculation subunit, configured to obtain the connection by accumulating relative uplink traffic of each access point device in the access point device set The relative uplink traffic of the set of ingress devices, the relative downlink traffic of the set of access point devices is obtained by accumulating the relative downlink traffic of each access point device in the set of access point devices, and by using the The relative uplink traffic of the set of access point devices is divided by the sum of the relative uplink traffic of the set of access point devices and the relative downlink traffic of the set of access point devices to obtain the average uplink traffic ratio, or The relative downlink traffic of the set of access point devices is divided by the sum of the relative uplink traffic of the set of access point devices and the relative downlink traffic of the set of access point devices to obtain the average downlink traffic ratio.
  • the actual traffic volume is the amount of service data to be transmitted in the uplink buffer of each user equipment served by the access point device, and the actual downlink traffic volume is set in the downlink buffer of the access point set to the user equipment.
  • the amount of business data transmitted is the amount of business data to be transmitted.
  • the actual traffic volume is the past in the uplink buffer of the user equipment
  • the actual downlink traffic is the weighting of the amount of traffic that has been transmitted in the downlink buffer of the access device for the user equipment in the past time period and the amount of service data to be transmitted. average.
  • the uplink condition of the user equipment is related to a relative uplink delay of an uplink data packet waiting to be transmitted in an uplink buffer of the user equipment, and the relative uplink delay of each user equipment is Obtaining, by dividing the actual line delay of the uplink data packet waiting to be transmitted in the uplink buffer of the user equipment by the uplink spectrum efficiency of the user equipment; the downlink status and the access point device for each user
  • the downlink downlink of the device is related to the downlink delay of the downlink data packet to be transmitted, and the relative downlink delay of each user equipment is downlink data waiting to be transmitted in the downlink buffer of each user equipment by the access point device.
  • the actual downlink delay of the packet is obtained by dividing the downlink frequency of the user equipment; and wherein the first uplink service ratio or the first downlink traffic ratio of the access point device is according to the access point device.
  • the relative uplink delay of the access point device is compared with the relative downlink delay of the access point device, and the relative uplink delay of the access point device is based on the access.
  • the relative downlink delay of the user equipment served by the point device is obtained according to the sum of the relative downlink delays of the user equipment served by the access point device.
  • the service ratio calculation unit includes: a relative delay calculation subunit, configured to wait in an uplink buffer of each user equipment served by accumulating each access point device in the set of access point devices The sum of the relative uplink delays of the transmitted uplink data packets is used as the relative uplink delay of the access point device, and the downlink buffer for each user equipment is accumulated by accumulating the access point devices in the access point device set.
  • the sum of the relative downlink delays of the downlink data packets waiting to be transmitted is the relative downlink delay of the access point device; and wherein the traffic ratio calculation unit divides the relative uplink delay of the access point device by Obtaining the first uplink traffic ratio of the access point device by using a sum of a relative uplink delay of the access point device and a relative downlink delay of the access point device, or by using the access point device And comparing the relative downlink delay by the sum of the relative uplink delay of the access point device and the relative downlink delay of the access point device to obtain the access point device The proportion of the first downlink business.
  • the service ratio calculation unit includes: a second average service ratio calculation subunit, configured to obtain the connection by accumulating relative uplink delays of each access point device in the set of access point devices A relative downlink delay of the set of ingress devices, the relative downlink delay of the set of access point devices is obtained by accumulating the relative downlink delays of the access point devices in the set of access point devices; and wherein
  • the second average traffic ratio calculation subunit divides the relative uplink delay of the set of access point devices by the relative of the set of access point devices The sum of the line delay and the relative downlink delay of the access point device obtains the average uplink traffic ratio, or by dividing the relative downlink delay of the access point device set by the relative uplink time of the access point device The sum of the relative downlink delays of the set of access point devices is obtained to obtain the average downlink traffic ratio.
  • the uplink spectrum efficiency is an instantaneous uplink transmission efficiency obtained by measuring an uplink channel sounding reference signal SRS by the access point device
  • the downlink frequency efficiency is an immediate downlink obtained by the channel quality indicator CQI fed back by the user equipment. Spectral efficiency.
  • the uplink spectrum efficiency is an average uplink spectrum efficiency obtained by performing arithmetic average or weighted average of the uplink channel sounding reference signal SRS measured by the access point device in the on-stage time
  • the downlink frequency efficiency is The channel shield amount fed back by the user equipment indicates the average downlink spectrum efficiency obtained by performing arithmetic average or weighted average of the CQI.
  • the uplink spectrum efficiency is a weighted average uplink spectrum efficiency obtained by performing weighted averaging of the uplink channel sounding reference signal SRS measured by the access point device in the on-stage time, and the downlink frequency efficiency is passed for a period of time.
  • the channel quality fed back by the user equipment indicates the weighted average downlink spectrum efficiency obtained by weighted averaging of the CQI, wherein the SRS or CQI that is closer to the current time is given a greater weight, and the SRS or CQI that is farther away from the current time is given less. Weights.
  • the uplink spectrum efficiency is an uplink network average resource efficiency obtained by the access point device according to the amount of service data received in a certain frequency width in the past period of time divided by the period of time and divided by the frequency width.
  • the downlink frequency efficiency is the downlink network average resource efficiency obtained by the access point device according to the amount of service data sent in a certain frequency width in the past period of time divided by the period of time and divided by the frequency width.
  • the uplink status of the user equipment is relative to the relative uplink traffic of the user equipment and the relative uplink weight of the uplink delay of the uplink data packet waiting to be transmitted in the uplink buffer of the user equipment.
  • the target uplink traffic of the user equipment is obtained by dividing the actual traffic volume of the user equipment by the uplink frequency transmission efficiency of the user equipment, and the relative uplink delay of the user equipment is obtained by using the user equipment.
  • the actual line delay of the uplink data packet waiting to be transmitted in the uplink buffer of the device is divided by the uplink frequency transmission efficiency of the user equipment; the downlink status and the relative downlink traffic volume of the user equipment and the access
  • the point device is related to the relative downlink weighting amount of the downlink delay of the downlink data packet waiting to be transmitted in the downlink buffer of the user equipment, and the relative downlink traffic volume of the user equipment is obtained by dividing the actual downlink traffic volume of the user equipment by Obtained by the downstream frequency of the user equipment,
  • the relative downlink delay is obtained by dividing the actual downlink delay of the downlink data packet waiting to be transmitted in the downlink buffer of the user equipment by the downlink spectrum efficiency of the user equipment; and wherein the The first uplink service ratio or the first downlink traffic ratio of the access point device is obtained by comparing the relative uplink weighting amount of the access point device with the relative downlink weighting amount of the access point device, where the access point device is obtained.
  • the relative uplink weighting amount is obtained according to the sum of the relative uplink weighting amounts of the user equipment served by the access point device, and the relative downlink weighting amount of the access point device is based on the user equipment served by the access point device. Obtained from the sum of the downlink weights.
  • the service ratio calculation unit includes: a weighting amount calculation subunit, configured to obtain, by accumulating a relative uplink weight amount of each user equipment served by each access point device in the set of access point devices The sum of the relative weightings of the access point device as a sum of the relative downlink weightings of each user equipment served by each access point device in the set of access point devices as the access a relative downlink weighting amount of the point device; and wherein the service ratio calculating unit divides the relative uplink weighting amount of the access point device by a relative uplink weighting amount of the access point device with the access point device And summing the downlink weighting amount to obtain the first uplink traffic ratio of the access point device, or by dividing the relative downlink weighting amount of the access point device by the relative uplink weighting amount of the access point device The sum of the relative downlink weights of the ingress devices obtains the first downlink traffic ratio of the access point device.
  • a weighting amount calculation subunit configured to obtain, by accumulating a relative uplink weight amount
  • the service ratio calculation unit includes: a third average service ratio calculation subunit, configured to obtain the connection by accumulating a relative uplink weight amount of each access point device in the access point device set And a relative downlink weighting amount of the inbound device set, the relative downlink weighting amount of the access point device set is obtained by accumulating the relative downlink weighting amount of each access point device in the access point device set; and wherein The third average traffic ratio calculation subunit obtains by dividing the relative uplink weighting amount of the access point device set by the sum of the relative uplink weighting amount of the access point device set and the relative downlink weighting amount of the access point device set.
  • the average uplink traffic ratio is obtained by dividing a relative downlink weighting amount of the access point device set by a sum of a relative uplink weighting amount of the access point device set and a relative downlink weighting amount of the access point device set.
  • the average downlink service ratio is obtained by dividing a relative downlink weighting amount of the access point device set by a sum of a relative uplink weighting amount of the access point device set and a relative downlink weighting amount of the access point device set.
  • the subframe configuration adjustment subunit is further configured to: when the absolute value of the uplink traffic proportional difference is less than or equal to a preset first difference threshold, or the absolute value of the downlink traffic proportional difference is less than Or equal to the preset second difference threshold, determining an initial subframe configuration for the access point device; and the absolute value of the uplink traffic proportional difference is greater than the preset first In the case of the difference threshold or in the case where the absolute value of the downlink traffic proportional difference is greater than the preset second interpolation threshold, the new subframe configuration is determined for the access point device based on the initial subframe configuration.
  • the subframe configuration sub-unit is further configured to: add one or two uplink subframes on the basis of the initial subframe configuration, if the uplink traffic ratio difference is greater than the preset first difference threshold; Or, if the downlink service ratio difference is greater than the preset second difference threshold, adding one or two downlink subframes based on the initial subframe configuration; and the uplink traffic ratio difference is less than the preset first.
  • the inverse of the difference threshold one or two uplink subframes are reduced on the basis of the initial subframe configuration; or in the case where the downlink traffic ratio difference is less than the inverse of the preset second difference threshold, One or two downlink subframes are reduced based on the initial subframe configuration.
  • the first difference threshold and the second difference threshold are values in a range of 0.25-0.35.
  • a method for use in a wireless communication system includes: a first uplink traffic ratio or a first downlink traffic ratio according to each access point device in a set of access point devices Calculating an average uplink service ratio or an average downlink service ratio of the access point device set; and determining an average uplink service ratio or an average downlink service with the access point device set according to the average uplink service ratio or the average downlink service ratio of the access point device set
  • the proportionally adapted subframe configuration is configured as the initial subframe of each access point device in the set of access point devices.
  • the method further includes: a service ratio determining step of determining a second uplink service ratio or a second downlink service ratio corresponding to the initial subframe configuration; and a subframe configuration adjustment step, according to the first uplink service Adjusting the difference between the ratio and the second uplink service ratio, or the difference between the first downlink service ratio and the second downlink traffic ratio, adjusting the connection on the basis of the initial subframe configuration The subframe configuration of each access point device in the inbound device set.
  • the subframe configuration adjustment step includes: a difference calculation sub-step, calculating an uplink service ratio difference between the first uplink service ratio and the second uplink service ratio, or the foregoing a downlink service ratio difference between a downlink service ratio and the second downlink service ratio; and a subframe configuration adjustment sub-step, according to the uplink traffic ratio difference and a preset first difference threshold Comparing the result, or the second comparison result of the downlink service ratio difference value and the preset second difference threshold, adjusting each access point in the access point device set based on the initial subframe configuration Subframe configuration of the device.
  • the access point device set is a set of access point devices obtained by dividing according to cells in a coupling loss network between cells.
  • the access point set does not include a special access point device, and the special access point device is an access point device: the access point device has a low traffic volume in the coverage area. , its resource requirements can be met by any sub-frame configuration.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device is compared according to the uplink status of the user equipment served by the access point device and the downlink status. owned.
  • the uplink condition of the user equipment is related to the relative uplink traffic of the user equipment, and the relative uplink traffic of each user equipment is obtained by dividing the actual traffic volume of the user equipment by the user. Obtained by the uplink spectrum efficiency of the device; the downlink condition is related to the relative downlink traffic of the user equipment served by the access point device, and the relative downlink traffic of each user equipment is obtained by using the user equipment The actual downlink traffic is obtained by dividing the downlink spectrum efficiency of the user equipment; and wherein the first uplink service ratio or the first downlink traffic ratio of the access point device is based on the relative uplink service of the access point device.
  • the relative uplink traffic of the access point device is obtained according to the sum of the relative uplink traffic of the user equipment served by the access point device, where The relative downlink traffic of the access point device is based on the relative downlink traffic of the user equipment served by the access point device. owned.
  • the service ratio calculation step includes: a relative traffic calculation sub-step, which will increase the relative uplink traffic of each user equipment served by each access point device in the access point device set by accumulating The obtained sum is used as the relative uplink traffic of the access point device, and the total sum obtained by accumulating the relative downlink traffic of each user equipment served by each access point device in the set of access point devices is used as the connection.
  • the relative downlink traffic of the inbound device and wherein, in the service ratio calculating step, the relative uplink traffic of the access point device is divided by the relative uplink traffic of the access point device and the access
  • the sum of the relative downlink traffic of the point device is obtained by the first uplink traffic ratio of the access point device, or by dividing the relative downlink traffic of the access point device by the relative uplink service of the access point device.
  • the sum of the amount of the downlink traffic with the access point device is the ratio of the first downlink traffic of the access point device.
  • the step of calculating the service ratio includes: a first average service ratio calculation sub-step, obtaining the connection by accumulating the relative uplink traffic of each access point device in the set of access point devices The relative upstream traffic of the inbound device set, by accumulating the connection
  • the relative downlink traffic of each access point device in the set of ingress devices obtains the relative downlink traffic of the set of access point devices, and divides the relative uplink traffic of the set of access point devices by the The sum of the relative uplink traffic of the set of ingress devices and the relative downlink traffic of the set of access point devices results in the average uplink traffic ratio, or by dividing the relative downlink traffic of the set of access point devices by The sum of the relative uplink traffic of the set of access point devices and the relative downlink traffic of the set of access point devices results in the average downlink traffic ratio.
  • the actual traffic volume is the amount of service data to be transmitted in the uplink buffer of each user equipment served by the access point device
  • the actual downlink traffic volume is the access point device. The amount of traffic data to be transmitted in the downlink buffer of the user equipment.
  • the actual downlink traffic is a weighted average of the amount of traffic data transmitted in the uplink buffer of the user equipment and the amount of traffic data to be transmitted in the uplink buffer
  • the actual downlink traffic is the The weighted average of the amount of traffic that has been transmitted by the ingress device in the downlink buffer of the user equipment for a past period of time and the amount of traffic data to be transmitted.
  • the uplink condition of the user equipment is related to the relative uplink delay of the uplink data packet waiting to be transmitted in the uplink buffer of the user equipment, and the relative uplink delay of each user equipment is determined by
  • the actual line delay of the uplink data packet waiting to be transmitted in the uplink buffer of the user equipment is obtained by dividing the uplink spectrum efficiency of the user equipment; the downlink status and the access point device for each user equipment
  • the downlink delay of the downlink data packet waiting to be transmitted in the downlink buffer is related, and the relative downlink delay of each user equipment is obtained by using the access point device for the downlink data packet waiting to be transmitted in the downlink buffer of each user equipment.
  • the actual downlink delay is obtained by dividing the downlink frequency of the user equipment; and wherein the first uplink service ratio or the first downlink service ratio of the access point device is based on the relative location of the access point device.
  • the uplink delay is compared with the relative downlink delay of the access point device, and the relative uplink delay of the access point device is based on Obtained by the sum of the relative uplink delays of the user equipments served by the access point device, the relative downlink delay of the access point device is obtained according to the sum of the relative downlink delays of the user equipments served by the access point device. .
  • the service ratio calculation step includes: a relative delay calculation sub-step, configured to accumulate an uplink buffer of each user equipment served by each access point device in the set of access point devices The sum of the relative uplink delays of the uplink packets waiting to be transmitted as the relative uplink delay of the access point device, by accumulating the access point devices in the set of access point devices for each user equipment Downstream waiting for transmission in the downlink buffer The sum of the relative downlink delays of the data packets is used as the relative downlink delay of the access point device; and wherein, in the service ratio calculation step, the relative uplink delay of the access point device is divided by the The sum of the relative uplink delay of the access point device and the relative downlink delay of the access point device is obtained by the first uplink service ratio of the access point device, or by the relative downlink of the access point device The delay is divided by the sum of the relative uplink delay of the access point device and the relative downlink delay of the access point device to obtain the first downlink traffic ratio of the access point device.
  • a relative delay calculation sub-step
  • the step of calculating the service ratio includes: a second average service ratio calculation sub-step, obtaining the connection by accumulating the relative uplink delay of each access point device in the set of access point devices A relative downlink delay of the set of ingress devices, the relative downlink delay of the set of access point devices is obtained by accumulating the relative downlink delays of the access point devices in the set of access point devices; and wherein
  • the second average service ratio calculation sub-step the relative uplink delay of the set of access point devices is divided by the relative uplink delay of the set of access point devices and the relative downlink delay of the access point device.
  • obtaining the average uplink traffic ratio or by dividing the relative downlink delay of the access point device set by a sum of a relative uplink delay of the access point device and a relative downlink delay of the access point device set The average downlink service ratio is obtained.
  • the uplink spectrum efficiency is an instantaneous uplink spectrum efficiency obtained by measuring, by the access point device, an uplink channel sounding reference signal SRS, and the downlink frequency efficiency is fed back by the user equipment.
  • the channel quality indicates the instantaneous downlink spectrum efficiency obtained by CQI.
  • the uplink spectrum efficiency is an average uplink frequency obtained by performing arithmetic average or weighted average of the uplink channel sounding reference signal SRS measured by the access point device during a period of time.
  • the downlink frequency efficiency is an average downlink spectral efficiency obtained by arithmetically averaging or weighted averaging the channel quality indicator CQI fed back by the user equipment over a period of time.
  • the uplink condition of the user equipment is related to a relative uplink traffic amount of the user equipment and a relative uplink weight amount of a relative uplink delay of an uplink data packet waiting to be transmitted in an uplink buffer of the user equipment
  • the target uplink traffic of the user equipment is obtained by dividing the actual traffic volume of the user equipment by the uplink frequency transmission efficiency of the user equipment, and the relative uplink delay of the user equipment is obtained by using the user equipment.
  • the actual line delay of the uplink data packet waiting to be transmitted in the uplink buffer is obtained by dividing the uplink frequency transmission efficiency of the user equipment; the downlink status and the relative downlink traffic volume of the user equipment and the access point device Relative downlink time of downlink packets waiting to be transmitted in the downlink buffer of the user equipment
  • the relative downlink traffic weight of the user equipment is obtained by dividing the actual downlink traffic of the user equipment by the downlink frequency ⁇ efficiency of the user equipment, where the relative downlink delay is Obtaining, by the access point device, the actual downlink delay of the downlink data packet waiting to be transmitted in the downlink buffer of the user equipment by the downlink spectrum efficiency of the user equipment; and wherein the access point device
  • the first uplink service ratio or the first downlink traffic ratio is obtained by comparing the relative uplink weighting amount of the access point device with the relative downlink weighting amount of the access point device, and the relative uplink weighting amount of the access point device According to the sum of the relative uplink weighting amounts of the user equipments served
  • the service ratio calculation step includes: a weighting amount calculation sub-step, which is obtained by accumulating the relative uplink weight amount of each user equipment served by each access point device in the access point device set The sum of the relative weightings of the access point device as a sum of the relative downlink weightings of each user equipment served by each access point device in the set of access point devices as the access a relative downlink weighting amount of the point device; and wherein, in the service ratio calculating step, the relative uplink weighting amount of the access point device is divided by the relative uplink weighting amount of the access point device and the access point The sum of the relative downlink weights of the device is obtained by the first uplink traffic ratio of the access point device, or by dividing the relative downlink weighting amount of the access point device by the relative uplink weighting amount of the access point device The sum of the relative downlink weights of the access point device is used to obtain the first downlink traffic ratio of the access point device.
  • a weighting amount calculation sub-step which is obtained by accumulating the relative up
  • the service ratio calculation step includes: a third average service ratio calculation sub-step, obtaining the connection by accumulating a relative uplink weight amount of each access point device in the access point device set And a relative downlink weighting amount of the inbound device set, the relative downlink weighting amount of the access point device set is obtained by accumulating the relative downlink weighting amount of each access point device in the access point device set;
  • the third average service ratio calculation sub-step the relative uplink weighting amount of the set of access point devices is divided by the relative uplink weighting amount of the access point device set and the relative downlink weighting amount of the access point device set.
  • the sub-frame configuration adjustment sub-step further includes: if the absolute value of the uplink service proportional difference is less than or equal to a preset first difference threshold, or And determining, in the case that the absolute value of the downlink service ratio difference is less than or equal to the preset second difference threshold, determining the initial subframe configuration for the access point device; and If the absolute value is greater than the preset first difference threshold or if the absolute value of the downlink traffic proportional difference is greater than the preset second interpolation threshold, based on the initial subframe configuration The access point device determines a new subframe configuration.
  • the sub-frame configuration adjustment sub-step further includes: if the uplink service ratio difference is greater than a preset first difference threshold, based on the initial subframe configuration Adding one or two uplink subframes; or adding one or two downlink subframes based on the initial subframe configuration, if the downlink traffic ratio difference is greater than a preset second difference threshold; And reducing, when the uplink traffic proportion difference is less than a reverse of a preset first difference threshold, reducing one or two uplink subframes on the basis of the initial subframe configuration; or in the downlink service If the proportional difference is less than the inverse of the preset second difference threshold, one or two downlink subframes are reduced on the basis of the initial subframe configuration.
  • the first difference threshold and the second difference threshold are the first difference threshold and the second difference threshold.
  • an apparatus in a wireless communication system including: a service ratio calculation unit, configured to calculate the uplink condition and a downlink condition of a user equipment served by an access point device a first uplink service ratio or a first downlink service ratio of the access point device; and a communication unit, configured to send a first uplink service ratio or a first downlink service ratio of the access point device, where the access point
  • the first uplink service ratio or the first downlink service ratio of the device is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set where the access point device is located, thereby determining a set with the access point device.
  • the initial uplink service ratio or the average downlink service ratio is adapted to the initial subframe configuration.
  • the communication unit is further configured to receive the initial subframe configuration
  • the apparatus further includes: a service ratio determining unit, configured to determine a second uplink service ratio or a number corresponding to the initial subframe configuration a second downlink service ratio; and a subframe configuration adjusting unit, configured to determine, according to the difference between the first uplink service ratio and the second uplink service ratio, or the first downlink service ratio and the second downlink The difference between the service ratios, adjusting the subframe configuration of the access point device based on the initial subframe configuration.
  • the communication unit is further configured to receive subframe configuration information of the access point device, where the subframe configuration information is a second uplink service ratio or a second downlink corresponding to the initial subframe configuration.
  • the service ratio is obtained by comparing the ratio of the first uplink service to the second downlink service of the access point device.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device is compared according to an uplink condition of the user equipment served by the access point device, and a downlink status. owned.
  • the communication unit is further configured to send a subframe configuration to a user equipment served by the access point device, where the subframe configuration is proportional to a first uplink service ratio of the access point device or The proportion of a downlink business is appropriate.
  • a method for use in a wireless communication system comprising: a service ratio calculation step of calculating an uplink condition and a downlink condition of a user equipment served by an access point device a first uplink service ratio or a first downlink service ratio of the access point device; and a communication step of transmitting a first uplink service ratio or a first downlink service ratio of the access point device, where the access point device
  • the first uplink service ratio or the first downlink service ratio is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set where the access point device is located, thereby determining an average with the access point device set.
  • the initial subframe configuration in which the uplink traffic ratio or the average downlink traffic ratio is adapted.
  • the communicating step includes: receiving the initial subframe configuration, and the method further includes: a service ratio determining step of determining a second uplink service ratio or a second corresponding to the initial subframe configuration a downlink service ratio; and a subframe configuration adjustment step, according to the difference between the first uplink service ratio and the second uplink service ratio, or the first downlink service ratio and the second downlink service The difference between the ratios adjusts the subframe configuration of the access point device based on the initial subframe configuration.
  • the step of communicating further includes: receiving subframe configuration information of the access point device, where the subframe configuration information is a second uplink service ratio or a second downlink service ratio corresponding to the initial subframe configuration. Obtained by comparing with the first uplink traffic ratio or the second downlink traffic ratio of the access point device.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device is compared by comparing the uplink status of the user equipment served by the access point device with the downlink status. owned.
  • the communication step further includes: transmitting a subframe configuration to a user equipment served by the access point device, where the subframe configuration is proportional to a first uplink service ratio of the access point device Or the proportion of the first downlink business is appropriate.
  • an apparatus in a wireless communication system including: a communication unit, configured to receive a subframe configuration from an access point device serving a user equipment, where The subframe configuration is adapted to the first uplink traffic ratio or the first downlink traffic ratio of the access point device, and the configuration unit is configured to configure the user equipment according to the received subframe configuration, where the The first uplink service ratio or the first downlink service ratio of the ingress device is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set where the access point device is located, thereby determining the access point
  • the initial subframe configuration of the device set or the average downlink traffic ratio is adapted to the initial subframe configuration.
  • the communication unit is further configured to send, to the access point device serving the user equipment, the amount of service data to be transmitted in the uplink buffer of the user equipment and/or the uplink waiting for transmission in the uplink buffer of the user equipment.
  • the actual line delay of the packet is further configured to send, to the access point device serving the user equipment, the amount of service data to be transmitted in the uplink buffer of the user equipment and/or the uplink waiting for transmission in the uplink buffer of the user equipment. The actual line delay of the packet.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device is compared by comparing the uplink status of the user equipment served by the access point device with the downlink status owned.
  • a method for use in a wireless communication system comprising: a communication step of receiving a subframe configuration from an access point device serving a user equipment, wherein the subframe configuration and the connection
  • the first uplink service ratio of the ingress device is adapted to the first downlink service ratio
  • the configuration step is configured to configure the user equipment according to the received subframe configuration, where the first uplink service of the access point device
  • the ratio or the first downlink service ratio is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set in which the access point device is located, thereby determining an average uplink service ratio or a set of the uplink device with the access point device set.
  • the initial subframe configuration in which the average downlink traffic ratio is adapted.
  • the communication step further includes: transmitting, to the access point device serving the user equipment, the amount of service data to be transmitted in the uplink buffer of the user equipment and/or the uplink waiting for transmission in the uplink buffer of the user equipment.
  • the actual line delay of the packet is
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device is compared by comparing the uplink status of the user equipment served by the access point device with the downlink status. owned.
  • a computer storage medium including computer readable instructions for causing a computer to perform: a first uplink traffic ratio according to respective access point devices in a set of access point devices or The first downlink service ratio calculates an average uplink service ratio or an average downlink service ratio of the access point device set; and determines an average uplink with the access point device set according to the average uplink service ratio or the average downlink service ratio of the access point device set.
  • the subframe ratio in which the service ratio or the average downlink service ratio is adapted is used as the access point device set. The initial subframe configuration of each access point device.
  • a computer storage medium comprising computer readable instructions for causing a computer to perform: a service ratio calculation step, based on an uplink condition of a user equipment served by an access point device, is disclosed Calculating a first uplink service ratio or a first downlink service ratio of the access point device, and a communication step of transmitting a first uplink service ratio or a first downlink service ratio of the access point device, where The first uplink service ratio or the first downlink service ratio of the access point device is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set where the access point device is located, thereby determining The initial uplink traffic ratio of the set of access point devices or the initial subframe configuration in which the average downlink traffic ratio is adapted.
  • a computer storage medium including computer readable instructions for causing a computer to perform: a communication step of receiving a subframe configuration from an access point device serving a user equipment, The subframe configuration is adapted to the first uplink traffic ratio or the first downlink traffic ratio of the access point device; and a configuration step of configuring the user equipment according to the received subframe configuration, where the access
  • the first uplink service ratio or the first downlink service ratio of the point device is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set where the access point device is located, thereby determining the device with the access point
  • the initial subframe ratio of the set or the average downlink traffic ratio is adapted to the initial subframe configuration.
  • an apparatus in a wireless communication system includes a memory and a processor, wherein the memory stores computer instructions, and the processor is configured to execute the computer instruction stored in the memory Calculating an average uplink service ratio or an average downlink service ratio of the access point device set according to the first uplink service ratio or the first downlink service ratio of each access point device in the access point device set; and according to the access point device
  • the aggregated uplink service ratio or the average downlink traffic ratio of the set determines the subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set as the initial sub-interface of each access point device in the access point device set. Frame configuration.
