WO2014082473A1 - 移动中继邻区信息的维护方法及装置 - Google Patents

移动中继邻区信息的维护方法及装置 Download PDF

Info

Publication number
WO2014082473A1
WO2014082473A1 PCT/CN2013/081671 CN2013081671W WO2014082473A1 WO 2014082473 A1 WO2014082473 A1 WO 2014082473A1 CN 2013081671 W CN2013081671 W CN 2013081671W WO 2014082473 A1 WO2014082473 A1 WO 2014082473A1
Authority
WO
WIPO (PCT)
Prior art keywords
relationship information
neighbor
information
neighbor relationship
denb
Prior art date
Application number
PCT/CN2013/081671
Other languages
English (en)
French (fr)
Inventor
高音
谢峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/647,917 priority Critical patent/US9674738B2/en
Priority to JP2015544325A priority patent/JP6134002B2/ja
Priority to EP13858568.2A priority patent/EP2928222B1/en
Publication of WO2014082473A1 publication Critical patent/WO2014082473A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications, and in particular to a mobile relay (referred to as MR) neighboring area information maintenance method and apparatus.
  • MR mobile relay
  • BACKGROUND OF THE INVENTION In order to maintain the competitiveness of the third generation mobile communication system in the field of communication, the 3rd Generation Partnership Project (3GPP) standard working group is working on the Evolved Packet System (Evolved Packet System, referred to as EPS) research.
  • the entire EPS system mainly includes an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) and an Evolved Packet Core (EPC).
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the system's EPC can support users from the Global System for Mobile Communication (GSM) system/Enhanced Data Rate for GSM Evolution (EDGE) wireless access network (GSM EDGE radio access) Network, abbreviated as GERAN) and access to the Universal Terrestrial Radio Access Network (UTRAN).
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GERAN Universal Terrestrial Radio Access Network
  • the EPC packet core network includes a Home Subscriber Server (HSS), a Mobility Management Entity (MME), and a Serving Gateway (S-GW).
  • PDN Gateway, P-GW for short a Packet Data network gateway (PDN Gateway, P-GW for short), a Serving GPRS Support Node (SGSN), and a Policy and Charging Enforcement Function (PCRF), where : HSS is the permanent storage location of user subscription data, located in the home network signed by the user;
  • the MME is the location where the user subscription data is stored in the current network, and is responsible for the terminal-to-network non-access stratum (Non-Access Stratum, referred to as NAS) signaling management, the tracking and paging management function and the bearer management in the user idle mode;
  • NAS Non-Access Stratum
  • the S-GW is the gateway of the core network to the wireless system, and is responsible for the user plane bearer of the terminal to the core network, the data buffer in the terminal idle mode, the function of initiating the service request by the network side, the legal eavesdropping, and the packet data routing and forwarding function.
  • the P-GW is an evolved packet domain system and a gateway of the external network of the system, and is responsible for functions such as IP address allocation, charging function, packet filtering, and policy application of the terminal;
  • the SGSN is a service support point for GERAN and UTRAN users to access the EPC network. It functions similarly to the MME and is responsible for user location update, paging management, and bearer management functions.
  • the PCRF is responsible for policy and charging enforcement functions (Policy and Charging Enforcement). Function, referred to as PCEF) provides policy control and charging rules.
  • Policy and Charging Enforcement Function
  • Function referred to as PCEF
  • FIG. 1 A schematic diagram of the network architecture is shown in FIG. 1.
  • the network element is described as follows:
  • a relay node (Relay Node, hereinafter referred to as RN) includes two functions, a user equipment (User Equipment, UE for short) and a relay node.
  • the RN-as the UE accesses the network, establishes bearers and other related operations, and on the other hand, provides an access to the UE as an E-UTRAN NodeB (abbreviated as eNB).
  • the donor base station (Donor eNodeB, abbreviated as DeNB) provides radio access for the RN, terminates the radio resource control (Radio Resource Control, RRC for short) signaling of the RN-UE, and terminates the S1AP signaling of the RN-eNB and X2 signaling.
  • RRC Radio Resource Control
  • the SGW and PGW of the RN-UE are built in.
  • Relay Node Operator and Management (RN OAM) which is used by the RN to obtain necessary connection information.
  • the main purpose of the operator deploying the architecture is to expand the coverage of the base station by deploying relay nodes in places where it is not convenient to deploy wired connections, such as relatively remote underdeveloped areas, or sudden large conferences or competitions.
  • the location of the relay node is generally fixed.
  • relay nodes operators have begun to consider applying this technology to a wider range of scenarios. For example, on high-speed railways, due to the high-speed movement of trains, a large number of wired communication facilities are required along the train, which greatly increases operations. The cost of deployment, and the wireless link between the relay node and the donor base station can reduce this cost, so it is favored by operators. This device is called mobile relay. see picture 1.
  • the specific characteristics of the high-speed rail scene are as follows: The train runs at a high speed, such as 350km/h; (Europe's Eurostar train is 393 meters per hour and 300km/h, Japan's Shinkansen is 480 meters per hour and 300km/h, and China's high-speed train is 432 meters per hour and 350km/h) ; runs along a fixed route; high signal penetration loss of train cars; The user on the train is stationary or moving at a walking speed relative to the train. Considering the particularity of the current MR usage scenario, it is also used on high-speed rail.
  • the automatic neighborhood optimization for MR can be considered from the following aspects:
  • the source DeNB Since MR only serves high-speed rail users, during the train travel, the source DeNB has a certain handover target cell for the MR, and the user under the MR during the train running is relatively static and does not need to perform separate handover, so MR can be considered as a train.
  • the UE When the UE is regarded as a UE, it does not need to perform Automatic Neighbor Relation (ANR) measurement.
  • ANR Automatic Neighbor Relation
  • eNB When it is regarded as an eNB, it does not need to maintain a Neighbor Relation Table (NRT).
  • the ANR here mainly considers the case where the MR is regarded as an eNB. Therefore, for MR, only when the train stops at the station, there is a need for users under MR to migrate to the external macro cell.
  • LTE Long-Term Evolution
  • a method for maintaining MR neighbor information is applied to an MR, including: acquiring neighbor relationship information of an MR when camping at a designated site, where the neighbor relationship information includes: The cell information to which the user equipment UE to be managed can be migrated; maintain the neighbor list of the MR according to the neighbor relationship information.
  • obtaining the neighbor relationship information of the MR when camping at the designated station comprising: receiving the neighbor relationship information sent by the donor base station DeNB associated with the designated station.
  • the neighbor relationship information sent by the DeNB associated with the designated station is received by: receiving the neighbor relationship information by using an X2 interface message or an S1 interface message between the MR and the DeNB.
  • acquiring the neighbor relationship information when the MR resides at the designated site including: accessing the DeNB associated with the designated station; notifying the UE to start the ANR measurement process; acquiring the neighbor information through the ANR measurement process and according to the neighbor information Determine neighborhood information.
  • the informing the UE to start the ANR measurement process includes: informing the UE to initiate the ANR measurement process by using a downlink dedicated message, where the downlink dedicated message carries indication information for instructing the UE to start the ANR measurement process.
  • the downlink dedicated message when the neighboring cell list is LTE inter-system or inter-frequency neighbor relationship information, the downlink dedicated message further carries the target LTE system or frequency band information that needs to be measured.
  • the neighboring cell list of the MR is maintained according to the obtained neighboring cell relationship information, and the following is included: the neighboring cell list of the MR is established according to the acquired neighboring cell relationship information; and the existing neighboring cell of the MR is updated according to the acquired neighboring cell relationship information. List.
  • the neighbor list includes one of the following: a long term evolution LTE system or intra-frequency neighbor relationship information, LTE inter-frequency or inter-system neighbor relationship information.
  • acquiring the neighbor relationship information of the MR when moving and camping at the designated station comprising: receiving first neighbor relationship information sent by the donor base station DeNB associated with the designated station; accessing the association associated with the designated station
  • the DeNB is configured to notify the UE to start the ANR measurement process, obtain the neighboring cell information by using the ANR measurement process, and determine the second neighboring cell relationship information according to the neighboring cell information; and maintain the neighboring cell list of the mobile relay according to the acquired neighboring cell relationship information, including:
  • the first neighbor relationship information establishes an initial neighbor list; the initial neighbor list is refined or updated by the second neighbor relationship information.
  • the method further includes: stopping acquiring the neighbor relationship information when the MR moves to the next station of the designated station.
  • an apparatus for maintaining MR neighbor information is applied to an MR, including: an acquiring module, configured to acquire neighbor relationship information of an MR when camping at a designated site, where, The area relationship information is cell information that the UE under the jurisdiction of the MR can migrate to; the maintenance module is configured to maintain the neighbor list of the MR according to the neighbor relationship information.
  • the obtaining module comprises: a first receiving unit, configured to receive neighbor relationship information sent by a donor base station (DeNB) associated with the designated station.
  • DeNB donor base station
  • the obtaining module comprises: a first access unit, configured to access a DeNB related to the designated station; a first notification unit, configured to notify the UE to start the ANR measurement process; and the first obtaining unit is configured to obtain through the ANR measurement process
