WO2014017810A1 - 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치 Download PDF

Info

Publication number
WO2014017810A1
WO2014017810A1 PCT/KR2013/006597 KR2013006597W WO2014017810A1 WO 2014017810 A1 WO2014017810 A1 WO 2014017810A1 KR 2013006597 W KR2013006597 W KR 2013006597W WO 2014017810 A1 WO2014017810 A1 WO 2014017810A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
type
measurement result
report
cell
Prior art date
Application number
PCT/KR2013/006597
Other languages
English (en)
French (fr)
Inventor
정성훈
이영대
박성준
이승준
김상원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP13823708.6A priority Critical patent/EP2876926B1/en
Priority to KR1020157001237A priority patent/KR20150036103A/ko
Priority to US14/416,576 priority patent/US9668156B2/en
Publication of WO2014017810A1 publication Critical patent/WO2014017810A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to wireless communication, and more particularly, to provide a combined measurement report method and a device supporting the same in a wireless communication system.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • 3GPP provides CoMP (Coordinated Multi-Point Transmission and Reception) as a method for controlling interference.
  • CoMP Coordinated Multi-Point Transmission and Reception
  • the terminal can provide a better service to the terminal by simultaneously receiving data from a plurality of base stations and / or a transmission point (TP) such as a plurality of antennas or by receiving data from the best TP.
  • TP transmission point
  • discussions about uplink and downlink reference signals, channel state information of the terminal, control channel structure, and uplink power control method continue.
  • the technical problem to be solved by the present invention is to provide a combined measurement report method and a device supporting the same in a wireless communication system.
  • a measurement reporting method in a wireless communication system. The method performs a first type measurement to obtain a first type measurement result, performs a second type measurement to obtain a second type measurement result, and determines whether the first type measurement result satisfies a reporting condition. And if the first type measurement result satisfies the reporting condition, sending a measurement report message including the first measurement result to a network. The first measurement report message further includes the second type measurement result.
  • the method may comprise a measurement setup comprising information for the first type measurement and the second type measurement.
  • the measurement setting may include a first type report setting including the reporting condition for the first type measurement result.
  • the second type measurement result is reported in the first measurement report. May be included in the message.
  • the first type report setting may include a second type threshold indicator indicating a threshold of the second type measurement result quality to be reported together with the first type measurement result. If the quality of the second type measurement result is greater than or equal to the threshold value, the second type measurement result may be included in the first measurement report message.
  • the first type report setting may include a second type maximum number indicator indicating a maximum number of second type measurement results that may be reported together with the first type measurement result. If the quality of the second type measurement result belongs to a higher number of the at least one of the one or more second type measurement results obtained when the reporting condition of the first type measurement result is satisfied, the second type measurement result is the It may be included in the first measurement report message.
  • the measurement setting may further include a second type report setting including a reporting condition for the second type measurement result.
  • the method may further include transmitting a second measurement report message including the second type measurement result to the network. .
  • the second type report setting may further include a second type maximum number indicator indicating the maximum number of second type measurement results that may be included in transmitting the second measurement report message.
  • the method may include the second type.
  • the method may further include transmitting a second measurement report message including the measurement result to the network.
  • the first type measurement may be measurement of any one of a cell specific reference signal (CRS) resource and a channel state information-reference signal (CSI-RS) resource for RRM (Radio Resource Monitoring) measurement.
  • the second type measurement may be a measurement for the other one of the CRS resource and the CSI-RS resource except for the target of the first type measurement.
  • a terminal operating in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor operatively coupled to the RF unit.
  • the processor performs a first type measurement to obtain a first type measurement result, performs a second type measurement to obtain a second type measurement result, and determines whether the first type measurement result satisfies a reporting condition. And if the first type measurement result satisfies the reporting condition, transmits a measurement report message including the first type measurement result to a network.
  • the measurement report message further comprises the second type measurement result.
  • a measurement reporting method in a wireless communication system.
  • the method may include obtaining at least one measurement result, evaluating whether the at least one measurement result satisfies a reporting condition, filtering at least one satisfied measurement result, and including at least one filtered measurement result. Sending the report message to the network.
  • the method may further comprise obtaining a measurement setup for a measurement report from the network.
  • the measurement setup may include a report setup that specifies the reporting criteria.
  • the report setting may include report condition information indicating the report condition and the filtering condition information indicating the filtering condition.
  • the filtering condition information may be included in the measurement report message to indicate the maximum number of measurement results reported to the network.
  • the at least one filtered measurement result may be at least one satisfied measurement result whose quality is higher than the maximum number indicated by the filtering condition information among the at least one satisfied measurement result.
  • the measurement result may be a measurement result for a channel state information-reference signal (CSI-RS) resource.
  • CSI-RS channel state information-reference signal
  • the measurement report method enables the UE to report the RRM measurement result and the CSI-RS measurement result together.
  • the terminal can report the channel state information to the network in an efficient manner.
  • the UE may selectively report the CSI-RS measurement result to the network according to a specific condition.
  • the UE if necessary, and if necessary, the UE essentially reports the CSI-RS measurement result to the network, thereby increasing the efficiency of radio resource usage.
  • the network may further improve the operating performance of the terminal by allocating more appropriate CSI-RS resources to the terminal based on the properly reported measurement results.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG. 4 is a flowchart illustrating an operation of a terminal in an RRC idle state.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • FIG. 6 is a flowchart illustrating a RRC connection resetting process.
  • FIG. 7 is a diagram illustrating a RRC connection reestablishment procedure.
  • FIG. 8 is a flowchart illustrating a conventional measurement method.
  • 11 shows an example of deleting a measurement object.
  • 15 is a flowchart illustrating a measurement report method according to an embodiment of the present invention.
  • 17 is a flowchart illustrating an example of a measurement report method according to an embodiment of the present invention.
  • FIG. 18 is a diagram illustrating another example of a measurement report method according to an embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an example of a measurement report method according to an embodiment of the present invention.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state cannot be recognized by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than a cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • CN core network
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
  • the system information includes a master information block (MIB) and a scheduling block (SB). , SIB System Information Block).
  • MIB master information block
  • SB scheduling block
  • the MIB enables the UE to know the physical configuration of the cell, for example, bandwidth.
  • SB informs transmission information of SIBs, for example, a transmission period.
  • SIB is a collection of related system information. For example, some SIBs contain only information of neighboring cells, and some SIBs contain only information of an uplink radio channel used by the terminal.
  • services provided by a network to a terminal can be classified into three types as follows.
  • the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
  • Limited service This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
  • ETWS Emergency Call and Tsunami Warning System
  • Normal service This service means a public use for general use, and can be provided in a suitable or normal cell.
  • This service means service for network operator. This cell can be used only by network operator and not by general users.
  • the cell types may be classified as follows.
  • Acceptable cell A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
  • Suitable cell The cell that the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
  • PLMN Public Land Mobile Network
  • Barred cell A cell that broadcasts information that a cell is a prohibited cell through system information.
  • Reserved cell A cell that broadcasts information that a cell is a reserved cell through system information.
  • 4 is a flowchart illustrating an operation of a terminal in an RRC idle state. 4 illustrates a procedure in which a UE, which is initially powered on, registers with a network through a cell selection process and then reselects a cell if necessary.
  • the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S410).
  • RAT radio access technology
  • PLMN public land mobile network
  • S410 a network to be serviced
  • Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
  • USIM universal subscriber identity module
  • the terminal selects a cell having the largest value among the measured base station and a cell whose signal strength or quality is greater than a specific value (Cell Selection) (S420). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later.
  • the terminal receives system information periodically transmitted by the base station.
  • the above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal performs a network registration procedure (S430).
  • the terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network.
  • IMSI information
  • a service eg paging
  • the terminal selects a cell, the terminal does not register to the access network, and if the network information received from the system information (e.g., tracking area identity; TAI) is different from the network information known to the network, the terminal registers to the network. do.
  • the system information e.g., tracking area identity; TAI
  • the terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S440).
  • the terminal selects one of the other cells that provides better signal characteristics than the cell of the base station to which the terminal is connected if the strength or quality of the signal measured from the base station being service is lower than the value measured from the base station of the adjacent cell. do.
  • This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2.
  • a time constraint is placed. The cell reselection procedure will be described later.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S510).
  • the network sends an RRC connection setup message in response to the RRC connection request (S520). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
  • the terminal sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S530).
  • RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, and set up / modify / release measurements.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S610).
  • the UE sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S620).
  • PLMN public land mobile network
  • PLMN is a network deployed and operated by mobile network operators. Each mobile network operator runs one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • PLMN selection In PLMN selection, cell selection and cell reselection, various types of PLMNs may be considered by the terminal.
  • HPLMN Home PLMN
  • MCC Mobility Management Entity
  • Equivalent HPLMN A PLMN that is equivalent to an HPLMN.
  • Registered PLMN A PLMN that has successfully completed location registration.
  • ELMN Equivalent PLMN
  • Each mobile service consumer subscribes to HPLMN.
  • HPLMN When a general service is provided to a terminal by HPLMN or EHPLMN, the terminal is not in a roaming state.
  • a service is provided to a terminal by a PLMN other than HPLMN / EHPLMN, the terminal is in a roaming state, and the PLMN is called a VPLMN (Visited PLMN).
  • PLMN public land mobile network
  • PLMN is a network deployed or operated by a mobile network operator. Each mobile network operator operates one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • the terminal attempts to register the selected PLMN. If the registration is successful, the selected PLMN becomes a registered PLMN (RPLMN).
  • the network may signal the PLMN list to the UE, which may consider PLMNs included in the PLMN list as PLMNs such as RPLMNs.
  • the terminal registered in the network should be reachable by the network at all times. If the terminal is in the ECM-CONNECTED state (same as RRC connected state), the network recognizes that the terminal is receiving the service. However, when the terminal is in the ECM-IDLE state (same as the RRC idle state), the situation of the terminal is not valid in the eNB but is stored in the MME. In this case, the location of the UE in the ECM-IDLE state is known only to the MME as the granularity of the list of tracking areas (TAs).
  • a single TA is identified by a tracking area identity (TAI) consisting of the PLMN identifier to which the TA belongs and a tracking area code (TAC) that uniquely represents the TA within the PLMN.
  • TAI tracking area identity
  • TAC tracking area code
  • the UE selects a cell having a signal quality and characteristics capable of receiving an appropriate service from among cells provided by the selected PLMN.
  • the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
  • the UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • an initial cell selection process in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
  • the terminal may select the cell by using the stored information or by using the information broadcast in the cell.
  • cell selection can be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having a center-frequency equal to the RAT, such as a cell in which the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection The UE reselects a cell that uses a different RAT from the camping RAT.
  • the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the best ranked cell.
  • the cell index value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the terminal attempts to camp on the frequency with the highest frequency priority.
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signaling, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the cell reselection priority provided through broadcast signaling may be referred to as common priority, and the cell reselection priority set by the network for each terminal may be referred to as a dedicated priority.
  • the terminal may also receive a validity time associated with the dedicated priority.
  • the terminal starts a validity timer set to the valid time received together.
  • the terminal applies the dedicated priority in the RRC idle mode while the validity timer is running.
  • the validity timer expires, the terminal discards the dedicated priority and applies the public priority again.
  • the network may provide the UE with a parameter (for example, frequency-specific offset) used for cell reselection for each frequency.
  • a parameter for example, frequency-specific offset
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 1.
  • R s is the ranking indicator of the serving cell
  • R n is the ranking indicator of the neighbor cell
  • Q meas s is the quality value measured by the UE for the serving cell
  • Q meas n is the quality measured by the UE for the neighbor cell
  • Q hyst is a hysteresis value for ranking
  • Q offset is an offset between two cells.
  • the terminal may alternately select two cells.
  • Q hyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures R s of the serving cell and R n of the neighboring cell according to the above equation, considers the cell having the highest ranking indicator value as the best ranked cell, and reselects the cell.
  • the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a normal cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • RLM Radio Link Monitoring
  • the terminal monitors the downlink quality based on a cell-specific reference signal to detect the downlink radio link quality of the PCell.
  • the UE estimates the downlink radio link quality for PCell downlink radio link quality monitoring purposes and compares it with thresholds Qout and Qin.
  • the threshold Qout is defined as the level at which the downlink radio link cannot be stably received, which corresponds to a 10% block error rate of hypothetical PDCCH transmission in consideration of the PDFICH error.
  • the threshold Qin is defined as a downlink radio link quality level that can be received more stably than the level of Qout, which corresponds to a 2% block error rate of virtual PDCCH transmission in consideration of PCFICH errors.
  • RLF Radio Link Failure
  • the UE continuously measures to maintain the quality of the radio link with the serving cell receiving the service.
  • the terminal determines whether communication is impossible in the current situation due to deterioration of the quality of the radio link with the serving cell. If the quality of the serving cell is so low that communication is almost impossible, the terminal determines the current situation as a radio connection failure.
  • the UE abandons communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and reestablishes an RRC connection to the new cell (RRC connection re). -establishment).
  • FIG. 7 is a diagram illustrating a RRC connection reestablishment procedure.
  • the terminal stops use of all radio bearers which have been set except for Signaling Radio Bearer # 0 (SRB 0) and initializes various sublayers of an access stratum (AS) (S710).
  • SRB 0 Signaling Radio Bearer # 0
  • AS access stratum
  • each sublayer and physical layer are set to a default configuration.
  • the UE maintains an RRC connection state.
  • the UE performs a cell selection procedure for performing an RRC connection reconfiguration procedure (S720).
  • the cell selection procedure of the RRC connection reestablishment procedure may be performed in the same manner as the cell selection procedure performed by the UE in the RRC idle state, although the UE maintains the RRC connection state.
  • the terminal After performing the cell selection procedure, the terminal checks the system information of the corresponding cell to determine whether the corresponding cell is a suitable cell (S730). If it is determined that the selected cell is an appropriate E-UTRAN cell, the terminal transmits an RRC connection reestablishment request message to the cell (S740).
  • the RRC connection re-establishment procedure is stopped, the terminal is in the RRC idle state Enter (S750).
  • the terminal may be implemented to complete the confirmation of the appropriateness of the cell within a limited time through the cell selection procedure and the reception of system information of the selected cell.
  • the UE may drive a timer as the RRC connection reestablishment procedure is initiated.
  • the timer may be stopped when it is determined that the terminal has selected a suitable cell. If the timer expires, the UE may consider that the RRC connection reestablishment procedure has failed and may enter the RRC idle state.
  • This timer is referred to hereinafter as a radio link failure timer.
  • a timer named T311 may be used as a radio link failure timer.
  • the terminal may obtain the setting value of this timer from the system information of the serving cell.
  • the cell When the RRC connection reestablishment request message is received from the terminal and the request is accepted, the cell transmits an RRC connection reestablishment message to the terminal.
  • the UE Upon receiving the RRC connection reestablishment message from the cell, the UE reconfigures the PDCP sublayer and the RLC sublayer for SRB1. In addition, it recalculates various key values related to security setting and reconfigures the PDCP sublayer responsible for security with newly calculated security key values. Through this, SRB 1 between the UE and the cell is opened and an RRC control message can be exchanged. The terminal completes the resumption of SRB1 and transmits an RRC connection reestablishment complete message indicating that the RRC connection reestablishment procedure is completed to the cell (S760).
  • the cell transmits an RRC connection reestablishment reject message to the terminal.
  • the cell and the terminal performs the RRC connection reestablishment procedure.
  • the UE recovers the state before performing the RRC connection reestablishment procedure and guarantees the continuity of the service to the maximum.
  • the UE reports this failure event to the network when an RLF occurs or a handover failure occurs in order to support Mobility Robustness Optimization (MRO) of the network.
  • MRO Mobility Robustness Optimization
  • the UE may provide an RLF report to the eNB.
