WO2014080880A1 - Device for identifying coin-shaped object to be detected - Google Patents

Device for identifying coin-shaped object to be detected Download PDF

Info

Publication number
WO2014080880A1
WO2014080880A1 PCT/JP2013/081105 JP2013081105W WO2014080880A1 WO 2014080880 A1 WO2014080880 A1 WO 2014080880A1 JP 2013081105 W JP2013081105 W JP 2013081105W WO 2014080880 A1 WO2014080880 A1 WO 2014080880A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex portion
detection
core
end surface
side convex
Prior art date
Application number
PCT/JP2013/081105
Other languages
French (fr)
Japanese (ja)
Inventor
百瀬 正吾
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to CN201380060343.0A priority Critical patent/CN104813370A/en
Priority to KR1020157011062A priority patent/KR101741932B1/en
Publication of WO2014080880A1 publication Critical patent/WO2014080880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • the present invention relates to a coin-shaped detected object identification device for identifying authenticity, good or bad of a coin-shaped detected object.
  • a medal selector used in a slot machine is known (for example, see Patent Document 1).
  • the medal selector described in Patent Document 1 is a device for selecting medals inserted from a medal insertion slot, and discharges illegal medals having a small size to a medal tray and sends out regular medals to a medal tank. Yes.
  • the medal selector is formed with a medal passage through which medals inserted from the medal insertion slot pass, and the medal selector sorts medals using the medal passage.
  • a coin identification sensor used in a vending machine or a ticket machine is known (for example, see Patent Document 2).
  • the coin identification sensor described in Patent Document 2 includes a magnetic material / thickness sensor for detecting the material and thickness of the coin, and a magnetic diameter sensor for detecting the diameter of the coin.
  • the material / thickness sensor is disposed on one side of the coin transport path in a direction orthogonal to the thickness direction of the coin passing through the coin transport path and the coin transport direction, and the diameter sensor is used to detect the coin passing through the coin transport path. It is arranged on the other side of the coin conveyance path in a direction orthogonal to the thickness direction and the coin conveyance direction.
  • the diameter sensor includes a core, an excitation coil, and a detection coil.
  • the core of the diameter sensor includes two projecting portions that project toward the material / thickness sensor and a connecting portion that connects the two projecting portions.
  • the excitation coil and the detection coil of the diameter sensor are wound around the connecting portion of the core.
  • the material / thickness sensor includes a core, an excitation coil, and a detection coil.
  • the core of the material / thickness sensor includes two projecting portions that project toward the diameter sensor and a connecting portion that connects the two projecting portions.
  • a protruding portion that protrudes in the thickness direction of the coin passing through the coin conveyance path is formed on the leading end side of each of the two protruding portions.
  • the excitation coil and detection coil of the material / thickness sensor are wound around each of the two protrusions. That is, the excitation coil and the detection coil are wound around one protrusion, and the excitation coil and the detection coil are wound around the other protrusion.
  • the material / thickness sensor has a position fluctuation correction unit for detecting the position fluctuation of the diameter sensor, and the excitation coil and the detection coil constituting the position fluctuation correction unit are connected to the core of the material / thickness sensor. It is wound around the part. Further, a step portion constituting a position variation correction unit is formed on the base end side of the protruding portion of the core of the material / thickness sensor.
  • a protrusion and a step are formed on the protrusion of the core of the material / thickness sensor.
  • the excitation coil of the material / thickness sensor is wound around each of the two protrusions
  • the detection coil of the material / thickness sensor is wound around each of the two protrusions.
  • the excitation coil and the detection coil of the diameter sensor are wound around the connecting portion of the core of the diameter sensor, and the excitation coil that constitutes the position variation correction unit for detecting the position variation of the diameter sensor and The detection coil is wound around the connecting portion of the core of the material / thickness sensor.
  • the shape of the core of the material / thickness sensor is complicated, and there are many winding positions of the exciting coil and the detection coil with respect to the core. The configuration becomes complicated.
  • an object of the present invention is to provide a coin-shaped detected object identification device capable of suppressing a decrease in the identification accuracy of a coin-shaped detected object over time and capable of simplifying the configuration. There is to do.
  • a coin-shaped detected object identification device includes a passage through which a coin-shaped detected object passes, an excitation coil and a detection coil, and a detected object that passes through the passage.
  • the first core disposed on one side in the thickness direction of the first and second cores disposed on the other side in the thickness direction of the detected object, and the first core is excited to project toward the second core
  • One or more side protrusions are formed, and one or more detection side protrusions projecting toward the first core are formed on the second core, and the excitation coil is an excitation side protrusion.
  • the detection coil is wound around the detection-side convex portion, and a passage is formed between the excitation-side convex portion and the detection-side convex portion in the thickness direction of the detected object.
  • the direction orthogonal to the passing direction of the detected object passing through and the thickness direction of the detected object is the orthogonal direction, and the orthogonal direction One side is defined as the first direction, the other side in the orthogonal direction is defined as the second direction, the end surface on the first direction side of the excitation side convex portion is defined as the first end surface, and the end surface on the second direction side of the excitation side convex portion is defined as the second direction.
  • the first end surface that is arranged closest to the first direction side is defined as the end surface, where the end surface on the first direction side of the detection side convex portion is the third end surface, and the end surface on the second direction side of the detection side convex portion is the fourth end surface.
  • the distance in the orthogonal direction between the second core side end of the first core and the second end side of the second end surface arranged closest to the second direction side, and the first of the third end surface arranged closest to the first direction side is equal to or greater than the outer diameter of the detection target.
  • an excitation-side convex portion that is formed on the first core and on which the excitation coil is wound and an excitation-side convex portion that is formed on the second core and on which the detection coil is wound.
  • the detection-side convex portion in the thickness direction of the detection object there is a passing path through which the coin-shaped detection object passes. Therefore, in the present invention, it is possible to identify the detection object passing through the passage by the magnetic detection mechanism including the excitation coil, the detection coil, the first core, the second core, and the like. That is, in the present invention, it is possible to identify the detection target by the non-contact type detection mechanism.
  • the excitation coil is wound around the excitation side convex portion protruding toward the second core
  • the detection coil is wound around the detection side convex portion protruding toward the first core. It is possible to simplify the configuration of the first core and the second core, and to reduce the number of winding portions of the exciting coil around the first core and the number of winding portions of the detection coil around the second core. Therefore, in the present invention, it is possible to simplify the configuration of the coin-shaped detected object identification device.
  • the distance in the orthogonal direction between the second core side end of the first end face arranged closest to the first direction side and the second core side end of the second end face arranged closest to the second direction side, and The distance in the orthogonal direction between the first core side end of the third end surface arranged closest to the first direction side and the first core side end of the fourth end surface arranged closest to the second direction side is in the orthogonal direction It is preferable that the width is equal to or greater than the width of the passage.
  • the coin-shaped detected object identification device includes a first detection coil and a second detection coil as detection coils, and the second core has a first detection coil as a detection-side convex portion.
  • the second detection coil is wound around the third detection side convex portion, and is wound around the third detection side convex portion, and is the first end surface that is the third end face that is disposed closest to the first direction side.
  • the distance in the orthogonal direction is equal to or greater than the width of the passage in the orthogonal direction, and the first core side end of the third detection-side convex portion passes through which position of the passage in the orthogonal direction.
  • the first core side end of the third detection side convex portion is formed and arranged so as to overlap the detection target when viewed from the thickness direction of the detection target.
  • the first core-side end of the third detecting-side convex portion Since the first core side end of the third detection-side convex portion is formed and arranged so that the entirety of the first detection coil overlaps the detection object, the second detection coil is not affected by the outer diameter of the detection object. This makes it possible to identify the material and thickness of the object to be detected. Therefore, it becomes possible to improve the identification accuracy of the material and thickness of the detected object.
  • the coin-shaped object identification device includes a first connecting core that connects an end of the first core and an end of the second core in the first direction, and an end of the first core in the second direction. It is preferable to provide an annular annular core composed of a second connecting core connecting the end of the second core, the first core, and the second core. If comprised in this way, it will become possible to reduce the leakage of the magnetic flux which an exciting coil generates from an annular core. Therefore, an efficient magnetic circuit can be formed on the annular core. Moreover, if comprised in this way, it will become possible to function an annular core as a magnetic shield, and it will become possible to suppress the fall of the identification accuracy of the to-be-detected body resulting from an external magnetic field.
  • the distance in the orthogonal direction between the side end and the first connecting core, the distance in the orthogonal direction between the second core side end of the second end surface arranged closest to the second direction side and the second connecting core, and The distance in the orthogonal direction between the first core side end of the fourth end surface arranged closest to the second direction side and the second connecting core is the excitation side convex portion and the detection side convex portion in the thickness direction of the detection target. It is preferable that it is longer than this distance.
  • the coin-shaped detected object identification device includes a first detection coil and a second detection coil as detection coils, and the second core has a first detection coil as a detection-side convex portion.
  • the second detection coil is wound around the third detection side convex portion, and the first core is first excited in the orthogonal direction as the excitation side convex portion.
  • Magnetic flux passing through the first detection side convex portion because the excitation side convex portion and the third excitation side convex portion arranged at the same position as the third detection side convex portion in the orthogonal direction are formed on the first core.
  • the density of the magnetic flux passing through the second detection side convex portion, and the density of the magnetic flux passing through the third excitation side convex portion can be increased.
  • the shortest distance between the end surface on the one direction side and the third excitation side convex portion may be longer than the distance between the third detection side convex portion and the third excitation side convex portion in the thickness direction of the detection target. preferable. If comprised in this way, it will become possible to suppress that the magnetic flux between a 3rd excitation side convex part and a 3rd detection side convex part leaks toward a 1st detection side convex part or a 2nd detection side convex part. Become. That is, the leakage of magnetic flux between the third excitation side convex portion and the third detection side convex portion can be suppressed, and the density of the magnetic flux passing through the third excitation side convex portion can be increased. .
  • the distance in the direction orthogonal to the core side end, the second direction of the second excitation side convex portion as the second end surface and the second core side end of the second direction end surface of the first excitation side convex portion as the second end surface Distance in the direction orthogonal to the second core side end of the side end face, the first core side end of the first direction side end face of the first detection side convex portion being the third end face, and the second detection side being the third end face.
  • the distance in the direction orthogonal to the first core side end of the end surface on the first direction side of the convex portion, and the first core side end of the end surface on the second direction side of the first detection side convex portion that is the fourth end surface and the first end It is preferable that the distance in the direction orthogonal to the
  • a cylindrical second detection bobbin that covers an end surface on the third end surface side and an end surface on the fourth end surface side of the third detection-side convex portion in the orthogonal direction, and the first detection coil is a first detection bobbin.
  • the second detection coil is wound around the first detection side convex portion, the second detection side convex portion, and the third detection side convex portion, and the second detection coil is third detected via the second detection bobbin. It is preferable to be wound around the side protrusion.
  • the distance between the first end surface, the second end surface, the third end surface, and the fourth end surface in the thickness direction of the detection target is the excitation side convex portion and the detection side convex portion in the thickness direction of the detection target body. It is preferable that the distance is longer than the distance between and. If comprised in this way, it will become possible to suppress that the magnetic flux between an excitation side convex part and a detection side convex part wraps around to an excitation side convex part, and a magnetic flux leaks. That is, leakage of magnetic flux between the excitation side convex portion and the detection side convex portion can be suppressed, and an efficient magnetic circuit can be formed on the annular core.
  • the annular core is preferably formed integrally from a single metal plate.
  • a gap shorter than the distance between the excitation-side convex portion and the detection-side convex portion in the thickness direction of the object to be detected is formed in a part of the annular core.
  • the coin-shaped detected object identification device of the present invention it is possible to suppress a decrease in the identification accuracy of the coin-shaped detected object over time and simplify the configuration of the device. It becomes possible.
  • FIG. 4 is a perspective view of a state where an excitation coil, a first detection coil, and a bobbin are removed from the state shown in FIG. 3.
  • FIG. 3 It is a perspective view of the annular core shown in FIG.
  • FIG. 3 It is a top view of the cyclic
  • FIG. It is a circuit block diagram of the coin-shaped to-be-detected object identification device shown in FIG.
  • FIG. It is a figure for demonstrating the output signal from the coil for a detection shown in FIG. It is a figure for demonstrating the effect of the coin-shaped to-be-detected body identification device shown in FIG. It is a figure for demonstrating the effect of the coin-shaped to-be-detected body identification device shown in FIG. It is a top view for demonstrating the coil for excitation and the coil for detection concerning other embodiment of this invention. It is a top view for demonstrating the core concerning other embodiment of this invention.
  • FIG. 1 is a perspective view of a coin-shaped object identification device 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the medal 2 shown in FIG.
  • FIG. 3 is a perspective view of a state in which the case body 3 is removed from the coin-shaped detected object identification device 1 shown in FIG.
  • the coin-shaped detected object identification device 1 of this embodiment is a device for identifying a medal 2 that is a coin-shaped detected object, and is used by being mounted in a slot machine (not shown). That is, the coin-shaped object identification device 1 of this embodiment is a device for identifying whether or not the medal 2 inserted from the medal slot of the slot machine is genuine. Therefore, hereinafter, the coin-shaped detected object identification device 1 of this embodiment is referred to as a “medal identification device 1”. As illustrated in FIGS. 1 and 3, the medal identification device 1 includes a case body 3 and a magnetic sensor 4 accommodated in the case body 3. In addition, a passage 5 through which the medal 2 passes is formed inside the medal identification device 1.
  • the medal 2 is formed of a magnetic metal material and is formed in a disc shape. As shown in FIG. 2, an edge 2 a that protrudes to both sides in the thickness direction of the medal 2 is formed at the outer peripheral end of the medal 2.
  • the edging portion 2a is formed over the entire circumference of the medal 2 and is formed in an annular shape.
  • the case body 3 is formed in a rectangular parallelepiped box shape. On one side surface (upper surface in FIG. 1) of the case body 3, a slit-shaped passage hole 3a through which the medal 2 passes is formed. A slit-like passage hole through which the medal 2 passes is also formed on a side surface (lower surface in FIG. 1) parallel to the side surface on which the passage hole 3a is formed. The passage hole and the passage hole 3 a are connected to the passage 5.
  • a magnetic member 6 formed in a flat plate shape is fixed to each of the four side surfaces orthogonal to the side surface where the passage hole 3a is formed. The magnetic member 6 functions as a magnetic shield for protecting the magnetic sensor 4 from the external magnetic field of the medal identification device 1.
  • the case body 3 is fixed with a guide member (not shown) for guiding the medal 2 to the passage hole 3a.
  • the magnetic sensor 4 includes an excitation coil 8 and detection coils 9 and 10, and an annular core 11 around which the excitation coil 8 and detection coils 9 and 10 are wound.
  • the annular core 11 is made of a magnetic material.
  • the annular core 11 is formed of an iron-based magnetic material such as ferrite, amorphous, or permalloy.
  • the annular core 11 is formed in a flat plate shape.
  • FIG. 4 is a perspective view showing a state where the exciting coil 8, the detecting coil 9, and the bobbins 20 and 21 are removed from the state shown in FIG.
  • FIG. 5 is a perspective view of the annular core 11 shown in FIG.
  • FIG. 6 is a plan view of the annular core 11 shown in FIG.
  • FIG. 7 is a circuit block diagram of the coin-shaped detected object identification device 1 shown in FIG.
  • FIG. 8 is a diagram for explaining the output signal S1 from the detection coil 9 and the output signal S2 from the detection coil 10 shown in FIG.
  • each of the three directions orthogonal to each other is defined as an X direction, a Y direction, and a Z direction.
  • the X direction is the left-right direction
  • the Y direction is the front-rear direction
  • the Z direction is the up-down direction.
  • the X1 direction side is the “right” side
  • the X2 direction side is the “left” side
  • the Y1 direction side is the “front” side
  • the Y2 direction side is the “rear (back)” side.
  • the medal identification device 1 is arranged so that the thickness direction of the annular core 11 matches the vertical direction.
  • the medal 2 passes through the passage 5 in the thickness direction of the annular core 11.
  • the vertical direction is the passing direction of the medal 2 passing through the passage 5.
  • the front-rear direction is the thickness direction of the medal 2 that passes through the passage 5.
  • the left-right direction of this embodiment is an orthogonal direction orthogonal to the passing direction of the medal 2 and the thickness direction of the medal 2, the right side is one side of the orthogonal direction, and the left side is the other side of the orthogonal direction. .
  • the magnetic sensor 4 includes the excitation coil 8 and the detection coils 9 and 10 and the annular core 11 around which the excitation coil 8 and the detection coils 9 and 10 are wound.
  • the annular core 11 is formed in an annular shape. Specifically, the annular core 11 is formed in a substantially square annular shape that is elongated in the left-right direction.
  • the annular core 11 constitutes a front side portion of the annular core 11 and a substantially linear first core 12 arranged in parallel with the left-right direction, and constitutes a rear side portion of the annular core 11 and the first core 12.
  • a substantially linear second core 13 arranged in parallel; a linear first connecting core 14 connecting the right end of the first core 12 and the right end of the second core 13 and arranged in parallel with the front-rear direction; It is composed of a linear second connecting core 15 that connects the left end of the first core 12 and the left end of the second core 13 and is arranged in parallel with the first connecting core 14.
  • the annular core 11 of this embodiment is formed by press punching, and the first core 12, the second core 13, the first connection core 14, and the second connection core 15 are integrally formed.
  • the first core 12 and the second core 13 are formed in the same shape, and the first connection core 14 and the second connection core 15 are formed in the same shape.
  • the annular core 11 is formed in a line-symmetric shape with respect to a center line CL1 parallel to the left-right direction passing through the center position of the annular core 11 in the front-rear direction, and in the left-right direction. It is formed in a line-symmetric shape with respect to a center line CL2 parallel to the front-rear direction passing through the center position of the annular core 11.
  • the first core 12 is formed with convex portions 12a, 12b, and 12c as excitation-side convex portions that protrude toward the second core 13 (that is, toward the rear side).
  • the convex portions 12a to 12c are formed in a rectangular shape.
  • the rear end surfaces (that is, the front end surfaces) of the convex portions 12a to 12c are parallel to the left-right direction, and the left and right end surfaces of the convex portions 12a to 12c are parallel to the front-rear direction.
  • the rear end surfaces of the convex portions 12a to 12c are arranged in the same plane perpendicular to the front-rear direction.
  • the width of the convex portion 12c in the left-right direction is narrower than the width of the convex portions 12a and 12b.
  • the right end surfaces of the convex portions 12a to 12c are first end surfaces
  • the left end surfaces of the convex portions 12a to 12c are second end surfaces.
  • the first end surface and the second end surface are formed at a distance longer than the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction.
  • the convex portion 12a is disposed on the right end side, the convex portion 12b is disposed on the left end side, and the convex portion 12c is disposed between the convex portion 12a and the convex portion 12b.
  • the convex part 12c is arranged so that the center of the convex part 12c in the left-right direction and the center of the first core 12 coincide with each other, and the convex part 12a and the convex part 12b have the center line CL2 as an axis of symmetry. It is arranged at a line symmetrical position.
  • the convex portion 12a and the convex portion 12b are formed in the same shape, and the first core 12 is formed in a line-symmetric shape with respect to the center line CL2.
  • the convex portion 12a is a first excitation side convex portion
  • the convex portion 12b is a second excitation side convex portion
  • the convex portion 12c is a third excitation side convex portion.
  • a gap is formed between the convex portion 12a and the first connecting core 14 (specifically, between the right end surface of the convex portion 12a and the left end surface of the first connecting core 14).
  • a gap is formed between the portion 12b and the second connecting core 15 (specifically, between the left end surface of the convex portion 12b and the right end surface of the second connecting core 15).
  • a gap is formed between the convex portion 12a and the convex portion 12c (specifically, between the left end surface of the convex portion 12a and the right end surface of the convex portion 12c), and the convex portion 12b.
  • a gap is formed between the protrusion 12c and the protrusion 12c (specifically, between the right end face of the protrusion 12b and the left end face of the protrusion 12c).
  • the first core 12 is formed in a line-symmetric shape with respect to the center line CL2, and the gap between the convex portion 12a and the first connecting core 14, and the convex portion 12b and the second connecting core 15 are formed.
  • the gap between the convex portion 12a and the convex portion 12c and the gap between the convex portion 12b and the convex portion 12c are the same size.
  • the rear end surface of the first core 12 between the convex portion 12a and the convex portion 12c and between the convex portion 12b and the convex portion 12c is between the convex portion 12a and the first connecting core 14 and the convex portion. It arrange
  • the second core 13 is formed in the same shape as the first core 12, and is disposed at a line-symmetrical position with the central axis CL1 as the symmetry axis. Therefore, the second core 13 is formed with convex portions 13a, 13b, and 13c as detection-side convex portions that project toward the first core 12 (that is, toward the front side).
  • the convex portions 13a to 13c are formed in the same shape as the convex portions 12a to 12c, and the front end surfaces (that is, the front end surfaces) of the convex portions 13a to 13c are arranged in the same plane orthogonal to the front-rear direction. .
  • the right end surface of the convex portions 13a to 13c is the third end surface
  • the left end surface of the convex portions 13a to 13c is the fourth end surface.
  • the third end surface and the fourth end surface are formed at a distance longer than the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction.
  • the convex portion 13a is arranged at the same position as the convex portion 12a
  • the convex portion 13b is arranged at the same position as the convex portion 12b
  • the convex portion 13c is arranged at the same position as the convex portion 12c.
  • the second core 13 is formed in a line-symmetric shape with respect to the center line CL2.
  • the convex part 13a of this form is a 1st detection side convex part
  • the convex part 13b is a 2nd detection side convex part
  • the convex part 13c is a 3rd detection side convex part.