  • the neighboring area information determines the neighboring area relationship information according to the neighboring area information.
  • the maintenance module includes: a first maintenance unit, configured to establish a neighbor list of the MR according to the acquired neighbor relationship information; or update the existing neighbor list of the MR according to the acquired neighbor relationship information.
  • the obtaining module comprises: a second receiving unit, configured to receive first neighbor relationship information sent by the donor base station DeNB associated with the designated station; and a second access unit configured to access the specified site a second notification unit, configured to notify the UE to start the ANR measurement process; the second obtaining unit is configured to acquire the neighboring area information by using the ANR measurement process, and determine the second neighboring area relationship information according to the neighboring area information; the maintenance module includes: The establishing unit is configured to establish an initial neighbor list according to the first neighbor relationship information; and the second maintenance unit is configured to complete or update the initial neighbor list by using the second neighbor relationship information.
  • the technical means for maintaining the neighbor list of the MR based on the neighbor relationship information when the MR resides at the designated site is solved, and in the related art, in the mobile environment (for example, a high-speed rail environment), how is the MR not yet?
  • Technical problems such as the scheme of automatically generating and optimizing the neighboring area, so that the UE under the MR can be quickly migrated to the appropriate neighboring cell, and the switching process and network performance of the MR are optimized.
  • FIG. 2 is a flowchart of a method for maintaining MR neighbor information according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart according to Embodiment 1 of the present invention
  • FIG. 4 is a block diagram showing another structure of a maintenance device for MR neighbor information according to Embodiment 1 of the present invention
  • FIG. 5 is a diagram showing maintenance of MR neighbor information according to Embodiment 2 of the present invention
  • FIG. 6 is a flowchart of a method for maintaining MR neighbor information according to Embodiment 3 of the present invention
  • FIG. 7 is a flowchart of a method for maintaining MR neighbor information according to Embodiment 4 of the present invention
  • FIG. 8 is a flowchart of a method for maintaining MR neighbor information according to Embodiment 5 of the present invention.
  • FIG. 2 is a flowchart of a method of maintaining MR neighbor information according to Embodiment 1 of the present invention.
  • the method is applied to the MR, and the method includes: Step S202: Obtain the neighbor relationship information of the MR when camping at the designated site, where the neighbor relationship information includes: cell information that the UE under the jurisdiction of the MR can migrate; Step S204, according to The neighbor relationship information maintains the neighbor list of the MR.
  • the MR since the MR acquires the neighbor relationship information when camping on the site, and maintains the neighbor list of the MR according to the neighbor relationship information, the MR can be automatically generated and optimized.
  • the neighboring area relationship information is obtained in multiple manners, for example, it may be set in the MR in advance, and is triggered to be valid when the specified site is reached.
  • the following method may also be used: After reaching the designated station and camping on, the DeNB sends the neighbor relationship information to the MR. In other words, for the MR, the neighbor relationship information sent by the DeNB associated with the specified station is received.
  • the neighbor relationship information can be received through an X2 interface message or an S1 interface message between the MR and the DeNB.
  • the foregoing processing steps may be implemented as follows:
  • the DeNB ie, the DeNB associated with the site
  • the DeNB may transmit the local neighbor information to the MR through an X2 interface message, such as an X2 setup request, a response message, and a base station configuration update message.
  • the DeNB can transmit through the S1 interface.
  • the second method needs to notify the UE to start the ANR measurement to obtain the neighbor relationship information.
  • the foregoing neighbor relationship information when the MR resides at the designated site can be implemented by the following steps:
  • the UE may be notified of the ANR measurement process by using a downlink dedicated message, where the downlink dedicated message carries indication information for instructing the UE to start the ANR measurement process.
  • the downlink dedicated message when the neighbor list is LTE inter-system or inter-frequency neighbor relationship information, the downlink dedicated message also carries the target LTE system or frequency band information to be measured.
  • the implementation process of the method is a UE-based solution, and the specific processing can be expressed as the following processing process -
  • Intra-LTE/frequency Neighbor self-generation and optimization Because it is temporary and highly regional, it can be performed under the guidance of the DeNB. Like a train entering the station,
  • the attribute configuration can be set on the site DeNB, and it is clear that the DeNB is a site-related DeNB.
  • the MR may obtain the attribute configuration information, such as the site DeNB flag information, when the DeNB list is obtained from the MR OAM.
  • the MR accesses the DeNB, the MR notifies the UE to initiate ANR measurement and processing. That is, the MR notifies the UE to perform measurement through the downlink dedicated message in the air interface, and the message carries the indication information, such as opening the ANR measurement;
  • the UE sends a measurement result about the cell B.
  • This result includes the cell physical identifier (Phy-CID, referred to as PCI) of the cell B, instead of the global identifier (Global-CID, GCI for short); when the MR receives the Phy-CID measurement report sent by the UE, Perform the following processing steps:
  • the MR notifies the UE to use the newly discovered Phy-CID as a parameter to read the Global-CID of the relevant neighboring cell, Tracking Area Code (TAC), and all available public land mobile networks (Public) Land Mobile Network (abbreviated as PLMN) ID; when the UE acquires the Global-CID of the neighboring cell, the UE reports it to the MR of the serving cell;
  • TAC Tracking Area Code
  • PLMN Public Land Mobile Network
  • MR decides to join this neighbor relationship and can use the Phy-CID and Global-CID and other information reported by the UE to update the in-system/intra-frequency neighbor list.
  • Inter-RAT/Inter-frequency Neighbor self-generation and optimization Because it is temporary and highly regional, and because it is Inter-RAT/Inter-frequency measurement, it needs to be Under the guidance of the DeNB. For example, if the train enters the station and the MR is switched to the site DeNB, the attribute configuration can be set on the site DeNB, and it is clear that the DeNB is a site-related DeNB.
  • the MR can obtain the attribute configuration information, such as the site DeNB flag information, when the DeNB list is obtained from the MR OAM.
  • the UE can be notified to initiate ANR measurement and processing. That is, the MR notifies the UE to perform measurement through the downlink dedicated message on the air interface. It includes not only the indication information, such as opening the ANR measurement, but also the target system/band measurement information that needs to be measured.
  • the MR needs to schedule an appropriate idle period for the UE to read the Global-CID through the broadcast channel of the measured neighboring cell.
  • the UE reads the Global-CID of the detected target system, or the Global-CID of the detected target frequency band, TAC, and all available PLMN IDs, and then reports it to the MR of the serving cell.
  • step S204 may include establishing and updating two meanings. Specifically, step S204 may include one of the following processes: establishing a neighbor list of the MR according to the acquired neighbor relationship information; The existing neighbor list of the MR is updated according to the acquired neighbor relationship information.
  • the foregoing neighbor list may include one of the following: intra-LTE or intra-frequency neighbor relationship information, LTE inter-frequency or inter-system neighbor relationship information.
  • the third method is equivalent to the combination of the first method and the second method.
  • the first method is used to establish an initial neighbor list
  • the second method is used to improve or update the initial neighbor list, as follows: Obtain the neighbor relationship information when the MR moves and resides at the specified site.
  • the method may be implemented by: receiving first neighbor relationship information sent by a DeNB associated with a specified station; accessing a DeNB associated with the designated station; notifying the UE to start an ANR measurement process; acquiring neighbor information by using an ANR measurement process Determining the second neighboring cell relationship information according to the neighboring cell information; maintaining the neighboring cell list of the mobile relay according to the obtained neighboring cell relationship information, which may be implemented by: establishing an initial neighboring cell list according to the first neighboring cell relationship information; The second neighbor relationship information is improved or updated with the initial neighbor list.
  • the foregoing processing steps may be implemented in the following implementation manner: After the ANR is started, when the MR moves to the next DeNB of the site DeNB, the local NRT table is automatically cleared.
  • the UE may be notified by a downlink dedicated message, for example, the message carries a stop indication, and may also perform measurement reconfiguration through an RRC reconfiguration message, for example, only measuring the signal quality of the serving cell.
  • a maintenance device for the MR neighbor information is also provided, and the device is applied to the MR, and is used to implement the foregoing embodiment and the preferred embodiment.
  • the module is explained.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • 3 is a block diagram showing the structure of an apparatus for maintaining MR neighbor information according to Embodiment 1 of the present invention.
  • the device includes an acquisition module 30, which is connected to the maintenance module 32, and is configured to acquire the neighbor relationship information of the MR when camping at the designated site, where the neighbor relationship information is a UE under the jurisdiction of the MR.
  • the maintenance module 32 is configured to maintain the neighbor list of the MR according to the neighbor relationship information.