  • Radio measurements included in the RLF report can be used as potential reasons for failure to identify coverage problems. This information can be used to exclude such events from the MRO evaluation of intra-LTE mobility connection failures and to write those events as input to other algorithms.
  • the UE may generate a valid RLF report for the eNB after reconnecting in the idle mode. For this purpose, the UE stores the latest RLF or handover failure related information, and for 48 hours after the RLF report is retrieved by the network or after the RLF or handover failure is detected, the RRC connection ( Re-establishment and handover may indicate to the LTE cell that the RLF report is valid.
  • the UE maintains the information during state transition and RAT change, and indicates that the RLF report is valid again after returning to the LTE RAT.
  • the validity of the RLF report in the RRC connection establishment procedure indicates that the UE has been interrupted such as a connection failure and that the RLF report due to this failure has not yet been delivered to the network.
  • the RLF report from the terminal includes the following information.
  • E-CGI of the target cell of the last cell in case of RRL or handover that provided a service to the terminal. If the E-CGI is unknown, PCI and frequency information is used instead.
  • E-CGI of the cell that serviced the terminal when the last handover initialization for example when message 7 (RRC connection reset) was received by the terminal.
  • the eNB receiving the RLF failure from the terminal may forward the report to the eNB that provided the service to the terminal before the reported connection failure.
  • Radio measurements included in the RLF report can be used to identify coverage issues as a potential cause of radio link failure. This information can be used to exclude these events from the MRO assessment of intra-LTE mobility connection failures and send them back as input to other algorithms.
  • RRM radio resource management
  • the terminal may perform measurement for a specific purpose set by the network and report the measurement result to the network in order to provide information that may help the operator operate the network in addition to the purpose of mobility support. For example, the terminal receives broadcast information of a specific cell determined by the network.
  • the terminal may include a cell identity (also referred to as a global cell identifier) of the specific cell, location identification information (eg, tracking area code) to which the specific cell belongs, and / or other cell information (eg, For example, whether a member of a closed subscriber group (CSG) cell is a member) may be reported to the serving cell.
  • a cell identity also referred to as a global cell identifier
  • location identification information eg, tracking area code
  • other cell information eg, For example, whether a member of a closed subscriber group (CSG) cell is a member
  • the mobile station may report location information and measurement results of poor quality cells to the network.
  • the network can optimize the network based on the report of the measurement results of the terminals helping the network operation.
  • the terminal In a mobile communication system with a frequency reuse factor of 1, mobility is mostly between different cells in the same frequency band. Therefore, in order to ensure the mobility of the terminal well, the terminal should be able to measure the quality and cell information of neighboring cells having the same center frequency as the center frequency of the serving cell. As such, the measurement of the cell having the same center frequency as that of the serving cell is called intra-frequency measurement. The terminal performs the intra-frequency measurement and reports the measurement result to the network at an appropriate time, so that the purpose of the corresponding measurement result is achieved.
  • the mobile operator may operate the network using a plurality of frequency bands.
  • the terminal may measure quality and cell information of neighboring cells having a center frequency different from that of the serving cell. Should be As such, a measurement for a cell having a center frequency different from that of the serving cell is called inter-frequency measurement.
  • the terminal should be able to report the measurement results to the network at an appropriate time by performing inter-frequency measurements.
  • the terminal When the terminal supports the measurement for the network based on the other RAT, it may be measured for the cell of the network by the base station configuration. This measurement is called inter-radio access technology (inter-RAT) measurement.
  • the RAT may include a UMTS Terrestrial Radio Access Network (UTRAN) and a GSM EDGE Radio Access Network (GERAN) conforming to the 3GPP standard, and may also include a CDMA 2000 system conforming to the 3GPP2 standard.
  • UTRAN UMTS Terrestrial Radio Access Network
  • GERAN GSM EDGE Radio Access Network
  • FIG. 8 is a flowchart illustrating a conventional measurement method.
  • the terminal receives measurement configuration information from the base station (S810).
  • a message including measurement setting information is called a measurement setting message.
  • the terminal performs the measurement based on the measurement configuration information (S820). If the measurement result satisfies the reporting condition in the measurement configuration information, and reports the measurement result to the base station (S830).
  • a message containing a measurement result is called a measurement report message.
  • the measurement setting information may include the following information.
  • the measurement object includes at least one of an intra-frequency measurement object that is an object for intra-cell measurement, an inter-frequency measurement object that is an object for inter-cell measurement, and an inter-RAT measurement object that is an object for inter-RAT measurement.
  • the intra-frequency measurement object indicates a neighboring cell having the same frequency band as the serving cell
  • the inter-frequency measurement object indicates a neighboring cell having a different frequency band from the serving cell
  • the inter-RAT measurement object is
  • the RAT of the serving cell may indicate a neighboring cell of another RAT.
  • Reporting configuration information Information on a reporting condition and a report type relating to when a terminal reports a measurement result.
  • the reporting condition may include information about an event or a period at which the reporting of the measurement result is triggered.
  • the report type is information about what type of measurement result to configure.
  • Measurement identity information This is information about a measurement identifier that associates a measurement object with a report configuration, and allows the terminal to determine what type and when to report to which measurement object.
  • the measurement identifier information may be included in the measurement report message to indicate which measurement object the measurement result is and in which reporting condition the measurement report occurs.
  • Quantitative configuration information information on a parameter for setting filtering of a measurement unit, a reporting unit, and / or a measurement result value.
  • Measurement gap information Information about a measurement gap, which is a section in which a UE can only use measurement without considering data transmission with a serving cell because downlink transmission or uplink transmission is not scheduled. .
  • the terminal has a measurement target list, a measurement report configuration list, and a measurement identifier list to perform a measurement procedure.
  • the base station may set only one measurement target for one frequency band to the terminal.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RRC Radio Resource Control
  • Protocol specification Release 8
  • the terminal If the measurement result of the terminal satisfies the set event, the terminal transmits a measurement report message to the base station.
  • measurement identifier 1 901 connects an intra-frequency measurement object and report setting 1.
  • the terminal performs intra frequency measurement, and report setting 1 is used to determine a criterion and report type of the measurement result report.
  • the measurement identifier 2 902 is connected to the intra-frequency measurement object like the measurement identifier 1 901, but is connected to the setting 2 by viewing the intra-frequency measurement object.
  • the terminal performs the measurement, and report setting 2 is used to determine the criteria and report type of the measurement result report.
  • the terminal transmits the measurement result even if the measurement result for the intra-frequency measurement object satisfies any one of the report setting 1 and the report setting 2.
  • Measurement identifier 3 903 connects inter-frequency measurement object 1 and report configuration 3.
  • the terminal reports the measurement result when the measurement result for the inter-frequency measurement object 1 satisfies the reporting condition included in the report configuration 1.
  • Measurement identifier 4 904 connects inter-frequency measurement object 2 and report configuration 2.
  • the terminal reports the measurement result if the measurement result for the inter-frequency measurement object 2 satisfies the reporting condition included in the report configuration 2.
  • the measurement target, report setting, and / or measurement identifier may be added, changed, and / or deleted. This may be indicated by the base station sending a new measurement configuration message to the terminal, or by sending a measurement configuration change message.
  • FIG. 10 shows an example of deleting a measurement identifier. If measurement identifier 2 902 is deleted, measurement for the measurement object associated with measurement identifier 2 902 is stopped and no measurement report is transmitted. The measurement object or report setting associated with the deleted measurement identifier may not be changed.
  • FIG. 11 shows an example of deleting a measurement object. If the inter-frequency measurement object 1 is deleted, the terminal also deletes the associated measurement identifier 3 903. The measurement for the inter-frequency measurement object 1 is stopped and no measurement report is transmitted. However, the report setting associated with the deleted inter-frequency measurement object 1 may not be changed or deleted.
  • the terminal If the reporting configuration is removed, the terminal also removes the associated measurement identifier. The terminal stops measuring the associated measurement object by the associated measurement identifier. However, the measurement object associated with the deleted report setting may not be changed or deleted.
  • the measurement report may include a measurement identifier, a measured quality of the serving cell, and a measurement result of a neighboring cell.
  • the measurement identifier identifies the measurement object for which the measurement report is triggered.
  • the measurement result of the neighbor cell may include the cell identifier of the neighbor cell and the measured quality.
  • the measured quality may include at least one of Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ).
  • various reference signals are used to provide the counterpart device with information about a communication environment through uplink or downlink.
  • a cell specific reference signal is transmitted every subframe to identify channel information during downlink transmission.
  • the CRS is differently allocated for each of four antennas according to time / frequency domains and transmitted according to four, which is the maximum number of antenna ports supported by downlink of a wireless communication system.
  • the CRS may be used for acquiring channel state information (CSI) through channel estimation or for radio resource monitoring (RRM) measurement and demodulation.
  • CSI channel state information
  • RRM radio resource monitoring
  • CSI-RS channel state information reference signal
  • the UE may obtain channel state information through channel estimation by performing a measurement based on the CSI-RS.
  • CSI-RS existing CRS can be implemented to be used for RRM measurement.
  • DM-RS demodulation reference signal
  • CoMP Coordinatd Multi-Point transmission and reception
  • CoMP is proposed to provide better service by minimizing mutual interference and improving data transmission speed by cooperative communication between neighboring cells of a terminal in an environment in which interference may largely act as a cell edge.
  • CoMP is a technology that can be applied in a situation where macrocells and picocells or femtocells are mixed as well as an interference environment between macrocells.
  • the scenario for the application of CoMP may be as in FIGS. 12-14.
  • the first scenario illustrated in FIG. 12 illustrates a case where cooperative communication between sectors in one base station is performed.
  • Homogeneous network with intra-site CoMP Homogeneous network with intra-site CoMP
  • the second scenario shown in FIG. 13 illustrates a case where cooperative communication is performed between base stations in an environment in which optical cables exist between base stations.
  • Homogeneous network with high Tx power Remote Radio Heads (RRHs) RRHs
  • the third and fourth scenarios illustrated in FIG. 14 assume a heterogeneous network environment in which transmission points (TPs) having different transmission powers exist. That is, cooperative communication is performed between the low power radio heads and the high power radio head disposed in the macrocell region.
  • TPs transmission points
  • the third scenario is when the low power radio heads have respective cell identifiers. That is, the third scenario is to consider cooperative transmission between macrocells and picocells in heterogeneous networks.
  • the fourth scenario represents a case where all the low power radio heads have the same cell identifier as the macrocell. That is, the fourth scenario considers a distributed antenna system (DAS), which is a cooperative transmission between radio heads spread over the entire macrocell area.
  • DAS distributed antenna system
  • Cooperative TPs minimize time interference by appropriately adjusting time or frequency resources for transmitting signals and increasing signal quality received by the UE.
  • Coordinated beamforming Coordinate beamforming that mutually cooperative TPs form to transmit a signal is properly adjusted to minimize interference to other TPs and to improve signal quality received by the UE.
  • Joint processing A plurality of TPs which cooperate with each other simultaneously transmit a signal to one UE, or dynamically select an optimal TP in consideration of the channel condition of the UE and transmit the signal to the UE.
  • the serving cell sets the channel state information-reference signal (CSI-RS) resource of each TP to the terminal so that the terminal can measure the channel state between the other TP and the terminal in addition to the serving cell.
  • the UE measures the CSI-RS resource of each TP, and obtains information about the channel state for the corresponding TP.
  • the terminal reports the result obtained by measuring the CSI-RS resource to the serving cell.
  • the serving cell may share the CSI-RS measurement result obtained from the terminal with the neighbor TP involved in the cooperative communication.
  • Measurement results for different types of measurement targets such as RRM measurement and CSI-RS measurement based on the aforementioned measurement settings, are reported to the network independently of each other.
  • the measurement results for the measurement targets associated with mutually independent reporting conditions are independently reported to the network according to whether each reporting condition is satisfied.
  • recognizing channel state information for each TP may greatly affect throughput and efficiency of radio resource usage in a network.
  • the terminal may measure the channel state information and report the measurement result to the network.
  • the channel state information is reported too frequently, it may waste radio resources, and may cause a problem of weakening the usefulness to acquire using a plurality of TPs.
  • it is required to propose a method of efficiently measuring and reporting channel state information.
  • the measurement result of the first type of measurement target is obtained, and when the reporting condition is satisfied, the first type measurement result is reported, but the measurement type of the second type acquired at the reporting time point and / or the satisfaction of the reporting condition If there is a measurement result for, the first type measurement result and the second type measurement result may be reported together.
  • the first type measurement is an RRM measurement and the second type measurement is described as an example of the CSI-RS measurement, but the scope of the present invention is not limited thereto. That is, the first type measurement may be a CSI-RS measurement and the second type measurement may be an RRM measurement. In addition, both the first type measurement and the second type measurement may be RRM measurements or CSI-RS measurements.
  • 15 is a flowchart illustrating a measurement report method according to an embodiment of the present invention.
  • the terminal acquires a measurement setting including information for measurement and reporting from the network (S1510).
  • the measurement setting may include an RRM measurement setting for RRM measurement and reporting of the terminal.
  • the RRM measurement setting may include an RRM report setting regarding an RRM measurement target and a reporting criterion for evaluating a measurement result.
  • a measurement identifier may be set to identify a combination of a specific RRM measurement object and a specific RRM report setting.
  • the measurement configuration may include CSI-RS measurement configuration for CSI-RS measurement and reporting of the terminal.
  • the CSI-RS measurement setup may include a CSI-RS report setup regarding a CSI-RS measurement target and a reporting standard for evaluating a measurement result.
  • the CSI-RS measurement target may indicate at least one CSI-RS resource for which the UE is to perform CSI-RS measurement.
  • Each CSI-RS measurement object may be implemented as a type of CSI-RS list.
  • the terminal may be allocated at least one CSI-RS resource, and may receive a reporting criterion that is a basis for evaluation for reporting the measurement result.
  • a CSI-RS resource included in a specific CSI-RS list among at least one CSI-RS resource may be combined with a specific CSI-RS report configuration. This combined state can be distinguished from the combined state of other CSI-RS lists and other CSI-RS report settings.
  • the combined state between the CSI-RS list and the CSI-RS report setup may be identified by an identifier, and may be distinguished from other combined states through the identifier.
  • the network may include information instructing CSI-RS measurement result report in the RRM report configuration.
  • Information instructing to report the CSI-RS measurement result combined with the RRM measurement result report may be implemented as follows.
  • the CSI-RS measurement result report indicator may instruct to report the CSI-RS measurement result obtained when the RRM measurement result according to the included RRM report setting satisfies the reporting condition.
  • the UE in reporting the RRM measurement result, the UE may report all of the acquired CSI-RS measurement results.
  • the CSI-RS threshold indicator may indicate the minimum value of the CSI-RS measurement result that can be reported in combination with the RRM measurement result.
  • the CSI-RS threshold indicator may be included in a specific RRM report setting.
  • the UE reports a CSI-RS measurement result having a quality higher than a value indicated by the CSI-RS threshold indicator when reporting an RRM measurement result according to the corresponding RRM reporting configuration. Can be reported together.
  • the CSI-RS maximum number indicator may indicate the maximum number of CSI-RS measurement results that can be reported in combination with the RRM measurement results.
  • the CSI-RS maximum number indicator may be included in a specific RRM report configuration.
  • the UE may report as many CSI-RS measurement results as indicated when reporting an RRM measurement result according to the corresponding RRM report configuration. If the acquired CSI-RS measurement result is greater than the maximum number of CSI-RS, the UE reports to the network as many as the indicated number of CSI-RS measurement results in the order of the highest quality of the CSI-RS measurement results to the network. Can be.
  • the aforementioned CSI-RS threshold indicator and / or CSI-RS maximum number indicator may be included in the CSI-RS report setting.
  • the indication information may be used as information for filtering the CSI-RS measurement result that may be reported instead of setting the combined measurement report.