  • a gap is formed between the convex portion 13 a and the first connecting core 14, and the convex portion 13 a and the first connecting core 14 are provided between the convex portion 13 b and the second connecting core 15.
  • a gap having the same size as the gap is formed.
  • a gap is formed between the convex portion 13a and the convex portion 13c, and the same size as the gap between the convex portion 13a and the convex portion 13c is formed between the convex portion 13b and the convex portion 13c.
  • a gap is formed.
  • the rear end surface of the second core 13 between the convex portion 13a and the convex portion 13c and between the convex portion 13b and the convex portion 13c is the convex portion 13a and the first connecting core 14. And the rear end surface of the second core 13 between the convex portion 13b and the second connecting core 15.
  • a passage 5 is provided between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction.
  • the passage 5 is formed in a rectangular shape elongated in the left-right direction.
  • the guide member for guiding the medal 2 to the passage hole 3 a is fixed to the case body 3. This guide member guides the medal 2 to the passage hole 3a so that the medal 2 passes between the right end surface of the convex portions 12a, 13a and the left end surface of the convex portions 12b, 13b. That is, the left-right distance L1 (see FIG.
  • the width of the passage 5 in the left-right direction is larger than the outer diameter of the medal 2. That is, the distance L1 is larger than the outer diameter of the medal 2.
  • the width in the left-right direction of the passage 5 is the medal 2 that is assumed to be inserted from the medal slot of the slot machine, and is larger than the outer diameter of the medal 2 having the largest outer diameter.
  • the distance L1 is larger than the outer diameter of the medal 2 having the largest outer diameter.
  • the right end surface of the convex portion 12a in this embodiment is the first end surface disposed on the rightmost side (first direction side), and the left end surface of the convex portion 12b is the first end surface disposed on the leftmost side (second direction side).
  • the right end surface of the convex portion 13a is the third end surface disposed on the rightmost side, and the left end surface of the convex portion 13b is the fourth end surface disposed on the leftmost side.
  • the convex portions 12c and 13c are formed so that the entire convex portions 12c and 13c overlap the medal 2 when viewed from the front-rear direction regardless of the position of the passage 5 in the left-right direction. Is also arranged. That is, even when the medal 2 passes through the passage 5 so that the right end surface of the convex portions 12a, 13a or the left end surface of the convex portions 12b, 13b coincides with the outer peripheral end of the medal 2, it is viewed from the front-rear direction. Sometimes, the convex portions 12 c and 13 c are formed and arranged so that the entire convex portions 12 c and 13 c overlap with the medal 2.
  • the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction is a distance L3 (see FIG. 6) between the right end surface of the convex portions 12a, 13a and the left end surface of the first connecting core 14 in the left-right direction, and the left end of the convex portions 12b, 13b in the left-right direction. It is shorter than the distance L4 (see FIG. 6) between the surface and the right end surface of the second connecting core 15.
  • the distance L2 between the convex portion 12c and the convex portion 13c in the front-rear direction is the shortest distance between the convex portion 12c and the convex portion 13a (that is, the rear end of the right end surface of the convex portion 12c and the front end of the left end surface of the convex portion 13a). And the shortest distance between the convex portion 12c and the convex portion 13b (that is, the shortest distance between the rear end of the left end surface of the convex portion 12c and the front end of the right end surface of the convex portion 13b). Yes.
  • the distance L5 between the right end surface of the convex portions 12a, 13a and the right end surface of the convex portions 12b, 13b in the left-right direction, and the left end surface of the convex portions 12a, 13a and the left end surface of the convex portions 12b, 13b in the left-right direction Is smaller than the outer diameter of the medal 2.
  • the distances L5 and L6 are medals 2 that are assumed to be inserted from the medal insertion slot of the slot machine, and are smaller than the outer diameter of the medal 2 having the smallest outer diameter.
  • the exciting coil 8 is wound around the convex portions 12a to 12c. Specifically, as shown in FIG. 3, the upper and lower surfaces of the convex portions 12a to 12c (the surface and the back surface of the first excitation side convex portion 12a and the surface of the second excitation side convex portion 12b in the passing direction of the detection target 2). And a back surface and a front surface and a back surface of the third excitation side convex portion 12c), a right end surface (first end surface) of the convex portion 12a, and a left end surface (second end surface) of the convex portion 12b. Thus, the exciting coil 8 is wound around the convex portions 12a to 12c.
  • the exciting coil 8 is connected to the convex portions 12a to 12c via the bobbin 20 (excitation bobbin) so as to cover the upper and lower surfaces of the convex portions 12a to 12c, the right end surface of the convex portion 12a, and the left end surface of the convex portion 12b. It is wound around.
  • the top surfaces of the convex portions 12a to 12c are surfaces on one side of the convex portions 12a to 12c located on the upstream side of the annular core 11 in the passing direction of the medal 2.
  • the lower surfaces of the convex portions 12a to 12c are surfaces on the other side of the convex portions 12a to 12c located on the downstream side of the annular core 11 in the passing direction of the medal 2.
  • the detection coil 9 is wound around the convex portions 13a to 13c. Specifically, as shown in FIG. 3, the upper and lower surfaces of the protrusions 13a to 13c (the front and back surfaces of the first detection-side protrusion 13a and the surface of the second detection-side protrusion 13b in the passing direction of the detection target 2). And the back surface and the front and back surfaces of the third detection-side convex portion 13c), the right end surface (third end surface) of the convex portion 13a, and the left end surface (fourth end surface) of the convex portion 13b.
  • the detection coil 9 is wound around the convex portions 13a to 13c via a single detection bobbin.
  • the detection coil 9 is wound around the convex portions 13a to 13c via the bobbin 21 so as to cover the upper and lower surfaces of the convex portions 13a to 13c, the right end surface of the convex portion 13a, and the left end surface of the convex portion 13b.
  • the detection coil 9 of this embodiment is a first detection coil.
  • the upper surfaces of the convex portions 13a to 13c are surfaces on one side of the convex portions 13a to 13c located on the downstream side of the annular core 11 in the passing direction of the medal 2.
  • the lower surfaces of the convex portions 13a to 13c are the other surfaces of the convex portions 13a to 13c located on the downstream side of the annular core 11 in the passing direction of the medal 2.
  • the detection coil 10 is wound around the convex portion 13c. Specifically, as shown in FIG. 4, the upper and lower surfaces of the convex portion 13c (the front surface and the rear surface of the third detection side convex portion 13c), the right end surface (the third end surface side of the third detection side convex portion 13c in the orthogonal direction).
  • the detection coil 10 via a substantially square cylindrical bobbin 22 (second detection bobbin) covering the left end surface and the left end surface (the end surface on the fourth end surface side of the third detection side convex portion 13c in the orthogonal direction). It is wound around the convex part 13c.
  • the detection coil 10 is wound around the convex portion 13c through the bobbin 22 so as to cover the upper and lower surfaces, the right end surface, and the left end surface of the convex portion 13c.
  • the detection coil 10 of this embodiment is a second detection coil.
  • an AC power supply 25 is connected to one end of a conducting wire that constitutes the exciting coil 8, and the other end of the conducting wire that constitutes the exciting coil 8 is grounded.
  • One end of a conducting wire constituting the detection coil 9 is connected to an MPU (Micro Processing Unit) 29 via an amplifier circuit 26, a rectifying circuit 27 and an offset circuit 28, and the other end of the conducting wire constituting the detection coil 9 is grounded.
  • One end of the conducting wire constituting the detection coil 10 is connected to the MPU 29 via the amplifier circuit 31, the rectifier circuit 32 and the offset circuit 33, and the other end of the conducting wire constituting the detection coil 10 is grounded.
  • a comparator 35 for determining the sampling range of the output signals S 1 and S 2 from the detection coils 9 and 10 is connected in parallel between the offset circuit 28 and the MPU 29.
  • the detection circuit of the magnetic sensor 4 is configured.
  • the lateral distance L1 between the right end surfaces of the convex portions 12a and 13a and the left end surfaces of the convex portions 12b and 13b is equal to the lateral width of the passage 5 and the detection coil 9 is
  • the convex portions 13a to 13c are wound around the convex portions 13a to 13c via the bobbin 21 so as to cover both the upper and lower surfaces of the convex portions 13a to 13c, the right end surface of the convex portion 13a, and the left end surface of the convex portion 13b. Therefore, the output value of the output signal S1 of the detection coil 9 varies due to the influence of the material, thickness and outer diameter of the medal 2 passing through the passage 5.
  • the convex portions 12c and 13c are disposed between the convex portions 12a and 13a and the convex portions 12b and 13b, and the medal 2 passes through any position of the passage 5 in the left-right direction from the front-rear direction.
  • the projections 12c and 13c are entirely formed and arranged so as to overlap the medal 2, and the detection coil 10 is wound around the projection 13c. For this reason, the output value of the output signal S2 of the detection coil 10 varies mainly due to the influence of the material and thickness of the medal 2 passing through the passage 5.
  • the medal identification device 1 it is identified whether or not the medal 2 passing through the passage 5 is genuine based on the maximum value V1 of the output signal S1 and the maximum value V2 of the output signal S2. .
  • the magnetic sensor 4 is set so that the output value of the output signal S1 and the output value of the output signal S2 become small. If the detection circuit is configured, for example, based on the minimum value of the output signal S1 and the minimum value of the output signal S2, whether or not the medal 2 passing through the passage 5 is a regular one is determined. Identified.
  • the output signal S2 whose output value varies mainly due to the influence of the material and thickness of the medal 2 is shown in FIG.
  • the center side of the medal 2 passes between the convex portion 12c and the convex portion 13c
  • peaks P1, P2, and P3 appear.
  • three peaks P1, P2, and P3 appear in the output signal S2.
  • Based on the values of the three peaks P1 to P3 and the maximum value V1 of the output signal S1, whether or not the medal 2 passing through the passage 5 is genuine may be identified.
  • the exciting coil 8 is wound around the rectangular convex portions 12a to 12c protruding toward the second core 13, and the rectangular convex portions 13a to 13c protruding toward the first core 12 are used for detection.
  • the magnetic sensor 4 is configured by winding the coil 9 and winding the detection coil 10 around the convex portion 13c. Therefore, in this embodiment, the configuration of the first core 12 and the second core 13 can be simplified, and the number of winding portions of the exciting coil 8 and the detecting coils 9 and 10 around the annular core 11 can be reduced. become. Therefore, in this embodiment, the configuration of the medal identification device 1 can be simplified.
  • the output value of the output signal S1 of the detection coil 9 varies due to the influence of the material, thickness and outer diameter of the medal 2 passing through the passage 5, and the output value of the output signal S2 of the detection coil 10 is The fluctuation mainly depends on the material and thickness of the medal 2 passing through the passage 5. Therefore, in this embodiment, it is possible to mainly identify the outer diameter of the medal 2 using the detection coil 9 and mainly identify the material and thickness of the medal 2 using the detection coil 10. Therefore, in this embodiment, it becomes possible to improve the identification accuracy of the medal 2.
  • the regular medal 2 has the same outer diameter and thickness, but the non-regular medal 2 and the regular medal 2 having different materials are identified, or the regular medal 2 has the same thickness and material. However, it is possible to identify the non-regular medal 2 and the regular medal 2 having different outer diameters.
  • the distance L1 in the left-right direction between the right end surfaces of the convex portions 12a, 13a and the left end surface of the convex portions 12b, 13b is equal to the width in the left-right direction of the passage 5 so Regardless of the position of the medal 2 through which the medal 2 passes, a part of the medal 2 does not deviate from the magnetic path formed between the convex portions 12a to 12c and the convex portions 13a to 13c. Therefore, in this embodiment, it is possible to suppress fluctuations in the output value of the output signal S1 of the detection coil 9 due to the passing position of the medal 2 in the left-right direction. As a result, in this embodiment, it becomes possible to improve the accuracy of identifying the outer diameter of the medal 2.
  • the distance L5 between the right end surface of the convex portions 12a and 13a and the right end surface of the convex portions 12b and 13b, and the distance L6 between the left end surface of the convex portions 12a and 13a and the left end surface of the convex portions 12b and 13b. Is a medal 2 that is expected to be inserted from the medal slot of the slot machine, and is smaller than the outer diameter of the medal 2 having the smallest outer diameter. Even if the medal 2 passes through the position, the medal 2 passes through in a state where the entire medal 2 is out of the space between the convex portion 12a and the convex portion 13a or between the convex portion 12b and the convex portion 13b. None go through 5.
  • the distance L8 from the left end surface of the medals 2 is larger than the outer diameter of the medal 2, as shown by the solid line in FIG. 9A, a part of the medal 2 is between the convex portion 12a and the convex portion 13a and When the medal 2 passes through the passage 5 so as to pass between the convex portion 12b and the convex portion 13b, and as shown by the broken line in FIG.
  • a part of the medal 2 is convex with the convex portion 12a.
  • the output of the detection coil 9 in the former case and the output of the detection coil 9 in the latter case vary greatly. That is, the output of the detection coil 9 may vary greatly depending on the passing position of the medal 2 in the left-right direction.
  • the convex portions 12c and 13c are formed so that the entire convex portions 12c and 13c are the same as the medal 2 when viewed from the front-rear direction regardless of the position of the passage 5 in the left-right direction. Since they are formed and arranged so as to overlap, the material and thickness of the medal 2 can be identified by the detection coil 10 without being affected by the outer diameter of the medal 2. Therefore, in this embodiment, it becomes possible to improve the identification accuracy of the material and thickness of the medal 2.
  • an exciting coil 8 and detection coils 9 and 10 are wound around an annular core 11 formed in a substantially square annular shape. Therefore, in this embodiment, it is possible to reduce the leakage of the magnetic flux generated by the exciting coil 8 from the annular core 11, and as a result, an efficient magnetic circuit can be formed in the annular core 11. Become.
  • the convex portion 12a and the convex portion 13a formed in the same shape are arranged at the same position in the left-right direction, and the convex portion 12b and the convex portion 13b formed in the same shape are arranged at the same position in the left-right direction.
  • the convex part 12c and the convex part 13c which are formed in the same shape are arrange
  • the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction is the distance L3 between the right end surface of the convex portions 12a and 13a and the left end surface of the first connecting core 14 in the left-right direction.
  • the distance L4 between the left end surface of the convex portions 12b, 13b and the right end surface of the second connecting core 15 in the left-right direction is the distance L3 between the right end surface of the convex portions 12a and 13a and the left end surface of the first connecting core 14 in the left-right direction.
  • the magnetic flux between the convex portion 12a and the convex portion 13a leaks toward the first connecting core 14, or the convex portion 12b It is possible to suppress the magnetic flux between the convex portions 13 b from leaking toward the second connecting core 15. That is, in this embodiment, a magnetic path is formed that wraps directly from the rear end surface of the convex portion 12a to the first connecting core 14, and a magnetic path that wraps directly from the rear end surface of the convex portion 12b to the second connecting core 15. Can be prevented from being formed. Therefore, in this embodiment, it is possible to increase the density of the magnetic flux passing through each of the convex portions 13a and the convex portions 13b.
  • the distance L2 between the convex part 12c and the convex part 13c in the front-rear direction is shorter than the shortest distance between the convex part 12c and the convex part 13a and the shortest distance between the convex part 12c and the convex part 13b. It has become. Therefore, in this embodiment, as indicated by the dashed arrows in FIG. 9B, it is possible to suppress the magnetic flux between the convex portions 12c and 13c from leaking toward the convex portions 13a and 13b. Become. That is, in this embodiment, it is possible to suppress the formation of a magnetic path that goes from the rear end surface of the convex portion 12c to the convex portions 13a and 13b. Therefore, in this embodiment, it is possible to increase the density of the magnetic flux passing through the convex portion 13c.
  • the first end face, the second end face, the third end face, and the fourth end face are formed at a distance longer than the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction. For this reason, it is possible to suppress the wraparound of the magnetic flux from the rear end surface of the convex portions 12a and 12b to the first core 12 on the front side and from the front end surface of the convex portions 13a and 13b to the second core 13 on the rear side. Become.
  • the distance from the rear end surface of the convex portion 12c to the first core 12 on the front side in the front-rear direction and the distance from the front end surface of the convex portion 13c to the second core 13 on the rear side are the same as those of the convex portions 12a to 12c in the front-rear direction. It is formed at a distance longer than the distance L2 with the convex portions 13a to 13c. For this reason, it becomes possible to suppress the wraparound of the magnetic flux from the rear end surface of the convex portion 12c in the front-rear direction to the first core 12 on the front side and from the front end surface of the convex portion 13c to the second core 13 on the rear side. .
  • an exciting coil 8 and detection coils 9 and 10 are wound around an annular core 11 formed in a substantially square annular shape. Therefore, even if the medal identification device 1 is arranged in an external magnetic field that is oriented in an arbitrary direction in the XY plane composed of the X direction and the Y direction, the magnetic path caused by the external magnetic field is a passing path. 5 is not formed. For example, even if the medal identification device 1 is arranged in an external magnetic field (arrow in FIG. 10) in which the direction of the magnetic lines of force is directed backward, as shown in FIG. The passage 5 is not formed.
  • the annular core 11 can be caused to function as a magnetic shield, and as a result, it is possible to suppress a decrease in the identification accuracy of the medal 2 due to the external magnetic field of the medal identification device 1. Even if the medal identification device 1 is arranged in an external magnetic field that faces in the up-down direction (Z direction), the up-down direction is orthogonal to the magnetic sensing direction of the detection coils 9, 10. The identification device 1 is not easily affected by an external magnetic field.
  • the annular core 11 is formed in a substantially quadrangular annular shape elongated in the left-right direction, and the passage 5 formed on the inner peripheral side of the annular core 11 is formed in a rectangular shape elongated in the left-right direction. Therefore, in this embodiment, it is possible to reduce the size of the annular core 11 while ensuring the widths of the first core 12, the second core 13, the first connection core 14, and the second connection core 15. That is, in the present embodiment, the width of the first core 12, the second core 13, the first connection core 14, and the second connection core 15 is ensured to prevent saturation of the internal magnetic flux in the annular core 11, and the annular core 11. Can be miniaturized.
  • annular core 11 is formed in a substantially square annular shape, for example, when the annular core 11 is formed by punching a plurality of annular cores 11 from one metal plate, Loss can be reduced. Furthermore, in this embodiment, since the annular core 11 is formed in a substantially square ring shape, for example, the positioning of the annular core 11 with respect to the case body 3 is easier than in the case where the annular core 11 is formed in an annular shape. become.
  • the exciting coil 8 is wound around the convex portions 12a to 12c via the bobbin 20.
  • the exciting coil 8 may be wound directly around the convex portions 12a to 12c.
  • the detection coil 9 is wound around the convex portions 13a to 13c via the bobbin 21, and the detection coil 10 is wound around the convex portion 13c via the bobbin 22. May be wound directly around the convex portions 13a to 13c, or the detection coil 10 may be wound directly around the convex portion 13c.
  • the exciting coil 8 is wound around the convex portions 12a to 12c so as to cover the upper and lower surfaces of the convex portions 12a to 12c, the right end surface of the convex portion 12a, and the left end surface of the convex portion 12b.
  • the conducting wire constituting the exciting coil 8 is sequentially wound around the convex portion 12a, the convex portion 12c, and the convex portion 12b, so that the exciting coil 8 is It may be configured. That is, the exciting coil 8 may be wound around the convex portions 12a to 12c so as to cover the entire circumference of each of the convex portions 12a to 12c. In this case, the magnetic flux density between the convex part 12c and the convex part 13c can be increased.
  • the detection coil 9 is wound around the convex portions 13a to 13c so as to cover the upper and lower surfaces of the convex portions 13a to 13c, the right end surface of the convex portion 13a, and the left end surface of the convex portion 13b.
  • the detection coil 9 is formed by sequentially winding the conductive wire constituting the detection coil 9 around the convex portion 13a, the convex portion 13c, and the convex portion 13b. It may be configured. That is, the detection coil 9 may be wound around the convex portions 13a to 13c so as to cover the entire circumference of each of the convex portions 13a to 13c. Further, as shown in FIG.
  • the detection coil 9 may be configured by sequentially winding the conductive wire constituting the detection coil 9 around the convex portion 13a and the convex portion 13b. That is, the detection coil 9 may be wound around the convex portions 13a and 13b so as to cover the entire circumferences of the convex portions 13a and 13b.
  • the first core 12, the second core 13, the first connection core 14, and the second connection core 15 are integrally formed.
  • at least one of the first core 12, the second core 13, the first connection core 14, and the second connection core 15 is formed separately, and the first core 12, the second core 13, The first connecting core 14 and the second connecting core 15 may be integrated. That is, the annular core 11 may not be formed integrally.
  • the magnetic sensor 4 includes the annular core 11 formed in an annular shape.
  • the magnetic sensor 4 instead of the annular core 11, as shown in FIG. 12, at least one of the first core 12, the second core 13, the first connection core 14, and the second connection core 15. You may provide the core 51 in which the gap (cut
  • the magnetic sensor 4 may include a core 51 in which a cap G is formed on the first connecting core 14 as shown in FIG. 12 (A), or as shown in FIG. 12 (B).
  • the core 51 in which the gap G is formed in the two cores 13 may be provided.
  • the gap W is preferably as narrow as possible so that leakage of magnetic flux from the gap G can be suppressed. That is, in place of the annular core 11, when the core 51 in which the gap G is formed is used, it is preferable to use the substantially annular core 51 in which the gap G having a narrow interval W is formed. Specifically, the gap G having a narrow interval W is preferably shorter than the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction.
  • the direction of the magnetic flux is the direction from the convex portions 12a to 12c toward the convex portions 13a to 13c.