  • the MR can also obtain the neighbor relationship information when camping on the site, and maintain the neighbor list of the MR according to the neighbor relationship information. Therefore, the device can also implement the MR neighbor. Automatic generation and optimization of zones
  • the acquiring module may include: a first receiving unit 300, configured to receive neighbor relationship information sent by a DeNB associated with the designated station. In this embodiment, as shown in FIG.
  • the acquiring module may further include: a first access unit 302, connected to the first notification unit 304, configured to access a DeNB related to the designated station; the first notification unit 304
  • the first obtaining unit 306 is configured to notify the UE to start the ANR measurement process.
  • the first obtaining unit 306 is configured to acquire the neighboring cell information through the ANR measurement process and determine the second neighboring cell relationship information according to the neighboring cell information.
  • the foregoing maintenance module 32 includes: a first maintenance unit 320, configured to establish a neighboring cell list of the mobile relay according to the acquired neighbor relationship information; or according to the acquired neighbor relationship The information updates the list of existing neighbors of the mobile relay.
  • a first maintenance unit 320 configured to establish a neighboring cell list of the mobile relay according to the acquired neighbor relationship information; or according to the acquired neighbor relationship The information updates the list of existing neighbors of the mobile relay.
  • the acquiring module 30 may further include: a second receiving unit 308, configured to receive first neighbor relationship information sent by the DeNB associated with the designated station;
  • the unit 310 is connected to the second notification unit 312, and is configured to access the DeNB related to the designated station.
  • the second notification unit 312 is connected to the second obtaining unit 314, and is configured to notify the UE to start the ANR measurement process.
  • the second obtaining unit 314 is configured.
  • the setting module 322 is further configured to: the establishing unit 322 is connected to the second maintenance unit 324, and configured to establish an initial neighbor list according to the first neighbor relationship information;
  • the second maintenance unit 324 is configured to complete or update the initial neighbor list by using the second neighbor relationship information.
  • Embodiments 2-5 and related drawings The solution described in the following embodiments is based on the following characteristics of the MR ANR: the temporary NRT table requires rapid construction; the NRT table is highly regional, and the NR of each site is different; the ANR requires network side guidance.
  • Embodiment 2 The purpose of this embodiment is to implement automatic generation and optimization of a neighboring area of an MR after entering a station by using a network-side solution or a solution based on UE reporting, or a hybrid solution in a high-speed rail scenario. The user can be quickly and efficiently migrated to the appropriate neighboring cell, and the power consumption of the UE can be reduced to the greatest extent.
  • the mobile relay switching optimization and network performance improvement can be implemented according to the interface. Or the method of reporting the air interface to automatically generate and optimize the neighboring area of the MR, which is helpful for network performance optimization and user satisfaction.
  • the technical solution adopted in this embodiment is as follows: Assume that there is an X2 interface between the MR and the DeNB. As shown in FIG. 5, the method includes the following processing steps: Step S502: When the MR moves to the site, that is, the MR switch When the DeNB is located at the site, the DeNB transmits the neighboring cell information to the MR through the X2 interface, and the flow message or the eNB base station configuration update message may be established through the X2 interface.
  • step S504 If the former is the step S504, the latter proceeds to step S508; Step S504, MR Sending an X2 interface setup request to the DeNB; Step S506, the DeNB sends an X2 interface setup response to the MR, and carries all the serving cell information of the DeNB in the response; Step S508, the DeNB sends a base station configuration update message to the MR by using an X2 setup request message. The message carries all the serving cell information in the DeNB.
  • step S510 after receiving the X2 interface message, the MR can selectively configure the serving cell in the response message as its neighboring cell, for example, by interacting with the OAM. Constrained according to the black and white table of the neighboring area.
  • the foregoing process can be implemented through the S1 interface. It is assumed that the UE under the MR needs to be migrated to the other base station to perform the transition through the cell of the DeNB, and the neighboring cell relationship saved on the MR is consistent with the DeNB. If the above assumption is not established, that is, the user under the MR directly migrates to the eNB cell other than the DeNB or migrates to the external eNB through the serving cell of the DeNB. Generally, the coverage area of the DeNB in the site area may definitely include the mobile area after the UE leaves the MR. Note that the cell of the DeNB here is not necessarily configured as a neighboring cell of the MR cell.
  • Embodiment 3 This embodiment is based on the LTE intra/intra-frequency (intra-LTE/frequency) neighboring cell self-generation and optimization reported by the UE. As shown in FIG. 6, the method includes: Step S602, because it is a temporary construction table and a region Strong, so can be carried out under the guidance of DeNB. This has the advantage that the UE does not need to perform additional measurements and reporting during train travel, saving UE power because the UE moves with the MR during travel and does not migrate to the external eNB.
  • the attribute configuration may be set on the site DeNB, and it is clear that the DeNB is a site-related DeNB.
  • the MR may obtain the attribute configuration information, such as the site DeNB flag information, when the DeNB list is obtained from the MR OAM. Step S604, after the MR accesses the DeNB, the MR notifies the UE to start ANR measurement and processing. That is
  • the MR notifies the UE to perform measurement through the downlink dedicated message on the air interface, and the message carries the indication information, such as opening the ANR.
  • Step S606 the UE sends a measurement result about the cell B.
  • This result includes the cell physical identifier (Phy-CID) of the cell B instead of the Global-CID.
  • Step S608 when the MR receives the Phy-CID measurement report sent by the UE, the MR notifies the UE to use the newly discovered Phy-CID.
  • the MR read the Global-CID of the relevant neighboring cell, TAC (Tracking Area Code), all available PLMN IDs. Therefore, the MR needs to schedule an appropriate idle period for the UE to read the Global-CID of the measured neighboring cell.
  • Step S610 When the UE acquires the Global-CID of the neighboring cell, the UE reports it to the MR of the serving cell.
  • Step S612 if the MR decides to join the neighbor relationship, the Phy-CID and the Global-CID and other information reported by the UE may be used to update the intra-/inter-frequency neighbor list.
  • Embodiment 4 This embodiment is based on inter-system/inter-frequency neighboring self-generation and optimization reported by the UE. As shown in FIG. 7, the method for maintaining the MR neighbor information provided by this embodiment includes the following processing steps: Step S702: Because it is a temporary table and is highly regional, it can be performed under the guidance of the DeNB.
  • an attribute configuration may be set on the site DeNB, and it is clarified that the DeNB is a site-related DeNB.
  • the MR may obtain the attribute configuration information, such as the site DeNB flag information, when the DeNB list is obtained from the MR OAM.
  • Step S704 after the MR accesses the DeNB, the UE may be notified to start ANR measurement and processing. That is, the MR notifies the UE to perform measurement through the downlink dedicated message on the air interface.
  • Step S706 the UE sends a measurement result about the cell B. This result contains the cell physical identifier (Phy-CID) of cell B.
  • Phy-CID cell physical identifier
  • the Phy-CID is defined by the following parameters: in the UTRAN Frequency Division Duplexing (FDD) cell, the carrier frequency, the Primary Scrambling Code (PSC); the UTRAN time division duplex (Time Division Duplexing, abbreviated as TDD), the carrier frequency and the cell parameter ID are used.
  • FDD Frequency Division Duplexing
  • PSC Primary Scrambling Code
  • TDD Time Division Duplexing
  • Step S708 when the MR receives the Phy-CID measurement report sent by the UE, the MR notifies the UE, using the newly discovered Phy-CID as a parameter To read: the Global-CID of the detected target system, or the Global-CID of the detected target band, TAC, all available PLMN IDs.
  • BSIC base station identity code
  • BCCH Broadcast Control Channel
  • the GERAN cell reads the Common Gateway Interface (CGI) and the Relative Address Coding (RAC), if it is a UTRAN cell, the CGI and the Location Area Code (Location Area Code, referred to as LAC), RAC, if it is a CDMA2000 cell read CGI.
  • CGI Common Gateway Interface
  • LAC Location Area Code
  • ECGI Location Area Code
  • TAC Time Division Multiple Access
  • PLMN IDs Code for LTE inter-frequency cells
  • the eNodeB needs to schedule an appropriate idle period for the UE to read the Global-CID through the broadcast channel of the measured neighboring cell.
  • Step S710 after the UE acquires the information in step S708, the UE reports it to the MR of the serving cell.
  • Step S712 If the MR decides to join the neighbor relationship, the Phy-CID and the Global-CID and other information reported by the UE may be used to update the intra-/inter-frequency neighbor cell list.
  • the method for maintaining MR neighbor information provided by this embodiment includes the following processing steps: Step S802: After entering the DeNB of the station, the MR establishes an initial NRT table by using the solution of Embodiment 2; Step S804, reporting the improved NRT table by the UE by using the solution in Embodiment 3-4. It should be noted that, in Embodiment 2-5, after the ANR is started, when the MR moves to the next DeNB of the site DeNB, the local NRT table is cleared.
  • the UE needs to be notified by the downlink dedicated message, for example, the message carries the stop indication, and the measurement reconfiguration can also be performed by using the RRC reconfiguration message, for example, only measuring the quality of the serving cell signal.
  • a software is also provided. The software is used to implement the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above are only the preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种移动中继邻区信息的维护方法及装置,其中,上述方法包括:获取所述MR在驻留到指定站点时的邻区关系信息,其中,所述邻区关系信息包括:所述MR所辖的用户设备UE可迁移到的小区信息;按照所述邻区关系信息维护所述MR的邻区列表。采用本发明提供的上述技术方案,解决了相关技术中,在移动环境(例如高铁环境)中,尚无MR如何实现邻区自动生成和优化的方案等技术问题,从而使得MR下的UE可以快速迁移到合适的邻区,优化了MR的切换过程和网络性能。