  • an RRM measurement object 1, an RRM measurement object 2, a CSI-RS list 1, and a CSI-RS list 2 are set in a terminal as a measurement object.
  • the RRM measurement target 1 may specify a cell operating at frequency 1 as an RRM measurement target.
  • the RRM measurement target 2 may specify a cell operating at frequency 2 as an RRM measurement target.
  • the CSI-RS list 1 and the CSI-RS list 2 may indicate at least one CSI-RS resource as a CSI-RS measurement target, respectively.
  • CSI-RS List 1 and CSI-RS List 2 may each include a CSI-RS ID for identifying at least one CSI-RS resource.
  • the RRM measurement object 1 is combined with the RRM report setting 1, which can be identified by the measurement identifier 1.
  • the RRM measurement object 2 is combined with the RRM report setting 2, which can be identified by the measurement identifier 2.
  • the RRM report setting 2 may include a CSI-RS threshold indicator and a CSI-RS maximum number indicator. This allows RRM reporting settings based on RRM reporting configuration 2 to be combined with reporting of CSI-RS measurement results.
  • the CSI-RS measurement result that may be reported may be filtered by the CSI-RS threshold indicator and / or the CSI-RS maximum number indicator.
  • the CSI-RS measurement target 1 may be combined with the CSI-RS report setup 1.
  • the CSI-RS report configuration may include a CSI-RS maximum number indicator.
  • the CSI-RS measurement results satisfying the CSI-RS report setting 1 may be filtered by the CSI-RS maximum number indicator and reported to the network.
  • the CSI-RS measurement target 2 may be combined with the CSI-RS report setup 3.
  • the measurement result for the CSI-RS measurement object 2 may be reported to the network when the reporting condition by the CSI-RS report configuration 3 is satisfied.
  • the terminal performs measurement (S1520).
  • the terminal performs the measurement based on the obtained measurement configuration.
  • the UE may measure the configured RRM measurement target and / or CSI-RS measurement target (CSI-RS resources included in the CSI-RS list), and may obtain an RRM measurement result and / or a CSI-RS measurement result.
  • the terminal may perform RRM measurement on the cell (s) operating at frequency 1 and the cell (s) operating at frequency 2.
  • CSI-RS measurement may be performed on at least one CSI-RS resource included in the CSI-RS list 1 and at least one CSI-RS resource included in the CSI-RS list 2.
  • the terminal performs the measurement result evaluation and report (S1530).
  • the terminal may include the RRM measurement result satisfying the reporting condition in the measurement report message and transmit the result to the network.
  • the CSI-RS measurement result report is instructed in the related RRM report setting, at least one CSI-RS measurement result may be included in the measurement report message according to a given condition.
  • the terminal may include all acquired CSI-RS measurement results in the measurement report message.
  • the CSI-RS threshold indicator is included in the RRM report configuration, the UE may include only the CSI-RS measurement result of the indicated threshold quality or higher among the obtained CSI-RS measurement results in the measurement report message.
  • the UE may include as many CSI-RS measurement results as indicated in order of good quality among the obtained CSI-RS measurement results in the measurement report message. . If the CRM-RS threshold indicator and the maximum number of CSI-RS indicators are included in the RRM reporting configuration, the UE measures the number of CSI-RSs indicated in the order of the highest quality among the CSI-RS measurement results of the quality above the threshold. The results can be included in the measurement report message.
  • the terminal may include the CSI-RS measurement result satisfying the reporting condition in the measurement report message and transmit the result to the network.
  • the CSI-RS reporting configuration may include filtering conditions such as a CSI-RS threshold indicator and / or a CSI-RS maximum number indicator. In this case, the terminal may report only the CSI-RS measurement result satisfying a given filtering condition among the obtained CSI-RS measurement results to the network by including it in the measurement report message.
  • 17 is a flowchart illustrating an example of a measurement report method according to an embodiment of the present invention.
  • the terminal acquires measurement settings from the network (S1710).
  • the measurement setting includes an RRM measurement setting, and the RRM measurement setting includes an RRM measurement object and an associated RRM reporting setting.
  • the RRM report setting may include a CSI-RS threshold indicator.
  • the measurement configuration includes a CSI-RS measurement configuration, and the CSI-RS measurement configuration includes a CSI-RS list including CSI-RS resources 1, 2, and 3.
  • the UE performs RRM measurement and CSI-RS measurement (S1720).
  • the RRM measurement may be performed on the RRM measurement object based on the RRM measurement setting of the measurement setting.
  • CSI-RS measurement may be performed on CSI-RS resources 1, 2, and 3 based on the CSI-RS measurement setting of the measurement setting. Through this, the UE can continuously acquire the RRM measurement result and the CSI-RS measurement result.
  • the UE determines that the RRM measurement result satisfies the reporting condition according to the RRM report setting (S1730). Accordingly, the terminal may transmit a measurement report message including the RRM measurement result satisfying the reporting condition to the network.
  • the CSI-RS threshold indicator indicating to report the CSI-RS measurement result is included in the RRM report setting related to the RRM measurement result that satisfies the reporting condition. Therefore, the UE may report by combining the CSI-RS measurement results when reporting the RRM measurement. The UE may report the CSI-RS measurement result having a quality higher than or equal to the threshold indicated by the CSI-RS threshold indicator to the network by combining the RRM measurement result.
  • the UE may report the CSI-RS measurement results 1 and 2 together with the RRM measurement result to the network in the measurement report message.
  • FIG. 18 is a diagram illustrating another example of a measurement report method according to an embodiment of the present invention.
  • the terminal acquires measurement settings from the network (S1810).
  • the measurement setting includes an RRM measurement setting, and the RRM measurement setting includes an RRM measurement object and an associated RRM reporting setting.
  • the RRM report setting may include a CSI-RS maximum number indicator.
  • the measurement configuration includes a CSI-RS measurement configuration, and the CSI-RS measurement configuration includes a CSI-RS list including CSI-RS resources 1, 2, and 3.
  • the UE performs RRM measurement and CSI-RS measurement (S1820).
  • the RRM measurement may be performed on the RRM measurement object based on the RRM measurement setting of the measurement setting.
  • CSI-RS measurement may be performed on CSI-RS resources 1, 2, and 3 based on the CSI-RS measurement setting of the measurement setting. Through this, the UE can continuously acquire the RRM measurement result and the CSI-RS measurement result.
  • the UE determines that the RRM measurement result satisfies the reporting condition according to the RRM report setting (S1830). Accordingly, the terminal may transmit a measurement report message including the RRM measurement result satisfying the reporting condition to the network.
  • the CSI-RS maximum number indicator indicating to report the CSI-RS measurement result is included in the RRM report setting related to the RRM measurement result that satisfies the reporting condition. Therefore, the UE may report by combining the CSI-RS measurement results when reporting the RRM measurement.
  • the UE may include as many CSI-RS measurement results as indicated by the CSI-RS maximum number indicator in order of high quality among the obtained CSI-RS measurement results in the measurement report message.
  • the quality of the CSI-RS measurement results may be in the same order as 1, 2, and 3 CSI-RS measurement results. Since the maximum number of CSI-RS indicators indicate two as the maximum number of CSI-RS measurement results that can be reported, the UE can report the CSI-RS measurement results 1 and 2 together with the RRM measurement results to the network.
  • the measurement report method enables the UE to report the RRM measurement result and the CSI-RS measurement result together.
  • the terminal can report the channel state information to the network in an efficient manner.
  • the UE may selectively report the CSI-RS measurement result to the network according to a specific condition.
  • the UE if necessary, and if necessary, the UE essentially reports the CSI-RS measurement result to the network, thereby increasing the efficiency of radio resource usage.
  • the network may further improve the operating performance of the terminal by allocating more appropriate CSI-RS resources to the terminal based on the properly reported measurement results.
  • FIG. 19 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented. This device may implement the operation of a terminal and / or a network that performs the embodiments described above with reference to FIGS. 15 to 18.
  • a wireless device 1900 includes a processor 1910, a memory 1920, and a radio frequency unit 1930.
  • the processor 1910 implements the proposed functions, processes, and / or methods.
  • the processor 1910 may be allocated CSI-RS resources through measurement configuration, and measure whether the CSI-RS resources are measured and whether the reporting condition is satisfied.
  • the processor 1910 may generate a CSI-RS trigger list based on the CSI-RS measurement result satisfying the reporting condition.
  • the processor 1910 may determine whether to report based on the CSI-RS trigger list, and report the measurement result accordingly.
  • the processor 1910 may be configured to implement embodiments of the present invention with reference to FIGS. 15 to 18.
  • the RF unit 1930 is connected to the processor 1910 to transmit and receive a radio signal.
  • the RF unit 1930 may include a plurality of antennas 1930a to 1930m. Each antenna may be implemented to simultaneously transmit and receive wireless signals with other wireless devices, base stations and / or TPs.
  • the processor 1910 and the RF unit 1930 may be implemented to transmit and receive wireless signals according to at least one communication standard.
  • the RF unit 1930 may include at least one transceiver capable of transmitting and receiving wireless signals.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 측정 보고 방법이 제공된다. 상기 방법은 제1 타입 측정을 수행하여 제1 타입 측정 결과를 획득하고, 제2 타입 측정을 수행하여 제2 타입 측정 결과를 획득하고, 상기 제1 타입 측정 결과가 보고 조건을 만족시키는지 여부를 판단하고, 및 상기 제1 타입 측정 결과가 상기 보고 조건을 만족시키면, 상기 제1 측정 결과를 포함하는 측정 보고 메시지를 네트워크로 전송하는 것을 포함한다. 상기 제1 측정 보고 메시지는 상기 제2 타입 측정 결과를 더 포함한다.

Description

무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치를 제공하는 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
최근에는 스마트폰의 보급으로 언제 어디서나 높은 품질의 데이터 서비스를 제공 받고자 하는 사용자의 요구가 급증하고 있다. 이로 인해 셀 중심뿐만 아니라 셀 가장자리에 있는 단말들에게도 높은 데이터 속도를 지원할 수 있는 기술이 필요하게 되었다. 셀 중심에서는 단순히 각 셀 별로 추가의 안테나 포트를 지원함으로서, 데이터 전송 속도를 증가시키는 것이 가능하지만, 셀 가장자리에서는 주변 셀로부터의 간섭이 큰 영향을 미칠 수 있기 때문에, 셀 간 협력이 없이는 어느 한계 이상으로 데이터 속도를 증가시키는 것이 어려울 수 있다. 또한, 사용자가 밀접한 지역에서도 고속의 데이터 시비스 제공이 가능하도록 하기 위하여 매크로셀의 영역 내의 피코셀 또는 펨토셀 같은 작은 셀을 통한 주파수 재활용 기술도 보급되고 있어 전송지점 간 효율적인 간섭 제어 방법은 그 필요성이 더욱 증대되고 있다.
3GPP에서는 이와 같이 간섭을 제어하도록 하기 위한 방법으로 CoMP(Coordinated Multi-Point transmission and reception) 기법을 제공한다. CoMP에 따르면, 단말은 복수의 기지국 및 또는 복수의 안테나와 같은 TP(Transmission Point)를 통해 동시에 데이터를 제공받거나 또는 가장 양호한 TP로부터 데이터를 제공받음으로써, 단말에게 보다 나은 서비스를 제공할 수 있도록 한다. CoMP를 통한 보다 나은 서비스 제공을 위해 상향 및 하향링크의 기준 신호, 단말의 채널 상태 정보, 제어 채널 구조, 상향링크 전력 제어 방법 등에 대한 논의가 계속되고 있다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치를 제공하는 것이다.
일 양태에 있어서, 무선 통신 시스템에서 측정 보고 방법이 제공된다. 상기 방법은 제1 타입 측정을 수행하여 제1 타입 측정 결과를 획득하고, 제2 타입 측정을 수행하여 제2 타입 측정 결과를 획득하고, 상기 제1 타입 측정 결과가 보고 조건을 만족시키는지 여부를 판단하고, 및 상기 제1 타입 측정 결과가 상기 보고 조건을 만족시키면, 상기 제1 측정 결과를 포함하는 측정 보고 메시지를 네트워크로 전송하는 것을 포함한다. 상기 제1 측정 보고 메시지는 상기 제2 타입 측정 결과를 더 포함한다.
상기 방법은 상기 제1 타입 측정 및 상기 제2 타입 측정을 위한 정보를 포함하는 측정 설정을 포함할 수 있다. 상기 측정 설정은 상기 제1 타입 측정 결과를 위한 상기 보고 조건을 포함하는 제1 타입 보고 설정을 포함할 수 있다.
상기 제1 타입 측정 결과와 함께 획득된 제2 타입 측정 결과를 보고할 것을 지시하는 제2 타입 보고 지시자가 상기 제1 타입 보고 설정에 포함되어 있으면, 상기 제2 타입 측정 결과가 상기 제1 측정 보고 메시지에 포함될 수 있다.
상기 제1 타입 보고 설정은 상기 제1 타입 측정 결과와 함께 보고될 제2 타입 측정 결과 품질의 임계값을 지시하는 제2 타입 임계값 지시자를 포함할 수 있다. 상기 제2 타입 측정 결과의 품질이 상기 임계값 이상이면, 상기 제2 타입 측정 결과가 상기 제1 측정 보고 메시지에 포함될 수 있다.
상기 제1 타입 보고 설정은 상기 제1 타입 측정 결과와 함께 보고될 수 있는 제2 타입 측정 결과의 최대 개수를 지시하는 제2 타입 최대 개수 지시자를 포함할 수 있다. 상기 제2 타입 측정 결과의 품질이 상기 제1 타입 측정 결과의 보고 조건 만족시 획득된 적어도 하나 이상의 제2 타입 측정 결과들 중 상기 최대 개수 만큼의 상위에 속하면, 상기 제2 타입 측정 결과가 상기 제1 측정 보고 메시지에 포함될 수 있다.
상기 측정 설정은 상기 제2 타입 측정 결과를 위한 보고 조건을 포함하는 제2 타입 보고 설정을 더 포함할 수 있다.
상기 제2 타입 측정 결과가 상기 제2 타입 보고 설정에 따른 보고 조건을 만족시키면, 상기 방법은 상기 제2 타입 측정 결과를 포함하는 제2 측정 보고 메시지를 상기 네트워크로 전송하는 것을 더 포함할 수 있다.
상기 제2 타입 보고 설정은 상기 제2 측정 보고 메시지 전송시 포함될 수 있는 제2 타입 측정 결과의 최대 개수를 지시하는 제2 타입 최대 개수 지시자를 더 포함할 수 있다.
상기 제2 타입 측정 결과의 품질이 상기 제2 타입 측정 결과를 위한 보고 조건 만족시 획득된 적어도 하나 이상의 제2 타입 측정 결과들 중 상기 최대 개수 만큼의 상위에 속하면, 상기 방법은 상기 제2 타입 측정 결과를 포함하는 제2 측정 보고 메시지를 상기 네트워크로 전송하는 것을 더 포함할 수 있다.
상기 제1 타입 측정은, RRM(Radio Resource Monitoring) 측정을 위한 CRS(Cell specific Reference Signal) 자원, 및 CSI-RS(Channel State Information-Reference Signal) 자원 중 어느 하나의 자원에 대한 측정일 수 있다. 상기 제2 타입 측정은, 상기 CRS 자원 및 상기 CSI-RS 자원 중 상기 제1 타입 측정의 대상을 제외한 나머지 하나의 자원에 대한 측정일 수 있다.