  • the gap G is preferably formed in the second core 13.
  • the current is supplied to the exciting coil 8 so that the direction of the magnetic flux is the direction from the convex portions 13a to 13c toward the convex portions 12a to 12c, the gap G is formed in the first core 12. Preferably it is.
  • the gap G may be filled with a nonmagnetic material.
  • the distance L1 in the left-right direction between the right end surface of the convex portions 12a, 13a and the left end surface of the convex portions 12b, 13b is equal to the width in the left-right direction of the passage 5.
  • the distance L1 may be wider than the width of the passage 5 in the left-right direction.
  • the distance L1 may be narrower than the width in the left-right direction of the passage 5 as long as the distance L1 is equal to or greater than the outer diameter of the medal 2.
  • the 1st core 12 and the 2nd core 13 are formed in the same shape,
  • the distance of the left-right direction of the right end surface of the convex part 12a, and the left end surface of the convex part 12b, and the convex part 13a The right and left distances between the right end surface of the projections 13b and the left end surface of the projections 13b are equal to each other, but the left and right distances between the right end surfaces of the projections 12a and the left end surfaces of the projections 12b and the right ends of the projections 13a are the same.
  • the distance in the left-right direction between the surface and the left end surface of the convex portion 13b may be different.
  • the convex portions 12a to 12c are formed in a rectangular shape.
  • the convex portions 12a to 12c may be formed in a trapezoidal shape whose width in the left-right direction becomes narrower or wider toward the rear side.
  • the convex portions 13a to 13c are formed in a rectangular shape, but the convex portions 13a to 13c may be formed in a trapezoidal shape whose width in the left-right direction is narrower or wider toward the front side. .
  • the distance in the left-right direction between the rear end of the right end surface of the convex portion 12a (that is, the end on the second core 13 side) and the rear end of the left end surface of the convex portion 12b is equal to or greater than the outer diameter of the medal 2.
  • the convex portions 12a and 12b are formed, and the distance in the left-right direction between the front end of the right end surface of the convex portion 13a (that is, the first core 12 side end) and the front end of the left end surface of the convex portion 13b is The convex portions 13a and 13b are formed so as to be equal to or larger than the diameter.
  • the convex portion 12a so that the distance in the left-right direction between the rear end of the right end surface of the convex portion 12a and the rear end of the left end surface of the convex portion 12b is equal to or greater than the width in the left-right direction of the passage 5.
  • 12b are formed, and the protrusions 13a and 13b are formed such that the distance in the left-right direction between the front end of the right end surface of the protrusion 13a and the front end of the left end surface of the protrusion 13b is equal to or greater than the width in the left-right direction of the passage 5. It is formed.
  • the distance between the rear end of the right end surface of the convex portion 12a in the left-right direction and the left end surface of the first connecting core 14 and the front end of the right end surface of the convex portion 13a in the left-right direction and the first connecting core 14 The distance between the left end surface, the distance between the rear end of the left end surface of the convex portion 12b and the right end surface of the second connecting core 15 in the left-right direction, and the front end of the left end surface of the convex portion 13b and the second connecting core 15 in the left-right direction.
  • the convex portions 12a, 12b, 13a, and 13b are formed so that the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction is shorter than the distance from the right end surface of the projection.
  • the convex portions 12 a, 12 b, 13 a, and 13 b are formed so that the distance from the front end of the left end surface is smaller than the outer diameter of the medal 2.
  • the first core 12 has three convex portions 12a to 12c.
  • the number of convex portions formed on the first core 12 may be one or two, or may be four or more.
  • the right end surface of the convex portion formed on the rightmost side is arranged on the rightmost side (first direction side).
  • the left end surface of the convex portion formed on the leftmost side becomes the second end surface disposed on the leftmost side (second direction side).
  • the right end surface of the one convex portion is the first end surface arranged on the rightmost side (first direction side)
  • the left end surface of this one convex portion is the second end surface arranged on the leftmost side (second direction side).
  • the three convex portions 13a to 13c are formed on the second core 13.
  • the number of convex portions formed on the second core 13 may be two or four or more.
  • the right end surface of the convex portion formed on the rightmost side is the third end surface disposed on the rightmost side (first direction side)
  • the left end surface of the convex portion formed on the leftmost side is the leftmost side (first side). It becomes the fourth end face arranged on the (two direction side).
  • the magnetic sensor 4 includes the detection coil 10, but the magnetic sensor 4 may not include the detection coil 10.
  • the number of convex portions formed on the second core 13 may be one.
  • the right end surface of the one convex portion is the third end surface arranged on the rightmost side (first direction side).
  • the left end surface of each convex portion is the fourth end surface arranged on the leftmost side (second direction side).
  • the annular core 11 is formed in a substantially square ring shape.
  • the annular core 11 may be formed in an annular shape, an elliptical shape, or an oval shape.
  • the annular core 11 may be formed in a polygonal ring other than the square ring.
  • the magnetic sensor 4 includes the two detection coils 9 and 10.
  • the magnetic sensor 4 may include three or more detection coils.
  • a plurality of convex portions may be formed on the second core 13 according to the number of detection coils.
  • the medal identification device 1 is mounted and used in a slot machine.
  • the medal identification device 1 may be used by being mounted on a medal purchase machine or a medal counting machine.
  • the embodiment of the coin-shaped detected object identifying device of the present invention is described by taking the medal identifying device 1 for identifying the medal 2 used in the slot machine as an example.
  • the coin-shaped detected object identification device to which is applied may be, for example, a device for identifying other coin-shaped detected objects such as medals used in game machines.
  • the coin-shaped object to be detected in the present invention is not limited to medals used in slot machines, game machines, etc., and may be coins.
  • the medal purchase machine is a device for inserting cash and purchasing medals, and is installed between slot machines or at the hall entrance.
  • the medal counter is a device for counting the number of medals collected from each slot machine. For example, one medal counting machine is installed for a predetermined number of slot machines (for example, each island is installed), and a plurality of slot machines constituting the island where the medal counting machines are installed. Count the number of medals 2 gathered.
  • the medal counter is, for example, a collective central processing unit that further collects medals 2 collected for each island and counts the number.
  • the medal counter is a device that counts the number of medals 2 in order to replace the medals 2 with prizes, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)
  • Slot Machines And Peripheral Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)

Abstract

Provided is a device for identifying a coin-shaped object to be detected, the device enabling the suppression of a decrease over time in the identification accuracy of the coin-shaped object to be detected, and enabling the simplification of a configuration. This device for identifying a coin-shaped object to be detected is provided with a first core (12) and a second core (13) that are disposed with a predetermined space therebetween in the thickness direction of the coin-shaped object to be detected, in the first core (12), protruding portions (12a-12c) which protrude to the second core (13) side and around which an excitation coil (8) is wound are formed, and in the second core (13), protruding portions (13a-13c) which protrude to the first core (12) side and around which detection coils (9, 10) are wound are formed. A passage path (5) through which the object to be detected passes is formed between the protruding portions (12a-12c) and the protruding portions (13a-13c) in the thickness direction of the object to be detected. The distance between the end surface in the X1 direction of the protruding portion (12a) and the end surface in the X2 direction of the protruding portion (12b), and the distance between the end surface in the X1 direction of the protruding portion (13a) and the end surface in the X2 direction of the protruding portion (13b) are larger than or equal to the outer diameter of the object to be detected.

Description

コイン状被検出体識別装置Coin-like object identification device
 本発明は、コイン状の被検出体の真偽や良不良等を識別するためのコイン状被検出体識別装置に関する。 The present invention relates to a coin-shaped detected object identification device for identifying authenticity, good or bad of a coin-shaped detected object.
 従来、スロットマシンで使用されるメダルセレクタが知られている(たとえば、特許文献1参照)。特許文献1に記載のメダルセレクタは、メダル投入口から投入されたメダルを選別するための装置であり、サイズの小さい不正なメダルをメダル受皿に排出するとともに、正規のメダルをメダルタンクに送り出している。このメダルセレクタには、メダル投入口から投入されたメダルが通過するメダル通路が形成されており、このメダルセレクタでは、このメダル通路を用いてメダルを選別している。 Conventionally, a medal selector used in a slot machine is known (for example, see Patent Document 1). The medal selector described in Patent Document 1 is a device for selecting medals inserted from a medal insertion slot, and discharges illegal medals having a small size to a medal tray and sends out regular medals to a medal tank. Yes. The medal selector is formed with a medal passage through which medals inserted from the medal insertion slot pass, and the medal selector sorts medals using the medal passage.
 また、従来、自動販売機や券売機で使用されるコイン識別センサが知られている(たとえば、特許文献2参照)。特許文献2に記載のコイン識別センサは、コインの材質や厚みを検出するための磁気式の材質・厚みセンサと、コインの径を検出するための磁気式の径センサとを備えている。材質・厚みセンサは、コイン搬送路を通過するコインの厚み方向とコインの搬送方向とに直交する方向において、コイン搬送路の一方側に配置され、径センサは、コイン搬送路を通過するコインの厚み方向とコインの搬送方向とに直交する方向において、コイン搬送路の他方側に配置されている。 Conventionally, a coin identification sensor used in a vending machine or a ticket machine is known (for example, see Patent Document 2). The coin identification sensor described in Patent Document 2 includes a magnetic material / thickness sensor for detecting the material and thickness of the coin, and a magnetic diameter sensor for detecting the diameter of the coin. The material / thickness sensor is disposed on one side of the coin transport path in a direction orthogonal to the thickness direction of the coin passing through the coin transport path and the coin transport direction, and the diameter sensor is used to detect the coin passing through the coin transport path. It is arranged on the other side of the coin conveyance path in a direction orthogonal to the thickness direction and the coin conveyance direction.
 特許文献2に記載のコイン識別センサでは、径センサは、コアと、励磁コイルと、検出コイルとを備えている。径センサのコアは、材質・厚みセンサに向かって突出する2個の突出部と、2個の突出部を繋ぐ連結部とを備えている。径センサの励磁コイルおよび検出コイルは、コアの連結部に巻回されている。材質・厚みセンサは、コアと、励磁コイルと、検出コイルとを備えている。材質・厚みセンサのコアは、径センサに向かって突出する2個の突出部と、2個の突出部を繋ぐ連結部とを備えている。2個の突出部のそれぞれの先端側には、コイン搬送路を通過するコインの厚み方向に向かって突出する突起部が形成されている。材質・厚みセンサの励磁コイルおよび検出コイルは、2個の突起部のそれぞれに巻回されている。すなわち、一方の突起部に励磁コイルおよび検出コイルが巻回されるとともに、他方の突起部に励磁コイルおよび検出コイルが巻回されている。また、材質・厚みセンサは、径センサの位置変動を検出するための位置変動補正部を備えており、この位置変動補正部を構成する励磁コイルおよび検出コイルが、材質・厚みセンサのコアの連結部に巻回されている。また、材質・厚みセンサのコアの突出部の基端側には、位置変動補正部を構成する段部が形成されている。 In the coin identification sensor described in Patent Document 2, the diameter sensor includes a core, an excitation coil, and a detection coil. The core of the diameter sensor includes two projecting portions that project toward the material / thickness sensor and a connecting portion that connects the two projecting portions. The excitation coil and the detection coil of the diameter sensor are wound around the connecting portion of the core. The material / thickness sensor includes a core, an excitation coil, and a detection coil. The core of the material / thickness sensor includes two projecting portions that project toward the diameter sensor and a connecting portion that connects the two projecting portions. A protruding portion that protrudes in the thickness direction of the coin passing through the coin conveyance path is formed on the leading end side of each of the two protruding portions. The excitation coil and detection coil of the material / thickness sensor are wound around each of the two protrusions. That is, the excitation coil and the detection coil are wound around one protrusion, and the excitation coil and the detection coil are wound around the other protrusion. In addition, the material / thickness sensor has a position fluctuation correction unit for detecting the position fluctuation of the diameter sensor, and the excitation coil and the detection coil constituting the position fluctuation correction unit are connected to the core of the material / thickness sensor. It is wound around the part. Further, a step portion constituting a position variation correction unit is formed on the base end side of the protruding portion of the core of the material / thickness sensor.
特開2009-72300号公報JP 2009-72300 A 特開2003-6700号公報JP 2003-6700 A
 特許文献1に記載のメダルセレクタでは、メダル通路を用いてメダルを選別しているため、メダルセレクタが長年使用されてメダル通路を構成するガイドが摩耗すると、メダルの選別精度が低下する。したがって、このメダルセレクタが用いられるスロットマシンでは、スロットマシンが長年使用されてメダル通路を構成するガイドが摩耗すると、不正なメダルが使用されるおそれがある。一方、特許文献2に記載のコイン識別センサでは、材質・厚みセンサおよび径センサは、磁気式のセンサであるため、非接触で、コインの材質、厚みおよび径を検出することができる。したがって、このコイン識別センサでは、コイン識別センサが長年使用されても、コインの識別精度の低下を防止することが可能である。そのため、このコイン識別センサをスロットマシンに使用すれば、スロットマシンが長年使用されても、コイン識別センサの識別精度の低下を防止して、スロットマシンで不正なメダルの使用を防止することが可能になる。 In the medal selector described in Patent Document 1, since medals are selected using the medal passage, if the medal selector is used for many years and the guides constituting the medal passage are worn out, the medal selection accuracy decreases. Therefore, in a slot machine using this medal selector, if the slot machine has been used for many years and the guides constituting the medal passage are worn, there is a risk that an illegal medal will be used. On the other hand, in the coin identification sensor described in Patent Document 2, since the material / thickness sensor and the diameter sensor are magnetic sensors, the material, thickness, and diameter of the coin can be detected without contact. Therefore, in this coin identification sensor, even if the coin identification sensor has been used for many years, it is possible to prevent a decrease in coin identification accuracy. Therefore, if this coin identification sensor is used in a slot machine, even if the slot machine has been used for many years, it is possible to prevent the identification accuracy of the coin identification sensor from degrading and prevent unauthorized use of medals in the slot machine. become.
 しかしながら、特許文献2に記載のコイン識別センサでは、材質・厚みセンサのコアの突出部に突起部および段部が形成されている。また、このコイン識別センサでは、材質・厚みセンサの励磁コイルは、2個の突起部のそれぞれに巻回され、材質・厚みセンサの検出コイルは、2個の突起部のそれぞれに巻回されている。また、このコイン識別センサでは、径センサの励磁コイルおよび検出コイルは、径センサのコアの連結部に巻回され、径センサの位置変動を検出するための位置変動補正部を構成する励磁コイルおよび検出コイルは、材質・厚みセンサのコアの連結部に巻回されている。このように、特許文献2に記載のコイン識別センサでは、材質・厚みセンサのコアの形状が複雑であり、かつ、コアに対する励磁コイルの巻回箇所および検出コイルの巻回箇所が多いため、その構成が複雑になる。 However, in the coin identification sensor described in Patent Document 2, a protrusion and a step are formed on the protrusion of the core of the material / thickness sensor. In this coin identification sensor, the excitation coil of the material / thickness sensor is wound around each of the two protrusions, and the detection coil of the material / thickness sensor is wound around each of the two protrusions. Yes. Further, in this coin identification sensor, the excitation coil and the detection coil of the diameter sensor are wound around the connecting portion of the core of the diameter sensor, and the excitation coil that constitutes the position variation correction unit for detecting the position variation of the diameter sensor and The detection coil is wound around the connecting portion of the core of the material / thickness sensor. Thus, in the coin identification sensor described in Patent Document 2, the shape of the core of the material / thickness sensor is complicated, and there are many winding positions of the exciting coil and the detection coil with respect to the core. The configuration becomes complicated.
 そこで、本発明の課題は、コイン状の被検出体の識別精度の経時的な低下を抑制することが可能で、かつ、構成を簡素化することが可能なコイン状被検出体識別装置を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a coin-shaped detected object identification device capable of suppressing a decrease in the identification accuracy of a coin-shaped detected object over time and capable of simplifying the configuration. There is to do.
 上記の課題を解決するため、本発明のコイン状被検出体識別装置は、コイン状の被検出体が通過する通過路と、励磁用コイルおよび検出用コイルと、通過路を通過する被検出体の厚み方向の一方側に配置される第1コアと、被検出体の厚み方向の他方側に配置される第2コアとを備え、第1コアには、第2コアに向かって突出する励磁側凸部が1個または2個以上形成され、第2コアには、第1コアに向かって突出する検出側凸部が1個または2個以上形成され、励磁用コイルは、励磁側凸部に巻回され、検出用コイルは、検出側凸部に巻回され、被検出体の厚み方向における励磁側凸部と検出側凸部との間は、通過路となっており、通過路を通過する被検出体の通過方向と被検出体の厚み方向とに直交する方向を直交方向とし、直交方向の一方側を第1方向とし、直交方向の他方側を第2方向とし、励磁側凸部の第1方向側の端面を第1端面とし、励磁側凸部の第2方向側の端面を第2端面とし、検出側凸部の第1方向側の端面を第3端面とし、検出側凸部の第2方向側の端面を第4端面とすると、最も第1方向側に配置される第1端面の第2コア側端と、最も第2方向側に配置される第2端面の第2コア側端との直交方向における距離、および、最も第1方向側に配置される第3端面の第1コア側端と、最も第2方向側に配置される第4端面の第1コア側端との直交方向における距離は、被検出体の外径以上となっていることを特徴とする。 In order to solve the above-described problems, a coin-shaped detected object identification device according to the present invention includes a passage through which a coin-shaped detected object passes, an excitation coil and a detection coil, and a detected object that passes through the passage. The first core disposed on one side in the thickness direction of the first and second cores disposed on the other side in the thickness direction of the detected object, and the first core is excited to project toward the second core One or more side protrusions are formed, and one or more detection side protrusions projecting toward the first core are formed on the second core, and the excitation coil is an excitation side protrusion. The detection coil is wound around the detection-side convex portion, and a passage is formed between the excitation-side convex portion and the detection-side convex portion in the thickness direction of the detected object. The direction orthogonal to the passing direction of the detected object passing through and the thickness direction of the detected object is the orthogonal direction, and the orthogonal direction One side is defined as the first direction, the other side in the orthogonal direction is defined as the second direction, the end surface on the first direction side of the excitation side convex portion is defined as the first end surface, and the end surface on the second direction side of the excitation side convex portion is defined as the second direction. The first end surface that is arranged closest to the first direction side is defined as the end surface, where the end surface on the first direction side of the detection side convex portion is the third end surface, and the end surface on the second direction side of the detection side convex portion is the fourth end surface. The distance in the orthogonal direction between the second core side end of the first core and the second end side of the second end surface arranged closest to the second direction side, and the first of the third end surface arranged closest to the first direction side The distance in the orthogonal direction between the core side end and the first core side end of the fourth end surface arranged closest to the second direction side is equal to or greater than the outer diameter of the detection target.
 本発明のコイン状被検出体識別装置では、第1コアに形成されるとともに励磁用コイルが巻回される励磁側凸部と、第2コアに形成されるとともに検出用コイルが巻回される検出側凸部との、被検出体の厚み方向における間は、コイン状の被検出体が通過する通過路となっている。そのため、本発明では、励磁用コイル、検出用コイル、第1コアおよび第2コア等から構成される磁気式の検出機構によって、通過路を通過する被検出体を識別することが可能になる。すなわち、本発明では、非接触式の検出機構によって、被検出体を識別することが可能になる。したがって、本発明では、コイン状被検出体識別装置が長年使用されても、被検出体の識別精度の低下を防止することが可能になる。また、本発明では、第2コアに向かって突出する励磁側凸部に励磁用コイルを巻回し、第1コアに向かって突出する検出側凸部に検出用コイルを巻回すれば良いため、第1コアおよび第2コアの構成を簡素化すること、および、第1コアへの励磁用コイルの巻回箇所や第2コアへの検出用コイルの巻回箇所を減らすことが可能になる。したがって、本発明では、コイン状被検出体識別装置の構成を簡素化することが可能になる。 In the coin-shaped object identification device of the present invention, an excitation-side convex portion that is formed on the first core and on which the excitation coil is wound, and an excitation-side convex portion that is formed on the second core and on which the detection coil is wound. Between the detection-side convex portion in the thickness direction of the detection object, there is a passing path through which the coin-shaped detection object passes. Therefore, in the present invention, it is possible to identify the detection object passing through the passage by the magnetic detection mechanism including the excitation coil, the detection coil, the first core, the second core, and the like. That is, in the present invention, it is possible to identify the detection target by the non-contact type detection mechanism. Therefore, in the present invention, even if the coin-shaped detected object identification device has been used for many years, it is possible to prevent a decrease in identification accuracy of the detected object. Further, in the present invention, the excitation coil is wound around the excitation side convex portion protruding toward the second core, and the detection coil is wound around the detection side convex portion protruding toward the first core. It is possible to simplify the configuration of the first core and the second core, and to reduce the number of winding portions of the exciting coil around the first core and the number of winding portions of the detection coil around the second core. Therefore, in the present invention, it is possible to simplify the configuration of the coin-shaped detected object identification device.
 また、本発明では、最も第1方向側に配置される第1端面の第2コア側端と、最も第2方向側に配置される第2端面の第2コア側端との直交方向における距離、および、最も第1方向側に配置される第3端面の第1コア側端と、最も第2方向側に配置される第4端面の第1コア側端との直交方向における距離が、被検出体の外径以上となっているため、励磁側凸部と検出側凸部との間に形成される磁路から被検出体の一部が外れないように、通過路で被検出体を通過させることが可能になる。したがって、本発明では、被検出体を適切に識別することが可能になる。 In the present invention, the distance in the orthogonal direction between the second core side end of the first end face arranged closest to the first direction side and the second core side end of the second end face arranged closest to the second direction side. And the distance in the orthogonal direction between the first core side end of the third end face arranged closest to the first direction side and the first core side end of the fourth end face arranged closest to the second direction side is Since the outer diameter of the detection body is larger than the outer diameter of the detection body, the detection body is placed on the passage so that a part of the detection body does not come off from the magnetic path formed between the excitation-side convex portion and the detection-side convex portion. It is possible to pass through. Therefore, in the present invention, it is possible to appropriately identify the detection target.
