WO2014082214A1 - 干扰源识别方法及系统 - Google Patents

干扰源识别方法及系统 Download PDF

Info

Publication number
WO2014082214A1
WO2014082214A1 PCT/CN2012/085412 CN2012085412W WO2014082214A1 WO 2014082214 A1 WO2014082214 A1 WO 2014082214A1 CN 2012085412 W CN2012085412 W CN 2012085412W WO 2014082214 A1 WO2014082214 A1 WO 2014082214A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
frequency band
analyzed
intermodulation
analyzed frequency
Prior art date
Application number
PCT/CN2012/085412
Other languages
English (en)
French (fr)
Inventor
闫龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280002766.2A priority Critical patent/CN104221417B/zh
Priority to PCT/CN2012/085412 priority patent/WO2014082214A1/zh
Publication of WO2014082214A1 publication Critical patent/WO2014082214A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an interference source identification method and system. Background technique
  • the current industry's interference check program mainly analyzes whether there is interference by user complaints and KPI (Key Performance Index), combined with the level value of the uplink frequency sweep of the problem cell (only the level value is observed).
  • KPI Key Performance Index
  • the high-interference zone cell is searched by the metric indicator, and the interference source is analyzed by the on-site frequency sweep or the DummyBurst (Idle Burst Sequence) contrast interference band.
  • the above-mentioned interference checking scheme generally takes one week to complete a BSC (Base Station Controller) analysis. During this period, various data needs to be collected, and finally the interference source is determined after the interference source is determined.
  • BSC Base Station Controller
  • the existing solutions rely more on the experience of engineers. In the early interference analysis, there are often errors, which affect the late interference investigation, which will result in waste of resources.
  • the existing network statistical analysis only analyzes the frequency point data of the cell configuration, which constrains the judgment of some types of interference sources.
  • many technical proposals have continuously enhanced the ability of interference analysis, the identification of interference sources has not been upgraded to the key element of spectrum analysis. In the case of increasingly complex uplink interference sources, specific interference source identification rules are needed to solve the interference problems in the frequency domain and the time domain through qualitative, quantitative and automated high-efficiency analysis. Summary of the invention
  • aspects of embodiments of the present invention provide an interference source identification method and system, which can improve
  • an embodiment of the present invention provides an interference source identification method, including:
  • frequency point scan data in a frequency band analyzed by the cell, where the frequency point scan data includes at least one of idle time data, busy time data, and idle burst sequence DummyBurst data; scanning the frequency point The data is analyzed to obtain a power characteristic that the analyzed frequency band exhibits in at least one time period;
  • An interference source of the analyzed frequency band is identified based on a power characteristic exhibited by the analyzed frequency band for at least one time period.
  • the analyzing the frequency point scan data to obtain the power characteristics that the analyzed frequency band exhibits in at least one time period including:
  • the frequency point scan data is statistically distributed according to a normal distribution, and a probability distribution of each frequency in the analyzed frequency band in the time domain is determined according to a probability density function;
  • Determining a level value included in a certain probability interval by a linear prediction function obtaining a level of each frequency in the analyzed frequency band; a level corresponding to each frequency of the analyzed frequency band in at least one time period, A power characteristic that is exhibited for the analyzed frequency band for at least one time period.
  • the power feature that is displayed according to the analyzed frequency band in at least one time period, for the analyzed frequency band Interference sources are identified, including:
  • the power feature that is displayed according to the analyzed frequency band in at least one time period, for the analyzed frequency band Interference sources are identified, including:
  • the power characteristics of the idle time data and the busy hour data, and the interference mean value of the frequency corresponding to the intermodulation product at idle time and the interference average value at the busy time are calculated;
  • the analyzed frequency band satisfies the first intermodulation interference if the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value at the busy time is greater than the set second intermodulation interference threshold. a condition; if the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value at the time of busy is less than or equal to the set second intermodulation interference threshold, determining that the analyzed frequency band does not exist Adjust interference
  • the correlation is greater than the set first correlation threshold, determining that the analyzed frequency band satisfies a second condition of intermodulation interference; if the correlation is less than or equal to the set first correlation threshold, then Determining that there is no intermodulation interference in the analyzed frequency band;
  • the analyzed frequency band satisfies the first condition and the second condition of the intermodulation interference, further determining whether the intermodulation product falls on the operating frequency configured for the analyzed frequency band; if yes, determining that the analyzed There is intermodulation interference in the frequency band; if not, it is determined that there is potential intermodulation interference in the analyzed frequency band.
  • the power feature that is displayed according to the analyzed frequency band in at least one time period, for the analyzed frequency band Interference sources are identified, including:
  • the slope is greater than a set slope threshold, and the intercept is greater than a set intercept threshold, determining that the analyzed frequency band satisfies a first condition of CDMA interference; otherwise, determining that the analyzed frequency band is not There is CDMA interference;
  • the correlation is greater than a set second correlation threshold, and the difference between the interference standard deviation of the CDMA interference simulation model and the interference standard deviation of the cell busy time level data is less than the set first Intersecting the standard deviation threshold, determining that the analyzed frequency band satisfies a second condition of CDMA interference; otherwise determining that the analyzed frequency band does not have CDMA interference; When the analyzed frequency band satisfies the first condition and the second condition of the CDMA interference, it is determined that the analyzed frequency band has CDMA interference; otherwise, it is determined that the analyzed frequency band does not have CDMA interference.
  • the power feature that is displayed according to the analyzed frequency band in at least one time period, for the analyzed frequency band Interference sources are identified, including:
  • the electrical average value is greater than a set interference level threshold, and the interference standard deviation is greater than a set second interference standard deviation threshold, determining that the analyzed frequency band has suspected broadband interference; otherwise determining the There is no broadband interference in the analyzed frequency bands;
  • the time domain difference correlation is further calculated according to the busy time data, the idle time data, and the DummyBurst data of the analyzed frequency band;
  • Determining whether the time domain difference correlation is greater than a set third correlation threshold if yes, determining that the suspected broadband interference is intermodulation interference; if not, determining the suspected broadband interference to include broadband interference and mutual Interfering composite interference.
  • the power feature that is displayed according to the analyzed frequency band in at least one time period, for the analyzed frequency band Interference sources are identified, including:
  • the suspected broadband interference is determined to be intermodulation interference
  • the suspected broadband interference is a composite interference including wideband interference and intermodulation interference, further calculating a difference between the busy hour data and the idle time data of the analyzed frequency band;
  • the power feature that is displayed according to the analyzed frequency band in at least one time period, for the analyzed frequency band Interference sources are identified, including:
  • the isolation of the adjacent adjacent signal power and the noise floor is less than the set isolation threshold, and the bottom noise standard deviation is less than the set bottom noise standard deviation threshold, determining that the analyzed frequency band has a suspect frequency Point interference; otherwise it is determined that there is no frequency interference in the analyzed frequency band;
  • the time domain difference correlation is further calculated according to the busy time data, the idle time data, and the DummyBurst data of the analyzed frequency band;
  • Determining whether the correlation of the time domain difference is greater than a set fifth correlation threshold if yes, determining that the suspected frequency interference is intermodulation interference; if not, determining that the suspected frequency interference is including a frequency point Composite interference with interference and intermodulation interference.
  • the power feature that is displayed according to the analyzed frequency band in at least one time period, for the analyzed frequency band Interference sources are identified, including:
  • the isolation of the adjacent adjacent signal power and the noise floor is less than the set isolation threshold, and the bottom noise standard deviation is less than the set bottom noise standard deviation threshold, determining that the analyzed frequency band has a suspect frequency Point interference; otherwise it is determined that there is no frequency interference in the analyzed frequency band;
  • the suspected frequency interference is determined to be intermodulation interference.
  • an embodiment of the present invention provides an interference source identification system, including: a data collection unit, configured to acquire, from the base station side, frequency point scan data in a frequency band analyzed by the cell, where the frequency point scan data includes at least one of idle time data, busy time data, and idle burst sequence DummyBurst data;
  • a data processing unit configured to analyze the frequency point scan data to obtain a power characteristic that the analyzed frequency band exhibits in at least one time period
  • an interference analysis unit configured to identify an interference source of the analyzed frequency band according to a power characteristic that the analyzed frequency band exhibits in at least one time period.
  • the data processing unit includes:
  • a probability density statistical subunit configured to perform statistical distribution on the frequency point scan data according to a normal distribution, and determine a probability distribution of each frequency in the analyzed frequency band in a time domain according to a probability density function; and, a power analysis subunit And determining, by using a linear prediction function, a level value included in a certain probability interval, obtaining a level of each frequency in the analyzed frequency band; each of the analyzed frequency bands corresponding to at least one time period Level, the power characteristic exhibited by the analyzed frequency band for at least one period of time.
  • the interference analysis unit includes:
  • an intermodulation emulation subunit configured to obtain frequency configuration information of the analyzed frequency band from a base station controller BSC side, according to a working frequency configured for the analyzed frequency band and a frequency corresponding to the intermodulation interference simulation model;
  • a first mean calculating subunit configured to calculate, according to the idle time data of the analyzed frequency band and the power characteristics of the DummyBurst data, an interference mean value of the frequency corresponding to the intermodulation product in idle time and an interference mean value in a Dummy Burst period; with, a first intermodulation interference judging subunit, configured to determine, if the interference mean value of the frequency corresponding to the intermodulation product in idle time and the interference mean value in the DummyBurst period is greater than a set first intermodulation interference threshold, Intermodulation interference exists in the analyzed frequency band; if the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference average value during the DummyBurst period is less than or equal to the set first intermodulation interference threshold, then determining There is no intermodulation interference in the analyzed frequency bands.
  • the interference analysis unit includes:
  • an intermodulation emulation subunit configured to obtain frequency configuration information of the analyzed frequency band from a base station controller BSC side, according to a working frequency configured for the analyzed frequency band and a frequency corresponding to the intermodulation interference simulation model;
  • a second mean calculating subunit configured to calculate, according to the idle time data of the analyzed frequency band and the power characteristics of the busy hour data, an interference mean value of the frequency corresponding to the intermodulation product during idle time and an average value of interference during busy hours ;
  • a second intermodulation interference determining subunit configured to determine, if the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value at the busy time is greater than the set second intermodulation interference threshold, The analyzed frequency band satisfies a first condition of intermodulation interference; if the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value at the busy time is less than or equal to the set second intermodulation interference threshold, Determining that there is no intermodulation interference in the analyzed frequency band;
  • a first moving average calculation subunit configured to: when determining that the analyzed frequency band satisfies a first condition of intermodulation interference, further calculate and simulate according to the intermodulation product simulation model and busy hour data of the analyzed frequency band Moving average and 'time moving average;
  • a first correlation calculation subunit configured to calculate the simulated moving average and the busy time moving flat Correlation between means
  • a third intermodulation interference determining subunit configured to determine, if the correlation is greater than a set first correlation threshold, a second condition that the analyzed frequency band satisfies intermodulation interference; if the correlation is less than or Equal to the set first correlation threshold, determining that there is no intermodulation interference in the analyzed frequency band; and, a fourth intermodulation interference determination subunit, configured to: when the analyzed frequency band satisfies intermodulation interference a condition and a second condition, further determining whether the intermodulation product falls on an operating frequency configured for the analyzed frequency band; if yes, determining that the analyzed frequency band has intermodulation interference; if not, determining There is potential intermodulation interference in the frequency bands being analyzed.
  • the interference analysis unit includes:
  • a slope intercept calculation subunit configured to calculate a slope and an intercept according to a power characteristic of the busy hour data of the analyzed frequency band
  • a first CDMA interference determining subunit configured to determine that the analyzed frequency band satisfies a first condition of CDMA interference if the slope is greater than a set slope threshold, and the intercept is greater than a set intercept threshold; Otherwise, it is determined that there is no CDMA interference in the analyzed frequency band;
  • a second correlation calculation subunit configured to: when determining that the analyzed frequency band satisfies a first condition of CDMA interference, further calculate a cell busy time according to the busy time data of the analyzed frequency band and a CDMA interference simulation model The correlation between the flat data and the CDMA interference simulation model and the interference standard deviation; the second CDMA interference determination subunit, configured to: if the correlation is greater than a set second correlation threshold, and the CDMA interference simulation model Determining that the difference between the interference standard deviation and the interference standard deviation of the cell busy hour level data is less than a set first interference standard deviation threshold, determining that the analyzed frequency band satisfies a second condition of CDMA interference; There is no CDMA interference sum in the analyzed frequency band, a third CDMA interference determining subunit, configured to determine that the analyzed frequency band has CDMA interference when the analyzed frequency band satisfies a first condition and a second condition of CDMA interference; otherwise, determining that the analyzed frequency band is not There is CDMA interference.
  • the interference analysis unit includes:
  • An interval calculation subunit configured to divide, according to a power characteristic of the busy time data of the analyzed frequency band, a plurality of analysis intervals according to the number of frequencies configured for the analyzed frequency band, and calculate the multiple analysis intervals The electrical average of the frequencies within and the standard deviation of the interference;
  • a suspected broadband interference analysis subunit configured to determine that the analyzed frequency band exists if the electrical average value is greater than a set interference level threshold, and the interference standard deviation is greater than a set second interference standard deviation threshold Suspected broadband interference; otherwise it is determined that there is no broadband interference in the analyzed frequency band;
  • a third correlation calculation subunit configured to calculate a time domain difference correlation according to the busy time data, the idle time data, and the DummyBurst data of the analyzed frequency band when determining that the analyzed frequency band has suspected broadband interference Sex;
  • a first broadband interference determining sub-unit configured to determine whether the time domain difference correlation is greater than a set third correlation threshold; if yes, determining that the suspected broadband interference is intermodulation interference; if not, determining The suspected broadband interference is a composite interference including wideband interference and intermodulation interference.
  • the interference analysis unit includes:
  • An interval calculation subunit configured to divide, according to a power characteristic of the busy time data of the analyzed frequency band, a plurality of analysis intervals according to the number of frequencies configured for the analyzed frequency band, and calculate the multiple analysis intervals The electrical average of the frequencies within and the standard deviation of the interference;
  • Suspected broadband interference analysis subunit if the electrical average is greater than the set interference level gate Limiting, and the interference standard deviation is greater than a set second interference standard deviation threshold, determining that the analyzed frequency band has suspected broadband interference; otherwise determining that the analyzed frequency band does not have broadband interference;
  • a second moving average calculation sub-unit configured to calculate a busy hour moving average and a simulation according to the busy time data and the intermodulation interference simulation model of the analyzed frequency band when determining that the analyzed frequency band has suspected broadband interference Moving average
  • a fourth correlation calculation subunit configured to calculate a frequency domain correlation of the busy hour moving average and the simulated moving average
  • a third mean calculating sub-unit configured to calculate a mean value of the idle time data corresponding to the frequency of the intermodulation product and an average value of the busy hour data, and a mean difference between the two;
  • a second wideband interference determining subunit configured to determine the suspected broadband interference if the frequency domain correlation is greater than a set fourth correlation threshold, and the mean difference is greater than a set first mean difference threshold a composite interference including broadband interference and intermodulation interference; otherwise, determining the suspected broadband interference as intermodulation interference;
  • a difference calculation subunit configured to further calculate a difference between the busy hour data and the idle time data of the analyzed frequency band when determining that the suspected wideband interference is a composite interference including wideband interference and intermodulation interference ,
  • a third broadband interference determining sub-unit configured to determine whether the difference is less than a set difference threshold, and if yes, determining that the wideband interference in the composite interference is source blocker interference; if not, determining The wideband interference in the composite interference is the repeater interference.
  • the interference analysis unit includes:
  • a frequency interference calculation subunit configured to calculate, according to a power characteristic of the busy time data of the analyzed frequency band, an isolation degree between the power of the adjacent frequency signal and the noise floor, and calculate a standard deviation of the noise floor
  • a suspected frequency interference analysis subunit configured to: if the isolation of the adjacent adjacent signal power and the noise floor is less than a set isolation threshold, and the bottom noise standard deviation is less than a set bottom noise standard deviation threshold, Determining that there is suspected frequency interference in the analyzed frequency band; otherwise, determining that the analyzed frequency band does not have frequency interference;
  • a fifth correlation calculation subunit configured to calculate a time domain difference according to the busy time data, the idle time data, and the DummyBurst data of the analyzed frequency band when determining that the analyzed frequency band has suspected frequency interference Relevance;