다른 양태에 있어서, 무선 통신 시스템에서 동작하는 단말이 제공된다. 상기 단말은 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 기능적으로 결합하여 동작하는 프로세서를 포함한다. 상기 프로세서는 제1 타입 측정을 수행하여 제1 타입 측정 결과를 획득하고, 제2 타입 측정을 수행하여 제2 타입 측정 결과를 획득하고, 상기 제1 타입 측정 결과가 보고 조건을 만족시키는지 여부를 판단하고, 및 상기 제1 타입 측정 결과가 상기 보고 조건을 만족시키면, 상기 제1 타입 측정 결과를 포함하는 측정 보고 메시지를 네트워크로 전송하도록 설정된다. 상기 측정 보고 메시지는 상기 제2 타입 측정 결과를 더 포함하는 것을 특징으로 하는 단말.
또 다른 양태에 있어서, 무선 통신 시스템에서 측정 보고 방법이 제공된다. 상기 방법은 적어도 하나의 측정 결과를 획득하고, 상기 적어도 하나의 측정 결과의 보고 조건 만족 여부를 평가하고, 적어도 하나의 만족된 측정 결과를 필터링 하고, 및 적어도 하나의 필터링된 측정 결과를 포함하는 측정 보고 메시지를 네트워크로 전송하는 것을 포함한다.
상기 방법은 상기 네트워크로부터 측정 보고를 위한 측정 설정을 획득하는 것을 더 포함할 수 있다. 상기 측정 설정은 보고 기준을 특정하는 보고 설정을 포함할 수 있다. 상기 보고 설정은 상기 보고 조건을 지시하는 보고 조건 정보 및 상기 필터링 조건을 지시하는 상기 필터링 조건 정보를 포함할 수 있다.
상기 필터링 조건 정보는 상기 측정 보고 메시지에 포함되어 네트워크로 보고되는 측정 결과의 최대 개수를 지시할 수 있다.
상기 적어도 하나의 필터링된 측정 결과는 상기 적어도 하나의 만족된 측정 결과 중 품질이 상기 필터링 조건 정보에 의해 지시되는 상기 최대 개수 만큼의 상위에 해당하는 적어도 하나의 만족된 측정 결과일 수 있다.
상기 측정 결과는 CSI-RS(Channel State Information-Reference Signal) 자원에 대한 측정 결과일 수 있다.
본 발명의 실시예에 따른 측정 보고 방법은 단말로 하여금 RRM 측정 결과와 CSI-RS 측정 결과를 함께 보고할 수 있도록 한다. 이를 통해 단말은 효율적인 방법으로 채널 상태 정보를 네트워크로 보고할 수 있다. 또한, 단말은 특정 조건에 따라 CSI-RS 측정 결과를 선택적으로 네트워크로 보고할 수 있다. 본 발명의 실시예를 통해 필요한 경우에 한하여, 그리고 필요한 경우에는 필수적으로 단말은 CSI-RS 측정 결과를 네트워크로 보고함으로써, 무선 자원 사용의 효율성이 증가할 수 있다. 또한, 네트워크는 적절히 보고된 측정 결과를 기반으로 단말에 보다 적절한 CSI-RS 자원을 할당하여 줌으로써, 단말의 운영 성능을 보다 향상시킬 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다.
도 7은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 8은 기존의 측정 수행 방법을 나타낸 흐름도이다.
도 9는 단말에게 설정된 측정 설정의 일 예를 나타낸다.
도 10은 측정 식별자를 삭제하는 예를 나타낸다.
도 11은 측정 대상을 삭제하는 예를 나타낸다.
도 12 내지 도 14는 CoMP의 적용에 대한 시나리오들을 나타낸다.
도 15는 본 발명의 실시예에 따른 측정 보고 방법을 나타내는 흐름도이다.
도 16은 본 발명의 실시예에 따른 측정 설정의 일례를 나타내는 도면이다.
도 17은 본 발명의 실시예에 따른 측정 보고 방법의 일례를 나타내는 흐름도이다.
도 18은 본 발명의 실시예에 따른 측정 보고 방법의 다른 일례를 나타내는 도면이다.
도 19는 본 발명의 실시예에 따른 측정 보고 방법의 일례를 나타내는 도면이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트랙킹 구역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트랙킹 구역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
다음은, 시스템 정보(System Information)에 관한 설명이다.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다.
3GPP TS 36.331 V8.7.0 (2009-09) "Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.2.2절에 의하면, 상기 시스템 정보는 MIB(Master Information Block), SB(Scheduling Block), SIB System Information Block)로 나뉜다. MIB는 단말이 해당 셀의 물리적 구성, 예를 들어 대역폭(Bandwidth) 같은 것을 알 수 있도록 한다. SB은 SIB들의 전송정보, 예를 들어, 전송 주기 등을 알려준다. SIB은 서로 관련 있는 시스템 정보의 집합체이다. 예를 들어, 어떤 SIB는 주변의 셀의 정보만을 포함하고, 어떤 SIB는 단말이 사용하는 상향링크 무선 채널의 정보만을 포함한다.
일반적으로, 네트워크가 단말에게 제공하는 서비스는 아래와 같이 세가지 타입으로 구분할 수 있다. 또한, 어떤 서비스를 제공받을 수 있는지에 따라 단말은 셀의 타입 역시 다르게 인식한다. 아래에서 먼저 서비스 타입을 서술하고, 이어 셀의 타입을 서술한다.
1) 제한적 서비스(Limited service): 이 서비스는 응급 호출(Emergency call) 및 재해 경보 시스템(Earthquake and Tsunami Warning System; ETWS)를 제공하며, 수용가능 셀(acceptable cell)에서 제공할 수 있다.
2) 정규 서비스(Normal service) : 이 서비스는 일반적 용도의 범용 서비스(public use)를 의미하여, 정규 셀(suitable or normal cell)에서 제공할 수 있다.
3) 사업자 서비스(Operator service) : 이 서비스는 통신망 사업자를 위한 서비스를 의미하며, 이 셀은 통신망 사업자만 사용할 수 있고 일반 사용자는 사용할 수 없다.
셀이 제공하는 서비스 타입과 관련하여, 셀의 타입은 아래와 같이 구분될 수 있다.
1) 수용가능 셀(Acceptable cell) : 단말이 제한된(Limited) 서비스를 제공받을 수 있는 셀. 이 셀은 해당 단말 입장에서, 금지(barred)되어 있지 않고, 단말의 셀 선택 기준을 만족시키는 셀이다.
2) 정규 셀(Suitable cell) : 단말이 정규 서비스를 제공받을 수 있는 셀. 이 셀은 수용가능 셀의 조건을 만족시키며, 동시에 추가 조건들을 만족시킨다. 추가적인 조건으로는, 이 셀이 해당 단말이 접속할 수 있는 PLMN(Public Land Mobile Network) 소속이어야 하고, 단말의 트랙킹 구역(Tracking Area) 갱신 절차의 수행이 금지되지 않은 셀이어야 한다. 해당 셀이 CSG 셀이라고 하면, 단말이 이 셀에 CSG 멤버로서 접속이 가능한 셀이어야 한다.
3) 금지된 (Barred cell) : 셀이 시스템 정보를 통해 금지된 셀이라는 정보를 브로드캐스트하는 셀이다.
4) 예약된 셀(Reserved cell) : 셀이 시스템 정보를 통해 예약된 셀이라는 정보를 브로드캐스트하는 셀이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다. 도 4는 초기 전원이 켜진 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고 이어 필요할 경우 셀 재선택을 하는 절차를 나타낸다.
도 4를 참조하면, 단말은 자신이 서비스 받고자 하는 망인 PLMN(public land mobile network)과 통신하기 위한 라디오 접속 기술(radio access technology; RAT)를 선택한다(S410). PLMN 및 RAT에 대한 정보는 단말의 사용자가 선택할 수도 있으며, USIM(universal subscriber identity module)에 저장되어 있는 것을 사용할 수도 있다.
단말은 측정한 기지국과 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(Cell Selection)(S420). 이는 전원이 켜진 단말이 셀 선택을 수행하는 것으로서 초기 셀 선택(initial cell selection)이라 할 수 있다. 셀 선택 절차에 대해서 이후에 상술하기로 한다. 셀 선택 이후 단말은, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 상기 말하는 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.
단말은 망 등록 필요가 있는 경우 망 등록 절차를 수행한다(S430). 단말은 망으로부터 서비스(예:Paging)를 받기 위하여 자신의 정보(예:IMSI)를 등록한다. 단말은 셀을 선택 할 때 마다 접속하는 망에 등록을 하는 것은 아니며, 시스템 정보로부터 받은 망의 정보(예:Tracking Area Identity; TAI)와 자신이 알고 있는 망의 정보가 다른 경우에 망에 등록을 한다.
단말은 셀에서 제공되는 서비스 환경 또는 단말의 환경 등을 기반으로 셀 재선택을 수행한다(S440). 단말은 서비스 받고 있는 기지국으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀 중 하나를 선택한다. 이 과정을 2번 과정의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Re-Selection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재선택되는 것을 방지하기 위하여 시간적인 제약조건을 둔다. 셀 재선택 절차에 대해서 이후에 상술하기로 한다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S510). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S520). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S530).
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다. RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S610). 단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S620).
이하에서 PLMN(public land mobile network)에 대하여 설명하도록 한다.
PLMN은 모바일 네트워크 운영자에 의해 배치 및 운용되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운용한다. 각 PLMN은 MCC(Mobile Country Code) 및 MNC(Mobile Network Code)로 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다.
PLMN 선택, 셀 선택 및 셀 재선택에 있어서, 다양한 타입의 PLMN들이 단말에 의해 고려될 수 있다.
HPLMN(Home PLMN) : 단말 IMSI의 MCC 및 MNC와 매칭되는 MCC 및 MNC를 가지는 PLMN.
EHPLMN(Equivalent HPLMN): HPLMN과 등가로 취급되는 PLMN.
RPLMN(Registered PLMN): 위치 등록이 성공적으로 마쳐진 PLMN.
EPLMN(Equivalent PLMN): RPLMN과 등가로 취급되는 PLMN.
각 모바일 서비스 수요자는 HPLMN에 가입한다. HPLMN 또는 EHPLMN에 의하여 단말로 일반 서비스가 제공될 때, 단말은 로밍 상태(roaming state)에 있지 않는다. 반면, HPLMN/EHPLMN 이외의 PLMN에 의하여 단말로 서비스가 제공될 때, 단말은 로밍 상태에 있으며, 그 PLMN은 VPLMN(Visited PLMN)이라고 불리운다.
단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. PLMN은 모바일 네트워크 운영자(mobile network operator)에 의해 배치되거나(deploy) 운영되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운영한다. 각각의 PLMN은 MCC(mobile country code) 및 MNC(mobile network code)에 의하여 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다. 단말은 선택한 PLMN을 등록하려고 시도한다. 등록이 성공한 경우, 선택된 PLMN은 RPLMN(registered PLMN)이 된다. 네트워크는 단말에게 PLMN 리스트를 시그널링할 수 있는데, 이는 PLMN 리스트에 포함된 PLMN들을 RPLMN과 같은 PLMN이라 고려할 수 있다. 네트워크에 등록된 단말은 상시 네트워크에 의하여 접근될 수(reachable) 있어야 한다. 만약 단말이 ECM-CONNECTED 상태(동일하게는 RRC 연결 상태)에 있는 경우, 네트워크는 단말이 서비스를 받고 있음을 인지한다. 그러나, 단말이 ECM-IDLE 상태(동일하게는 RRC 아이들 상태)에 있는 경우, 단말의 상황이 eNB에서는 유효하지 않지만 MME에는 저장되어 있다. 이 경우, ECM-IDLE 상태의 단말의 위치는 TA(tracking Area)들의 리스트의 입도(granularity)로 오직 MME에게만 알려진다. 단일 TA는 TA가 소속된 PLMN 식별자로 구성된 TAI(tracking area identity)및 PLMN 내의 TA를 유일하게 표현하는 TAC(tracking area code)에 의해 식별된다.
이어, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다.
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재선택하여 서비스를 받기 위한 절차들을 수행한다.
RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 상기 단말이 RRC 아이들 상태에 진입하면, 상기 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 상기 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 머물고 있기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 상기 셀 선택은 상기 단말이 상기 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.
이제 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)"을 참조하여, 3GPP LTE에서 단말이 셀을 선택하는 방법 및 절차에 대하여 상술한다.
셀 선택 과정은 크게 두 가지로 나뉜다.
먼저 초기 셀 선택 과정으로, 이 과정에서는 상기 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 상기 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 상기 단말은 가장 강한 셀을 찾는다. 이후, 상기 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다.
다음으로 단말은 저장된 정보를 활용하거나, 셀에서 방송하고 있는 정보를 활용하여 셀을 선택할 수 있다. 따라서, 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.
상기 단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.
- 인트라-주파수(Intra-frequency) 셀 재선택 : 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택
- 인터-주파수(Inter-frequency) 셀 재선택 : 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택
- 인터-RAT(Inter-RAT) 셀 재선택 : 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택
셀 재선택 과정의 원칙은 다음과 같다
첫째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 이웃 셀(neighboring cell)의 품질을 측정한다.
둘째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 이웃 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.
인트라-주파수 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표값을 정의하고, 이 지표값을 이용하여 셀들을 지표값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 best ranked cell이라고 부른다. 셀 지표값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다.
인터-주파수 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signaling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다. 브로드캐스트 시그널링을 통해 제공되는 셀 재선택 우선순위를 공용 우선순위(common priority)라고 할 수 있고, 단말별로 네트워크가 설정하는 셀 재선택 우선 순위를 전용 우선순위(dedicated priority)라고 할 수 있다. 단말은 전용 우선순위를 수신하면, 전용 우선순위와 관련된 유효 시간(validity time)를 함께 수신할 수 있다. 단말은 전용 우선순위를 수신하면 함께 수신한 유효 시간으로 설정된 유효성 타이머(validity timer)를 개시한다. 단말은 유효성 타이머가 동작하는 동안 RRC 아이들 모드에서 전용 우선순위를 적용한다. 유효성 타이머가 만료되면 단말은 전용 우선순위를 폐기하고, 다시 공용 우선순위를 적용한다.
인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어 주파수별 오프셋(frequency-specific offset))를 주파수별로 제공할 수 있다.
인트라-주파수 셀 재선택 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 이웃 셀 리스트(Neighboring Cell List, NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어 셀 별 오프셋(cell-specific offset))를 포함한다
인트라-주파수 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 수학식 1와 같이 정의된다.
Figure PCTKR2013006597-appb-M000001
여기서, Rs는 서빙 셀의 랭킹 지표, Rn은 이웃 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질값, Qmeas,n는 단말이 이웃 셀에 대해 측정한 품질값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다.
인트라-주파수에서, 단말이 서빙 셀과 이웃 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qoffset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다.
인터-주파수에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.
서빙 셀의 랭킹 지표(Rs)과 이웃 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아가면서 재선택하는 것을 막기 위한 파라미터이다.
단말은 위 식에 따라 서빙 셀의 Rs 및 이웃 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 최선의 랭크(best ranked) 셀로 간주하고, 이 셀을 재선택한다.
상기 기준에 의하면, 셀의 품질이 셀 재선택에서 가장 주요한 기준으로 작용하는 것을 확인할 수 있다. 만약 재선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다.
이하에서, RLM(Radio Link Monitoring)에 대하여 설명하도록 한다.
단말은 PCell의 하향링크 무선 링크 품질을 감지하기 위해 셀 특정 참조 신호(cell-specific reference signal)을 기반으로 하향링크 품질을 모니터링한다. 단말은 PCell의 하향링크 무선 링크 품질 모니터링 목적으로 하향링크 무선 링크 품질을 추정하고 그것을 임계값 Qout 및 Qin과 비교한다. 임계값 Qout은 하향링크 무선 링크가 안정적으로 수신될 수 없는 수준으로서 정의되며, 이는 PDFICH 에러를 고려하여 가상의 PDCCH 전송(hypothetical PDCCH transmission)의 10% 블록 에러율에 상응한다. 임계값 Qin은 Qout의 레벨보다 더 안정적으로 수신될 수 있는 하향링크 무선 링크 품질 레벨로 정의되며, 이는 PCFICH 에러를 고려하여 가상의 PDCCH 전송의 2% 블록 에러율에 상응한다.