  • an apparatus in a wireless communication system includes a memory and a processor, wherein the memory stores computer instructions, and the processor is configured to execute the computer instruction stored in the memory And including: a service ratio calculation step, calculating a first uplink service ratio or a first downlink service ratio of the access point device according to an uplink status and a downlink status of the user equipment served by the access point device; and The step of transmitting the first uplink service ratio or the first downlink service ratio of the access point device, where the first uplink service ratio or the first downlink service ratio of the access point device is used to calculate the access point Equipment office
  • the average uplink traffic ratio or the average downlink traffic ratio of the set of access point devices is determined, thereby determining an initial subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set.
  • an apparatus in a wireless communication system includes a memory and a processor, wherein the memory stores computer instructions, and the processor is configured to execute the computer instruction stored in the memory
  • the method includes: a communication step of receiving a subframe configuration from an access point device serving the user equipment, where the subframe configuration is compatible with a first uplink service ratio or a first downlink service ratio of the access point device;
  • the configuration step is configured to configure the user equipment according to the received subframe configuration, where the first uplink service ratio or the first downlink service ratio of the access point device is used to calculate the connection of the access point device.
  • the average uplink traffic ratio or the average downlink traffic ratio of the inbound device set determines an initial subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set.
  • the corresponding uplink and downlink subframe configuration can be determined for the access point device according to the difference between the uplink and downlink conditions of the multiple access point devices, thereby improving the performance of the access point device, thereby improving the mobility.
  • Network throughput in a communication system can be determined for the access point device according to the difference between the uplink and downlink conditions of the multiple access point devices, thereby improving the performance of the access point device, thereby improving the mobility.
  • FIG. 1 is a block diagram showing a configuration of an apparatus in a wireless communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a set of access point devices according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing a configuration of an example of a traffic ratio calculation unit in an apparatus according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing a configuration of another example of a traffic ratio calculation unit in an apparatus according to an embodiment of the present invention.
  • Figure 5 is a block diagram showing a configuration of still another example of a service ratio calculation unit in the apparatus according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing another configuration of an apparatus in a wireless communication system according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing an exemplary configuration of a subframe configuration adjustment unit according to an embodiment of the present invention.
  • FIG. 8 is a flow chart showing a method for use in a wireless communication system according to an embodiment of the present invention.
  • Figure 9 is a block diagram showing the configuration of an apparatus in a wireless communication system according to another embodiment of the present invention.
  • Figure 10 is a block diagram showing the configuration of an apparatus in a wireless communication system according to another embodiment of the present invention.
  • Figure 11 is a flow chart showing a method for use in a wireless communication system in accordance with another embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration of an apparatus in a wireless communication system according to another embodiment of the present invention.
  • Figure 13 is a diagram showing a method for use in a wireless communication system in accordance with another embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of an apparatus in a wireless communication system according to an embodiment of the present invention.
  • the apparatus 100 in the wireless communication system may include a traffic ratio calculation unit 102 and an initial subframe configuration determination unit 104.
  • the service ratio calculation unit 102 may calculate an average uplink service ratio or an average downlink service ratio of the access point device set according to the first uplink service ratio or the first downlink service ratio of each access point device in the access point device set.
  • Each access point device in the set of access point devices may separately calculate a first uplink service ratio or a first downlink service ratio of the access point device, and calculate a first uplink service ratio of the obtained access point device or The first downlink service ratio is sent out.
  • Access point devices can use each The method is to calculate the ratio of the first uplink service or the proportion of the first downlink service.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device may be obtained by comparing an uplink condition of the user equipment served by the access point device with a downlink condition.
  • the set of access point devices can include multiple access point devices that cover a certain area, wherein each access point device can serve multiple user devices. For each user equipment served by the access point device, each user equipment has two links, an uplink and a downlink, to the access point device.
  • the uplink status of the access point device refers to the overall uplink status of all user equipments served by the access point device
  • the downlink status of the access point device refers to the access point. The overall downlink status of all user equipment served by the device.
  • the uplink status of some access point devices may be greater than the downlink status, and some may be connected.
  • the uplink condition of the ingress device may be less than the downlink condition, or the condition of the uplink of some access point devices may be substantially the same as the downlink condition.
  • the relative relationship between the uplink and downlink conditions of each access point device can be represented by the relative ratio between the uplink and downlink conditions of each access point device.
  • a ratio of an uplink condition of the access point device to a sum of an uplink condition and a downlink condition may be calculated as a first uplink traffic ratio of the access point device, or The ratio of the downlink condition of the access point device to the sum of the uplink condition and the downlink condition may be calculated as the first downlink traffic ratio of the access point device.
  • the ratio of the uplink status of all the access point devices in the set of access point devices to the sum of the uplink and the downlink of all access point devices can be calculated as The average uplink traffic ratio of the set of access point devices, or may be calculated by calculating the downlink status of all access point devices in the set of access point devices relative to all access point devices in the set of access point devices.
  • the ratio of the sum of the uplink and the downlink is the average downlink traffic ratio of the set of access point devices.
  • the manner of calculating the first uplink service ratio, the first downlink service ratio, the average uplink service ratio, or the average downlink service ratio is merely exemplary, and other methods may be used to calculate the foregoing first manner.
  • the proportion of uplink services, the proportion of the first downlink services, the proportion of average uplink services, or the proportion of average downlink services is merely exemplary, and other methods may be used to calculate the foregoing first manner.
  • the ratio of the uplink status of the access point device to the downlink status may be directly used as the first uplink service ratio, or The ratio of the downlink status of the access point device to the uplink status is directly used as the first downlink service ratio, and the uplink status and the downlink status of all the access point devices in the access point device set may be directly directly.
  • the ratio of the link status is used as the average uplink service ratio, or the ratio of the downlink status of the access point equipment to the uplink status of the access point equipment set may be directly used as the average downlink service ratio, etc. .
  • FIG. 2 is a schematic diagram showing a set of access point devices in accordance with an embodiment of the present invention.
  • the set of access point devices is a set of access point devices obtained by partitioning according to cells in the coupling loss between cells.
  • Fig. 2 it is assumed that there are a cell 1 covered by the access point device a, a cell 2 covered by the access point device b, and a cell 3 covered by the access point device c.
  • the coupling loss, path loss or received signal power between cell 1, cell 2 and cell 3 can be measured. It is found by measurement that the coupling loss, path loss or received signal power between cell 1, cell 2 and cell 3 are relatively close, so the access point device in cell 1, the access point device b in cell 2, and cell 3
  • the access point device c in the middle is divided into a set of access point devices.
  • the access point set does not include a special access point device
  • the special access point device is an access point device: the access point device covers a low amount of traffic in the area, and its resources The requirements can be met with any sub-frame configuration.
  • the cell can be determined.
  • the access point device c in 3 is a special access point device. Therefore, the access point device c in the cell 3 can be excluded from the set of access point devices, so that the access point device set includes only the access point device a in the cell 1 and the access point device b in the cell 2. , without including the access point device in cell 3
  • FIG. 3 is a block diagram showing a configuration of one example of a traffic ratio calculation unit in an apparatus according to an embodiment of the present invention.
  • the traffic ratio calculating unit 102-a in the apparatus according to an embodiment of the present invention may include a relative traffic calculating subunit 302 and/or a first average traffic ratio calculating subunit. 304.
  • the uplink status of the user equipment may be related to the relative uplink traffic of the user equipment, and the relative uplink traffic of each user equipment is obtained by dividing the actual line traffic of the user equipment by the user equipment. Obtained by the uplink spectrum efficiency; the downlink condition may be related to the relative downlink traffic of the user equipment served by the access point device, and the relative downlink traffic of each user equipment is the actual downlink traffic of the user equipment. Divided by the downlink spectrum efficiency of the user equipment.
  • the relative upstream traffic can be calculated by the following formula (1):
  • Relative Upstream Traffic Actual Line Traffic / Uplink Spectrum Efficiency (1)
  • the relative downlink traffic can be calculated by the following formula (2).
  • Relative downlink traffic actual downlink traffic / downlink spectrum efficiency (2)
  • the actual traffic may be the traffic to be transmitted in the uplink buffer of each user equipment served by the access point device
  • the amount of data, and the actual downlink traffic may be the amount of traffic data to be transmitted in the downlink buffer of the user equipment by the access point.
  • the user equipment may send the amount of traffic data to be transmitted in its upstream buffer to the access point device serving the user equipment.
  • the actual traffic volume may be a weighted average of the amount of traffic data transmitted in the uplink buffer of the user equipment in a past period of time and the amount of traffic data to be transmitted, and the actual downlink traffic may be an access.
  • the weighted average of the amount of traffic that has been transmitted in the downlink buffer of the user equipment in the past time period and the amount of traffic data to be transmitted is set.
  • the weighting values used for the weighted average may be predetermined or determined experimentally.
  • the uplink spectrum efficiency may be an instantaneous uplink spectrum efficiency obtained by the access point device measuring the uplink channel sounding reference signal SRS, and the downlink frequency efficiency may be a channel quality indicator CQI fed back through the user equipment. And get instant downlink spectrum efficiency.
  • the uplink spectrum efficiency may be an average uplink frequency efficiency obtained by performing arithmetic average or weighted average on the uplink channel sounding reference signal SRS measured by the access point device for a period of time
  • downlink The frequency efficiency may be an average downlink spectral efficiency obtained by arithmetically averaging or weighted averaging the channel quality indication CQI fed back by the user equipment over a period of time.
  • the weighting values used for the weighted average may be predetermined or determined experimentally.
  • the uplink spectrum efficiency may be an uplink network average obtained by the access point device according to the amount of service data received in a certain frequency width in the past period of time divided by the period of time and divided by the frequency width.
  • the resource efficiency, and the downlink frequency efficiency may be the downlink network average resource efficiency obtained by the access point device according to the amount of service data transmitted in a certain frequency width in the past period of time divided by the period of time and divided by the frequency width.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device may be obtained by comparing the relative uplink traffic of the access point device with the relative downlink traffic of the access point device.
  • the relative uplink traffic of the access point device is obtained according to the sum of the relative uplink traffic of the user equipment served by the access point device, and the relative downlink traffic of the access point device is according to the access point. The sum of the relative downlink traffic of the user equipment served by the device.
  • the relative traffic calculation sub-unit 302 included in the service ratio calculation unit 102-a may increase the relative uplink service of each user equipment served by each access point device in the set of access point devices.
  • the sum obtained by the quantity is used as the relative uplink traffic of the access point device, and the sum obtained by accumulating the relative downlink traffic of each user equipment served by each access point device in the set of access point devices is used as the access.
  • the relative downstream traffic of the point device obtains the access by dividing the relative uplink traffic of the access point device by the sum of the relative uplink traffic of the access point device and the relative downlink traffic of the access point device.
  • the first uplink service ratio of the point device or obtained by dividing the relative downlink traffic of the access point device by the sum of the relative uplink traffic of the access point device and the relative downlink traffic of the access point device.
  • the ratio of the first downlink service of the inbound device is the ratio of the first downlink service of the inbound device.
  • the first uplink traffic ratio can be calculated by the following formula (3).
  • the proportion of the first uplink service the relative uplink traffic of the access point device / (the relative upstream traffic of the access point device + the relative downstream traffic of the access point device) (3)
  • the first downlink traffic ratio can be calculated by the following formula (4).
  • the proportion of the first downlink service the relative downlink traffic of the access point device / (the relative upstream traffic of the access point device + the relative downstream traffic of the access point device) (4)
  • the relative uplink traffic of the access point device a in the cell 1 obtained by accumulating the relative uplink traffic of each user equipment served by the access point device a in the cell 1 may be 9, for example. And by accumulating the access point device a in the cell 1
  • the relative downlink traffic of each user equipment may be, for example, 10, the relative downlink traffic of the access point device a in the cell 1.
  • the relative uplink traffic of the access point device b in the cell 2 can be obtained by accumulating the relative uplink traffic of each user equipment served by the access point device b in the cell 2, for example, by accumulating
  • the relative downlink traffic of each user equipment served by the access point device b in the cell 2 may be, for example, 9 that the relative downlink traffic of the access point device b in the cell 2 may be 9.
  • the relative uplink traffic of the access point device c in the cell 3 can be obtained by accumulating the relative uplink traffic of each user equipment served by the access point device c in the cell 3, for example, by accumulating
  • the relative downlink traffic of each user equipment served by the access point device c in the cell 3 can be, for example, 4 that the relative downlink traffic of the access point device c in the cell 3 can be 4.
  • the foregoing manner of calculating the ratio of the first uplink service or the proportion of the first downlink service is only exemplary, and other manners may be used to calculate the ratio of the first uplink service or the proportion of the first downlink service.
  • the ratio of the relative uplink traffic of the access point device to the relative downlink traffic of the access point device may be directly used as the first uplink traffic ratio, or the relative downlink traffic of the access point device may be directly compared with
  • the ratio of the uplink traffic is taken as the ratio of the first downlink service described above.
  • the first uplink traffic ratio of the access point device a in the cell 1 can be calculated as 9/10, and the first of the access point devices a in the cell 1 can be The proportion of downlink business is calculated as 10/9.
  • the first average traffic ratio calculation sub-unit 304 included in the service ratio calculation unit 102-a can obtain the access point device by accumulating the relative uplink traffic of each access point device in the access point device set.
  • the relative uplink traffic of the set obtains the relative downlink traffic of the set of access point devices by accumulating the relative downlink traffic of each access point device in the set of access point devices.
  • the average uplink traffic ratio of the set of access point devices can be calculated by the following formula (5).
  • the average downlink traffic ratio of the set of access point devices can be calculated by Equation (6) below.
  • the first uplink service ratio of device c is 1/(1+4) or the first downlink traffic ratio is 4/(1+4)
  • FIG. Fig. 4 is a block diagram showing a configuration of another example of a traffic ratio calculating unit in the apparatus according to an embodiment of the present invention.
  • the traffic ratio calculating unit 102-b in the apparatus according to an embodiment of the present invention may include a relative delay calculating subunit 402 and/or a second average traffic ratio calculating subunit.
  • the uplink status of the user equipment may be related to the relative uplink delay of the uplink data packet waiting to be transmitted in the uplink buffer of the user equipment, and the relative uplink of each user equipment.
  • the line delay is obtained by dividing the actual line delay of the uplink data packet waiting to be transmitted in the uplink buffer of the user equipment by the uplink spectrum efficiency of the user equipment; the downlink condition may be associated with the access point device for each
  • the downlink downlink of the user equipment is related to the downlink delay of the downlink data packet to be transmitted, and the relative downlink delay of each user equipment is the downlink data packet waiting to be transmitted in the downlink buffer of each user equipment by the access point device.
  • the actual downlink delay is obtained by dividing the downlink spectrum efficiency of the user equipment.
  • the relative upstream delay can be calculated by the following formula (7):
  • the uplink spectrum efficiency may be an instantaneous uplink spectrum obtained by the access point device measuring the uplink channel sounding reference signal SRS.
  • Efficiency, and the downlink frequency efficiency may be the instantaneous downlink spectrum efficiency obtained by the CQI indicating the channel quality fed back by the user equipment.
  • the uplink spectrum efficiency may be an average uplink frequency efficiency obtained by performing arithmetic average or weighted average on the uplink channel sounding reference signal SRS measured by the access point device for a period of time
  • downlink The frequency efficiency may be an average downlink spectral efficiency obtained by arithmetically averaging or weighted averaging the channel quality indication CQI fed back by the user equipment over a period of time.
  • the weighting values used for the weighted average may be predetermined or determined experimentally.
  • the uplink spectrum efficiency may be an uplink network average obtained by the access point device according to the amount of service data received in a certain frequency width in the past period of time divided by the period of time and divided by the frequency width.
  • the resource efficiency, and the downlink frequency efficiency may be the downlink network average resource efficiency obtained by the access point device according to the amount of service data transmitted in a certain frequency width in the past period of time divided by the period of time and divided by the frequency width.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device may be obtained by comparing the relative uplink delay of the access point device with the relative downlink delay of the access point device.
  • the relative uplink delay of the access point device is obtained according to the sum of the relative uplink delays of the user equipment served by the access point device, and the relative downlink delay of the access point device is based on the access point. The sum of the relative downlink delays of the user equipments served by the equipment.
  • the relative delay calculation sub-unit 402 included in the service ratio calculation unit 102-b may each serve each of the access point devices in the set of accumulated access point devices.
  • the sum of the relative uplink delays of the uplink data packets waiting to be transmitted in the uplink buffer of the user equipment is used as the relative uplink delay of the access point device, and will be accumulated for each access point device in the set of access point devices.
  • the sum of the relative downlink delays of the downlink data packets waiting to be transmitted in the downlink buffer of the user equipment is used as the relative downlink delay of the access point device.
  • the service ratio calculation unit 102-b may obtain the access point by dividing the relative uplink delay of the access point device by the sum of the relative uplink delay of the access point device and the relative downlink delay of the access point device.
  • the first uplink service ratio of the device, or the access point device is obtained by dividing the relative downlink delay of the access point device by the sum of the relative uplink delay of the access point device and the relative downlink delay of the access point device. The proportion of the first downlink business.
  • the first uplink traffic ratio can be calculated by the following formula (9).
  • First uplink service ratio relative uplink of the access point device (relative uplink delay of the access point device + relative downlink delay of the access point device) (9)
  • the first downlink traffic ratio may Calculated by the following formula (10).
  • First downlink service ratio relative downlink delay of the access point device / (relative uplink delay of the access point device + relative downlink delay of the access point device) (10)
  • the access point device a in the cell 1 is obtained by accumulating the relative uplink delay of the uplink data packet waiting to be transmitted in the uplink buffer of each user equipment served by the access point device a in the cell 1.
  • the relative uplink delay may be, for example, 8
  • the access point device in the cell 1 is obtained by accumulating the relative downlink delay of the downlink data packet waiting to be transmitted in the downlink buffer of each user equipment by the access point device a in the cell 1
  • the relative downlink delay of a can be, for example, 11.
  • the relative uplink delay of the access point device b in the cell 2 is obtained by accumulating the relative uplink delay of the uplink data packet waiting to be transmitted in the uplink buffer of each user equipment served by the access point device b in the cell 2.
  • the delay may be, for example, 7.
  • the relative downlink delay of the downlink data packet waiting to be transmitted in the downlink buffer of each user equipment is obtained by accumulating the access point device b in the cell 2 to obtain the relative location of the access point device b in the cell 2.
  • the downlink delay can be, for example, 9.
  • the relative uplink delay of the uplink data packet waiting to be transmitted in the uplink buffer of each user equipment served by the access point device c in the cell 3 is obtained by obtaining the relative uplink time of the access point device c in the cell 3.
  • the delay may be, for example, 5, and the relative downlink delay of the downlink data packet waiting to be transmitted in the downlink buffer of each user equipment is obtained by accumulating the access point device c in the cell 3 to obtain the relative location of the access point device c in the cell 3.
  • the downlink delay can be, for example, four.
  • the foregoing manner of calculating the ratio of the first uplink service or the proportion of the first downlink service is only exemplary, and other manners may be used to calculate the ratio of the first uplink service or the proportion of the first downlink service.
  • the ratio of the relative uplink delay of the access point device to the relative downlink delay of the access point device may be directly used as the ratio of the first uplink service, or the relative downlink delay of the access point device may be directly compared with The ratio of the uplink delay is taken as the ratio of the first downlink service described above.
  • the first uplink traffic ratio of the access point device a in the cell 1 can be calculated as 8/11, and the first of the access point devices a in the cell 1 can be The proportion of downlink business is calculated as 11/8.
  • the second average traffic ratio calculation sub-unit 404 included in the service ratio calculation unit 102-b can obtain the access point device by accumulating the relative uplink delay of each access point device in the access point device set.
  • the relative uplink delay of the set is obtained by accumulating the relative downlink delay of each access point device in the set of access point devices to obtain a relative downlink delay of the set of access point devices.
  • the second average traffic ratio calculation sub-unit 404 can divide the relative uplink delay of the set of access point devices by the sum of the relative uplink delay of the set of access point devices and the relative downlink delay of the access point device.
  • the average uplink traffic ratio of the set of access point devices can be calculated by the following formula (11).
  • the average downlink traffic ratio of the set of access point devices can be calculated by the following formula (I 2 ).
  • the first uplink traffic ratio of the access point device a in the cell 1 may be 8/(8+11) or the first downlink traffic ratio is 11/(8). +11), the first uplink service ratio 7/(7+9) of the access point device b in the cell 2 or the first downlink traffic ratio 9/(7+9), the access point device c in the cell 3
  • the ratio of the first uplink service is 5/(5+4) or the ratio of the first downlink service is 4/(5+4)
  • FIG. Fig. 5 is a block diagram showing a configuration of still another example of a traffic ratio calculating unit in the apparatus according to an embodiment of the present invention.
  • the traffic ratio calculating unit 102-c in the apparatus according to an embodiment of the present invention may include a weighting amount calculating subunit 502 and/or a third average traffic ratio calculating subunit 504.
  • the uplink status of the user equipment may be related to the relative uplink weight of the user equipment and the relative uplink weight of the uplink delay of the uplink data packet waiting to be transmitted in the uplink buffer of the user equipment, where the user
  • the relative uplink traffic of the device is obtained by dividing the actual traffic volume of the user equipment by the uplink spectrum efficiency of the user equipment, and the relative uplink delay of the user equipment is waiting for transmission in the uplink buffer of the user equipment.
  • the actual line delay of the uplink data packet is obtained by dividing the uplink spectrum efficiency of the user equipment; the downlink condition may be waiting for transmission with the downlink traffic of the user equipment and the downlink buffer of the access point equipment for the user equipment.
  • the relative downlink traffic of the downlink data packet is related to the downlink weighting of the user equipment.
  • the relative downlink traffic of the user equipment is obtained by dividing the actual downlink traffic of the user equipment by the downlink spectrum efficiency of the user equipment.
  • the delay is by using the access point device for the downlink buffer of the user device.
  • the actual downlink delay of the downlink data packet to be transmitted is obtained by dividing the downlink spectrum efficiency of the user equipment.
  • the relative up-weighted sum can be calculated by the following formula (13).
  • Relative uplink weighting amount relative uplink traffic amount X weighting coefficient a + relative uplink delay X weighting coefficient b ( 13 )
  • the relative uplink traffic can be calculated by the above formula (1), and the relative uplink delay can be calculated by the above formula (7).
  • the weighting coefficient a + weighting coefficient b l. It will be understood by those skilled in the art that the upper weight coefficient a and the weighting coefficient b may be predetermined or may be determined according to experiments.
  • the relative downlink weighted sum can be calculated by the following formula (14).
  • Relative downlink weighted sum relative downlink traffic X weighting coefficient a + relative downlink delay X weighting coefficient b ( 14 )
  • the relative downlink traffic can be calculated by the above formula (2), and the relative downlink delay can be calculated by the above formula (8).
  • the weighting coefficient a + weighting coefficient b l.
  • the weighting factor a and the weighting factor b may be predetermined or may be determined experimentally.
  • the weighting amount calculation sub-unit 502 included in the service ratio calculation unit 102-c may increase the relative uplink weight amount of each user equipment served by each of the access point devices in the set of accumulated access point devices.
  • the obtained sum is used as the relative uplink weighting amount of the access point device, and the sum obtained by accumulating the relative downlink weighting amount of each user equipment served by each access point device in the access point device set is used as the access point.
  • the relative downstream weighting of the device obtained.
  • the service ratio calculating unit 102-c obtains the access point device by dividing the relative uplink weighting amount of the access point device by the sum of the relative uplink weighting amount of the access point device and the relative downlink weighting amount of the access point device.
  • the first uplink traffic ratio or by dividing the relative downlink weighting amount of the access point device by the sum of the relative uplink weighting amount of the access point device and the relative downlink weighting amount of the access point device to obtain the access point device The proportion of the first downlink business.
  • the first uplink traffic ratio can be calculated by the following formula (15).
  • First uplink service ratio relative uplink weighting of the access point device / (relative uplink weighting of the access point device + relative downlink weighting of the access point device) (15)
  • the first downlink traffic ratio can be calculated by the following formula (16).
  • First downlink service ratio relative downlink weighting of the access point device / (relative uplink weighting of the access point device + relative downlink weighting of the access point device) (16)
  • the access point can be calculated using the above formula (13).
  • the relative downlink traffic of the access point device a in the cell 1 10
  • the relative downlink delay of the access point device a in the cell 1 is 11
  • the weighting coefficient a is 0.4
  • the weighting coefficient b is 0.6.
  • the relative uplink traffic of the access point device b in the cell 2 is 9, the relative uplink delay of the access point device b in the cell 2 is 7, and the weighting coefficient a is 0.4.
  • the relative downlink traffic of the access point device b in the cell 2 9
  • the relative downlink delay of the access point device b in the cell 2 is 9
  • the weighting coefficient a is 0.4
  • the weighting coefficient b is 0.6.
  • the relative uplink traffic of the access point device c in the cell 3 is 1, the relative uplink delay of the access point device c in the cell 3 is 5, and the weighting coefficient a is 0.4.
  • the relative downlink traffic of the access point device c in the cell 3 4
  • the relative downlink delay of the access point device c in the cell 3 is 4
  • the weighting coefficient a is 0.4
  • the weighting coefficient b is 0.6.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device is obtained by comparing the relative uplink weighting amount of the access point device with the relative downlink weighting amount of the access point device.
  • the relative uplink weighting amount of the access point device is based on the access point device.
  • the relative downlink weighting amount of the access point device is obtained according to the sum of the relative downlink weighting amounts of the user equipment served by the access point device, obtained by the sum of the relative uplink weighting amounts of the served user equipments.
  • the third average traffic ratio calculating sub-unit 504 included in the service ratio calculating unit 102-c can obtain the access point device by accumulating the relative uplink weighting amount of each access point device in the access point device set.
  • the relative uplink weighting amount of the set, the relative downlink weighting amount of the access point device set is obtained by accumulating the relative downlink weighting amount of each access point device in the access point device set.
  • the third average traffic ratio calculation sub-unit 504 may divide the relative uplink weighting amount of the access point device set by the relative uplink weighting amount of the access point device set and the relative downlink weighting amount of the access point device set.
  • the average uplink traffic ratio of the set of access point devices can be calculated by the following formula (17).
  • the average downlink traffic ratio of the set of access point devices can be calculated by Equation (18) below.
  • the first uplink traffic ratio of the access point device a in the cell 1 may be 8.4/(8.4+10.6) or the first downlink traffic ratio 10.6/
  • the first uplink service ratio of the access point device b in the cell 2 is 7.8/(7.8+9) or the first downlink traffic ratio is 9/(7.8+9)
  • the access point in the cell 3 The ratio of the first uplink service of the device c is 3.4/(3.4+4) or the ratio of the first downlink service is 4/(3.4+4)
  • the initial subframe configuration determining unit 104 in the apparatus 100 may determine an average uplink traffic ratio or an average downlink traffic ratio with the access point device set according to an average uplink traffic ratio or an average downlink traffic ratio of the access point device set.
  • the adapted subframe configuration is the initial subframe configuration of each access point device in the set of access point devices.
  • the Universal Mobile Telecommunications System (UMTS) Long Term Evolution (LTE) using time division duplexing mode can provide seven different asymmetric uplink and downlink allocation time division duplex subframe configurations, as shown in Table 1 below.
  • Table 1 shows the different subframe configurations specified in the TDD-LTE standard.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • each of the downlink subframe D, the uplink subframe U, and the special subframe S has 14 OFDM symbols.
  • each of the downlink subframe 0 the uplink subframe U, and the special subframe S has 12 OFDM symbols.
  • each seed frame configuration in subframe configuration #0 to subframe configuration #6 has a certain number of downlink subframes D, uplink subframes U, and special subframes S.
  • subframe configuration #6 includes three downlink subframes, five uplink subframes U, and two special subframes S.
  • Table 2 shows the different configurations of the special subframe S.
  • the special subframe S has nine different configurations; in the case of extending the cyclic prefix, the special subframe S has a different configuration of seven.
  • DwPTS indicates a downlink pilot time slot for downlink transmission
  • UpPTS indicates an uplink pilot time slot for uplink transmission
  • GP indicates a guard interval, which is generally blank.
  • Table 2 shows the number of OFDM symbols each occupied by the DwPTS, GP, and UpPTS in the special subframe S in each configuration.
  • the configuration of the special subframe is configured by the network high layer signaling.
  • the uplink resource ratio or the downlink resource ratio corresponding to each seed frame configuration in the 7-seed frame configuration shown in Table 1 can be calculated.
  • the subframe configuration #6 includes three downlink subframes D, five uplink subframes U, and two special subframes S. Assume that the downlink subframe D, the uplink subframe U, and the special subframe S all adopt a regular cyclic prefix, then the three downlink subframes D occupy (3 ⁇ 14) OFDM symbols, and the five uplink subframes U occupy (5 ⁇ 14). OFDM symbols.