  • a first frequency interference determining subunit configured to determine whether the time domain difference correlation is greater than a set fifth correlation threshold; if yes, determining that the suspected frequency interference is intermodulation interference; if not, The suspected frequency interference is determined to be a composite interference including frequency interference and intermodulation interference.
  • the interference analysis unit includes:
  • a frequency interference calculation subunit configured to calculate, according to a power characteristic of the busy time data of the analyzed frequency band, an isolation degree between the power of the adjacent frequency signal and the noise floor, and calculate a standard deviation of the noise floor;
  • a suspected frequency interference analysis subunit configured to: if the isolation of the adjacent adjacent signal power and the noise floor is less than a set isolation threshold, and the bottom noise standard deviation is less than a set bottom noise standard deviation threshold, Determining that there is suspected frequency interference in the analyzed frequency band; otherwise, determining that the analyzed frequency band does not have frequency interference;
  • a third moving average calculation sub-unit configured to: when determining that the analyzed frequency band has suspected frequency interference, further calculate a busy hour moving average according to the busy time data and the intermodulation interference simulation model of the analyzed frequency band Number and simulation moving average;
  • a sixth correlation calculation subunit configured to calculate a frequency domain correlation of the busy hour moving average and the simulated moving average; a fourth mean calculating subunit, configured to calculate, according to the idle time data and the busy hour data of the analyzed frequency band, a power average value of the frequency corresponding to the intermodulation product at idle time and a power average value at the time of busy, and both And a second frequency interference determination subunit, configured to determine if the frequency domain correlation is greater than a set sixth correlation threshold, and the mean difference is greater than a set second mean difference threshold
  • the suspected frequency point interference is a composite type interference including frequency point interference and intermodulation interference; otherwise, the suspected frequency point interference is determined as intermodulation interference.
  • the interference source identification method and system provided by the embodiments of the present invention can effectively analyze the interference sources existing in the GSM network by using the analysis method combining the frequency domain and the time domain, and can effectively distinguish the composite interference sources, and the interference sources.
  • the degree of primary and secondary analysis The analysis efficiency of the interference source of the GSM network is improved, and the effective positioning solves the interference problem in the GSM network.
  • FIG. 1 is a schematic flow chart of an interference source identification method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of cumulative distribution statistics of a certain frequency in a time domain according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of statistics of probability distribution of a certain frequency in a time domain according to an embodiment of the present invention
  • FIG. 4 is an implementation of the present invention
  • FIG. 5 is a schematic diagram showing the simulation result of the intermodulation products in the embodiment of the present invention
  • FIG. 6 is a schematic diagram showing the frequency domain presentation of the idle time interference in the embodiment of the present invention;
  • FIG. 8 is a schematic diagram of a CDMA interference simulation model in an embodiment of the present invention
  • FIG. 9 is a schematic diagram showing a level frequency domain presentation of data collected in a CDMA interference analysis according to an embodiment of the present invention
  • FIG. 10 is a broadband representation in an embodiment of the present invention.
  • Schematic diagram of intermodulation interference of features 1 is a schematic diagram of interference characteristics of an active blocker in an embodiment of the present invention
  • 3 is a schematic diagram of intermodulation features of the interference characteristics of the frequency selective repeater in the embodiment of the present invention.
  • L4 is a schematic diagram of the frequency domain characteristics of the frequency selective repeater in the embodiment of the present invention. It is a schematic structural diagram of an interference source identification system in the embodiment of the present invention;
  • L6 is a schematic structural diagram of a data processing unit in the embodiment of the present invention.
  • L7 is a schematic structural diagram of a first embodiment of the interference analysis unit provided by the present invention
  • 8 is a schematic structural diagram of a second embodiment of the interference analysis unit provided by the present invention
  • L is a schematic structural diagram of a third embodiment of the interference analysis unit provided by the present invention
  • FIG. 20 is a schematic structural diagram of a fourth embodiment of the interference analysis unit provided by the present invention
  • FIG. 21 is a diagram of an interference analysis unit provided by the present invention.
  • FIG. 22 is a schematic structural view of a sixth embodiment of the interference analysis unit provided by the present invention
  • FIG. 23 is a schematic structural view of a seventh embodiment of the interference analysis unit provided by the present invention;
  • FIG. 1 it is a schematic flowchart of an interference source identification method according to an embodiment of the present invention.
  • An embodiment of the present invention provides an interference source identification method, which specifically includes the following steps: Sl: Acquire, from a base station side, frequency point scan data in a frequency band in which a cell is analyzed.
  • the method for identifying an interference source according to an embodiment of the present invention is based on frequency point scan data acquired from a base station side ("frequency point" is a number for a fixed frequency), and combined with an interference source simulation model for frequency domain correlation analysis to identify an interference source.
  • the frequency point scan data includes at least one of idle time data, busy time data, and DummyBurst data, as follows:
  • the idle time data refers to the signal power data of the frequency points collected during the idle time period; the idle traffic is generally low, and the intermodulation interference is the weakest.
  • the busy hour data refers to the signal power data of the frequency points collected during the busy time transmission period; when busy, due to the large traffic volume, generally accompanied by a variety of interference characteristics, the use of busy time data for interference source analysis is more representative.
  • the DummyBurst data refers to the signal power data of the frequency points collected during the DummyBurst transmission period; the function of the idle burst sequence DummyBurst is: transmitting a fixed pulse signal on the idle time slot to simulate high traffic, and observing the network through the artificially raised system noise floor. Intermodulation products present in the process.
  • Step S2 specifically includes: calculating, according to a normal distribution statistics, the frequency point scan data, determining a probability distribution of each frequency in the analyzed frequency band in a time domain according to a probability density function; determining a certain probability interval by using a linear prediction function a level value included, obtaining a level of each frequency in the analyzed frequency band; a level corresponding to each frequency of the analyzed frequency band in at least one time period, wherein the analyzed frequency band is at least The power characteristics exhibited during a time period.
  • the probability density function is: »
  • the level value corresponding to each frequency in the frequency band of the analysis can be obtained.
  • Figure 2 it is a schematic diagram of the cumulative distribution statistics of a certain frequency in the time domain; as shown in Figure 3, it is in the time domain for a certain frequency.
  • the level corresponding to the frequency is a schematic diagram of the cumulative distribution statistics of a certain frequency in the time domain.
  • FIG. 4 it is a representation of the frequency band analyzed by the cell in the entire frequency domain, wherein the power of each frequency is the level value corresponding to the calculation by the probability density function.
  • the embodiment of the present invention can convert the three-dimensional statistical data in the time domain and the frequency domain into frequency-domain two-dimensional data for frequency domain analysis, thereby improving the efficiency of analyzing the interference source.
  • the interference source in the analyzed frequency band includes at least intermodulation interference, code division multiple access CDMA interference, broadband repeater interference, active blocker interference, and frequency interference.
  • intermodulation interference code division multiple access CDMA interference
  • broadband repeater interference broadband repeater interference
  • active blocker interference active blocker interference
  • different signals when passing through a nonlinear component, produce a new frequency signal, i.e., an intermodulation product, which forms intermodulation interference if the intermodulation product falls on the operating frequency.
  • the analyzed frequency band is a frequency band in which DummyBurst data can be collected, based on the idle time data of the analyzed frequency band and the DummyBurst data, it is determined whether there is intermodulation interference in the analyzed frequency band.
  • the interference source of the analyzed frequency band including steps S101 to S103, as follows:
  • F M1 ⁇ F M7 is the intermediate variable of the intermodulation product simulation; in the intermodulation product simulation process, the intermediate variable is substituted into the frequency f ⁇ fm by multi-layer nested traversal calculation method, and the intermodulation product IM7 is obtained; IM7 Is a collection of IM7 ..IM7K, including all IM3, IM5, IM7 order intermodulation of frequency, f 2 , f 3 ... f m .
  • each intermodulation product corresponds to a frequency.
  • Each frequency will fall into multiple units X ( W ) due to traversal, and the actual sampled level is in dBm, so the intermodulation products are needed.
  • the unit of the simulation result is converted to X l X ⁇ lOlogX ⁇
  • the intermodulation products are filtered.
  • Band Up 890MHz ⁇ 915 MHz
  • all intermodulation products are filtered in this frequency band, and all intermodulation products falling in this frequency band can be obtained.
  • FIG. 5 it is a schematic diagram of an embodiment of the intermodulation product simulation result of the analyzed frequency band, and the intermodulation products falling on the analyzed frequency band can be analyzed according to the set of intermodulation products.
  • the frequency corresponding to the intermodulation product refers to the frequency at which the intermodulation product falls into the GSM receiving band after being simulated by the intermodulation product.
  • FIG. 6 it is a schematic diagram of the frequency domain presentation of idle time interference in the embodiment of the present invention.
  • a n represents the power of leisure frequency F n;
  • B n represents the frequency of the power DummyBurst period of F n.
  • the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value during the Dummy Burst period is greater than the set first intermodulation interference threshold, determine that the analyzed frequency band has intermodulation interference; Determining that the analyzed frequency band does not have intermodulation interference if the difference between the interference mean of the frequency corresponding to the intermodulation product and the interference mean during the Dummy Burst period is less than or equal to the set first intermodulation interference threshold.
  • D d is the set first intermodulation interference threshold, and D d can be set according to experience in practical applications.
  • D > D d it is determined whether the intermodulation product falls on the operating frequency configured for the analyzed frequency band; if yes, it is determined that there is intermodulation interference in the analyzed frequency band; if not, the analyzed frequency band is determined There is potential intermodulation interference.
  • the analyzed frequency band is a cell that cannot collect DummyBurst data, based on the idle time data and the busy hour data of the analyzed frequency band, the frequency domain correlation and the time domain difference analysis are performed. Perform intermodulation interference analysis.
  • step S101 is similar to the foregoing step S101. , will not be described in detail here.
  • S202 Calculate, according to the idle time data of the analyzed frequency band and the power characteristics of the busy hour data, an interference mean value of the frequency corresponding to the intermodulation product during idle time and an interference mean value during busy time.
  • a n represents the idle time frequency F ⁇ power
  • C n represents the busy time frequency F ⁇ power
  • the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value at the busy time is greater than the set second intermodulation interference threshold, determine that the analyzed frequency band satisfies the intermodulation interference. a first condition; if the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value at the time of busy is less than or equal to the set second intermodulation interference threshold, determining that the analyzed frequency band is not There is intermodulation interference.
  • E > E d the first condition of intermodulation interference is satisfied; when DE d , it is determined that there is no intermodulation interference in the analyzed frequency band; wherein E d is the set second intermodulation interference threshold, and E d According to the actual application Experience in setting.
  • the correlation is greater than the set first correlation threshold, determine that the analyzed frequency band satisfies a second condition of intermodulation interference; if the correlation is less than or equal to the set first correlation threshold And determining that there is no intermodulation interference in the analyzed frequency band.
  • p d is a set first correlation threshold.
  • p x , y > p d the second condition of intermodulation interference is satisfied; when P X , y P d , it is determined that there is no intermodulation interference in the analyzed frequency band.
  • CDMA (Code Division Multiple Access) interference refers to: CDMA equipment downlink due to insufficient out-of-band suppression, causing signal leakage to the GSM (Global System of Mobile communication) frequency band, resulting in GSM noise floor rise Affects communication interference. Among them, if the E-GSM band is analyzed, full-band analysis of the E-GSM band is required. If the P-GSM band is analyzed, only the 1 ⁇ 35 frequency in the P-GSM band needs to be analyzed.
  • the embodiment of the present invention identifies the CDMA interference using the busy time data in combination with the CDMA interference algorithm based on the frequency point scan data of the analyzed frequency band acquired from the base station side.
  • the interference source of the analyzed frequency band including steps S301 to S305, as follows:
  • slope a and intercept b are calculated as follows:
  • A- 2 , b Y- a X.
  • X is a certain frequency in the analyzed frequency band and y is the power corresponding to the frequency in the collected busy hour data.
  • the slope is greater than a set threshold threshold, and the intercept is greater than a set intercept threshold, determine that the analyzed frequency band satisfies a first condition of CDMA interference; otherwise, determine the analyzed There is no CDMA interference in the frequency band.
  • the set slope threshold is a d and the intercept threshold is b d ; if &> , J- b > b d Ht , the first condition of CDMA interference is satisfied; otherwise, it is determined that there is no CDMA interference in the analyzed frequency band.
  • FIG. 8 it is a schematic diagram of a CDMA interference simulation model in the embodiment of the present invention
  • FIG. 9 is a schematic diagram of level-frequency domain presentation of data collected in CDMA interference analysis according to an embodiment of the present invention.
  • the correlation between the cell busy time level data and the interference model is p x , y , the interference standard deviation of the CDMA interference simulation model is S A , and the interference standard deviation of the cell busy time level data is S B .
  • the calculation method is as follows:
  • the X in the correlation calculation formula represents the cell busy hour level data
  • y represents the level data of the CDMA interference simulation model
  • the S A formula the power of a certain frequency in the CDMA interference simulation model is expressed, and the X in the S A formula represents the average power of all frequencies in the CDMA interference simulation model, and the N in the S A formula represents The total number of frequencies in the CDMA interference simulation model.
  • the S B formula represents the power of a certain frequency in the collected busy hour data.
  • the X in the S B formula represents the average power of all frequencies in the collected busy hour data, and the N in the S B formula represents the collected busy. The total number of frequencies in the data.
  • a first interference standard deviation threshold determining that the analyzed frequency band satisfies the second condition of CDMA interference Otherwise; it is determined that there is no CDMA interference in the analyzed frequency band.
  • the set second correlation threshold is p d
  • the first interference standard deviation threshold is AS
  • the second condition of CDMA interference is satisfied; otherwise It is determined that there is no CDMA interference in the analyzed frequency band.
  • the uplink frequency band of the network is often interfered with (the whole or part of the frequency band instead of the individual frequency), and the embodiment of the present invention is based on the frequency point scanning data acquired from the base station side, for different time periods.
  • the power characteristics corresponding to the frequencies are analyzed, and it can be known whether there is broadband device or blocker interference in the analyzed frequency band.
  • the broadband repeater and active blocker interference analysis is performed based on the analyzed busy hour data, idle time data, and DummyBurst data acquired from the base station side.
  • S401 Determine, according to a power characteristic of the busy time data of the analyzed frequency band, a plurality of analysis intervals according to the number of frequencies configured for the analyzed frequency band, and calculate a frequency of the frequency in the multiple analysis intervals.
  • the mean and interference standard deviation The mean and interference standard deviation.
  • the interference analysis granularity is determined according to the number of frequencies configured for the analyzed frequency band, and the analyzed frequency band is divided into multiple analysis intervals. Among them, the finer the particle size of the interference analysis particle size, the finer the analysis. For example, for example, there are 124 frequencies configured for the frequency band being analyzed, and the interference analysis granularity When set to 4, the analyzed frequency band is divided into 4 analysis intervals, and each 31 frequencies is an analysis interval.
  • the electric average value of the frequency in a certain analysis interval is expressed, X represents the electric average value of the frequencies in all the analysis intervals, and N represents the number of analysis intervals of the analyzed frequency band.
  • time domain difference correlation is calculated as follows:
  • ⁇ 4 represents the level of a certain frequency in the busy hour data of the analyzed frequency band, and represents the level of one of the idle time data of the analyzed frequency band
  • F D Nurse ⁇ indicates the level of a certain frequency in the DummyBurst data of the analyzed frequency band, indicating the level difference of the certain frequency at the busy time and the idle time
  • indicating that the certain frequency is in the DummyBurst period and idle Level difference value
  • N represents the total number of frequencies of the analyzed frequency band configuration
  • represents the analyzed frequency band The average of the level differences of all frequencies in the busy and idle periods; represents the average of the level differences of the Dummy Burst period and the idle time for all frequencies in the analyzed frequency band.
  • represents the time domain difference correlation, and is a function in the correlation calculation formula.
  • the correlation calculation formula is a common technique in the art and will not be described in detail herein.
  • S404 Determine whether the time domain difference correlation is greater than a set third correlation threshold; if yes, determine that the suspected broadband interference is intermodulation interference; if not, determine the suspected broadband interference to include broadband interference Composite interference with intermodulation interference.
  • the third correlation threshold is 0.8
  • the suspected broadband interference in the analyzed frequency band is determined as intermodulation interference.
  • the suspected wideband interference in the analyzed frequency band is a composite interference including wideband interference and intermodulation interference.
  • FIG. 10 it is a schematic diagram of intermodulation interference exhibiting broadband characteristics, "Dummy Burst period and free time level difference” and “busy time and idle time level difference” appear to be correlated (here
  • the interference is a composite interference with both broadband interference and intermodulation interference.
  • the broadband repeater and the active blocker are performed based on the busy time data and the idle time data of the analyzed frequency band. Interference analysis.
  • the interference source of the analyzed frequency band including steps S501 ⁇ S508, as follows:
  • the electrical average value is greater than a set interference level threshold, and the interference standard deviation is greater than a set second interference standard deviation threshold, determining that the analyzed frequency band has suspected broadband interference; Otherwise, it is determined that there is no broadband interference in the analyzed frequency band.
  • Steps S501 ⁇ S502 are similar to the above steps S401 ⁇ S402, and will not be described in detail herein.
  • the analyzed frequency band has suspected broadband interference
  • the number represents the level of one of the M frequencies in the busy hour data