 本発明において、最も第1方向側に配置される第1端面の第2コア側端と、最も第2方向側に配置される第2端面の第2コア側端との直交方向における距離、および、最も第1方向側に配置される第3端面の第1コア側端と、最も第2方向側に配置される第4端面の第1コア側端との直交方向における距離は、直交方向における通過路の幅以上となっていることが好ましい。このように構成すると、直交方向における通過路のどの位置を被検出体が通過しても、被検出体の一部が、励磁側凸部と検出側凸部との間に形成される磁路から外れることがない。したがって、被検出体の外径の識別精度を高めることが可能になる。 In the present invention, the distance in the orthogonal direction between the second core side end of the first end face arranged closest to the first direction side and the second core side end of the second end face arranged closest to the second direction side, and The distance in the orthogonal direction between the first core side end of the third end surface arranged closest to the first direction side and the first core side end of the fourth end surface arranged closest to the second direction side is in the orthogonal direction It is preferable that the width is equal to or greater than the width of the passage. With this configuration, a magnetic path in which a part of the detected body is formed between the excitation-side convex portion and the detection-side convex portion regardless of the position of the passage in the orthogonal direction. It will not come off. Therefore, it becomes possible to improve the identification accuracy of the outer diameter of the detected object.
 本発明において、コイン状被検出体識別装置は、検出用コイルとして、第1検出用コイルと、第2検出用コイルとを備え、第2コアには、検出側凸部として、通過路の第1方向端側に配置される第1検出側凸部と、通過路の第2方向端側に配置される第2検出側凸部と、第1検出側凸部と第2検出側凸部との間に配置される第3検出側凸部とが形成され、第1検出用コイルは、第1検出側凸部および第2検出側凸部、または、第1検出側凸部、第2検出側凸部および第3検出側凸部に巻回され、第2検出用コイルは、第3検出側凸部に巻回され、最も第1方向側に配置される第3端面である第1検出側凸部の第1方向側の端面の第1コア側端と、最も第2方向側に配置される第4端面である第2検出側凸部の第2方向側の端面の第1コア側端との直交方向における距離は、直交方向における通過路の幅以上となっており、第3検出側凸部の第1コア側端は、直交方向における通過路のどの位置を被検出体が通過しても、被検出体の厚み方向から見たときに、第3検出側凸部の第1コア側端の全体が被検出体と重なるように形成され配置されていることが好ましい。 In the present invention, the coin-shaped detected object identification device includes a first detection coil and a second detection coil as detection coils, and the second core has a first detection coil as a detection-side convex portion. A first detection-side convex portion, a first detection-side convex portion, a second detection-side convex portion, which is arranged on the second direction end side of the passage; A third detection-side convex portion disposed between the first detection-side convex portion, the first detection-side convex portion, the first detection-side convex portion, and the second detection-side convex portion. The second detection coil is wound around the third detection side convex portion, and is wound around the third detection side convex portion, and is the first end surface that is the third end face that is disposed closest to the first direction side. The first core side of the end surface on the first direction side of the first convex side of the side convex portion, and the first core side of the end surface on the second direction side of the second detection side convex portion that is the fourth end surface disposed closest to the second direction side. The distance in the orthogonal direction is equal to or greater than the width of the passage in the orthogonal direction, and the first core side end of the third detection-side convex portion passes through which position of the passage in the orthogonal direction. However, it is preferable that the first core side end of the third detection side convex portion is formed and arranged so as to overlap the detection target when viewed from the thickness direction of the detection target.
 このように構成すると、第1検出用コイルを用いて、主として被検出体の外径を識別し、第2検出用コイルを用いて、主として被検出体の材質や厚みを識別することが可能になる。したがって、被検出体の識別精度を高めることが可能になる。また、このように構成すると、直交方向における通過路のどの位置を被検出体が通過しても、被検出体の厚み方向から見たときに、第3検出側凸部の第1コア側端の全体が被検出体と重なるように、第3検出側凸部の第1コア側端が形成され配置されているため、被検出体の外径の影響を受けずに、第2検出用コイルによって、被検出体の材質や厚みを識別することが可能になる。したがって、被検出体の材質や厚みの識別精度を高めることが可能になる。 If comprised in this way, it will become possible to identify the outer diameter of a to-be-detected body mainly using a 1st detection coil, and to identify the material and thickness of a to-be-detected body mainly using a 2nd detection coil. Become. Therefore, it becomes possible to increase the identification accuracy of the detection object. Moreover, when comprised in this way, even if the to-be-detected body passes through any position of the passage in the orthogonal direction, when viewed from the thickness direction of the to-be-detected body, the first core-side end of the third detecting-side convex portion Since the first core side end of the third detection-side convex portion is formed and arranged so that the entirety of the first detection coil overlaps the detection object, the second detection coil is not affected by the outer diameter of the detection object. This makes it possible to identify the material and thickness of the object to be detected. Therefore, it becomes possible to improve the identification accuracy of the material and thickness of the detected object.
 本発明において、コイン状被検出体識別装置は、第1方向における第1コアの端部と第2コアの端部とを繋ぐ第1連結コアと、第2方向における第1コアの端部と第2コアの端部とを繋ぐ第2連結コアと、第1コアと、第2コアとから構成される環状の環状コアを備えることが好ましい。このように構成すると、励磁用コイルが発生させる磁束の、環状コアからの漏れを低減することが可能になる。したがって、環状コアに効率の良い磁気回路を形成することが可能になる。また、このように構成すると、環状コアを磁気シールドとして機能させることが可能になり、外部磁界に起因する被検出体の識別精度の低下を抑制することが可能になる。 In the present invention, the coin-shaped object identification device includes a first connecting core that connects an end of the first core and an end of the second core in the first direction, and an end of the first core in the second direction. It is preferable to provide an annular annular core composed of a second connecting core connecting the end of the second core, the first core, and the second core. If comprised in this way, it will become possible to reduce the leakage of the magnetic flux which an exciting coil generates from an annular core. Therefore, an efficient magnetic circuit can be formed on the annular core. Moreover, if comprised in this way, it will become possible to function an annular core as a magnetic shield, and it will become possible to suppress the fall of the identification accuracy of the to-be-detected body resulting from an external magnetic field.
 本発明において、最も第1方向側に配置される第1端面の第2コア側端と第1連結コアとの直交方向における距離、最も第1方向側に配置される第3端面の第1コア側端と第1連結コアとの間の直交方向における距離、最も第2方向側に配置される第2端面の第2コア側端と第2連結コアとの間の直交方向における距離、および、最も第2方向側に配置される第4端面の第1コア側端と第2連結コアとの間の直交方向における距離は、被検出体の厚み方向における励磁側凸部と検出側凸部との距離よりも長くなっていることが好ましい。このように構成すると、励磁側凸部と検出側凸部との間の磁束が第1連結コアや第2連結コアに向かって漏れるのを抑制することが可能になる。すなわち、励磁側凸部と検出側凸部との間の磁束の漏れを抑制することが可能になり、環状コアに効率の良い磁気回路を形成することが可能になる。 In the present invention, the distance in the orthogonal direction between the second core side end of the first end face arranged closest to the first direction side and the first connecting core, the first core of the third end face arranged closest to the first direction side. The distance in the orthogonal direction between the side end and the first connecting core, the distance in the orthogonal direction between the second core side end of the second end surface arranged closest to the second direction side and the second connecting core, and The distance in the orthogonal direction between the first core side end of the fourth end surface arranged closest to the second direction side and the second connecting core is the excitation side convex portion and the detection side convex portion in the thickness direction of the detection target. It is preferable that it is longer than this distance. If comprised in this way, it will become possible to suppress that the magnetic flux between an excitation side convex part and a detection side convex part leaks toward a 1st connection core or a 2nd connection core. That is, leakage of magnetic flux between the excitation side convex portion and the detection side convex portion can be suppressed, and an efficient magnetic circuit can be formed on the annular core.
 本発明において、コイン状被検出体識別装置は、検出用コイルとして、第1検出用コイルと、第2検出用コイルとを備え、第2コアには、検出側凸部として、通過路の第1方向端側に配置される第1検出側凸部と、通過路の第2方向端側に配置される第2検出側凸部と、第1検出側凸部と第2検出側凸部との間に配置される第3検出側凸部とが形成され、第1検出用コイルは、第1検出側凸部および第2検出側凸部、または、第1検出側凸部、第2検出側凸部および第3検出側凸部に巻回され、第2検出用コイルは、第3検出側凸部に巻回され、第1コアには、励磁側凸部として、直交方向において第1検出側凸部と同じ位置に配置される第1励磁側凸部と、直交方向において第2検出側凸部と同じ位置に配置される第2励磁側凸部と、直交方向において第3検出側凸部と同じ位置に配置される第3励磁側凸部とが形成されていることが好ましい。 In the present invention, the coin-shaped detected object identification device includes a first detection coil and a second detection coil as detection coils, and the second core has a first detection coil as a detection-side convex portion. A first detection-side convex portion, a first detection-side convex portion, a second detection-side convex portion, which is arranged on the second direction end side of the passage; A third detection-side convex portion disposed between the first detection-side convex portion, the first detection-side convex portion, the first detection-side convex portion, and the second detection-side convex portion. The second detection coil is wound around the third detection side convex portion, and the first core is first excited in the orthogonal direction as the excitation side convex portion. A first excitation side convex portion arranged at the same position as the detection side convex portion, a second excitation side convex portion arranged at the same position as the second detection side convex portion in the orthogonal direction, and a direct It is preferable that the third excitation-side convex portion disposed at the same position as the third detection-side protrusion in direction is formed.
 このように構成すると、第1検出用コイルを用いて、被検出体の外径を識別し、第2検出用コイルを用いて、被検出体の材質や厚みを識別することが可能になる。したがって、被検出体の識別精度を高めることが可能になる。また、このように構成すると、直交方向において第1検出側凸部と同じ位置に配置される第1励磁側凸部と、直交方向において第2検出側凸部と同じ位置に配置される第2励磁側凸部と、直交方向において第3検出側凸部と同じ位置に配置される第3励磁側凸部とが第1コアに形成されているため、第1検出側凸部を通過する磁束の密度、第2検出側凸部を通過する磁束の密度、および、第3励磁側凸部を通過する磁束の密度を高めることが可能になる。 With this configuration, it is possible to identify the outer diameter of the detected object using the first detection coil, and to identify the material and thickness of the detected object using the second detection coil. Therefore, it becomes possible to increase the identification accuracy of the detection object. Further, with this configuration, the first excitation side convex portion arranged at the same position as the first detection side convex portion in the orthogonal direction and the second position arranged at the same position as the second detection side convex portion in the orthogonal direction. Magnetic flux passing through the first detection side convex portion because the excitation side convex portion and the third excitation side convex portion arranged at the same position as the third detection side convex portion in the orthogonal direction are formed on the first core. , The density of the magnetic flux passing through the second detection side convex portion, and the density of the magnetic flux passing through the third excitation side convex portion can be increased.
 本発明において、第4端面である第1検出側凸部の第2方向側の端面と、第3励磁側凸部との最短距離、および、第3端面である第2検出側凸部の第1方向側の端面と、第3励磁側凸部との最短距離は、被検出体の厚み方向における第3検出側凸部と第3励磁側凸部との距離よりも長くなっていることが好ましい。このように構成すると、第3励磁側凸部と第3検出側凸部との間の磁束が第1検出側凸部や第2検出側凸部に向かって漏れるのを抑制することが可能になる。すなわち、第3励磁側凸部と第3検出側凸部との間の磁束の漏れを抑制することが可能になり、第3励磁側凸部を通過する磁束の密度を高めることが可能になる。 In the present invention, the shortest distance between the end surface on the second direction of the first detection-side convex portion that is the fourth end surface and the third excitation-side convex portion, and the second detection-side convex portion that is the third end surface. The shortest distance between the end surface on the one direction side and the third excitation side convex portion may be longer than the distance between the third detection side convex portion and the third excitation side convex portion in the thickness direction of the detection target. preferable. If comprised in this way, it will become possible to suppress that the magnetic flux between a 3rd excitation side convex part and a 3rd detection side convex part leaks toward a 1st detection side convex part or a 2nd detection side convex part. Become. That is, the leakage of magnetic flux between the third excitation side convex portion and the third detection side convex portion can be suppressed, and the density of the magnetic flux passing through the third excitation side convex portion can be increased. .
 本発明において、第1端面である第1励磁側凸部の第1方向側の端面の第2コア側端と第1端面である第2励磁側凸部の第1方向側の端面の第2コア側端との直交方向における距離、第2端面である第1励磁側凸部の第2方向側の端面の第2コア側端と第2端面である第2励磁側凸部の第2方向側の端面の第2コア側端との直交方向における距離、第3端面である第1検出側凸部の第1方向側の端面の第1コア側端と第3端面である第2検出側凸部の第1方向側の端面の第1コア側端との直交方向における距離、および、第4端面である第1検出側凸部の第2方向側の端面の第1コア側端と第4端面である第2検出側凸部の第2方向側の端面の第1コア側端との直交方向における距離は、被検出体の外径よりも小さくなっていることが好ましい。このように構成すると、直交方向における通過路のどの位置を被検出体が通過しても、第1検出側凸部と第1励磁側凸部との間、または、第2検出側凸部と第2励磁側凸部との間から、被検出体の全体が外れた状態で、被検出体が通過路を通過するのを防止することが可能になる。したがって、直交方向における通過路のどの位置を被検出体が通過しても、第1検出用コイルの出力を安定させることが可能になり、第1検出用コイルに基づく被検出体の識別精度を高めることが可能になる。 In the present invention, the second core side end of the end surface on the first direction of the first excitation side convex portion that is the first end surface and the second end surface on the first direction side of the second excitation side convex portion that is the first end surface. The distance in the direction orthogonal to the core side end, the second direction of the second excitation side convex portion as the second end surface and the second core side end of the second direction end surface of the first excitation side convex portion as the second end surface Distance in the direction orthogonal to the second core side end of the side end face, the first core side end of the first direction side end face of the first detection side convex portion being the third end face, and the second detection side being the third end face The distance in the direction orthogonal to the first core side end of the end surface on the first direction side of the convex portion, and the first core side end of the end surface on the second direction side of the first detection side convex portion that is the fourth end surface and the first end It is preferable that the distance in the direction orthogonal to the first core side end of the second direction side end surface of the second detection side convex portion which is the four end surfaces is smaller than the outer diameter of the detection target. There. If comprised in this way, even if the to-be-detected body passes through any position of the passage in the orthogonal direction, between the first detection side convex portion and the first excitation side convex portion, or the second detection side convex portion, It is possible to prevent the detected body from passing through the passage in a state where the entire detected body is disconnected from the second excitation side convex portion. Therefore, it becomes possible to stabilize the output of the first detection coil no matter which position of the passage in the orthogonal direction passes, and the identification accuracy of the detection object based on the first detection coil can be improved. It becomes possible to increase.
 本発明において、被検出体の通過方向における、第1検出側凸部の表面および裏面と、第2検出側凸部の表面および裏面と、第3検出側凸部の表面および裏面と、第3端面と、第4端面とを覆う筒状の第1検出用ボビンと、被検出体の通過方向における、第3検出側凸部の表面および裏面と、直交方向における第3検出側凸部の第3端面側の端面と、直交方向における第3検出側凸部の第4端面側の端面とを覆う筒状の第2検出用ボビンとを備え、第1検出用コイルは、第1検出用ボビンを介して、第1検出側凸部と、第2検出側凸部と、第3検出側凸部に巻き回され、第2検出用コイルは、第2検出用ボビンを介して、第3検出側凸部に巻き回されていることが好ましい。 In the present invention, the surface and back surface of the first detection side convex portion, the surface and back surface of the second detection side convex portion, the surface and back surface of the third detection side convex portion, and A cylindrical first detection bobbin covering the end surface and the fourth end surface, the front and back surfaces of the third detection-side convex portion in the passing direction of the detection target, and the third detection-side convex portion in the orthogonal direction A cylindrical second detection bobbin that covers an end surface on the third end surface side and an end surface on the fourth end surface side of the third detection-side convex portion in the orthogonal direction, and the first detection coil is a first detection bobbin. The second detection coil is wound around the first detection side convex portion, the second detection side convex portion, and the third detection side convex portion, and the second detection coil is third detected via the second detection bobbin. It is preferable to be wound around the side protrusion.
 本発明において、第1端面と、第2端面と、第3端面と、第4端面の、被検出体の厚み方向における距離は、被検出体の厚み方向における励磁側凸部と検出側凸部との距離よりも長い距離で形成されていることが好ましい。このように構成すると、励磁側凸部と検出側凸部との間の磁束が励磁側凸部へ回り込み、磁束が漏れるのを抑制することが可能になる。すなわち、励磁側凸部と検出側凸部との間の磁束の漏れを抑制することが可能になり、環状コアに効率の良い磁気回路を形成することが可能になる。 In the present invention, the distance between the first end surface, the second end surface, the third end surface, and the fourth end surface in the thickness direction of the detection target is the excitation side convex portion and the detection side convex portion in the thickness direction of the detection target body. It is preferable that the distance is longer than the distance between and. If comprised in this way, it will become possible to suppress that the magnetic flux between an excitation side convex part and a detection side convex part wraps around to an excitation side convex part, and a magnetic flux leaks. That is, leakage of magnetic flux between the excitation side convex portion and the detection side convex portion can be suppressed, and an efficient magnetic circuit can be formed on the annular core.
 本発明において、環状コアは、1枚の金属板から一体に形成されていることが好ましい。 In the present invention, the annular core is preferably formed integrally from a single metal plate.
 本発明において、環状コアの一部には、被検出体の厚み方向における励磁側凸部と検出側凸部との距離よりも短いギャップが形成されていることが好ましい。 In the present invention, it is preferable that a gap shorter than the distance between the excitation-side convex portion and the detection-side convex portion in the thickness direction of the object to be detected is formed in a part of the annular core.
 以上のように、本発明のコイン状被検出体識別装置では、コイン状の被検出体の識別精度の経時的な低下を抑制することが可能になるとともに、装置の構成を簡素化することが可能になる。 As described above, in the coin-shaped detected object identification device of the present invention, it is possible to suppress a decrease in the identification accuracy of the coin-shaped detected object over time and simplify the configuration of the device. It becomes possible.
本発明の実施の形態にかかるコイン状被検出体識別装置の斜視図である。It is a perspective view of the coin-shaped to-be-detected body identification device concerning embodiment of this invention. 図1に示すメダルの断面図である。It is sectional drawing of the medal | token shown in FIG. 図1に示すコイン状被検出体識別装置からケース体を取り外した状態の斜視図である。It is a perspective view of the state which removed the case body from the coin-shaped to-be-detected body identification device shown in FIG. 図3に示す状態から励磁用コイル、第1検出用コイルおよびボビンを取り外した状態の斜視図である。FIG. 4 is a perspective view of a state where an excitation coil, a first detection coil, and a bobbin are removed from the state shown in FIG. 3. 図3に示す環状コアの斜視図である。It is a perspective view of the annular core shown in FIG. 図3に示す環状コアの平面図である。It is a top view of the cyclic | annular core shown in FIG. 図1に示すコイン状被検出体識別装置の回路ブロック図である。It is a circuit block diagram of the coin-shaped to-be-detected object identification device shown in FIG. 図7に示す検出用コイルからの出力信号を説明するための図である。It is a figure for demonstrating the output signal from the coil for a detection shown in FIG. 図1に示すコイン状被検出体識別装置の効果を説明するための図である。It is a figure for demonstrating the effect of the coin-shaped to-be-detected body identification device shown in FIG. 図1に示すコイン状被検出体識別装置の効果を説明するための図である。It is a figure for demonstrating the effect of the coin-shaped to-be-detected body identification device shown in FIG. 本発明の他の実施の形態にかかる励磁用コイルおよび検出用コイルを説明するための平面図である。It is a top view for demonstrating the coil for excitation and the coil for detection concerning other embodiment of this invention. 本発明の他の実施の形態にかかるコアを説明するための平面図である。It is a top view for demonstrating the core concerning other embodiment of this invention.
 以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (コイン状被検出体識別装置の概略構成)
 図1は、本発明の実施の形態にかかるコイン状被検出体識別装置1の斜視図である。図2は、図1に示すメダル2の断面図である。図3は、図1に示すコイン状被検出体識別装置1からケース体3を取り外した状態の斜視図である。
(Schematic configuration of the coin-shaped object identification device)
FIG. 1 is a perspective view of a coin-shaped object identification device 1 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the medal 2 shown in FIG. FIG. 3 is a perspective view of a state in which the case body 3 is removed from the coin-shaped detected object identification device 1 shown in FIG.