Description

移动中继邻区信息的维护方法及装置
技术领域 本发明涉及通信领域, 具体而言, 涉及一种移动中继(Mobile Relay, 简称为 MR) 邻区信息的维护方法及装置。 背景技术 为了保持第三代移动通信系统在通信领域的竞争力, 第三代合作伙伴计划 (3rd Generation Partnership Project, 简称为 3GPP) 标准工作组正致力于演进分组域系统 (Evolved Packet System, 简称为 EPS) 的研究。 整个 EPS系统, 主要包括演进的通 用陆地无线接入网络 (Evolved Universal Terrestrial Radio Access Network, 简称为 E-UTRAN) 和演进的分组核心网 (Evolved Packet Core, 简称为 EPC) 两部分。 该系统 的 EPC能够支持用户从全球移动通信(Global system for Mobile Communication, 简称 为 GSM)系统 /增强数据率 GSM演进(Enhanced Data Rate for GSM Evolution, 简称为 EDGE) 无线接入网 (GSM EDGE radio access network, 简称为 GERAN) 和通用陆地 无线接入网 (Universal Terrestrial Radio Access Network, 简称为 UTRAN) 的接入。 在 EPC分组核心网中, 包含了归属用户数据服务器 (Home Subscriber Server, 简 称为 HSS)、 移动性管理单元(Mobility Management Entity, 简称为 MME)、 服务网关 (Serving Gateway,简称为 S-GW)、分组数据网络网关(PDN Gateway,简称为 P-GW)、 服务 GPRS支持节点(Serving GPRS Support Node, 简称为 SGSN)和策略与计费规则 功能实体 (Policy and Charging Enforcement Function, 简称为 PCRF), 其中: HSS是用户签约数据的永久存放地点, 位于用户签约的归属网;
MME 是用户签约数据在当前网络的存放地点, 负责终端到网络非接入层 (Non-Access Stratum, 简称为 NAS)信令管理、 用户空闲模式下的跟踪和寻呼管理功能 和承载管理;
S-GW是核心网到无线系统的网关, 负责终端到核心网的用户面承载、 终端空闲 模式下的数据缓存、 网络侧发起业务请求的功能、 合法窃听和分组数据路由和转发功 P-GW是演进的分组域系统和该系统外部网络的网关, 负责终端的 IP地址分配、 计费功能、 分组包过滤、 策略应用等功能;
SGSN是 GERAN和 UTRAN用户接入 EPC网络的业务支持点, 功能上与 MME 类似, 负责用户的位置更新、 寻呼管理和承载管理等功能; PCRF负责向策略和计费执行功能 (Policy and Charging Enforcement Function, 简 称为 PCEF) 提供策略控制与计费规则。 在某些场景下, 为了扩大无线覆盖范围, 或者临时性增加无线提供接入用户的能 力, 引入了中继(Relay)节点的概念。 该网络架构的示意图如图 1所示, 网元说明如 下: 中继节点(Relay Node,简称为 RN)包含两部分功能,用户设备(User Equipment, 简称为 UE) 和中继节点。 RN—方面作为 UE接入网络, 建立承载等相关操作, 另一 方面作为演进型基站 (E-UTRAN NodeB, 简称为 eNB) 为 UE提供接入。 供者基站(Donor eNodeB,简称为 DeNB)为 RN提供了无线接入,终结了 RN-UE 的无线资源控制(Radio Resource Control,简称为 RRC)信令,终结了 RN-eNB的 S1AP 信令以及 X2信令。 同时内置的 RN-UE的 SGW和 PGW。 中继节点的网管系统 (Relay Node Operator and Management, 简称为 RN OAM), 用于 RN从其中获得必要的连接信息。 运营商部署该架构的主要目的是在一些不方便部署有线连接的地方通过部署中继 节点来扩大基站的覆盖范围, 例如比较偏远的不发达地区, 或者突发性的大型会议或 者比赛。 而这种场景下, 中继节点的位置一般是固定的。 然而随着中继节点的应用, 运营商开始考虑将这一技术应用在更广泛的场景中, 例如在高速铁路上, 由于列车高 速移动, 列车沿线需要大量部署有线通信设施, 这大大增加了运营商的部署成本, 而 中继节点和供者基站间的无线链路正好可以降低这一成本, 因此受到运营商的青睐, 这种设备称为移动中继。 见图 1。 高铁场景的具体特性如下: 火车高速运行, 如 350km/h; (欧洲的 Eurostar列车长 393米时速 300km/h, 日本 的 Shinkansen长 480米时速 300km/h, 中国高铁长 432米时速 350km/h); 沿着固定路线运行; 火车车厢信号穿透损耗高; 列车上的用户相对于列车处于静止状态或是步行速度移动。 考虑到目前 MR使用场景的特殊性, 也即在高铁上使用。对于 MR 实现自动邻区 优化可以从以下方面进行考虑:
MR由于只服务于高铁用户, 在火车行驶过程中, 源 DeNB针对该 MR有着确定 的切换目标小区, 且火车行驶过程中 MR下的用户相对静止也不需要进行单独切换, 因此可以认为 MR 在火车行驶过程中看作 UE 的时候不需要执行自动邻区关系 (Automatic Neighbor Relation, 简称为 ANR)测量, 看作 eNB的时候也不需要维护邻 区关系表(Neighbor Relation Table,简称为 NRT)。这里的 ANR主要考虑 MR看作 eNB 的情况。 所以对于 MR来说, 只有在列车进站停留的时候, 存在 MR下的用户需要迁 移到外部宏小区的需求, 因此这时需要依靠邻区关系来实现用户迁移。 和长期演进(Long-Term Evolution, 简称为 LTE) ANR需求区别: MR的 ANR只 在特定时刻需要启动, 而 LTE ANR则没有启动限制。 在列车运行期间 MR上不需要 保存和维护 NRT表, 也就是说不需要 ANR功能。 对于移动环境下 (例如高铁运行环 境) 的 MR如何实现邻区自动生成和优化尚无有效地解决方案。 因此,在移动环境 (高 铁环境) 中移动中继节点部署场景下, 如何保证能够移动中继实现邻区自动生成和优 化是需要解决的问题。 针对相关技术中的上述问题, 目前尚未提出有效的解决方案。 发明内容 针对相关技术中, 移动环境 (例如高铁环境) 中, 尚无 MR如何实现邻区自动生 成和优化的方案等技术问题, 本发明实施例提供了一种移动中继邻区信息的维护方法 及装置, 以至少解决上述问题。 根据本发明的一个实施例, 提供了一种 MR邻区信息的维护方法, 应用于 MR, 包括: 获取 MR在驻留到指定站点时的邻区关系信息, 其中, 邻区关系信息包括: MR 所辖的用户设备 UE可迁移到的小区信息; 按照邻区关系信息维护 MR的邻区列表。 优选地, 获取 MR在驻留到指定站点时的邻区关系信息, 包括: 接收与指定站点 相关联的供者基站 DeNB发送的邻区关系信息。 优选地, 通过以下方式接收与指定站点相关联的 DeNB发送的邻区关系信息: 通 过 MR与 DeNB之间的 X2接口消息或 S1接口消息接收邻区关系信息。 优选地, 获取 MR驻留到指定站点时的邻区关系信息, 包括: 接入与指定站点相 关联的 DeNB; 通知 UE启动 ANR测量过程; 通过 ANR测量过程获取邻区信息并根 据该邻区信息确定邻区关系信息。 优选地, 通知 UE启动 ANR测量过程, 包括: 通过下行专用消息通知 UE启动 ANR测量过程, 其中, 下行专用消息中携带有用于指示 UE启动 ANR测量过程的指 示信息。 优选地, 在邻区列表为 LTE系统间或频间邻区关系信息时, 下行专用消息中还携 带有需要测量的目标 LTE系统或频段信息。 优选地, 按照获取的邻区关系信息维护 MR的邻区列表, 包括以下之一: 按照获 取的邻区关系信息建立 MR的邻区列表; 按照获取的邻区关系信息更新 MR的已有邻 区列表。 优选地,邻区列表包括以下之一:长期演进 LTE系统内或频内邻区关系信息、 LTE 频间或系统间邻区关系信息。 优选地, 获取 MR在移动并驻留到指定站点时的邻区关系信息, 包括: 接收与指 定站点相关联的供者基站 DeNB发送的第一邻区关系信息; 接入与指定站点相关联的 DeNB; 通知 UE启动 ANR测量过程; 通过 ANR测量过程获取邻区信息并根据该邻 区信息确定第二邻区关系信息; 按照获取的邻区关系信息维护移动中继的邻区列表, 包括: 根据第一邻区关系信息建立初始邻区列表; 通过第二邻区关系信息完善或更新 初始邻区列表。 