  • Z represents the sum of the level values of the M frequencies.
  • the suspected broadband interference is determined to include broadband interference and intermodulation interference. Compound interference; otherwise, the suspected broadband interference is determined to be intermodulation interference.
  • the suspected broadband interference is a composite interference including broadband interference and intermodulation interference
  • the difference threshold is X.
  • ⁇ X determine the broadband interference existing in the analyzed frequency band as the source.
  • Blocker interference determines the broadband interference existing in the analyzed frequency band as the source.
  • vx it is determined that the broadband interference existing in the analyzed frequency band is the repeater interference.
  • FIG. 11 it is a schematic diagram of the interference characteristics of the active blocker. In the difference analysis, the difference of the partial regions is less than X, and it is determined that the active blocker continues to interfere.
  • Figure 12 it is a schematic diagram of the interference characteristics of a broadband repeater. Fourth, frequency interference analysis
  • Frequency selective repeater interference is the most common interference in frequency interference.
  • the frequency selective repeater is used to effectively amplify individual frequency points, but often causes frequency interference due to improper gain setting.
  • the frequency interference analysis is performed based on the busy time data, the idle time data, and the DummyBurst data of the analyzed frequency band acquired from the base station side.
  • the collected busy hour data includes both level data of each frequency in the analyzed frequency band and interference data of other frequencies.
  • Fn For example, only the electrical average of F 2 and F 3 , the electrical average of F 3 , F 4 and F 5 , and the electrical average of F n _ 2 , F n ⁇ and F n are greater than the level threshold.
  • the frequencies F 2 , F 4 and F n _ 1 are then screened out. For convenience of description, this embodiment will remove other frequencies than the selected frequencies, which are referred to as noise floor frequencies.
  • N represents the total number of noise floor frequencies in the collected busy hour data.
  • step S603 The method for calculating the correlation of the time domain difference in step S603 is similar to step S403 described above, and will not be described in detail herein.
  • the fifth correlation threshold is 0.8
  • the frequency selective repeater interference analysis is performed based on the busy time data of the analyzed frequency band and the intermodulation interference simulation model.
  • the interference source of the analyzed frequency band including steps S701 to S706, as follows:
  • Steps S701 to S702 are similar to the above steps S601 to S602, and will not be described in detail herein.
  • step S703 The method for calculating the busy hour moving average and the simulated moving average in step S703 is the same as the above step S503, and will not be described in detail herein.
  • FIG. 13 it is an intermodulation feature of the interference characteristics of the frequency selective repeater in the embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the frequency domain characteristics of the frequency selective repeater in the embodiment of the present invention.
  • the interference source identification method provided by the embodiment of the present invention can effectively analyze the interference source existing in the GSM network by using the analysis method combining the frequency domain and the time domain, and can effectively distinguish the composite interference source, and the main source of the interference source. Analysis is done to the next degree. The analysis efficiency of the interference source of the GSM network is improved, and the effective positioning is solved to solve the problem in the GSM network.
  • the embodiment of the invention further provides an interference source identification system, which can implement the flow of the interference source identification method in the above embodiment.
  • FIG. 15 is a schematic structural diagram of an interference source identification system according to an embodiment of the present invention.
  • the data collection unit 11 is configured to acquire, from the base station side, frequency point scan data in the analyzed frequency band, where the frequency point scan data includes at least one of idle time data, busy time data, and idle burst sequence DummyBurst data;
  • the data processing unit 12 is configured to analyze the frequency point scan data to obtain a power characteristic that the analyzed frequency band exhibits in at least one time period;
  • the interference analysis unit 13 is configured to identify the interference source of the analyzed frequency band according to the power characteristics exhibited by the analyzed frequency band in at least one time period.
  • FIG. 16 is a schematic structural diagram of a data processing unit according to an embodiment of the present invention.
  • a data processing unit 12 in the embodiment of the present invention includes:
  • the interference analysis unit 13 includes:
  • the intermodulation simulation subunit 101 is configured to acquire frequency configuration information of the analyzed frequency band from a base station controller BSC side, according to an operating frequency configured for the analyzed frequency band and a frequency corresponding to the intermodulation interference simulation mode product;
  • a first mean calculating sub-unit 102 configured to calculate, according to the idle time data of the analyzed frequency band and the power characteristics of the DummyBurst data, an interference mean value of the frequency corresponding to the intermodulation product during idle time and an interference mean value during a Dummy Burst period ; with,
  • a first intermodulation interference determining sub-unit 103 configured to determine, if the interference mean value of the frequency corresponding to the intermodulation product is at a free time and the interference mean value in the DummyBurst period is greater than a set first intermodulation interference threshold, Intermodulation interference exists in the analyzed frequency band; if the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value during the DummyBurst period is less than or equal to the set first intermodulation interference threshold, then There is no intermodulation interference in the analyzed frequency bands.
  • the interference analysis unit 13 includes:
  • the intermodulation simulation subunit 201 is configured to acquire frequency configuration information of the analyzed frequency band from a base station controller BSC side, according to an operating frequency configured for the analyzed frequency band and an intermodulation interference simulation mode. The frequency corresponding to the product;
  • the second mean calculating sub-unit 202 is configured to calculate, according to the idle time data of the analyzed frequency band and the power characteristics of the busy hour data, an interference mean value of the frequency corresponding to the intermodulation product during idle time and interference during busy time Mean
  • a second intermodulation interference determining sub-unit 203 configured to determine, if the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value at the time of busy is greater than the set second intermodulation interference threshold, The analyzed frequency band satisfies a first condition of intermodulation interference; if the difference between the interference mean value of the frequency corresponding to the intermodulation product and the interference mean value at busy time is less than or equal to the set second intermodulation interference threshold And determining that there is no intermodulation interference in the analyzed frequency band;
  • the first moving average calculation sub-unit 204 is configured to, when determining that the analyzed frequency band satisfies the first condition of intermodulation interference, further calculate, according to the intermodulation product simulation model and the busy hour data of the analyzed frequency band, Simulated moving average and busy hour moving average;
  • a first correlation calculation sub-unit 205 configured to calculate a correlation between the simulated moving average and the busy hour moving average
  • a third intermodulation interference determining sub-unit 206 configured to determine, if the correlation is greater than the set first correlation threshold, the second condition that the analyzed frequency band satisfies intermodulation interference; if the correlation is less than Or equal to the set first correlation threshold, determining that there is no intermodulation interference in the analyzed frequency band;
  • the fourth intermodulation interference determining subunit 207 is configured to further determine, when the analyzed frequency band satisfies the first condition and the second condition of the intermodulation interference, whether the intermodulation product falls in the configured frequency band. At the operating frequency; if yes, determining that there is intermodulation interference in the analyzed frequency band; if not, determining that there is potential intermodulation interference in the analyzed frequency band.
  • FIG. 19 it is a schematic structural diagram of a third embodiment of an interference analysis unit provided by the present invention.
  • the interference analysis unit 13 includes:
  • a slope intercept calculation sub-unit 301 configured to calculate a slope and an intercept according to a power characteristic of the busy hour data of the analyzed frequency band
  • a first CDMA interference determining sub-unit 302 configured to determine that the analyzed frequency band satisfies a first condition of CDMA interference if the slope is greater than a set slope threshold, and the intercept is greater than a set intercept threshold Otherwise, it is determined that there is no CDMA interference in the analyzed frequency band;
  • a second correlation calculation sub-unit 303 configured to: when determining that the analyzed frequency band satisfies a first condition of CDMA interference, further calculate a cell busy time according to the busy time data of the analyzed frequency band and a CDMA interference simulation model The correlation between the level data and the CDMA interference simulation model and the interference standard difference;
  • a second CDMA interference determining sub-unit 304 configured to: if the correlation is greater than a set second correlation threshold, and an interference standard deviation of the CDMA interference simulation model and an interference standard deviation of the cell busy hour level data If the difference between the two is less than the set first interference standard deviation threshold, determining that the analyzed frequency band satisfies the second condition of CDMA interference; otherwise, determining that the analyzed frequency band does not have CDMA interference;
  • the interference analysis unit 13 includes: The interval calculation subunit 401 is configured to divide, according to the power characteristics of the busy time data of the analyzed frequency band, a plurality of analysis intervals according to the number of frequencies configured for the analyzed frequency band, and calculate the multiple analysis The electrical average of the frequencies within the interval and the interference standard deviation;
  • the suspected broadband interference analysis sub-unit 402 is configured to determine the analyzed frequency band if the electrical average value is greater than a set interference level threshold, and the interference standard deviation is greater than a set second interference standard deviation threshold There is suspected broadband interference; otherwise it is determined that there is no broadband interference in the analyzed frequency band;
  • a third correlation calculation sub-unit 403, configured to calculate a time domain difference value according to the busy time data, the idle time data, and the DummyBurst data of the analyzed frequency band when determining that the analyzed frequency band has suspected broadband interference Relevance;
  • the first broadband interference judging subunit 404 is configured to determine whether the time domain difference correlation is greater than a set third correlation threshold; if yes, determining that the suspected broadband interference is intermodulation interference; if not, determining The suspected broadband interference is a composite interference including wideband interference and intermodulation interference.
  • FIG. 21 it is a schematic structural diagram of a fifth embodiment of the interference analysis unit provided by the present invention.
  • the interference analysis unit 15 includes:
  • the interval calculation sub-unit 501 is configured to divide, according to the power feature of the busy time data of the analyzed frequency band, a plurality of analysis intervals according to the number of frequencies configured for the analyzed frequency band, and calculate the multiple analysis The electrical average of the frequencies within the interval and the interference standard deviation;
  • the suspected broadband interference analysis sub-unit 502 is configured to determine the analyzed frequency band if the electrical average value is greater than a set interference level threshold, and the interference standard deviation is greater than a set second interference standard deviation threshold There is suspected broadband interference; otherwise it is determined that there is no broadband interference in the analyzed frequency band;
  • a second moving average calculation sub-unit 503 configured to: when determining that the analyzed frequency band has suspected broadband interference, further calculate busy according to the busy time data of the analyzed frequency band and the intermodulation interference simulation model Time moving average and simulated moving average;
  • a fourth correlation calculation sub-unit 504 configured to calculate a frequency domain correlation between the busy hour moving average and the simulated moving average
  • a third mean calculating sub-unit 505 configured to calculate an average of idle time data corresponding to the frequency of the intermodulation products and an average value of the busy hour data, and a mean difference between the two;
  • a second broadband interference determining sub-unit 506 configured to determine the suspected broadband interference if the frequency domain correlation is greater than a set fourth correlation threshold, and the mean difference is greater than a set first mean difference threshold It is a composite interference including broadband interference and intermodulation interference; otherwise, the suspected broadband interference is determined to be intermodulation interference;
  • the difference calculation sub-unit 507 is configured to further calculate a difference between the busy hour data and the idle time data of the analyzed frequency band when determining that the suspected broadband interference is a composite interference including wideband interference and intermodulation interference; with,
  • the third broadband interference determining sub-unit 508 is configured to determine whether the difference is less than a set difference threshold, and if yes, determine that the broadband interference in the composite interference is source blocker interference; if not, determine The broadband interference in the composite interference is a repeater interference.
  • FIG. 22 it is a schematic structural diagram of a sixth embodiment of the interference analysis unit provided by the present invention.
  • the interference analysis unit 13 includes:
  • a frequency interference calculation subunit 601 configured to calculate, according to a power characteristic of the busy time data of the analyzed frequency band, an isolation degree between the power of the adjacent frequency signal and the noise floor, and calculate a standard deviation of the noise floor;
  • the suspected frequency interference analysis sub-unit 602 is configured to: if the isolation of the adjacent adjacent signal power and the noise floor is less than a set isolation threshold, and the bottom noise standard deviation is less than a set bottom noise standard deviation threshold, Determining that there is suspected frequency interference in the analyzed frequency band; otherwise determining that the analyzed frequency band does not exist Frequency interference
  • the fifth correlation calculation sub-unit 603 is configured to calculate a time domain difference according to the busy time data, the idle time data, and the DummyBurst data of the analyzed frequency band when determining that the analyzed frequency band has suspected frequency interference. Value correlation; and,
  • the first frequency interference determining sub-unit 604 is configured to determine whether the time domain difference correlation is greater than a set fifth correlation threshold; if yes, determining that the suspect frequency interference is intermodulation interference; if not, Then, the suspected frequency interference is determined to be a composite interference including frequency interference and intermodulation interference.
  • FIG. 23 it is a schematic structural diagram of a seventh embodiment of the interference analysis unit provided by the present invention.
  • the interference analysis unit includes:
  • the frequency interference calculation sub-unit 701 is configured to calculate, according to a power characteristic of the busy time data of the analyzed frequency band, an isolation degree between the power of the adjacent frequency signal and the noise floor, and calculate a standard deviation of the noise floor;
  • the suspected frequency interference analysis sub-unit 702 is configured to: if the isolation of the adjacent adjacent signal power and the noise floor is less than a set isolation threshold, and the bottom noise standard deviation is less than a set bottom noise standard deviation threshold, Determining that there is suspected frequency interference in the analyzed frequency band; otherwise, determining that the analyzed frequency band does not have frequency interference;
  • a third moving average calculation sub-unit 703, configured to: when determining that the analyzed frequency band has suspected frequency interference, further calculate a busy hour movement according to the busy time data of the analyzed frequency band and the intermodulation interference simulation model Average and simulated moving average;
  • a sixth correlation calculation sub-unit 704 configured to calculate a frequency domain correlation of the busy time moving average and the simulated moving average
  • the fourth mean calculating subunit 705 is configured to calculate, according to the idle time data and the busy hour data of the analyzed frequency band, a power average value of the frequency corresponding to the intermodulation product during idle time and a power average value during busy time, and two Mean difference; and,
  • the second frequency interference determining subunit 706 is configured to determine the suspect frequency if the frequency domain correlation is greater than a set sixth correlation threshold, and the average difference is greater than a set second mean difference threshold.
  • the point interference is a composite type interference including frequency point interference and intermodulation interference; otherwise, the suspected frequency point interference is determined as intermodulation interference.
  • the interference source identification system provided by the embodiment of the present invention can effectively analyze the interference source existing in the GSM network by using the analysis method combining the frequency domain and the time domain, and can effectively distinguish the composite interference source, and the main source of the interference source. Analysis is done to the next degree. The analysis efficiency of the interference source of the GSM network is improved, and the effective positioning solves the interference problem in the GSM network.
  • an embodiment of the present invention provides a computer system, including an input device 241, an output device 242, a memory 243, and a processor 244.
  • the processor 244 may perform the following steps: acquiring, from a base station side, a frequency band in which the cell is analyzed.
  • Frequency point scan data includes at least one of idle time data, busy time data, and idle burst sequence DummyBurst data; analyzing the frequency point scan data to obtain the analyzed frequency band a power characteristic exhibited in at least one time period; identifying an interference source of the analyzed frequency band according to a power characteristic that the analyzed frequency band exhibits in at least one time period.
  • the processor 244 performs a further detailed technical solution of the program, which may be, but is not limited to, the detailed description of the embodiments shown in FIG. 2 to FIG. 14 above.
  • the memory 243 is used to store a program that the processor 244 needs to execute. Further, the memory 243 can also store the result generated by the processor 244 in the calculation process.
  • the input device 241, the output device 242, the memory 243, and the processor 244 may also be connected by a bus.
  • the bus can be ISA (Industry Standard Architecture) Bus, PCI (Peripheral Component Interconnect) bus or EISA (Extended Industry Standard Architecture) bus.
  • the bus may be one or more physical lines, and when it is a plurality of physical lines, it may be divided into an address bus, a data bus, a control bus, and the like.
  • a computer storage medium having a computer program stored therein, the computer program being capable of executing the steps in the embodiments shown in Figures 2 through 14 above.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as the cells may or may not be physical. Units can be located in one place, or they can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solution of the embodiment. Further, in the drawings of the device embodiments provided by the present invention, the connection relationship between the modules indicates that there is a communication connection therebetween, and specifically, one or more communication buses or signal lines can be realized. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, dedicated hardware, dedicated CPU, dedicated memory, dedicated memory, Special components and so on.
  • functions performed by computer programs can be easily implemented with the corresponding hardware.
  • the specific hardware structure used to implement the same function can be various, such as analog circuits, digital circuits, or dedicated circuits. Circuits, etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory ), random access memory (RAM), disk or optical disk, etc., including instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform various embodiments of the present invention Said method.
  • a computer device which may be a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种干扰源识别方法,包括:从基站侧获取小区被分析的频段的频点扫描数据,所述频点扫描数据包括闲时数据、忙时数据和空闲突发脉冲序列(DummyBurst)数据中的至少一项(S1);对所述频点扫描数据进行分析,获得所述被分析的频段在至少一个时段表现出的功率特征(S2);根据所述被分析的频段在至少一个时段表现出的功率特征,对所述被分析的频段的干扰源进行识别(S3)。本发明还公开了一种干扰源识别系统。本发明实施例能够提高GSM网络的干扰源的分析效率,有效定位解决GSM网络中的干扰问题。