 本形態のコイン状被検出体識別装置1は、コイン状の被検出体であるメダル2を識別するための装置であり、スロットマシン(図示省略)に搭載されて使用される。すなわち、本形態のコイン状被検出体識別装置1は、スロットマシンのメダル投入口から投入されたメダル2が正規のものであるか否かを識別するための装置である。したがって、以下では、本形態のコイン状被検出体識別装置1を「メダル識別装置1」とする。このメダル識別装置1は、図1、図3に示すように、ケース体3と、ケース体3に収容される磁気センサ4とを備えている。また、メダル識別装置1の内部には、メダル2が通過する通過路5が形成されている。 The coin-shaped detected object identification device 1 of this embodiment is a device for identifying a medal 2 that is a coin-shaped detected object, and is used by being mounted in a slot machine (not shown). That is, the coin-shaped object identification device 1 of this embodiment is a device for identifying whether or not the medal 2 inserted from the medal slot of the slot machine is genuine. Therefore, hereinafter, the coin-shaped detected object identification device 1 of this embodiment is referred to as a “medal identification device 1”. As illustrated in FIGS. 1 and 3, the medal identification device 1 includes a case body 3 and a magnetic sensor 4 accommodated in the case body 3. In addition, a passage 5 through which the medal 2 passes is formed inside the medal identification device 1.
 メダル2は、磁性を有する金属材料で形成されるとともに、円板状に形成されている。メダル2の外周端には、図2に示すように、メダル2の厚み方向の両側へ突出する縁取部2aが形成されている。この縁取部2aは、メダル2の全周に亘って形成されており、円環状に形成されている。 The medal 2 is formed of a magnetic metal material and is formed in a disc shape. As shown in FIG. 2, an edge 2 a that protrudes to both sides in the thickness direction of the medal 2 is formed at the outer peripheral end of the medal 2. The edging portion 2a is formed over the entire circumference of the medal 2 and is formed in an annular shape.
 ケース体3は、直方体の箱状に形成されている。ケース体3の1つの側面(図1の上面)には、メダル2が通過するスリット状の通過孔3aが形成されている。通過孔3aが形成される側面に平行な側面(図1の下面)にも、メダル2が通過するスリット状の通過孔が形成されている。この通過孔および通過孔3aは、通過路5に繋がっている。通過孔3aが形成される側面に直交する4つの側面のそれぞれには、平板状に形成される磁性部材6が固定されている。磁性部材6は、メダル識別装置1の外部磁界から磁気センサ4を保護するための磁気シールドとして機能している。なお、ケース体3には、通過孔3aへメダル2を案内するためのガイド部材(図示省略)が固定されている。 The case body 3 is formed in a rectangular parallelepiped box shape. On one side surface (upper surface in FIG. 1) of the case body 3, a slit-shaped passage hole 3a through which the medal 2 passes is formed. A slit-like passage hole through which the medal 2 passes is also formed on a side surface (lower surface in FIG. 1) parallel to the side surface on which the passage hole 3a is formed. The passage hole and the passage hole 3 a are connected to the passage 5. A magnetic member 6 formed in a flat plate shape is fixed to each of the four side surfaces orthogonal to the side surface where the passage hole 3a is formed. The magnetic member 6 functions as a magnetic shield for protecting the magnetic sensor 4 from the external magnetic field of the medal identification device 1. The case body 3 is fixed with a guide member (not shown) for guiding the medal 2 to the passage hole 3a.
 磁気センサ4は、励磁用コイル8および検出用コイル9、10と、励磁用コイル8および検出用コイル9、10が巻回される環状コア11とを備えている。環状コア11は、磁性材料によって形成されている。たとえば、環状コア11は、フェライト、アモルファス、パーマロイ等の鉄系の磁性材料によって形成されている。また、環状コア11は、平板状に形成されている。以下、磁気センサ4の具体的な構成を説明する。 The magnetic sensor 4 includes an excitation coil 8 and detection coils 9 and 10, and an annular core 11 around which the excitation coil 8 and detection coils 9 and 10 are wound. The annular core 11 is made of a magnetic material. For example, the annular core 11 is formed of an iron-based magnetic material such as ferrite, amorphous, or permalloy. The annular core 11 is formed in a flat plate shape. Hereinafter, a specific configuration of the magnetic sensor 4 will be described.
 (磁気センサの構成)
 図4は、図3に示す状態から励磁用コイル8、検出用コイル9およびボビン20、21を取り外した状態の斜視図である。図5は、図3に示す環状コア11の斜視図である。図6は、図3に示す環状コア11の平面図である。図7は、図1に示すコイン状被検出体識別装置1の回路ブロック図である。図8は、図7に示す検出用コイル9からの出力信号S1および検出用コイル10からの出力信号S2を説明するための図である。
(Configuration of magnetic sensor)
4 is a perspective view showing a state where the exciting coil 8, the detecting coil 9, and the bobbins 20 and 21 are removed from the state shown in FIG. FIG. 5 is a perspective view of the annular core 11 shown in FIG. FIG. 6 is a plan view of the annular core 11 shown in FIG. FIG. 7 is a circuit block diagram of the coin-shaped detected object identification device 1 shown in FIG. FIG. 8 is a diagram for explaining the output signal S1 from the detection coil 9 and the output signal S2 from the detection coil 10 shown in FIG.
 以下の説明では、互いに直交する3方向のそれぞれをX方向、Y方向およびZ方向とする。また、X方向を左右方向、Y方向を前後方向、Z方向を上下方向とする。さらに、X1方向側を「右」側、X2方向側を「左」側、Y1方向側を「前」側、Y2方向側を「後(後ろ)」側とする。本形態では、環状コア11の厚み方向と上下方向とが一致するように、メダル識別装置1が配置されている。また、本形態では、メダル2は、環状コア11の厚み方向に通過路5を通過する。すなわち、上下方向は、通過路5を通過するメダル2の通過方向である。また、前後方向は、通過路5を通過するメダル2の厚み方向である。なお、本形態の左右方向は、メダル2の通過方向とメダル2の厚み方向とに直交する直交方向であり、右側は、直交方向の一方側であり、左側は、直交方向の他方側である。 In the following description, each of the three directions orthogonal to each other is defined as an X direction, a Y direction, and a Z direction. The X direction is the left-right direction, the Y direction is the front-rear direction, and the Z direction is the up-down direction. Further, the X1 direction side is the “right” side, the X2 direction side is the “left” side, the Y1 direction side is the “front” side, and the Y2 direction side is the “rear (back)” side. In this embodiment, the medal identification device 1 is arranged so that the thickness direction of the annular core 11 matches the vertical direction. In this embodiment, the medal 2 passes through the passage 5 in the thickness direction of the annular core 11. That is, the vertical direction is the passing direction of the medal 2 passing through the passage 5. The front-rear direction is the thickness direction of the medal 2 that passes through the passage 5. The left-right direction of this embodiment is an orthogonal direction orthogonal to the passing direction of the medal 2 and the thickness direction of the medal 2, the right side is one side of the orthogonal direction, and the left side is the other side of the orthogonal direction. .
 上述のように、磁気センサ4は、励磁用コイル8および検出用コイル9、10と、励磁用コイル8および検出用コイル9、10が巻回される環状コア11とを備えている。 As described above, the magnetic sensor 4 includes the excitation coil 8 and the detection coils 9 and 10 and the annular core 11 around which the excitation coil 8 and the detection coils 9 and 10 are wound.
 環状コア11は、環状に形成されている。具体的には、環状コア11は、左右方向に細長い略四角環状に形成されている。この環状コア11は、環状コア11の前側部分を構成するとともに左右方向と平行に配置される略直線状の第1コア12と、環状コア11の後ろ側部分を構成するとともに第1コア12と平行に配置される略直線状の第2コア13と、第1コア12の右端と第2コア13の右端とを繋ぐとともに前後方向と平行に配置される直線状の第1連結コア14と、第1コア12の左端と第2コア13の左端とを繋ぐとともに第1連結コア14と平行に配置される直線状の第2連結コア15とから構成されている。本形態の環状コア11は、プレスの打ち抜き加工によって形成されており、第1コア12と第2コア13と第1連結コア14と第2連結コア15とは一体で形成されている。 The annular core 11 is formed in an annular shape. Specifically, the annular core 11 is formed in a substantially square annular shape that is elongated in the left-right direction. The annular core 11 constitutes a front side portion of the annular core 11 and a substantially linear first core 12 arranged in parallel with the left-right direction, and constitutes a rear side portion of the annular core 11 and the first core 12. A substantially linear second core 13 arranged in parallel; a linear first connecting core 14 connecting the right end of the first core 12 and the right end of the second core 13 and arranged in parallel with the front-rear direction; It is composed of a linear second connecting core 15 that connects the left end of the first core 12 and the left end of the second core 13 and is arranged in parallel with the first connecting core 14. The annular core 11 of this embodiment is formed by press punching, and the first core 12, the second core 13, the first connection core 14, and the second connection core 15 are integrally formed.
 第1コア12と第2コア13とは、同形状に形成されており、第1連結コア14と第2連結コア15とは、同形状に形成されている。また、環状コア11は、図6に示すように、前後方向における環状コア11の中心位置を通過する左右方向に平行な中心線CL1に対して線対称な形状に形成されるとともに、左右方向における環状コア11の中心位置を通過する前後方向に平行な中心線CL2に対して線対称な形状に形成されている。 The first core 12 and the second core 13 are formed in the same shape, and the first connection core 14 and the second connection core 15 are formed in the same shape. Further, as shown in FIG. 6, the annular core 11 is formed in a line-symmetric shape with respect to a center line CL1 parallel to the left-right direction passing through the center position of the annular core 11 in the front-rear direction, and in the left-right direction. It is formed in a line-symmetric shape with respect to a center line CL2 parallel to the front-rear direction passing through the center position of the annular core 11.
 第1コア12には、第2コア13に向かって(すなわち、後ろ側に向かって)突出する励磁側凸部としての凸部12a、12b、12cが形成されている。凸部12a~12cは、長方形状に形成されている。凸部12a~12cの後端面(すなわち、先端面)は、左右方向と平行になっており、凸部12a~12cの左右の端面は、前後方向と平行になっている。また、凸部12a~12cの後端面は、前後方向に直交する同一平面状に配置されている。左右方向における凸部12cの幅は、凸部12a、12bの幅よりも狭くなっている。本形態では、凸部12a~12cの右端面は第1端面であり、凸部12a~12cの左端面は第2端面である。なお、第1端面および第2端面は、前後方向における凸部12a~12cと凸部13a~13cとの距離L2より長い距離で形成されている。 The first core 12 is formed with convex portions 12a, 12b, and 12c as excitation-side convex portions that protrude toward the second core 13 (that is, toward the rear side). The convex portions 12a to 12c are formed in a rectangular shape. The rear end surfaces (that is, the front end surfaces) of the convex portions 12a to 12c are parallel to the left-right direction, and the left and right end surfaces of the convex portions 12a to 12c are parallel to the front-rear direction. The rear end surfaces of the convex portions 12a to 12c are arranged in the same plane perpendicular to the front-rear direction. The width of the convex portion 12c in the left-right direction is narrower than the width of the convex portions 12a and 12b. In this embodiment, the right end surfaces of the convex portions 12a to 12c are first end surfaces, and the left end surfaces of the convex portions 12a to 12c are second end surfaces. The first end surface and the second end surface are formed at a distance longer than the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction.
 凸部12aは、右端側に配置され、凸部12bは、左端側に配置され、凸部12cは、凸部12aと凸部12bとの間に配置されている。具体的には、凸部12cは、左右方向における凸部12cの中心と第1コア12の中心とが一致するように配置され、凸部12aと凸部12bとは、中心線CL2を対称軸とする線対称の位置に配置されている。凸部12aと凸部12bとは同形状に形成されており、第1コア12は、中心線CL2に対して線対称な形状に形成されている。本形態の凸部12aは、第1励磁側凸部であり、凸部12bは、第2励磁側凸部であり、凸部12cは、第3励磁側凸部である。 The convex portion 12a is disposed on the right end side, the convex portion 12b is disposed on the left end side, and the convex portion 12c is disposed between the convex portion 12a and the convex portion 12b. Specifically, the convex part 12c is arranged so that the center of the convex part 12c in the left-right direction and the center of the first core 12 coincide with each other, and the convex part 12a and the convex part 12b have the center line CL2 as an axis of symmetry. It is arranged at a line symmetrical position. The convex portion 12a and the convex portion 12b are formed in the same shape, and the first core 12 is formed in a line-symmetric shape with respect to the center line CL2. In this embodiment, the convex portion 12a is a first excitation side convex portion, the convex portion 12b is a second excitation side convex portion, and the convex portion 12c is a third excitation side convex portion.
 左右方向において、凸部12aと第1連結コア14との間(具体的には、凸部12aの右端面と第1連結コア14の左端面との間)には、隙間が形成され、凸部12bと第2連結コア15との間(具体的には、凸部12bの左端面と第2連結コア15の右端面との間)には、隙間が形成されている。また、左右方向において、凸部12aと凸部12cとの間(具体的には、凸部12aの左端面と凸部12cの右端面との間)には、隙間が形成され、凸部12bと凸部12cとの間(具体的には、凸部12bの右端面と凸部12cの左端面との間)には、隙間が形成されている。上述のように、第1コア12は、中心線CL2に対して線対称な形状に形成されており、凸部12aと第1連結コア14との隙間と、凸部12bと第2連結コア15との隙間とは同じ大きさとなっており、凸部12aと凸部12cとの隙間と、凸部12bと凸部12cとの隙間とは同じ大きさになっている。 In the left-right direction, a gap is formed between the convex portion 12a and the first connecting core 14 (specifically, between the right end surface of the convex portion 12a and the left end surface of the first connecting core 14). A gap is formed between the portion 12b and the second connecting core 15 (specifically, between the left end surface of the convex portion 12b and the right end surface of the second connecting core 15). In the left-right direction, a gap is formed between the convex portion 12a and the convex portion 12c (specifically, between the left end surface of the convex portion 12a and the right end surface of the convex portion 12c), and the convex portion 12b. A gap is formed between the protrusion 12c and the protrusion 12c (specifically, between the right end face of the protrusion 12b and the left end face of the protrusion 12c). As described above, the first core 12 is formed in a line-symmetric shape with respect to the center line CL2, and the gap between the convex portion 12a and the first connecting core 14, and the convex portion 12b and the second connecting core 15 are formed. Are the same size, and the gap between the convex portion 12a and the convex portion 12c and the gap between the convex portion 12b and the convex portion 12c are the same size.
 凸部12aと凸部12cとの間、および、凸部12bと凸部12cとの間の第1コア12の後端面は、凸部12aと第1連結コア14との間、および、凸部12bと第2連結コア15との間の第1コア12の後端面よりも前側に配置されている。 The rear end surface of the first core 12 between the convex portion 12a and the convex portion 12c and between the convex portion 12b and the convex portion 12c is between the convex portion 12a and the first connecting core 14 and the convex portion. It arrange | positions ahead rather than the rear-end surface of the 1st core 12 between 12b and the 2nd connection core 15. FIG.
 上述のように、第2コア13は、第1コア12と同形状に形成されており、中心軸CL1を対称軸とする線対称の位置に配置されている。そのため、第2コア13には、第1コア12に向かって(すなわち、前側に向かって)突出する検出側凸部としての凸部13a、13b、13cが形成されている。凸部13a~13cは、凸部12a~12cと同形状に形成されており、凸部13a~13cの前端面(すなわち、先端面)は、前後方向に直交する同一平面状に配置されている。本形態では、凸部13a~13cの右端面は第3端面であり、凸部13a~13cの左端面は第4端面である。なお、第3端面および第4端面は、前後方向における凸部12a~12cと凸部13a~13cとの距離L2より長い距離で形成されている。 As described above, the second core 13 is formed in the same shape as the first core 12, and is disposed at a line-symmetrical position with the central axis CL1 as the symmetry axis. Therefore, the second core 13 is formed with convex portions 13a, 13b, and 13c as detection-side convex portions that project toward the first core 12 (that is, toward the front side). The convex portions 13a to 13c are formed in the same shape as the convex portions 12a to 12c, and the front end surfaces (that is, the front end surfaces) of the convex portions 13a to 13c are arranged in the same plane orthogonal to the front-rear direction. . In this embodiment, the right end surface of the convex portions 13a to 13c is the third end surface, and the left end surface of the convex portions 13a to 13c is the fourth end surface. The third end surface and the fourth end surface are formed at a distance longer than the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction.
 左右方向において、凸部13aは、凸部12aと同じ位置に配置され、凸部13bは、凸部12bと同じ位置に配置され、凸部13cは、凸部12cと同じ位置に配置されている。第1コア12と同様に、第2コア13は、中心線CL2に対して線対称な形状に形成されている。本形態の凸部13aは、第1検出側凸部であり、凸部13bは、第2検出側凸部であり、凸部13cは、第3検出側凸部である。 In the left-right direction, the convex portion 13a is arranged at the same position as the convex portion 12a, the convex portion 13b is arranged at the same position as the convex portion 12b, and the convex portion 13c is arranged at the same position as the convex portion 12c. . Similar to the first core 12, the second core 13 is formed in a line-symmetric shape with respect to the center line CL2. The convex part 13a of this form is a 1st detection side convex part, the convex part 13b is a 2nd detection side convex part, and the convex part 13c is a 3rd detection side convex part.
 また、左右方向において、凸部13aと第1連結コア14との間には、隙間が形成され、凸部13bと第2連結コア15との間には、凸部13aと第1連結コア14との隙間と同じ大きさの隙間が形成されている。また、左右方向において、凸部13aと凸部13cとの間には、隙間が形成され、凸部13bと凸部13cとの間には、凸部13aと凸部13cとの隙間と同じ大きさの隙間が形成されている。第1コア12と同様に、凸部13aと凸部13cとの間、および、凸部13bと凸部13cとの間の第2コア13の後端面は、凸部13aと第1連結コア14との間、および、凸部13bと第2連結コア15との間の第2コア13の後端面よりも後ろ側に配置されている。 In the left-right direction, a gap is formed between the convex portion 13 a and the first connecting core 14, and the convex portion 13 a and the first connecting core 14 are provided between the convex portion 13 b and the second connecting core 15. A gap having the same size as the gap is formed. In the left-right direction, a gap is formed between the convex portion 13a and the convex portion 13c, and the same size as the gap between the convex portion 13a and the convex portion 13c is formed between the convex portion 13b and the convex portion 13c. A gap is formed. Similarly to the first core 12, the rear end surface of the second core 13 between the convex portion 13a and the convex portion 13c and between the convex portion 13b and the convex portion 13c is the convex portion 13a and the first connecting core 14. And the rear end surface of the second core 13 between the convex portion 13b and the second connecting core 15.
 前後方向における凸部12a~12cと凸部13a~13cとの間は、通過路5となっている。通過路5は、左右方向に細長い長方形状に形成されている。上述のように、ケース体3には、通過孔3aへメダル2を案内するためのガイド部材が固定されている。このガイド部材は、凸部12a、13aの右端面と凸部12b、13bの左端面との間で、メダル2が通過するように、メダル2を通過孔3aへ案内している。すなわち、凸部12a、13aの右端面と凸部12b、13bの左端面との左右方向の距離L1(図6参照)は、通過路5の左右方向の幅と等しくなっている。また、通過路5の左右方向の幅は、メダル2の外径よりも大きくなっている。すなわち、距離L1は、メダル2の外径よりも大きくなっている。具体的には、通過路5の左右方向の幅は、スロットマシンのメダル投入口から投入されることが想定されるメダル2であって、最も大きな外径を有するメダル2の外径よりも大きくなっており、この最も大きな外径を有するメダル2の外径よりも距離L1は大きくなっている。本形態の凸部12aの右端面は、最も右側(第1方向側)に配置される第1端面であり、凸部12bの左端面は、最も左側(第2方向側)に配置される第2端面であり、凸部13aの右端面は、最も右側に配置される第3端面であり、凸部13bの左端面は、最も左側に配置される第4端面である。 A passage 5 is provided between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction. The passage 5 is formed in a rectangular shape elongated in the left-right direction. As described above, the guide member for guiding the medal 2 to the passage hole 3 a is fixed to the case body 3. This guide member guides the medal 2 to the passage hole 3a so that the medal 2 passes between the right end surface of the convex portions 12a, 13a and the left end surface of the convex portions 12b, 13b. That is, the left-right distance L1 (see FIG. 6) between the right end surfaces of the convex portions 12a and 13a and the left end surfaces of the convex portions 12b and 13b is equal to the width in the left-right direction of the passage 5. Further, the width of the passage 5 in the left-right direction is larger than the outer diameter of the medal 2. That is, the distance L1 is larger than the outer diameter of the medal 2. Specifically, the width in the left-right direction of the passage 5 is the medal 2 that is assumed to be inserted from the medal slot of the slot machine, and is larger than the outer diameter of the medal 2 having the largest outer diameter. The distance L1 is larger than the outer diameter of the medal 2 having the largest outer diameter. The right end surface of the convex portion 12a in this embodiment is the first end surface disposed on the rightmost side (first direction side), and the left end surface of the convex portion 12b is the first end surface disposed on the leftmost side (second direction side). The right end surface of the convex portion 13a is the third end surface disposed on the rightmost side, and the left end surface of the convex portion 13b is the fourth end surface disposed on the leftmost side.
 また、凸部12c、13cは、左右方向における通過路5のどの位置をメダル2が通過しても、前後方向から見たときに、凸部12c、13cの全体がメダル2と重なるように形成され、また、配置されている。すなわち、凸部12a、13aの右端面または凸部12b、13bの左端面と、メダル2の外周端とが一致するように、メダル2が通過路5を通過したとしても、前後方向から見たときに、凸部12c、13cの全体がメダル2と重なるように、凸部12c、13cが形成され配置されている。 Further, the convex portions 12c and 13c are formed so that the entire convex portions 12c and 13c overlap the medal 2 when viewed from the front-rear direction regardless of the position of the passage 5 in the left-right direction. Is also arranged. That is, even when the medal 2 passes through the passage 5 so that the right end surface of the convex portions 12a, 13a or the left end surface of the convex portions 12b, 13b coincides with the outer peripheral end of the medal 2, it is viewed from the front-rear direction. Sometimes, the convex portions 12 c and 13 c are formed and arranged so that the entire convex portions 12 c and 13 c overlap with the medal 2.