이제 무선 링크 실패(Radio Link Failure; RLF)에 대하여 설명한다.
단말은 서비스를 수신하는 서빙셀과의 무선 링크의 품질 유지를 위해 지속적으로 측정을 수행한다. 단말은 서빙셀과의 무선 링크의 품질 악화(deterioration)로 인하여 현재 상황에서 통신이 불가능한지 여부를 결정한다. 만약, 서빙셀의 품질이 너무 낮아서 통신이 거의 불가능한 경우, 단말은 현재 상황을 무선 연결 실패로 결정한다.
만약 무선 링크 실패가 결정되면, 단말은 현재의 서빙셀과의 통신 유지를 포기하고, 셀 선택(또는 셀 재선택) 절차를 통해 새로운 셀을 선택하고, 새로운 셀로의 RRC 연결 재확립(RRC connection re-establishment)을 시도한다.
3GPP LTE의 스펙에서는 정상적인 통신을 할 수 없는 경우로 아래와 같은 예시를 들고 있다.
- 단말의 물리 계층의 무선 품질 측정 결과를 기반으로 단말이 하향 통신 링크 품질에 심각한 문제가 있다고 판단한 경우(RLM 수행 중 PCell의 품질이 낮다고 판단한 경우)
- MAC 부계층에서 랜덤 액세스(random access) 절차가 계속적으로 실패하여 상향링크 전송에 문제가 있다고 판단한 경우.
- RLC 부계층에서 상향 데이터 전송이 계속적으로 실패하여 상향 링크 전송에 문제가 있다고 판단한 경우.
- 핸드오버를 실패한 것으로 판단한 경우.
- 단말이 수신한 메시지가 무결성 검사(integrity check)를 통과하지 못한 경우.
이하에서는 RRC 연결 재확립(RRC connection re-establishment) 절차에 대하여 보다 상세히 설명한다.
도 7은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 7을 참조하면, 단말은 SRB 0(Signaling Radio Bearer #0)을 제외한 설정되어 있던 모든 무선 베어러(radio bearer) 사용을 중단하고, AS(Access Stratum)의 각종 부계층을 초기화 시킨다(S710). 또한, 각 부계층 및 물리 계층을 기본 구성(default configuration)으로 설정한다. 이와 같은 과정중에 단말은 RRC 연결 상태를 유지한다.
단말은 RRC 연결 재설정 절차를 수행하기 위한 셀 선택 절차를 수행한다(S720). RRC 연결 재확립 절차 중 셀 선택 절차는 단말이 RRC 연결 상태를 유지하고 있음에도 불구하고, 단말이 RRC 아이들 상태에서 수행하는 셀 선택 절차와 동일하게 수행될 수 있다.
단말은 셀 선택 절차를 수행한 후 해당 셀의 시스템 정보를 확인하여 해당 셀이 적합한 셀인지 여부를 판단한다(S730). 만약 선택된 셀이 적절한 E-UTRAN 셀이라고 판단된 경우, 단말은 해당 셀로 RRC 연결 재확립 요청 메시지(RRC connection reestablishment request message)를 전송한다(S740).
한편, RRC 연결 재확립 절차를 수행하기 위한 셀 선택 절차를 통하여 선택된 셀이 E-UTRAN 이외의 다른 RAT을 사용하는 셀이라고 판단된 경우, RRC 연결 재확립 절차를 중단되고, 단말은 RRC 아이들 상태로 진입한다(S750).
단말은 셀 선택 절차 및 선택한 셀의 시스템 정보 수신을 통하여 셀의 적절성 확인은 제한된 시간 내에 마치도록 구현될 수 있다. 이를 위해 단말은 RRC 연결 재확립 절차를 개시함에 따라 타이머를 구동시킬 수 있다. 타이머는 단말이 적합한 셀을 선택하였다고 판단된 경우 중단될 수 있다. 타이머가 만료된 경우 단말은 RRC 연결 재확립 절차가 실패하였음을 간주하고 RRC 아이들 상태로 진입할 수 있다. 이 타이머를 이하에서 무선 링크 실패 타이머라고 언급하도록 한다. LTE 스펙 TS 36.331에서는 T311이라는 이름의 타이머가 무선 링크 실패 타이머로 활용될 수 있다. 단말은 이 타이머의 설정 값을 서빙 셀의 시스템 정보로부터 획득할 수 있다.
단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락한 경우, 셀은 단말에게 RRC 연결 재확립 메시지(RRC connection reestablishment message)를 전송한다.
셀로부터 RRC 연결 재확립 메시지를 수신한 단말은 SRB1에 대한 PDCP 부계층과 RLC 부계층을 재구성한다. 또한 보안 설정과 관련된 각종 키 값들을 다시 계산하고, 보안을 담당하는 PDCP 부계층을 새로 계산한 보안키 값들로 재구성한다. 이를 통해 단말과 셀간 SRB 1이 개방되고 RRC 제어 메시지를 주고 받을 수 있게 된다. 단말은 SRB1의 재개를 완료하고, 셀로 RRC 연결 재확립 절차가 완료되었다는 RRC 연결 재확립 완료 메시지(RRC connection reestablishment complete message)를 전송한다(S760).
반면, 단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락하지 않은 경우, 셀은 단말에게 RRC 연결 재확립 거절 메시지(RRC connection reestablishment reject message)를 전송한다.
RRC 연결 재확립 절차가 성공적으로 수행되면, 셀과 단말은 RRC 연결 재설정 절차를 수행한다. 이를 통하여 단말은 RRC 연결 재확립 절차를 수행하기 전의 상태를 회복하고, 서비스의 연속성을 최대한 보장한다.
이어서 RLF의 보고와 관련하여 설명하도록 한다.
단말은 네트워크의 MRO(Mobility Robustness Optimisation)를 지원하기 위하여 RLF가 발생하거나 핸드오버 실패(handover failure)가 발생하면 이러한 실패 이벤트를 네트워크에 보고한다.
RRC 연결 재확립 후, 단말은 RLF 보고를 eNB로 제공할 수 있다. RLF 보고에 포함된 무선 측정은 커버리지 문제들을 식별하기 위해 실패의 잠재적 이유로서 사용될 수 있다. 이 정보는 intra-LTE 이동성 연결 실패에 대한 MRO 평가에서 이와 같은 이벤트들을 배제시키고, 그 이벤트들을 다른 알고리듬들에 대한 입력으로 돌려 쓰기 위하여 사용될 수 있다.
RRC 연결 재확립이 실패하거나 또는 단말이 RRC 연결 재확립을 수행하지 못하는 경우, 단말은 아이들 모드에서 재연결한 후 eNB에대한 유효한 RLF 보고를 생성할 수 있다. 이와 같은 목적을 위하여, 단말은 가장 최근 RLF 또는 핸드오버 실패관련 정보를 저장하고, 네트워크에 의하여 RLF 보고가 불러들여지기까지 또는 상기 RLF 또는 핸드오버 실패가 감지된 후 48시간 동안, 이후 RRC 연결 (재)확립 및 핸드오버 마다 RLF 보고가 유효함을 LTE 셀에게 지시할 수 있다.
단말은 상태 천이 및 RAT 변경 동안 상기 정보를 유지하고, 상기 LTE RAT로 되돌아 온 후 다시 RLF 보고가 유효함을 지시한다.
RRC 연결 설정 절차에서 RLF 보고의 유효함은, 단말이 연결 실패와 같은 방해를 받았고, 이 실패로 인한 RLF 보고가 아직 네트워크로 전달되지 않았음을 지시하는 지시하는 것이다. 단말로부터의 RLF 보고는 이하의 정보를 포함한다.
- 단말에 서비스를 제공했던 마지막 셀 (RLF의 경우) 또는 핸드오버의 타겟의 E-CGI. E-CGI가 알려지지 않았다면, PCI 및 주파수 정보가 대신 사용된다.
- 재확립 시도가 있었던 셀의 E-CGI.
- 마지막 핸드오버 초기화시, 일례로 메시지 7 (RRC 연결 재설정)이 단말에 의해 수신되었을 시, 단말에 서비스를 제공했던 셀의 E-CGI.
- 마지막 핸드오버 초기화부터 연결 실패까지 경과한 시간.
- 연결 실패가 RLF에 의한 것인지 또는 핸드오버 실패로 인한 것인지를 지시하는 정보.
- 무선 측정들.
- 실패의 위치.
단말로부터 RLF 실패를 수신한 eNB는 보고된 연결 실패 이전에 단말에 서비스를 제공하였던 eNB로 상기 보고를 포워딩할 수 있다. RLF 보고에 포함된 무선 측정들은 무선 링크 실패의 잠재적인 원인으로서의 커버리지 이슈들을 식별하기 위해 사용될 수 있다. 이 정보는 intra-LTE 이동성 연결 실패의 MRO 평가로부터 이와 같은 이벤트들을 배제시기고 이들을 다른 알고리즘에 입력으로 다시 보내기 위하여 사용될 수 있다.
이하에서 측정 및 측정 보고에 대하여 설명한다.
이동 통신 시스템에서 단말의 이동성(mobility) 지원은 필수적이다. 따라서, 단말은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로 측정한다. 단말은 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 단말에게 최적의 이동성을 제공한다. 흔히 이러한 목적의 측정을 무선 자원 관리 측정 (RRM(radio resource management) measurement)라고 일컫는다.
단말은 이동성 지원의 목적 이외에 사업자가 네트워크를 운영하는데 도움이 될 수 있는 정보를 제공하기 위해, 네트워크가 설정하는 특정한 목적의 측정을 수행하고, 그 측정 결과를 네트워크에게 보고할 수 있다. 예를 들어, 단말이 네트워크가 정한 특정 셀의 브로드캐스트 정보를 수신한다. 단말은 상기 특정 셀의 셀 식별자(Cell Identity)(이를 광역(Global) 셀 식별자라고도 함), 상기 특정 셀이 속한 위치 식별 정보(예를 들어, Tracking Area Code) 및/또는 기타 셀 정보(예를 들어, CSG(Closed Subscriber Group) 셀의 멤버 여부)를 서빙 셀에게 보고할 수 있다.
이동 중의 단말은 특정 지역의 품질이 매우 나쁘다는 것을 측정을 통해 확인한 경우, 품질이 나쁜 셀들에 대한 위치 정보 및 측정 결과를 네트워크에 보고할 수 있다. 네트워크는 네크워크의 운영을 돕는 단말들의 측정 결과의 보고를 바탕으로 네트워크의 최적화를 꾀할 수 있다.
주파수 재사용(Frequency reuse factor)이 1인 이동 통신 시스템에서는, 이동성이 대부분 동일한 주파수 밴드에 있는 서로 다른 셀 간에 이루어진다. 따라서, 단말의 이동성을 잘 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 셀에 대한 측정을 인트라-주파수 측정(intra-frequency measurement)라고 부른다. 단말은 인트라-주파수 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고하여, 해당되는 측정 결과의 목적이 달성되도록 한다.
이동 통신 사업자는 복수의 주파수 밴드를 사용하여 네트워크를 운용할 수도 있다. 복수의 주파수 밴드를 통해 통신 시스템의 서비스가 제공되는 경우, 단말에게 최적의 이동성을 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이, 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 셀에 대한 측정을 인터-주파수 측정(inter-frequency measurement)라고 부른다. 단말은 인터-주파수 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고할 수 있어야 한다.
단말이 다른 RAT을 기반으로 한 네트워크에 대한 측정을 지원할 경우, 기지국 설정에 의해 해당 네크워크의 셀에 대한 측정을 할 수도 있다. 이러한, 측정을 인터-라디오 접근 방식(inter-RAT(Radio Access Technology)) 측정이라고 한다. 예를 들어, RAT는 3GPP 표준 규격을 따르는 UTRAN(UMTS Terrestrial Radio Access Network) 및 GERAN(GSM EDGE Radio Access Network)을 포함할 수 있으며, 3GPP2 표준 규격을 따르는 CDMA 2000 시스템 역시 포함할 수 있다.
도 8은 기존의 측정 수행 방법을 나타낸 흐름도이다.
단말은 기지국으로부터 측정 설정(measurement configuration) 정보를 수신한다(S810). 측정 설정 정보를 포함하는 메시지를 측정 설정 메시지라 한다. 단말은 측정 설정 정보를 기반으로 측정을 수행한다(S820). 단말은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다(S830). 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
측정 설정 정보는 다음과 같은 정보를 포함할 수 있다.
(1) 측정 대상(Measurement object) 정보: 단말이 측정을 수행할 대상에 관한 정보이다. 측정 대상은 셀내 측정의 대상인 인트라-주파수 측정 대상, 셀간 측정의 대상인 인터-주파수 측정 대상, 및 인터-RAT 측정의 대상인 인터-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, 인트라-주파수 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-주파수 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
(2) 보고 설정(Reporting configuration) 정보: 단말이 측정 결과를 언제 보고하는지에 관한 보고 조건 및 보고 타입(type)에 관한 정보이다. 보고 조건은 측정 결과의 보고가 유발(trigger)되는 이벤트나 주기에 관한 정보를 포함할 수 있다. 보고 타입은 측정 결과를 어떤 타입으로 구성할 것인지에 관한 정보이다.
(3) 측정 식별자(Measurement identity) 정보: 측정 대상과 보고 설정을 연관시켜, 단말이 어떤 측정 대상에 대해 언제 어떤 타입으로 보고할 것인지를 결정하도록 하는 측정 식별자에 관한 정보이다. 측정 식별자 정보는 측정 보고 메시지에 포함되어, 측정 결과가 어떤 측정 대상에 대한 것이며, 측정 보고가 어떤 보고 조건으로 발생하였는지를 나타낼 수 있다.
(4) 양적 설정(Quantity configuration) 정보: 측정 단위, 보고 단위 및/또는 측정 결과값의 필터링을 설정하기 위한 파라미터에 관한 정보이다.
(5) 측정 갭(Measurement gap) 정보: 하향링크 전송 또는 상향링크 전송이 스케쥴링되지 않아, 단말이 서빙 셀과의 데이터 전송에 대한 고려 없이 오직 측정을 하는데 사용될 수 있는 구간인 측정 갭에 관한 정보이다.
단말은 측정 절차를 수행하기 위해, 측정 대상 리스트, 측정 보고 설정 리스트 및 측정 식별자 리스트를 가지고 있다.
3GPP LTE에서 기지국은 단말에게 하나의 주파수 밴드에 대해 하나의 측정 대상만을 설정할 수 있다. 3GPP TS 36.331 V8.5.0 (2009-03) "Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.5.4절에 의하면, 다음 표와 같은 측정 보고가 유발되는 이벤트들이 정의되어 있다.
이벤트 보고 조건
Event A1 Serving becomes better than threshold
Event A2 Serving becomes worse than threshold
Event A3 Neighbour becomes offset better than serving
Event A4 Neighbour becomes better than threshold
Event A5 Serving becomes worse than threshold1 and neighbour becomes better than threshold2
Event B1 Inter RAT neighbour becomes better than threshold
Event B2 Serving becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2
단말의 측정 결과가 설정된 이벤트를 만족하면, 단말은 측정 보고 메시지를 기지국으로 전송한다.
도 9는 단말에게 설정된 측정 설정의 일 예를 나타낸다.
먼저, 측정 식별자 1(901)은 인트라-주파수 측정 대상과 보고 설정 1을 연결하고 있다. 단말은 셀내 측정(intra frequency measurement)을 수행하며, 보고 설정 1이 측정 결과 보고의 기준 및 보고 타입을 결정하는데 사용된다.