Description

干扰源识别方法及系统 技术领域
本发明涉及通信技术领域, 尤其涉及一种干扰源识别方法及系统。 背景技术
在通信网络中, 各种干扰源的识别一直是网络优化工作的重点。 在网络优 化的过程中, 需要通过一系列的指标分析及经验来识别干扰源类型, 并与对应 的干扰解决方案联系起来。
当前业界的干扰排查方案主要通过用户投诉和 KPI( Key Performance Index, 关键绩效指标), 结合问题小区的上行频点扫描的电平值(仅观察电平值大小) 来分析是否存在干扰。 首先通过话统指标来查找高干扰带小区, 再对疑似干扰 的小区通过现场扫频或发送 DummyBurst (空闲突发脉沖序列 )对比干扰带等方 法, 来分析其干扰源。
上述的干扰排查方案, 完成一个 BSC ( Base Station Controller,基站控制器) 分析一般需要一周时间, 在这期间需要采集各种数据, 最后在确定干扰源之后 再去现场排除干扰故障。 然而, 现有的方案较多的依赖于工程师的经验, 在前 期的干扰分析中往往存在误差, 并影响后期的干扰排查, 从而会造成资源的浪 费。 而且, 现有的网络统计分析仅通过小区配置的频点数据进行分析, 这样就 束缚了一些干扰源种类的判断。 虽然不少技术的提出都不断地增强了干扰分析 的能力, 但是对于干扰源的识别仍然没有提升到频谱分析这一关键的要素上。 在上行干扰源越来越复杂的情况下, 就需要特定的干扰源识别规则, 通过定性、 定量以及自动化的高效分析, 来解决频域和时域上的干扰问题。 发明内容
本发明实施例的多个方面提供了一种干扰源识别方法及系统, 能够提高
GSM网络的干尤源的分析效率, 有效定位解决 GSM网络中的干尤问题。
第一方面, 本发明实施例提供了一种干扰源识别方法, 包括:
从基站侧获取小区被分析的频段内的频点扫描数据, 所述频点扫描数据包 括闲时数据、 忙时数据和空闲突发脉沖序列 DummyBurst数据中的至少一项; 对所述频点扫描数据进行分析, 获得所述被分析的频段在至少一个时段表 现出的功率特征;
根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析 的频段的干扰源进行识别。
结合第一方面, 在第一种实现方式下, 所述对所述频点扫描数据进行分析, 获得所述被分析的频段在至少一个时段表现出的功率特征, 包括:
对所述频点扫描数据按照正态分布统计, 根据概率密度函数确定所述被分 析的频段中每个频率在时域上的概率分布;
通过线性预测函数确定一定概率区间所包含的电平值, 获得所述被分析的 频段中每个频率的电平; 所述被分析的频段中每个频率在至少一个时段上对应 的电平, 为所述被分析的频段在至少一个时段表现出的功率特征。
结合第一方面或第一方面的第一种实现方式, 在第二种实现方式下, 所述 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频 段的干扰源进行识别, 包括:
从基站控制器 BSC侧获取所述被分析的频段的频率配置信息, 根据为所述 被分析的频段配置的工作频率以及互调干扰仿真模型进行互调产物仿真, 获得 根据所述被分析的频段的闲时数据和 DummyBurst数据的功率特征, 计算 所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst时段的干扰均值; 如果所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst 时段的 干扰均值之差大于设定的第一互调干扰门限, 则确定所述被分析的频段存在互 调干扰; 如果所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst 时 段的干扰均值之差小于或等于设定的第一互调干扰门限, 则确定所述被分析的 频段不存在互调干扰。
结合第一方面或第一方面的第一种实现方式, 在第三种实现方式下, 所述 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频 段的干扰源进行识别, 包括:
从基站控制器 BSC侧获取所述被分析的频段的频率配置信息, 根据为所述 被分析的频段配置的工作频率以及互调干扰仿真模型进行互调产物仿真, 获得 根据所述被分析的频段的闲时数据和忙时数据的功率特征, 计算所述互调 产物对应的频率在闲时的干扰均值和在忙时的干扰均值;
如果所述互调产物对应的频率在闲时的干扰均值和在忙时的干扰均值之差 大于设定的第二互调干扰门限, 则确定所述被分析的频段满足互调干扰的第一 条件; 如果所述互调产物对应的频率在闲时的干扰均值和在忙时的干扰均值之 差小于或等于设定的第二互调干扰门限, 则确定所述被分析的频段不存在互调 干扰;
当确定所述被分析的频段满足互调干扰的第一条件时, 进一步根据所述被 分析的频段的互调产物仿真模型和忙时数据, 计算仿真移动平均数和忙时移动 平均数;
计算所述仿真移动平均数和所述忙时移动平均数之间的相关性;
如果所述相关性大于设定的第一相关性门限, 则确定所述被分析的频段满 足互调干扰的第二条件; 如果所述相关性小于或等于设定的第一相关性门限, 则确定所述被分析的频段不存在互调干扰;
当所述被分析的频段满足互调干扰的第一条件和第二条件时, 进一步判断 互调产物是否落在为所述被分析的频段配置的工作频率上; 若是, 则确定所述 被分析的频段存在互调干扰; 若否, 则确定所述被分析的频段存在潜在互调干 扰。
结合第一方面或第一方面的第一种实现方式, 在第四种实现方式下, 所述 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频 段的干扰源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征计算斜率和截距;
如果所述斜率大于设定的斜率门限, 且所述截距大于设定的截距门限, 则 确定所述被分析的频段满足 CDMA干扰的第一条件; 否则, 确定所述被分析的 频段不存在 CDMA干扰;
当确定所述被分析的频段满足 CDMA干扰的第一条件时, 进一步根据所述 被分析的频段的忙时数据和 CDMA干扰仿真模型, 计算小区忙时电平数据与所 述 CDMA干扰仿真模型的相关性及干扰标准差;
如果所述相关性大于设定的第二相关性门限, 且所述 CDMA干扰仿真模型 的干扰标准差和所述小区忙时电平数据的干扰标准差两者的差值小于设定的第 一干扰标准差门限, 则确定所述被分析的频段满足 CDMA干扰的第二条件; 否 则确定所述被分析的频段不存在 CDMA干扰; 当所述被分析的频段满足 CDMA干扰的第一条件和第二条件时, 确定所述 被分析的频段存在 CDMA干扰; 否则确定所述被分析的频段不存在 CDMA干 扰。
结合第一方面或第一方面的第一种实现方式, 在第五种实现方式下, 所述 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频 段的干扰源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征, 按照为所述被分析的频段 配置的频率的个数划分出多个分析区间, 计算所述多个分析区间内的频率的电 平均值和干扰标准差;
如果所述电平均值大于设定的干扰电平门限, 且所述干扰标准差大于设定 的第二干扰标准差门限, 则确定所述被分析的频段存在疑似宽带干扰; 否则确 定所述被分析的频段不存在宽带干扰;
当确定所述被分析的频段存在疑似宽带干扰时, 进一步根据所述被分析的 频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性;
判断所述时域差值相关性是否大于设定的第三相关性门限; 若是, 则确定 所述疑似宽带干扰为互调干扰; 若否, 则确定所述疑似宽带干扰为包括宽带干 扰和互调干扰的复合型干扰。
结合第一方面或第一方面的第一种实现方式, 在第六种实现方式下, 所述 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频 段的干扰源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征, 按照为所述被分析的频段 配置的频率的个数划分出多个分析区间, 计算所述多个分析区间内的频率的电 平均值和干扰标准差; 如果所述电平均值大于设定的干扰电平门限, 且所述干扰标准差大于设定 的第二干扰标准差门限, 则确定所述被分析的频段存在疑似宽带干扰; 否则确 定所述被分析的频段不存在宽带干扰;
当确定所述被分析的频段存在疑似宽带干扰时, 进一步根据被分析的频段 的忙时数据和互调干扰仿真模型, 计算忙时移动平均数和仿真移动平均数; 计算所述忙时移动平均数和所述仿真移动平均数的频域相关性;
计算互调产物频率对应的闲时数据的均值和忙时数据的均值, 以及两者的 均值差;
如果所述频域相关性大于设定的第四相关性门限, 且所述均值差大于设定 的第一均值差门限, 则确定所述疑似宽带干扰为包括宽带干扰和互调干扰的复 合型干扰; 否则确定所述疑似宽带干扰为互调干扰;
当确定所述疑似宽带干扰为包括宽带干扰和互调干扰的复合型干扰时, 进 一步计算所述被分析的频段的忙时数据与闲时数据的差值;
判断所述差值是否小于设定的差值门限, 若是, 则确定所述复合型干扰中 的宽带干扰为源阻断器干扰; 若否, 则确定所述复合型干扰中的宽带干扰为直 放站干扰。
结合第一方面或第一方面的第一种实现方式, 在第七种实现方式下, 所述 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频 段的干扰源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功率和底 噪的隔离度, 以及计算底噪标准差;
如果所述同邻频信号功率和底噪的隔离度小于设定的隔离度门限, 且所述 底噪标准差小于设定的底噪标准差门限, 则确定所述被分析的频段存在疑似频 点干扰; 否则确定所述被分析的频段不存在频点干扰;
当确定所述被分析的频段存在疑似频点干扰时, 进一步根据所述被分析的 频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性;
判断所述时域差值相关性是否大于设定的第五相关性门限; 若是, 则确定 所述疑似频点干扰为互调干扰; 若否, 则确定所述疑似频点干扰为包括频点干 扰和互调干扰的复合型干扰。
结合第一方面或第一方面的第一种实现方式, 在第八种实现方式下, 所述 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频 段的干扰源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功率和底 噪的隔离度, 以及计算底噪标准差;
如果所述同邻频信号功率和底噪的隔离度小于设定的隔离度门限, 且所述 底噪标准差小于设定的底噪标准差门限, 则确定所述被分析的频段存在疑似频 点干扰; 否则确定所述被分析的频段不存在频点干扰;
当确定所述被分析的频段存在疑似频点干扰时, 进一步根据所述被分析的 频段的忙时数据和互调干扰仿真模型, 计算忙时移动平均数和仿真移动平均数; 计算所述忙时移动平均数和所述仿真移动平均数的频域相关性;
根据所述被分析的频段的闲时数据和忙时数据, 计算互调产物对应的频率 在闲时的功率均值和在忙时的功率均值, 以及两者的均值差;
如果所述频域相关性大于设定的第六相关性门限, 且所述均值差大于设定 的第二均值差门限, 则确定所述疑似频点干扰为包括频点干扰和互调干扰的复 合型干扰; 否则确定所述疑似频点干扰为互调干扰。
第二方面, 本发明实施例提供了一种干扰源识别系统, 包括: 数据采集单元, 用于从基站侧获取小区被分析的频段内的频点扫描数据, 所述频点扫描数据包括闲时数据、 忙时数据和空闲突发脉沖序列 DummyBurst 数据中的至少一项;
数据处理单元, 用于对所述频点扫描数据进行分析, 获得所述被分析的频 段在至少一个时段表现出的功率特征; 和,
干扰分析单元, 用于根据所述被分析的频段在至少一个时段表现出的功率 特征, 对所述被分析的频段的干扰源进行识别。
结合第二方面, 在第一种实现方式下, 所述数据处理单元包括:
概率密度统计子单元, 用于对所述频点扫描数据按照正态分布统计, 根据 概率密度函数确定所述被分析的频段中每个频率在时域上的概率分布; 和, 功率分析子单元, 用于通过线性预测函数确定一定概率区间所包含的电平 值, 获得所述被分析的频段中每个频率的电平; 所述被分析的频段中每个频率 在至少一个时段上对应的电平, 为所述被分析的频段在至少一个时段表现出的 功率特征。
结合第二方面或第二方面的第一种实现方式, 在第二种实现方式下, 所述 干扰分析单元包括:
互调仿真子单元, 用于从基站控制器 BSC侧获取所述被分析的频段的频率 配置信息, 根据为所述被分析的频段配置的工作频率以及互调干扰仿真模型进 对应的频率;
第一均值计算子单元, 用于根据所述被分析的频段的闲时数据和 DummyBurst数据的功率特征,计算所述互调产物对应的频率在闲时的干扰均值 和在 DummyBurst时段的干扰均值; 和, 第一互调干扰判断子单元, 用于如果所述互调产物对应的频率在闲时的干 扰均值和在 DummyBurst 时段的干扰均值之差大于设定的第一互调干扰门限, 则确定所述被分析的频段存在互调干扰; 如果所述互调产物对应的频率在闲时 的干扰均值和在 DummyBurst 时段的干扰均值之差小于或等于设定的第一互调 干扰门限, 则确定所述被分析的频段不存在互调干扰。
结合第二方面或第二方面的第一种实现方式, 在第三种实现方式下, 所述 干扰分析单元包括:
互调仿真子单元, 用于从基站控制器 BSC侧获取所述被分析的频段的频率 配置信息, 根据为所述被分析的频段配置的工作频率以及互调干扰仿真模型进 对应的频率;
第二均值计算子单元, 用于根据所述被分析的频段的闲时数据和忙时数据 的功率特征, 计算所述互调产物对应的频率在闲时的干扰均值和在忙时的干扰 均值;
第二互调干扰判断子单元, 用于如果所述互调产物对应的频率在闲时的干 扰均值和在忙时的干扰均值之差大于设定的第二互调干扰门限, 则确定所述被 分析的频段满足互调干扰的第一条件; 如果所述互调产物对应的频率在闲时的 干扰均值和在忙时的干扰均值之差小于或等于设定的第二互调干扰门限, 则确 定所述被分析的频段不存在互调干扰;
第一移动平均数计算子单元, 用于当确定所述被分析的频段满足互调干扰 的第一条件时, 进一步根据所述被分析的频段的互调产物仿真模型和忙时数据, 计算仿真移动平均数和 ' 时移动平均数;
第一相关性计算子单元, 用于计算所述仿真移动平均数和所述忙时移动平 均数之间的相关性;
第三互调干扰判断子单元, 用于如果所述相关性大于设定的第一相关性门 限, 则确定所述被分析的频段满足互调干扰的第二条件; 如果所述相关性小于 或等于设定的第一相关性门限, 则确定所述被分析的频段不存在互调干扰; 和, 第四互调干扰判断子单元, 用于当所述被分析的频段满足互调干扰的第一 条件和第二条件时, 进一步判断互调产物是否落在为所述被分析的频段配置的 工作频率上; 若是, 则确定所述被分析的频段存在互调干扰; 若否, 则确定所 述被分析的频段存在潜在互调干扰。
结合第二方面或第二方面的第一种实现方式, 在第四种实现方式下, 所述 干扰分析单元包括:
斜率截距计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征 计算斜率和截距;
第一 CDMA干扰判断子单元, 用于如果所述斜率大于设定的斜率门限, 且 所述截距大于设定的截距门限, 则确定所述被分析的频段满足 CDMA干扰的第 一条件; 否则, 确定所述被分析的频段不存在 CDMA干扰;
第二相关性计算子单元, 用于当确定所述被分析的频段满足 CDMA干扰的 第一条件时,进一步根据所述被分析的频段的忙时数据和 CDMA干扰仿真模型, 计算小区忙时电平数据与所述 CDMA干扰仿真模型的相关性及干扰标准差; 第二 CDMA干扰判断子单元, 用于如果所述相关性大于设定的第二相关性 门限, 且所述 CDMA干扰仿真模型的干扰标准差和所述小区忙时电平数据的干 扰标准差两者的差值小于设定的第一干扰标准差门限, 则确定所述被分析的频 段满足 CDMA干扰的第二条件; 否则确定所述被分析的频段不存在 CDMA干 扰 和, 第三 CDMA干扰判断子单元, 用于当所述被分析的频段满足 CDMA干扰 的第一条件和第二条件时, 确定所述被分析的频段存在 CDMA干扰; 否则确定 所述被分析的频段不存在 CDMA干扰。
结合第二方面或第二方面的第一种实现方式, 在第五种实现方式下, 所述 干扰分析单元包括:
区间计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征, 按 照为所述被分析的频段配置的频率的个数划分出多个分析区间, 计算所述多个 分析区间内的频率的电平均值和干扰标准差;
疑似宽带干扰分析子单元, 用于如果所述电平均值大于设定的干扰电平门 限, 且所述干扰标准差大于设定的第二干扰标准差门限, 则确定所述被分析的 频段存在疑似宽带干扰; 否则确定所述被分析的频段不存在宽带干扰;
第三相关性计算子单元, 用于当确定所述被分析的频段存在疑似宽带干扰 时, 进一步根据所述被分析的频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性; 和,
第一宽带干扰判断子单元, 用于判断所述时域差值相关性是否大于设定的 第三相关性门限; 若是, 则确定所述疑似宽带干扰为互调干扰; 若否, 则确定 所述疑似宽带干扰为包括宽带干扰和互调干扰的复合型干扰。
结合第二方面或第二方面的第一种实现方式, 在第六种实现方式下, 所述 干扰分析单元包括:
区间计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征, 按 照为所述被分析的频段配置的频率的个数划分出多个分析区间, 计算所述多个 分析区间内的频率的电平均值和干扰标准差;
疑似宽带干扰分析子单元, 用于如果所述电平均值大于设定的干扰电平门 限, 且所述干扰标准差大于设定的第二干扰标准差门限, 则确定所述被分析的 频段存在疑似宽带干扰; 否则确定所述被分析的频段不存在宽带干扰;
第二移动平均数计算子单元, 用于当确定所述被分析的频段存在疑似宽带 干扰时, 进一步根据被分析的频段的忙时数据和互调干扰仿真模型, 计算忙时 移动平均数和仿真移动平均数;
第四相关性计算子单元, 用于计算所述忙时移动平均数和所述仿真移动平 均数的频域相关性;
第三均值计算子单元, 用于计算互调产物频率对应的闲时数据的均值和忙 时数据的均值, 以及两者的均值差;
第二宽带干扰判断子单元, 用于如果所述频域相关性大于设定的第四相关 性门限, 且所述均值差大于设定的第一均值差门限, 则确定所述疑似宽带干扰 为包括宽带干扰和互调干扰的复合型干扰; 否则确定所述疑似宽带干扰为互调 干扰;
差值计算子单元, 用于当确定所述疑似宽带干扰为包括宽带干扰和互调干 扰的复合型干扰时, 进一步计算所述被分析的频段的忙时数据与闲时数据的差 值^ 和,
第三宽带干扰判断子单元, 用于判断所述差值是否小于设定的差值门限, 若是, 则确定所述复合型干扰中的宽带干扰为源阻断器干扰; 若否, 则确定所 述复合型干扰中的宽带干扰为直放站干扰。
结合第二方面或第二方面的第一种实现方式, 在第七种实现方式下, 所述 干扰分析单元包括:
频点干扰计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功率和底噪的隔离度, 以及计算底噪标准差; 疑似频点干扰分析子单元, 用于如果所述同邻频信号功率和底噪的隔离度 小于设定的隔离度门限, 且所述底噪标准差小于设定的底噪标准差门限, 则确 定所述被分析的频段存在疑似频点干扰; 否则确定所述被分析的频段不存在频 点干扰;
第五相关性计算子单元, 用于当确定所述被分析的频段存在疑似频点干扰 时, 进一步根据所述被分析的频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性; 和,
第一频点干扰判断子单元, 用于判断所述时域差值相关性是否大于设定的 第五相关性门限; 若是, 则确定所述疑似频点干扰为互调干扰; 若否, 则确定 所述疑似频点干扰为包括频点干扰和互调干扰的复合型干扰。
结合第二方面或第二方面的第一种实现方式, 在第八种实现方式下, 所述 干扰分析单元包括:
频点干扰计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功率和底噪的隔离度, 以及计算底噪标准差;
疑似频点干扰分析子单元, 用于如果所述同邻频信号功率和底噪的隔离度 小于设定的隔离度门限, 且所述底噪标准差小于设定的底噪标准差门限, 则确 定所述被分析的频段存在疑似频点干扰; 否则确定所述被分析的频段不存在频 点干扰;
第三移动平均数计算子单元, 用于当确定所述被分析的频段存在疑似频点 干扰时, 进一步根据所述被分析的频段的忙时数据和互调干扰仿真模型, 计算 忙时移动平均数和仿真移动平均数;