  • the special subframe S adopts the configuration #8 shown in Table 2, and the DwPTS in each special subframe S occupies 11 OFDM symbols, and each special subframe S
  • the UpPTS occupies 2 OFDM symbols, so the number of OFDM symbols used for downlink transmission in the 2 special subframes S is (2 x 11), and the number of OFDM symbols used for uplink transmission in the 2 special subframes S is ( 2 x 2 ). Therefore, in the subframe configuration #6 shown in Table 1, the number of OFDM symbols used for downlink transmission is (3 x 14 + 2 x 11), and the number of OFDM symbols used for uplink transmission is (5 x 14) +2 x 2 ).
  • the subframe shown in Table 1 can be calculated by dividing the number of OFDM symbols used for uplink transmission by the sum of the number of OFDM symbols used for downlink transmission and the number of OFDM symbols used for uplink transmission.
  • Configure the ratio of uplink resources corresponding to #6: (5 X 14+2 x 2 )/( 3 x 14+2 X 11+5 X 14+2 x 2 ) 0.536.
  • the above manner of calculating the ratio of the downlink resources or the proportion of the uplink resources is merely exemplary.
  • Other methods can also be used to calculate the proportion of downlink resources or the proportion of uplink resources.
  • the number of OFDM symbols used for downlink transmission may be divided by the number of OFDM symbols used for uplink transmission, and the ratio of downlink resources corresponding to subframe configuration #6 shown in Table 1 may be calculated: (3 x 14+ 2 X 11 ) / ( 5 x 14+2 ⁇ 2 ) « 0.865;
  • the number of OFDM symbols used for uplink transmission can be divided by the number of OFDM symbols used for downlink transmission, and calculated in Table 1.
  • the subframe configuration is determined to be a subframe configuration adapted to the average uplink traffic ratio, and the determined subframe configuration adapted to the average uplink traffic ratio is used as the initial subframe of each access point device in the access point device set. Configuration.
  • the average uplink service ratio of the access point device set calculated by the service ratio calculation unit 102-a shown in FIG. 3 is 0.452
  • the uplink resource ratio closest to the average uplink service ratio of 0.452 is the subframe configuration.
  • the ratio of uplink resources of #6 is 0.536. Therefore, the subframe configuration #6 is determined to be a subframe configuration compatible with the average uplink traffic ratio of 0.452, and the subframe configuration #6 is configured as an initial subframe configuration of each access point device in the access point device set.
  • the service ratio calculation unit 102-b shown in FIG. 4 or the service ratio calculation unit 102-c shown in FIG. 5 is used to calculate the average uplink service ratio of the access point device set, The value of the obtained average uplink traffic ratio changes accordingly, but the principle of determining the initial subframe configuration is the same, and details thereof are not described herein again.
  • the average downlink service ratio of the access point device set calculated by the foregoing service ratio calculation unit may be compared with the downlink resource ratio of various subframe configurations, and The subframe configuration corresponding to the downlink resource ratio closest to the average downlink traffic ratio is determined as a subframe configuration that is adapted to the average downlink traffic ratio, and the determined subframe configuration adapted to the average downlink traffic ratio is used as the access.
  • the average downlink traffic ratio of the access point device set calculated by the service ratio calculation unit 102-a shown in FIG. 3 is 0.548
  • the downlink resource ratio closest to the average downlink traffic ratio 0.548 is the subframe configuration.
  • the downlink resource ratio of #6 is 0.464. Therefore, the subframe configuration #6 is determined to be a subframe configuration compatible with the average downlink traffic ratio 0.548, and the subframe configuration #6 is configured as the initial subframe configuration of each access point device in the access point device set.
  • the service ratio calculation unit 102-b shown in FIG. 4 or the service ratio calculation unit 102-c shown in FIG. 5 is used to calculate the average downlink service ratio of the access point device set, The value of the obtained average downlink traffic ratio changes accordingly, but the principle of determining the initial subframe configuration is the same, and details thereof are not described herein again.
  • FIG. Fig. 6 is a block diagram showing another configuration of an apparatus in a wireless communication system according to an embodiment of the present invention.
  • the apparatus 600 in the wireless communication system includes a traffic ratio calculating unit 602, an initial subframe configuration determining unit 604, a traffic ratio determining unit 606, and a subframe configuration adjusting unit 608.
  • the configurations of the service ratio calculation unit 602 and the initial subframe configuration determination unit 604 are the same as those of the service ratio calculation unit 102 and the initial subframe configuration determination unit 104 in the apparatus 100 shown in FIG. 1, respectively, and thus the specific details thereof are I will not comment here.
  • the traffic ratio determining unit 606 and the subframe configuration adjusting unit 608 are described in detail.
  • the service ratio determining unit 606 can determine a second uplink traffic ratio or a second downlink traffic ratio corresponding to the initial subframe configuration.
  • the uplink resource ratio or the downlink resource of one of the determined 7 seed frame configurations may be configured.
  • the ratio is used as a second uplink service ratio or a second downlink traffic ratio corresponding to the initial subframe configuration.
  • the uplink resource ratio of the subframe configuration #6 (for example, 0.536) or the downlink resource ratio (for example, 0.464) may be configured as the initial subframe configuration.
  • the subframe configuration adjustment unit 608 is configured according to the difference between the first uplink traffic ratio and the second uplink traffic ratio, or the difference between the first downlink traffic ratio and the second downlink traffic ratio.
  • the subframe configuration of each access point device in the set of access point devices is adjusted based on the frame configuration.
  • the first uplink service ratio or the first downlink traffic ratio of each access point device in the access point device set can be calculated by using the service ratio calculation unit 102 or 602.
  • the service ratio determining unit 606 may determine the second uplink service ratio or the second downlink service ratio corresponding to the initial subframe configuration.
  • the first uplink service ratio may be compared with the second uplink service ratio, and according to the difference between the first uplink service ratio and the second uplink service ratio, the adjustment in the access point device set is adjusted based on the initial subframe configuration.
  • the subframe configuration of each access point device determines whether to maintain the initial subframe configuration of the access point device or to determine a new subframe configuration for the access point device.
  • the ingress device determines a new subframe configuration to accommodate the uplink and downlink conditions of the access point device.
  • the first downlink service ratio may be compared with the second downlink service ratio, and the access is adjusted based on the initial subframe configuration according to the difference between the first downlink service ratio and the second downlink service ratio.
  • a subframe configuration of each access point device in the set of point devices to determine whether to maintain the initial subframe configuration of the access point device or to determine a new subframe configuration for the access point device. For example, if the difference between the first downlink traffic ratio and the second downlink traffic ratio is small, it indicates that the initial subframe configuration can better adapt to the uplink and downlink conditions of the access point device, so the connection can be maintained.
  • the initial subframe configuration of the in-point device does not change.
  • the ingress device determines a new subframe configuration to accommodate the uplink and downlink conditions of the access point device.
  • FIG. Fig. 7 is a block diagram showing an exemplary configuration of a subframe configuration adjusting unit according to an embodiment of the present invention.
  • the subframe configuration adjustment unit 608 includes a difference calculation sub-unit 702 and a subframe configuration adjustment sub-unit 704.
  • the difference calculation sub-unit 702 may calculate an uplink service ratio difference between the first uplink service ratio and the second uplink service ratio, or a downlink service ratio difference between the first downlink service ratio and the second downlink service ratio.
  • the difference calculation unit 702 may subtract the second upper service ratio from the second upper service ratio to calculate an uplink traffic ratio difference or an absolute value between the two.
  • the difference calculation sub-unit 702 may also subtract the second downlink traffic ratio from the first downlink traffic ratio to calculate a downlink traffic proportional difference or an absolute value between the two.
  • the first downlink traffic ratio of the access point device a in the cell 1 is calculated to be 0.526 by using the traffic ratio calculating unit 102-a shown in FIG.
  • the first downlink traffic ratio of the access point device b is 0.5
  • the first downlink traffic ratio of the access point device c in the cell 3 is 0.8.
  • the downlink resource ratio 0.464 of the subframe configuration #6 may be used as the second downlink service corresponding to the initial subframe configuration. The ratio is 0.464.
  • the subframe configuration adjustment sub-unit 704 may be configured to: according to a first comparison result of the uplink service ratio difference value and the preset first difference threshold value, or a second comparison result of the downlink service ratio difference value and the preset second difference threshold value, The subframe configuration of each access point device in the set of access point devices is adjusted based on the initial subframe configuration.
  • the subframe configuration adjustment sub-unit 704 may compare the uplink traffic proportional difference value or its absolute value with a preset first difference threshold to obtain a first comparison result, and according to the first comparison result, in the initial subframe. Adjusting the subframe configuration of each access point device in the access point device set to determine whether to maintain the initial subframe configuration of the access point device or determine a new subframe for the access point device. Configuration. For example, if the value of the first comparison result is small, it indicates that the initial subframe configuration can better adapt to the uplink and downlink conditions of the access point device, so that the initial subframe configuration of the access point device can be maintained. .
  • the value of the first comparison result is large, it indicates that the initial subframe configuration fails to be compatible with the uplink and downlink conditions of the access point device, and therefore a new subframe needs to be determined for the access point device. Configured to accommodate the uplink and downlink conditions of the access point device.
  • the subframe configuration adjustment subunit 704 can change the downlink traffic ratio difference or its absolute value. Comparing with a preset second difference threshold to obtain a second comparison result, and adjusting, according to the second comparison result, a subframe configuration of each access point device in the access point device set based on the initial subframe configuration To determine whether to maintain the initial subframe configuration of the access point device or to determine a new subframe configuration for the access point device. For example, if the value of the second comparison result is small, it indicates that the initial subframe configuration can be well adapted to the uplink and downlink conditions of the access point device, so that the initial subframe configuration of the access point device can be maintained. .
  • the value of the second comparison result is larger, it indicates that the initial subframe configuration fails to adapt to the uplink and downlink conditions of the access point device, and therefore, it is required to determine a new subframe for the access point device. Configured to accommodate the uplink and downlink conditions of the access point device.
  • the subframe configuration adjustment sub-unit 704 can determine the initial subframe configuration for the access point device.
  • the subframe configuration adjustment sub-unit 704 can determine a new for the access point device based on the initial subframe configuration.
  • Subframe configuration For example, the subframe configuration adjustment sub-unit 704 can determine a new subframe configuration for the access point device based on the uplink and downlink conditions of the access point device based on the initial subframe configuration.
  • the determined new subframe configuration may be obtained by adding or reducing one or two uplink subframes or downlink subframes on the basis of the initial subframe configuration, and the other subframes are kept as constant as possible to reduce Subframe interlace interference between access point devices.
  • the subframe configuration adjustment sub-unit 704 may add one or two uplink subframes on the basis of the initial subframe configuration; or In a case where the service ratio difference is greater than the preset second difference threshold, the subframe configuration adjustment sub-unit 704 may add one or two downlink subframes based on the initial subframe configuration.
  • the subframe configuration adjustment sub-unit 704 may reduce one or two uplink subframes on the basis of the initial subframe configuration; or In the case that the downlink traffic ratio difference is less than the inverse of the preset second difference threshold, the subframe configuration adjustment sub-unit 704 may reduce one on the basis of the initial subframe configuration. Or two downlink subframes.
  • Table 3 shows an example of determining a new subframe configuration for an access point device.
  • the first column in Table 3 is the initial subframe configuration determined for each access point device in the set of access point devices.
  • the second column in Table 3 is an optional new subframe configuration for subframe configuration adjustments for access point devices that are overloaded by the uplink condition.
  • the third column of Table 3 is an optional new subframe configuration for subframe configuration adjustments for access point devices with downlink condition overload.
  • Subframe configurations #0 to #6 in Table 3 can be configured with #0 to #6 for the subframes listed in Table 1 above.
  • the first difference threshold and the second difference threshold are values in the range of 0.25-0.35.
  • the first difference threshold value represents a threshold value of a difference between a current first uplink traffic ratio of the access point device and a second uplink traffic corresponding to the initial subframe configuration. If the difference between the first uplink service ratio and the second uplink service exceeds the first difference threshold, it is required to determine a new subframe configuration for the access point device, for example, may increase or decrease based on the initial subframe configuration. One or two uplink subframes. Therefore, the determined new subframe configuration will increase or decrease the uplink resources by 10%-20% over the initial subframe configuration.
  • the determined first difference threshold needs to be greater than 0.2 to reflect the tradeoff between service adaptation and reducing access point device interference.
  • the first difference threshold can be determined to be a value in the range of 0.25-0.35.
  • the second difference threshold indicates a threshold value of a difference between a current first downlink traffic ratio of the access point device and a second downlink traffic corresponding to the initial subframe configuration. If the difference between the first downlink service ratio and the second downlink service exceeds the second difference threshold, A new subframe configuration is determined for the access point device, for example, one or two downlink subframes may be added or subtracted based on the initial subframe configuration. Therefore, the determined new subframe configuration will increase or decrease the downlink resources by 10%-20% compared to the initial subframe configuration. Taking the increase or decrease of up to 20% of downlink resources as an example, the determined first difference threshold needs to be greater than 0.2 to reflect the tradeoff between service adaptation and reducing access point device interference. Based on the above considerations, the second difference threshold can be determined to be a value in the range of 0.25-0.35.
  • the difference between the downlink service ratio of the access point device a in the cell 1 and the access point device b in the cell 2 is not much different from the downlink resource ratio corresponding to the initial subframe configuration #6, so the access in the cell 1 is Point device a and access point device b in cell 2 continue to adopt initial subframe configuration #6.
  • the difference between the first downlink traffic ratio of the access point device c in the cell 3 and the second downlink traffic ratio is greater than the second difference threshold 0.25.
  • the difference between the downlink service ratio of the access point device c in the cell 3 and the downlink resource ratio corresponding to the initial subframe configuration #6 is large, so the subframe configuration of the access point device in the cell 3 is adjusted. Increase the proportion of its downlink subframes.
  • a new subframe configuration #1 can be determined from the 7 seed frame configuration of TDD-LTE according to Table 3 above. It should be understood by those skilled in the art that the above specific numerical values are merely illustrative, and other numerical values may be employed depending on the specific circumstances.
  • the adjustment of the subframe configuration may be performed according to the first uplink traffic ratio and the second uplink traffic ratio, and specific examples thereof are not described herein again.
  • FIG. 8 is a flow chart showing a method for use in a wireless communication system according to an embodiment of the present invention.
  • step 800 the method begins in step 800. After step 800, the method proceeds to step 802.
  • step 802 an average uplink service ratio or an average downlink service ratio of the access point device set is calculated according to a first uplink service ratio or a first downlink service ratio of each access point device in the access point device set.
  • step 802 the method proceeds to step 804.
  • step 804 determining, according to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set, a subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set as the access point device set.
  • the initial subframe configuration of each access point device is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set as the access point device set.
  • Fig. 8 The method shown in Fig. 8 is a method corresponding to the apparatus described in Fig. 1, and the specific details thereof will not be described again.
  • FIG. Figure 9 is a block diagram showing the configuration of an apparatus in a wireless communication system according to another embodiment of the present invention.
  • the apparatus 900 may include a service ratio calculation unit.
  • the service ratio calculation unit 902 can calculate the first uplink service ratio or the first downlink service ratio of the access point device according to the uplink status and the downlink status of the user equipment served by the access point device.
  • the access point device can calculate its first uplink service ratio or the first downlink service ratio in various ways.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device may be obtained by comparing the uplink status of the user equipment served by the access point device with the downlink status.
  • the uplink status of some access point devices may be greater than the downlink status, and some may be connected.
  • the uplink condition of the ingress device may be less than the downlink condition, or the condition of the uplink of some access point devices may be substantially the same as the downlink condition.
  • the relative relationship between the uplink condition and the downlink condition of each access point device can be represented by the relative ratio between the uplink condition and the downlink condition of each access point device.
  • a ratio of an uplink condition of the access point device to a sum of an uplink condition and a downlink condition may be calculated as a first uplink traffic ratio of the access point device, or The ratio of the downlink condition of the access point device to the sum of the uplink condition and the downlink condition may be calculated as the first downlink traffic ratio of the access point device.
  • the ratio of the uplink status of all the access point devices in the set of access point devices to the sum of the uplink and the downlink of all access point devices can be calculated as the connection
  • the average uplink traffic ratio of the set of ingress devices or may be calculated by calculating the downlink status of all access point devices in the set of access point devices relative to the uplink of all access point devices in the set of access point devices
  • the ratio of the sum of the road and the downlink is the average downlink traffic ratio of the set of access point devices.
  • the manner of calculating the first uplink service ratio, the first downlink service ratio, the average uplink service ratio, or the average downlink service ratio is merely exemplary, and other methods may be used to calculate the foregoing first manner.
  • the proportion of uplink services, the proportion of the first downlink services, the proportion of average uplink services, or the proportion of average downlink services is merely exemplary, and other methods may be used to calculate the foregoing first manner.
  • the ratio of the uplink status of the access point device to the downlink status may be directly used as the ratio of the first uplink service, or the ratio of the downlink status of the access point device to the uplink status may be directly As the ratio of the first downlink service, the ratio of the uplink status and the downlink status of all the access point devices in the access point device set may be directly used as the average uplink service ratio, or may be directly connected.
  • the ratio of the downlink condition to the uplink condition of all access point devices in the set of ingress devices is taken as the above average downlink traffic ratio, and so on.
  • the communication unit 904 may send the first uplink service ratio or the first downlink service of the access point device. proportion.
  • the first uplink service ratio or the first downlink service ratio of the access point device is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set where the access point device is located, thereby determining the access point with the access point device.
  • the initial subframe configuration of the device set or the average downlink traffic ratio is adapted to the initial subframe configuration.
  • the foregoing describes in detail how to calculate the average uplink service ratio or the average downlink service ratio of the access point device according to the first uplink service ratio or the first downlink traffic ratio of each access point device in the access point device set. And determining an initial subframe configuration that is adapted to an average uplink traffic ratio or an average downlink traffic ratio of the access point device set according to an average uplink traffic ratio or an average downlink traffic ratio of the access point device set, where specific details are This will not be repeated here.
  • the communication unit 904 is further configured to receive subframe configuration information of the access point device, where the subframe configuration information is based on a second uplink service ratio or a second downlink traffic ratio corresponding to the initial subframe configuration, and the access point.
  • the ratio of the first uplink service ratio of the device or the ratio of the second downlink service More obtained.
  • the communication unit 904 is further configured to send the subframe configuration to the user equipment served by the access point device, where the subframe configuration is adapted to the first uplink service ratio or the first downlink service ratio of the access point device.
  • the subframe configuration that is adapted to the first uplink traffic ratio or the first downlink traffic ratio of the access point device has been described in detail above, and details thereof will not be described herein.
  • FIG. Fig. 6 is a block diagram showing a configuration of an apparatus in a wireless communication system according to another embodiment of the present invention.
  • the device 1000 in the wireless communication system includes a traffic ratio calculating unit 1002, a communication unit 1004, a traffic ratio determining unit 1006, and a subframe configuration adjusting unit 1008.
  • the configurations of the service ratio calculating unit 1002 and the communication unit 1004 are respectively the same as those of the traffic ratio calculating unit 902 and the communication unit 904 in the device 900 shown in Fig. 9, and thus the specific details thereof will not be described here.
  • the traffic ratio determining unit 1006 and the subframe configuration adjusting unit 1008 will be described in detail.
  • the service ratio determining unit 1006 may determine a second uplink traffic ratio or a second downlink traffic ratio corresponding to the initial subframe configuration.
  • the uplink resource ratio or the downlink resource of one of the determined 7 seed frame configurations may be configured.
  • the ratio is used as a second uplink service ratio or a second downlink traffic ratio corresponding to the initial subframe configuration.
  • the uplink resource ratio of the subframe configuration #6 (for example, 0.536) or the downlink resource ratio (for example, 0.464) may be configured as the initial subframe configuration.
  • the subframe configuration adjustment unit 1008 is based on the difference between the first uplink traffic ratio and the second uplink traffic ratio, or the difference between the first downlink traffic ratio and the second downlink traffic ratio.
  • the subframe configuration of each access point device in the set of access point devices is adjusted based on the frame configuration.
  • the first uplink service ratio or the first downlink traffic ratio of each access point device in the access point device set may be calculated by using the foregoing service ratio calculation unit 102 or 602.
  • the service ratio determining unit 606 may determine the second uplink service ratio or the second downlink service ratio corresponding to the initial subframe configuration.
  • the first uplink service ratio may be compared with the second uplink service ratio, and according to the difference between the first uplink service ratio and the second uplink service ratio, the adjustment in the access point device set is adjusted based on the initial subframe configuration.
  • the subframe configuration of each access point device determines whether to maintain the initial subframe configuration of the access point device or to determine a new subframe configuration for the access point device. For example, if the difference between the first uplink service ratio and the second uplink traffic ratio is small, it indicates that the initial subframe configuration can better adapt to the uplink and downlink conditions of the access point device, and thus the access can be maintained.
  • the initial subframe configuration of the point device does not change.
  • the ingress device determines a new subframe configuration to accommodate the uplink and downlink conditions of the access point device.
  • the first downlink service ratio may be compared with the second downlink service ratio, and the access is adjusted based on the initial subframe configuration according to the difference between the first downlink service ratio and the second downlink service ratio.
  • a subframe configuration of each access point device in the set of point devices to determine whether to maintain the initial subframe configuration of the access point device or to determine a new subframe configuration for the access point device. For example, if the difference between the first downlink traffic ratio and the second downlink traffic ratio is small, it indicates that the initial subframe configuration can better adapt to the uplink and downlink conditions of the access point device, so the connection can be maintained.
  • the initial subframe configuration of the in-point device does not change.
  • the ingress device determines a new subframe configuration to accommodate the uplink and downlink conditions of the access point device.
  • FIG. Figure 11 is a flow chart showing a method for use in a wireless communication system in accordance with another embodiment of the present invention.
  • step 1100 the method begins in step 1100. After step 1100, the method proceeds to step 1102.
  • a first uplink traffic ratio or a first downlink traffic ratio of the access point device is calculated according to an uplink status and a downlink status of the user equipment served by the access point device.
  • step 1104 the first uplink service ratio or the first downlink service ratio of the access point device is sent, where the first uplink service ratio or the first downlink service ratio of the access point device is used to calculate the access point.
  • Fig. 11 The method shown in Fig. 11 is a method corresponding to the apparatus described in Fig. 9, and specific details thereof will not be described again.
  • FIG. Figure 12 is a block diagram showing the configuration of an apparatus in a wireless communication system according to another embodiment of the present invention.
  • the apparatus 1200 includes a communication unit 1202 and a configuration unit 1204.
  • the communication unit 1202 can receive a subframe configuration from an access point device serving the user equipment, wherein the subframe configuration is adapted to the first uplink traffic ratio or the first downlink traffic ratio of the access point device.
  • the access point device can calculate its first uplink service ratio or the first downlink service ratio in various ways.
  • the first uplink traffic ratio or the first downlink traffic ratio of the access point device may be obtained by comparing the uplink status of the user equipment served by the access point device with the downlink status.
  • the configuration unit 1204 can configure the user equipment according to the received subframe configuration, where the first uplink service ratio or the first downlink service ratio of the access point device is used to calculate the location of the access point device.
  • the average uplink traffic ratio or the average downlink traffic ratio of the access point device set thereby determining an initial subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set.
  • configuration unit 1204 can configure the reconfiguration period based on the received subframe configuration and apply the received subframe configuration in accordance with a predefined reconfiguration time.
  • the foregoing describes in detail how to calculate the average uplink service ratio or the average downlink service ratio of the access point device according to the first uplink service ratio or the first downlink traffic ratio of each access point device in the access point device set. And determining how to average the set of devices with the access point based on the average uplink traffic ratio or the average downlink traffic ratio of the access point device set.
  • the initial subframe configuration in which the traffic ratio or the average downlink traffic ratio is adapted is not described herein.
  • the communication unit 1202 may further send, to the access point device serving the user equipment, the amount of service data to be transmitted in the uplink buffer of the user equipment and/or the actual uplink data packet waiting to be transmitted in the uplink buffer of the user equipment.
  • Uplink delay For example, the communication unit 1202 may send the amount of service data to be transmitted in the uplink buffer of the user equipment and/or the uplink data waiting to be transmitted in the uplink buffer of the user equipment to the access point device serving the user equipment in a corresponding period. The actual delay of the package.
  • FIG. Figure 13 is a flow chart showing a method for use in a wireless communication system in accordance with another embodiment of the present invention.
  • step 1300 the method begins in step 1300. After step 1300, the method proceeds to step 1302.
  • a subframe configuration is received from an access point device that serves the user equipment, where the subframe configuration is adapted to a first uplink traffic ratio or a first downlink traffic ratio of the access point device.
  • step 1302 the method proceeds to step 1304.
  • the user equipment is configured according to the received subframe configuration, where the first uplink service ratio or the first downlink service ratio of the access point device is used to calculate the location of the access point device.
  • the average uplink traffic ratio or the average downlink traffic ratio of the access point device set thereby determining an initial subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set.
  • Fig. 13 The method shown in Fig. 13 is a method corresponding to the apparatus described in Fig. 12, and specific details thereof will not be described again.
  • the application can be embodied as an apparatus, method, or computer program product. Accordingly, the present application can be embodied in the form of complete hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of software and hardware components. In addition, the present application can take the form of a computing product embodied in any tangible expression medium containing computer-available program code.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium, such as, but not limited to, electrical, magnetic, optical, electromagnetic, infrared, or semiconductor. system, A device, device or propagation shield, or any suitable combination of the foregoing. More specific examples (non-exhaustive lists) of computer readable storage media include: electrical connections having one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read only memory (ROM), Erasable programmable read only memory (EPROM or flash), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer program code for performing the operations of the present application can be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++, and the like. Also included are conventional procedural programming languages such as the "C" programming language or similar programming languages.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer, partly on a remote computer, or entirely on a remote computer or server. carried out.
  • the remote computer can be connected to the user's computer via any kind of network, including a local area network (LAN) or wide area network (WAN), or can be connected to the outside (eg, via an Internet using an Internet service provider) computer.
  • LAN local area network
  • WAN wide area network
  • Internet service provider an Internet service provider
  • a computer storage medium including computer readable instructions for causing a computer to execute: a first uplink service according to respective access point devices in a set of access point devices is disclosed Calculating the average uplink service ratio or the average downlink service ratio of the access point device set according to the ratio or the first downlink service ratio; and determining the set of the access point device according to the average uplink service ratio or the average downlink service ratio of the access point device set
  • the subframe configuration in which the average uplink traffic ratio or the average downlink traffic ratio is adapted is configured as the initial subframe configuration of each access point device in the access point device set.
  • a computer storage medium including computer readable instructions for causing a computer to perform: a service ratio calculation step, based on an uplink condition of a user equipment served by an access point device, is disclosed Calculating a first uplink service ratio or a first downlink service ratio of the access point device, and a communication step of transmitting a first uplink service ratio or a first downlink service ratio of the access point device, where The first uplink service ratio or the first downlink service ratio of the access point device is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set where the access point device is located, thereby determining The initial uplink traffic ratio of the set of access point devices or the initial subframe configuration in which the average downlink traffic ratio is adapted.
  • a computer storage medium including computer readable instructions for causing a computer to perform: a communication step of receiving a subframe configuration from an access point device serving a user equipment, The subframe configuration is adapted to the first uplink traffic ratio or the first downlink traffic ratio of the access point device; and a configuration step of configuring the user equipment according to the received subframe configuration, where the access
  • the first uplink service ratio or the first downlink service ratio of the point device is used to calculate an average uplink service ratio or an average downlink service ratio of the access point device set where the access point device is located, thereby determining the device with the access point
  • the initial subframe ratio of the set or the average downlink traffic ratio is adapted to the initial subframe configuration.
  • an apparatus in a wireless communication system includes a memory and a processor, wherein the memory stores computer instructions, and the processor is configured to execute the computer instruction stored in the memory Calculating an average uplink service ratio or an average downlink service ratio of the access point device set according to the first uplink service ratio or the first downlink service ratio of each access point device in the access point device set; and according to the access point device
  • the aggregated uplink service ratio or the average downlink traffic ratio of the set determines the subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set as the initial sub-interface of each access point device in the access point device set. Frame configuration.
  • an apparatus in a wireless communication system includes a memory and a processor, wherein the memory stores computer instructions, and the processor is configured to execute the computer instruction stored in the memory And including: a service ratio calculation step, calculating a first uplink service ratio or a first downlink service ratio of the access point device according to an uplink status and a downlink status of the user equipment served by the access point device; and The step of transmitting the first uplink service ratio or the first downlink service ratio of the access point device, where the first uplink service ratio or the first downlink service ratio of the access point device is used to calculate the access point The average uplink service ratio or the average downlink service ratio of the set of access point devices where the device is located, thereby determining an initial subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set.