측정 식별자 2(902)는 측정 식별자 1(901)과 마찬가지로 인트라-주파수 측정 대상과 연결되어 있지만, 인트라-주파수 측정 대상을 보고 설정 2에 연결하고 있다. 단말은 측정을 수행하며, 보고 설정 2이 측정 결과 보고의 기준 및 보고 타입를 결정하는데 사용된다.
측정 식별자 1(901)과 측정 식별자 2(902)에 의해, 단말은 인트라-주파수 측정 대상에 대한 측정 결과가 보고 설정 1 및 보고 설정 2 중 어느 하나를 만족하더라도 측정 결과를 전송한다.
측정 식별자 3(903)은 인터-주파수 측정 대상 1과 보고 설정 3을 연결하고 있다. 단말은 인터-주파수 측정 대상 1에 대한 측정 결과가 보고 설정 1에 포함된 보고 조건을 만족하면 측정 결과를 보고한다.
측정 식별자 4(904)은 인터-주파수 측정 대상 2과 보고 설정 2을 연결하고 있다. 단말은 인터-주파수 측정 대상 2에 대한 측정 결과가 보고 설정 2에 포함된 보고 조건을 만족하면 측정 결과를 보고한다.
한편, 측정 대상, 보고 설정 및/또는 측정 식별자는 추가, 변경 및/또는 삭제가 가능하다. 이는 기지국이 단말에게 새로운 측정 설정 메시지를 보내거나, 측정 설정 변경 메시지를 보냄으로써 지시할 수 있다.
도 10은 측정 식별자를 삭제하는 예를 나타낸다. 측정 식별자 2(902)가 삭제되면, 측정 식별자 2(902)와 연관된 측정 대상에 대한 측정이 중단되고, 측정 보고도 전송되지 않는다. 삭제된 측정 식별자와 연관된 측정 대상이나 보고 설정은 변경되지 않을 수 있다.
도 11은 측정 대상을 삭제하는 예를 나타낸다. 인터-주파수 측정 대상 1이 삭제되면, 단말은 연관된 측정 식별자 3(903)도 또한 삭제한다. 인터-주파수 측정 대상 1에 대한 측정이 중단되고, 측정 보고도 전송되지 않는다. 그러나, 삭제된 인터-주파수 측정 대상 1에 연관된 보고 설정은 변경 또는 삭제되지 않을 수 있다.
보고 설정이 제거되면, 단말은 연관된 측정 식별자 역시 제거한다. 단말은 연관된 측정 식별자에 의해 연관된 측정 대상에 대한 측정을 중단한다. 그러나, 삭제된 보고 설정에 연관된 측정 대상은 변경 또는 삭제되지 않을 수 있다.
측정 보고는 측정 식별자, 서빙셀의 측정된 품질 및 주변 셀(neighboring cell)의 측정 결과를 포함할 수 있다. 측정 식별자는 측정 보고가 트리거된 측정 대상을 식별한다. 주변 셀의 측정 결과는 주변 셀의 셀 식별자 및 측정된 품질을 포함할 수 있다. 측정된 품질은 RSRP(Reference Signal Received Power) 및 RSRQ(Reference Signal Received Quality) 중 적어도 하나를 포함할 수 있다.
현재 무선 통신 시스템에서는 상향링크 또는 하향링크를 통하여 통신 환경 등에 대한 정보를 상대 장치에 제공하기 위하여 여러가지 기준 신호(reference signal) 들이 사용되고 있다.
기준 신호의 하나로서 하향링크 전송시 채널 정보를 파악하기 위하여 매 서브 프레임마다 CRS(Cell specific Reference Signal)이 전송된다. 이 때, CRS는 무선 통신 시스템의 하향링크에서 지원하는 최대 안테나 포트의 수인 4에 따라 각각 4개의 안테나에 대해서 시간/주파수 도메인별로 서로 다르게 할당되어 전송된다. 기존 무선 통신 시스템에서, CRS는 채널 추정을 통해 CSI(Channel State Information)을 획득하거나, RRM(Radio Resource Monitoring) 측정 및 복조(Demodulation)를 위해 사용될 수 있다.
한편, 최근 무선 통신 시스템에서는 최대 8개의 안테나를 통한 하향링크 전송 기법을 지원하고자 하며, 이에 따라 4개의 안테나에 대해 정의되어 있는 CRS로는 위와 같은 전송 기법을 지원하지 못할 수 있다. 또한, CRS를 기반으로한 측정의 측면에 있어서, CRS가 서브 프레임마다 전송된다는 점은 오버헤드로 인한 무선 자원 사용 효율의 저하를 야기할 수 있다는 문제점을 가져올 수 있다.
위와 같은 점을 보완하기 위하여 채널 상태 정보의 획득을 위한 기준 신호로서 CSI-RS(Channel State Information Reference Signal)가 도입되었다. 단말은 CSI-RS를 기반으로 측정을 수행하여, 채널 추정을 통한 채널 상태 정보를 획득할 수 있다. CSI-RS의 도입으로 기존 CRS는 RRM 측정을 위해 사용되도록 구현될 수 있다. 또한 복조를 위해서는 DM-RS(Demodulation Reference Signal)이 별도로 제공될 수 있다.
이하에서 CoMP(Coordinated Multi-Point transmission and reception)에 대하여 상술하도록 한다.
셀룰러 네트워크에서, 셀 중심 영역은 이웃 셀로부터의 간섭이 적기 때문에, 이웃 셀의 전송과 상관 없이 추가의 안테나 포트를 지원하거나 또는 반송파 집성(carrier aggregation)을 통해 데이터 전송 속도를 증가시키는 것이 가능할 수 있다.
반면, 셀 가장자리의 경우, 이웃 셀로부터의 간섭에 큰 영향을 받을 수 있기 때문에 안테나의 증가 또는 반송파 집성을 통해 데이터 전송 시키는 것이 어려울 수 있다. 셀 가장자리와 같이 간섭이 크게 작용할 수 있는 환경에서, 단말의 주변 셀들이 협력 통신을 하여 상호 간섭을 최소화하고, 데이터 전송 속도를 향상시켜 보다 나은 서비스를 제공하고자 제안된 것이 CoMP이다. CoMP는 매크로셀들간의 간섭 환경 뿐만 아니라 매크로셀과 피코셀 또는 펨토셀이 혼재하는 상황에서도 적용될 수 있는 기술이다.
CoMP의 적용에 대한 시나리오는 도 12내지 14와 같을 수 있다.
도 12에 도시된 제1 시나리오는 한 기지국 내의 섹터간 협력통신이 이루어지는 경우를 나타낸다. (Homogeneous network with intra-site CoMP)
도 13에 도시된 제2 시나리오는 기지국 사이에 광 케이블이 존재하는 환경에서 기지국간 협력 통신이 이루어지는 경우를 나타낸다. (Homogeneous network with high Tx power Remote Radio Heads(RRHs))
도 14에 도시된 제3 및 제4 시나리오는 서로 다른 전송 파워를 가지는 TP(Transmission Point)들이 존재하는 이종 네트워크 환경을 가정한다. 즉, 협력 통신은 매크로셀 영역 내 배치된 저전력 라디오 헤드들과 고전력 라디오 헤드 간에 이루어진다.
제3 시나리오는 저전력 라디오 헤드가 각각의 셀 식별자를 가지는 경우이다. 즉, 제3 시나리오는 이종 네트워크에서 매크로셀과 피코셀들 간의 협력 전송을 고려하는 것이다.
제4 시나리오는 저전력 라디오 헤드들이 모두 매크로셀과 같은 셀 식별자를 가지는 경우를 나타낸다. 즉, 제4 시나리오는 매크로셀 전 영역에 퍼져 있는 라디오헤드간 협력 전송인 분산안테나 시스템(Distributed Antenna System; DAS)를 고려하는 것이다.
CoMP 적용시 TP간 협력 방식으로 이하와 같은 기법들이 고려되고 있다.
- 협력 스케쥴링(Coordinated scheduling): 상호 협력하는 TP들이 신호를 전송하는 시간 또는 주파수 자원을 적절히 조절하여 간섭을 최소화하고, 단말이 수신하는 신호 품질을 높인다.
- 협력 빔포밍(Coordinated beamforming): 상호 협력하는 TP들이 신호를 전송하기 위해 형성하는 빔 방향을 적절히 조절하여 다른 TP에 간섭을 최소화하고, 단말이 수신하는 신호 품질을 높인다.
- 공동 처리(Joint processing): 상호 협력하는 복수의 TP들이 한 개의 단말에게 신호를 동시 전송하거나, 단말의 채널 상황을 고려한 최적의 TP를 동적으로 선택하여 단말에게 신호를 전송한다.
기지국 협력 통신이 사용되는 경우, 서빙 셀은 단말로 하여금 서빙 셀 이외에도 다른 TP와 단말 간 채널 상태를 측정할 수 있도록, 각 TP의 CSI-RS(Channel State Information-Reference Signal) 자원을 단말에게 설정한다. 단말은 각 TP의 CSI-RS 자원을 측정하고, 해당 TP에 대한 채널 상태에 대한 정보를 획득한다. 단말은 CSI-RS 자원을 측정하여 얻은 결과를 서빙셀에 보고한다. 서빙 셀은 단말로부터 획득한 CSI-RS 측정 결과를 협력 통신에 관여하는 주변 TP와 공유할 수 있다.
전술한 측정 설정을 기반으로 한 RRM 측정과 CSI-RS 측정과 같이 서로 다른 타입의 측정 대상에 대한 측정 결과는 서로 독립적으로 네트워크로 보고된다. 또한, 상호 독립적인 보고 조건과 연관된 측정 대상에 대한 측정 결과는 각 보고 조건의 만족 여부에 따라 각각 독립적으로 네트워크로 보고된다.
복수의 TP가 단말 통신에 수반될 수 있는 환경에서, 각 TP에 대한 채널 상태 정보를 인지하는 것은 단말에 대한 처리율(throughput) 및 네트워크내 무선 자원 사용의 효율성에 큰 영향을 미칠 수 있다. 이와 같은 목적을 위하여, 단말은 채널 상태 정보를 측정하고, 측정 결과를 네트워크로 보고할 수 있다. 하지만, 채널 상태 정보가 너무 자주 보고될 경우, 무선 자원을 낭비하게 되어, 오히려 복수의 TP를 사용하여 획득하고자 하는 유용성을 약화시키는 문제를 발생시킬 수 있다. 이와 같은 트레이드 오프(trade-off) 관계를 고려하여, 효율적으로 채널 상태 정보의 측정과 이를 보고하도록 하는 방법이 제안될 것이 요구된다.
서로 다른 타입의 측정 대상에 대한 측정 결과를 결합하여 보고할 수 있다. 즉, 제1 타입의 측정 대상에 대한 측정 결과를 획득하고, 이에 대한 보고 조건이 만족시 제1 타입 측정 결과를 보고하되, 보고 시점 및/또는 보고 조건 만족 시점에 획득된 제2 타입의 측정 대상에 대한 측정 결과가 존재하는 경우, 제1 타입 측정 결과 및 제2 타입의 측정 결과를 함께 보고할 수 있을 것이다.
이하에서, 측정 결과들을 결합하여 보고하는 방법과 관련된 본 발명의 실시예에 대하여 설명하도록 한다. 설명의 편의를 위하여 제1 타입 측정은 RRM 측정이고 제2 타입 측정은 CSI-RS 측정인 것을 예시로 하여 설명하지만, 본 발명의 범위는 이에 한정되지 않는다. 즉, 제1 타입 측정이 CSI-RS 측정이고, 제2 타입 측정이 RRM 측정일 수도 있다. 또한, 제1 타입 측정 및 제2 타입 측정은 모두 RRM 측정 또는 CSI-RS 측정일 수도 있다.
도 15는 본 발명의 실시예에 따른 측정 보고 방법을 나타내는 흐름도이다.
도 15를 참조하면, 단말은 측정 및 보고를 위한 정보를 포함하는 측정 설정을 네트워크로부터 획득한다(S1510).
측정 설정은 단말의 RRM 측정 및 보고를 위한 RRM 측정 설정을 포함할 수 있다. RRM 측정 설정은 RRM 측정 대상, 측정 결과의 평가를 위한 보고 기준에 관한 RRM 보고 설정을 포함할 수 있다. 특정 RRM 측정 대상과 특정 RRM 보고 설정의 결합을 식별토록 하는 측정 식별자가 설정될 수 있다.
측정 설정은 단말의 CSI-RS 측정 및 보고를 위한 CSI-RS 측정 설정을 포함할 수 있다. CSI-RS 측정 설정은 CSI-RS 측정 대상, 측정 결과의 평가를 위한 보고 기준에 관한 CSI-RS 보고 설정을 포함할 수 있다. CSI-RS 측정 대상은 단말이 CSI-RS 측정을 수행할 대상인 적어도 하나의 CSI-RS 자원을 지시할 수 있다. 각 CSI-RS 측정 대상은 CSI-RS 리스트의 타입으로 구현될 수 있다. 이를 통해, 단말은 적어도 하나의 CSI-RS 자원을 할당받고, 측정 결과의 보고를 위한 평가의 기반이 되는 보고 기준을 설정 받을 수 있다.
적어도 하나의 CSI-RS 자원들 중 특정 CSI-RS 리스트에 포함된 CSI-RS 자원은 특정 CSI-RS 보고 설정과 결합될 수 있다. 이와 같은 결합 상태는 다른 CSI-RS 리스트 및 다른 CSI-RS 보고 설정의 결합 상태와는 구별될 수 있다. CSI-RS 리스트 및 CSI-RS 보고 설정간 결합 상태는 식별자에 의해 식별될 수 있으며, 식별자를 통해 다른 결합상태와 구별될 수 있다.
RRM 측정 결과의 보고와 결합되어 CSI-RS 측정 결과를 보고하기 위해서는 네트워크가 결합된 보고를 위한 측정 설정을 단말에 제공해줄 필요가 있다. 이를 위해, 네트워크는 RRM 보고 설정에 CSI-RS 측정 결과 보고를 지시하는 정보를 포함할 수 있다. RRM 측정 결과 보고와 결합된 CSI-RS 측정 결과를 보고할 것을 지시하는 정보는 아래와 같이 구현될 수 있다.
1) CSI-RS 측정 결과 보고 지시자
CSI-RS 측정 결과 보고 지시자는 포함된 RRM 보고 설정에 따른 RRM 측정 결과가 보고 조건을 만족시 획득된 CSI-RS 측정 결과를 보고할 것을 지시할 수 있다. 이 경우, 단말은 RRM 측정 결과를 보고함에 있어, 획득된 CSI-RS 측정 결과를 모두 보고할 수 있다.
2) CSI-RS 임계값 지시자
CSI-RS 임계값 지시자는 RRM 측정 결과와 결합되어 보고될 수 있는 CSI-RS 측정 결과의 최소 값을 지시할 수 있다. CSI-RS 임계값 지시자는 특정 RRM 보고 설정에 포함될 수 있다. 특정 RRM 보고 설정에 CSI-RS 임계값 지시자가 포함되어 있는 경우, 단말은 해당 RRM 보고 설정에 따른 RRM 측정 결과 보고시 CSI-RS 임계값 지시자에 의해 지시된 값 이상 품질을 가지는 CSI-RS 측정 결과를 함께 보고할 수 있다.
3) CSI-RS 최대 개수 지시자
CSI-RS 최대 개수 지시자는 RRM 측정 결과와 결합되어 보고될 수 있는 CSI-RS 측정 결과의 최대 개수를 지시할 수 있다. CSI-RS 최대 개수 지시자는 특정 RRM 보고 설정에 포함될 수 있다. 특정 RRM 보고 설정에 CSI-RS 최대 개수 지시자가 포함되어 있는 경우, 단말은 해당 RRM 보고 설정에 따른 RRM 측정 결과 보고시 지시된 개수만큼의 CSI-RS 측정 결과를 함께 보고할 수 있다. 획득된 CSI-RS 측정 결과가 CSI-RS 최대 개수보다 많은 경우, 단말은 CSI-RS 측정 결과의 품질이 높은 순서대로 지시된 개수만큼의 CSI-RS 측정 결과를 RRM 측정 결과와 함께 네트워크로 보고할 수 있다.