第六相关性计算子单元, 用于计算所述忙时移动平均数和所述仿真移动平 均数的频域相关性; 第四均值计算子单元, 用于根据所述被分析的频段的闲时数据和忙时数据 , 计算互调产物对应的频率在闲时的功率均值和在忙时的功率均值, 以及两者的 均值差; 和, 第二频点干扰判断子单元, 用于如果所述频域相关性大于设定的第六相关 性门限, 且所述均值差大于设定的第二均值差门限, 则确定所述疑似频点干扰 为包括频点干扰和互调干扰的复合型干扰; 否则确定所述疑似频点干扰为互调 干扰。
本发明实施例提供的干扰源识别方法及系统, 利用频域与时域相结合的分 析方法, 能够有效分析 GSM网络中存在的干扰源, 同时能够对复合型干扰源能 够有效区分, 对干扰源的主次程度进行分析。 提高了 GSM网络的干扰源的分析 效率, 有效定位解决 GSM网络中的干扰问题。
附图说明 图 1是本发明实施例中一种干扰源识别方法的流程示意图;
图 2是本发明实施例中对某个频率在时域上累计分布统计的示意图; 图 3是本发明实施例中对某个频率在时域上概率分布统计的示意图; 图 4是本发明实施例中对被分析小区的频段在整个频域上的呈现的示意图; 图 5是本发明实施例中互调产物仿真结果的示意图; 图 6是本发明实施例中闲时干扰频域呈现的示意图;
图 8是本发明实施例中 CDMA干扰仿真模型的示意图; 图 9是本发明实施例中 CDMA干扰分析中所采集的数据的电平频域呈现的 示意图; 图 10是本发明实施例中呈现宽带特征的互调干扰的示意图; 1是本发明实施例中有源阻断器的干扰特征的示意图;
是本发明实施例中宽带直放站的干扰特征的示意图;
3是本发明实施例中表现为选频直放站干扰特征的互调特征的示意图
L4是本发明实施例中选频直放站干扰频域特征的示意图; 是本发明实施例中一种干扰源识别系统的结构示意图;
L6是本发明实施例中一种数据处理单元的结构示意图;
L7是本发明提供的干扰分析单元的第一实施例的结构示意图; 8是本发明提供的干扰分析单元的第二实施例的结构示意图;
L 9是本发明提供的干扰分析单元的第三实施例的结构示意图; 图 20是本发明提供的干扰分析单元的第四实施例的结构示意图; 图 21是本发明提供的干扰分析单元的第五实施例的结构示意图; 图 22是本发明提供的干扰分析单元的第六实施例的结构示意图; 图 23是本发明提供的干扰分析单元的第七实施例的结构示意图; 图 24是本发明实施例中一种计算机系统的结构示意图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 参见图 1 , 是本发明实施例中一种干扰源识别方法的流程示意图。
本发明实施例提供一种干扰源识别方法, 具体包括以下步骤: Sl、 从基站侧获取小区被分析的频段内的频点扫描数据。 本发明实施例提供的干扰源识别方法, 基于从基站侧获取的频点扫描数据 ( "频点" 是对固定频率的编号), 结合干扰源仿真模型作频域相关性分析, 识 别出干扰源。 其中, 所述频点扫描数据包括闲时数据、 忙时数据和 DummyBurst (空闲突发脉沖序列)数据中的至少一项, 具体如下:
闲时数据是指在闲时发射时段采集的频点的信号功率数据; 闲时一般话务 量较低, 此时互调干扰最弱。
忙时数据是指在忙时发射时段采集的频点的信号功率数据; 忙时由于话务 量较大, 一般伴随多种干扰特征, 使用忙时段数据进行干扰源分析较为有代表 性。
DummyBurst数据是指在 DummyBurst发射时段采集的频点的信号功率数 据; 空闲突发脉沖序列 DummyBurst 的功能是: 在闲时时隙上发射固定的脉沖 信号模拟高话务, 通过人为抬升系统底噪观察网络中存在的互调产物。
S2、 对所述频点扫描数据进行分析, 获得所述被分析的频段在至少一个时 段表现出的功率特征。
步骤 S2具体包括: 对所述频点扫描数据按照正态分布统计, 根据概率密度 函数确定所述被分析的频段中每个频率在时域上的概率分布; 通过线性预测函 数确定一定概率区间所包含的电平值, 获得所述被分析的频段中每个频率的电 平; 所述被分析的频段中每个频率在至少一个时段上对应的电平, 为所述被分 析的频段在至少一个时段表现出的功率特征。 其中, 概率密度函数为: »
Figure imgf000018_0001
本发明实施例根据概率密度函数对被分析的频段内的每个频率进行统计分 析之后, 即可得到本分析的频段内每个频率对应的电平值。 如图 2所示, 是对 某个频率在时域上累计分布统计的示意图; 如图 3 所示, 是对某个频率在时域 上概率分布统计的示意图; 结合图 2和图 3, 对某个频率在时域上概率密度进行 统计分析, 可以根据需要得到落入某一个概率区间的电平, 并将该概率区间的 电平作为所述频率对应的电平。
如图 4所示, 是对小区被分析的频段在整个频域上的呈现, 其中每个频率 的功率均是经过概率密度函数计算后所对应的电平值。
本发明实施例通过上述的数据分析处理后, 可将时域和频域上的三维统计 数据转化为电平频域二维数据进行频域分析, 提高分析干扰源的效率。
S3、 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被 分析的频段的干扰源进行识别。
本发明实施例提供的干扰源识别方法, 被分析的频段上的干扰源包括互调 干扰、 码分多址 CDMA干扰、 宽带直放站干扰、 有源阻断器干扰和频点干扰中 的至少一项。 下面结合图 5~图 14, 对各种干扰源的分析方法进行详细描述。
一、 互调干扰分析
在通信网络中, 不同信号在经过非线性元件时会产生新的频率的信号, 即 互调产物, 如果该互调产物落在工作频率上, 则形成互调干扰。
在一个可选的实施例中, 当被分析的频段是可以采集 DummyBurst数据的 频段时, 基于被分析的频段的闲时数据和 DummyBurst数据, 判断被分析的频 段是否存在互调干扰。
所述根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被 分析的频段的干扰源进行识别, 包括步骤 S101~S103, 如下:
S101、 从基站控制器 BSC侧获取所述被分析的频段的频率配置信息, 根据 为所述被分析的频段配置的工作频率以及互调干扰仿真模型进行互调产物仿 具体的, 根据被分析的频段的频率配置信息进行互调产物仿真的流程如下: 假设为被分析的频段配置的工作频率包括 、 f2、 f3...fm, m > l; 根据所述 工作频率进行互调产物仿真, 获得互调产物: IM7=FM1+ FJM2+ FJM3+ FJM4-FIM5- FlM6- FlM7。
其中, FM1~ FM7是互调产物仿真的中间变量; 在互调产物仿真过程中, 采 用多层嵌套遍历计算方法将中间变量代入频率 f^fm中,计算获得互调产物 IM7; IM7是 IM7 ..IM7K的集合, 包含频率 、 f2、 f3...fm的所有 IM3、 IM5、 IM7阶 互调。
对于任意互调产物有如下规则:
三阶互调产物 IM3频率展宽: 中心频率左右各 200KHz, 为信号带宽 3倍; 五阶互调产物 IM5频率展宽: 中心频率左右各 400KHz, 为信号带宽 5倍; 七阶互调产物 IM7频率展宽: 中心频率左右各 600KHz, 为信号带宽 7倍。 在进行互调产物仿真时, 每个互调产物都对应一个频率, 每一个频率由于 遍历都会落入多个单位 X ( W ), 而实际采样的电平单位为 dBm, 因此需要将互 调产物仿真结果的单位换算为 Xl X^lOlogX^
在获得互调产物后, 再对互调产物进行过滤。 以 P-GSM 为例, BandUp=890MHz~915 MHz, 以该频段对所有互调产物进行过滤, 可以得到所有 落在该频段内的互调产物。 如图 5 所示, 是被分析的频段的互调产物仿真结果 的一个实施例的示意图, 根据互调产物集合可分析出落在被分析的频段上的互 调产物。
本发明实施例根据产物仿真结果, 能够确定小区的互调产物所归属的所有 频率 F2、 F3...Fn, 获得互调产物对应的频率的集合 An= ( F^ F2、 F3...Fn ), n > 1 , 且 n m。 5102、 根据所述被分析的频段的闲时数据和 DummyBurst数据的功率特征, 计算所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst 时段的干扰 均值。 其中, 互调产物对应的频率是指通过互调产物仿真后, 互调产物所落到 GSM接收带内的频率。
如图 6所示, 是本发明实施例中闲时干扰频域呈现的示意图。 如图 7所示, 互调产物对应的频率在闲时的干扰均值为 A: Α = ^ηΑη ;
互调产物对应的频率在 DummyBurst时段的干扰均值为 B: B = ^ Bn 。 其中, An表示闲时频率 Fn的功率; Bn表示 DummyBurst时段频率 Fn的功率。
5103、 如果所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst 时段的干扰均值之差大于设定的第一互调干扰门限, 则确定所述被分析的频段 存在互调干扰; 如果所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst时段的干扰均值之差小于或等于设定的第一互调干扰门限,则确定 所述被分析的频段不存在互调干扰。
具体的, 假设互调产物对应的频率在闲时的干扰均值和在 DummyBurst 时 段的干扰均值之差为 D, D=A-B。
当 D > Dd时, 确定被分析的频段存在互调干扰; 当 E Dd时, 确定被分析 的频段不存在互调干扰。 其中, Dd是设定的第一互调干扰门限, 且 Dd可根据实 际应用中的经验来设定。
进一步的, 当 D > Dd时, 判断互调产物是否落在为被分析的频段配置的工 作频率上; 若是, 则确定被分析的频段存在互调干扰; 若否, 则确定被分析的 频段存在潜在互调干扰。 在另一个可选的实施例中, 当被分析的频段是不可以采集 DummyBurst数 据的小区时, 基于被分析的频段的闲时数据和忙时数据, 通过频域相关性和时 域差值分析进行互调干扰分析。
所述根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被 分析的频段的干扰源进行识别, 包括步骤 S201~S207, 如下:
5201、 从基站控制器 BSC侧获取所述被分析的频段的频率配置信息, 根据 为所述被分析的频段配置的工作频率以及互调干扰仿真模型进行互调产物仿 步骤 S201与上述步骤 S101相似, 在此不再详细说明。
5202、 根据所述被分析的频段的闲时数据和忙时数据的功率特征, 计算所 述互调产物对应的频率在闲时的干扰均值和在忙时的干扰均值。
互调产物对应的频率在闲时的干扰均值为 A: Α = ^η Αη ;
互调产物对应的频率在忙时的干扰均值为 C: =^X1 n „。
其中, An表示闲时频率 F 々功率; Cn表示忙时频率 F 々功率。
5203、 如果所述互调产物对应的频率在闲时的干扰均值和在忙时的干扰均 值之差大于设定的第二互调干扰门限, 则确定所述被分析的频段满足互调干扰 的第一条件; 如果所述互调产物对应的频率在闲时的干扰均值和在忙时的干扰 均值之差小于或等于设定的第二互调干扰门限, 则确定所述被分析的频段不存 在互调干扰。
互调产物对应的频率在闲时的干扰均值和在忙时的干扰均值之差为 E: E=A-C。
当 E > Ed时, 满足互调干扰的第一条件; 当 D Ed时, 确定被分析的频段 不存在互调干扰; 其中, Ed是设定的第二互调干扰门限, 且 Ed可根据实际应用 中的经验来设定。
5204、 当确定所述被分析的频段满足互调干扰的第一条件时, 进一步根据 所述被分析的频段的互调产物仿真模型和忙时数据, 计算仿真移动平均数和忙 时移动平均数。
仿真移动平均数表示为 , = ∑ 。 具体的, 根据被分析的频段的频率 配置信息进行互调产物仿真, 获得互调产物对应的频率和电平的集合后, 假设 i=10, 则表示在被分析的频段的频率中, 从低频到高频的方向(或者从低频到高 频的方向), 每 10个频率分为一组, 表示互调干扰仿真模型中每 10个频率的 移动平均数。
忙时移动平均数表示为 F2 , F2 = Fj 。 获得被分析的忙时数据的频率和 电平的集合后, 假设 j=10, 则表示在被分析的频段的频率中, 从低频到高频的 方向 (或者从低频到高频的方向), 每 10个频率分为一组, 表示忙时数据中 每 10个频率的移动平均数。
5205、 计算所述仿真移动平均数和所述忙时移动平均数之间的相关性。 其中, 两类平均数之间的相关性为: Px = C0Y(Fl F2 。—和。—是相关性计算 σ σ 公式中的函数, 相关性计算公式是本领域的常用技术, 在此不进行详细描述。
5206、 如果所述相关性大于设定的第一相关性门限, 则确定所述被分析的 频段满足互调干扰的第二条件; 如果所述相关性小于或等于设定的第一相关性 门限, 则确定所述被分析的频段不存在互调干扰。
具体的, p d为设定的第一相关性门限。 当 p x,y > p d时, 满足互调干扰的第 二条件; 当 P X,y P d时, 确定被分析的频段不存在互调干扰。
5207、 当所述被分析的频段满足互调干扰的第一条件和第二条件时, 进一 步判断互调产物是否落在为所述被分析的频段配置的工作频率上; 若是, 则确 定所述被分析的频段存在互调干扰; 若否, 则确定所述被分析的频段存在潜在 互调干扰。 二、 CDMA干扰分析
CDMA ( Code Division Multiple Access, 码分多址)干扰是指: CDMA设备 下行由于带外抑制不够而造成信号泄露至 GSM ( Global System of Mobile communication, 全球移动通讯系统)频段, 形成 GSM底噪抬升而影响通信的干 扰。 其中, 如果分析 E-GSM频段, 则需要对 E-GSM频段进行全频段分析。 如 果分析 P-GSM频段, 则只需要分析 P-GSM频段中的 1~35频点。
本发明实施例基于从基站侧获取的被分析的频段的频点扫描数据, 使用忙 时数据结合 CDMA干扰算法识别 CDMA干扰。
所述根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被 分析的频段的干扰源进行识别, 包括步骤 S301~ S305, 如下:
S301、 根据被分析的频段的忙时数据的功率特征计算斜率和截距。
具体的, 斜率 a和截距 b的计算方法如下:
_ "∑^ - (∑ (∑ .
a— 2 , b = Y- a X。
其中, X为被分析的频段中的某一频率, y是采集的忙时数据中所述频率对 应的功率。
S302、 如果所述斜率大于设定的斜率门限, 且所述截距大于设定的截距门 限, 则确定所述被分析的频段满足 CDMA干扰的第一条件; 否则, 确定所述被 分析的频段不存在 CDMA干扰。 假设, 设定的斜率门限为 ad, 截距门限为 bd; 若& > , J- b > bd Ht , 满足 CDMA干扰的第一条件; 否则判定被分析的频段不存在 CDMA干扰。
5303、 当确定所述被分析的频段满足 CDMA干扰的第一条件时, 进一步根 据所述被分析的频段的忙时数据和 CDMA干扰仿真模型, 计算小区忙时电平数 据与所述 CDMA干扰模型的相关性及干扰标准差。
如图 8所示, 是本发明实施例中 CDMA干扰仿真模型的示意图; 如图 9所 示, 是本发明实施例中 CDMA干扰分析中所采集的数据的电平频域呈现的示意 图。
小区忙时电平数据与干扰模型的相关性为 p x,y , CDMA 干扰仿真模型的干 扰标准差为 SA, 小区忙时电平数据的干扰标准差为 SB, 计算方法如下:
Figure imgf000025_0001
其中, 相关系计算公式中的 X表示小区忙时电平数据, y表示 CDMA干扰 仿真模型的电平数据; (^和 是相关性计算公式中的函数, 相关性计算公式是 本领域的常用技术, 在此不进行详细描述。 SA公式中的 表示 CDMA干扰仿 真模型中某一频率的功率, SA公式中的 X表示 CDMA干扰仿真模型中所有频率 的平均功率, SA公式中的 N表示所述 CDMA干扰仿真模型中的频率的总数量。
SB公式中的 表示所采集的忙时数据中某一频率的功率, SB公式中的 X表示所 采集的忙时数据中所有频率的平均功率, SB公式中的 N表示所采集的忙时数据 中的频率的总数量。
5304、 如果所述相关性大于设定的第二相关性门限, 且所述 CDMA干扰仿 真模型的干扰标准差和所述小区忙时电平数据的干扰标准差两者的差值小于设 定的第一干扰标准差门限, 则确定所述被分析的频段满足 CDMA干扰的第二条 件; 否则确定所述被分析的频段不存在 CDMA干扰。
假设设定的第二相关性门限为 p d, 第一干扰标准差门限为 A S; 当 p x,y > p d时, 若 SA-SB < A S, 满足 CDMA干扰的第二条件; 否则判定被分析的频段不 存在 CDMA干扰。
S305、 当所述被分析的频段满足 CDMA干扰的第一条件和第二条件时, 确 定所述被分析的频段存在 CDMA 干扰; 否则确定所述被分析的频段不存在 CDMA干扰。 三、 宽带直放站及有源阻断器干扰分析
由于宽带直放站及信号阻断器的出现,经常造成网络的上行频段被干扰(整 个或部分频段而非个别频率), 本发明实施例基于从基站侧获取的频点扫描数 据, 对不同时段(闲时、 忙时、 DummyBurst时段)的频率对应的功率特征进行 分析, 可以得知被分析的频段是否存在宽带设备或阻断器干扰。
在一个可选的实施方式中, 基于从基站侧获取的被分析的忙时数据、 闲时 数据和 DummyBurst数据, 进行宽带直放站及有源阻断器干扰分析。
所述根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被 分析的频段的干扰源进行识别, 包括步骤 S401~S404, 如下:
S401、 根据所述被分析的频段的忙时数据的功率特征, 按照为所述被分析 的频段配置的频率的个数划分出多个分析区间, 计算所述多个分析区间内的频 率的电平均值和干扰标准差。
具体的, 按照为所述被分析的频段配置的频率的个数确定干扰分析粒度, 将所述被分析的频段划分为多个分析区间。 其中, 干扰分析粒度的粒度越细, 则分析得越细。 例如, 例如为被分析的频段配置有 124个频率, 干扰分析粒度 设置为 4, 则被分析的频段被划分为 4个分析区间, 每 31个频率为一个分析区 间。
划分出分析区间后,计算所有分析区间中的频率的电平均值 X , X = X 。 其中, N表示所述被分析的频段的分析区间的数量, 表示每个分析区间中频 率的电平均值。 根据分析区间内的电平值, 计算其干扰标准差 S , S 其中
Figure imgf000027_0001
公式中的 表示某一分析区间中频率的电平均值, X表示所有分析区间中的频 率的电平均值, N表示所述被分析的频段的分析区间的数量。
5402、 如果所述电平均值大于设定的干扰电平门限, 且所述干扰标准差大 于设定的第二干扰标准差门限, 则确定所述被分析的频段存在疑似宽带干扰; 否则确定所述被分析的频段不存在宽带干扰。
5403、 当确定所述被分析的频段存在疑似宽带干扰时, 进一步根据所述被 分析的频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性。
具体的, 时域差值相关性的计算方法如下:
Vj - F ~ ~^Υί, p _ COY(V; , V2 )
^ σ σ . 其中, ¾表示所述被分析的频段的忙时数据中的某一个频率的电平, 表 示所述被分析的频段的闲时数据中的某一个频率的电平, FD„ ^表示所述被分析 的频段的 DummyBurst数据中的某一个频率的电平, 表示所述某一个频率在忙 时和闲时的电平差值; ^表示所述某一个频率在 DummyBurst 时段和闲时的电 平差值; N表示所述被分析的频段配置的频率总数; 表示所述被分析的频段 中的所有频率在忙时和闲时的电平差值的平均值; 表示所述被分析的频段中 的所有频率在 DummyBurst时段和闲时的电平差值的平均值。 Ρ , ,表示时域差 值相关性, 和 是相关性计算公式中的函数, 相关性计算公式是本领域的常 用技术, 在此不进行详细描述。
S404、 判断所述时域差值相关性是否大于设定的第三相关性门限; 若是, 则确定所述疑似宽带干扰为互调干扰; 若否, 则确定所述疑似宽带干扰为包括 宽带干扰和互调干扰的复合型干扰。
假设第三相关性门限为 0.8,当 ,,^Ο.δ时,说明忙时和互调特性呈强相关, 确定被分析的频段中的疑似宽带干扰为互调干扰。 当 0.8时, 确定被分析 的频段中的疑似宽带干扰为包括宽带干扰和互调干扰的复合型干扰。
如图 10所示, 是呈现宽带特征的互调干扰的示意图, "DummyBurst时段和 闲时的电平差值" 及 "忙时和闲时的电平差值" 呈现出相关性( 此 处的干扰为同时存在宽带干扰和互调干扰的复合型干扰。 在另一个可选的实施方式中, 基于被分析的频段的忙时数据和闲时数据, 进行宽带直放站及有源阻断器干扰分析。
所述根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被 分析的频段的干扰源进行识别, 包括步骤 S501~S508, 如下:
5501、 根据被分析的频段的忙时数据的功率特征, 按照为所述被分析的频 段配置的频率个数划分出多个分析区间, 计算所述多个分析区间内的频率的电 平均值和干扰标准差。
5502、 如果所述电平均值大于设定的干扰电平门限, 且所述干扰标准差大 于设定的第二干扰标准差门限, 则确定所述被分析的频段存在疑似宽带干扰; 否则确定所述被分析的频段不存在宽带干扰。