优选地, 上述方法还包括: 在 MR移动到指定站点的下一站点时, 停止获取邻区 关系信息。 根据本发明的另一个实施例, 提供了一种 MR邻区信息的维护装置, 应用于 MR, 包括: 获取模块, 设置为获取 MR在驻留到指定站点时的邻区关系信息, 其中, 邻区 关系信息为 MR所辖的 UE可迁移到的小区信息; 维护模块, 设置为按照邻区关系信 息维护 MR的邻区列表。 优选地, 获取模块包括: 第一接收单元, 设置为接收在与指定站点相关联的供者 基站 (DeNB) 发送的邻区关系信息。 优选地, 获取模块包括: 第一接入单元, 设置为接入与指定站点相关的 DeNB; 第一通知单元,设置为通知 UE启动 ANR测量过程;第一获取单元,设置为通过 ANR 测量过程获取邻区信息并根据该邻区信息确定邻区关系信息。 优选地, 上述维护模块, 包括: 第一维护单元, 设置为按照获取的邻区关系信息 建立 MR的邻区列表; 或者按照获取的邻区关系信息更新 MR的已有邻区列表。 优选地, 获取模块包括: 第二接收单元, 设置为接收在与指定站点相关联的供者 基站 DeNB发送的第一邻区关系信息; 第二接入单元, 设置为接入与指定站点相关的 DeNB; 第二通知单元, 设置为通知 UE启动 ANR测量过程; 第二获取单元, 设置为 通过 ANR测量过程获取邻区信息并根据该邻区信息确定第二邻区关系信息; 维护模 块, 包括: 建立单元, 设置为根据第一邻区关系信息建立初始邻区列表; 第二维护单 元, 设置为通过第二邻区关系信息完善或更新初始邻区列表。 通过本发明, 采用根据获取 MR在驻留到指定站点时的邻区关系信息维护 MR的 邻区列表的技术手段, 解决了相关技术中, 在移动环境 (例如高铁环境) 中, 尚无 MR如何实现邻区自动生成和优化的方案等技术问题, 从而使得 MR下的 UE可以快 速迁移到合适的邻区, 优化了 MR的切换过程和网络性能。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1为根据相关技术的移动中继部署场景示意图; 图 2为根据本发明实施例 1的 MR邻区信息的维护方法的流程图; 图 3为根据本发明实施例 1的 MR邻区信息的维护装置的结构框图; 图 4为根据本发明实施例 1的 MR邻区信息的维护装置的另一结构框图; 图 5为根据本发明实施例 2的 MR邻区信息的维护方法的流程图; 图 6为根据本发明实施例 3的 MR邻区信息的维护方法的流程图; 图 7为根据本发明实施例 4的 MR邻区信息的维护方法的流程图; 图 8为根据本发明实施例 5的 MR邻区信息的维护方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 考虑到相关技术中, 移动环境 (例如高铁环境) 中, 尚无 MR如何实现邻区自动 生成和优化的方案等技术问题, 以下结合实施例提供了相关的解决方案,现详细说明。 实施例 1 图 2为根据本发明实施例 1的 MR邻区信息的维护方法的流程图。 该方法应用于 MR, 包括: 步骤 S202, 获取 MR在驻留到指定站点时的邻区关系信息, 其中, 邻区关系信 息包括: MR所辖的 UE可迁移到的小区信息; 步骤 S204, 按照邻区关系信息维护 MR的邻区列表。 通过上述处理步骤, 由于 MR在驻留到站点时会获取上述邻区关系信息, 并根据 该邻区关系信息维护 MR的邻区列表, 因此,可以使得 MR实现邻区自动生成和优化。 步骤 S202中, 获取上述邻区关系信息的方式有多种, 例如可以预先在 MR设置, 在到达上述指定站点触发其有效, 在本实施例中, 还可以采用以下方法来实现: 第一种方法 在到达指定站点并驻留后, DeNB将邻区关系信息发送给 MR, 换而言之, 对于 MR, 会接收与上述指定站点相关联的 DeNB发送的邻区关系信息。 采用该方法时, 可以通过 MR与 DeNB之间的 X2接口消息或 S1接口消息接收邻区关系信息。 在具 体应用时, 上述处理步骤可以表现为以下实现过程: 在 MR移动到站点的时候, 由站点位置的 DeNB (即与站点相关联的 DeNB) 通 过地面接口为 MR传递邻接小区信息 (即邻区关系信息)。 如果 MR和 DeNB之间存 在 X2接口, 那么 DeNB可以通过 X2接口消息将本地的邻区信息传递给 MR, 例如 X2建立请求、响应消息、基站配置更新消息。如果 MR和 DeNB之间不存在 X2接口, 此时 DeNB可以通过 S1接口进行传递。 第二种方法 该方法需要通知 UE启动 ANR测量以获取上述邻区关系信息, 具体地, 上述获取 MR驻留到指定站点时的邻区关系信息, 可以通过以下步骤实现:
( 1 ) 接入与指定站点相关联的 DeNB; (2) 通知 UE启动自动邻区关系 ANR测量过程;
(3)通过 ANR测量过程获取邻区信息, 并根据该邻区信息确定上述邻区关系信 息。 在该方法的实现过程中,可以通过下行专用消息通知 UE启动 ANR测量过程,其 中, 下行专用消息中携带有用于指示 UE启动 ANR测量过程的指示信息。 在该方法的实现过程中, 在邻区列表为 LTE系统间或频间邻区关系信息时, 下行 专用消息中还携带有需要测量的目标 LTE系统或频段信息。 该方法的实现过程为基于 UE的解决方案, 在具体实施时可以表现为以下处理过 程-
( 1 ) LTE内 /频内 (Intra-LTE/frequency) 邻区自生成和优化 由于是临时性建表且地域性强, 因此可以在 DeNB指导下进行。 比如列车进站,
MR切换到站点 DeNB下, 可以在站点 DeNB上设置属性配置, 明确该 DeNB是一个 站点相关的 DeNB。 MR可以从 MR OAM处获取 DeNB列表的时候获取该属性配置信 息, 比如站点 DeNB标志信息; 当 MR接入该 DeNB后, MR通知 UE启动 ANR测量和处理。也即 MR在空口通 过下行专用消息通知 UE进行测量, 消息中携带指示信息, 比如打开 ANR测量;
UE 发送有关小区 B 的测量结果。 这个结果包含小区 B 的小区物理标识符 (Phy-CID, 简称为 PCI), 而不是全球标识符 (Global-CID, 简称为 GCI); 当 MR收到 UE发送的包含 Phy-CID测量报告, 将执行以下处理步骤:
MR通知 UE, 使用新发现的 Phy-CID作为参数来读取相关邻小区的 Global-CID, 跟踪区代码(Tracking Area Code,简称为 TAC),所有可用的公共陆地移动网络(Public Land Mobile Network, 简称为 PLMN) ID; 当 UE获取到邻小区的 Global-CID, UE 将它上报到服务小区的 MR;
MR决定加入这个邻区关系, 并可使用 Phy-CID和 Global-CID以及 UE上报的其 他信息来更新系统内 /频内邻区列表。 (2) 系统间 /频间 (Inter-RAT/Inter-frequency) 邻区自生成和优化 由于是临时性建表且地域性强, 且由于是进行 Inter-RAT/Inter-frequency测量, 因 此需要在 DeNB指导下进行。 比如列车进站, MR切换到站点 DeNB下, 可以在站点 DeNB上设置属性配置,明确该 DeNB是一个站点相关的 DeNB。 MR可以从 MR OAM 处获取 DeNB列表的时候获取该属性配置信息, 比如站点 DeNB标志信息。 A) 当 MR接入该 DeNB后, 即可通知 UE启动 ANR测量和处理。 也即 MR在空 口通过下行专用消息通知 UE进行测量。其中不仅包含指示信息,比如打开 ANR测量, 还需要包含需要测量的目标系统 /频段测量信息。
B) UE上报测到的目标系统 /频段小区的 Phy-CID。 当 MR收到 UE上报的小区 Phy-CID, 将执行以下步骤: C)MR通知 UE, 使用新发现的 Phy-CID作为参数来读取所检测到的目标系统的
Global-CID, 或者所检测到的目标频段的 Global-CID, TAC, 所有可用的 PLMN ID。 因此, MR 需调度适当的空闲周期来让 UE 通过所测邻小区的广播信道来读取 Global-CID。
D)UE 读取所检测到的目标系统的 Global-CID , 或者所检测到的目标频段的 Global-CID, TAC, 所有可用的 PLMN ID后, 将其上报到服务小区的 MR。