전술한 CSI-RS 임계값 지시자 및/또는 CSI-RS 최대 개수 지시자는 CSI-RS 보고 설정에도 포함될 수 있다. 이 경우, 해당 지시 정보는 결합된 측정 보고의 설정 대신 보고될 수 있는 CSI-RS 측정 결과를 필터링하기 위한 정보로 사용될 수 있다.
도 16은 본 발명의 실시예에 따른 측정 설정의 일례를 나타내는 도면이다.
도 16을 참조하면, 단말에는 측정 대상으로서 RRM 측정 대상 1, RRM 측정 대상 2, CSI-RS 리스트 1 및 CSI-RS 리스트 2가 설정된다. RRM 측정 대상 1은 주파수 1로 운영중인 셀을 RRM 측정 대상으로 특정할 수 있다. RRM 측정 대상 2는 주파수 2로 운영중인 셀을 RRM 측정 대상으로 특정할 수 있다. CSI-RS 리스트 1 및 CSI-RS 리스트 2는 CSI-RS 측정 대상으로서 각각 적어도 하나의 CSI-RS 자원을 지시할 수 있다. 예를 들어, CSI-RS 리스트 1 및 CSI-RS 리스트 2는 각각 적어도 하나의 CSI-RS 자원을 식별시키는 CSI-RS ID를 포함할 수 있다.
RRM 측정 대상 1은 RRM 보고 설정 1과 결합되며, 이는 측정 식별자 1에 의해 식별될 수 있다.
RRM 측정 대상 2는 RRM 보고 설정 2와 결합되며, 이는 측정 식별자 2에 의해 식별될 수 있다. RRM 보고 설정 2는 CSI-RS 임계값 지시자 및 CSI-RS 최대 개수 지시자를 포함할 수 있다. 이를 통해 RRM 보고 설정 2를 기반으로 한 RRM 보고 설정은 CSI-RS 측정 결과의 보고와 결합될 수 있다. 또한, 보고될 수 있는 CSI-RS 측정 결과는 CSI-RS 임계값 지시자 및/또는 CSI-RS 최대 개수 지시자에 의해 필터링될 수 있다.
CSI-RS 측정 대상 1은 CSI-RS 보고 설정 1과 결합될 수 있다. CSI-RS 보고 설정은 CSI-RS 최대 개수 지시자를 포함할 수 있다. 이 경우, CSI-RS 보고 설정 1을 만족시킨 CSI-RS 측정 결과들은 CSI-RS 최대 개수 지시자에 의해 필터링되어 네트워크로 보고될 수 있다.
CSI-RS 측정 대상 2는 CSI-RS 보고 설정 3과 결합될 수 있다. CSI-RS 측정 대상 2에 대한 측정 결과는 CSI-RS 보고 설정 3에 의한 보고 조건을 만족시 네트워크로 보고될 수 있다.
다시 도 15를 참조하면, 단말은 측정을 수행한다(S1520). 단말은 획득된 측정 설정을 기반으로 측정을 수행한다. 단말은 설정된 RRM 측정 대상 및/또는 CSI-RS 측정 대상(CSI-RS 리스트에 포함된 CSI-RS 자원)에 대하여 측정하고, RRM 측정 결과 및/또는 CSI-RS 측정 결과를 획득할 수 있다.
도 16과 같이 측정 설정이 단말에 설정되는 경우, 단말은 주파수 1로 운영중인 셀(들) 및 주파수 2로 운영중인 셀(들)에 대하여 RRM 측정을 수행할 수 있다. 또한, CSI-RS 리스트 1에 포함된 적어도 하나의 CSI-RS 자원 및 CSI-RS 리스트 2에 포함된 적어도 하나의 CSI-RS 자원에 대하여 CSI-RS 측정을 수행할 수 있다.
단말은 측정 결과 평가 및 보고를 수행한다(S1530).
RRM 측정 결과와 관련된 RRM 측정 설정에서 정의된 보고 조건이 만족되면, 단말은 측정 보고 메시지에 보고 조건을 만족시킨 RRM 측정 결과를 포함시키고 네트워크로 전송할 수 있다. 또한, 관련된 RRM 보고 설정에 CSI-RS 측정 결과 보고를 지시하는 경우, 주어진 조건에 따라 적어도 하나의 CSI-RS 측정 결과를 측정 보고 메시지에 포함시킬 수 있다. RRM 보고 설정에 CSI-RS 측정 결과 보고 지시자가 포함된 경우, 단말은 획득된 모든 CSI-RS 측정 결과를 측정 보고 메시지에 포함시킬 수 있다. RRM 보고 설정에 CSI-RS 임계값 지시자가 포함된 경우, 단말은 획득된 CSI-RS 측정 결과들 중 지시된 임계값 이상 품질의 CSI-RS 측정 결과만을 측정 보고 메시지에 포함시킬 수 있다. RRM 보고 설정에 CSI-RS 최대 개수 지시자가 포함된 경우, 단말은 획득된 CSI-RS 측정 결과들 중 품질이 좋은 순서대로 지시된 개수만큼의 CSI-RS 측정 결과들을 측정 보고 메시지에 포함시킬 수 있다. RRM 보고 설정에 CSI-RS 임계값 지시자 및 CSI-RS 최대 개수 지시자가 포함된 경우, 단말은 임계값 이상 품질의 CSI-RS 측정 결과들 중 품질이 높은 순서대로 지시된 개수만큼의 CSI-RS 측정 결과들을 측정 보고 메시지에 포함시킬 수 있다.
CSI-RS 측정 결과와 관련된 CSI-RS 측정 설정에서 정의된 보고 조건이 만족되면, 단말은 측정 보고 메시지에 보고 조건을 만족시킨 CSI-RS 측정 결과를 포함시키고 네트워크로 전송할 수 있다. CSI-RS 보고 설정에 CSI-RS 임계값 지시자 및/또는 CSI-RS 최대 개수 지시자와 같은 필터링 조건이 포함될 수 있다. 이 경우, 단말은 획득된 CSI-RS 측정 결과들 중 주어진 필터링 조건을 만족시키는 CSI-RS 측정 결과만을 측정 보고 메시지에 포함시켜 네트워크로 보고할 수 있다.
도 17은 본 발명의 실시예에 따른 측정 보고 방법의 일례를 나타내는 흐름도이다.
도 17을 참조하면, 단말은 네트워크로부터 측정 설정을 획득한다(S1710). 측정 설정은 RRM 측정 설정을 포함하며, RRM 측정 설정은 RRM 측정 대상 및 이와 관련된 RRM 보고 설정을 포함한다. RRM 보고 설정은 CSI-RS 임계값 지시자를 포함할 수 있다. 측정 설정은 CSI-RS 측정 설정을 포함하며, CSI-RS 측정 설정은 CSI-RS 자원 1, 2, 및 3을 포함하는 CSI-RS 리스트를 포함한다.
단말은 RRM 측정 및 CSI-RS 측정을 수행한다(S1720). RRM 측정은 측정 설정의 RRM 측정 설정을 기반으로 RRM 측정 대상에 대하여 수행될 수 있다. CSI-RS 측정은 측정 설정의 CSI-RS 측정 설정을 기반으로, CSI-RS 자원 1, 2, 및 3에 대하여 수행될 수 있다. 이를 통해 단말은 지속적으로 RRM 측정 결과 및 CSI-RS 측정 결과를 획득할 수 있다.
단말은 RRM 측정 결과가 RRM 보고 설정에 따른 보고 조건이 만족되었다고 결정한다(S1730). 이에 따라 단말은 보고 조건을 만족시킨 RRM 측정 결과를 포함하는 측정 보고 메시지를 네트워크로 전송할 수 있다.
보고 조건을 만족시킨 RRM 측정 결과와 관련된 RRM 보고 설정에 CSI-RS 측정 결과를 보고할 것을 지시하는 CSI-RS 임계값 지시자가 포함되어 있다. 따라서, 단말은 RRM 측정 보고시 CSI-RS 측정 결과를 결합하여 보고할 수 있다. 단말은 CSI-RS 임계값 지시자에 의해 지시되는 임계값 이상의 품질을 가지는 CSI-RS 측정 결과를 RRM 측정 결과와 결합하여 네트워크로 보고할 수 있다.
RRM 측정 결과가 보고조건을 만족시킨 시점에, CSI-RS 측정 결과 1 및 2는 CSI-RS 임계값 지시자에 의해 지시되는 임계값 조건을 만족시키지만, CSI-RS 측정 결과 3의 품질은 임계값보다 품질이 낮다. 따라서, 단말은 측정 보고 메시지에 CSI-RS 측정 결과 1 및 2를 RRM 측정 결과와 함께 네트워크로 보고할 수 있다.
도 18은 본 발명의 실시예에 따른 측정 보고 방법의 다른 일례를 나타내는 도면이다.
도 18을 참조하면, 단말은 네트워크로부터 측정 설정을 획득한다(S1810). 측정 설정은 RRM 측정 설정을 포함하며, RRM 측정 설정은 RRM 측정 대상 및 이와 관련된 RRM 보고 설정을 포함한다. RRM 보고 설정은 CSI-RS 최대 개수 지시자를 포함할 수 있다. 측정 설정은 CSI-RS 측정 설정을 포함하며, CSI-RS 측정 설정은 CSI-RS 자원 1, 2, 및 3을 포함하는 CSI-RS 리스트를 포함한다.
단말은 RRM 측정 및 CSI-RS 측정을 수행한다(S1820). RRM 측정은 측정 설정의 RRM 측정 설정을 기반으로 RRM 측정 대상에 대하여 수행될 수 있다. CSI-RS 측정은 측정 설정의 CSI-RS 측정 설정을 기반으로, CSI-RS 자원 1, 2, 및 3에 대하여 수행될 수 있다. 이를 통해 단말은 지속적으로 RRM 측정 결과 및 CSI-RS 측정 결과를 획득할 수 있다.
단말은 RRM 측정 결과가 RRM 보고 설정에 따른 보고 조건이 만족되었다고 결정한다(S1830). 이에 따라 단말은 보고 조건을 만족시킨 RRM 측정 결과를 포함하는 측정 보고 메시지를 네트워크로 전송할 수 있다.
보고 조건을 만족시킨 RRM 측정 결과와 관련된 RRM 보고 설정에 CSI-RS 측정 결과를 보고할 것을 지시하는 CSI-RS 최대 개수 지시자가 포함되어 있다. 따라서, 단말은 RRM 측정 보고시 CSI-RS 측정 결과를 결합하여 보고할 수 있다. 단말은 획득된 CSI-RS 측정 결과 중 품질이 높은 순서대로 CSI-RS 최대 개수 지시자에 의해 지시되는 개수 만큼의 CSI-RS 측정 결과를 측정 보고 메시지에 포함시킬 수 있다.
RRM 측정 결과가 보고조건을 만족시킨 시점에, CSI-RS 측정 결과들의 품질은 CSI-RS 측정 결과 1, 2, 3과 같은 순서에 의할 수 있다. CSI-RS 최대 개수 지시자는 보고될 수 있는 CSI-RS 측정 결과의 최대 개수로 2개를 지시하고 있으므로, 단말은 CSI-RS 측정 결과 1 및 2를 RRM 측정 결과와 함께 네트워크로 보고할 수 있다.
본 발명의 실시예에 따른 측정 보고 방법은 단말로 하여금 RRM 측정 결과와 CSI-RS 측정 결과를 함께 보고할 수 있도록 한다. 이를 통해 단말은 효율적인 방법으로 채널 상태 정보를 네트워크로 보고할 수 있다. 또한, 단말은 특정 조건에 따라 CSI-RS 측정 결과를 선택적으로 네트워크로 보고할 수 있다. 본 발명의 실시예를 통해 필요한 경우에 한하여, 그리고 필요한 경우에는 필수적으로 단말은 CSI-RS 측정 결과를 네트워크로 보고함으로써, 무선 자원 사용의 효율성이 증가할 수 있다. 또한, 네트워크는 적절히 보고된 측정 결과를 기반으로 단말에 보다 적절한 CSI-RS 자원을 할당하여 줌으로써, 단말의 운영 성능을 보다 향상시킬 수 있다.
도 19는 본 발명의 실시예가 구현되는 무선 장치를 나타낸 블록도이다. 이 장치는 도 15 내지 도 18을 참조하여 상술한 실시예를 수행하는 단말 및/또는 네트워크의 동작을 구현할 수 있다.
도 19를 참조하면, 무선 장치(1900)는 프로세서(1910), 메모리(1920) 및 RF부(radio frequency unit, 1930)을 포함한다. 프로세서(1910)는 제안된 기능, 과정 및/또는 방법을 구현한다. 프로세서(1910)는 측정 설정을 통해 CSI-RS 자원을 할당 받고, CSI-RS 자원을 측정 및 보고 조건 만족 여부를 평가할 수 있다. 프로세서(1910)는 보고 조건 만족시킨 CSI-RS 측정 결과를 기반으로 CSI-RS 트리거 리스트를 생성할 수 있다. 프로세서(1910)는 CSI-RS 트리거 리스트를 기반으로 보고 여부를 결정하고, 이에 따라 측정 결과를 보고할 수 있다. 프로세서(1910)는 도 15 내지 18을 참조하여 본 발명의 실시예를 구현하도록 설정될 수 있다.
RF부(1930)은 프로세서(1910)와 연결되어 무선 신호를 송신 및 수신한다. RF부(1930)는 복수의 안테나(1930a 내지 1930m)을 포함할 수 있다. 각 안테나는 다른 무선 장치, 기지국 및/또는 TP와 무선 신호를 동시에 송신 및 수신할 수 있도록 구현될 수 있다.
상기 프로세서(1910) 및 상기 RF 부(1930)는 적어도 하나 이상의 통신 규격에 따른 무선 신호 송수신을 할 수 있도록 구현될 수 있다. 상기 RF 부(1930)는 무선 신호를 송신 및 수신할 수 있는 적어도 하나 이상의 송수신기를 포함할 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (17)

  1. 무선 통신 시스템에서 측정 보고 방법에 있어서, 상기 방법은
    제1 타입 측정을 수행하여 제1 타입 측정 결과를 획득하고;
    제2 타입 측정을 수행하여 제2 타입 측정 결과를 획득하고;
    상기 제1 타입 측정 결과가 보고 조건을 만족시키는지 여부를 판단하고; 및
    상기 제1 타입 측정 결과가 상기 보고 조건을 만족시키면, 상기 제1타입 측정 결과를 포함하는 제1 측정 보고 메시지를 네트워크로 전송하는 것;을 포함하되
    상기 제1 측정 보고 메시지는 상기 제2 타입 측정 결과를 더 포함하는 것을 특징으로 하는 측정 보고 방법.
  2. 제 1항에 있어서, 상기 방법은 상기 제1 타입 측정 및 상기 제2 타입 측정을 위한 정보를 포함하는 측정 설정을 포함하되,
    상기 측정 설정은 상기 제1 타입 측정 결과를 위한 상기 보고 조건을 포함하는 제1 타입 보고 설정을 포함함을 특징으로 하는 측정 보고 방법.
  3. 제 2항에 있어서,
    상기 제1 타입 측정 결과와 함께 획득된 제2 타입 측정 결과를 보고할 것을 지시하는 제2 타입 보고 지시자가 상기 제1 타입 보고 설정에 포함되어 있으면, 상기 제2 타입 측정 결과가 상기 제1 측정 보고 메시지에 포함되는 것을 특징으로 하는 측정 보고 방법.