步骤 S501~ S502与上述的步骤 S401~ S402相似, 在此不再详细说明。
5503、 当确定所述被分析的频段存在疑似宽带干扰时, 进一步根据被分析 的频段的忙时数据和互调干扰仿真模型, 计算忙时移动平均数和仿真移动平均 数。
忙时移动平均数的计算公式为: Vm =丄 J^. ; Vm是每 M个频率的移动平均
M
数; Fi表示忙时数据中 M个频率中的某一个频率的电平, Z 表示所述 M个频 率的电平值总和。
仿真移动平均数的计算公式为: = ∑ ; Vn是N个频率的移动平均数; 表示互调干扰仿真模型中 Ν个频率中的某一个频率的电平, ∑ 表示所述 Ν 个频率的电平值总和。
5504、 计算所述忙时移动平均数和所述仿真移动平均数的频域相关性。
5505、 计算互调产物频率对应的闲时数据的均值和忙时数据的均值, 以及 两者的均值差。
5506、 如果所述频域相关性大于设定的第四相关性门限, 且所述均值差大 于设定的第一均值差门限, 则确定所述疑似宽带干扰为包括宽带干扰和互调干 扰的复合型干扰; 否则确定所述疑似宽带干扰为互调干扰。
5507、 当确定所述疑似宽带干扰为包括宽带干扰和互调干扰的复合型干扰 时, 进一步计算所述被分析的频段的忙时数据与闲时数据的差值。
5508、 判断所述差值是否小于设定的差值门限, 若是, 则确定所述复合型 干扰中的宽带干扰为源阻断器干扰; 若否, 则确定所述复合型干扰中的宽带干 扰为直放站干扰。
假设差值门限为 X, 当 <X时, 确定被分析的频段存在的宽带干扰为源 阻断器干扰。 当 v x, 确定被分析的频段存在的宽带干扰为直放站干扰。 如图 11所示, 是有源阻断器的干扰特征的示意图, 在差值分析中, 部分区 域的差值小于 X, 判定为有源阻断器持续性干扰。 如图 12所示, 是宽带直放站 的干扰特征的示意图。 四、 频点干扰分析
选频直放站干扰是频点干扰中最常见的干扰, 选频直放站用于对个别频点 进行有效放大, 但往往由于增益设置不当而导致频点干扰。
在一个可选的实施方式中, 基于从基站侧获取的被分析的频段的忙时数据、 闲时数据和 DummyBurst数据, 进行频点干扰分析。
所述根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被 分析的频段的干扰源进行识别, 包括步骤 S601~S604, 如下:
S601、 根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功 率和底噪的隔离度, 以及计算底噪标准差。
当被分析的频段发生频点干扰时, 所采集的忙时数据既包含所述被分析的 频段中的每个频率的电平数据, 还包含其他频率的干扰数据。
同邻频信号功率和底噪的隔离度, 以及底噪标准差的计算方法如下:
( a )、 对于所采集的忙时数据中的频率, 按照每三个相邻频率一组, 分别 计算每一组频率的电平均值。
假设, 所采集的忙时数据中所有频率从低到高依次为 F2、 F3...Fn_2、 Fn -1 和 Fn; 分别计算 F2和 F3的电平均值、 F2、 F3和 f4的电平均值、 F3、 F4和 F5 的电平均值、 ...Fn_2、 Fn _1和Fn的电平均值。
( b )、 将每一组电平均值与设定的电平门限值进行比较, 将大于所述电平 门限值的一组电平均值对应的频率 选出来, 计算所 选出的频率的电平均值
Fn。 例如, 只有 F2和 F3的电平均值、 F3、 F4和 F5的电平均值、 Fn_2、 Fn Λ 和Fn的电平均值大于所述电平门限值, 则筛选出频率 F2、 F4和Fn_1。 为方便描述, 本实施例将除去所述筛选出的频率之外的其他频率, 称为底 噪频率。
( c )、 计算所有的底噪频率的电平均值, 获得底噪均值电平 ^。
( d )、 计算同邻频信号功率与 八 ; AF— = F—n _ F—"
( e )、 计算底噪标准差 S; S 。 其中, 表示所采集的忙时数
Figure imgf000031_0001
据中的某一底噪频率的功率, N表示所采集的忙时数据中的底噪频率的总数量。
5602、 如果所述同邻频信号功率和底噪的隔离度小于设定的隔离度门限, 且所述底噪标准差小于设定的底噪标准差门限, 则确定所述被分析的频段存在 疑似频点干扰; 否则确定所述被分析的频段不存在频点干扰。
5603、 当确定所述被分析的频段存在疑似频点干扰时, 进一步根据所述被 分析的频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性。
步骤 S603中计算时域差值相关性的方法, 与上述的步骤 S403相似, 在此 不再详细说明。
5604、 判断所述时域差值相关性是否大于设定的第五相关性门限; 若是, 则确定所述疑似频点干扰为互调干扰; 若否, 则确定所述疑似频点干扰为包括 频点干扰和互调干扰的复合型干扰。
假设第五相关性门限为 0.8,当 ,,, ^.δ时,说明忙时和互调特性呈强相关, 确定被分析的频段中的疑似频点干扰为互调干扰。 当 ,,, 0.8时, 确定被分析 的频段中的疑似频点干扰为包括频点干扰和互调干扰的复合型干扰。 在一个可选的实施方式中, 基于被分析的频段的忙时数据和互调干扰仿真 模型, 进行选频直放站干扰分析。
所述根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被 分析的频段的干扰源进行识别, 包括步骤 S701~S706, 如下:
5701、 根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功 率和底噪的隔离度, 以及计算底噪标准差。
5702、 如果所述同邻频信号功率和底噪的隔离度小于设定的隔离度门限, 且所述底噪标准差小于设定的底噪标准差门限, 则确定所述被分析的频段存在 疑似频点干扰; 否则确定所述被分析的频段不存在频点干扰。
步骤 S701~ S702与上述步骤 S601~ S602相似, 在此不再详细说明。
5703、 当确定所述被分析的频段存在疑似频点干扰时, 进一步根据所述被 分析的频段的忙时数据和互调干扰仿真模型, 计算忙时移动平均数和仿真移动 平均数。
步骤 S703 中计算忙时移动平均数和仿真移动平均数的方法, 与上述步骤 S503相同, 在此不再详细描述。
5704、 计算所述忙时移动平均数和所述仿真移动平均数的频域相关性;
5705、 根据所述被分析的频段的闲时数据和忙时数据, 计算互调产物对应 的频率在闲时的功率均值和在忙时的功率均值, 以及两者的均值差。
5706、 如果所述频域相关性大于设定的第六相关性门限, 且所述均值差大 于设定的第二均值差门限, 则确定所述疑似频点干扰为包括频点干扰和互调干 扰的复合型干扰; 否则确定所述疑似频点干扰为互调干扰。
如图 13所示, 是本发明实施例中表现为选频直放站干扰特征的互调特征的 示意图; 如图 14所示, 是本发明实施例中选频直放站干扰频域特征的示意图。 本发明实施例提供的干扰源识别方法, 利用频域与时域相结合的分析方法, 能够有效分析 GSM网络中存在的干扰源, 同时能够对复合型干扰源能够有效区 分, 对干扰源的主次程度进行分析。 提高了 GSM网络的干扰源的分析效率, 有 效定位解决 GSM网络中的干尤问题。 本发明实施例还提供一种干扰源识别系统, 能够实施上述实施例中的干扰 源识别方法的流程。
参见图 15, 是本发明实施例中一种干扰源识别系统的结构示意图。
本发明实施例中一种干扰源识别系统, 包括:
数据采集单元 11 , 用于从基站侧获取被分析的频段内的频点扫描数据, 所 述频点扫描数据包括闲时数据、 忙时数据和空闲突发脉沖序列 DummyBurst数 据中的至少一项;
数据处理单元 12, 用于对所述频点扫描数据进行分析, 获得所述被分析的 频段在至少一个时段表现出的功率特征; 和,
干扰分析单元 13, 用于根据所述被分析的频段在至少一个时段表现出的功 率特征, 对所述被分析的频段的干扰源进行识别。 参见图 16, 是本发明实施例中一种数据处理单元的结构示意图。
本发明实施例中一种数据处理单元 12, 包括:
概率密度统计子单元 121 , 用于对所述频点扫描数据按照正态分布统计, 根 据概率密度函数确定所述被分析的频段中每个频率在时域上的概率分布; 和, 功率分析子单元 122,用于通过线性预测函数确定一定概率区间所包含的电 平值, 获得所述被分析的频段中每个频率的电平; 所述被分析的频段中每个频 率在至少一个时段上对应的电平, 为所述被分析的频段在至少一个时段表现出 的功率特征。 参见图 17, 是本发明提供的干扰分析单元的第一实施例的结构示意图。 在第一实施例中, 干扰分析单元 13包括:
互调仿真子单元 101 , 用于从基站控制器 BSC侧获取所述被分析的频段的 频率配置信息, 根据为所述被分析的频段配置的工作频率以及互调干扰仿真模 产物对应的频率;
第一均值计算子单元 102 , 用于根据所述被分析的频段的闲时数据和 DummyBurst数据的功率特征,计算所述互调产物对应的频率在闲时的干扰均值 和在 DummyBurst时段的干扰均值; 和,
第一互调干扰判断子单元 103 ,用于如果所述互调产物对应的频率在闲时的 干扰均值和在 DummyBurst时段的干扰均值之差大于设定的第一互调干扰门限, 则确定所述被分析的频段存在互调干扰; 如果所述互调产物对应的频率在闲时 的干扰均值和在 DummyBurst 时段的干扰均值之差小于或等于设定的第一互调 干扰门限, 则确定所述被分析的频段不存在互调干扰。 参见图 18, 是本发明提供的干扰分析单元的第二实施例的结构示意图。 在第二实施例中, 干扰分析单元 13包括:
互调仿真子单元 201 , 用于从基站控制器 BSC侧获取所述被分析的频段的 频率配置信息, 根据为所述被分析的频段配置的工作频率以及互调干扰仿真模 产物对应的频率;
第二均值计算子单元 202,用于根据所述被分析的频段的闲时数据和忙时数 据的功率特征, 计算所述互调产物对应的频率在闲时的干扰均值和在忙时的干 扰均值;
第二互调干扰判断子单元 203 ,用于如果所述互调产物对应的频率在闲时的 干扰均值和在忙时的干扰均值之差大于设定的第二互调干扰门限, 则确定所述 被分析的频段满足互调干扰的第一条件; 如果所述互调产物对应的频率在闲时 的干扰均值和在忙时的干扰均值之差小于或等于设定的第二互调干扰门限, 则 确定所述被分析的频段不存在互调干扰;
第一移动平均数计算子单元 204,用于当确定所述被分析的频段满足互调干 扰的第一条件时, 进一步根据所述被分析的频段的互调产物仿真模型和忙时数 据, 计算仿真移动平均数和忙时移动平均数;
第一相关性计算子单元 205 ,用于计算所述仿真移动平均数和所述忙时移动 平均数之间的相关性;
第三互调干扰判断子单元 206,用于如果所述相关性大于设定的第一相关性 门限, 则确定所述被分析的频段满足互调干扰的第二条件; 如果所述相关性小 于或等于设定的第一相关性门限, 则确定所述被分析的频段不存在互调干扰; 和,
第四互调干扰判断子单元 207,用于当所述被分析的频段满足互调干扰的第 一条件和第二条件时, 进一步判断互调产物是否落在为所述被分析的频段配置 的工作频率上; 若是, 则确定所述被分析的频段存在互调干扰; 若否, 则确定 所述被分析的频段存在潜在互调干扰。 参见图 19, 是本发明提供的干扰分析单元的第三实施例的结构示意图。 在第三实施例中, 干扰分析单元 13包括:
斜率截距计算子单元 301 ,用于根据所述被分析的频段的忙时数据的功率特 征计算斜率和截距;
第一 CDMA干扰判断子单元 302,用于如果所述斜率大于设定的斜率门限, 且所述截距大于设定的截距门限, 则确定所述被分析的频段满足 CDMA干扰的 第一条件; 否则, 确定所述被分析的频段不存在 CDMA干扰;
第二相关性计算子单元 303, 用于当确定所述被分析的频段满足 CDMA干 扰的第一条件时, 进一步根据所述被分析的频段的忙时数据和 CDMA干扰仿真 模型, 计算小区忙时电平数据与所述 CDMA干扰仿真模型的相关性及干扰标准 差;
第二 CDMA干扰判断子单元 304, 用于如果所述相关性大于设定的第二相 关性门限, 且所述 CDMA干扰仿真模型的干扰标准差和所述小区忙时电平数据 的干扰标准差两者的差值小于设定的第一干扰标准差门限, 则确定所述被分析 的频段满足 CDMA干扰的第二条件;否则确定所述被分析的频段不存在 CDMA 干扰; 和,
第三 CDMA干扰判断子单元 305,用于当所述被分析的频段满足 CDMA干 扰的第一条件和第二条件时, 确定所述被分析的频段存在 CDMA干扰; 否则确 定所述被分析的频段不存在 CDMA干扰。 参见图 20, 是本发明提供的干扰分析单元的第四实施例的结构示意图。 在第四实施例中, 干扰分析单元 13包括: 区间计算子单元 401 , 用于根据所述被分析的频段的忙时数据的功率特征, 按照为所述被分析的频段配置的频率的个数划分出多个分析区间, 计算所述多 个分析区间内的频率的电平均值和干扰标准差;
疑似宽带干扰分析子单元 402,用于如果所述电平均值大于设定的干扰电平 门限, 且所述干扰标准差大于设定的第二干扰标准差门限, 则确定所述被分析 的频段存在疑似宽带干扰; 否则确定所述被分析的频段不存在宽带干扰;
第三相关性计算子单元 403 ,用于当确定所述被分析的频段存在疑似宽带干 扰时, 进一步根据所述被分析的频段的忙时数据、 闲时数据和 DummyBurst数 据, 计算时域差值相关性; 和,
第一宽带干扰判断子单元 404,用于判断所述时域差值相关性是否大于设定 的第三相关性门限; 若是, 则确定所述疑似宽带干扰为互调干扰; 若否, 则确 定所述疑似宽带干扰为包括宽带干扰和互调干扰的复合型干扰。 参见图 21 , 是本发明提供的干扰分析单元的第五实施例的结构示意图。 在第五实施例中, 干扰分析单元 15包括:
区间计算子单元 501 , 用于根据所述被分析的频段的忙时数据的功率特征, 按照为所述被分析的频段配置的频率的个数划分出多个分析区间, 计算所述多 个分析区间内的频率的电平均值和干扰标准差;
疑似宽带干扰分析子单元 502,用于如果所述电平均值大于设定的干扰电平 门限, 且所述干扰标准差大于设定的第二干扰标准差门限, 则确定所述被分析 的频段存在疑似宽带干扰; 否则确定所述被分析的频段不存在宽带干扰;
第二移动平均数计算子单元 503 ,用于当确定所述被分析的频段存在疑似宽 带干扰时, 进一步根据被分析的频段的忙时数据和互调干扰仿真模型, 计算忙 时移动平均数和仿真移动平均数;
第四相关性计算子单元 504,用于计算所述忙时移动平均数和所述仿真移动 平均数的频域相关性;
第三均值计算子单元 505 ,用于计算互调产物频率对应的闲时数据的均值和 忙时数据的均值, 以及两者的均值差;
第二宽带干扰判断子单元 506,用于如果所述频域相关性大于设定的第四相 关性门限, 且所述均值差大于设定的第一均值差门限, 则确定所述疑似宽带干 扰为包括宽带干扰和互调干扰的复合型干扰; 否则确定所述疑似宽带干扰为互 调干扰;
差值计算子单元 507,用于当确定所述疑似宽带干扰为包括宽带干扰和互调 干扰的复合型干扰时, 进一步计算所述被分析的频段的忙时数据与闲时数据的 差值; 和,
第三宽带干扰判断子单元 508 , 用于判断所述差值是否小于设定的差值门 限, 若是, 则确定所述复合型干扰中的宽带干扰为源阻断器干扰; 若否, 则确 定所述复合型干扰中的宽带干扰为直放站干扰。 参见图 22, 是本发明提供的干扰分析单元的第六实施例的结构示意图。 在第六实施例中, 干扰分析单元 13包括:
频点干扰计算子单元 601 ,用于根据所述被分析的频段的忙时数据的功率特 征, 计算同邻频信号功率和底噪的隔离度, 以及计算底噪标准差;
疑似频点干扰分析子单元 602,用于如果所述同邻频信号功率和底噪的隔离 度小于设定的隔离度门限, 且所述底噪标准差小于设定的底噪标准差门限, 则 确定所述被分析的频段存在疑似频点干扰; 否则确定所述被分析的频段不存在 频点干扰;
第五相关性计算子单元 603 ,用于当确定所述被分析的频段存在疑似频点干 扰时, 进一步根据所述被分析的频段的忙时数据、 闲时数据和 DummyBurst数 据, 计算时域差值相关性; 和,
第一频点干扰判断子单元 604,用于判断所述时域差值相关性是否大于设定 的第五相关性门限; 若是, 则确定所述疑似频点干扰为互调干扰; 若否, 则确 定所述疑似频点干扰为包括频点干扰和互调干扰的复合型干扰。 参见图 23 , 是本发明提供的干扰分析单元的第七实施例的结构示意图。 在第七实施例中, 干扰分析单元包括:
频点干扰计算子单元 701 ,用于根据所述被分析的频段的忙时数据的功率特 征, 计算同邻频信号功率和底噪的隔离度, 以及计算底噪标准差;
疑似频点干扰分析子单元 702,用于如果所述同邻频信号功率和底噪的隔离 度小于设定的隔离度门限, 且所述底噪标准差小于设定的底噪标准差门限, 则 确定所述被分析的频段存在疑似频点干扰; 否则确定所述被分析的频段不存在 频点干扰;
第三移动平均数计算子单元 703 ,用于当确定所述被分析的频段存在疑似频 点干扰时, 进一步根据所述被分析的频段的忙时数据和互调干扰仿真模型, 计 算忙时移动平均数和仿真移动平均数;
第六相关性计算子单元 704,用于计算所述忙时移动平均数和所述仿真移动 平均数的频域相关性;
第四均值计算子单元 705 ,用于根据所述被分析的频段的闲时数据和忙时数 据, 计算互调产物对应的频率在闲时的功率均值和在忙时的功率均值, 以及两 者的均值差; 和,
第二频点干扰判断子单元 706,用于如果所述频域相关性大于设定的第六相 关性门限, 且所述均值差大于设定的第二均值差门限, 则确定所述疑似频点干 扰为包括频点干扰和互调干扰的复合型干扰; 否则确定所述疑似频点干扰为互 调干扰。
本发明实施例提供的干扰源识别系统, 利用频域与时域相结合的分析方法, 能够有效分析 GSM网络中存在的干扰源, 同时能够对复合型干扰源能够有效区 分, 对干扰源的主次程度进行分析。 提高了 GSM网络的干扰源的分析效率, 有 效定位解决 GSM网络中的干扰问题。 参见图 24, 本发明实施例提供一种计算机系统, 包括输入装置 241、 输出 装置 242、 存储器 243和处理器 244, 该处理器 244可执行如下步骤: 从基站侧 获取小区被分析的频段内的频点扫描数据, 所述频点扫描数据包括闲时数据、 忙时数据和空闲突发脉沖序列 DummyBurst数据中的至少一项; 对所述频点扫 描数据进行分析, 获得所述被分析的频段在至少一个时段表现出的功率特征; 根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频 段的干扰源进行识别。
处理器 244执行程序的进一步详细技术方案, 可以但不限于上述图 2~图 14 所示的实施例的详细描述。
其中存储器 243用于存储处理器 244需要执行的程序, 进一步的, 存储器 243还可以存储处理器 244在计算过程中产生的结果。
除图 24所示的连接方式之外,在本发明的其它一些实施例中,输入装置 241、 输出装置 242、存储器 243和处理器 244还可以通过总线连接。该总线可以是 ISA ( Industry Standard Architecture , 工业标准体系结构) 总线、 PCI ( Peripheral Component,夕卜部设备互连 )总线或 EISA( Extended Industry Standard Architecture , 扩展工业标准体系结构) 总线等。 所述总线可以是一条或多条物理线路, 当是 多条物理线路时可以分为地址总线、 数据总线、 控制总线等。
在本发明实施例中还提供了一种计算机存储介质, 该计算机存储介质中存 储有计算机程序, 该计算机程序可执行上述图 2~图 14所示的实施例中的步骤。 需要说明的是, 以上所描述的装置实施例仅仅是示意性的, 其中所述作为 分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部 件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到 多个网络单元上。 可以根据实际的需要选择其中的部分或者全部模块来实现本 实施例方案的目的。 另外, 本发明提供的装置实施例附图中, 模块之间的连接 关系表示它们之间具有通信连接, 具体可以实现为一条或多条通信总线或信号 线。 本领域普通技术人员在不付出创造性劳动的情况下, 即可以理解并实施。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过专用硬件包括 专用集成电路、 专用 CPU、 专用存储器、 专用元器件等来实现。 一般情况下, 凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现, 而且, 用来 实现同一功能的具体硬件结构也可以是多种多样的, 例如模拟电路、 数字电路 或专用电路等。 但是, 对本发明而言更多情况下软件程序实现是更佳的实施方 式。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的 部分可以以软件产品的形式体现出来, 该计算机软件产品存储在可读取的存储 介质中, 如计算机的软盘, U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ),随机存取存储器(RAM, Random Access Memory )、磁碟或者光盘等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网 络设备等)执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 以所述权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种干扰源识别方法, 其特征在于, 包括:
从基站侧获取小区被分析的频段内的频点扫描数据, 所述频点扫描数据包 括闲时数据、 忙时数据和空闲突发脉沖序列 DummyBurst数据中的至少一项; 对所述频点扫描数据进行分析, 获得所述被分析的频段在至少一个时段表 现出的功率特征;
根据所述被分析的频段在至少一个时段表现出的功率特征, 对所述被分析 的频段的干扰源进行识别。
2、 如权利要求 1所述的干扰源识别方法, 其特征在于, 所述对所述频点扫 描数据进行分析, 获得所述被分析的频段在至少一个时段表现出的功率特征, 包括:
对所述频点扫描数据按照正态分布统计, 根据概率密度函数确定所述被分 析的频段中每个频率在时域上的概率分布;
通过线性预测函数确定一定概率区间所包含的电平值, 获得所述被分析的 频段中每个频率的电平; 所述被分析的频段中每个频率在至少一个时段上对应 的电平, 为所述被分析的频段在至少一个时段表现出的功率特征。
3、 如权利要求 1或 2所述的干扰源识别方法, 其特征在于, 所述根据所述 被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频段的干扰 源进行识别, 包括:
从基站控制器 BSC侧获取所述被分析的频段的频率配置信息, 根据为所述 被分析的频段配置的工作频率以及互调干扰仿真模型进行互调产物仿真, 获得 根据所述被分析的频段的闲时数据和 DummyBurst数据的功率特征, 计算 所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst时段的干扰均值; 如果所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst 时段的 干扰均值之差大于设定的第一互调干扰门限, 则确定所述被分析的频段存在互 调干扰; 如果所述互调产物对应的频率在闲时的干扰均值和在 DummyBurst 时 段的干扰均值之差小于或等于设定的第一互调干扰门限, 则确定所述被分析的 频段不存在互调干扰。
4、 如权利要求 1或 2所述的干扰源识别方法, 其特征在于, 所述根据所述 被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频段的干扰 源进行识别, 包括:
从基站控制器 BSC侧获取所述被分析的频段的频率配置信息, 根据为所述 被分析的频段配置的工作频率以及互调干扰仿真模型进行互调产物仿真, 获得 根据所述被分析的频段的闲时数据和忙时数据的功率特征, 计算所述互调 产物对应的频率在闲时的干扰均值和在忙时的干扰均值;
如果所述互调产物对应的频率在闲时的干扰均值和在忙时的干扰均值之差 大于设定的第二互调干扰门限, 则确定所述被分析的频段满足互调干扰的第一 条件; 如果所述互调产物对应的频率在闲时的干扰均值和在忙时的干扰均值之 差小于或等于设定的第二互调干扰门限, 则确定所述被分析的频段不存在互调 干扰;
当确定所述被分析的频段满足互调干扰的第一条件时, 进一步根据所述被 分析的频段的互调产物仿真模型和忙时数据, 计算仿真移动平均数和忙时移动 平均数;
计算所述仿真移动平均数和所述忙时移动平均数之间的相关性;
如果所述相关性大于设定的第一相关性门限, 则确定所述被分析的频段满 足互调干扰的第二条件; 如果所述相关性小于或等于设定的第一相关性门限, 则确定所述被分析的频段不存在互调干扰;
当所述被分析的频段满足互调干扰的第一条件和第二条件时, 进一步判断 互调产物是否落在为所述被分析的频段配置的工作频率上; 若是, 则确定所述 被分析的频段存在互调干扰; 若否, 则确定所述被分析的频段存在潜在互调干 扰。
5、 如权利要求 1或 2所述的干扰源识别方法, 其特征在于, 所述根据所述 被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频段的干扰 源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征计算斜率和截距;
如果所述斜率大于设定的斜率门限, 且所述截距大于设定的截距门限, 则 确定所述被分析的频段满足 CDMA干扰的第一条件; 否则, 确定所述被分析的 频段不存在 CDMA干扰;
当确定所述被分析的频段满足 CDMA干扰的第一条件时, 进一步根据所述 被分析的频段的忙时数据和 CDMA干扰仿真模型, 计算小区忙时电平数据与所 述 CDMA干扰仿真模型的相关性及干扰标准差;
如果所述相关性大于设定的第二相关性门限, 且所述 CDMA干扰仿真模型 的干扰标准差和所述小区忙时电平数据的干扰标准差两者的差值小于设定的第 一干扰标准差门限, 则确定所述被分析的频段满足 CDMA干扰的第二条件; 否 则确定所述被分析的频段不存在 CDMA干扰;
当所述被分析的频段满足 CDMA干扰的第一条件和第二条件时, 确定所述 被分析的频段存在 CDMA干扰; 否则确定所述被分析的频段不存在 CDMA干 扰。
6、 如权利要求 1或 2所述的干扰源识别方法, 其特征在于, 所述根据所述 被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频段的干扰 源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征, 按照为所述被分析的频段 配置的频率的个数划分出多个分析区间, 计算所述多个分析区间内的频率的电 平均值和干扰标准差;
如果所述电平均值大于设定的干扰电平门限, 且所述干扰标准差大于设定 的第二干扰标准差门限, 则确定所述被分析的频段存在疑似宽带干扰; 否则确 定所述被分析的频段不存在宽带干扰;
当确定所述被分析的频段存在疑似宽带干扰时, 进一步根据所述被分析的 频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性;
判断所述时域差值相关性是否大于设定的第三相关性门限; 若是, 则确定 所述疑似宽带干扰为互调干扰; 若否, 则确定所述疑似宽带干扰为包括宽带干 扰和互调干扰的复合型干扰。
7、 如权利要求 1或 2所述的干扰源识别方法, 其特征在于, 所述根据所述 被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频段的干扰 源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征, 按照为所述被分析的频段 配置的频率的个数划分出多个分析区间, 计算所述多个分析区间内的频率的电 平均值和干扰标准差;
如果所述电平均值大于设定的干扰电平门限, 且所述干扰标准差大于设定 的第二干扰标准差门限, 则确定所述被分析的频段存在疑似宽带干扰; 否则确 定所述被分析的频段不存在宽带干扰;
当确定所述被分析的频段存在疑似宽带干扰时, 进一步根据被分析的频段 的忙时数据和互调干扰仿真模型, 计算忙时移动平均数和仿真移动平均数; 计算所述忙时移动平均数和所述仿真移动平均数的频域相关性;
计算互调产物频率对应的闲时数据的均值和忙时数据的均值, 以及两者的 均值差;
如果所述频域相关性大于设定的第四相关性门限, 且所述均值差大于设定 的第一均值差门限, 则确定所述疑似宽带干扰为包括宽带干扰和互调干扰的复 合型干扰; 否则确定所述疑似宽带干扰为互调干扰;
当确定所述疑似宽带干扰为包括宽带干扰和互调干扰的复合型干扰时, 进 一步计算所述被分析的频段的忙时数据与闲时数据的差值;
判断所述差值是否小于设定的差值门限, 若是, 则确定所述复合型干扰中 的宽带干扰为源阻断器干扰; 若否, 则确定所述复合型干扰中的宽带干扰为直 放站干扰。
8、 如权利要求 1或 2所述的干扰源识别方法, 其特征在于, 所述根据所述 被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频段的干扰 源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功率和底 噪的隔离度, 以及计算底噪标准差;
如果所述同邻频信号功率和底噪的隔离度小于设定的隔离度门限, 且所述 底噪标准差小于设定的底噪标准差门限, 则确定所述被分析的频段存在疑似频 点干扰; 否则确定所述被分析的频段不存在频点干扰;
当确定所述被分析的频段存在疑似频点干扰时, 进一步根据所述被分析的 频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性;
判断所述时域差值相关性是否大于设定的第五相关性门限; 若是, 则确定 所述疑似频点干扰为互调干扰; 若否, 则确定所述疑似频点干扰为包括频点干 扰和互调干扰的复合型干扰。
9、 如权利要求 1或 2所述的干扰源识别方法, 其特征在于, 所述根据所述 被分析的频段在至少一个时段表现出的功率特征, 对所述被分析的频段的干扰 源进行识别, 包括:
根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功率和底 噪的隔离度, 以及计算底噪标准差;
如果所述同邻频信号功率和底噪的隔离度小于设定的隔离度门限, 且所述 底噪标准差小于设定的底噪标准差门限, 则确定所述被分析的频段存在疑似频 点干扰; 否则确定所述被分析的频段不存在频点干扰;
当确定所述被分析的频段存在疑似频点干扰时, 进一步根据所述被分析的 频段的忙时数据和互调干扰仿真模型, 计算忙时移动平均数和仿真移动平均数; 计算所述忙时移动平均数和所述仿真移动平均数的频域相关性; 根据所述被分析的频段的闲时数据和忙时数据, 计算互调产物对应的频率 在闲时的功率均值和在忙时的功率均值, 以及两者的均值差;
如果所述频域相关性大于设定的第六相关性门限, 且所述均值差大于设定 的第二均值差门限, 则确定所述疑似频点干扰为包括频点干扰和互调干扰的复 合型干扰; 否则确定所述疑似频点干扰为互调干扰。
10、 一种干扰源识别系统, 其特征在于, 包括:
数据采集单元, 用于从基站侧获取小区被分析的频段内的频点扫描数据, 所述频点扫描数据包括闲时数据、 忙时数据和空闲突发脉沖序列 DummyBurst 数据中的至少一项;
数据处理单元, 用于对所述频点扫描数据进行分析, 获得所述被分析的频 段在至少一个时段表现出的功率特征; 和,
干扰分析单元, 用于根据所述被分析的频段在至少一个时段表现出的功率 特征, 对所述被分析的频段的干扰源进行识别。
11、 如权利要求 10所述的干扰源识别系统, 其特征在于, 所述数据处理单 元包括:
概率密度统计子单元, 用于对所述频点扫描数据按照正态分布统计, 根据 概率密度函数确定所述被分析的频段中每个频率在时域上的概率分布; 和, 功率分析子单元, 用于通过线性预测函数确定一定概率区间所包含的电平 值, 获得所述被分析的频段中每个频率的电平; 所述被分析的频段中每个频率 在至少一个时段上对应的电平, 为所述被分析的频段在至少一个时段表现出的 功率特征。
12、 如权利要求 10或 11所述的干扰源识别系统, 其特征在于, 所述干扰 分析单元包括:
互调仿真子单元, 用于从基站控制器 BSC侧获取所述被分析的频段的频率 配置信息, 根据为所述被分析的频段配置的工作频率以及互调干扰仿真模型进 对应的频率;
第一均值计算子单元, 用于根据所述被分析的频段的闲时数据和 DummyBurst数据的功率特征,计算所述互调产物对应的频率在闲时的干扰均值 和在 DummyBurst时段的干扰均值; 和,
第一互调干扰判断子单元, 用于如果所述互调产物对应的频率在闲时的干 扰均值和在 DummyBurst 时段的干扰均值之差大于设定的第一互调干扰门限, 则确定所述被分析的频段存在互调干扰; 如果所述互调产物对应的频率在闲时 的干扰均值和在 DummyBurst 时段的干扰均值之差小于或等于设定的第一互调 干扰门限, 则确定所述被分析的频段不存在互调干扰。
13、 如权利要求 10或 11所述的干扰源识别系统, 其特征在于, 所述干扰 分析单元包括:
互调仿真子单元, 用于从基站控制器 BSC侧获取所述被分析的频段的频率 配置信息, 根据为所述被分析的频段配置的工作频率以及互调干扰仿真模型进 对应的频率;
第二均值计算子单元, 用于根据所述被分析的频段的闲时数据和忙时数据 的功率特征, 计算所述互调产物对应的频率在闲时的干扰均值和在忙时的干扰 均值;
第二互调干扰判断子单元, 用于如果所述互调产物对应的频率在闲时的干 扰均值和在忙时的干扰均值之差大于设定的第二互调干扰门限, 则确定所述被 分析的频段满足互调干扰的第一条件; 如果所述互调产物对应的频率在闲时的 干扰均值和在忙时的干扰均值之差小于或等于设定的第二互调干扰门限, 则确 定所述被分析的频段不存在互调干扰;
第一移动平均数计算子单元, 用于当确定所述被分析的频段满足互调干扰 的第一条件时, 进一步根据所述被分析的频段的互调产物仿真模型和忙时数据, 计算仿真移动平均数和 ' 时移动平均数;
第一相关性计算子单元, 用于计算所述仿真移动平均数和所述忙时移动平 均数之间的相关性;
第三互调干扰判断子单元, 用于如果所述相关性大于设定的第一相关性门 限, 则确定所述被分析的频段满足互调干扰的第二条件; 如果所述相关性小于 或等于设定的第一相关性门限, 则确定所述被分析的频段不存在互调干扰; 和, 第四互调干扰判断子单元, 用于当所述被分析的频段满足互调干扰的第一 条件和第二条件时, 进一步判断互调产物是否落在为所述被分析的频段配置的 工作频率上; 若是, 则确定所述被分析的频段存在互调干扰; 若否, 则确定所 述被分析的频段存在潜在互调干扰。
14、 如权利要求 10或 11所述的干扰源识别系统, 其特征在于, 所述干扰 分析单元包括:
斜率截距计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征 计算斜率和截距;
第一 CDMA干扰判断子单元, 用于如果所述斜率大于设定的斜率门限, 且 所述截距大于设定的截距门限, 则确定所述被分析的频段满足 CDMA干扰的第 一条件; 否则, 确定所述被分析的频段不存在 CDMA干扰;
第二相关性计算子单元, 用于当确定所述被分析的频段满足 CDMA干扰的 第一条件时,进一步根据所述被分析的频段的忙时数据和 CDMA干扰仿真模型, 计算小区忙时电平数据与所述 CDMA干扰仿真模型的相关性及干扰标准差; 第二 CDMA干扰判断子单元, 用于如果所述相关性大于设定的第二相关性 门限, 且所述 CDMA干扰仿真模型的干扰标准差和所述小区忙时电平数据的干 扰标准差两者的差值小于设定的第一干扰标准差门限, 则确定所述被分析的频 段满足 CDMA干扰的第二条件; 否则确定所述被分析的频段不存在 CDMA干 扰 和,
第三 CDMA干扰判断子单元, 用于当所述被分析的频段满足 CDMA干扰 的第一条件和第二条件时, 确定所述被分析的频段存在 CDMA干扰; 否则确定 所述被分析的频段不存在 CDMA干扰。
15、 如权利要求 10或 11所述的干扰源识别系统, 其特征在于, 所述干扰 分析单元包括:
区间计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征, 按 照为所述被分析的频段配置的频率的个数划分出多个分析区间, 计算所述多个 分析区间内的频率的电平均值和干扰标准差;
疑似宽带干扰分析子单元, 用于如果所述电平均值大于设定的干扰电平门 限, 且所述干扰标准差大于设定的第二干扰标准差门限, 则确定所述被分析的 频段存在疑似宽带干扰; 否则确定所述被分析的频段不存在宽带干扰; 第三相关性计算子单元, 用于当确定所述被分析的频段存在疑似宽带干扰 时, 进一步根据所述被分析的频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性; 和,
第一宽带干扰判断子单元, 用于判断所述时域差值相关性是否大于设定的 第三相关性门限; 若是, 则确定所述疑似宽带干扰为互调干扰; 若否, 则确定 所述疑似宽带干扰为包括宽带干扰和互调干扰的复合型干扰。
16、 如权利要求 10或 11所述的干扰源识别系统, 其特征在于, 所述干扰 分析单元包括:
区间计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征, 按 照为所述被分析的频段配置的频率的个数划分出多个分析区间, 计算所述多个 分析区间内的频率的电平均值和干扰标准差;
疑似宽带干扰分析子单元, 用于如果所述电平均值大于设定的干扰电平门 限, 且所述干扰标准差大于设定的第二干扰标准差门限, 则确定所述被分析的 频段存在疑似宽带干扰; 否则确定所述被分析的频段不存在宽带干扰;
第二移动平均数计算子单元, 用于当确定所述被分析的频段存在疑似宽带 干扰时, 进一步根据被分析的频段的忙时数据和互调干扰仿真模型, 计算忙时 移动平均数和仿真移动平均数;
第四相关性计算子单元, 用于计算所述忙时移动平均数和所述仿真移动平 均数的频域相关性;
第三均值计算子单元, 用于计算互调产物频率对应的闲时数据的均值和忙 时数据的均值, 以及两者的均值差; 第二宽带干扰判断子单元, 用于如果所述频域相关性大于设定的第四相关 性门限, 且所述均值差大于设定的第一均值差门限, 则确定所述疑似宽带干扰 为包括宽带干扰和互调干扰的复合型干扰; 否则确定所述疑似宽带干扰为互调 干扰;
差值计算子单元, 用于当确定所述疑似宽带干扰为包括宽带干扰和互调干 扰的复合型干扰时, 进一步计算所述被分析的频段的忙时数据与闲时数据的差 值^ 和,
第三宽带干扰判断子单元, 用于判断所述差值是否小于设定的差值门限, 若是, 则确定所述复合型干扰中的宽带干扰为源阻断器干扰; 若否, 则确定所 述复合型干扰中的宽带干扰为直放站干扰。
17、 如权利要求 10或 11所述的干扰源识别系统, 其特征在于, 所述干扰 分析单元包括:
频点干扰计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功率和底噪的隔离度, 以及计算底噪标准差;
疑似频点干扰分析子单元, 用于如果所述同邻频信号功率和底噪的隔离度 小于设定的隔离度门限, 且所述底噪标准差小于设定的底噪标准差门限, 则确 定所述被分析的频段存在疑似频点干扰; 否则确定所述被分析的频段不存在频 点干扰;
第五相关性计算子单元, 用于当确定所述被分析的频段存在疑似频点干扰 时, 进一步根据所述被分析的频段的忙时数据、 闲时数据和 DummyBurst数据, 计算时域差值相关性; 和,
第一频点干扰判断子单元, 用于判断所述时域差值相关性是否大于设定的 第五相关性门限; 若是, 则确定所述疑似频点干扰为互调干扰; 若否, 则确定 所述疑似频点干扰为包括频点干扰和互调干扰的复合型干扰。
18、 如权利要求 10或 11所述的干扰源识别系统, 其特征在于, 所述干扰 分析单元包括:
频点干扰计算子单元, 用于根据所述被分析的频段的忙时数据的功率特征, 计算同邻频信号功率和底噪的隔离度, 以及计算底噪标准差;
疑似频点干扰分析子单元, 用于如果所述同邻频信号功率和底噪的隔离度 小于设定的隔离度门限, 且所述底噪标准差小于设定的底噪标准差门限, 则确 定所述被分析的频段存在疑似频点干扰; 否则确定所述被分析的频段不存在频 点干扰;
第三移动平均数计算子单元, 用于当确定所述被分析的频段存在疑似频点 干扰时, 进一步根据所述被分析的频段的忙时数据和互调干扰仿真模型, 计算 忙时移动平均数和仿真移动平均数;
第六相关性计算子单元, 用于计算所述忙时移动平均数和所述仿真移动平 均数的频域相关性;
第四均值计算子单元, 用于根据所述被分析的频段的闲时数据和忙时数据, 计算互调产物对应的频率在闲时的功率均值和在忙时的功率均值, 以及两者的 均值差; 和,
第二频点干扰判断子单元, 用于如果所述频域相关性大于设定的第六相关 性门限, 且所述均值差大于设定的第二均值差门限, 则确定所述疑似频点干扰 为包括频点干扰和互调干扰的复合型干扰; 否则确定所述疑似频点干扰为互调 干扰。
PCT/CN2012/085412 2012-11-28 2012-11-28 干扰源识别方法及系统 WO2014082214A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280002766.2A CN104221417B (zh) 2012-11-28 2012-11-28 干扰源识别方法及系统
PCT/CN2012/085412 WO2014082214A1 (zh) 2012-11-28 2012-11-28 干扰源识别方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085412 WO2014082214A1 (zh) 2012-11-28 2012-11-28 干扰源识别方法及系统