MR决定加入这个邻区关系, 并可使用 Phy-CID和 Global-CID以及 UE上报的其 他信息来更新其系统间 /频间邻区列表。 在本实施例中, 步骤 S204中的 "维护"可以包括建立和更新两种含义, 具体来 说, 步骤 S204可以包括以下之一处理过程: 按照获取的邻区关系信息建立 MR的邻 区列表; 按照获取的邻区关系信息更新 MR的已有邻区列表。 在本实施例中, 上述邻区列表可以包括以下之一: LTE系统内或频内邻区关系信 息、 LTE频间或系统间邻区关系信息。 第三种方法 该方法相当于第一种方法和第二种方法的结合方案。 即首先利用第一种方法建立 一个初始邻区列表, 再利用第二种方法对初始邻区列表进行完善或更新, 具体如下: 获取 MR在移动并驻留到指定站点时的邻区关系信息, 可以通过以下处理过程实 现: 接收与指定站点相关联的 DeNB发送的第一邻区关系信息; 接入与指定站点相关 联的 DeNB; 通知 UE启动 ANR测量过程; 通过 ANR测量过程获取邻区信息并根据 该邻区信息确定第二邻区关系信息; 按照获取的邻区关系信息维护移动中继的邻区列表,可以通过以下处理过程实现: 根据第一邻区关系信息建立初始邻区列表; 通过第二邻区关系信息完善或更新初始邻 区列表。 在本实施例中, 在 MR移动到指定站点的下一站点时, 停止获取邻区关系信息。 在具体实施过程中, 上述处理步骤可以表现为以下实现形式: 在 ANR启动以后, 当 MR移动到站点 DeNB的下一个 DeNB时候自动停止, 本 地 NRT表清空。 可以通过下行专用消息来通知 UE, 比如消息中携带停止指示, 也可 以通过 RRC重配消息进行测量重配置, 比如只测量服务小区信号质量。 在本实施例中还提供了 MR邻区信息的维护装置, 该装置应用于 MR, 用于实现 上述实施例及优选实施方式, 已经进行过说明的不再赘述, 下面对该装置中涉及到的 模块进行说明。 如以下所使用的, 术语 "模块"可以实现预定功能的软件和 /或硬件的 组合。 尽管以下实施例所描述的装置较佳地以软件来实现, 但是硬件, 或者软件和硬 件的组合的实现也是可能并被构想的。 图 3为根据本发明实施例 1的 MR邻区信息的 维护装置的结构框图。 如图 3所示, 该装置包括- 获取模块 30, 连接至维护模块 32, 设置为获取 MR在驻留到指定站点时的邻区 关系信息, 其中, 邻区关系信息为 MR所辖的 UE可迁移到的小区信息; 维护模块 32, 设置为按照上述邻区关系信息维护 MR的邻区列表。 通过上述各个模块实现的功能, 同样可以使得 MR在驻留到站点时会获取上述邻 区关系信息, 并根据该邻区关系信息维护 MR的邻区列表, 因此, 该装置同样可以使 得 MR实现邻区自动生成和优化 在本实施例中, 如图 4所示, 上述获取模块可以包括: 第一接收单元 300, 设置 为接收在与指定站点相关联的 DeNB发送的邻区关系信息。 在本实施例中, 如图 4所示, 上述获取模块还可以包括: 第一接入单元 302, 连 接至第一通知单元 304, 设置为接入与指定站点相关的 DeNB; 第一通知单元 304, 连接至第一获取单元 306, 设置为通知 UE启动 ANR测量过程; 第一获取单元 306, 设置为通过 ANR测量过程获取邻区信息并根据该邻区信息确定第二邻区关系信息。 在本实施例中, 如图 4所示, 上述维护模块 32, 包括: 第一维护单元 320, 设置为按照获取的邻区关系信息建立移动中继的邻区列表; 或者按照获取的邻区关系信息更新移动中继的已有邻区列表。 在本实施例中, 如图 4所示, 上述获取模块 30还可以包括: 第二接收单元 308, 设置为接收在与指定站点相关联的 DeNB发送的第一邻区关 系信息; 第二接入单元 310, 连接至第二通知单元 312, 设置为接入与指定站点相关的 DeNB; 第二通知单元 312, 连接至第二获取单元 314, 设置为通知 UE启动 ANR测量过 程; 第二获取单元 314, 设置为通过 ANR测量过程获取第二邻区关系信息; 维护模块 32, 还可以包括: 建立单元 322, 连接至第二维护单元 324, 设置为根据第一邻区关系信息建立初 始邻区列表; 第二维护单元 324, 设置为通过第二邻区关系信息完善或更新初始邻区列表。 为了更好地理解上述实施例, 以下结合实施例 2-5和相关附图详细说明。 以下实 施例所述的解决方案基于 MR ANR的以下特点:临时性 NRT表,要求建表迅速; NRT 表地域性强, 每个站点的 NR都不一样; ANR需要网络侧指导进行。 实施例 2 本实施例的目的是在高铁场景下通过基于网络侧的解决方法或者基于 UE上报的 解决方法、 或者混合的解决方法来实现 MR在进入站点后的邻区自动生成和优化, 使 得 MR下的用户可以快速有效地迁移到合适的邻区, 以及最大可能减少 UE的电量消 耗, 实现移动中继切换优化以及网络性能提高 本实施例提供的的 MR邻区信息的维护方法能根据接口传递或者空口上报的方式 实现 MR的邻区自动生成和优化, 有助于网络性能优化, 提高用户满意度。 为实现上述目的, 本实施例采用的技术方案如下: 假设 MR和 DeNB之间存在 X2接口, 如图 5所示, 该方法包括以下处理步骤: 步骤 S502, 当 MR移动到站点时, 即 MR切换到站点位置的 DeNB时, 该 DeNB 通过 X2接口为 MR传递邻接小区信息, 可以通过 X2接口建立流程消息或者 eNB基 站配置更新消息, 若为前者转步骤 S504; 后者转步骤 S508; 步骤 S504, MR给 DeNB发送 X2接口建立请求; 步骤 S506, DeNB给 MR发送 X2接口建立响应, 并在该响应中携带 DeNB下所 有服务小区信息; 步骤 S508, DeNB通过 X2建立请求消息给 MR发送基站配置更新消息, 在该消 息中携带 DeNB下所有服务小区信息; 步骤 S510, MR接收到 X2接口消息后, 可以选择性的将响应消息中的服务小区 配置为自身的邻区, 比如通过和 OAM交互的方式, 可以根据邻区黑白表来进行约束。 进一步地, 若 MR和站点 DeNB之间没有 X2接口存在, 则可以通过 S1接口实现 上述流程。 假定 MR下的 UE要迁移到其他基站都需要通过 DeNB的小区来进行过渡, 那么 MR上保存的邻接小区关系和 DeNB保持一致即可。 如果上述假设不成立,也即 MR下的用户直接迁移到 DeNB之外的 eNB小区或通 过 DeNB的服务小区迁移到外部 eNB。一般在站点地区 DeNB的覆盖区域肯定可以包 含了 UE离开 MR后的移动区域。 注意, 这里 DeNB的小区并不一定配置为 MR小区 的邻区。 此时, 需要采用实施例 3-5的解决方案。 实施例 3 本实施例基于 UE上报的 LTE内 /频内 (Intra-LTE/frequency) 邻区自生成和优化, 如图 6所示, 该方法包括: 步骤 S602, 由于是临时性建表且地域性强, 因此可以在 DeNB指导下进行。 这样 的好处是在列车行驶期间 UE不需要进行额外的测量和上报, 节省 UE电量, 因为在 行驶期间 UE是随着 MR—起移动的并不会迁移到外部 eNB。 比如列车进站, MR切 换到站点 DeNB下, 可以在站点 DeNB上设置属性配置, 明确该 DeNB是一个站点相 关的 DeNB。 MR可以从 MR OAM处获取 DeNB列表的时候获取该属性配置信息, 比 如站点 DeNB标志信息。 步骤 S604, 当 MR接入该 DeNB后, MR通知 UE启动 ANR测量和处理。 也即
MR在空口通过下行专用消息通知 UE进行测量,消息中携带指示信息,比如打开 ANR
步骤 S606, UE发送有关小区 B的测量结果。 这个结果包含小区 B的小区物理标 志符 (Phy-CID), 而不是 Global-CID; 步骤 S608, 当 MR收到 UE发送的包含 Phy-CID测量报告, MR通知 UE, 使用 新发现的 Phy-CID作为参数来读取相关邻小区的 Global-CID, TAC (跟踪区代码), 所 有可用的 PLMN ID。 因此, MR需调度适当的空闲周期来让 UE读取所测邻小区的 Global-CID。 步骤 S610, 当 UE获取到邻小区的 Global-CID, UE将它上报到服务小区的 MR。 当 MR需要时, UE还会上报所测邻小区的 TAC, 所有 PLMN ID。 步骤 S612, 若 MR决定加入这个邻区关系, 并可使用 Phy-CID和 Global-CID以 及 UE上报的其他信息来更新系统内 /频内邻区列表。 实施例 4 本实施例基于 UE上报的系统间 /频间 (Inter-RAT/Inter-frequency) 邻区自生成和 优化。 如图 7所示, 本实施例提供的 MR邻区信息的维护方法包括以下处理步骤: 步骤 S702, 由于是临时性建表且地域性强, 因此可以在 DeNB指导下进行。 这样 的好处是在列车行驶期间 UE不需要进行额外的测量和上报, 节省 UE电量, 因为在 行驶期间 UE是随着 MR—起移动的并不会迁移到外部 eNB。 比如列车进站, MR切 换到站点 DeNB下, 可以在站点 DeNB上设置属性配置, 明确该 DeNB是一个站点相 关的 DeNB。 MR可以从 MR OAM处获取 DeNB列表的时候获取该属性配置信息, 比 如站点 DeNB标志信息。 步骤 S704, 当 MR接入该 DeNB后, 即可通知 UE启动 ANR测量和处理。 也即 MR在空口通过下行专用消息通知 UE进行测量。 其中不仅包含指示信息, 比如打开 ANR测量。 还需要包含需要测量的目标系统 /频段测量信息。 