  • an apparatus in a wireless communication system includes a memory and a processor, wherein the memory stores computer instructions, and the processor is configured to execute the computer instruction stored in the memory
  • the method includes: a communication step of receiving a subframe configuration from an access point device serving the user equipment, where the subframe configuration is compatible with a first uplink service ratio or a first downlink service ratio of the access point device;
  • the configuration step is configured to configure the user equipment according to the received subframe configuration, where the first uplink service ratio or the first downlink service ratio of the access point device is used to calculate the connection of the access point device.
  • the average uplink service ratio or the average downlink traffic ratio is determined to determine an initial subframe configuration that is adapted to the average uplink traffic ratio or the average downlink traffic ratio of the access point device set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种无线通信系统中的装置和方法。该装置包括:业务比例计算单元,用于根据接入点设备集合中的各个接入点设备的第一上行业务比例或第一下行业务比例计算接入点设备集合的平均上行业务比例或平均下行业务比例;以及初始子帧配置确定单元,用于根据接入点设备集合的平均上行业务比例或平均下行业务比例确定与接入点设备集合的平均上行业务比例或平均下行业务比例相适应的子帧配置作为接入点设备集合中的各个接入点设备的初始子帧配置。

Description

无线通信系统中的装置和方法
技术领域
本发明一般涉及无线通信领域, 更具体地涉及通用移动通信系统
( UMTS )长期演进(LTE ) 中的装置和方法。
背景技术
通用移动通信系统(UMTS )长期演进(LTE )支持两种双工方式, 即频分双工 (FDD )方式和时分双工 (TDD )方式。 与频分双工方式相 比, 时分双工方式不需要成对的频谱资源, 因而能够提供更为灵活的系统 布置。 目前, 采用时分双工方式的通用移动通信系统(UMTS )长期演进 ( LTE )可以提供 7种不同的非对称上下行分配的时分双工子帧配置(参 见 TS 36.211 ), 这些时分双工子帧配置可以提供 40% -90%的下行子帧, 并且具有灵活的业务适应特性。
在目前的移动通信系统中, 为了减小小区间干扰和降低管理复杂度, 全网的小区都会被静态设定相同的上下行子帧配置。在同构网络下,用宏 基站进行覆盖时, 由于宏基站服务用户较多,覆盖区域的统计^ 较为平 稳一致,所以采用这种为全部小区静态设定相同的上下行子帧配置的方法 是合适的。 但是, 在异构网络中, 引入了许多低功率的接入点设备, 例如 微基站、 微微基站、 家庭基站、 射频拉远单元等。 因此, 如果继续采用上 述全网静态设定相同的上下行子帧配置的方式,则会影响异构网络吞吐量 的提升。
因此,期望提供一种无线通信系统中的装置和方法, 以提高接入点设 备的性能, 从而提升移动通信系统中的网络吞吐量。
发明内容
本申请的发明人通过研究发现,在异构网络中, 由于低功率的接入点 设备所服务的用户的数量较少,且多为热点覆盖, 所以其覆盖区域的上下 行业务量动态变化较为显著,并且不同的低功率的接入点设备之间的上下 行链路状况会有明显差异。考虑到上述情况,本申请的发明人认识到可以 根据多个接入点设备的上下行链路状况之间的差异,为接入点设备确定相 应的上下行子帧配置,而不是采用上述全网静态设定相同的上下行子帧配 置的方式。
根据本发明的一个实施例,提供了一种无线通信系统中的装置,包括: 业务比例计算单元,用于根据接入点设备集合中的各个接入点设备的第一 上行业务比例或第一下行业务比例计算接入点设备集合的平均上行业务 比例或平均下行业务比例; 以及初始子帧配置确定单元,用于根据接入点 设备集合的平均上行业务比例或平均下行业务比例确定与接入点设备集 合的平均上行业务比例或平均下行业务比例相适应的子帧配置作为接入 点设备集合中的各个接入点设备的初始子帧配置。
才艮据上述装置, 还包括: 业务比例确定单元, 用于确定与初始子帧配 置对应的第二上行业务比例或第二下行业务比例; 以及子帧配置调整单 元,用于根据第一上行业务比例与第二上行业务比例之间的差异、或者第 一下行业务比例与第二下行业务比例之间的差异,在初始子帧配置的基础 上调整接入点设备集合中的各个接入点设备的子帧配置。
根据上述装置, 其中, 子帧配置调整单元包括: 差值计算子单元, 用 于计算第一上行业务比例与第二上行业务比例之间的上行业务比例差值、 或者第一下行业务比例与第二下行业务比例之间的下行业务比例差值;以 及子帧配置调整子单元,用于根据上行业务比例差值与预设的第一差值阈 值的第一比较结果、或者下行业务比例差值与预设的第二差值阈值的第二 比较结果,在初始子帧配置的基础上调整接入点设备集合中的各个接入点 设备的子帧配置。
根据上述装置,其中,接入点设备集合是通过根据小区间的耦合损耗 对网络中的小区进行划分而得到的接入点设备的集合。
根据上述装置, 其中,接入点设备集合中不包括特殊接入点设备, 特 殊接入点设备是这样的接入点设备: 该接入点设备覆盖区域内业务量艮 低, 其资源需求采用任意子帧配置均能满足。
根据上述装置,其中,所述接入点设备的第一上行业务比例或第一下 行业务比例是根据将该接入点设备所服务的用户设备的上行链路状况与 下行链路状况相比较得到的。
才艮据上述装置,其中,用户设备的所述上行链路状况与该用户设备的 相对上行业务量相关,每个用户设备的相对上行业务量是通过将该用户设 备的实际上行业务量除以该用户设备的上行频谱效率而得到的;所述下行 链路状况与所述接入点设备所服务的用户设备的相对下行业务量相关,每 个用户设备的相对下行业务量是通过将该用户设备的实际下行业务量除 以该用户设备的下行频谱效率而得到的; 以及其中, 所述接入点设备的第 一上行业务比例或第一下行业务比例是根据该接入点设备的相对上行业 务量与该接入点设备的相对下行业务量相比较得到的,该接入点设备的相 对上行业务量是根据该接入点设备所服务的用户设备的相对上行业务量 之和得到的,该接入点设备的相对下行业务量是根据该接入点设备所服务 的用户设备的相对下行业务量之和得到的。
根据上述装置, 其中, 业务比例计算单元包括: 相对业务量计算子单 元,用于将通过累加所述接入点设备集合中的各个接入点设备所服务的每 个用户设备的相对上行业务量得到的总和作为该接入点设备的相对上行 业务量,将通过累加所述接入点设备集合中的各个接入点设备所服务的每 个用户设备的相对下行业务量得到的总和作为该接入点设备的相对下行 业务量; 以及其中,所述业务比例计算单元通过将所述接入点设备的相对 上行业务量除以该接入点设备的相对上行业务量与该接入点设备的相对 下行业务量之和得到所述接入点设备的所述第一上行业务比例,或通过将 所述接入点设备的相对下行业务量除以该接入点设备的相对上行业务量 与该接入点设备的相对下行业务量之和得到所述接入点设备的所述第一 下行业务比例。
根据上述装置, 其中, 所述业务比例计算单元包括: 第一平均业务比 例计算子单元,用于通过累加所述接入点设备集合中的各个接入点设备的 相对上行业务量得到所述接入点设备集合的相对上行业务量,通过累加所 述接入点设备集合中的各个接入点设备的相对下行业务量得到所述接入 点设备集合的相对下行业务量,以及通过将所述接入点设备集合的相对上 行业务量除以所述接入点设备集合的相对上行业务量与所述接入点设备 集合的相对下行业务量之和得到所述平均上行业务比例,或通过将所述接 入点设备集合的相对下行业务量除以所述接入点设备集合的相对上行业 务量与所述接入点设备集合的相对下行业务量之和得到所述平均下行业 务比例。
根据上述装置,其中, 实际上行业务量为接入点设备所服务的每个用 户设备的上行緩存中将要传输的业务数据量,实际下行业务量为接入点设 对用户设备的下行緩存中将要传输的业务数据量。
才艮据上述装置,其中, 实际上行业务量为用户设备的上行緩存中过去 一段时间已传业务数据量与将要传输的业务数据量的加权平均,实际下行 业务量为接入点设备针对用户设备的下行緩存中过去一段时间已传业务 量与将要传输的业务数据量的加权平均。 才艮据上述装置,其中,用户设备的所述上行链路状况与该用户设备的 上行緩存中等待传输的上行数据包的相对上行时延相关,每个用户设备的 所述相对上行时延是通过将该用户设备的上行緩存中等待传输的上行数 据包的实际上行时延除以该用户设备的上行频谱效率而得到的;所述下行 链路状况与所述接入点设备针对每个用户设备的下行緩存中等待传输的 下行数据包的相对下行时延相关,每个用户设备的相对下行时延是通过将 所述接入点设备针对每个用户设备的下行緩存中等待传输的下行数据包 的实际下行时延除以该用户设备的下行频 i瞽效率而得到的; 以及其中, 所 述接入点设备的第一上行业务比例或第一下行业务比例是根据该接入点 设备的相对上行时延与该接入点设备的相对下行时延相比较得到的, 该 接入点设备的相对上行时延是根据该接入点设备所服务的用户设备的相 对上行时延之和得到的,该接入点设备的相对下行时延是根据该接入点设 备所服务的用户设备的相对下行时延之和得到的。
根据上述装置,其中,业务比例计算单元包括:相对时延计算子单元, 用于将通过累加所述接入点设备集合中的各个接入点设备所服务的每个 用户设备的上行緩存中等待传输的上行数据包的相对上行时延得到的总 和作为该接入点设备的相对上行时延,将通过累加所述接入点设备集合中 的各个接入点设备针对每个用户设备的下行緩存中等待传输的下行数据 包的相对下行时延得到的总和作为该接入点设备的相对下行时延;以及其 中,所述业务比例计算单元通过将所述接入点设备的相对上行时延除以该 接入点设备的相对上行时延与该接入点设备的相对下行时延之和得到所 述接入点设备的所述第一上行业务比例,或通过将所述接入点设备的相对 下行时延除以该接入点设备的相对上行时延与该接入点设备的相对下行 时延之和得到所述接入点设备的所述第一下行业务比例。
根据上述装置, 其中, 所述业务比例计算单元包括: 第二平均业务比 例计算子单元,用于通过累加所述接入点设备集合中的各个接入点设备的 相对上行时延得到所述接入点设备集合的相对上行时延,通过累加所述接 入点设备集合中的各个接入点设备的相对下行时延得到所述接入点设备 集合的相对下行时延; 以及其中, 所述第二平均业务比例计算子单元通过 将所述接入点设备集合的相对上行时延除以该接入点设备集合的相对上 行时延与该接入点设备的相对下行时延之和得到所述平均上行业务比例, 或通过将所述接入点设备集合的相对下行时延除以该接入点设备的相对 上行时延与该接入点设备集合的相对下行时延之和得到所述平均下行业 务比例。
根据上述装置,其中,上行频谱效率为通过接入点设备测量上行的信 道探测参考信号 SRS而得到的即时上行频傳效率, 下行频率效率为通过 用户设备反馈的信道质量指示 CQI而得到的即时下行频谱效率。
根据上述装置,其中,上行频谱效率为通 —段时间内由接入点设 备测量的上行的信道探测参考信号 SRS进行算术平均或加权平均而得到 的平均上行频谱效率,下行频率效率为通过对一段时间内用户设备反馈的 信道盾量指示 CQI 进行算术平均或加权平均而得到的平均下行频谱效 率。
根据上述装置,其中,上行频谱效率为通 —段时间内由接入点设 备测量的上行的信道探测参考信号 SRS进行加权平均而得到的加权平均 上行频谱效率,下行频率效率为通过对一段时间内用户设备反馈的信道质 量指示 CQI进行加权平均而得到的加权平均下行频谱效率, 其中, 对越 靠近当前时刻的 SRS或 CQI赋予越大的权重,对越远离当前时刻的 SRS 或 CQI赋予越小的权重。
才艮据上述装置,其中,上行频谱效率为接入点设备根据过去一段时间 内以一定频率宽度接收到的业务数据量除以该段时间并且除以该频率宽 度而得到的上行网络平均资源效率,下行频率效率为接入点设备根据过去 一段时间内以一定频率宽度发送的业务数据量除以该段时间并且除以该 频率宽度而得到的下行网络平均资源效率。
才艮据上述装置,其中,用户设备的所述上行链路状况与该用户设备的 相对上行业务量与该用户设备的上行緩存中等待传输的上行数据包的相 对上行时延的相对上行加权量相关,用户设备的所 目对上行业务量是通 过将该用户设备的实际上行业务量除以该用户设备的上行频傳效率而得 到的,用户设备的所述相对上行时延是通过将该用户设备的上行緩存中等 待传输的上行数据包的实际上行时延除以该用户设备的上行频傳效率而 得到的;所述下行链路状况与该用户设备的相对下行业务量与所述接入点 设备针对该用户设备的下行緩存中等待传输的下行数据包的相对下行时 延的相对下行加权量相关,用户设备的所述相对下行业务量是通过将该用 户设备的实际下行业务量除以该用户设备的下行频 i瞽效率而得到的,所述 相对下行时延是通过将所述接入点设备针对该用户设备的下行緩存中等 待传输的下行数据包的实际下行时延除以该用户设备的下行频谱效率而 得到的; 以及其中,所述接入点设备的第一上行业务比例或第一下行业务 比例是根据该接入点设备的相对上行加权量与该接入点设备的相对下行 加权量相比较得到的, 该接入点设备的相对上行加权量是根据该接入点 设备所服务的用户设备的相对上行加权量之和得到的,该接入点设备的相 对下行加权量是根据该接入点设备所服务的用户设备的相对下行加权量 之和得到的。
根据上述装置, 其中, 业务比例计算单元包括: 加权量计算子单元, 用于将通过累加所述接入点设备集合中的各个接入点设备所服务的每个 用户设备的相对上行加权量得到的总和作为该接入点设备的相对上行加 权量,将通过累加所述接入点设备集合中的各个接入点设备所服务的每个 用户设备的相对下行加权量得到的总和作为该接入点设备的相对下行加 权量; 以及其中,所述业务比例计算单元通过将所述接入点设备的相对上 行加权量除以该接入点设备的相对上行加权量与该接入点设备的相对下 行加权量之和得到所述接入点设备的所述第一上行业务比例,或通过将所 述接入点设备的相对下行加权量除以该接入点设备的相对上行加权量与 该接入点设备的相对下行加权量之和得到所述接入点设备的所述第一下 行业务比例。
根据上述装置, 其中, 所述业务比例计算单元包括: 第三平均业务比 例计算子单元,用于通过累加所述接入点设备集合中的各个接入点设备的 相对上行加权量得到所述接入点设备集合的相对上行加权量,通过累加所 述接入点设备集合中的各个接入点设备的相对下行加权量得到所述接入 点设备集合的相对下行加权量; 以及其中, 所述第三平均业务比例计算子 单元通过将所述接入点设备集合的相对上行加权量除以该接入点设备集 合的相对上行加权量与该接入点设备集合的相对下行加权量之和得到所 述平均上行业务比例,或通过将所述接入点设备集合的相对下行加权量除 以该接入点设备集合的相对上行加权量与该接入点设备集合的相对下行 加权量之和得到所述平均下行业务比例。
根据上述装置, 其中, 子帧配置调整子单元还用于: 在上行业务比例 差值的绝对值小于或等于预设的第一差值阈值的情况下或者在下行业务 比例差值的绝对值小于或等于预设的第二差值阈值的情况下,为接入点设 备确定初始子帧配置;以及在上行业务比例差值的绝对值大于预设的第一 差值阈值的情况下或者在下行业务比例差值的绝对值大于预设的第二插 值阈值的情况下,在初始子帧配置的基础上为接入点设备确定新的子帧配 才艮据上述装置, 其中, 子帧配置子单元还用于: 在上行业务比例差值 大于预设的第一差值阈值的情况下,在初始子帧配置的基础上增加一个或 两个上行子帧;或者在下行业务比例差值大于预设的第二差值阈值的情况 下,在初始子帧配置的基础上增加一个或两个下行子帧; 以及在上行业务 比例差值小于预设的第一差值阈值的相反数的情况下,在初始子帧配置的 基础上减少一个或两个上行子帧;或者在下行业务比例差值小于预设的第 二差值阈值的相反数的情况下,在初始子帧配置的基础上减少一个或两个 下行子帧。
才艮据上述装置, 其中, 第一差值阈值和第二差值阈值为 0.25-0.35的 范围内的值。
根据本发明的另一实施例, 提供了一种用在无线通信系统中的方法, 包括:根据接入点设备集合中的各个接入点设备的第一上行业务比例或第 一下行业务比例计算接入点设备集合的平均上行业务比例或平均下行业 务比例;以及根据接入点设备集合的平均上行业务比例或平均下行业务比 例确定与接入点设备集合的平均上行业务比例或平均下行业务比例相适 应的子帧配置作为接入点设备集合中的各个接入点设备的初始子帧配置。
才艮据上述方法, 还包括: 业务比例确定步骤, 确定与所述初始子帧配 置对应的第二上行业务比例或第二下行业务比例; 以及子帧配置调整步 骤,根据所述第一上行业务比例与所述第二上行业务比例之间的差异、或 者所述第一下行业务比例与所述第二下行业务比例之间的差异,在所述初 始子帧配置的基础上调整所述接入点设备集合中的各个接入点设备的子 帧配置。
根据上述方法,其中,所述子帧配置调整步骤包括:差值计算子步骤, 计算所述第一上行业务比例与所述第二上行业务比例之间的上行业务比 例差值、或者所述第一下行业务比例与所述第二下行业务比例之间的下行 业务比例差值; 以及子帧配置调整子步骤,根据所述上行业务比例差值与 预设的第一差值阈值的第一比较结果、或者所述下行业务比例差值与预设 的第二差值阈值的第二比较结果,在所述初始子帧配置的基础上调整所述 接入点设备集合中的各个接入点设备的子帧配置。 根据上述方法,其中,所述接入点设备集合是通过根据小区间的耦合 损^ t网络中的小区进行划分而得到的接入点设备的集合。
才艮据上述方法, 其中, 所述接入点集合中不包括特殊接入点设备, 所 述特殊接入点设备是这样的接入点设备:该接入点设备覆盖区域内业务量 很低, 其资源需求采用任意子帧配置均能满足。
根据上述方法,其中,所述接入点设备的第一上行业务比例或第一下 行业务比例是根据将该接入点设备所服务的用户设备的上行链路状况与 下行链路状况相比较得到的。
根据上述方法,其中,用户设备的所述上行链路状况与该用户设备的 相对上行业务量相关,每个用户设备的相对上行业务量是通过将该用户设 备的实际上行业务量除以该用户设备的上行频谱效率而得到的;所述下行 链路状况与所述接入点设备所服务的用户设备的相对下行业务量相关,每 个用户设备的相对下行业务量是通过将该用户设备的实际下行业务量除 以该用户设备的下行频谱效率而得到的; 以及其中, 所述接入点设备的第 一上行业务比例或第一下行业务比例是根据该接入点设备的相对上行业 务量与该接入点设备的相对下行业务量相比较得到的,该接入点设备的相 对上行业务量是根据该接入点设备所服务的用户设备的相对上行业务量 之和得到的,该接入点设备的相对下行业务量是根据该接入点设备所服务 的用户设备的相对下行业务量之和得到的。
根据上述方法, 其中, 所述业务比例计算步骤包括: 相对业务量计算 子步骤,将通过累加所述接入点设备集合中的各个接入点设备所服务的每 个用户设备的相对上行业务量得到的总和作为该接入点设备的相对上行 业务量,将通过累加所述接入点设备集合中的各个接入点设备所服务的每 个用户设备的相对下行业务量得到的总和作为该接入点设备的相对下行 业务量; 以及其中, 在所述业务比例计算步骤中, 通过将所述接入点设备 的相对上行业务量除以该接入点设备的相对上行业务量与该接入点设备 的相对下行业务量之和得到所述接入点设备的所述第一上行业务比例,或 通过将所述接入点设备的相对下行业务量除以该接入点设备的相对上行 业务量与该接入点设备的相对下行业务量之和得到所述接入点设备的所 述第一下行业务比例。
才艮据上述方法, 其中, 所述业务比例计算步骤包括: 第一平均业务比 例计算子步骤,通过累加所述接入点设备集合中的各个接入点设备的相对 上行业务量得到所述接入点设备集合的相对上行业务量,通过累加所述接 入点设备集合中的各个接入点设备的相对下行业务量得到所述接入点设 备集合的相对下行业务量,以及通过将所述接入点设备集合的相对上行业 务量除以所述接入点设备集合的相对上行业务量与所述接入点设备集合 的相对下行业务量之和得到所述平均上行业务比例,或通过将所述接入点 设备集合的相对下行业务量除以所述接入点设备集合的相对上行业务量 与所述接入点设备集合的相对下行业务量之和得到所述平均下行业务比 例。
根据上述方法,其中,所述实际上行业务量为所述接入点设备所服务 的每个用户设备的上行緩存中将要传输的业务数据量,所述实际下行业务 量为所述接入点设备针对所述用户设备的下行緩存中将要传输的业务数 据量。
根据上述方法,其中,所述实际上行业务量为所述用户设备的上行緩 存中过去一段时间已传业务数据量与将要传输的业务数据量的加权平均, 所述实际下行业务量为所述接入点设备针对所述用户设备的下行緩存中 过去一段时间已传业务量与将要传输的业务数据量的加权平均。
根据上述方法,其中,用户设备的所述上行链路状况与该用户设备的 上行緩存中等待传输的上行数据包的相对上行时延相关,每个用户设备的 所述相对上行时延是通过将该用户设备的上行緩存中等待传输的上行数 据包的实际上行时延除以该用户设备的上行频谱效率而得到的;所述下行 链路状况与所述接入点设备针对每个用户设备的下行緩存中等待传输的 下行数据包的相对下行时延相关,每个用户设备的相对下行时延是通过将 所述接入点设备针对每个用户设备的下行緩存中等待传输的下行数据包 的实际下行时延除以该用户设备的下行频 i瞽效率而得到的; 以及其中, 所 述接入点设备的第一上行业务比例或第一下行业务比例是根据该接入点 设备的相对上行时延与该接入点设备的相对下行时延相比较得到的, 该 接入点设备的相对上行时延是根据该接入点设备所服务的用户设备的相 对上行时延之和得到的,该接入点设备的相对下行时延是根据该接入点设 备所服务的用户设备的相对下行时延之和得到的。
根据上述方法, 其中, 所述业务比例计算步骤包括: 相对时延计算子 步骤,用于将通过累加所述接入点设备集合中的各个接入点设备所服务的 每个用户设备的上行緩存中等待传输的上行数据包的相对上行时延得到 的总和作为该接入点设备的相对上行时延,将通过累加所述接入点设备集 合中的各个接入点设备针对每个用户设备的下行緩存中等待传输的下行 数据包的相对下行时延得到的总和作为该接入点设备的相对下行时延;以 及其中,在所述业务比例计算步骤中,通过将所述接入点设备的相对上行 时延除以该接入点设备的相对上行时延与该接入点设备的相对下行时延 之和得到所述接入点设备的所述第一上行业务比例,或通过将所述接入点 设备的相对下行时延除以该接入点设备的相对上行时延与该接入点设备 的相对下行时延之和得到所述接入点设备的所述第一下行业务比例。
才艮据上述方法, 其中, 所述业务比例计算步骤包括: 第二平均业务比 例计算子步骤,通过累加所述接入点设备集合中的各个接入点设备的相对 上行时延得到所述接入点设备集合的相对上行时延,通过累加所述接入点 设备集合中的各个接入点设备的相对下行时延得到所述接入点设备集合 的相对下行时延; 以及其中, 在所述第二平均业务比例计算子步骤中, 通 过将所述接入点设备集合的相对上行时延除以该接入点设备集合的相对 上行时延与该接入点设备的相对下行时延之和得到所述平均上行业务比 例,或通过将所述接入点设备集合的相对下行时延除以该接入点设备的相 对上行时延与该接入点设备集合的相对下行时延之和得到所述平均下行 业务比例。
才艮据上述方法,其中,所述上行频谱效率为通过所述接入点设备测量 上行的信道探测参考信号 SRS而得到的即时上行频谱效率, 所述下行频 率效率为通过所述用户设备反馈的信道质量指示 CQI而得到的即时下行 频谱效率。
才艮据上述方法,其中,所述上行频谱效率为通t^t一段时间内由所述 接入点设备测量的上行的信道探测参考信号 SRS进行算术平均或加权平 均而得到的平均上行频傳效率,所述下行频率效率为通过对一段时间内所 述用户设备反馈的信道质量指示 CQI进行算术平均或加权平均而得到的 平均下行频谱效率。
根据上述方法,其中,用户设备的所述上行链路状况与该用户设备的 相对上行业务量与该用户设备的上行緩存中等待传输的上行数据包的相 对上行时延的相对上行加权量相关,用户设备的所 目对上行业务量是通 过将该用户设备的实际上行业务量除以该用户设备的上行频傳效率而得 到的,用户设备的所述相对上行时延是通过将该用户设备的上行緩存中等 待传输的上行数据包的实际上行时延除以该用户设备的上行频傳效率而 得到的;所述下行链路状况与该用户设备的相对下行业务量与所述接入点 设备针对该用户设备的下行緩存中等待传输的下行数据包的相对下行时 延的相对下行加权量相关,用户设备的所述相对下行业务量是通过将该用 户设备的实际下行业务量除以该用户设备的下行频 i瞽效率而得到的,所述 相对下行时延是通过将所述接入点设备针对该用户设备的下行緩存中等 待传输的下行数据包的实际下行时延除以该用户设备的下行频谱效率而 得到的; 以及其中,所述接入点设备的第一上行业务比例或第一下行业务 比例是根据该接入点设备的相对上行加权量与该接入点设备的相对下行 加权量相比较得到的, 该接入点设备的相对上行加权量是根据该接入点 设备所服务的用户设备的相对上行加权量之和得到的,该接入点设备的相 对下行加权量是根据该接入点设备所服务的用户设备的相对下行加权量 之和得到的。
根据上述方法, 其中, 所述业务比例计算步骤包括: 加权量计算子步 骤,将通过累加所述接入点设备集合中的各个接入点设备所服务的每个用 户设备的相对上行加权量得到的总和作为该接入点设备的相对上行加权 量,将通过累加所述接入点设备集合中的各个接入点设备所服务的每个用 户设备的相对下行加权量得到的总和作为该接入点设备的相对下行加权 量; 以及其中, 在所述业务比例计算步骤中, 通过将所述接入点设备的相 对上行加权量除以该接入点设备的相对上行加权量与该接入点设备的相 对下行加权量之和得到所述接入点设备的所述第一上行业务比例,或通过 将所述接入点设备的相对下行加权量除以该接入点设备的相对上行加权 量与该接入点设备的相对下行加权量之和得到所述接入点设备的所述第 一下行业务比例。
才艮据上述方法, 其中, 所述业务比例计算步骤包括: 第三平均业务比 例计算子步骤,通过累加所述接入点设备集合中的各个接入点设备的相对 上行加权量得到所述接入点设备集合的相对上行加权量,通过累加所述接 入点设备集合中的各个接入点设备的相对下行加权量得到所述接入点设 备集合的相对下行加权量; 以及其中,在所述第三平均业务比例计算子步 骤中,通过将所述接入点设备集合的相对上行加权量除以该接入点设备集 合的相对上行加权量与该接入点设备集合的相对下行加权量之和得到所 述平均上行业务比例,或通过将所述接入点设备集合的相对下行加权量除 以该接入点设备集合的相对上行加权量与该接入点设备集合的相对下行 加权量之和得到所述平均下行业务比例。
才艮据上述方法, 其中, 所述子帧配置调整子步骤还包括: 在所述上行 业务比例差值的绝对值小于或等于预设的第一差值阈值的情况下或者在 所述下行业务比例差值的绝对值小于或等于预设的第二差值阈值的情况 下, 为所述接入点设备确定所述初始子帧配置; 以及在所述上行业务比例 差值的绝对值大于预设的第一差值阈值的情况下或者在所述下行业务比 例差值的绝对值大于预设的第二插值阈值的情况下,在所述初始子帧配置 的基础上为所述接入点设备确定新的子帧配置。
才艮据上述方法, 其中, 所述子帧配置调整子步骤还包括: 在所述上行 业务比例差值大于预设的第一差值阈值的情况下,在所述初始子帧配置的 基础上增加一个或两个上行子帧;或者在所述下行业务比例差值大于预设 的第二差值阈值的情况下,在所述初始子帧配置的基础上增加一个或两个 下行子帧;以及在所述上行业务比例差值小于预设的第一差值阈值的相反 数的情况下,在所述初始子帧配置的基础上减少一个或两个上行子帧; 或 者在所述下行业务比例差值小于预设的第二差值阈值的相反数的情况下, 在所述初始子帧配置的基础上减少一个或两个下行子帧。