  4. 제 2항에 있어서,
    상기 제1 타입 보고 설정은 상기 제1 타입 측정 결과와 함께 보고될 제2 타입 측정 결과 품질의 임계값을 지시하는 제2 타입 임계값 지시자를 포함하고,
    상기 제2 타입 측정 결과의 품질이 상기 임계값 이상이면, 상기 제2 타입 측정 결과가 상기 제1 측정 보고 메시지에 포함되는 것을 특징으로 하는 측정 보고 방법.
  5. 제 2항에 있어서,
    상기 제1 타입 보고 설정은 상기 제1 타입 측정 결과와 함께 보고될 수 있는 제2 타입 측정 결과의 최대 개수를 지시하는 제2 타입 최대 개수 지시자를 포함하고,
    상기 제2 타입 측정 결과의 품질이 상기 제1 타입 측정 결과의 보고 조건 만족시 획득된 적어도 하나 이상의 제2 타입 측정 결과들 중 상기 최대 개수만큼의 상위에 속하면, 상기 제2 타입 측정 결과가 상기 제1 측정 보고 메시지에 포함되는 것을 특징으로 하는 측정 보고 방법.
  6. 제 2항에 있어서,
    상기 측정 설정은 상기 제2 타입 측정 결과를 위한 보고 조건을 포함하는 제2 타입 보고 설정을 더 포함함을 특징으로 하는 측정 보고 방법.
  7. 제 6항에 있어서,
    상기 제2 타입 측정 결과가 상기 제2 타입 보고 설정에 따른 보고 조건을 만족시키면,
    상기 방법은 상기 제2 타입 측정 결과를 포함하는 제2 측정 보고 메시지를 상기 네트워크로 전송하는 것을 더 포함함을 특징으로 하는 측정 보고 방법.
  8. 제 6항에 있어서,
    상기 제2 타입 보고 설정은 상기 제2 측정 보고 메시지 전송시 포함될 수 있는 제2 타입 측정 결과의 최대 개수를 지시하는 제2 타입 최대 개수 지시자를 더 포함함을 특징으로 하는 측정 보고 방법.
  9. 제 8항에 있어서,
    상기 제2 타입 측정 결과의 품질이 상기 제2 타입 측정 결과를 위한 보고 조건 만족시 획득된 적어도 하나 이상의 제2 타입 측정 결과들 중 상기 최대 개수만큼의 상위에 속하면, 상기 방법은 상기 제2 타입 측정 결과를 포함하는 제2 측정 보고 메시지를 상기 네트워크로 전송하는 것을 더 포함함을 특징으로 하는 측정 보고 방법.
  10. 제 1항에 있어서,
    상기 제1 타입 측정은, RRM(Radio Resource Mornitoring) 측정을 위한 CRS(Cell specific Reference Signal) 자원, 및 CSI-RS(Channel State Information-Reference Signal) 자원 중 어느 하나의 자원에 대한 측정이고,
    상기 제2 타입 측정은, 상기 CRS 자원 및 상기 CSI-RS 자원 중 상기 제1 타입 측정의 대상을 제외한 나머지 하나의 자원에 대한 측정인 것을 특징으로 하는 측정 보고 방법.
  11. 무선 통신 시스템에서 동작하는 단말에 있어서, 상기 단말은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 기능적으로 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
    제1 타입 측정을 수행하여 제1 타입 측정 결과를 획득하고,
    제2 타입 측정을 수행하여 제2 타입 측정 결과를 획득하고,
    상기 제1 타입 측정 결과가 보고 조건을 만족시키는지 여부를 판단하고, 및
    상기 제1 타입 측정 결과가 상기 보고 조건을 만족시키면, 상기 제1타입 측정 결과를 포함하는 측정 보고 메시지를 네트워크로 전송하도록 설정되되,
    상기 측정 보고 메시지는 상기 제2 타입 측정 결과를 더 포함하는 것을 특징으로 하는 단말.
  12. 제 11항에 있어서,
    상기 제1 타입 측정은, RRM 측정을 위한 CRS 자원, 및 CSI-RS 자원 중 어느 하나의 자원에 대한 측정이고,
    상기 제2 타입 측정은, 상기 CRS 자원 및 상기 CSI-RS 자원 중 상기 제1 타입 측정의 대상을 제외한 나머지 하나의 자원에 대한 측정인 것을 특징으로 하는 단말.
  13. 무선 통신 시스템에서 측정 보고 방법에 있어서,
    적어도 하나의 측정 결과를 획득하고;
    상기 적어도 하나의 측정 결과의 보고 조건 만족 여부를 평가하고;
    적어도 하나의 만족된 측정 결과를 필터링 하고; 및
    적어도 하나의 필터링된 측정 결과를 포함하는 측정 보고 메시지를 네트워크로 전송하는 것;을 포함함을 특징으로 하는 측정 보고 방법.
  14. 제 13항에 있어서, 상기 방법은
    상기 네트워크로부터 측정 보고를 위한 측정 설정을 획득하는 것;을 더 포함하고,
    상기 측정 설정은 보고 기준을 특정하는 보고 설정을 포함하고,
    상기 보고 설정은 상기 보고 조건을 지시하는 보고 조건 정보 및 상기 필터링 조건을 지시하는 상기 필터링 조건 정보를 포함함을 특징으로 하는 측정 보고 방법.
  15. 제 14항에 있어서, 상기 필터링 조건 정보는 상기 측정 보고 메시지에 포함되어 네트워크로 보고되는 측정 결과의 최대 개수를 지시하는 것;을 특징으로 하는 측정 보고 방법.
  16. 제 15항에 있어서, 상기 적어도 하나의 필터링된 측정 결과는 상기 적어도 하나의 만족된 측정 결과 중 품질이 상기 필터링 조건 정보에 의해 지시되는 상기 최대 개수 만큼의 상위에 해당하는 적어도 하나의 만족된 측정 결과인 것을 특징으로 하는 측정 보고 방법.
  17. 제 13항에 있어서, 상기 측정 결과는 CSI-RS(Channel State Information-Reference Signal) 자원에 대한 측정 결과인 것을 특징으로 하는 측정 보고 방법.
PCT/KR2013/006597 2012-07-23 2013-07-23 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치 WO2014017810A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13823708.6A EP2876926B1 (en) 2012-07-23 2013-07-23 Method for reporting a combined measurement in wireless communication system and apparatus for supporting same
KR1020157001237A KR20150036103A (ko) 2012-07-23 2013-07-23 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치
US14/416,576 US9668156B2 (en) 2012-07-23 2013-07-23 Method for reporting combined measurement results in wireless communication system and apparatus for supporting same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261674401P 2012-07-23 2012-07-23
US61/674,401 2012-07-23
US201261680276P 2012-08-07 2012-08-07
US61/680,276 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014017810A1 true WO2014017810A1 (ko) 2014-01-30

Family

ID=49997558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006597 WO2014017810A1 (ko) 2012-07-23 2013-07-23 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치

Country Status (4)

Country Link
US (1) US9668156B2 (ko)
EP (1) EP2876926B1 (ko)
KR (1) KR20150036103A (ko)
WO (1) WO2014017810A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147607A1 (en) * 2014-03-28 2015-10-01 Lg Electronics Inc. Method and apparatus for configuring measurement for discovery reference signal in wireless communication system
CN111432491A (zh) * 2014-05-20 2020-07-17 索尼公司 无线通信系统中的电子设备、方法和计算机可读存储介质
CN113383572A (zh) * 2019-02-14 2021-09-10 株式会社Ntt都科摩 用户装置以及测量方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145504A (zh) * 2012-09-20 2014-11-12 华为技术有限公司 测量控制方法、用户设备、控制节点及系统
EP2963965B1 (en) * 2013-03-27 2022-02-16 Huawei Technologies Co., Ltd. Method, apparatus, and device for measuring radio resource management information
US9736852B2 (en) * 2014-12-23 2017-08-15 Intel Corporation Method of processing received digitized signals and mobile radio communication terminal device
CN108029098B (zh) * 2015-09-25 2022-07-22 瑞典爱立信有限公司 用于在无线网络中降低干扰的方法和网络节点
WO2017067138A1 (en) * 2015-10-21 2017-04-27 Intel IP Corporation Method, apparatus and system for reporting beam reference signal receiving power
CN105517007B (zh) * 2015-12-03 2018-11-09 中国联合网络通信集团有限公司 一种数据核查的方法及装置
CN107872293B (zh) * 2016-09-28 2023-04-07 华为技术有限公司 信号传输方法和装置
WO2018159380A1 (ja) * 2017-03-03 2018-09-07 日本電信電話株式会社 学習装置、再学習要否判定方法及び再学習要否判定プログラム
CN109548071A (zh) * 2017-09-21 2019-03-29 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
US10979114B2 (en) * 2018-01-26 2021-04-13 Commscope Technologies Llc Cloud network implementation for a distributed antenna system control plane
AU2018435988A1 (en) * 2018-08-10 2021-03-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Reference signal measurement configuration method, terminal device, and network device
US11051310B2 (en) * 2018-10-01 2021-06-29 Qualcomm Incorporated UE indication of supported number of trigger states
CN111294850B (zh) * 2019-01-11 2021-10-08 北京紫光展锐通信技术有限公司 测量上报方法及装置、终端设备信息获取方法及装置
US11985726B2 (en) * 2019-11-04 2024-05-14 Qualcomm Incorporated Channel state information (CSI) reporting during a discontinuous reception (DRX) cycle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100081913A (ko) * 2009-01-06 2010-07-15 엘지전자 주식회사 다중 셀 환경에서 CoMP 수행 셀 결정방법 및 장치
US20100323720A1 (en) * 2009-06-22 2010-12-23 Yu-Chih Jen Method of Handling Positioning Measurement and Related Communication Device
KR20110069741A (ko) * 2009-12-17 2011-06-23 엘지전자 주식회사 다중 반송파 지원 무선 통신 시스템에서 효율적인 채널 상태 정보 전송 방법 및 장치
KR20120016583A (ko) * 2010-08-16 2012-02-24 삼성전자주식회사 무선 통신 시스템에서 단말 내에 복수 개의 이종 통신 모듈이 있을 경우 셀을 측정하는 방법 및 장치
WO2012059139A1 (en) * 2010-11-05 2012-05-10 Fujitsu Limited Terminal measurements of interference in wireless communication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2368385T3 (es) * 2009-01-29 2011-11-16 Lg Electronics Inc. Esquema de transmisión de señales para una gestión eficaz del canal dedicado mejorado común.
EP2515595A4 (en) 2009-12-17 2017-01-25 LG Electronics Inc. Method and apparatus for transmitting channel status information efficiently in a multi-carrier wireless communication system
CN103843423B (zh) * 2011-09-30 2018-08-24 夏普株式会社 终端装置以及用于终端装置的方法
US8767581B2 (en) * 2012-03-28 2014-07-01 Sharp Laboratories Of America, Inc. Coordinated multipoint (CoMP) radio resource management (RRM) measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100081913A (ko) * 2009-01-06 2010-07-15 엘지전자 주식회사 다중 셀 환경에서 CoMP 수행 셀 결정방법 및 장치
US20100323720A1 (en) * 2009-06-22 2010-12-23 Yu-Chih Jen Method of Handling Positioning Measurement and Related Communication Device
KR20110069741A (ko) * 2009-12-17 2011-06-23 엘지전자 주식회사 다중 반송파 지원 무선 통신 시스템에서 효율적인 채널 상태 정보 전송 방법 및 장치
KR20120016583A (ko) * 2010-08-16 2012-02-24 삼성전자주식회사 무선 통신 시스템에서 단말 내에 복수 개의 이종 통신 모듈이 있을 경우 셀을 측정하는 방법 및 장치
WO2012059139A1 (en) * 2010-11-05 2012-05-10 Fujitsu Limited Terminal measurements of interference in wireless communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Radio Resource Control (RRC); Protocol specification (Release 8", 3GPP TS 36.331 V8.7.0, September 2009 (2009-09-01)
"User Equipment (UE) procedures in idle mode (Release 8", 3GPP TS 36.304 V8.5.0, March 2009 (2009-03-01)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147607A1 (en) * 2014-03-28 2015-10-01 Lg Electronics Inc. Method and apparatus for configuring measurement for discovery reference signal in wireless communication system
US10560858B2 (en) 2014-03-28 2020-02-11 Lg Electronics Inc. Method and apparatus for configuring measurement for discovery reference signal in wireless communication system
CN111432491A (zh) * 2014-05-20 2020-07-17 索尼公司 无线通信系统中的电子设备、方法和计算机可读存储介质
CN113383572A (zh) * 2019-02-14 2021-09-10 株式会社Ntt都科摩 用户装置以及测量方法
CN113383572B (zh) * 2019-02-14 2024-05-07 株式会社Ntt都科摩 用户装置以及测量方法

Also Published As

Publication number Publication date
EP2876926A1 (en) 2015-05-27
EP2876926A4 (en) 2016-04-20
US9668156B2 (en) 2017-05-30
KR20150036103A (ko) 2015-04-07
US20150271694A1 (en) 2015-09-24
EP2876926B1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2014003506A1 (ko) 무선 통신 시스템에서 csi-rs 측정 및 보고 방법 및 이를 지원하는 장치
WO2014017810A1 (ko) 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치
US8934846B2 (en) Method and wireless apparatus for performing a minimization drive test
WO2014014328A1 (ko) 무선 통신 시스템에서 측정 보고 방법 및 이를 지원하는 장치
WO2014025196A1 (ko) 무선 통신 시스템에서 이동성 정보 보고 방법 및 이를 지원하는 장치
WO2014014286A1 (ko) 무선 통신 시스템에서 시그널링 방법 및 이를 지원하는 장치
WO2014042468A2 (ko) 무선 통신 시스템에서 시스템 정보의 획득을 위한 운영 방법 및 이를 지원하는 장치
WO2013009127A2 (ko) 무선 통신 시스템에서 보고 방법 및 이를 지원하는 장치
WO2015163747A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 무선 링크 실패 선언 방법 및 상기 방법을 이용하는 단말
WO2013141538A1 (ko) 무선 통신 시스템에서 이동 방법 및 이를 지원하는 장치
EP2876925B1 (en) Method for measuring and reporting csi-rs in wireless communication system, and apparatus for supporting same
WO2014119966A1 (ko) 무선 통신 시스템에서 트래픽 조종 방법 및 이를 지원하는 장치
WO2013165209A1 (ko) 무선 통신 시스템에서 시그널링 제어 방법 및 이를 지원하는 장치
KR20140075773A (ko) 무선 통신 시스템에서 슈프림 우선순위를 적용하는 셀 재선택 방법 및 이를 지원하는 장치
WO2013141660A1 (ko) 무선 통신 시스템에서 셀 접근 방법 및 장치
WO2014098531A1 (ko) 무선 통신 시스템에서 이동 방법 및 이를 지원하는 장치
WO2014038910A1 (ko) 무선 통신 시스템에서 우선순위 핸들링 기반 셀 재선택 방법 및 이를 지원하는 장치
US9661610B2 (en) Communication method based on automatic serving cell management in wireless communication system, and device for supporting same
WO2014098535A1 (ko) 무선 통신 시스템에서 통신 방법 및 이를 지원하는 장치
WO2013180447A1 (ko) 무선 통신 시스템에서 이동성 정보 보고 방법 및 이를 지원하는 장치
WO2014010977A1 (ko) 무선 통신 시스템에서 이동성 상태 정보 보고 방법 및 이를 지원하는 장치
WO2013162342A1 (ko) 무선 통신 시스템에서 셀 탐색을 위한 운영 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001237

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013823708

Country of ref document: EP