 さらに、前後方向における凸部12a~12cと凸部13a~13cとの距離L2(より具体的には、前後方向における凸部12a~12cの後端面と凸部13a~13cの前端面との距離L2、図6参照)は、左右方向における凸部12a、13aの右端面と第1連結コア14の左端面との距離L3(図6参照)、および、左右方向における凸部12b、13bの左端面と第2連結コア15の右端面との距離L4(図6参照)よりも短くなっている。また、前後方向における凸部12cと凸部13cとの距離L2は、凸部12cと凸部13aとの最短距離(すなわち、凸部12cの右端面の後端と凸部13aの左端面の前端との最短距離)、および、凸部12cと凸部13bとの最短距離(すなわち、凸部12cの左端面の後端と凸部13bの右端面の前端との最短距離)よりも短くなっている。 Further, the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction (more specifically, the distance between the rear end surface of the convex portions 12a to 12c and the front end surface of the convex portions 13a to 13c in the front-rear direction) L2, see FIG. 6) is a distance L3 (see FIG. 6) between the right end surface of the convex portions 12a, 13a and the left end surface of the first connecting core 14 in the left-right direction, and the left end of the convex portions 12b, 13b in the left-right direction. It is shorter than the distance L4 (see FIG. 6) between the surface and the right end surface of the second connecting core 15. The distance L2 between the convex portion 12c and the convex portion 13c in the front-rear direction is the shortest distance between the convex portion 12c and the convex portion 13a (that is, the rear end of the right end surface of the convex portion 12c and the front end of the left end surface of the convex portion 13a). And the shortest distance between the convex portion 12c and the convex portion 13b (that is, the shortest distance between the rear end of the left end surface of the convex portion 12c and the front end of the right end surface of the convex portion 13b). Yes.
 また、左右方向における凸部12a、13aの右端面と凸部12b、13bの右端面との距離L5、および、左右方向における凸部12a、13aの左端面と凸部12b、13bの左端面との距離L6は、メダル2の外径よりも小さくなっている。具体的には、距離L5、L6は、スロットマシンのメダル投入口から投入されることが想定されるメダル2であって、最も小さな外径を有するメダル2の外径よりも小さくなっている。 Further, the distance L5 between the right end surface of the convex portions 12a, 13a and the right end surface of the convex portions 12b, 13b in the left-right direction, and the left end surface of the convex portions 12a, 13a and the left end surface of the convex portions 12b, 13b in the left-right direction Is smaller than the outer diameter of the medal 2. Specifically, the distances L5 and L6 are medals 2 that are assumed to be inserted from the medal insertion slot of the slot machine, and are smaller than the outer diameter of the medal 2 having the smallest outer diameter.
 励磁用コイル8は、凸部12a~12cに巻回されている。具体的には、図3に示すように、凸部12a~12cの上下両面(被検出体2の通過方向における第1励磁側凸部12aの表面および裏面と第2励磁側凸部12bの表面および裏面と第3励磁側凸部12cの表面および裏面)、凸部12aの右端面(第1端面)および凸部12bの左端面(第2端面)を覆う略四角筒状のボビン20を介して、励磁用コイル8が凸部12a~12cに巻回されている。すなわち、凸部12a~12cの上下両面、凸部12aの右端面および凸部12bの左端面を覆うように、ボビン20(励磁用ボビン)を介して、励磁用コイル8が凸部12a~12cに巻回されている。なお、凸部12a~12cの上面(第1励磁側凸部12aの表面)は、メダル2の通過方向において環状コア11の上流側に位置する凸部12a~12cの一方側の面であり、凸部12a~12cの下面(第1励磁側凸部12aの裏面)は、メダル2の通過方向において環状コア11の下流側に位置する凸部12a~12cの他方側の面である。 The exciting coil 8 is wound around the convex portions 12a to 12c. Specifically, as shown in FIG. 3, the upper and lower surfaces of the convex portions 12a to 12c (the surface and the back surface of the first excitation side convex portion 12a and the surface of the second excitation side convex portion 12b in the passing direction of the detection target 2). And a back surface and a front surface and a back surface of the third excitation side convex portion 12c), a right end surface (first end surface) of the convex portion 12a, and a left end surface (second end surface) of the convex portion 12b. Thus, the exciting coil 8 is wound around the convex portions 12a to 12c. That is, the exciting coil 8 is connected to the convex portions 12a to 12c via the bobbin 20 (excitation bobbin) so as to cover the upper and lower surfaces of the convex portions 12a to 12c, the right end surface of the convex portion 12a, and the left end surface of the convex portion 12b. It is wound around. The top surfaces of the convex portions 12a to 12c (the surface of the first excitation-side convex portion 12a) are surfaces on one side of the convex portions 12a to 12c located on the upstream side of the annular core 11 in the passing direction of the medal 2. The lower surfaces of the convex portions 12a to 12c (the back surface of the first excitation side convex portion 12a) are surfaces on the other side of the convex portions 12a to 12c located on the downstream side of the annular core 11 in the passing direction of the medal 2.
 検出用コイル9は、凸部13a~13cに巻回されている。具体的には、図3に示すように、凸部13a~13cの上下両面(被検出体2の通過方向における第1検出側凸部13aの表面および裏面と第2検出側凸部13bの表面および裏面と第3検出側凸部13cの表面および裏面)、凸部13aの右端面(第3端面)および凸部13bの左端面(第4端面)を覆う略四角筒状のボビン21(第1検出用ボビン)を介して、検出用コイル9が凸部13a~13cに巻回されている。すなわち、凸部13a~13cの上下両面、凸部13aの右端面および凸部13bの左端面を覆うように、ボビン21を介して、検出用コイル9が凸部13a~13cに巻回されている。本形態の検出用コイル9は、第1検出用コイルである。なお、凸部13a~13cの上面(第1検出側凸部13aの表面)は、メダル2の通過方向において環状コア11の下流側に位置する凸部13a~13cの一方側の面であり、凸部13a~13cの下面(第1検出側凸部13aの裏面)は、メダル2の通過方向において環状コア11の下流側に位置する凸部13a~13cの他方側の面である。 The detection coil 9 is wound around the convex portions 13a to 13c. Specifically, as shown in FIG. 3, the upper and lower surfaces of the protrusions 13a to 13c (the front and back surfaces of the first detection-side protrusion 13a and the surface of the second detection-side protrusion 13b in the passing direction of the detection target 2). And the back surface and the front and back surfaces of the third detection-side convex portion 13c), the right end surface (third end surface) of the convex portion 13a, and the left end surface (fourth end surface) of the convex portion 13b. The detection coil 9 is wound around the convex portions 13a to 13c via a single detection bobbin. That is, the detection coil 9 is wound around the convex portions 13a to 13c via the bobbin 21 so as to cover the upper and lower surfaces of the convex portions 13a to 13c, the right end surface of the convex portion 13a, and the left end surface of the convex portion 13b. Yes. The detection coil 9 of this embodiment is a first detection coil. The upper surfaces of the convex portions 13a to 13c (the surface of the first detection side convex portion 13a) are surfaces on one side of the convex portions 13a to 13c located on the downstream side of the annular core 11 in the passing direction of the medal 2. The lower surfaces of the convex portions 13a to 13c (the back surface of the first detection-side convex portion 13a) are the other surfaces of the convex portions 13a to 13c located on the downstream side of the annular core 11 in the passing direction of the medal 2.
 検出用コイル10は、凸部13cに巻回されている。具体的には、図4に示すように、凸部13cの上下両面(第3検出側凸部13cの表面および裏面)、右端面(直交方向における第3検出側凸部13cの第3端面側の端面)および左端面(直交方向における第3検出側凸部13cの第4端面側の端面)を覆う略四角筒状のボビン22(第2検出用ボビン)を介して、検出用コイル10が凸部13cに巻回されている。すなわち、凸部13cの上下両面、右端面および左端面を覆うように、ボビン22を介して、検出用コイル10が凸部13cに巻回されている。本形態の検出用コイル10は、第2検出用コイルである。 The detection coil 10 is wound around the convex portion 13c. Specifically, as shown in FIG. 4, the upper and lower surfaces of the convex portion 13c (the front surface and the rear surface of the third detection side convex portion 13c), the right end surface (the third end surface side of the third detection side convex portion 13c in the orthogonal direction). The detection coil 10 via a substantially square cylindrical bobbin 22 (second detection bobbin) covering the left end surface and the left end surface (the end surface on the fourth end surface side of the third detection side convex portion 13c in the orthogonal direction). It is wound around the convex part 13c. That is, the detection coil 10 is wound around the convex portion 13c through the bobbin 22 so as to cover the upper and lower surfaces, the right end surface, and the left end surface of the convex portion 13c. The detection coil 10 of this embodiment is a second detection coil.
 図7に示すように、励磁用コイル8を構成する導線の一端には、交流電源25が接続され、励磁用コイル8を構成する導線の他端は接地されている。検出用コイル9を構成する導線の一端は、増幅回路26、整流回路27およびオフセット回路28を介してMPU(Micro Processing Unit)29に接続され、検出用コイル9を構成する導線の他端は接地されている。検出用コイル10を構成する導線の一端は、増幅回路31、整流回路32およびオフセット回路33を介してMPU29に接続され、検出用コイル10を構成する導線の他端は接地されている。また、検出用コイル9、10からの出力信号S1、S2のサンプリング範囲を決めるためのコンパレータ35がオフセット回路28とMPU29との間に並列に接続されている。 As shown in FIG. 7, an AC power supply 25 is connected to one end of a conducting wire that constitutes the exciting coil 8, and the other end of the conducting wire that constitutes the exciting coil 8 is grounded. One end of a conducting wire constituting the detection coil 9 is connected to an MPU (Micro Processing Unit) 29 via an amplifier circuit 26, a rectifying circuit 27 and an offset circuit 28, and the other end of the conducting wire constituting the detection coil 9 is grounded. Has been. One end of the conducting wire constituting the detection coil 10 is connected to the MPU 29 via the amplifier circuit 31, the rectifier circuit 32 and the offset circuit 33, and the other end of the conducting wire constituting the detection coil 10 is grounded. Further, a comparator 35 for determining the sampling range of the output signals S 1 and S 2 from the detection coils 9 and 10 is connected in parallel between the offset circuit 28 and the MPU 29.
 磁気センサ4では、交流電源25から供給される電力によって励磁用コイル8が環状コア11の内周側に交流磁界を発生させている状態でメダル2が通過路5を通過すると、環状コア11の内周側の交流磁界が変動する。環状コア11の内周側の交流磁界が変動すると、検出コイル9からの出力信号S1の出力値および検出用コイル10からの出力信号S2の出力値が変動する。本形態では、励磁用コイル8が交流磁界を発生させている状態でメダル2が通過路5を通過すると、図8に示すように、出力信号S1の出力値および出力信号S2の出力値が大きくなるように、磁気センサ4の検出回路が構成されている。 In the magnetic sensor 4, when the medal 2 passes through the passage 5 in a state where the exciting coil 8 generates an alternating magnetic field on the inner peripheral side of the annular core 11 by the electric power supplied from the alternating current power supply 25, The AC magnetic field on the inner circumference fluctuates. When the AC magnetic field on the inner peripheral side of the annular core 11 varies, the output value of the output signal S1 from the detection coil 9 and the output value of the output signal S2 from the detection coil 10 vary. In this embodiment, when the medal 2 passes through the passage 5 with the exciting coil 8 generating an alternating magnetic field, the output value of the output signal S1 and the output value of the output signal S2 are large as shown in FIG. Thus, the detection circuit of the magnetic sensor 4 is configured.
 上述のように、凸部12a、13aの右端面と凸部12b、13bの左端面との左右方向の距離L1は、通過路5の左右方向の幅と等しくなっており、検出用コイル9は、凸部13a~13cの上下両面、凸部13aの右端面および凸部13bの左端面を覆うように、ボビン21を介して凸部13a~13cに巻回されている。そのため、検出用コイル9の出力信号S1の出力値は、通過路5を通過するメダル2の材質、厚みおよび外径の影響によって変動する。一方、凸部12c、13cは、凸部12a、13aと凸部12b、13bとの間に配置されるとともに、左右方向における通過路5のどの位置をメダル2が通過しても、前後方向から見たときに、凸部12c、13cの全体がメダル2と重なるように形成され配置されており、検出用コイル10は、凸部13cに巻回されている。そのため、検出用コイル10の出力信号S2の出力値は、主として、通過路5を通過するメダル2の材質および厚みの影響によって変動する。 As described above, the lateral distance L1 between the right end surfaces of the convex portions 12a and 13a and the left end surfaces of the convex portions 12b and 13b is equal to the lateral width of the passage 5 and the detection coil 9 is The convex portions 13a to 13c are wound around the convex portions 13a to 13c via the bobbin 21 so as to cover both the upper and lower surfaces of the convex portions 13a to 13c, the right end surface of the convex portion 13a, and the left end surface of the convex portion 13b. Therefore, the output value of the output signal S1 of the detection coil 9 varies due to the influence of the material, thickness and outer diameter of the medal 2 passing through the passage 5. On the other hand, the convex portions 12c and 13c are disposed between the convex portions 12a and 13a and the convex portions 12b and 13b, and the medal 2 passes through any position of the passage 5 in the left-right direction from the front-rear direction. When viewed, the projections 12c and 13c are entirely formed and arranged so as to overlap the medal 2, and the detection coil 10 is wound around the projection 13c. For this reason, the output value of the output signal S2 of the detection coil 10 varies mainly due to the influence of the material and thickness of the medal 2 passing through the passage 5.
 メダル識別装置1では、たとえば、出力信号S1の最大値V1と出力信号S2の最大値V2とに基づいて、通過路5を通過するメダル2が正規のものであるか否かが識別されている。なお、励磁用コイル8が交流磁界を発生させている状態でメダル2が通過路5を通過したときに、出力信号S1の出力値および出力信号S2の出力値が小さくなるように、磁気センサ4の検出回路が構成されている場合には、たとえば、出力信号S1の最小値と出力信号S2の最小値とに基づいて、通過路5を通過するメダル2が正規のものであるか否かが識別される。また、上述のように、メダル2には、縁取部2aが形成されているため、主として、メダル2の材質および厚みの影響によって出力値が変動する出力信号S2には、図8に示すように、凸部12cと凸部13cとの間をメダル2の中心側が通過する際、および、凸部12cと凸部13cとの間を縁取部2aが通過する際にピークP1、P2、P3が現れる。すなわち、出力信号S2には、3箇所のピークP1、P2、P3が現れる。この3箇所のピークP1~P3の値と出力信号S1の最大値V1とに基づいて、通過路5を通過するメダル2が正規のものであるか否かが識別されても良い。 In the medal identification device 1, for example, it is identified whether or not the medal 2 passing through the passage 5 is genuine based on the maximum value V1 of the output signal S1 and the maximum value V2 of the output signal S2. . Note that when the medal 2 passes through the passage 5 with the exciting coil 8 generating an alternating magnetic field, the magnetic sensor 4 is set so that the output value of the output signal S1 and the output value of the output signal S2 become small. If the detection circuit is configured, for example, based on the minimum value of the output signal S1 and the minimum value of the output signal S2, whether or not the medal 2 passing through the passage 5 is a regular one is determined. Identified. Further, as described above, since the edge 2a is formed on the medal 2, the output signal S2 whose output value varies mainly due to the influence of the material and thickness of the medal 2 is shown in FIG. When the center side of the medal 2 passes between the convex portion 12c and the convex portion 13c, and when the edging portion 2a passes between the convex portion 12c and the convex portion 13c, peaks P1, P2, and P3 appear. . That is, three peaks P1, P2, and P3 appear in the output signal S2. Based on the values of the three peaks P1 to P3 and the maximum value V1 of the output signal S1, whether or not the medal 2 passing through the passage 5 is genuine may be identified.
 (本形態の主な効果)
 以上説明したように、本形態では、磁気センサ4によって、通過路5を通過するメダル2が正規のものであるか否かが識別されている。そのため、本形態では、磁気センサ4の構成部品とメダル2とを接触させなくても、メダル2が正規のものであるか否かを識別することができる。したがって、本形態では、メダル識別装置1が長年使用されても、磁気センサ4の構成部品の摩耗等に起因するメダル2の識別精度の低下を防止することが可能になる。
(Main effects of this form)
As described above, in this embodiment, it is identified by the magnetic sensor 4 whether or not the medal 2 passing through the passage 5 is genuine. Therefore, in this embodiment, it is possible to identify whether or not the medal 2 is genuine without contacting the component 2 of the magnetic sensor 4 and the medal 2. Therefore, in this embodiment, even if the medal identification device 1 is used for many years, it is possible to prevent a decrease in identification accuracy of the medal 2 due to wear of components of the magnetic sensor 4 or the like.
 本形態では、第2コア13に向かって突出する長方形状の凸部12a~12cに励磁用コイル8を巻回し、第1コア12に向かって突出する長方形状の凸部13a~13cに検出用コイル9を巻回し、凸部13cに検出用コイル10を巻回することで、磁気センサ4が構成されている。そのため、本形態では、第1コア12および第2コア13の構成を簡素化すること、および、環状コア11への励磁用コイル8および検出用コイル9、10の巻回箇所を減らすことが可能になる。したがって、本形態では、メダル識別装置1の構成を簡素化することが可能になる。 In this embodiment, the exciting coil 8 is wound around the rectangular convex portions 12a to 12c protruding toward the second core 13, and the rectangular convex portions 13a to 13c protruding toward the first core 12 are used for detection. The magnetic sensor 4 is configured by winding the coil 9 and winding the detection coil 10 around the convex portion 13c. Therefore, in this embodiment, the configuration of the first core 12 and the second core 13 can be simplified, and the number of winding portions of the exciting coil 8 and the detecting coils 9 and 10 around the annular core 11 can be reduced. become. Therefore, in this embodiment, the configuration of the medal identification device 1 can be simplified.
 本形態では、検出用コイル9の出力信号S1の出力値は、通過路5を通過するメダル2の材質、厚みおよび外径の影響によって変動し、検出用コイル10の出力信号S2の出力値は、主として、通過路5を通過するメダル2の材質および厚みの影響によって変動する。そのため、本形態では、検出用コイル9を用いて、主として、メダル2の外径を識別し、検出用コイル10を用いて、主としてメダル2の材質や厚みを識別することが可能になる。したがって、本形態では、メダル2の識別精度を高めることが可能になる。たとえば、正規のメダル2とその外径および厚みは同じであるが、その材質が異なる非正規のメダル2と正規のメダル2とを識別したり、正規のメダル2とその厚みおよび材質は同じであるが、その外径が異なる非正規のメダル2と正規のメダル2とを識別したりすることが可能になる。 In this embodiment, the output value of the output signal S1 of the detection coil 9 varies due to the influence of the material, thickness and outer diameter of the medal 2 passing through the passage 5, and the output value of the output signal S2 of the detection coil 10 is The fluctuation mainly depends on the material and thickness of the medal 2 passing through the passage 5. Therefore, in this embodiment, it is possible to mainly identify the outer diameter of the medal 2 using the detection coil 9 and mainly identify the material and thickness of the medal 2 using the detection coil 10. Therefore, in this embodiment, it becomes possible to improve the identification accuracy of the medal 2. For example, the regular medal 2 has the same outer diameter and thickness, but the non-regular medal 2 and the regular medal 2 having different materials are identified, or the regular medal 2 has the same thickness and material. However, it is possible to identify the non-regular medal 2 and the regular medal 2 having different outer diameters.
 また、本形態では、凸部12a、13aの右端面と凸部12b、13bの左端面との左右方向の距離L1は、通過路5の左右方向の幅と等しくなっているため、左右方向における通過路5のどの位置をメダル2が通過しても、メダル2の一部が、凸部12a~12cと凸部13a~13cとの間に形成される磁路から外れることがない。したがって、本形態では、左右方向におけるメダル2の通過位置に起因する検出用コイル9の出力信号S1の出力値の変動を抑制することが可能になる。その結果、本形態では、メダル2の外径の識別精度を高めることが可能になる。 Further, in this embodiment, the distance L1 in the left-right direction between the right end surfaces of the convex portions 12a, 13a and the left end surface of the convex portions 12b, 13b is equal to the width in the left-right direction of the passage 5 so Regardless of the position of the medal 2 through which the medal 2 passes, a part of the medal 2 does not deviate from the magnetic path formed between the convex portions 12a to 12c and the convex portions 13a to 13c. Therefore, in this embodiment, it is possible to suppress fluctuations in the output value of the output signal S1 of the detection coil 9 due to the passing position of the medal 2 in the left-right direction. As a result, in this embodiment, it becomes possible to improve the accuracy of identifying the outer diameter of the medal 2.
 特に本形態では、凸部12a、13aの右端面と凸部12b、13bの右端面との距離L5、および、凸部12a、13aの左端面と凸部12b、13bの左端面との距離L6は、スロットマシンのメダル投入口から投入されることが想定されるメダル2であって、最も小さな外径を有するメダル2の外径よりも小さくなっているため、左右方向における通過路5のどの位置をメダル2が通過しても、凸部12aと凸部13aとの間、または、凸部12bと凸部13bとの間から、メダル2の全体が外れた状態で、メダル2が通過路5を通過することはない。したがって、本形態では、左右方向におけるメダル2の通過位置に起因する検出用コイル9の出力信号S1の出力値の変動を効果的に抑制することが可能になり、その結果、メダル2の外径の識別精度を効果的に高めることが可能になる。 In particular, in this embodiment, the distance L5 between the right end surface of the convex portions 12a and 13a and the right end surface of the convex portions 12b and 13b, and the distance L6 between the left end surface of the convex portions 12a and 13a and the left end surface of the convex portions 12b and 13b. Is a medal 2 that is expected to be inserted from the medal slot of the slot machine, and is smaller than the outer diameter of the medal 2 having the smallest outer diameter. Even if the medal 2 passes through the position, the medal 2 passes through in a state where the entire medal 2 is out of the space between the convex portion 12a and the convex portion 13a or between the convex portion 12b and the convex portion 13b. Never go through 5. Therefore, in this embodiment, it is possible to effectively suppress the fluctuation of the output value of the output signal S1 of the detection coil 9 due to the passing position of the medal 2 in the left-right direction. As a result, the outer diameter of the medal 2 It is possible to effectively improve the identification accuracy.