MR通知 UE在目标系统 /频段测量相邻小区。 因此, MR需要调度适当的空闲周期来让 UE检测目标系统 /频段 中的可用小区。 步骤 S706, UE发送有关小区 B的测量结果。 这个结果包含小区 B的小区物理标 志符( Phy-CID )。 Phy-CID由以下参数定义:在 UTRAN频分双工( Frequency Division Duplexing,简称为 FDD)小区时,采用载频频率、主扩频码(Primary Scrambling Code, 简称为 PSC); 在 UTRAN 时分双工(Time Division Duplexing, 简称为 TDD)小区时, 采用载频频率、 小区参数 ID; 在 GERAN小区时, 基站识别码 (Base Station Identity Code, 简称为 BSIC)和广播控制信道(Broadcast Control Channel, 简称为 BCCH) 的 ARFCN (完全无线频率信道数), 在 CDMA2000 cell下是 PN Offset; 步骤 S708, 当 MR收到 UE发送的包含 Phy-CID测量报告, MR通知 UE, 使用 新发现的 Phy-CID作为参数来读取: 所检测到的目标系统的 Global-CID, 或者所检测 到的目标频段的 Global-CID, TAC, 所有可用的 PLMN ID。 如果是 GERAN小区读取 通用网关接口 (Common Gateway Interface, 简称为 CGI)、 关系地址编码 (Relative Address Coding,简称为 RAC),如果是 UTRAN小区读取 CGI、位置区码(Location Area Code, 简称为 LAC)、 RAC, 如果是 CDMA2000小区读取 CGI。 对于 LTE频间小区, 则包括 ECGI、 TAC和所有可用的 PLMN ID。 因此, eNodeB需调度适当的空闲周期 来让 UE通过所测邻小区的广播信道来读取 Global-CID。 步骤 S710, 当 UE获取到步骤 S708中的信息后, UE将它上报到服务小区的 MR。 步骤 S712, 若 MR决定加入这个邻区关系, 并可使用 Phy-CID和 Global-CID以 及 UE上报的其他信息来更新系统内 /频内邻小区列表。 实施例 5 如图 8所示, 本实施例提供的 MR邻区信息的维护方法包括以下处理步骤: 步骤 S802, MR在进入站点的 DeNB后, 通过利用实施例 2的方案建立起一张初 始的 NRT表; 步骤 S804, 通过实施例 3-4的方案通过 UE上报完善 NRT表。 需要说明的是, 在实施例 2-5中, 在 ANR启动以后, 当 MR移动到站点 DeNB 的下一个 DeNB时候自动停止,本地 NRT表清空。需要通过下行专用消息来通知 UE, 比如消息中携带停止指示, 也可以通过 RRC重配消息进行测量重配置,例如只测量服 务小区信号质量 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种移动中继 MR邻区信息的维护方法, 应用于所述 MR, 包括:
获取所述 MR在驻留到指定站点时的邻区关系信息, 其中, 所述邻区关系 信息包括: 所述 MR所辖的用户设备 UE可迁移到的小区信息;
按照所述邻区关系信息维护所述 MR的邻区列表。
2. 根据权利要求 1所述的方法, 其中, 获取所述 MR在驻留到指定站点时的邻区 关系信息, 包括- 接收与所述指定站点相关联的供者基站 DeNB发送的所述邻区关系信息。
3. 根据权利要求 2所述的方法, 其中, 通过以下方式接收与所述指定站点相关联 的 DeNB发送的所述邻区关系信息:
通过所述 MR与所述 DeNB之间的 X2接口消息或 S 1接口消息接收所述邻 区关系信息。
4. 根据权利要求 1所述的方法, 其中, 获取所述 MR驻留到指定站点时的邻区关 系信息, 包括- 接入与所述指定站点相关联的 DeNB;
通知所述 UE启动自动邻区关系 ANR测量过程;
通过所述 ANR测量过程获取邻区信息并根据该邻区信息确定所述邻区关 系信息。
5. 根据权利要求 4所述的方法, 其中, 通知所述 UE启动 ANR测量过程, 包括: 通过下行专用消息通知所述 UE启动 ANR测量过程,其中,所述下行专用 消息中携带有用于指示所述 UE启动所述 ANR测量过程的指示信息。
6. 根据权利要求 5所述的方法, 其中,
在所述邻区列表为 LTE系统间或频间邻区关系信息时,所述下行专用消息 中还携带有需要测量的目标 LTE系统或频段信息。
7. 根据权利要求 2至 6任一项所述的方法, 其中, 按照获取的所述邻区关系信息 维护所述 MR的邻区列表, 包括以下之一: 按照获取的所述邻区关系信息建立所述 MR的邻区列表; 按照获取的所述邻区关系信息更新所述 MR的已有邻区列表。
8. 根据权利要求 1至 5任一项所述的方法, 其中, 所述邻区列表包括以下之一: 长期演进 LTE系统内或频内邻区关系信息、 LTE频间或系统间邻区关系信 息。
9. 根据权利要求 1所述的方法, 其中,
获取所述 MR在移动并驻留到指定站点时的邻区关系信息, 包括: 接收与 所述指定站点相关联的供者基站 DeNB发送的第一邻区关系信息; 接入与所述 指定站点相关联的 DeNB; 通知所述 UE启动 ANR测量过程; 通过所述 ANR 测量过程获取邻区信息并根据该邻区信息确定第二邻区关系信息;
按照获取的所述邻区关系信息维护所述移动中继的邻区列表, 包括: 根据 所述第一邻区关系信息建立初始邻区列表; 通过所述第二邻区关系信息完善或 更新所述初始邻区列表。
10. 根据权利要求 1、 2、 4和 9中任一项所述的方法, 其中, 还包括:
在所述 MR移动到所述指定站点的下一站点时, 停止获取所述邻区关系信 息。
11. 一种移动中继 MR邻区信息的维护装置, 应用于所述 MR, 包括:
获取模块, 设置为获取所述 MR在驻留到指定站点时的邻区关系信息, 其 中, 所述邻区关系信息为所述 MR所辖的用户设备 UE可迁移到的小区信息; 维护模块, 设置为按照所述邻区关系信息维护所述 MR的邻区列表。
12. 根据权利要求 11所述的装置, 其中, 所述获取模块包括:
第一接收单元, 设置为接收在与所述指定站点相关联的供者基站 DeNB发 送的邻区关系信息。
13. 根据权利要求 11所述的装置, 其中, 所述获取模块包括:
第一接入单元, 设置为接入与所述指定站点相关的 DeNB;
第一通知单元, 设置为通知所述 UE启动自动邻区关系 ANR测量过程; 第一获取单元, 设置为通过所述 ANR测量过程获取邻区信息并根据该邻 区信息确定所述邻区关系信息。
14. 根据权利要求 12或 13所述的装置, 所述维护模块, 包括:
第一维护单元, 设置为按照获取的所述邻区关系信息建立所述 MR的邻区 列表; 或者按照获取的所述邻区关系信息更新所述 MR的已有邻区列表。
15. 根据权利要求 11所述的装置, 其中,
所述获取模块包括:
第二接收单元, 设置为接收在与所述指定站点相关联的供者基站 DeNB发 送的第一邻区关系信息;
第二接入单元, 设置为接入与所述指定站点相关的 DeNB;
第二通知单元, 设置为通知所述 UE启动 ANR测量过程;
第二获取单元, 设置为通过所述 ANR测量过程获取邻区信息并根据该邻 区信息确定第二邻区关系信息;
所述维护模块, 包括- 建立单元, 设置为根据所述第一邻区关系信息建立初始邻区列表; 第二维护单元, 设置为通过所述第二邻区关系信息完善或更新所述初始邻 区列表。
PCT/CN2013/081671 2012-11-29 2013-08-16 移动中继邻区信息的维护方法及装置 WO2014082473A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/647,917 US9674738B2 (en) 2012-11-29 2013-08-16 Method and device for maintaining neighbor information of mobile relay
JP2015544325A JP6134002B2 (ja) 2012-11-29 2013-08-16 移動中継隣接セル情報のメンテナンス方法及び装置
EP13858568.2A EP2928222B1 (en) 2012-11-29 2013-08-16 Maintenance method and device for maintaining neighbour information about mobile relay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210498973.3A CN103856991A (zh) 2012-11-29 2012-11-29 移动中继邻区信息的维护方法及装置
CN201210498973.3 2012-11-29