根据上述方法, 其中, 所述第一差值阈值和所述第二差值阈值为
0.25-0.35的范围内的值。
根据本发明的又一实施例, 公开一种无线通信系统中的装置, 包括: 业务比例计算单元,用于根据接入点设备所服务的用户设备的上行链路状 况和下行链路状况计算该接入点设备的第一上行业务比例或第一下行业 务比例; 以及通信单元,用于发送该接入点设备的第一上行业务比例或第 一下行业务比例,其中,该接入点设备的第一上行业务比例或第一下行业 务比例用以计算所述接入点设备所在的接入点设备集合的平均上行业务 比例或平均下行业务比例,从而确定与该接入点设备集合的平均上行业务 比例或平均下行业务比例相适应的初始子帧配置。
根据上述装置,所述通信单元还用于接收所述初始子帧配置, 以及所 述装置还包括: 业务比例确定单元,用于确定与所述初始子帧配置对应的 第二上行业务比例或第二下行业务比例; 以及子帧配置调整单元,用于根 据所述第一上行业务比例与所述第二上行业务比例之间的差异、或者所述 第一下行业务比例与所述第二下行业务比例之间的差异,在所述初始子帧 配置的基础上调整该接入点设备的子帧配置。
根据上述装置,其中,所述通信单元还用于接收该接入点设备的子帧 配置信息,所述子帧配置信息是根据所述初始子帧配置对应的第二上行业 务比例或第二下行业务比例与所述接入点设备的第一上行业务比例或第 二下行业务比例相比较而得到的。 根据上述装置,其中,所述接入点设备的第一上行业务比例或第一下 行业务比例是根据将该接入点设备所服务的用户设备的上行链路状况与 下行链路状况相比较得到的。
根据上述装置,其中,所述通信单元还用于发送子帧配置至所述接入 点设备所服务的用户设备,其中,该子帧配置与该接入点设备的第一上行 业务比例或第一下行业务比例相适应。
根据本发明的又一实施例,公开一种用在无线通信系统中的方法, 包 括: 业务比例计算步骤,根据接入点设备所服务的用户设备的上行链路状 况和下行链路状况计算该接入点设备的第一上行业务比例或第一下行业 务比例; 以及通信步骤,发送该接入点设备的第一上行业务比例或第一下 行业务比例,其中,该接入点设备的第一上行业务比例或第一下行业务比 例用以计算所述接入点设备所在的接入点设备集合的平均上行业务比例 或平均下行业务比例,从而确定与该接入点设备集合的平均上行业务比例 或平均下行业务比例相适应的初始子帧配置。
才艮据上述方法, 所述通信步骤包括: 接收所述初始子帧配置, 以及所 述方法还包括: 业务比例确定步骤,确定与所述初始子帧配置对应的第二 上行业务比例或第二下行业务比例; 以及子帧配置调整步骤,才艮据所述第 一上行业务比例与所述第二上行业务比例之间的差异、或者所述第一下行 业务比例与所述第二下行业务比例之间的差异,在所述初始子帧配置的基 础上调整该接入点设备的子帧配置。
根据上述方法,所述通信步骤还包括:接收该接入点设备的子帧配置 信息,所述子帧配置信息是根据所述初始子帧配置对应的第二上行业务比 例或第二下行业务比例与所述接入点设备的第一上行业务比例或第二下 行业务比例相比较而得到的。
根据上述方法,其中,所述接入点设备的第一上行业务比例或第一下 行业务比例是通过将该接入点设备所服务的用户设备的上行链路状况与 下行链路状况相比较得到的。
才艮据上述方法, 其中, 所述通信步骤还包括: 发送子帧配置至所述接 入点设备所服务的用户设备,其中,该子帧配置与该接入点设备的第一上 行业务比例或第一下行业务比例相适应。
根据本发明的又一实施例, 公开一种无线通信系统中的装置, 包括: 通信单元, 用于从服务于用户设备的接入点设备接收子帧配置, 其中, 该 子帧配置与该接入点设备的第一上行业务比例或第一下行业务比例相适 应;以及配置单元,用于根据所接收到的子帧配置对该用户设备进行配置, 其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计算所 述接入点设备所在的接入点设备集合的平均上行业务比例或平均下行业 务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下行业 务比例相适应的初始子帧配置。
根据上述装置,其中,通信单元还用于向服务于用户设备的接入点设 备发送该用户设备的上行緩冲中将要传输的业务数据量和 /或该用户设备 的上行緩存中等待传输的上行数据包的实际上行时延。
根据上述装置,其中,所述接入点设备的第一上行业务比例或第一下 行业务比例是通过将该接入点设备所服务的用户设备的上行链路状况与 下行链路状况相比较得到的。
根据本发明的又一实施例,公开一种用在无线通信系统中的方法, 包 括: 通信步骤, 从服务于用户设备的接入点设备接收子帧配置, 其中, 该 子帧配置与该接入点设备的第一上行业务比例或第一下行业务比例相适 应; 以及配置步骤, 根据所接收到的子帧配置对该用户设备进行配置, 其 中,该接入点设备的第一上行业务比例或第一下行业务比例用以计算所述 接入点设备所在的接入点设备集合的平均上行业务比例或平均下行业务 比例,从而确定与该接入点设备集合的平均上行业务比例或平均下行业务 比例相适应的初始子帧配置。
根据上述方法, 其中, 通信步骤还包括: 向服务于用户设备的接入点 设备发送该用户设备的上行緩冲中将要传输的业务数据量和 /或该用户设 备的上行緩存中等待传输的上行数据包的实际上行时延。
根据上述方法,其中,所述接入点设备的第一上行业务比例或第一下 行业务比例是通过将该接入点设备所服务的用户设备的上行链路状况与 下行链路状况相比较得到的。
根据本发明的再一实施例,公开一种包括计算机可读指令的计算机存 储介质,计算机指令用于使计算机执行:根据接入点设备集合中的各个接 入点设备的第一上行业务比例或第一下行业务比例计算接入点设备集合 的平均上行业务比例或平均下行业务比例;以及根据接入点设备集合的平 均上行业务比例或平均下行业务比例确定与接入点设备集合的平均上行 业务比例或平均下行业务比例相适应的子帧配置作为接入点设备集合中 的各个接入点设备的初始子帧配置。
根据本公开的再一实施例,公开一种包括计算机可读指令的计算机存 储介质, 计算机指令用于使计算机执行: 业务比例计算步骤, 根据接入点 设备所服务的用户设备的上行链路状况和下行链路状况计算该接入点设 备的第一上行业务比例或第一下行业务比例; 以及通信步骤,发送该接入 点设备的第一上行业务比例或第一下行业务比例,其中,该接入点设备的 第一上行业务比例或第一下行业务比例用以计算所述接入点设备所在的 接入点设备集合的平均上行业务比例或平均下行业务比例,从而确定与该 接入点设备集合的平均上行业务比例或平均下行业务比例相适应的初始 子帧配置。
根据本发明的再一实施例,公开一种包括计算机可读指令的计算机存 储介质, 计算机指令用于使计算机执行: 通信步骤, 从服务于用户设备的 接入点设备接收子帧配置,其中,该子帧配置与该接入点设备的第一上行 业务比例或第一下行业务比例相适应; 以及配置步骤,根据所接收到的子 帧配置对该用户设备进行配置,其中,该接入点设备的第一上行业务比例 或第一下行业务比例用以计算所述接入点设备所在的接入点设备集合的 平均上行业务比例或平均下行业务比例,从而确定与该接入点设备集合的 平均上行业务比例或平均下行业务比例相适应的初始子帧配置。
根据本发明的再一实施例,公开一种无线通信系统中的装置, 包括存 储器与处理器, 其中, 所述存储器储存计算机指令, 所述处理器用于执行 存储于所述存储器中的该计算机指令:根据接入点设备集合中的各个接入 点设备的第一上行业务比例或第一下行业务比例计算接入点设备集合的 平均上行业务比例或平均下行业务比例;以及根据接入点设备集合的平均 上行业务比例或平均下行业务比例确定与接入点设备集合的平均上行业 务比例或平均下行业务比例相适应的子帧配置作为接入点设备集合中的 各个接入点设备的初始子帧配置。
根据本发明的再一实施例,公开一种无线通信系统中的装置, 包括存 储器与处理器, 其中, 所述存储器储存计算机指令, 所述处理器用于执行 存储于所述存储器中的该计算机指令, 包括: 业务比例计算步骤, 根据接 入点设备所服务的用户设备的上行链路状况和下行链路状况计算该接入 点设备的第一上行业务比例或第一下行业务比例; 以及通信步骤,发送该 接入点设备的第一上行业务比例或第一下行业务比例,其中,该接入点设 备的第一上行业务比例或第一下行业务比例用以计算所述接入点设备所 在的接入点设备集合的平均上行业务比例或平均下行业务比例,从而确定 与该接入点设备集合的平均上行业务比例或平均下行业务比例相适应的 初始子帧配置。
根据本发明的再一实施例,公开一种无线通信系统中的装置, 包括存 储器与处理器, 其中, 所述存储器储存计算机指令, 所述处理器用于执行 存储于所述存储器中的该计算机指令, 包括: 通信步骤, 从服务于用户设 备的接入点设备接收子帧配置,其中,该子帧配置与该接入点设备的第一 上行业务比例或第一下行业务比例相适应; 以及配置步骤,根据所接收到 的子帧配置对该用户设备进行配置,其中,该接入点设备的第一上行业务 比例或第一下行业务比例用以计算所述接入点设备所在的接入点设备集 合的平均上行业务比例或平均下行业务比例,从而确定与该接入点设备集 合的平均上行业务比例或平均下行业务比例相适应的初始子帧配置。
采用本发明, 可以根据多个接入点设备的上下行链路状况之间的差 异, 为接入点设备确定相应的上下行子帧配置,从而可以提高接入点设备 的性能, 进而提升移动通信系统中的网络吞吐量。
附图说明
参照下面结合附图对本发明实施例的说明,会更加容易地理解本发明 的以上和其它目的、特点和优点。 在附图中, 相同的或对应的技术特征或 部件将采用相同或对应的附图标记来表示。
图 1 是示出根据本发明实施例的无线通信系统中的装置的配置的框 图;
图 2是示出根据本发明实施例的接入点设备集合的示意图; 图 3 是示出根据本发明实施例的装置中的业务比例计算单元的一个 示例的配置的框图;
图 4是示出根据本发明实施例的装置中的业务比例计算单元的另一 示例的配置的框图;
图 5 是示出根据本发明实施例的装置中的业务比例计算单元的又一 示例的配置的框图;
图 6是示出根据本发明实施例的无线通信系统中的装置的另一配置 的框图; 图 7是示出根据本发明实施例的子帧配置调整单元的一个例示性配 置的框图;
图 8是示出根据本发明实施例的用在无线通信系统中的方法的流程 图;
图 9是示出根据本发明另一实施例的无线通信系统中的装置的配置 的框图。
图 10是示出根据本发明另一实施例的无线通信系统中的装置的配置 的框图。
图 11是示出才艮据本发明另一实施例的用在无线通信系统中的方法的 流程图;
图 12是示出根据本发明另一实施例的无线通信系统中的装置的配置 的框图; 以及
图 13 示出根据本发明另一实施例的用在无线通信系统中的方法 的¾½图。
具体实施方式
下面参照附图来说明本发明的实施例。 应当注意, 为了清楚的目的, 附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和 处理的表示和描述。
下面结合图 1 来描述根据本发明实施例的无线通信系统中的装置的 配置。图 1是示出根据本发明实施例的无线通信系统中的装置的配置的框 图。
如图 1所示, 无线通信系统中的装置 100可包括业务比例计算单元 102和初始子帧配置确定单元 104。
业务比例计算单元 102可以根据接入点设备集合中的各个接入点设 备的第一上行业务比例或第一下行业务比例计算接入点设备集合的平均 上行业务比例或平均下行业务比例。
接入点设备集合中的各个接入点设备可以分别计算该接入点设备的 第一上行业务比例或第一下行业务比例,并且将计算得到的接入点设备的 第一上行业务比例或第一下行业务比例发送出去。接入点设备可以采用各 种方式来计算其第一上行业务比例或第一下行业务比例。例如,接入点设 备的第一上行业务比例或第一下行业务比例可以是根据将该接入点设备 所服务的用户设备的上行链路状况与下行链路状况相比较得到的。
如上所述, 由于低功率的接入点设备所服务的用户的数量较少,且多 为热点覆盖,所以其覆盖区域的上下行业务量动态变化较为显著,并且不 同的低功率的接入点设备之间的上下行链路状况会有明显差异。接入点设 备集合可以包括覆盖一定区域的多个接入点设备,其中,每个接入点设备 可以为多个用户设备提供服务。 针对接入点设备所服务的多个用户设备, 每个用户设备到该接入点设备都有上行链路和下行链路这两条链路。 一 般,接入点设备的上行链路状况指的是该接入点设备所服务的所有用户设 备的上行链路状况的整体,而接入点设备的下行链路状况指的是该接入点 设备所服务的所有用户设备的下行链路状况的整体。
通常,每个接入点设备的上行链路状况与下行链路状况之间可以具有 不同的相对关系,例如,有的接入点设备的上行链路状况可能大于下行链 路状况,有的接入点设备的上行链路状况可能小于下行链路状况,或者有 的接入点设备上行链路的状况与下行链 况可能基本上相同。每个接入 点设备的上行链路状况与下行链路状况之间的相对关系可以用每个接入 点设备的上行链路状况与下行链路状况之间的相对比例来表示。针对每个 接入点设备,可以通过计算该接入点设备的上行链路状况相对于上行链路 状况与下行链路状况之和的比率作为该接入点设备的第一上行业务比例, 或者可以通过计算该接入点设备的下行链路状况相对于上行链路状况与 下行链路状况之和的比率作为该接入点设备的第一下行业务比例。 另外, 针对接入点设备集合,可以通过计算该接入点设备集合中的所有接入点设 备的上行链路状况相对于所有接入点设备的上行链路与下行链路之和的 比率作为该接入点设备集合的平均上行业务比例,或者可以通过计算该接 入点设备集合中的所有接入点设备的下行链路状况相对于该接入点设备 集合中的所有接入点设备的上行链路与下行链路之和的比率作为该接入 点设备集合的平均下行业务比例。
本领域技术人员应当理解,上述计算第一上行业务比例、第一下行业 务比例、平均上行业务比例或平均下行业务比例的方式仅是例示性的,还 可以采用其它的方式来计算上述第一上行业务比例、 第一下行业务比例、 平均上行业务比例或平均下行业务比例。例如,也可以直接将接入点设备 的上行链路状况与下行链路状况之比作为上述第一上行业务比例,也可以 直接将接入点设备的下行链路状况与上行链路状况之比作为上述第一下 行业务比例,也可以直接将接入点设备集合中的所有接入点设备的上行链 路状况与下行链路状况之比作为上述平均上行业务比例,或者也可以直接 将接入点设备集合中的所有接入点设备的下行链路状况与上行链路状况 之比作为上述平均下行业务比例, 等等。
下面参考图 2来描述根据本发明实施例的接入点设备集合。图 2是示 出根据本发明实施例的接入点设备集合的示意图。
根据本发明的优选实施例,接入点设备集合是通过根据小区间的耦合 损^†网络中的小区进行划分而得到的接入点设备的集合。
如图 2所示, 假设网络中存在由接入点设备 a覆盖的小区 1、 由接入 点设备 b覆盖的小区 2和由接入点设备 c覆盖的小区 3。 小区 1、 小区 2 和小区 3中的每个小区中存在若干个用户设备。 可以测量小区 1、 小区 2 和小区 3之间的耦合损耗、路损或接收信号功率等。 通过测量发现, 小区 1、 小区 2和小区 3之间的耦合损耗、 路损或接收信号功率比较接近, 因 此将小区 1中的接入点设备 、 小区 2中的接入点设备 b和小区 3中的接 入点设备 c划分为接入点设备集合。本领域技术人员应当理解,上述小区、 接入点设备和用户设备的数量仅是例示性的, 其还可以具有不同于图 2 中所示的数量。
根据本发明的优选实施例,接入点集合中不包括特殊接入点设备,该 特殊接入点设备是这样的接入点设备:该接入点设备覆盖区域内业务量很 低, 其资源需求采用任意子帧配置均能满足。
如图 2所示,如果由接入点设备 c覆盖的小区 3内的业务量很低, 该 小区 3内的接入点设备 c的资源需求采用任意子帧配置都可以满足,则可 以判定小区 3内的接入点设备 c为特殊接入点设备。 因此, 可以从接入点 设备集合中排除小区 3内的接入点设备 c, 从而使接入点设备集合中仅包 括小区 1内的接入点设备 a和小区 2内的接入点设备 b, 而不包括小区 3 内的接入点设备 c„
下面参考图 3 来描述根据本发明实施例的装置中的业务比例计算单 元的一个示例的配置。图 3是示出根据本发明实施例的装置中的业务比例 计算单元的一个示例的配置的框图。 如图 3所示, 根据本发明实施例的装置中的业务比例计算单元 102-a 可以包括相对业务量计算子单元 302和 /或第一平均业务比例计算子单元 304。
在本实施例中,用户设备的上行链路状况可以与该用户设备的相对上 行业务量相关,每个用户设备的相对上行业务量是通过将该用户设备的实 际上行业务量除以该用户设备的上行频谱效率而得到的;下行链路状况可 以与接入点设备所服务的用户设备的相对下行业务量相关,每个用户设备 的相对下行业务量是通过将该用户设备的实际下行业务量除以该用户设 备的下行频谱效率而得到的。
例如, 相对上行业务量可以通过下面的公式(1 )来计算:
相对上行业务量=实际上行业务量 /上行频谱效率 ( 1 ) 类似地, 例如, 相对下行业务量可以通过下面的公式(2 )来计算。 相对下行业务量=实际下行业务量 /下行频谱效率 ( 2 ) 根据本发明的一个优选实施例,实际上行业务量可为接入点设备所服 务的每个用户设备的上行緩存中将要传输的业务数据量,而实际下行业务 量可为接入点设名 对用户设备的下行緩存中将要传输的业务数据量。例 如,用户设备可以将其上行緩冲中将要传输的业务数据量发送给服务于该 用户设备的接人点设备。
根据本发明的另一优选实施例,实际上行业务量可为用户设备的上行 緩存中过去一段时间已传业务数据量与将要传输的业务数据量的加权平 均,而实际下行业务量可为接入点设省 f对用户设备的下行緩存中过去一 段时间已传业务量与将要传输的业务数据量的加权平均。本领域技术人员 应当理解,加权平均所使用的权重值可以预先确定,也可以根据实验来确 定。
根据本发明的一个优选实施例,上行频谱效率可为通过接入点设备测 量上行的信道探测参考信号 SRS而得到的即时上行频谱效率, 而下行频 率效率可为通过用户设备反馈的信道质量指示 CQI而得到的即时下行频 谱效率。
根据本发明的另一实施例,上行频谱效率可为通过对一段时间内由接 入点设备测量的上行的信道探测参考信号 SRS进行算术平均或加权平均 而得到的平均上行频傳效率,而下行频率效率可为通过对一段时间内用户 设备反馈的信道质量指示 CQI进行算术平均或加权平均而得到的平均下 行频谱效率。本领域技术人员应当理解,加权平均所使用的权重值可以预 先确定, 也可以根据实验来确定。 根据本发明的又一实施例,上行频谱效率可为接入点设备根据过去一 段时间内以一定频率宽度接收到的业务数据量除以该段时间并且除以该 频率宽度而得到的上行网络平均资源效率,而下行频率效率可为接入点设 备根据过去一段时间内以一定频率宽度发送的业务数据量除以该段时间 并且除以该频率宽度而得到的下行网络平均资源效率。
如上所述,接入点设备的第一上行业务比例或第一下行业务比例可以 是根据该接入点设备的相对上行业务量与该接入点设备的相对下行业务 量相比较得到的。 另外,该接入点设备的相对上行业务量是根据该接入点 设备所服务的用户设备的相对上行业务量之和得到的,该接入点设备的相 对下行业务量是根据该接入点设备所服务的用户设备的相对下行业务量 之和得到的。
如图 3所示,业务比例计算单元 102-a中包括的相对业务量计算子单 元 302可以将通过累加接入点设备集合中的各个接入点设备所服务的每 个用户设备的相对上行业务量得到的总和作为该接入点设备的相对上行 业务量,将通过累加接入点设备集合中的各个接入点设备所服务的每个用 户设备的相对下行业务量得到的总和作为该接入点设备的相对下行业务 量。 另外, 业务比例计算单元 102-a通过将接入点设备的相对上行业务量 除以该接入点设备的相对上行业务量与该接入点设备的相对下行业务量 之和得到所述接入点设备的第一上行业务比例,或通过将接入点设备的相 对下行业务量除以该接入点设备的相对上行业务量与该接入点设备的相 对下行业务量之和得到所述接入点设备的第一下行业务比例。
例如, 第一上行业务比例可以通过下面的公式(3 )来计算。
第一上行业务比例 =接入点设备的相对上行业务量 / (接入点设备的相 对 上 行 业 务 量 + 接入 点 设备 的 相 对 下 行 业 务 量 ) ( 3 )
类似地, 例如, 第一下行业务比例可以通过下面的公式(4 )来计算。 第一下行业务比例 =接入点设备的相对下行业务量 / (接入点设备的相 对 上 行 业 务 量 + 接入 点 设备 的 相 对 下 行 业 务 量 ) ( 4 )
返回参考图 2。 如图 2所示, 通过累加小区 1中的接入点设备 a所服 务的每个用户设备的相对上行业务量而得到小区 1中的接入点设备 a的相 对上行业务量例如可为 9, 而通过累加小区 1中的接入点设备 a所服务的 每个用户设备的相对下行业务量得到小区 1中的接入点设备 a的相对下行 业务量例如可为 10。 类似地, 通过累加小区 2中的接入点设备 b所服务 的每个用户设备的相对上行业务量而得到小区 2中的接入点设备 b的相对 上行业务量例如可为 9, 而通过累加小区 2中的接入点设备 b所服务的每 个用户设备的相对下行业务量得到小区 2中的接入点设备 b的相对下行业 务量例如可为 9。 类似地, 通过累加小区 3中的接入点设备 c所服务的每 个用户设备的相对上行业务量而得到小区 3中的接入点设备 c的相对上行 业务量例如可为 1, 而通过累加小区 3中的接入点设备 c所服务的每个用 户设备的相对下行业务量得到小区 3中的接入点设备 c的相对下行业务量 例如可为 4。
因此, 针对小区 1 中的接入点设备 a, 可以利用上述公式(3 )来计 算小区 1中的接入点设备 a的第一上行业务比例 =9/ ( 9+10 ) « 0.474, 可 以利用上述公式(4 )来计算小区 1中的接入点设备 a的第一下行业务比 例 =10/ ( 9+10 ) « 0.526。 类似, 针对小区 2中的接入点设备 b, 可以利用 上述公式(3 )来计算小区 2 中的接入点设备 b 的第一上行业务比例 =9/ ( 9+9 ) = 0.5, 可以利用上述公式(4 )来计算小区 2中的接入点设备 b 的第一下行业务比例 =9/ ( 9+9 ) = 0.5。 类似地, 针对小区 3中的接入点设 备 c, 可以利用上述公式(3 )来计算小区 3中的接入点设备 c的第一上 行业务比例 =1/ ( 1+4 ) = 0.2, 可以利用上述公式(4 )来计算小区 3中的 接入点设备 c的第一下行业务比例 =4/ ( 1+4 ) = 0.8。
本领域技术人员应当理解,上述计算第一上行业务比例或第一下行业 务比例的方式仅是例示性的,还可以采用其它的方式来计算上述第一上行 业务比例或第一下行业务比例。例如,也可以直接将接入点设备的相对上 行业务量与接入点设备的相对下行业务量之比作为上述第一上行业务比 例,也可以直接将接入点设备的相对下行业务量与相对上行业务量之比作 为上述第一下行业务比例。 例如, 针对小区 1中的接入点设备 a, 可以将 小区 1中的接入点设备 a的第一上行业务比例计算为 9/10, 可以将小区 1 中的接入点设备 a的第一下行业务比例计算为 10/9。
如图 3所示,业务比例计算单元 102-a中包括的第一平均业务比例计 算子单元 304可以通过累加接入点设备集合中的各个接入点设备的相对 上行业务量得到接入点设备集合的相对上行业务量,通过累加接入点设备 集合中的各个接入点设备的相对下行业务量得到接入点设备集合的相对 下行业务量。另外,通过将接入点设备集合的相对上行业务量除以接入点 设备集合的相对上行业务量与接入点设备集合的相对下行业务量之和得 到平均上行业务比例,或通过将接入点设备集合的相对下行业务量除以接 入点设备集合的相对上行业务量与接入点设备集合的相对下行业务量之 和得到平均下行业务比例。
例如,接入点设备集合的平均上行业务比例可以通过下面的公式( 5 ) 来计算。
平均上行业务比例 =接入点设备集合的相对上行业务量 / (接入点设 备集合的相对上行业务量 +接入点设备集合的相对下行业务量) = ∑接入 点设备的相对上行业务量 / (∑接入点设备的相对上行业务量总和 +∑接入 点设备的相对下行业务量 ) ( 5 )
类似地,例如,接入点设备集合的平均下行业务比例可以通过下面的 公式( 6 )来计算。
平均下行业务比例 =接入点设备集合的相对下行业务量 / (接入点设 备集合的相对上行业务量 +接入点设备集合的相对下行业务量) = ∑接入 点设备的相对下行业务量 / (∑接入点设备的相对上行业务量 +∑接入点设 备的相对下行业务量 ) ( 6 )
因此,针对图 2中所示的接入点设备集合,可以根据小区 1中的接入 点设备 a的第一上行业务比例 9/( 9+10 )或第一下行业务比例 10/( 9+10 )、 小区 2中的接入点设备 b的第一上行业务比例 =9/ ( 9+9 )或第一下行业务 比例 =9/ ( 9+9 )、 小区 3中的接入点设备 c的第一上行业务比例 1/ ( 1+4 ) 或第一下行业务比例 4/ ( 1+4 ), 利用上述公式(5 )来计算该接入点设备 集合的平均上行业务比例 = ( 9+9+1 ) / ( ( 9+9+1 ) + ( 10+9+4 ) ) * 0.452, 可以利用上述公式 (6 )计算该接入点设备集合的平均下行业务比例= ( 10+9+4 ) / ( ( 9+9+1 ) + ( 10+9+4 ) ) * 0.548。
下面参考图 4 来描述根据本发明实施例的装置中的业务比例计算单 元的另一示例的配置。图 4是示出根据本发明实施例的装置中的业务比例 计算单元的另一示例的配置的框图。 如图 4所示, 根据本发明实施例的装置中的业务比例计算单元 102-b 可以包括相对时延计算子单元 402 和 /或第二平均业务比例计算子单元
404„
在本实施例中,用户设备的上行链路状况可以与该用户设备的上行緩 存中等待传输的上行数据包的相对上行时延相关,每个用户设备的相对上 行时延是通过将该用户设备的上行緩存中等待传输的上行数据包的实际 上行时延除以该用户设备的上行频谱效率而得到的;下行链路状况可以与 接入点设备针对每个用户设备的下行緩存中等待传输的下行数据包的相 对下行时延相关,每个用户设备的相对下行时延是通过将接入点设备针对 每个用户设备的下行緩存中等待传输的下行数据包的实际下行时延除以 该用户设备的下行频谱效率而得到的。
例如, 相对上行时延可以通过下面的公式(7 )来计算:
相对上行时延 =实际上行时延 /上行频傳效率 ( 7 ) 类似地, 例如, 相对下行时延可以通过下面的公式(8 )来计算。 相对下行时延 =实际下行时延 /下行频傳效率 ( 8 ) 根据本发明的一个优选实施例,上行频谱效率可为通过接入点设备测 量上行的信道探测参考信号 SRS而得到的即时上行频谱效率, 而下行频 率效率可为通过用户设备反馈的信道质量指示 CQI而得到的即时下行频 谱效率。
根据本发明的另一实施例,上行频谱效率可为通过对一段时间内由接 入点设备测量的上行的信道探测参考信号 SRS进行算术平均或加权平均 而得到的平均上行频傳效率,而下行频率效率可为通过对一段时间内用户 设备反馈的信道质量指示 CQI进行算术平均或加权平均而得到的平均下 行频谱效率。本领域技术人员应当理解,加权平均所使用的权重值可以预 先确定, 也可以根据实验来确定。
根据本发明的又一实施例,上行频谱效率可为接入点设备根据过去一 段时间内以一定频率宽度接收到的业务数据量除以该段时间并且除以该 频率宽度而得到的上行网络平均资源效率,而下行频率效率可为接入点设 备根据过去一段时间内以一定频率宽度发送的业务数据量除以该段时间 并且除以该频率宽度而得到的下行网络平均资源效率。
如上所述,接入点设备的第一上行业务比例或第一下行业务比例可以 是根据该接入点设备的相对上行时延与该接入点设备的相对下行时延相 比较得到的。另外,该接入点设备的相对上行时延是根据该接入点设备所 服务的用户设备的相对上行时延之和得到的,该接入点设备的相对下行时 延是根据该接入点设备所服务的用户设备的相对下行时延之和得到的。
如图 4所示,业务比例计算单元 102-b中包括的相对时延计算子单元 402 可以将通过累加接入点设备集合中的各个接入点设备所服务的每个 用户设备的上行緩存中等待传输的上行数据包的相对上行时延得到的总 和作为该接入点设备的相对上行时延,将通过累加接入点设备集合中的各 个接入点设备针对每个用户设备的下行緩存中等待传输的下行数据包的 相对下行时延得到的总和作为该接入点设备的相对下行时延。 另外, 业务 比例计算单元 102-b 可以通过将接入点设备的相对上行时延除以该接入 点设备的相对上行时延与该接入点设备的相对下行时延之和得到接入点 设备的第一上行业务比例,或通过将接入点设备的相对下行时延除以该接 入点设备的相对上行时延与该接入点设备的相对下行时延之和得到接入 点设备的第一下行业务比例。