 すなわち、図9(A)に示すように、凸部12a、13aの右端面と凸部12b、13bの右端面との距離L7、および、凸部12a、13aの左端面と凸部12b、13bの左端面との距離L8がメダル2の外径よりも大きくなっていると、図9(A)の実線で示すように、メダル2の一部が凸部12aと凸部13aとの間および凸部12bと凸部13bとの間を通過するようにメダル2が通過路5を通過する場合と、図9(A)の破線で示すように、メダル2の一部は凸部12aと凸部13aとの間を通過するが、メダル2の全体が凸部12bと凸部13bとの間を通過しないようにメダル2が通過路5を通過する場合とが発生しうる。このときには、前者の場合の検出用コイル9の出力と、後者の場合の検出用コイル9の出力とが大きく変動する。すなわち、左右方向におけるメダル2の通過位置によって、検出用コイル9の出力が大きく変動するおそれがある。これに対して、本形態では、左右方向における通過路5のどの位置をメダル2が通過しても、検出用コイル9の出力を安定させることが可能になる。すなわち、本形態では、左右方向におけるメダル2の通過位置に起因する検出用コイル9の出力信号S1の出力値の変動を効果的に抑制することが可能になり、その結果、メダル2の外径の識別精度を効果的に高めることが可能になる。 That is, as shown in FIG. 9A, the distance L7 between the right end surface of the convex portions 12a and 13a and the right end surface of the convex portions 12b and 13b, and the left end surface of the convex portions 12a and 13a and the convex portions 12b and 13b. When the distance L8 from the left end surface of the medals 2 is larger than the outer diameter of the medal 2, as shown by the solid line in FIG. 9A, a part of the medal 2 is between the convex portion 12a and the convex portion 13a and When the medal 2 passes through the passage 5 so as to pass between the convex portion 12b and the convex portion 13b, and as shown by the broken line in FIG. 9A, a part of the medal 2 is convex with the convex portion 12a. There may occur a case where the medal 2 passes through the passage 5 so that the entire medal 2 does not pass between the convex portion 12b and the convex portion 13b. At this time, the output of the detection coil 9 in the former case and the output of the detection coil 9 in the latter case vary greatly. That is, the output of the detection coil 9 may vary greatly depending on the passing position of the medal 2 in the left-right direction. On the other hand, in this embodiment, it is possible to stabilize the output of the detection coil 9 regardless of the position of the medal 2 passing through the passage 5 in the left-right direction. In other words, in this embodiment, it is possible to effectively suppress fluctuations in the output value of the output signal S1 of the detection coil 9 due to the passing position of the medal 2 in the left-right direction. It is possible to effectively improve the identification accuracy.
 また、本形態では、凸部12c、13cは、左右方向における通過路5のどの位置をメダル2が通過しても、前後方向から見たときに、凸部12c、13cの全体がメダル2と重なるように形成され配置されているため、メダル2の外径の影響を受けずに、検出用コイル10によって、メダル2の材質や厚みを識別することが可能になる。したがって、本形態では、メダル2の材質や厚みの識別精度を高めることが可能になる。 Further, in this embodiment, the convex portions 12c and 13c are formed so that the entire convex portions 12c and 13c are the same as the medal 2 when viewed from the front-rear direction regardless of the position of the passage 5 in the left-right direction. Since they are formed and arranged so as to overlap, the material and thickness of the medal 2 can be identified by the detection coil 10 without being affected by the outer diameter of the medal 2. Therefore, in this embodiment, it becomes possible to improve the identification accuracy of the material and thickness of the medal 2.
 本形態では、略四角環状に形成される環状コア11に励磁用コイル8および検出用コイル9、10が巻回されている。そのため、本形態では、励磁用コイル8が発生させる磁束の、環状コア11からの漏れを低減することが可能になり、その結果、環状コア11に効率の良い磁気回路を形成することが可能になる。 In this embodiment, an exciting coil 8 and detection coils 9 and 10 are wound around an annular core 11 formed in a substantially square annular shape. Therefore, in this embodiment, it is possible to reduce the leakage of the magnetic flux generated by the exciting coil 8 from the annular core 11, and as a result, an efficient magnetic circuit can be formed in the annular core 11. Become.
 本形態では、同形状に形成される凸部12aと凸部13aとが左右方向において同じ位置に配置され、同形状に形成される凸部12bと凸部13bとが左右方向において同じ位置に配置され、同形状に形成される凸部12cと凸部13cとが左右方向において同じ位置に配置されている。そのため、本形態では、凸部13a、凸部13bおよび凸部13cのそれぞれを通過する磁束の密度を高めることが可能になる。 In this embodiment, the convex portion 12a and the convex portion 13a formed in the same shape are arranged at the same position in the left-right direction, and the convex portion 12b and the convex portion 13b formed in the same shape are arranged at the same position in the left-right direction. And the convex part 12c and the convex part 13c which are formed in the same shape are arrange | positioned in the same position in the left-right direction. Therefore, in this embodiment, it is possible to increase the density of the magnetic flux that passes through each of the convex portion 13a, the convex portion 13b, and the convex portion 13c.
 また、本形態では、前後方向における凸部12a~12cと凸部13a~13cとの距離L2は、左右方向における凸部12a、13aの右端面と第1連結コア14の左端面との距離L3、および、左右方向における凸部12b、13bの左端面と第2連結コア15の右端面との距離L4よりも短くなっている。そのため、本形態では、図9(B)の二点鎖線の矢印で示すように、凸部12aと凸部13aとの間の磁束が第1連結コア14に向かって漏れたり、凸部12bと凸部13bとの間の磁束が第2連結コア15に向かって漏れたりするのを抑制することが可能になる。すなわち、本形態では、凸部12aの後端面から第1連結コア14に直接、回り込む磁路が形成されること、および、凸部12bの後端面から第2連結コア15に直接、回り込む磁路が形成されることを抑制することが可能になる。したがって、本形態では、凸部13aおよび凸部13bのそれぞれを通過する磁束の密度を高めることが可能になる。 In this embodiment, the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction is the distance L3 between the right end surface of the convex portions 12a and 13a and the left end surface of the first connecting core 14 in the left-right direction. , And the distance L4 between the left end surface of the convex portions 12b, 13b and the right end surface of the second connecting core 15 in the left-right direction. Therefore, in this embodiment, as shown by the two-dot chain line arrow in FIG. 9B, the magnetic flux between the convex portion 12a and the convex portion 13a leaks toward the first connecting core 14, or the convex portion 12b It is possible to suppress the magnetic flux between the convex portions 13 b from leaking toward the second connecting core 15. That is, in this embodiment, a magnetic path is formed that wraps directly from the rear end surface of the convex portion 12a to the first connecting core 14, and a magnetic path that wraps directly from the rear end surface of the convex portion 12b to the second connecting core 15. Can be prevented from being formed. Therefore, in this embodiment, it is possible to increase the density of the magnetic flux passing through each of the convex portions 13a and the convex portions 13b.
 また、本形態では、前後方向における凸部12cと凸部13cとの距離L2は、凸部12cと凸部13aとの最短距離、および、凸部12cと凸部13bとの最短距離よりも短くなっている。そのため、本形態では、図9(B)の破線の矢印で示すように、凸部12cと凸部13cとの間の磁束が凸部13a、13bに向かって漏れるのを抑制することが可能になる。すなわち、本形態では、凸部12cの後端面から凸部13a、13bへ回り込む磁路が形成されるのを抑制することが可能になる。したがって、本形態では、凸部13cを通過する磁束の密度を高めることが可能になる。 Further, in this embodiment, the distance L2 between the convex part 12c and the convex part 13c in the front-rear direction is shorter than the shortest distance between the convex part 12c and the convex part 13a and the shortest distance between the convex part 12c and the convex part 13b. It has become. Therefore, in this embodiment, as indicated by the dashed arrows in FIG. 9B, it is possible to suppress the magnetic flux between the convex portions 12c and 13c from leaking toward the convex portions 13a and 13b. Become. That is, in this embodiment, it is possible to suppress the formation of a magnetic path that goes from the rear end surface of the convex portion 12c to the convex portions 13a and 13b. Therefore, in this embodiment, it is possible to increase the density of the magnetic flux passing through the convex portion 13c.
 また、本形態では、第1端面、第2端面、第3端面、第4端面は、前後方向における凸部12a~12cと凸部13a~13cとの距離L2より長い距離で形成されている。このため、凸部12a、12bの後端面から前側の第1コア12へ、また、凸部13a、13bの前端面から後側の第2コア13への磁束の回り込みを抑制することが可能となる。また、前後方向における凸部12cの後端面から前側の第1コア12までの距離および凸部13cの前端面から後側の第2コア13までの距離は、前後方向における凸部12a~12cと凸部13a~13cとの距離L2より長い距離で形成されている。このため、前後方向における凸部12cの後端面から前側の第1コア12へ、また、凸部13cの前端面から後側の第2コア13への磁束の回り込みを抑制することが可能となる。したがって、本形態では、凸部12aから凸部13a、凸部12bから凸部13b、凸部12cから凸部13cへの磁束密度を高めることが可能となる。 In this embodiment, the first end face, the second end face, the third end face, and the fourth end face are formed at a distance longer than the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction. For this reason, it is possible to suppress the wraparound of the magnetic flux from the rear end surface of the convex portions 12a and 12b to the first core 12 on the front side and from the front end surface of the convex portions 13a and 13b to the second core 13 on the rear side. Become. Further, the distance from the rear end surface of the convex portion 12c to the first core 12 on the front side in the front-rear direction and the distance from the front end surface of the convex portion 13c to the second core 13 on the rear side are the same as those of the convex portions 12a to 12c in the front-rear direction. It is formed at a distance longer than the distance L2 with the convex portions 13a to 13c. For this reason, it becomes possible to suppress the wraparound of the magnetic flux from the rear end surface of the convex portion 12c in the front-rear direction to the first core 12 on the front side and from the front end surface of the convex portion 13c to the second core 13 on the rear side. . Therefore, in this embodiment, it is possible to increase the magnetic flux density from the convex portion 12a to the convex portion 13a, from the convex portion 12b to the convex portion 13b, and from the convex portion 12c to the convex portion 13c.
 本形態では、略四角環状に形成される環状コア11に励磁用コイル8および検出用コイル9、10が巻回されている。そのため、X方向とY方向とから構成されるXY平面内において任意の方向を向いている外部磁界の中にメダル識別装置1が配置されたとしても、外部磁界に起因する磁路は、通過路5に形成されない。たとえば、磁力線の向きが後ろ方向を向いている外部磁界(図10中の矢印)の中にメダル識別装置1が配置されたとしても、図10に示すように、外部磁界に起因する磁路は、通過路5に形成されない。すなわち、本形態では、環状コア11を磁気シールドとして機能させることが可能になり、その結果、メダル識別装置1の外部磁界に起因するメダル2の識別精度の低下を抑制することが可能になる。なお、上下方向(Z方向)を向いている外部磁界の中にメダル識別装置1が配置されたとしても、上下方向は、検出用コイル9、10の感磁方向と直交しているため、メダル識別装置1は、外部磁界の影響を受けにくい。 In this embodiment, an exciting coil 8 and detection coils 9 and 10 are wound around an annular core 11 formed in a substantially square annular shape. Therefore, even if the medal identification device 1 is arranged in an external magnetic field that is oriented in an arbitrary direction in the XY plane composed of the X direction and the Y direction, the magnetic path caused by the external magnetic field is a passing path. 5 is not formed. For example, even if the medal identification device 1 is arranged in an external magnetic field (arrow in FIG. 10) in which the direction of the magnetic lines of force is directed backward, as shown in FIG. The passage 5 is not formed. That is, in this embodiment, the annular core 11 can be caused to function as a magnetic shield, and as a result, it is possible to suppress a decrease in the identification accuracy of the medal 2 due to the external magnetic field of the medal identification device 1. Even if the medal identification device 1 is arranged in an external magnetic field that faces in the up-down direction (Z direction), the up-down direction is orthogonal to the magnetic sensing direction of the detection coils 9, 10. The identification device 1 is not easily affected by an external magnetic field.
 本形態では、環状コア11は、左右方向に細長い略四角環状に形成され、環状コア11の内周側に形成される通過路5は、左右方向に細長い長方形状に形成されている。そのため、本形態では、第1コア12、第2コア13、第1連結コア14および第2連結コア15の幅を確保しつつ、環状コア11を小型化することが可能になる。すなわち、本形態では、第1コア12、第2コア13、第1連結コア14および第2連結コア15の幅を確保して、環状コア11における内部磁束の飽和を防止しつつ、環状コア11を小型化することが可能になる。また、本形態では、環状コア11が略四角環状に形成されているため、たとえば、1枚の金属板から複数の環状コア11を打ち抜くことで、環状コア11を形成する場合には、材料のロスを低減することが可能になる。さらに、本形態では、環状コア11が略四角環状に形成されているため、たとえば、環状コア11が円環状に形成されている場合と比較して、ケース体3に対する環状コア11の位置決めが容易になる。 In this embodiment, the annular core 11 is formed in a substantially quadrangular annular shape elongated in the left-right direction, and the passage 5 formed on the inner peripheral side of the annular core 11 is formed in a rectangular shape elongated in the left-right direction. Therefore, in this embodiment, it is possible to reduce the size of the annular core 11 while ensuring the widths of the first core 12, the second core 13, the first connection core 14, and the second connection core 15. That is, in the present embodiment, the width of the first core 12, the second core 13, the first connection core 14, and the second connection core 15 is ensured to prevent saturation of the internal magnetic flux in the annular core 11, and the annular core 11. Can be miniaturized. Further, in this embodiment, since the annular core 11 is formed in a substantially square annular shape, for example, when the annular core 11 is formed by punching a plurality of annular cores 11 from one metal plate, Loss can be reduced. Furthermore, in this embodiment, since the annular core 11 is formed in a substantially square ring shape, for example, the positioning of the annular core 11 with respect to the case body 3 is easier than in the case where the annular core 11 is formed in an annular shape. become.
 (他の実施の形態)
 上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
(Other embodiments)
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited to this, and various modifications can be made without departing from the scope of the present invention.
 上述した形態では、励磁用コイル8は、ボビン20を介して凸部12a~12cに巻回されている。この他にもたとえば、所定の絶縁処理を行っているのであれば、励磁用コイル8は、凸部12a~12cに直接、巻回されても良い。同様に、検出用コイル9は、ボビン21を介して凸部13a~13cに巻回され、検出用コイル10は、ボビン22を介して凸部13cに巻回されているが、検出用コイル9は、凸部13a~13cに直接、巻回されても良いし、検出用コイル10は、凸部13cに直接、巻回されても良い。 In the embodiment described above, the exciting coil 8 is wound around the convex portions 12a to 12c via the bobbin 20. In addition, for example, if a predetermined insulation process is performed, the exciting coil 8 may be wound directly around the convex portions 12a to 12c. Similarly, the detection coil 9 is wound around the convex portions 13a to 13c via the bobbin 21, and the detection coil 10 is wound around the convex portion 13c via the bobbin 22. May be wound directly around the convex portions 13a to 13c, or the detection coil 10 may be wound directly around the convex portion 13c.
 上述した形態では、励磁用コイル8は、凸部12a~12cの上下両面、凸部12aの右端面および凸部12bの左端面を覆うように凸部12a~12cに巻回されている。この他にもたとえば、図11(A)に示すように、励磁用コイル8を構成する導線が凸部12a、凸部12cおよび凸部12bに順次巻回されることで、励磁用コイル8が構成されても良い。すなわち、励磁用コイル8は、凸部12a~12cのそれぞれの全周を覆うように凸部12a~12cに巻回されても良い。この場合には、凸部12cと凸部13cとの間の磁束密度を高めることが可能になる。 In the embodiment described above, the exciting coil 8 is wound around the convex portions 12a to 12c so as to cover the upper and lower surfaces of the convex portions 12a to 12c, the right end surface of the convex portion 12a, and the left end surface of the convex portion 12b. In addition to this, for example, as shown in FIG. 11A, the conducting wire constituting the exciting coil 8 is sequentially wound around the convex portion 12a, the convex portion 12c, and the convex portion 12b, so that the exciting coil 8 is It may be configured. That is, the exciting coil 8 may be wound around the convex portions 12a to 12c so as to cover the entire circumference of each of the convex portions 12a to 12c. In this case, the magnetic flux density between the convex part 12c and the convex part 13c can be increased.
 上述した形態では、検出用コイル9は、凸部13a~13cの上下両面、凸部13aの右端面および凸部13bの左端面を覆うように凸部13a~13cに巻回されている。この他にもたとえば、図11(A)に示すように、検出用コイル9を構成する導線が凸部13a、凸部13cおよび凸部13bに順次巻回されることで、検出用コイル9が構成されても良い。すなわち、検出用コイル9は、凸部13a~13cのそれぞれの全周を覆うように凸部13a~13cに巻回されても良い。また、図11(B)に示すように、検出用コイル9を構成する導線が凸部13aおよび凸部13bに順次巻回されることで、検出用コイル9が構成されても良い。すなわち、検出用コイル9は、凸部13a、13bのそれぞれの全周を覆うように凸部13a、13bに巻回されても良い。 In the embodiment described above, the detection coil 9 is wound around the convex portions 13a to 13c so as to cover the upper and lower surfaces of the convex portions 13a to 13c, the right end surface of the convex portion 13a, and the left end surface of the convex portion 13b. In addition to this, for example, as shown in FIG. 11A, the detection coil 9 is formed by sequentially winding the conductive wire constituting the detection coil 9 around the convex portion 13a, the convex portion 13c, and the convex portion 13b. It may be configured. That is, the detection coil 9 may be wound around the convex portions 13a to 13c so as to cover the entire circumference of each of the convex portions 13a to 13c. Further, as shown in FIG. 11B, the detection coil 9 may be configured by sequentially winding the conductive wire constituting the detection coil 9 around the convex portion 13a and the convex portion 13b. That is, the detection coil 9 may be wound around the convex portions 13a and 13b so as to cover the entire circumferences of the convex portions 13a and 13b.
 上述した形態では、第1コア12と第2コア13と第1連結コア14と第2連結コア15とは一体で形成されている。この他にもたとえば、第1コア12、第2コア13、第1連結コア14および第2連結コア15の少なくともいずれか1つが別体で形成され、第1コア12と第2コア13と第1連結コア14と第2連結コア15とが一体化されても良い。すなわち、環状コア11は、一体で形成されていなくても良い。 In the embodiment described above, the first core 12, the second core 13, the first connection core 14, and the second connection core 15 are integrally formed. In addition, for example, at least one of the first core 12, the second core 13, the first connection core 14, and the second connection core 15 is formed separately, and the first core 12, the second core 13, The first connecting core 14 and the second connecting core 15 may be integrated. That is, the annular core 11 may not be formed integrally.
 上述した形態では、磁気センサ4は、環状に形成される環状コア11を備えている。この他にもたとえば、磁気センサ4は、環状コア11に代えて、図12に示すように、第1コア12、第2コア13、第1連結コア14および第2連結コア15の少なくともいずれか1箇所にギャップ(切れ目)Gが形成されたコア51を備えていても良い。たとえば、磁気センサ4は、図12(A)に示すように、第1連結コア14にキャップGが形成されたコア51を備えていても良いし、図12(B)に示すように、第2コア13にギャップGが形成されたコア51を備えていても良い。この場合には、ギャップGの間隔Wは、ギャップGからの磁束の漏れを抑制することができるように可能な限り狭いことが好ましい。すなわち、環状コア11に代えて、ギャップGが形成されるコア51が用いられる場合には、間隔Wの狭いギャップGが形成される略環状のコア51が用いられることが好ましい。具体的には、間隔Wの狭いギャップGは、前後方向における凸部12a~12cと凸部13a~13cとの距離L2より短いことが好ましい。 In the above-described form, the magnetic sensor 4 includes the annular core 11 formed in an annular shape. In addition to this, for example, in the magnetic sensor 4, instead of the annular core 11, as shown in FIG. 12, at least one of the first core 12, the second core 13, the first connection core 14, and the second connection core 15. You may provide the core 51 in which the gap (cut | interruption) G was formed in one place. For example, the magnetic sensor 4 may include a core 51 in which a cap G is formed on the first connecting core 14 as shown in FIG. 12 (A), or as shown in FIG. 12 (B). The core 51 in which the gap G is formed in the two cores 13 may be provided. In this case, the gap W is preferably as narrow as possible so that leakage of magnetic flux from the gap G can be suppressed. That is, in place of the annular core 11, when the core 51 in which the gap G is formed is used, it is preferable to use the substantially annular core 51 in which the gap G having a narrow interval W is formed. Specifically, the gap G having a narrow interval W is preferably shorter than the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction.