Publications (1)

Publication Number Publication Date
WO2014082473A1 true WO2014082473A1 (zh) 2014-06-05

Family

ID=50827148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081671 WO2014082473A1 (zh) 2012-11-29 2013-08-16 移动中继邻区信息的维护方法及装置

Country Status (5)

Country Link
US (1) US9674738B2 (zh)
EP (1) EP2928222B1 (zh)
JP (1) JP6134002B2 (zh)
CN (1) CN103856991A (zh)
WO (1) WO2014082473A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966786A1 (de) * 2014-07-11 2016-01-13 Nash Technologies GmbH Relay-sendeempfänger, basisstation-sendeempfänger und anbindungs-sendeempfänger für einen relay-sendeempfänger, verfahren und computerprogramme für einen basisstations-sendeempfänger und einen anbindungs-sendeempfänger
CN108540987A (zh) * 2017-03-02 2018-09-14 中国移动通信集团广东有限公司 一种lte网络覆盖状态评估方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100604A1 (zh) * 2013-12-31 2015-07-09 华为技术有限公司 Ue中继设备的驻留处理方法及设备
EP3190829B1 (en) * 2014-09-29 2019-08-21 Huawei Technologies Co., Ltd. Method for controlling user equipment accessing communication network of high-speed moving vehicle
WO2017059922A1 (en) 2015-10-09 2017-04-13 Sony Mobile Communications Inc. Signal quality measurement in different frequency bands of cellular networks
US10485054B2 (en) * 2016-05-26 2019-11-19 Futurewei Technologies, Inc. System and method for managing neighbors in a communications system with beamforming
MX2018015694A (es) * 2016-06-22 2019-05-27 Ericsson Telefon Ab L M Ubicacion de enlaces candidatos por una terminal inalambrica.
CN111787554A (zh) 2018-09-18 2020-10-16 Oppo广东移动通信有限公司 一种邻区关系的维护方法及装置、网络设备
CN110913411B (zh) * 2019-11-27 2023-08-01 北京红山信息科技研究院有限公司 一种mr邻区回填方法、装置、服务器及存储介质
WO2022131240A1 (en) * 2020-12-15 2022-06-23 Sharp Kabushiki Kaisha Neighboring cell mobility information for vehicle-mounted relays
EP4167635A1 (en) * 2021-10-15 2023-04-19 Volkswagen Ag Method for user equipment for improving a handover list, method for a cell, apparatus, vehicle and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101519A1 (en) * 2008-03-11 2009-09-16 Fujitsu Limited Wireless communication systems
CN101626565A (zh) * 2009-07-28 2010-01-13 重庆邮电大学 一种移动中继系统中组用户的切换方法
WO2010056072A2 (en) * 2008-11-14 2010-05-20 Samsung Electronics Co., Ltd. Cooperative scanning-based cell reselection method and system in wireless communication system
CN102083125A (zh) * 2009-11-26 2011-06-01 大唐移动通信设备有限公司 一种测量结果上报方法及设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8514764B2 (en) 2004-04-05 2013-08-20 Qualcomm Incorporated Repeater that reports detected neighbors
CN101594681B (zh) * 2008-05-27 2012-11-28 中兴通讯股份有限公司 一种实现lte系统自优化的方法
JP4796103B2 (ja) * 2008-08-28 2011-10-19 京セラ株式会社 通信システム
JP5302084B2 (ja) * 2008-09-26 2013-10-02 京セラ株式会社 中継局、無線通信中継方法、無線通信端末、および無線通信システム
CN102036213A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 一种维护邻区信息的方法、装置及系统
EP2545661B1 (en) * 2010-03-11 2015-05-06 Nokia Solutions and Networks Oy Optimized signaling in relay-enhanced access networks
CN102244935A (zh) 2010-05-11 2011-11-16 北京三星通信技术研究有限公司 一种建立通信关系的方法
GB2482734A (en) * 2010-08-13 2012-02-15 Nec Corp Biased RSRP cell selection for use with overlapping cell operating ranges.
WO2012131655A1 (en) * 2011-04-01 2012-10-04 Renesas Mobile Corporation Fast reselection between different radio access technology networks
EP2708063B1 (en) * 2011-05-13 2018-04-04 Telefonaktiebolaget LM Ericsson (publ) Handover and neighbor management for mobile relay nodes
EP2745567B1 (en) * 2011-08-16 2017-10-18 Telefonaktiebolaget LM Ericsson (publ) Mobility state aware mobile relay operation
US9225449B2 (en) * 2012-05-11 2015-12-29 Intel Corporation Performing a handover in a heterogeneous wireless network
US9848340B2 (en) * 2012-05-18 2017-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Technique for performing cell measurement on at least two cells
US9479979B2 (en) * 2012-06-29 2016-10-25 Nokia Solutions And Networks Oy Success rate improvements for ANR measurements while reducing data loss at a UE
US20140071856A1 (en) * 2012-09-10 2014-03-13 At&T Mobility Ii Llc Timing advance information for adapting neighbor relations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101519A1 (en) * 2008-03-11 2009-09-16 Fujitsu Limited Wireless communication systems
WO2010056072A2 (en) * 2008-11-14 2010-05-20 Samsung Electronics Co., Ltd. Cooperative scanning-based cell reselection method and system in wireless communication system
CN101626565A (zh) * 2009-07-28 2010-01-13 重庆邮电大学 一种移动中继系统中组用户的切换方法
CN102083125A (zh) * 2009-11-26 2011-06-01 大唐移动通信设备有限公司 一种测量结果上报方法及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966786A1 (de) * 2014-07-11 2016-01-13 Nash Technologies GmbH Relay-sendeempfänger, basisstation-sendeempfänger und anbindungs-sendeempfänger für einen relay-sendeempfänger, verfahren und computerprogramme für einen basisstations-sendeempfänger und einen anbindungs-sendeempfänger
CN108540987A (zh) * 2017-03-02 2018-09-14 中国移动通信集团广东有限公司 一种lte网络覆盖状态评估方法及装置
CN108540987B (zh) * 2017-03-02 2021-10-01 中国移动通信集团广东有限公司 一种lte网络覆盖状态评估方法及装置

Also Published As

Publication number Publication date
US20150304905A1 (en) 2015-10-22
EP2928222A4 (en) 2015-12-30
JP6134002B2 (ja) 2017-05-24
JP2015535671A (ja) 2015-12-14
EP2928222A1 (en) 2015-10-07
EP2928222B1 (en) 2019-07-31
CN103856991A (zh) 2014-06-11
US9674738B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2014082473A1 (zh) 移动中继邻区信息的维护方法及装置
KR101577546B1 (ko) 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치
US8909228B2 (en) Apparatus and method for reporting measurement result in wireless communication system
CN106664633B (zh) 用于执行基于协作的小区簇的协作通信和切换的方法和设备
US8730919B2 (en) Method for performing mobility in wireless communication system and apparatus for the same
WO2014003508A1 (ko) 무선 통신 시스템에서 csi-rs 측정 및 보고 방법 및 이를 지원하는 장치
KR101311524B1 (ko) 이종 망의 경계 주변에 위치하는 단말의 망 천이 방법
WO2014017810A1 (ko) 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치
KR101525720B1 (ko) 무선 통신 시스템에서 이동성 평가를 기반으로 한 통신 방법 및 이를 지원하는 장치
WO2013107375A1 (zh) 移动中继节点跟踪区域配置及位置更新方法和装置
WO2014014328A1 (ko) 무선 통신 시스템에서 측정 보고 방법 및 이를 지원하는 장치
WO2014017811A1 (ko) 무선 통신 시스템에서 csi-rs 측정 및 보고 방법과 이를 지원하는 장치
US9337988B2 (en) Method for supporting mobility of user equipment in a wireless communication system and apparatus for the same
WO2013180447A1 (ko) 무선 통신 시스템에서 이동성 정보 보고 방법 및 이를 지원하는 장치
KR20150034717A (ko) 무선 통신 시스템에서 이동성 상태 정보 보고 방법 및 이를 지원하는 장치
US20160205575A1 (en) Method for making quality measurement report by terminal and terminal using same
KR101653078B1 (ko) 통신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14647917

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015544325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013858568

Country of ref document: EP