Publications (1)

Publication Number Publication Date
WO2014082214A1 true WO2014082214A1 (zh) 2014-06-05

Family

ID=50827025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085412 WO2014082214A1 (zh) 2012-11-28 2012-11-28 干扰源识别方法及系统

Country Status (2)

Country Link
CN (1) CN104221417B (zh)
WO (1) WO2014082214A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101713A (zh) * 2017-05-04 2017-08-29 安徽江淮汽车集团股份有限公司 一种卡车接收机的底噪超标排查方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668309B (zh) * 2017-03-30 2021-06-15 中国移动通信集团贵州有限公司 一种干扰源的定位方法、装置及设备
CN113242103B (zh) * 2021-05-10 2022-08-23 成都华日通讯技术股份有限公司 一种干扰信号源自动监测方法
CN115728588B (zh) * 2022-12-23 2023-06-13 广州力赛计量检测有限公司 一种基于大数据的电磁兼容检测系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051044A1 (en) * 2000-12-20 2002-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for classifying interference
CN101312577A (zh) * 2007-05-22 2008-11-26 北京信威通信技术股份有限公司 一种识别干扰源类型的方法
CN102340799A (zh) * 2011-11-09 2012-02-01 广州逸信电子科技有限公司 一种gsm上行干扰源判断方法
CN102547781A (zh) * 2010-12-14 2012-07-04 中国移动通信集团广东有限公司 互调干扰小区的确定方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1501234A1 (de) * 2003-07-25 2005-01-26 Com-Research GmbH Solutions for Communication Systems Verfahren und Vorrichtung zur Bestimmung des dominanten Störtyps
CN101150374B (zh) * 2006-09-20 2011-12-21 中国电信股份有限公司 Cdma系统中搜索准最优和准最差扰码组的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051044A1 (en) * 2000-12-20 2002-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for classifying interference
CN101312577A (zh) * 2007-05-22 2008-11-26 北京信威通信技术股份有限公司 一种识别干扰源类型的方法
CN102547781A (zh) * 2010-12-14 2012-07-04 中国移动通信集团广东有限公司 互调干扰小区的确定方法和装置
CN102340799A (zh) * 2011-11-09 2012-02-01 广州逸信电子科技有限公司 一种gsm上行干扰源判断方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101713A (zh) * 2017-05-04 2017-08-29 安徽江淮汽车集团股份有限公司 一种卡车接收机的底噪超标排查方法及系统

Also Published As

Publication number Publication date
CN104221417A (zh) 2014-12-17
CN104221417B (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Yu et al. Downlink capacity and base station density in cellular networks
US8874099B2 (en) Method and apparatus for measuring multi-cell data efficiency in link adaptive wireless networks
EP2832040B1 (en) System and method for root cause analysis of mobile network performance problems
Zhou et al. The predictability of cellular networks traffic
US10237793B2 (en) Access control method and apparatus, and network device
CN110505650B (zh) 随机异构分层网容量智能评估方法及装置
CN106856608B (zh) 一种lte网络基站覆盖有效性评估方法和装置
CN104333492A (zh) 一种评估通信网络结构合理性的方法及装置
CN110636540B (zh) 一种网络上行干扰预评估方法及装置
CN111492687A (zh) 基于用户装备(ue)测量的共存报告
WO2014082214A1 (zh) 干扰源识别方法及系统
CN108243435B (zh) 一种lte小区场景划分中的参数优化方法及装置
WO2015110085A1 (zh) 一种分配物理小区标识的方法及装置
WO2010066175A1 (zh) 一种预测用户位置分布的方法和装置
Ghosh et al. Spectrum occupancy validation and modeling using real-time measurements
CN105163344A (zh) 一种td-lte系统内干扰的定位方法
CN103052103B (zh) 一种室分话务泄露检查方法及装置
CN103702343B (zh) 一种同频干扰小区的检测方法及装置
CN109996258A (zh) 无线网络利用率评估方法、装置、计算设备及存储介质
Hamidi et al. Indication of radio frequency interference (RFI) sources for solar burst monitoring in Malaysia
CN104486772A (zh) 一种端到端多维度归一化的lte网络评估优化系统
CN103596192A (zh) 一种获取Femtocell覆盖概率的方法
CN106998563B (zh) 一种基于网络性能的室分系统预警方法及装置
CN102158868A (zh) 基于扫频的干扰矩阵的获取方法及系统
Paul et al. Understanding spatial relationships in resource usage in cellular data networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889075

Country of ref document: EP

Kind code of ref document: A1