例如, 第一上行业务比例可以通过下面的公式(9 )来计算。
第一上行业务比例 =接入点设备的相对上行时 (接入点设备的相对 上行时延 +接入点设备的相对下行时延) ( 9 ) 类似地,例如,第一下行业务比例可以通过下面的公式( 10 )来计算。 第一下行业务比例 =接入点设备的相对下行时延 / (接入点设备的相对 上行时延 +接入点设备的相对下行时延) ( 10 ) 返回参考图 2。 如图 2所示, 通过累加小区 1中的接入点设备 a所服 务的每个用户设备的上行緩存中等待传输的上行数据包的相对上行时延 得到小区 1中的接入点设备 a的相对上行时延例如可为 8, 而通过累加小 区 1中的接入点设备 a针对每个用户设备的下行緩存中等待传输的下行数 据包的相对下行时延得到小区 1中的接入点设备 a的相对下行时延例如可 为 11。 类似地, 通过累加小区 2中的接入点设备 b所服务的每个用户设 备的上行緩存中等待传输的上行数据包的相对上行时延得到小区 2 中的 接入点设备 b的相对上行时延例如可为 7, 而通过累加小区 2中的接入点 设备 b 针对每个用户设备的下行緩存中等待传输的下行数据包的相对下 行时延得到小区 2中的接入点设备 b的相对下行时延例如可为 9。类似地, 通过累加小区 3中的接入点设备 c所服务的每个用户设备的上行緩存中等 待传输的上行数据包的相对上行时延得到小区 3中的接入点设备 c的相对 上行时延例如可为 5, 而通过累加小区 3中的接入点设备 c针对每个用户 设备的下行緩存中等待传输的下行数据包的相对下行时延得到小区 3 中 的接入点设备 c的相对下行时延例如可为 4。
因此, 针对小区 1 中的接入点设备 a, 可以利用上述公式(9 )来计 算小区 1中的接入点设备 a的第一上行业务比例 =8/ ( 8+11 ) « 0.421 , 可 以利用上述公式( 10 )来计算小区 1中的接入点设备 a的第一下行业务比 例 =11/ ( 8+11 ) « 0.579。 类似, 针对小区 2中的接入点设备 b, 可以利用 上述公式(9 )来计算小区 2 中的接入点设备 b 的第一上行业务比例 =7/ ( 7+9 ) = 0.4375, 可以利用上述公式(10 )来计算小区 2中的接入点设 备 b的第一下行业务比例 =9/ ( 7+9 ) = 0.5625。 类似地, 针对小区 3中的 接入点设备 c 可以利用上述公式(9 )来计算小区 3 中的接入点设备 c 的第一上行业务比例 =5/ ( 5+4 ) « 0.556, 可以利用上述公式( 10 )来计 算小区 3中的接入点设备 c的第一下行业务比例 =4/ ( 5+4 ) « 0.444。
本领域技术人员应当理解,上述计算第一上行业务比例或第一下行业 务比例的方式仅是例示性的,还可以采用其它的方式来计算上述第一上行 业务比例或第一下行业务比例。例如,也可以直接将接入点设备的相对上 行时延与接入点设备的相对下行时延之比作为上述第一上行业务比例,也 可以直接将接入点设备的相对下行时延与相对上行时延之比作为上述第 一下行业务比例。 例如, 针对小区 1中的接入点设备 a, 可以将小区 1中 的接入点设备 a的第一上行业务比例计算为 8/11,可以将小区 1中的接入 点设备 a的第一下行业务比例计算为 11/8。
如图 4所示,业务比例计算单元 102-b中包括的第二平均业务比例计 算子单元 404可以通过累加接入点设备集合中的各个接入点设备的相对 上行时延得到接入点设备集合的相对上行时延,通过累加接入点设备集合 中的各个接入点设备的相对下行时延得到所述接入点设备集合的相对下 行时延。 另外, 第二平均业务比例计算子单元 404可以通过将接入点设备 集合的相对上行时延除以该接入点设备集合的相对上行时延与该接入点 设备的相对下行时延之和得到平均上行业务比例,或通过将接入点设备集 合的相对下行时延除以该接入点设备的相对上行时延与该接入点设备集 合的相对下行时延之和得到平均下行业务比例。
例如,接入点设备集合的平均上行业务比例可以通过下面的公式( 11 ) 来计算。
平均上行业务比例 =接入点设备集合的相对上行时延 / (接入点设备 集合的相对上行时延 +接入点设备集合的相对下行时延) = ∑接入点设备 的相对上行时延 / (∑接入点设备的相对上行时延 +∑接入点设备的相对下 行时延) (11 )
类似地,例如,接入点设备集合的平均下行业务比例可以通过下面的 公式( I2 )来计算。 平均下行业务比例 =接入点设备集合的相对下行时延 / (接入点设备 集合的相对上行时延 +接入点设备集合的相对下行时延) = ∑接入点设备 的相对下行时延 / (∑接入点设备的相对上行时延 +∑接入点设备的相对下 行时延) (12 )
因此,针对图 2中所示的接入点设备集合,可以根据小区 1中的接入 点设备 a的第一上行业务比例 8/( 8+11 )或第一下行业务比例 11/( 8+11 )、 小区 2中的接入点设备 b的第一上行业务比例 7/ ( 7+9 )或第一下行业务 比例 9/ ( 7+9 )、 小区 3中的接入点设备 c的第一上行业务比例 5/ ( 5+4 ) 或第一下行业务比例 4/ ( 5+4 ), 利用上述公式( 11 )来计算该接入点设备 集合的平均上行业务比例 = ( 8+7+5 ) / ( ( 8+7+5 ) + ( 11+9+4 ) ) « 0.455, 可以利用上述公式(12 )计算该接入点设备集合的平均下行业务比例= ( 11+9+4 ) / ( ( 8+7+5 ) + ( 11+9+4 ) ) * 0.545。
下面参考图 5 来描述根据本发明实施例的装置中的业务比例计算单 元的又一示例的配置。图 5是示出根据本发明实施例的装置中的业务比例 计算单元的又一示例的配置的框图。 如图 5所示, 根据本发明实施例的装置中的业务比例计算单元 102-c 可以包括加权量计算子单元 502和 /或第三平均业务比例计算子单元 504。
在本实施例中,用户设备的上行链路状况可以与该用户设备的相对上 行业务量与该用户设备的上行緩存中等待传输的上行数据包的相对上行 时延的相对上行加权量相关,用户设备的相对上行业务量是通过将该用户 设备的实际上行业务量除以该用户设备的上行频谱效率而得到的,用户设 备的相对上行时延是通过将该用户设备的上行緩存中等待传输的上行数 据包的实际上行时延除以该用户设备的上行频谱效率而得到的;下行链路 状况可以与该用户设备的相对下行业务量与接入点设备针对该用户设备 的下行緩存中等待传输的下行数据包的相对下行时延的相对下行加权量 相关,用户设备的相对下行业务量是通过将该用户设备的实际下行业务量 除以该用户设备的下行频谱效率而得到的,相对下行时延是通过将接入点 设备针对该用户设备的下行緩存中等待传输的下行数据包的实际下行时 延除以该用户设备的下行频谱效率而得到的。
例如, 相对上行加权和可以通过下面的公式(13 )来计算。
相对上行加权量=相对上行业务量 X加权系数 a+相对上行时延 X加 权系数 b ( 13 ) 其中, 相对上行业务量可以通过上述公式(1 )来计算, 相对上行时 延可以通过上述公式(7 )来计算。 另外, 加权系数 a+加权系数 b=l。 本 领域技术人员应当理解,上^ 权系数 a和加权系数 b可以预先确定,或 者可以根据试验来确定。
类似地, 例如, 相对下行加权和可以通过下面的公式( 14 )来计算。 相对下行加权和=相对下行业务量 X加权系数 a+相对下行时延 X加 权系数 b ( 14 )
其中, 相对下行业务量可以通过上述公式(2 )来计算, 相对下行时 延可以通过上述公式( 8 )来计算。 另外, 加权系数 a+加权系数 b=l。 本 领域技术人员应当理解,上^ 权系数 a和加权系数 b可以预先确定,或 者可以根据试验来确定。
如图 5所示,业务比例计算单元 102-c中包括的加权量计算子单元 502 可以将通过累加接入点设备集合中的各个接入点设备所服务的每个用户 设备的相对上行加权量得到的总和作为该接入点设备的相对上行加权量, 将通过累加接入点设备集合中的各个接入点设备所服务的每个用户设备 的相对下行加权量得到的总和作为该接入点设备的相对下行加权量。 另 外, 业务比例计算单元 102-c通过将接入点设备的相对上行加权量除以该 接入点设备的相对上行加权量与该接入点设备的相对下行加权量之和得 到接入点设备的第一上行业务比例,或通过将接入点设备的相对下行加权 量除以该接入点设备的相对上行加权量与该接入点设备的相对下行加权 量之和得到接入点设备的第一下行业务比例。
例如, 第一上行业务比例可以通过下面的公式(15 )来计算。
第一上行业务比例 =接入点设备的相对上行加权量 / (接入点设备的相 对上行加权量 + 接入点 设备的 相对 下行加权量 ) ( 15 )
类似地,例如,第一下行业务比例可以通过下面的公式( 16 )来计算。 第一下行业务比例 =接入点设备的相对下行加权量 / (接入点设备的相 对上行加权量 + 接入点 设备的 相对 下行加权量 ) ( 16 )
返回参考图 2。 如图 2所示, 假设小区 1中的接入点设备 a的相对上 行业务量为 9, 小区 1中的接入点设备 a的相对上行时延为 8, 加权系数 a为 0.4, 加权系数 b为 0.6, 则利用上述公式( 13 )可以计算得到接入点 设备 a的相对上行加权量 =9 x 0.4+8 x 0.6=8.4。 类似地, 假设小区 1中的 接入点设备 a的相对下行业务量为 10, 小区 1中的接入点设备 a的相对 下行时延为 11, 加权系数 a为 0.4, 加权系数 b为 0.6, 则利用上述公式 ( 14) 可以计算得到接入点设备 a 的相对下行加权量 =10x0.4+11 X 0.6=10.6。 因此, 针对小区 1中的接入点设备 a, 可以利用上述公式(15) 来计算小区 1中的接入点设备 a的第一上行业务比例 =8.4/ (8.4+10.6) « 0.442, 可以利用上述公式( 16)来计算小区 1 中的接入点设备 a的第一 下行业务比例 =10.6/ (8.4+10.6) * 0.558ο
类似地,如图 2所示,假设小区 2中的接入点设备 b的相对上行业务 量为 9,小区 2中的接入点设备 b的相对上行时延为 7,加权系数 a为 0.4, 加权系数 b为 0.6, 则利用上述公式( 13)可以计算得到接入点设备 b的 相对上行加权量 =9 X 0.4+7 X 0.6=7.8。 类似地, 假设小区 2中的接入点设 备 b的相对下行业务量为 9,小区 2中的接入点设备 b的相对下行时延为 9, 加权系数 a为 0.4, 加权系数 b为 0.6, 则利用上述公式( 14)可以计 算得到接入点设备 b的相对下行加权量 =9 X 0.4+9 0.6=9。 因此, 针对小 区 2中的接入点设备 b, 可以利用上述公式( 15)来计算小区 2中的接入 点设备 b的第一上行业务比例 =7.8/ (7.8+9) «0.464, 可以利用上述公式 ( 16)来计算小区 2中的接入点设备 b的第一下行业务比例 =9/ (7.8+9) «0.536。
类似地,如图 2所示,假设小区 3中的接入点设备 c的相对上行业务 量为 1,小区 3中的接入点设备 c的相对上行时延为 5,加权系数 a为 0.4, 加权系数 b为 0.6, 则利用上述公式( 13)可以计算得到接入点设备 c的 相对上行加权量 =1 X 0.4+5 X 0.6=3.4。 类似地, 假设小区 3中的接入点设 备 c的相对下行业务量为 4, 小区 3中的接入点设备 c的相对下行时延为 4, 加权系数 a为 0.4, 加权系数 b为 0.6, 则利用上述公式( 14)可以计 算得到接入点设备 c的相对下行加权量 =4 X 0.4+4 X 0.6=4。 因此, 针对小 区 3中的接入点设备 c, 可以利用上述公式( 15)来计算小区 3中的接入 点设备 c的第一上行业务比例 =3.4/ (3.4+4) « 0.459, 可以利用上述公式 (16)来计算小区 3中的接入点设备 c的第一下行业务比例 =4/ ( 3.4+4 ) «0.541。
如上所述,接入点设备的第一上行业务比例或第一下行业务比例是根 据该接入点设备的相对上行加权量与该接入点设备的相对下行加权量相 比较得到的。另外,该接入点设备的相对上行加权量是根据该接入点设备 所服务的用户设备的相对上行加权量之和得到的,该接入点设备的相对下 行加权量是根据该接入点设备所服务的用户设备的相对下行加权量之和 得到的。
如图 5所示, 业务比例计算单元 102-c中包括的第三平均业务比例计 算子单元 504 可以通过累加接入点设备集合中的各个接入点设备的相对 上行加权量得到接入点设备集合的相对上行加权量,通过累加接入点设备 集合中的各个接入点设备的相对下行加权量得到接入点设备集合的相对 下行加权量。另外, 第三平均业务比例计算子单元 504可以通过将接入点 设备集合的相对上行加权量除以该接入点设备集合的相对上行加权量与 该接入点设备集合的相对下行加权量之和得到平均上行业务比例,或通过 将接入点设备集合的相对下行加权量除以该接入点设备集合的相对上行 加权量与该接入点设备集合的相对下行加权量之和得到平均下行业务比 例。
例如,接入点设备集合的平均上行业务比例可以通过下面的公式( 17 ) 来计算。
平均上行业务比例 =接入点设备集合的相对上行加权量 / (接入点设 备集合的相对上行加权量 +接入点设备集合的相对下行加权量) = ∑接入 点设备的相对上行加权量 / (∑接入点设备的相对上行加权量 +∑接入点设 备的相对下行加权量 ) ( 17 )
类似地,例如,接入点设备集合的平均下行业务比例可以通过下面的 公式( 18 )来计算。
平均下行业务比例 =接入点设备集合的相对下行加权量 / (接入点设 备集合的相对上行加权量 +接入点设备集合的相对下行加权量) = ∑接入 点设备的相对下行加权量 / (∑接入点设备的相对上行加权量 +∑接入点设 备的相对下行加权量 ) ( 18 )
因此,针对图 2中所示的接入点设备集合,可以根据小区 1中的接入 点设备 a的第一上行业务比例 8.4/ ( 8.4+10.6 )或第一下行业务比例 10.6/
( 8.4+10.6 )、 小区 2中的接入点设备 b的第一上行业务比例 7.8/ ( 7.8+9 ) 或第一下行业务比例 9/ ( 7.8+9 )、 小区 3中的接入点设备 c的第一上行业 务比例 3.4/ ( 3.4+4 )或第一下行业务比例 4/ ( 3.4+4 ), 利用上述公式( 17 ) 来计算该接入点设备集合的平均上行业务比例 = ( 8.4+7.8+3.4 ) I
( ( 8.4+7.8+3.4 ) + ( 10.6+9+4 ) ) « 0.454, 可以利用上述公式( 18 )计算 该接入点设备集合的平均下行业务比例 = ( 10.6+9+4 ) I ( ( 8.4+7.8+3.4 ) + ( 10.6+9+4 ) ) « 0.546。
返回参考图 1, 装置 100中的初始子帧配置确定单元 104可以根据接 入点设备集合的平均上行业务比例或平均下行业务比例确定与接入点设 备集合的平均上行业务比例或平均下行业务比例相适应的子帧配置作为 接入点设备集合中的各个接入点设备的初始子帧配置。
目前, 采用时分双工方式的通用移动通信系统(UMTS )长期演进 ( LTE )可以提供 7种不同的非对称上下行分配的时分双工子帧配置, 具 体如下面的表 1所示。 表 1示出 TDD-LTE标准中规定的不同子帧配置。
表 1
Figure imgf000033_0001
在表 1中, D表示下行子帧, U表示上行子帧, S表示特殊子帧。 在 常规循环前缀的情况下, 下行子帧 D、 上行子帧 U和特殊子帧 S中的每 个具有 14个 OFDM符号。在扩展循环前缀的情况下, 下行子帧0、上行 子帧 U和特殊子帧 S中的每个具有 12个 OFDM符号。
如表 1所示, 子帧配置 #0至子帧配置 #6中的每种子帧配置都具有一 定数量的下行子帧 D、 上行子帧 U和特殊子帧 S。 例如, 子帧配置 #6包 括 3个下行子帧、 5个上行子帧 U和 2个特殊子帧 S。
针对特殊子帧 S,又存在若干种不同的配置,具体如下面的表 2所示。 表 2示出特殊子帧 S的不同配置。
表 2 特殊子 常规循环前缀 扩展循环前缀
帧配置 DwPTS GP UpPTS DwPTS GP UpPTS
#0 3 10 3 8 1
#1 9 4 8 3
#2 10 3 1 9 2
#3 11 2 10 1
#4 12 1 3 7 2
#5 3 9 2 8 2
#6 8 3 9 1
#7 10 2
#8 11 1
如表 2所示,在常规循环前缀的情况下,特殊子帧 S具有 9种不同的 配置; 在扩展循环前缀的情况下, 特殊子帧 S具有 7中不同的配置。在表 2中, DwPTS表示下行导频时隙, 用于下行传输; UpPTS表示上行导频 时隙, 用于上行传输; GP表示保护间隔, 一般置空。 表 2示出了在每种 配置下特殊子帧 S中的 DwPTS、 GP和 UpPTS各自占用的 OFDM符号 数目。 一般, 特殊子帧采用何种配置是由网络端高层信令配置的。
根据上述表 1和表 2, 可以计算与表 1中所示的 7种子帧配置中的每 种子帧配置对应的上行资源比例或下行资源比例。
例如, 对于表 1中所示的子帧配置 #6, 子帧配置 #6包括 3个下行子 帧 D、 5个上行子帧 U和 2个特殊子帧 S。 假设下行子帧 D、 上行子帧 U 和特殊子帧 S均采用常规循环前缀, 则 3个下行子帧 D占用 ( 3 X 14 )个 OFDM符号, 5个上行子帧 U占用 (5 X 14 )个 OFDM符号。 另外, 还 假设在常规循环前缀的情况下,特殊子帧 S采用表 2中所示的配置 #8,则 每个特殊子帧 S中的 DwPTS占用 11个 OFDM符号,每个特殊子帧 S中 的 UpPTS占用 2个 OFDM符号, 所以 2个特殊子帧 S中用于下行传输 的 OFDM符号数为 (2 x 11 )个, 而 2个特殊子帧 S中用于上行传输的 OFDM符号数为 (2 x 2 )个。 因此, 在表 1中所示的子帧配置 #6中, 用 于下行传输的 OFDM 符号数为 (3 x 14+2 x 11 )个, 而用于上行传输的 OFDM符号数为 (5 x 14+2 x 2 )个。 因此, 例如, 可以通过将用于下行 的 OFDM符号数之和, 来计算得到与表 1中所示的子帧配置 #6对应的下 行资源比例: ( 3 X 14+2 X 11 ) / ( 3 X 14+2 x 11+5 14+2 2 ) =0.464。 类 似地, 例如, 可以通过将用于上行传输的 OFDM符号数除以用于下行传 输的 OFDM符号数与用于上行传输的 OFDM符号数之和,来计算得到与 表 1中所示的子帧配置 #6对应的上行资源比例:(5 X 14+2 x 2 )/( 3 x 14+2 X 11+5 X 14+2 x 2 ) =0.536。
本领域技术人员应当理解,如果确定不同的特殊子帧 S的配置,则计 算出的下行资源比例或上行资源比例会相应地变化。
另外,本领域技术人员应当理解,上述计算下行资源比例或上行资源 比例的方式仅是例示性的。还可以采用其它的方式来计算下行资源比例或 上行资源比例。 例如, 也可以将用于下行传输的 OFDM符号数除以用于 上行传输的 OFDM符号数, 来计算得到与表 1中所示的子帧配置 #6对应 的下行资源比例: ( 3 x 14+2 X 11 ) / ( 5 x 14+2 ^ 2 ) « 0.865; 类似地, 也 可以将用于上行传输的 OFDM符号数除以用于下行传输的 OFDM符号 数, 来计算得到与表 1 中所示的子帧配置 #6对应的下行资源比例: (5 x 14+2 x 2 ) / ( 3 x 14+2 X 11 ) = 1.15625。
可以将通过上述业务比例计算单元计算得到的接入点设备集合的平 均上行业务比例与各种子帧配置的上行资源比例进行比较,并且将与平均 上行业务比例最接近的上行资源比例所对应的子帧配置确定为与平均上 行业务比例相适应的子帧配置,并且将所确定的与平均上行业务比例相适 应的子帧配置作为接入点设备集合中的各个接入点设备的初始子帧配置。
例如,假设采用图 3所示的业务比例计算单元 102-a计算得到的接入 点设备集合的平均上行业务比例为 0.452,而与该平均上行业务比例 0.452 最接近的上行资源比例为子帧配置 #6的上行资源比例 0.536。 因此, 将子 帧配置 #6确定为与该平均上行业务比例 0.452相适应的子帧配置,并且将 子帧配置 #6作为该接入点设备集合中的各个接入点设备的初始子帧配 置。 本领域技术人员应当理解, 当采用图 4 所示的业务比例计算单元 102-b、 或图 5所示的业务比例计算单元 102-c来计算接入点设备集合的 平均上行业务比例时,所得到的平均上行业务比例的值会相应地变化,但 上述确定初始子帧配置的原理是相同的, 其具体细节在此不再赘述。
另外,也可以将通过上述业务比例计算单元计算得到的接入点设备集 合的平均下行业务比例与各种子帧配置的下行资源比例进行比较,并且将 与平均下行业务比例最接近的下行资源比例所对应的子帧配置确定为与 平均下行业务比例相适应的子帧配置,并且将所确定的与平均下行业务比 例相适应的子帧配置作为接入点设备集合中的各个接入点设备的初始子 帧配置。
例如,假设采用图 3所示的业务比例计算单元 102-a计算得到的接入 点设备集合的平均下行业务比例为 0.548,而与该平均下行业务比例 0.548 最接近的下行资源比例为子帧配置 #6的下行资源比例 0.464。 因此, 将子 帧配置 #6确定为与该平均下行业务比例 0.548相适应的子帧配置,并且将 子帧配置 #6作为该接入点设备集合中的各个接入点设备的初始子帧配 置。 本领域技术人员应当理解, 当采用图 4 所示的业务比例计算单元 102-b、 或图 5所示的业务比例计算单元 102-c来计算接入点设备集合的 平均下行业务比例时,所得到的平均下行业务比例的值会相应地变化,但 上述确定初始子帧配置的原理是相同的, 其具体细节在此不再赘述。
下面参考图 6 来描述根据本发明实施例的无线通信系统中的装置的 另一配置。图 6是示出根据本发明实施例的无线通信系统中的装置的另一 配置的框图。
如图 6所示,无线通信系统中的装置 600包括业务比例计算单元 602、 初始子帧配置确定单元 604、 业务比例确定单元 606和子帧配置调整单元 608。 其中, 业务比例计算单元 602和初始子帧配置确定单元 604的配置 分别与图 1中所示的装置 100中的业务比例计算单元 102和初始子帧配置 确定单元 104的配置相同, 因此其具体细节在此不再赞述。 下面, 详细描 述业务比例确定单元 606和子帧配置调整单元 608。
如图 6所示,业务比例确定单元 606可以确定与初始子帧配置对应的 第二上行业务比例或第二下行业务比例。
如上所述,在通过上述初始子帧配置确定单元 104或 604确定了上述 7种子帧配置之一作为初始子帧配置后, 可以将所确定的 7种子帧配置之 一的上行资源比例或下行资源比例作为与初始子帧配置对应的第二上行 业务比例或第二下行业务比例。
接着上述的示例, 假设确定子帧配置 #6作为初始子帧配置, 则可以 将子帧配置 #6的上行资源比例(例如为 0.536 )或下行资源比例(例如为 0.464 )作为与初始子帧配置对应的第二上行业务比例(例如为 0.536 )或 第二下行业务比例 (例如为 0.464 )。 如图 6所示,子帧配置调整单元 608根据第一上行业务比例与第二上 行业务比例之间的差异、或者第一下行业务比例与第二下行业务比例之间 的差异,在初始子帧配置的基础上调整接入点设备集合中的各个接入点设 备的子帧配置。
如上所述,可以利用上述业务比例计算单元 102或 602计算得到接入 点设备集合中的每个接入点设备的第一上行业务比例或第一下行业务比 例。另外,可以利用上述业务比例确定单元 606确定与初始子帧配置对应 的第二上行业务比例或第二下行业务比例。可以将第一上行业务比例与第 二上行业务比例进行比较,并且根据第一上行业务比例与第二上行业务比 例之间的差异,在初始子帧配置的基础上调整接入点设备集合中的各个接 入点设备的子帧配置, 以决定是维持接入点设备的初始子帧配置不变,还 是为接入点设备确定一个新的子帧配置。例如,如果第一上行业务比例与 第二上行业务比例之间的差异较小,则表示初始子帧配置可以较好地适应 该接入点设备的上下行链路状况,因此可以维持该接入点设备的初始子帧 配置不变。又例如,如果第一上行业务比例与第二上行业务比例之间的差 异较大,则表示初始子帧配置未能与该接入点设备的上下行链路状况相适 应,因此需要为该接入点设备确定一个新的子帧配置以适应该接入点设备 的上下行链路状况。
另外,也可以将第一下行业务比例与第二下行业务比例进行比较,并 且根据第一下行业务比例与第二下行业务比例之间的差异,在初始子帧配 置的基础上调整接入点设备集合中的各个接入点设备的子帧配置,以决定 是维持接入点设备的初始子帧配置不变,还是为接入点设备确定一个新的 子帧配置。例如,如果第一下行业务比例与第二下行业务比例之间的差异 较小,则表示初始子帧配置可以较好地适应该接入点设备的上下行链路状 况, 因此可以维持该接入点设备的初始子帧配置不变。 又例如, 如果第一 上行业务比例与第二上行业务比例之间的差异较大,则表示初始子帧配置 未能与该接入点设备的上下行链路状况相适应,因此需要为该接入点设备 确定一个新的子帧配置以适应该接入点设备的上下行链路状况。
下面参考图 7 来描述根据本发明实施例的子帧配置调整单元的一个 例示性配置。图 7是示出根据本发明实施例的子帧配置调整单元的一个例 示性配置的框图。
如图 7所示,子帧配置调整单元 608包括差值计算子单元 702和子帧 配置调整子单元 704。 差值计算子单元 702 可以计算第一上行业务比例与第二上行业务比 例之间的上行业务比例差值、或者第一下行业务比例与第二下行业务比例 之间的下行业务比例差值。
具体地,差值计算单元 702可以将第一上行业务比例减去第二上行业 务比例, 以计算两者之间的上行业务比例差值或其绝对值。 另外, 差值计 算子单元 702也可以将第一下行业务比例减去第二下行业务比例,以计算 两者之间的下行业务比例差值或其绝对值。
例如, 如上所述, 参考图 2和图 3, 利用图 3所示的业务比例计算单 元 102-a计算得到小区 1中的接入点设备 a的第一下行业务比例为 0.526, 小区 2中的接入点设备 b的第一下行业务比例为 0.5, 小区 3中的接入点 设备 c的第一下行业务比例为 0.8。 另外, 例如, 如上所述, 参考图 6, 假设确定子帧配置 #6作为初始子帧配置, 则可以将子帧配置 #6的下行资 源比例 0.464作为与初始子帧配置对应的第二下行业务比例 0.464。 因此, 可以计算得到小区 1中的接入点设备 a的第一下行业务比例与上述第二下 行业务比例之间的差值为( 0.526-0.464=0.062 ), 小区 2中的接入点设备 b 的第一下行业务比例与上述第二下行业务比例之间的差值为 ( 0.5-0.464=0.036 ),小区 3中的接入点设备 c的第一下行业务比例与上述 第二下行业务比例之间的差值为 ( 0.8-0.464=0.336 )。
子帧配置调整子单元 704 可以根据上行业务比例差值与预设的第一 差值阈值的第一比较结果、或者下行业务比例差值与预设的第二差值阈值 的第二比较结果,在初始子帧配置的基础上调整接入点设备集合中的各个 接入点设备的子帧配置。
具体地,子帧配置调整子单元 704可以将上行业务比例差值或其绝对 值与预设的第一差值阈值进行比较以得到第一比较结果,并且根据第一比 较结果,在初始子帧配置的基础上调整接入点设备集合中的各个接入点设 备的子帧配置, 以决定是维持接入点设备的初始子帧配置不变,还是为接 入点设备确定一个新的子帧配置。 例如, 如果第一比较结果的值较小, 则 表示初始子帧配置可以较好地适应该接入点设备的上下行链路状况,因此 可以维持该接入点设备的初始子帧配置不变。又例如,如果第一比较结果 的值较大,则表示初始子帧配置未能与该接入点设备的上下行链路状况相 适应,因此需要为该接入点设备确定一个新的子帧配置以适应该接入点设 备的上下行链路状况。
另外,子帧配置调整子单元 704可以将下行业务比例差值或其绝对值 与预设的第二差值阈值进行比较以得到第二比较结果,并且根据第二比较 结果,在初始子帧配置的基础上调整接入点设备集合中的各个接入点设备 的子帧配置, 以决定是维持接入点设备的初始子帧配置不变,还是为接入 点设备确定一个新的子帧配置。 例如, 如果第二比较结果的值较小, 则表 示初始子帧配置可以较好地适应该接入点设备的上下行链路状况,因此可 以维持该接入点设备的初始子帧配置不变。又例如,如果第二比较结果的 值较大,则表示初始子帧配置未能与该接入点设备的上下行链路状况相适 应,因此需要为该接入点设备确定一个新的子帧配置以适应该接入点设备 的上下行链路状况。
根据本发明的一个优选实施例,在上行业务比例差值的绝对值小于或 等于预设的第一差值阈值的情况下或者在下行业务比例差值的绝对值小 于或等于预设的第二差值阈值的情况下,则表示初始子帧配置可以较好地 适应该接入点设备的上下行链路状况,因此子帧配置调整子单元 704可以 为接入点设备确定初始子帧配置。
根据本发明的另一优选实施例,在上行业务比例差值的绝对值大于预 设的第一差值阈值的情况下或者在下行业务比例差值的绝对值大于预设 的第二插值阈值的情况下,则表示初始子帧配置未能与该接入点设备的上 下行链路状况相适应,因此子帧配置调整子单元 704可以在初始子帧配置 的基础上为接入点设备确定新的子帧配置。 例如, 子帧配置调整子单元 704可以在初始子帧配置的基础上, 根据接入点设备的上下行链路情况, 为该接入点设备确定一个新的子帧配置。例如,所确定的新的子帧配置可 以通过下面的方式得到:在初始子帧配置的基础上增加或减少一个或两个 上行子帧或下行子帧,其它子帧尽量保持不变, 以减少接入点设备之间的 子帧交错干扰。
具体地,在上行业务比例差值大于预设的第一差值阈值的情况下,子 帧配置调整子单元 704可以在初始子帧配置的基础上增加一个或两个上 行子帧; 或者在下行业务比例差值大于预设的第二差值阈值的情况下,子 帧配置调整子单元 704可以在初始子帧配置的基础上增加一个或两个下 行子帧。
另外,在上行业务比例差值小于预设的第一差值阈值的相反数的情况 下,子帧配置调整子单元 704可以在初始子帧配置的基础上减少一个或两 个上行子帧;或者在下行业务比例差值小于预设的第二差值阈值的相反数 的情况下,子帧配置调整子单元 704可以在初始子帧配置的基础上减少一 个或两个下行子帧。
下面参考表 3来说明如何为接入点设备确定新的子帧配置。表 3示出 为接入点设备确定新的子帧配置的一个示例。
表 3
Figure imgf000040_0001
表 3 中的第一列是为接入点设备集合中的每个接入点设备确定的初 始子帧配置。表 3中的第二列是为上行链路状况超负荷的接入点设备进行 子帧配置调整时可选的新的子帧配置。表 3的第三列是为下行链路状况超 负荷的接入点设备进行子帧配置调整时可选的新的子帧配置。表 3中的子 帧配置 #0至 #6可为上述表 1中所列的子帧配置 #0至 #6。
才艮据本发明的优选实施例,第一差值阈值和第二差值阈值为 0.25-0.35 的范围内的值。如上所述, 第一差值阈值表示接入点设备的当前的第一上 行业务比例与初始子帧配置所对应的第二上行业务之间的差值的阈值。如 果第一上行业务比例与第二上行业务之间的差值超过第一差值阈值,则需 要为接入点设备确定新的子帧配置,例如可以在初始子帧配置的基础上增 加或减少一个或两个上行子帧。 因此,所确定的新的子帧配置会比初始子 帧配置增加或减少 10% -20%的上行资源。 以增加或减少最多 20%的上行 资源为例, 所确定的第一差值阈值需要大于 0.2才能体现出业务自适应与 降低接入点设备干扰之间的折衷。基于上述考虑,可以将第一差值阈值确 定为 0.25-0.35的范围内的值。
类似地,如上所述,第二差值阈值表示接入点设备的当前的第一下行 业务比例与初始子帧配置所对应的第二下行业务之间的差值的阈值。如果 第一下行业务比例与第二下行业务之间的差值超过第二差值阈值,则需要 为接入点设备确定新的子帧配置,例如可以在初始子帧配置的基础上增加 或减少一个或两个下行子帧。 因此, 所确定的新的子帧配置会比初始子帧 配置增加或减少 10% -20%的下行资源。 以增加或减少最多 20%的下行资 源为例, 所确定的第一差值阈值需要大于 0.2才能体现出业务自适应与降 低接入点设备干扰之间的折衷。基于上述考虑,可以将第二差值阈值确定 为 0.25-0.35的范围内的值。
接着上面的示例,假设第二差值阈值的值为 0.25。将小区 1中的接入 点设备 a 的第一下行业务比例与上述第二下行业务比例之间的差值
( 0.526-0.464=0.062 )、 小区 2中的接入点设备 b的第一下行业务比例与 上述第二下行业务比例之间的差值(0.5-0.464=0.036 )、 和小区 3 中的接 入点设备 c 的第一下行业务比例与上述第二下行业务比例之间的差值
( 0.8-0.464=0.336 )分别与第二差值阈值 0.25进行比较。 通过比较发现, 小区 1中的接入点设备 a的第一下行业务比例与上述第二下行业务比例之 间的差值(0.526-0.464=0.062 ) 小于第二差值阈值 0.25, 并且小区 2中的 接入点设备 b 的第一下行业务比例与上述第二下行业务比例之间的差值
( 0.5-0.464=0.036 )也小于第二差值阈值 0.25。 因此, 小区 1中的接入点 设备 a和小区 2中的接入点设备 b的下行业务比例与初始子帧配置 #6所 对应的下行资源比例的差异不大, 所以小区 1中的接入点设备 a和小区 2 中的接入点设备 b继续采用初始子帧配置 #6。 另外, 通过比较发现, 小区 3中的接入点设备 c的第一下行业务比例与上述第二下行业务比例之间的 差值(0.8-0.464=0.336 ) 大于第二差值阈值 0.25。 因此, 小区 3中的接入 点设备 c的下行业务比例与初始子帧配置 #6所对应的下行资源比例的差 异较大, 所以对小区 3中的接入点设备的子帧配置进行调整,增加其下行 子帧的比例。 例如, 可以根据上述表 3, 从 TDD-LTE的 7种子帧配置中 确定新的子帧配置 #1。本领域技术人员应当理解,上述具体数值仅是例示 性的, 根据具体情况, 还可以采用其它的数值。 另外, 也可以根据第一上 行业务比例和第二上行业务比例来进行子帧配置的调整,其具体示例在此 不再赘述。
下面参考图 8 来描述根据本发明实施例的用在无线通信系统中的方 法。 图 8是示出根据本发明实施例的用在无线通信系统中的方法的流程 图。
如图 8所示, 该方法开始于步骤 800。 在步骤 800之后, 该方法前进 到步骤 802。 在步骤 802,根据接入点设备集合中的各个接入点设备的第一上行业 务比例或第一下行业务比例计算接入点设备集合的平均上行业务比例或 平均下行业务比例。
在步骤 802之后, 该方法前进到步骤 804。
在步骤 804,根据接入点设备集合的平均上行业务比例或平均下行业 务比例确定与接入点设备集合的平均上行业务比例或平均下行业务比例 相适应的子帧配置作为接入点设备集合中的各个接入点设备的初始子帧 配置。
图 8所示的方法是与图 1所述的装置相对应的方法,其具体细节在此 不再赘述。
下面结合图 9 来描述根据本发明另一实施例的无线通信系统中的装 置的配置。图 9是示出根据本发明另一实施例的无线通信系统中的装置的 配置的框图。
如图 9所示, 根据本实施例的装置 900可以包括业务比例计算单元
902和通信单元 904。
业务比例计算单元 902可以根据接入点设备所服务的用户设备的上 行链路状况和下行链路状况计算该接入点设备的第一上行业务比例或第 一下行业务比例。
接入点设备可以采用各种方式来计算其第一上行业务比例或第一下 行业务比例。例如,接入点设备的第一上行业务比例或第一下行业务比例 可以是根据将该接入点设备所服务的用户设备的上行链路状况与下行链 路状况相比较得到的。
通常,每个接入点设备的上行链路状况与下行链路状况之间可以具有 不同的相对关系,例如,有的接入点设备的上行链路状况可能大于下行链 路状况,有的接入点设备的上行链路状况可能小于下行链路状况,或者有 的接入点设备上行链路的状况与下行链 况可能基本上相同。每个接入 点设备的上行链路状况与下行链路状况之间的相对关系可以用每个接入 点设备的上行链路状况与下行链路状况之间的相对比例来表示。针对每个 接入点设备,可以通过计算该接入点设备的上行链路状况相对于上行链路 状况与下行链路状况之和的比率作为该接入点设备的第一上行业务比例, 或者可以通过计算该接入点设备的下行链路状况相对于上行链路状况与 下行链路状况之和的比率作为该接入点设备的第一下行业务比例。 另外, 针对接入点设备集合,可以通过计算该接入点设备集合中的所有接入点设 备的上行链路状况相对于所有接入点设备的上行链路与下行链路之和的 比率作为该接入点设备集合的平均上行业务比例,或者可以通过计算该接 入点设备集合中的所有接入点设备的下行链路状况相对于该接入点设备 集合中的所有接入点设备的上行链路与下行链路之和的比率作为该接入 点设备集合的平均下行业务比例。
本领域技术人员应当理解,上述计算第一上行业务比例、第一下行业 务比例、平均上行业务比例或平均下行业务比例的方式仅是例示性的,还 可以采用其它的方式来计算上述第一上行业务比例、 第一下行业务比例、 平均上行业务比例或平均下行业务比例。例如,也可以直接将接入点设备 的上行链路状况与下行链路状况之比作为上述第一上行业务比例,也可以 直接将接入点设备的下行链路状况与上行链路状况之比作为上述第一下 行业务比例,也可以直接将接入点设备集合中的所有接入点设备的上行链 路状况与下行链路状况之比作为上述平均上行业务比例,或者也可以直接 将接入点设备集合中的所有接入点设备的下行链路状况与上行链路状况 之比作为上述平均下行业务比例, 等等。
上文中已经详细描述了如何计算接入点设备的第一上行业务比例或 第一下行业务比例, 其具体细节在此不再赞述。
在由业务比例计算单元 902计算得到接入点设备的第一上行业务比 例或第一下行业务比例之后,通信单元 904可以发送该接入点设备的第一 上行业务比例或第一下行业务比例。该接入点设备的第一上行业务比例或 第一下行业务比例用以计算接入点设备所在的接入点设备集合的平均上 行业务比例或平均下行业务比例,从而确定与该接入点设备集合的平均上 行业务比例或平均下行业务比例相适应的初始子帧配置。
上文中已经详细描述了如何根据接入点设备集合中的各个接入点设 备的第一上行业务比例或第一下行业务比例来计算该接入点设备的平均 上行业务比例或平均下行业务比例,以及如何根据接入点设备集合的平均 上行业务比例或平均下行业务比例来确定与该接入点设备集合的平均上 行业务比例或平均下行业务比例相适应的初始子帧配置,其具体细节在此 不再赘述。
另外,通信单元 904还用于接收该接入点设备的子帧配置信息,该子 帧配置信息是根据初始子帧配置对应的第二上行业务比例或第二下行业 务比例与所述接入点设备的第一上行业务比例或第二下行业务比例相比 较而得到的。上文中已经详细描述了如何根据初始子帧配置对应的第二上 行业务比例或第二下行业务比例与所述接入点设备的第一上行业务比例 或第二下行业务比例相比较来得到子帧配置信息,其具体细节在此不再赘 述。
另外,通信单元 904还用于发送子帧配置至接入点设备所服务的用户 设备,其中,该子帧配置与该接入点设备的第一上行业务比例或第一下行 业务比例相适应。上文中已经详细描述了如何确定与接入点设备的第一上 行业务比例或第一下行业务比例相适应的子帧配置,其具体细节在此不再 赘述。
下面参考图 10来描述根据本发明另一实施例的无线通信系统中的装 置的配置。图 6是示出根据本发明另一实施例的无线通信系统中的装置的 配置的框图。
如图 10所示, 无线通信系统中的装置 1000包括业务比例计算单元 1002、通信单元 1004、业务比例确定单元 1006和子帧配置调整单元 1008。 其中,业务比例计算单元 1002和通信单元 1004的配置分别与图 9中所示 的装置 900中的业务比例计算单元 902和通信单元 904的配置相同,因此 其具体细节在此不再赞述。 下面, 详细描述业务比例确定单元 1006和子 帧配置调整单元 1008。
如图 10所示,业务比例确定单元 1006可以确定与初始子帧配置对应 的第二上行业务比例或第二下行业务比例。
如上所述,在通过上述初始子帧配置确定单元 104或 604确定了上述 7种子帧配置之一作为初始子帧配置后, 可以将所确定的 7种子帧配置之 一的上行资源比例或下行资源比例作为与初始子帧配置对应的第二上行 业务比例或第二下行业务比例。
接着上述的示例, 假设确定子帧配置 #6作为初始子帧配置, 则可以 将子帧配置 #6的上行资源比例(例如为 0.536 )或下行资源比例(例如为 0.464 )作为与初始子帧配置对应的第二上行业务比例(例如为 0.536 )或 第二下行业务比例 (例如为 0.464 )。
如图 10所示,子帧配置调整单元 1008根据第一上行业务比例与第二 上行业务比例之间的差异、或者第一下行业务比例与第二下行业务比例之 间的差异,在初始子帧配置的基础上调整接入点设备集合中的各个接入点 设备的子帧配置。 如上所述,可以利用上述业务比例计算单元 102或 602计算得到接入 点设备集合中的每个接入点设备的第一上行业务比例或第一下行业务比 例。另外,可以利用上述业务比例确定单元 606确定与初始子帧配置对应 的第二上行业务比例或第二下行业务比例。可以将第一上行业务比例与第 二上行业务比例进行比较,并且根据第一上行业务比例与第二上行业务比 例之间的差异,在初始子帧配置的基础上调整接入点设备集合中的各个接 入点设备的子帧配置, 以决定是维持接入点设备的初始子帧配置不变,还 是为接入点设备确定一个新的子帧配置。例如,如果第一上行业务比例与 第二上行业务比例之间的差异较小,则表示初始子帧配置可以较好地适应 该接入点设备的上下行链路状况,因此可以维持该接入点设备的初始子帧 配置不变。又例如,如果第一上行业务比例与第二上行业务比例之间的差 异较大,则表示初始子帧配置未能与该接入点设备的上下行链路状况相适 应,因此需要为该接入点设备确定一个新的子帧配置以适应该接入点设备 的上下行链路状况。
另外,也可以将第一下行业务比例与第二下行业务比例进行比较,并 且根据第一下行业务比例与第二下行业务比例之间的差异,在初始子帧配 置的基础上调整接入点设备集合中的各个接入点设备的子帧配置,以决定 是维持接入点设备的初始子帧配置不变,还是为接入点设备确定一个新的 子帧配置。例如,如果第一下行业务比例与第二下行业务比例之间的差异 较小,则表示初始子帧配置可以较好地适应该接入点设备的上下行链路状 况, 因此可以维持该接入点设备的初始子帧配置不变。 又例如, 如果第一 上行业务比例与第二上行业务比例之间的差异较大,则表示初始子帧配置 未能与该接入点设备的上下行链路状况相适应,因此需要为该接入点设备 确定一个新的子帧配置以适应该接入点设备的上下行链路状况。
下面参考图 11来描述根据本发明另一实施例的用在无线通信系统中 的方法。 图 11是示出根据本发明另一实施例的用在无线通信系统中的方 法的流程图。
如图 11所示, 该方法开始于步骤 1100。在步骤 1100之后, 该方法前 进到步骤 1102。
在步骤 1102, 根据接入点设备所服务的用户设备的上行链路状况和 下行链路状况计算该接入点设备的第一上行业务比例或第一下行业务比 例。
在步骤 1102之后, 该方法前进到步骤 1104。 在步骤 1104, 发送该接入点设备的第一上行业务比例或第一下行业 务比例,其中,该接入点设备的第一上行业务比例或第一下行业务比例用 以计算接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。
图 11所示的方法是与图 9所述的装置相对应的方法, 其具体细节在 此不再赘述。
下面结合图 12来描述根据本发明另一实施例的无线通信系统中的装 置的配置。 图 12是示出根据本发明另一实施例的无线通信系统中的装置 的配置的框图。
如图 12所示, 根据本实施例的装置 1200包括通信单元 1202和配置 单元 1204。
通信单元 1202可以从服务于用户设备的接入点设备接收子帧配置, 其中,该子帧配置与该接入点设备的第一上行业务比例或第一下行业务比 例相适应。
接入点设备可以采用各种方式来计算其第一上行业务比例或第一下 行业务比例。例如,接入点设备的第一上行业务比例或第一下行业务比例 可以是根据将该接入点设备所服务的用户设备的上行链路状况与下行链 路状况相比较得到的。
上文中已经详细描述了如何确定与接入点设备的第一上行业务比例 或第一下行业务比例相适应的子帧配置, 其具体细节在此不再赘述。
配置单元 1204 可以根据所接收到的子帧配置对该用户设备进行配 置,其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计 算所述接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。 例如, 配置单元 1204可以才艮据接收 到的子帧配置来配置重配周期,并且按照预定义的重配时间来应用所接收 到的子帧配置。
上文中已经详细描述了如何根据接入点设备集合中的各个接入点设 备的第一上行业务比例或第一下行业务比例来计算该接入点设备的平均 上行业务比例或平均下行业务比例,以及如何根据接入点设备集合的平均 上行业务比例或平均下行业务比例来确定与该接入点设备集合的平均上 行业务比例或平均下行业务比例相适应的初始子帧配置,其具体细节在此 不再赘述。
另外, 通信单元 1202还可以向服务于用户设备的接入点设备发送该 用户设备的上行緩冲中将要传输的业务数据量和 /或该用户设备的上行緩 存中等待传输的上行数据包的实际上行时延。 例如, 通信单元 1202可以 以相应的周期向服务于用户设备的接入点设备发送该用户设备的上行緩 冲中将要传输的业务数据量和 /或该用户设备的上行緩存中等待传输的上 行数据包的实际上行时延。
下面参考图 13来描述根据本发明另一实施例的用在无线通信系统中 的方法。 图 13是示出根据本发明另一实施例的用在无线通信系统中的方 法的流程图。
如图 13所示, 该方法开始于步骤 1300。 在步骤 1300之后, 该方法 前进到步骤 1302。
在步骤 1302, 从服务于用户设备的接入点设备接收子帧配置, 其中, 该子帧配置与该接入点设备的第一上行业务比例或第一下行业务比例相 适应。
在步骤 1302之后, 该方法前进到步骤 1304。
在步骤 1304, 根据所接收到的子帧配置对该用户设备进行配置, 其 中,该接入点设备的第一上行业务比例或第一下行业务比例用以计算所述 接入点设备所在的接入点设备集合的平均上行业务比例或平均下行业务 比例,从而确定与该接入点设备集合的平均上行业务比例或平均下行业务 比例相适应的初始子帧配置。
图 13所示的方法是与图 12所述的装置相对应的方法,其具体细节在 此不再赘述。
所属技术领域的技术人员知道, 本申请可以体现为装置、 方法或计算机 程序产品。 因此, 本申请可以具体实现为以下形式, 即, 可以是完全的硬件、 完全的软件(包括固件、 驻留软件、 微代码等)、 或者软件部分与硬件部分 的组合。 此外, 本申请还可以采取体现在任何有形的表达介盾中的计算 序产品的形式, 该介质中包含计算机可用的程序码。
可以使用一个或多个计算机可读介盾的任何组合。 计算机可读介质可以 是计算机可读信号介质或计算机可读存储介盾, 计算机可读存储介质例如可 以是, 但不限于, 电的、 磁的、 光的、 电磁的、 红外线的、 或半导体的系统、 装置、 器件或传播介盾、 或前述各项的任何适当的组合。 计算机可读存储介 质的更具体的例子(非穷举的列表) 包括: 有一个或多个导线的电连接、 便 携式计算机磁盘、 硬盘、 随机存取存储器(RAM )、 只读存储器(ROM )、 可擦式可编程只读存储器(EPROM 或闪存)、 光纤、 便携式紧凑磁盘只读 存储器( CD-ROM )、 光存储器件、 磁存储器件、 或前述各项的任何适当的 组合。 在本文语境中, 计算机可读存储介质可以是任何含有或存储供指令执 行系统、 装置或器件使用的或与指令执行系统、 装置或器件相联系的程序的 有形介质。
用于执行本申请的操作的计算机程序码, 可以以一种或多种程序设计语 言的任何组合来编写, 所述程序设计语言包括面向对象的程序设计语言一诸 如 Java、 Smalltalk, C++之类,还包括常规的过程式程序设计语言一诸如 "C" 程序设计语言或类似的程序设计语言。 程序码可以完全地在用户的计算机上 执行、 部分地在用户的计算机上执行、 作为一个独立的软件包执行、 部分在 用户的计算机上部分在远程计算机上执行、 或者完全在远程计算机或服务器 上执行。 在后一种情形中, 远程计算机可以通过任何种类的网络一包括局域 网(LAN )或广域网(WAN )—连接到用户的计算机, 或者, 可以(例如利 用因特网服务提供商来通过因特网)连接到外部计算机。
具体的,根据本发明的一实施例, 公开一种包括计算机可读指令的计 算机存储介质, 计算机指令用于使计算机执行: 根据接入点设备集合中 的各个接入点设备的第一上行业务比例或第一下行业务比例计算接入点 设备集合的平均上行业务比例或平均下行业务比例; 以及根据接入点设 备集合的平均上行业务比例或平均下行业务比例确定与接入点设备集合 的平均上行业务比例或平均下行业务比例相适应的子帧配置作为接入点 设备集合中的各个接入点设备的初始子帧配置。
根据本公开的再一实施例,公开一种包括计算机可读指令的计算机存 储介质, 计算机指令用于使计算机执行: 业务比例计算步骤, 根据接入点 设备所服务的用户设备的上行链路状况和下行链路状况计算该接入点设 备的第一上行业务比例或第一下行业务比例; 以及通信步骤,发送该接入 点设备的第一上行业务比例或第一下行业务比例,其中,该接入点设备的 第一上行业务比例或第一下行业务比例用以计算所述接入点设备所在的 接入点设备集合的平均上行业务比例或平均下行业务比例,从而确定与该 接入点设备集合的平均上行业务比例或平均下行业务比例相适应的初始 子帧配置。 根据本发明的再一实施例,公开一种包括计算机可读指令的计算机存 储介质, 计算机指令用于使计算机执行: 通信步骤, 从服务于用户设备的 接入点设备接收子帧配置,其中,该子帧配置与该接入点设备的第一上行 业务比例或第一下行业务比例相适应; 以及配置步骤,根据所接收到的子 帧配置对该用户设备进行配置,其中,该接入点设备的第一上行业务比例 或第一下行业务比例用以计算所述接入点设备所在的接入点设备集合的 平均上行业务比例或平均下行业务比例,从而确定与该接入点设备集合的 平均上行业务比例或平均下行业务比例相适应的初始子帧配置。
根据本发明的再一实施例,公开一种无线通信系统中的装置, 包括存 储器与处理器, 其中, 所述存储器储存计算机指令, 所述处理器用于执行 存储于所述存储器中的该计算机指令:根据接入点设备集合中的各个接入 点设备的第一上行业务比例或第一下行业务比例计算接入点设备集合的 平均上行业务比例或平均下行业务比例;以及根据接入点设备集合的平均 上行业务比例或平均下行业务比例确定与接入点设备集合的平均上行业 务比例或平均下行业务比例相适应的子帧配置作为接入点设备集合中的 各个接入点设备的初始子帧配置。
根据本发明的再一实施例,公开一种无线通信系统中的装置, 包括存 储器与处理器, 其中, 所述存储器储存计算机指令, 所述处理器用于执行 存储于所述存储器中的该计算机指令, 包括: 业务比例计算步骤, 根据接 入点设备所服务的用户设备的上行链路状况和下行链路状况计算该接入 点设备的第一上行业务比例或第一下行业务比例; 以及通信步骤,发送该 接入点设备的第一上行业务比例或第一下行业务比例,其中,该接入点设 备的第一上行业务比例或第一下行业务比例用以计算所述接入点设备所 在的接入点设备集合的平均上行业务比例或平均下行业务比例,从而确定 与该接入点设备集合的平均上行业务比例或平均下行业务比例相适应的 初始子帧配置。
根据本发明的再一实施例,公开一种无线通信系统中的装置, 包括存 储器与处理器, 其中, 所述存储器储存计算机指令, 所述处理器用于执行 存储于所述存储器中的该计算机指令, 包括: 通信步骤, 从服务于用户设 备的接入点设备接收子帧配置,其中,该子帧配置与该接入点设备的第一 上行业务比例或第一下行业务比例相适应; 以及配置步骤,根据所接收到 的子帧配置对该用户设备进行配置,其中,该接入点设备的第一上行业务 比例或第一下行业务比例用以计算所述接入点设备所在的接入点设备集 合的平均上行业务比例或平均下行业务比例,从而确定与该接入点设备集 合的平均上行业务比例或平均下行业务比例相适应的初始子帧配置。 权利要求中的对应结构、 操作以及所有功能性限定的装置或步骤的等同 替换, 旨在包括任何用于与在权利要求中具体指出的其他单元相组合地执行 该功能的结构或操作。 所给出的对本申请的描述其目的在于示意和描述, 并 非是穷尽性的, 也并非是要把本申请限定到所表述的形式。 对于所属技术领 域的普通技术人员来说, 在不偏离本申请范围和精神的情况下, 显然可以作 出许多修改和变型。 对实施例的选择和说明, 是为了最好地解释本申请的原 理和实际应用, 使所属技术领域的普通技术人员能够明了, 本申请可以有适 合所要的特定用途的具有各种改变的各种实施方式。

Claims

权利 要求 书
1. 一种无线通信系统中的装置, 包括:
业务比例计算单元,用于根据接入点设备集合中的各个接入点设备的 第一上行业务比例或第一下行业务比例计算所述接入点设备集合的平均 上行业务比例或平均下行业务比例; 以及
初始子帧配置确定单元,用于根据所述接入点设备集合的平均上行业 务比例或平均下行业务比例确定与所述接入点设备集合的平均上行业务 比例或平均下行业务比例相适应的子帧配置作为所述接入点设备集合中 的各个接入点设备的初始子帧配置。
2.根据权利要求 1所述的装置, 还包括:
业务比例确定单元,用于确定与所述初始子帧配置对应的第二上行业 务比例或第二下行业务比例; 以及
子帧配置调整单元,用于根据所述第一上行业务比例与所述第二上行 业务比例之间的差异、或者所述第一下行业务比例与所述第二下行业务比 例之间的差异,在所述初始子帧配置的基础上调整所述接入点设备集合中 的各个接入点设备的子帧配置。
3.根据权利要求 2所述的装置, 其中, 所述子帧配置调整单元包括: 差值计算子单元,用于计算所述第一上行业务比例与所述第二上行业 务比例之间的上行业务比例差值、或者所述第一下行业务比例与所述第二 下行业务比例之间的下行业务比例差值; 以及
子帧配置调整子单元,用于根据所述上行业务比例差值与预设的第一 差值阈值的第一比较结果、或者所述下行业务比例差值与预设的第二差值 阈值的第二比较结果,在所述初始子帧配置的基础上调整所述接入点设备 集合中的各个接入点设备的子帧配置。
4.根据权利要求 1 所述的装置, 其中, 所述接入点设备的第一上行 业务比例或第一下行业务比例是根据将该接入点设备所服务的用户设备 的上行链路状况与下行链路状况相比较得到的。
5.根据权利要求 4所述的装置, 其中, 用户设备的所述上行链路状 况与该用户设备的相对上行业务量相关,每个用户设备的相对上行业务量 是通过将该用户设备的实际上行业务量除以该用户设备的上行频谱效率 而得到的;所述下行链路状况与所述接入点设备所服务的用户设备的相对 下行业务量相关,每个用户设备的相对下行业务量是通过将该用户设备的 实际下行业务量除以该用户设备的下行频 i瞽效率而得到的。
6.根据权利要求 5所述的装置, 其中, 所述业务比例计算单元包括: 相对业务量计算子单元,用于将通过累加所述接入点设备集合中的各 个接入点设备所服务的每个用户设备的相对上行业务量得到的总和作为 该接入点设备的相对上行业务量,将通过累加所述接入点设备集合中的各 个接入点设备所服务的每个用户设备的相对下行业务量得到的总和作为 该接入点设备的相对下行业务量; 以及
其中,所述业务比例计算单元通过将所述接入点设备的相对上行业务 量除以该接入点设备的相对上行业务量与该接入点设备的相对下行业务 量之和得到所述接入点设备的所述第一上行业务比例,或通过将所述接入 点设备的相对下行业务量除以该接入点设备的相对上行业务量与该接入 点设备的相对下行业务量之和得到所述接入点设备的所述第一下行业务 比例。
7.根据权利要求 5或 6所述的装置, 其中, 所述业务比例计算单元 包括:
第一平均业务比例计算子单元,用于通过累加所述接入点设备集合中 的各个接入点设备的相对上行业务量得到所述接入点设备集合的相对上 行业务量,通过累加所述接入点设备集合中的各个接入点设备的相对下行 业务量得到所述接入点设备集合的相对下行业务量,以及通过将所述接入 点设备集合的相对上行业务量除以所述接入点设备集合的相对上行业务 量与所述接入点设备集合的相对下行业务量之和得到所述平均上行业务 比例,或通过将所述接入点设备集合的相对下行业务量除以所述接入点设 备集合的相对上行业务量与所述接入点设备集合的相对下行业务量之和 得到所述平均下行业务比例。
8.根据权利要求 1 所述的装置, 其中, 用户设备的所述上行链路状 况与该用户设备的上行緩存中等待传输的上行数据包的相对上行时延相 关,每个用户设备的所述相对上行时延是通过将该用户设备的上行緩存中 等待传输的上行数据包的实际上行时延除以该用户设备的上行频傳效率 而得到的;所述下行链路状况与所述接入点设备针对每个用户设备的下行 緩存中等待传输的下行数据包的相对下行时延相关,每个用户设备的相对 下行时延是通过将所述接入点设备针对每个用户设备的下行緩存中等待 传输的下行数据包的实际下行时延除以该用户设备的下行频谱效率而得 到的。
9.根据权利要求 8所述的装置, 其中, 所述业务比例计算单元包括: 相对时延计算子单元,用于将通过累加所述接入点设备集合中的各个 接入点设备所服务的每个用户设备的上行緩存中等待传输的上行数据包 的相对上行时延得到的总和作为该接入点设备的相对上行时延,将通过累 加所述接入点设备集合中的各个接入点设备针对每个用户设备的下行緩 存中等待传输的下行数据包的相对下行时延得到的总和作为该接入点设 备的相对下行时延; 以及
其中,所述业务比例计算单元通过将所述接入点设备的相对上行时延 除以该接入点设备的相对上行时延与该接入点设备的相对下行时延之和 得到所述接入点设备的所述第一上行业务比例,或通过将所述接入点设备 的相对下行时延除以该接入点设备的相对上行时延与该接入点设备的相 对下行时延之和得到所述接入点设备的所述第一下行业务比例。
10.根据权利要求 8或 9所述的装置, 其中, 所述业务比例计算单元 包括:
第二平均业务比例计算子单元,用于通过累加所述接入点设备集合中 的各个接入点设备的相对上行时延得到所述接入点设备集合的相对上行 时延,通过累加所述接入点设备集合中的各个接入点设备的相对下行时延 得到所述接入点设备集合的相对下行时延,以及通过将所述接入点设备集 合的相对上行时延除以该接入点设备集合的相对上行时延与该接入点设 备的相对下行时延之和得到所述平均上行业务比例,或通过将所述接入点 设备集合的相对下行时延除以该接入点设备的相对上行时延与该接入点 设备集合的相对下行时延之和得到所述平均下行业务比例。
11.根据权利要求 3所述的装置, 其中, 所述子帧配置调整子单元还 用于:
在所述上行业务比例差值的绝对值小于或等于预设的第一差值阈值 的情况下或者在所述下行业务比例差值的绝对值小于或等于预设的第二 差值阈值的情况下, 为所述接入点设备确定所述初始子帧配置; 以及 在所述上行业务比例差值的绝对值大于预设的第一差值阈值的情况 下或者在所述下行业务比例差值的绝对值大于预设的第二插值阈值的情 况下, 在所述初始子帧配置的基础上为所述接入点设备确定新的子帧配 置。
12.根据权利要求 11 所述的装置, 其中, 所述子帧配置调整子单元 还用于:
在所述上行业务比例差值大于预设的第一差值阈值的情况下,在所述 初始子帧配置的基础上增加一个或两个上行子帧;或者在所述下行业务比 例差值大于预设的第二差值阈值的情况下,在所述初始子帧配置的基础上 增加一个或两个下行子帧; 以及
在所述上行业务比例差值小于预设的第一差值阈值的相反数的情况 下,在所述初始子帧配置的基础上减少一个或两个上行子帧; 或者在所述 下行业务比例差值小于预设的第二差值阈值的相反数的情况下,在所述初 始子帧配置的基础上减少一个或两个下行子帧。
13. 一种用在无线通信系统中的方法, 包括:
根据接入点设备集合中的各个接入点设备的第一上行业务比例或第 一下行业务比例计算所述接入点设备集合的平均上行业务比例或平均下 行业务比例; 以及
根据所述接入点设备集合的平均上行业务比例或平均下行业务比例 确定与所述接入点设备集合的平均上行业务比例或平均下行业务比例相 适应的子帧配置作为所述接入点设备集合中的各个接入点设备的初始子 帧配置。
14.根据权利要求 13所述的方法, 还包括:
业务比例确定步骤,确定与所述初始子帧配置对应的第二上行业务比 例或第二下行业务比例; 以及
子帧配置调整步骤,根据所述第一上行业务比例与所述第二上行业务 比例之间的差异、或者所述第一下行业务比例与所述第二下行业务比例之 间的差异,在所述初始子帧配置的基础上调整所述接入点设备集合中的各 个接入点设备的子帧配置。
15.根据权利要求 14所述的方法, 其中, 所述子帧配置调整步骤包 括 ·· 差值计算子步骤,计算所述第一上行业务比例与所述第二上行业务比 例之间的上行业务比例差值、或者所述第一下行业务比例与所述第二下行 业务比例之间的下行业务比例差值; 以及
子帧配置调整子步骤,才艮据所述上行业务比例差值与预设的第一差值 阈值的第一比较结果、或者所述下行业务比例差值与预设的第二差值阈值 的第二比较结果,在所述初始子帧配置的基础上调整所述接入点设备集合 中的各个接入点设备的子帧配置。
16.根据权利要求 13所述的方法, 其中, 所述接入点设备的第一上 行业务比例或第一下行业务比例是根据将该接入点设备所服务的用户设 备的上行链路状况与下行链路状况相比较得到的。
17.根据权利要求 16所述的方法, 其中, 用户设备的所述上行链路 状况与该用户设备的相对上行业务量相关,每个用户设备的相对上行业务 量是通过将该用户设备的实际上行业务量除以该用户设备的上行频谱效 率而得到的;所述下行链路状况与所述接入点设备所服务的用户设备的相 对下行业务量相关,每个用户设备的相对下行业务量是通过将该用户设备 的实际下行业务量除以该用户设备的下行频谱效率而得到的。
18.根据权利要求 17所述的方法, 其中, 所述业务比例计算步骤包 括 ··
相对业务量计算子步骤,将通过累加所述接入点设备集合中的各个接 入点设备所服务的每个用户设备的相对上行业务量得到的总和作为该接 入点设备的相对上行业务量,将通过累加所述接入点设备集合中的各个接 入点设备所服务的每个用户设备的相对下行业务量得到的总和作为该接 入点设备的相对下行业务量; 以及
其中,在所述业务比例计算步骤中,通过将所述接入点设备的相对上 行业务量除以该接入点设备的相对上行业务量与该接入点设备的相对下 行业务量之和得到所述接入点设备的所述第一上行业务比例,或通过将所 述接入点设备的相对下行业务量除以该接入点设备的相对上行业务量与 该接入点设备的相对下行业务量之和得到所述接入点设备的所述第一下 行业务比例。
19.根据权利要求 17或 18所述的方法, 其中, 所述业务比例计算步 骤包括:
第一平均业务比例计算子步骤,通过累加所述接入点设备集合中的各 个接入点设备的相对上行业务量得到所述接入点设备集合的相对上行业 务量,通过累加所述接入点设备集合中的各个接入点设备的相对下行业务 量得到所述接入点设备集合的相对下行业务量,以及通过将所述接入点设 备集合的相对上行业务量除以所述接入点设备集合的相对上行业务量与 所述接入点设备集合的相对下行业务量之和得到所述平均上行业务比例, 或通过将所述接入点设备集合的相对下行业务量除以所述接入点设备集 合的相对上行业务量与所述接入点设备集合的相对下行业务量之和得到 所述平均下行业务比例。
20.根据权利要求 13所述的方法, 其中, 用户设备的所述上行链路 状况与该用户设备的上行緩存中等待传输的上行数据包的相对上行时延 相关,每个用户设备的所述相对上行时延是通过将该用户设备的上行緩存 中等待传输的上行数据包的实际上行时延除以该用户设备的上行频傳效 率而得到的;所述下行链路状况与所述接入点设备针对每个用户设备的下 行緩存中等待传输的下行数据包的相对下行时延相关,每个用户设备的相 对下行时延是通过将所述接入点设备针对每个用户设备的下行緩存中等 待传输的下行数据包的实际下行时延除以该用户设备的下行频谱效率而 得到的。
21.根据权利要求 14所述的方法, 其中, 所述业务比例计算步骤包 括 ··
相对时延计算子步骤,用于将通过累加所述接入点设备集合中的各个 接入点设备所服务的每个用户设备的上行緩存中等待传输的上行数据包 的相对上行时延得到的总和作为该接入点设备的相对上行时延,将通过累 加所述接入点设备集合中的各个接入点设备针对每个用户设备的下行緩 存中等待传输的下行数据包的相对下行时延得到的总和作为该接入点设 备的相对下行时延; 以及
其中,在所述业务比例计算步骤中,通过将所述接入点设备的相对上 行时延除以该接入点设备的相对上行时延与该接入点设备的相对下行时 延之和得到所述接入点设备的所述第一上行业务比例,或通过将所述接入 点设备的相对下行时延除以该接入点设备的相对上行时延与该接入点设 备的相对下行时延之和得到所述接入点设备的所述第一下行业务比例。
22.根据权利要求 20或 21所述的方法, 其中, 所述业务比例计算步 骤包括: 第二平均业务比例计算子步骤,通过累加所述接入点设备集合中的各 个接入点设备的相对上行时延得到所述接入点设备集合的相对上行时延, 通过累加所述接入点设备集合中的各个接入点设备的相对下行时延得到 所述接入点设备集合的相对下行时延,以及通过将所述接入点设备集合的 相对上行时延除以该接入点设备集合的相对上行时延与该接入点设备的 相对下行时延之和得到所述平均上行业务比例,或通过将所述接入点设备 集合的相对下行时延除以该接入点设备的相对上行时延与该接入点设备 集合的相对下行时延之和得到所述平均下行业务比例。
23.根据权利要求 15所述的方法, 其中, 所述子帧配置调整子步骤 还包括:
在所述上行业务比例差值的绝对值小于或等于预设的第一差值阈值 的情况下或者在所述下行业务比例差值的绝对值小于或等于预设的第二 差值阈值的情况下, 为所述接入点设备确定所述初始子帧配置; 以及
在所述上行业务比例差值的绝对值大于预设的第一差值阈值的情况 下或者在所述下行业务比例差值的绝对值大于预设的第二插值阈值的情 况下, 在所述初始子帧配置的基础上为所述接入点设备确定新的子帧配
24.根据权利要求 23所述的方法, 其中, 所述子帧配置调整子步骤 还包括:
在所述上行业务比例差值大于预设的第一差值阈值的情况下,在所述 初始子帧配置的基础上增加一个或两个上行子帧;或者在所述下行业务比 例差值大于预设的第二差值阈值的情况下,在所述初始子帧配置的基础上 增加一个或两个下行子帧; 以及
在所述上行业务比例差值小于预设的第一差值阈值的相反数的情况 下,在所述初始子帧配置的基础上减少一个或两个上行子帧; 或者在所述 下行业务比例差值小于预设的第二差值阈值的相反数的情况下,在所述初 始子帧配置的基础上减少一个或两个下行子帧。
25. 一种无线通信系统中的装置, 包括:
业务比例计算单元,用于根据接入点设备所服务的用户设备的上行链 路状况和下行链路状况计算该接入点设备的第一上行业务比例或第一下 行业务比例; 以及
通信单元,用于发送该接入点设备的第一上行业务比例或第一下行业 务比例,其中,该接入点设备的第一上行业务比例或第一下行业务比例用 以计算所述接入点设备所在的接入点设备集合的平均上行业务比例或平 均下行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平 均下行业务比例相适应的初始子帧配置。
26.根据权利要求 25所述的装置, 所述通信单元还用于接收所述初 始子帧配置, 以及
所述装置还包括:
业务比例确定单元,用于确定与所述初始子帧配置对应的第二上行业 务比例或第二下行业务比例; 以及
子帧配置调整单元,用于根据所述第一上行业务比例与所述第二上行 业务比例之间的差异、或者所述第一下行业务比例与所述第二下行业务比 例之间的差异,在所述初始子帧配置的基础上调整该接入点设备的子帧配
27.根据权利要求 25所述的装置, 所述通信单元还用于接收该接入 点设备的子帧配置信息,所述子帧配置信息是才艮据所述初始子帧配置对应 的第二上行业务比例或第二下行业务比例与所述接入点设备的第一上行 业务比例或第二下行业务比例相比较而得到的。
28.根据权利要求 25所述的装置, 其中, 所述接入点设备的第一上 行业务比例或第一下行业务比例是根据将该接入点设备所服务的用户设 备的上行链路状况与下行链路状况相比较得到的。
29.根据权利要求 25所述的装置, 其中, 所述通信单元还用于发送 子帧配置至所述接入点设备所服务的用户设备,其中,该子帧配置与该接 入点设备的第一上行业务比例或第一下行业务比例相适应。
30. 一种用在无线通信系统中的方法, 包括:
业务比例计算步骤,根据接入点设备所服务的用户设备的上行链路状 况和下行链路状况计算该接入点设备的第一上行业务比例或第一下行业 务比例; 以及
通信步骤,发送该接入点设备的第一上行业务比例或第一下行业务比 例,其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计 算所述接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。
31.根据权利要求 30所述的方法, 所述通信步骤包括: 接收所述初 始子帧配置, 以及
所述方法还包括:
业务比例确定步骤,确定与所述初始子帧配置对应的第二上行业务比 例或第二下行业务比例; 以及 子帧配置调整步骤,根据所述第一上行业务比例与所述第二上行业务 比例之间的差异、或者所述第一下行业务比例与所述第二下行业务比例之 间的差异, 在所述初始子帧配置的基础上调整该接入点设备的子帧配置。
32.根据权利要求 30所述的方法, 所述通信步骤还包括: 接收该接 入点设备的子帧配置信息,所述子帧配置信息是根据所述初始子帧配置对 应的第二上行业务比例或第二下行业务比例与所述接入点设备的第一上 行业务比例或第二下行业务比例相比较而得到的。
33.根据权利要求 30所述的方法, 其中, 所述接入点设备的第一上 行业务比例或第一下行业务比例是通过将该接入点设备所服务的用户设 备的上行链路状况与下行链路状况相比较得到的。
34.根据权利要求 30所述的方法, 其中, 所述通信步骤还包括: 发 送子帧配置至所述接入点设备所服务的用户设备,其中,该子帧配置与该 接入点设备的第一上行业务比例或第一下行业务比例相适应。
35. 一种无线通信系统中的装置, 包括:
通信单元,用于从服务于用户设备的接入点设备接收子帧配置,其中, 该子帧配置与该接入点设备的第一上行业务比例或第一下行业务比例相 适应; 以及
配置单元, 用于根据所接收到的子帧配置对该用户设备进行配置, 其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计 算所述接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。
36.根据权利要求 35所述的装置, 其中, 通信单元还用于向服务于 用户设备的接入点设备发送该用户设备的上行緩冲中将要传输的业务数 据量和 /或该用户设备的上行緩存中等待传输的上行数据包的实际上行时 延。
37.根据权利要求 35所述的装置, 其中, 所述接入点设备的第一上 行业务比例或第一下行业务比例是通过将该接入点设备所服务的用户设 备的上行链路状况与下行链路状况相比较得到的。
38. 一种用在无线通信系统中的方法, 包括:
通信步骤, 从服务于用户设备的接入点设备接收子帧配置, 其中, 该 子帧配置与该接入点设备的第一上行业务比例或第一下行业务比例相适 应; 以及
配置步骤, 根据所接收到的子帧配置对该用户设备进行配置, 其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计 算所述接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。
39.根据权利要求 38所述的方法, 所述通信步骤还包括: 向服务于 用户设备的接入点设备发送该用户设备的上行緩冲中将要传输的业务数 据量和 /或该用户设备的上行緩存中等待传输的上行数据包的实际上行时 延。
40.根据权利要求 38所述的方法, 其中, 所述接入点设备的第一上 行业务比例或第一下行业务比例是通过将该接入点设备所服务的用户设 备的上行链路状况与下行链路状况相比较得到的。
41. 一种包括计算机可读指令的计算机存储介质, 所述计算机指令用 于使计算机执行下述操作:
根据接入点设备集合中的各个接入点设备的第一上行业务比例或第 一下行业务比例计算所述接入点设备集合的平均上行业务比例或平均下 行业务比例; 以及
根据所述接入点设备集合的平均上行业务比例或平均下行业务比例 确定与所述接入点设备集合的平均上行业务比例或平均下行业务比例相 适应的子帧配置作为所述接入点设备集合中的各个接入点设备的初始子 帧配置。
42. 一种包括计算机可读指令的计算机存储介质, 所述计算机指令用 于使计算机执行: 业务比例计算步骤,根据接入点设备所服务的用户设备的上行链路状 况和下行链路状况计算该接入点设备的第一上行业务比例或第一下行业 务比例; 以及
通信步骤,发送该接入点设备的第一上行业务比例或第一下行业务比 例,
其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计 算所述接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。
43. 一种包括计算机可读指令的计算机存储介质, 所述计算机指令用 于使计算机执行:
通信步骤, 从服务于用户设备的接入点设备接收子帧配置, 其中, 该 子帧配置与该接入点设备的第一上行业务比例或第一下行业务比例相适 应; 以及
配置步骤, 根据所接收到的子帧配置对该用户设备进行配置, 其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计 算所述接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。
44. 一种无线通信系统中的装置, 包括存储器与处理器, 其中, 所述 存储器储存计算机指令,所述处理器用于执行存储于所述存储器中的该计 算机指令以执行下述操作:
根据接入点设备集合中的各个接入点设备的第一上行业务比例或第 一下行业务比例计算接入点设备集合的平均上行业务比例或平均下行业 务比例; 以及
根据接入点设备集合的平均上行业务比例或平均下行业务比例确定 与接入点设备集合的平均上行业务比例或平均下行业务比例相适应的子 帧配置作为接入点设备集合中的各个接入点设备的初始子帧配置。
45. 一种无线通信系统中的装置, 包括存储器与处理器, 其中, 所述 存储器储存计算机指令,所述处理器用于执行存储于所述存储器中的该计 算机指令以执行: 业务比例计算步骤,根据接入点设备所服务的用户设备的上行链路状 况和下行链路状况计算该接入点设备的第一上行业务比例或第一下行业 务比例; 以及
通信步骤,发送该接入点设备的第一上行业务比例或第一下行业务比 例,
其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计 算所述接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。
46. 一种无线通信系统中的装置, 包括存储器与处理器, 其中, 所述 存储器储存计算机指令,所述处理器用于执行存储于所述存储器中的该计 算机指令以执行:
通信步骤, 从服务于用户设备的接入点设备接收子帧配置, 其中, 该 子帧配置与该接入点设备的第一上行业务比例或第一下行业务比例相适 应; 以及
配置步骤, 根据所接收到的子帧配置对该用户设备进行配置, 其中,该接入点设备的第一上行业务比例或第一下行业务比例用以计 算所述接入点设备所在的接入点设备集合的平均上行业务比例或平均下 行业务比例,从而确定与该接入点设备集合的平均上行业务比例或平均下 行业务比例相适应的初始子帧配置。
PCT/CN2013/087022 2012-11-28 2013-11-13 无线通信系统中的装置和方法 WO2014082526A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210495642.4A CN103857039B (zh) 2012-11-28 2012-11-28 无线通信系统中的装置和方法
CN201210495642.4 2012-11-28

Publications (1)

Publication Number Publication Date
WO2014082526A1 true WO2014082526A1 (zh) 2014-06-05

Family

ID=50827167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087022 WO2014082526A1 (zh) 2012-11-28 2013-11-13 无线通信系统中的装置和方法

Country Status (2)

Country Link
CN (1) CN103857039B (zh)
WO (1) WO2014082526A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107454672A (zh) * 2016-05-31 2017-12-08 华为技术有限公司 一种配置子帧的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10034295B2 (en) * 2015-07-15 2018-07-24 Nokia Solutions And Networks Oy Coordination of downlink channel assignments for communication with cluster of access points in wireless network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547414A (zh) * 2003-12-05 2004-11-17 大唐移动通信设备有限公司 时分双工移动通信系统中上下行资源的分配方法和装置
CN101754377A (zh) * 2008-12-04 2010-06-23 中兴通讯股份有限公司 一种小区上下行子帧自适应配置方法
CN102196580A (zh) * 2011-06-22 2011-09-21 新邮通信设备有限公司 一种动态配置tdd基站上下行子帧比例的方法
CN102640527A (zh) * 2010-10-04 2012-08-15 华为技术有限公司 用于在异构通信系统中协调不同类型的基站的系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418105A (en) * 2004-09-13 2006-03-15 Fujitsu Ltd Relative indicators used for scheduling of uplink transmissions
CN101431362B (zh) * 2007-11-08 2012-10-03 电信科学技术研究院 时分双工系统的子帧分配方法及装置
CN101521646A (zh) * 2008-02-26 2009-09-02 中兴通讯股份有限公司 子帧分配系统及方法
CN101615947B (zh) * 2008-06-24 2016-10-05 华为技术有限公司 配置上下行子帧配比方法、及数据传输的方法、装置
CN101754336B (zh) * 2008-12-17 2012-09-05 中兴通讯股份有限公司 一种基于lte tdd系统的基站省电方法和系统
CN101888699B (zh) * 2009-05-13 2013-04-03 电信科学技术研究院 一种调整时隙配置的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547414A (zh) * 2003-12-05 2004-11-17 大唐移动通信设备有限公司 时分双工移动通信系统中上下行资源的分配方法和装置
CN101754377A (zh) * 2008-12-04 2010-06-23 中兴通讯股份有限公司 一种小区上下行子帧自适应配置方法
CN102640527A (zh) * 2010-10-04 2012-08-15 华为技术有限公司 用于在异构通信系统中协调不同类型的基站的系统和方法
CN102196580A (zh) * 2011-06-22 2011-09-21 新邮通信设备有限公司 一种动态配置tdd基站上下行子帧比例的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107454672A (zh) * 2016-05-31 2017-12-08 华为技术有限公司 一种配置子帧的方法和装置
EP3451728A4 (en) * 2016-05-31 2019-04-17 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR CONFIGURING A SUB-FRAME
CN107454672B (zh) * 2016-05-31 2020-04-28 华为技术有限公司 一种配置子帧的方法和装置
US10856290B2 (en) 2016-05-31 2020-12-01 Huawei Technologies Co., Ltd. Subframe configuration method and apparatus

Also Published As

Publication number Publication date
CN103857039A (zh) 2014-06-11
CN103857039B (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN110447272B (zh) Nr动态tdd系统内的动态干扰管理
US10143002B2 (en) System and method to facilitate centralized radio resource management in a split radio access network environment
KR101796409B1 (ko) 스케줄링 방법, 장치 및 시스템
CN113015237B (zh) 用于时间提前调整的方法、终端设备和网络设备
CN108886776B (zh) 终端、无线通信系统以及无线通信方法
JP5706449B2 (ja) コンポーネントキャリアの指定
US9642145B2 (en) Methods and apparatuses for dynamic backhaul bandwidth management in wireless networks
US8767614B2 (en) Reporting buffering information
JP7037566B2 (ja) 情報伝送方法および装置
US20140233439A1 (en) Downlink-uplink configuration determination
KR20200040879A (ko) 5g 또는 다른 차세대 네트워크를 위한 피드백 데이터를 송신하기 위한 반복 인수들의 구성
EP2761940A1 (en) Techniques for uplink power control
CN104521276B (zh) 自适应非实时业务控制方法及其终端
US10873939B2 (en) Selecting a modulation and coding scheme and a transmit block size in long term evolution
JP7430630B2 (ja) 周波数領域リソース割り当て及び受信方法、装置及び通信システム
CN107852703A (zh) 配置信息获取的方法和装置
WO2012142811A1 (zh) 物理下行共享信道的调度方法及装置
WO2014000236A1 (zh) 一种时分双工系统的干扰协调方法、基站及系统
CN112840709B (zh) 具有多接入点协调的通信系统中的上行功率控制系统和方法
WO2010063193A1 (zh) 一种小区上下行子帧自适应配置方法
US10218489B2 (en) Wireless backhaul configuration
CN114762387A (zh) 用于数据包流到数据无线承载的映射的方法和装置
CN113170402A (zh) 用于phr的方法、节点和计算机可读介质
WO2018049562A1 (zh) 自适应调制编码的方法和基站
WO2014082526A1 (zh) 无线通信系统中的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859452

Country of ref document: EP

Kind code of ref document: A1