 なお、ギャップGが形成されるコア51が用いられる場合であって、図12(B)に示すように、磁束の向きが凸部12a~12cから凸部13a~13cへ向かう方向となるように励磁用コイル8に電流が供給される場合には、ギャップGは、第2コア13に形成されていることが好ましい。一方、磁束の向きが凸部13a~13cから凸部12a~12cへ向かう方向となるように励磁用コイル8に電流が供給される場合には、ギャップGは、第1コア12に形成されていることが好ましい。このようにすると、ギャップGが形成されるコア51が用いられる場合であっても、凸部12a~12cと凸部13a~13cとの間の磁束密度の低下を抑制することが可能になる。なお、ギャップGは非磁性材料で埋められても良い。 In addition, in the case where the core 51 in which the gap G is formed is used, as shown in FIG. 12B, the direction of the magnetic flux is the direction from the convex portions 12a to 12c toward the convex portions 13a to 13c. When current is supplied to the exciting coil 8, the gap G is preferably formed in the second core 13. On the other hand, when the current is supplied to the exciting coil 8 so that the direction of the magnetic flux is the direction from the convex portions 13a to 13c toward the convex portions 12a to 12c, the gap G is formed in the first core 12. Preferably it is. In this way, even when the core 51 in which the gap G is formed is used, it is possible to suppress a decrease in magnetic flux density between the convex portions 12a to 12c and the convex portions 13a to 13c. The gap G may be filled with a nonmagnetic material.
 上述した形態では、凸部12a、13aの右端面と凸部12b、13bの左端面との左右方向の距離L1は、通過路5の左右方向の幅と等しくなっている。この他にもたとえば、距離L1は、通過路5の左右方向の幅より広くなっていても良い。また、距離L1は、メダル2の外径以上となっているのであれば、通過路5の左右方向の幅より狭くなっていても良い。また、上述した形態では、第1コア12と第2コア13とが同形状に形成されており、凸部12aの右端面と凸部12bの左端面との左右方向の距離と、凸部13aの右端面と凸部13bの左端面との左右方向の距離とが等しくなっているが、凸部12aの右端面と凸部12bの左端面との左右方向の距離と、凸部13aの右端面と凸部13bの左端面との左右方向の距離とが異なっていても良い。 In the above-described form, the distance L1 in the left-right direction between the right end surface of the convex portions 12a, 13a and the left end surface of the convex portions 12b, 13b is equal to the width in the left-right direction of the passage 5. In addition to this, for example, the distance L1 may be wider than the width of the passage 5 in the left-right direction. The distance L1 may be narrower than the width in the left-right direction of the passage 5 as long as the distance L1 is equal to or greater than the outer diameter of the medal 2. Moreover, with the form mentioned above, the 1st core 12 and the 2nd core 13 are formed in the same shape, The distance of the left-right direction of the right end surface of the convex part 12a, and the left end surface of the convex part 12b, and the convex part 13a The right and left distances between the right end surface of the projections 13b and the left end surface of the projections 13b are equal to each other, but the left and right distances between the right end surfaces of the projections 12a and the left end surfaces of the projections 12b and the right ends of the projections 13a are the same. The distance in the left-right direction between the surface and the left end surface of the convex portion 13b may be different.
 上述した形態では、凸部12a~12cは、長方形状に形成されている。この他にもたとえば、凸部12a~12cは、後ろ側に向かうにしたがって左右方向の幅が狭く、または、広くなる台形状に形成されても良い。同様に、凸部13a~13cは、長方形状に形成されているが、凸部13a~13cは、前側に向かうにしたがって左右方向の幅が狭く、または、広くなる台形状に形成されても良い。この場合には、凸部12aの右端面の後端(すなわち、第2コア13側端)と、凸部12bの左端面の後端との左右方向の距離がメダル2の外径以上となるように、凸部12a、12bが形成され、凸部13aの右端面の前端(すなわち、第1コア12側端)と凸部13bの左端面の前端との左右方向の距離がメダル2の外径以上となるように、凸部13a、13bが形成される。より具体的には、凸部12aの右端面の後端と、凸部12bの左端面の後端との左右方向の距離が通過路5の左右方向の幅以上となるように、凸部12a、12bが形成され、凸部13aの右端面の前端と凸部13bの左端面の前端との左右方向の距離が通過路5の左右方向の幅以上となるように、凸部13a、13bが形成される。 In the above-described form, the convex portions 12a to 12c are formed in a rectangular shape. In addition to this, for example, the convex portions 12a to 12c may be formed in a trapezoidal shape whose width in the left-right direction becomes narrower or wider toward the rear side. Similarly, the convex portions 13a to 13c are formed in a rectangular shape, but the convex portions 13a to 13c may be formed in a trapezoidal shape whose width in the left-right direction is narrower or wider toward the front side. . In this case, the distance in the left-right direction between the rear end of the right end surface of the convex portion 12a (that is, the end on the second core 13 side) and the rear end of the left end surface of the convex portion 12b is equal to or greater than the outer diameter of the medal 2. As described above, the convex portions 12a and 12b are formed, and the distance in the left-right direction between the front end of the right end surface of the convex portion 13a (that is, the first core 12 side end) and the front end of the left end surface of the convex portion 13b is The convex portions 13a and 13b are formed so as to be equal to or larger than the diameter. More specifically, the convex portion 12a so that the distance in the left-right direction between the rear end of the right end surface of the convex portion 12a and the rear end of the left end surface of the convex portion 12b is equal to or greater than the width in the left-right direction of the passage 5. 12b are formed, and the protrusions 13a and 13b are formed such that the distance in the left-right direction between the front end of the right end surface of the protrusion 13a and the front end of the left end surface of the protrusion 13b is equal to or greater than the width in the left-right direction of the passage 5. It is formed.
 また、この場合には、左右方向における凸部12aの右端面の後端と第1連結コア14の左端面との距離、左右方向における凸部13aの右端面の前端と第1連結コア14の左端面との距離、左右方向における凸部12bの左端面の後端と第2連結コア15の右端面との距離、および、左右方向における凸部13bの左端面の前端と第2連結コア15の右端面との距離よりも前後方向における凸部12a~12cと凸部13a~13cとの距離L2が短くなるように、凸部12a、12b、13a、13bが形成される。 In this case, the distance between the rear end of the right end surface of the convex portion 12a in the left-right direction and the left end surface of the first connecting core 14 and the front end of the right end surface of the convex portion 13a in the left-right direction and the first connecting core 14 The distance between the left end surface, the distance between the rear end of the left end surface of the convex portion 12b and the right end surface of the second connecting core 15 in the left-right direction, and the front end of the left end surface of the convex portion 13b and the second connecting core 15 in the left-right direction. The convex portions 12a, 12b, 13a, and 13b are formed so that the distance L2 between the convex portions 12a to 12c and the convex portions 13a to 13c in the front-rear direction is shorter than the distance from the right end surface of the projection.
 さらに、この場合には、左右方向における凸部12aの右端面の後端と凸部12bの右端面の後端との距離、左右方向における凸部13aの右端面の前端と凸部13bの右端面の前端との距離、左右方向における凸部12aの左端面の後端と凸部12bの左端面の後端との距離、および、左右方向における凸部13aの左端面の前端と凸部13bの左端面の前端との距離がメダル2の外径よりも小さくなるように、凸部12a、12b、13a、13bが形成される。 Further, in this case, the distance between the rear end of the right end surface of the convex portion 12a and the rear end of the right end surface of the convex portion 12b in the left-right direction, the front end of the right end surface of the convex portion 13a and the right end of the convex portion 13b in the left-right direction. The distance between the front end of the surface, the distance between the rear end of the left end surface of the convex portion 12a and the rear end of the left end surface of the convex portion 12b in the left-right direction, and the front end of the left end surface of the convex portion 13a and the convex portion 13b in the left-right direction. The convex portions 12 a, 12 b, 13 a, and 13 b are formed so that the distance from the front end of the left end surface is smaller than the outer diameter of the medal 2.
 上述した形態では、第1コア12に3個の凸部12a~12cが形成されている。この他にもたとえば、第1コア12に形成される凸部の数は、1個または2個であっても良いし、4個以上であっても良い。第1コア12に形成される凸部の数が2個または4個以上である場合には、最も右側に形成される凸部の右端面が最も右側(第1方向側)に配置される第1端面となり、最も左側に形成される凸部の左端面が最も左側(第2方向側)に配置される第2端面となる。また、第1コア12に形成される凸部の数が1個である場合には、この1個の凸部の右端面が最も右側(第1方向側)に配置される第1端面となり、この1個の凸部の左端面が最も左側(第2方向側)に配置される第2端面となる。 In the above-described form, the first core 12 has three convex portions 12a to 12c. In addition, for example, the number of convex portions formed on the first core 12 may be one or two, or may be four or more. When the number of convex portions formed on the first core 12 is two or four or more, the right end surface of the convex portion formed on the rightmost side is arranged on the rightmost side (first direction side). The left end surface of the convex portion formed on the leftmost side becomes the second end surface disposed on the leftmost side (second direction side). When the number of convex portions formed on the first core 12 is one, the right end surface of the one convex portion is the first end surface arranged on the rightmost side (first direction side), The left end surface of this one convex portion is the second end surface arranged on the leftmost side (second direction side).
 上述した形態では、第2コア13に3個の凸部13a~13cが形成されている。この他にもたとえば、第2コア13に形成される凸部の数は、2個または4個以上であっても良い。この場合には、最も右側に形成される凸部の右端面が最も右側(第1方向側)に配置される第3端面となり、最も左側に形成される凸部の左端面が最も左側(第2方向側)に配置される第4端面となる。なお、上述した形態では、磁気センサ4は、検出用コイル10を備えているが、磁気センサ4は、検出用コイル10を備えていなくても良い。この場合には、第2コア13に形成される凸部の数は、1個であっても良い。第2コア13に形成される凸部の数が1個である場合には、この1個の凸部の右端面が最も右側(第1方向側)に配置される第3端面となり、この1個の凸部の左端面が最も左側(第2方向側)に配置される第4端面となる。 In the form described above, the three convex portions 13a to 13c are formed on the second core 13. In addition, for example, the number of convex portions formed on the second core 13 may be two or four or more. In this case, the right end surface of the convex portion formed on the rightmost side is the third end surface disposed on the rightmost side (first direction side), and the left end surface of the convex portion formed on the leftmost side is the leftmost side (first side). It becomes the fourth end face arranged on the (two direction side). In the embodiment described above, the magnetic sensor 4 includes the detection coil 10, but the magnetic sensor 4 may not include the detection coil 10. In this case, the number of convex portions formed on the second core 13 may be one. When the number of convex portions formed on the second core 13 is one, the right end surface of the one convex portion is the third end surface arranged on the rightmost side (first direction side). The left end surface of each convex portion is the fourth end surface arranged on the leftmost side (second direction side).
 上述した形態では、環状コア11は、略四角環状に形成されている。この他にもたとえば、環状コア11は、円環状、楕円環状または長円環状に形成されても良い。また、環状コア11は、四角環状以外の多角環状に形成されても良い。 In the embodiment described above, the annular core 11 is formed in a substantially square ring shape. In addition, for example, the annular core 11 may be formed in an annular shape, an elliptical shape, or an oval shape. Further, the annular core 11 may be formed in a polygonal ring other than the square ring.
 上述した形態では、磁気センサ4は、2個の検出用コイル9、10を備えている。この他にもたとえば、磁気センサ4は、3個以上の検出用コイルを備えていても良い。この場合には、検出用コイルの数に応じて、第2コア13に複数の凸部が形成されれば良い。 In the embodiment described above, the magnetic sensor 4 includes the two detection coils 9 and 10. In addition to this, for example, the magnetic sensor 4 may include three or more detection coils. In this case, a plurality of convex portions may be formed on the second core 13 according to the number of detection coils.
 上述した形態では、メダル識別装置1は、スロットマシンに搭載されて使用されている。この他にもたとえば、メダル識別装置1は、メダル購入機やメダル計数機に搭載されて使用されても良い。また、上述した形態では、スロットマシンで使用されるメダル2を識別するためのメダル識別装置1を例に、本発明のコイン状被検出体識別装置の実施例を説明しているが、本発明が適用されるコイン状被検出体識別装置は、たとえば、ゲーム機で使用されるメダル等の他のコイン状の被検出体を識別するための装置であっても良い。また、本発明におけるコイン状の被検出体は、スロットマシンやゲーム機等で使用されるメダルに限定されず、硬貨であっても良い。なお、メダル購入機は、現金を入れてメダルを購入するための装置であり、スロットマシン間やホール入口に設置されている。また、メダル計数機は、各スロットマシンから集まるメダルの数を数えるための装置である。このメダル計数機は、たとえば、所定台数のスロットマシンに対して1台設置されており(たとえば、島ごとに設置されており)、メダル計数機が設置された島を構成する複数のスロットマシンから集まったメダル2の数を数える。また、メダル計数機は、たとえば、島ごとに集まったメダル2をさらに集めて、その数を数える一括集中処理機である。また、メダル計数機は、たとえば、メダル2を景品に換えるためにメダル2の数を数える装置である。 In the above-described form, the medal identification device 1 is mounted and used in a slot machine. In addition, for example, the medal identification device 1 may be used by being mounted on a medal purchase machine or a medal counting machine. Further, in the above-described embodiment, the embodiment of the coin-shaped detected object identifying device of the present invention is described by taking the medal identifying device 1 for identifying the medal 2 used in the slot machine as an example. The coin-shaped detected object identification device to which is applied may be, for example, a device for identifying other coin-shaped detected objects such as medals used in game machines. Further, the coin-shaped object to be detected in the present invention is not limited to medals used in slot machines, game machines, etc., and may be coins. The medal purchase machine is a device for inserting cash and purchasing medals, and is installed between slot machines or at the hall entrance. The medal counter is a device for counting the number of medals collected from each slot machine. For example, one medal counting machine is installed for a predetermined number of slot machines (for example, each island is installed), and a plurality of slot machines constituting the island where the medal counting machines are installed. Count the number of medals 2 gathered. The medal counter is, for example, a collective central processing unit that further collects medals 2 collected for each island and counts the number. The medal counter is a device that counts the number of medals 2 in order to replace the medals 2 with prizes, for example.
 1 メダル識別装置(コイン状被検出体識別装置)
 2 メダル(被検出体)
 5 通過路
 8 励磁用コイル
 9 検出用コイル(第1検出用コイル)
 10 検出用コイル(第2検出用コイル)
 11 環状コア
 12 第1コア
 12a 凸部(励磁側凸部、第1励磁側凸部)
 12b 凸部(励磁側凸部、第2励磁側凸部)
 12c 凸部(励磁側凸部、第3励磁側凸部)
 13 第2コア
 13a 凸部(検出側凸部、第1検出側凸部)
 13b 凸部(検出側凸部、第2検出側凸部)
 13c 凸部(検出側凸部、第3検出側凸部)
 14 第1連結コア
 15 第2連結コア
 X 直交方向
 X1 第1方向
 X2 第2方向
 Y 被検出体の厚み方向
 Z 被検出体の通過方向
1 Medal identification device (coin-like object identification device)
2 medals (detected object)
5 Passage 8 Excitation coil 9 Detection coil (first detection coil)
10 Detection coil (second detection coil)
11 annular core 12 1st core 12a convex part (excitation side convex part, 1st excitation side convex part)
12b Convex part (excitation side convex part, second excitation side convex part)
12c Convex part (excitation side convex part, third excitation side convex part)
13 2nd core 13a Convex part (detection side convex part, 1st detection side convex part)
13b Convex part (detection side convex part, second detection side convex part)
13c Convex part (detection side convex part, third detection side convex part)
14 1st connection core 15 2nd connection core X orthogonal direction X1 1st direction X2 2nd direction Y thickness direction of to-be-detected body Z passage direction of to-be-detected body

Claims (12)

  1.  コイン状の被検出体が通過する通過路と、励磁用コイルおよび検出用コイルと、前記通過路を通過する前記被検出体の厚み方向の一方側に配置される第1コアと、前記被検出体の前記厚み方向の他方側に配置される第2コアとを備え、
     前記第1コアには、前記第2コアに向かって突出する励磁側凸部が1個または2個以上形成され、
     前記第2コアには、前記第1コアに向かって突出する検出側凸部が1個または2個以上形成され、
     前記励磁用コイルは、前記励磁側凸部に巻回され、
     前記検出用コイルは、前記検出側凸部に巻回され、
     前記被検出体の前記厚み方向における前記励磁側凸部と前記検出側凸部との間は、前記通過路となっており、
     前記通過路を通過する前記被検出体の通過方向と前記被検出体の前記厚み方向とに直交する方向を直交方向とし、前記直交方向の一方側を第1方向とし、前記直交方向の他方側を第2方向とし、前記励磁側凸部の前記第1方向側の端面を第1端面とし、前記励磁側凸部の前記第2方向側の端面を第2端面とし、前記検出側凸部の前記第1方向側の端面を第3端面とし、前記検出側凸部の前記第2方向側の端面を第4端面とすると、
     最も前記第1方向側に配置される前記第1端面の前記第2コア側端と、最も前記第2方向側に配置される前記第2端面の前記第2コア側端との前記直交方向における距離、および、最も前記第1方向側に配置される前記第3端面の前記第1コア側端と、最も前記第2方向側に配置される前記第4端面の前記第1コア側端との前記直交方向における距離は、前記被検出体の外径以上となっていることを特徴とするコイン状被検出体識別装置。
    A passing path through which a coin-shaped object to be detected passes, an excitation coil and a detection coil, a first core disposed on one side in a thickness direction of the detected object passing through the passage, and the detected object A second core disposed on the other side of the body in the thickness direction,
    The first core is formed with one or more excitation-side convex portions projecting toward the second core,
    The second core is formed with one or more detection-side convex portions protruding toward the first core,
    The excitation coil is wound around the excitation-side convex portion,
    The detection coil is wound around the detection-side convex portion,
    Between the excitation-side convex portion and the detection-side convex portion in the thickness direction of the detected object is the passage.
    The direction orthogonal to the direction of passage of the detected object passing through the passage and the thickness direction of the detected object is an orthogonal direction, one side of the orthogonal direction is a first direction, and the other side of the orthogonal direction Is the second direction, the end surface on the first direction side of the excitation-side convex portion is the first end surface, the end surface on the second direction side of the excitation-side convex portion is the second end surface, and the detection-side convex portion When the end surface on the first direction side is the third end surface and the end surface on the second direction side of the detection-side convex portion is the fourth end surface,
    In the orthogonal direction between the second core side end of the first end surface arranged closest to the first direction side and the second core side end of the second end surface arranged closest to the second direction side The distance and the first core side end of the third end surface arranged closest to the first direction side, and the first core side end of the fourth end surface arranged closest to the second direction side The distance in the orthogonal direction is equal to or greater than the outer diameter of the detected object.
  2.  最も前記第1方向側に配置される前記第1端面の前記第2コア側端と、最も前記第2方向側に配置される前記第2端面の前記第2コア側端との前記直交方向における距離、および、最も前記第1方向側に配置される前記第3端面の前記第1コア側端と、最も前記第2方向側に配置される前記第4端面の前記第1コア側端との前記直交方向における距離は、前記直交方向における前記通過路の幅以上となっていることを特徴とする請求項1記載のコイン状被検出体識別装置。 In the orthogonal direction between the second core side end of the first end surface arranged closest to the first direction side and the second core side end of the second end surface arranged closest to the second direction side The distance and the first core side end of the third end surface arranged closest to the first direction side, and the first core side end of the fourth end surface arranged closest to the second direction side The coin-shaped detected object identification device according to claim 1, wherein the distance in the orthogonal direction is equal to or greater than the width of the passage in the orthogonal direction.
  3.  前記検出用コイルとして、第1検出用コイルと、第2検出用コイルとを備え、
     前記第2コアには、前記検出側凸部として、前記通過路の前記第1方向端側に配置される第1検出側凸部と、前記通過路の前記第2方向端側に配置される第2検出側凸部と、前記第1検出側凸部と前記第2検出側凸部との間に配置される第3検出側凸部とが形成され、
     前記第1検出用コイルは、前記第1検出側凸部および前記第2検出側凸部、または、前記第1検出側凸部、前記第2検出側凸部および前記第3検出側凸部に巻回され、
     前記第2検出用コイルは、前記第3検出側凸部に巻回され、
     最も前記第1方向側に配置される前記第3端面である前記第1検出側凸部の前記第1方向側の端面の前記第1コア側端と、最も前記第2方向側に配置される前記第4端面である前記第2検出側凸部の前記第2方向側の端面の前記第1コア側端との前記直交方向における距離は、前記直交方向における前記通過路の幅以上となっており、
     前記第3検出側凸部の前記第1コア側端は、前記直交方向における前記通過路のどの位置を前記被検出体が通過しても、前記被検出体の前記厚み方向から見たときに、前記第3検出側凸部の前記第1コア側端の全体が前記被検出体と重なるように形成され配置されていることを特徴とする請求項2記載のコイン状被検出体識別装置。
    The detection coil includes a first detection coil and a second detection coil,
    In the second core, as the detection-side convex portion, a first detection-side convex portion disposed on the first direction end side of the passageway and a second direction end side of the passageway are disposed. A second detection-side convex portion and a third detection-side convex portion disposed between the first detection-side convex portion and the second detection-side convex portion are formed;
    The first detection coil is provided on the first detection side convex portion and the second detection side convex portion, or the first detection side convex portion, the second detection side convex portion, and the third detection side convex portion. Wound,
    The second detection coil is wound around the third detection-side convex portion,
    The first core side end of the first direction side end surface of the first detection side convex portion which is the third end surface arranged closest to the first direction side and the second end side closest to the second direction side. The distance in the orthogonal direction between the end surface on the second direction side of the second detection side convex portion that is the fourth end surface is equal to or greater than the width of the passage in the orthogonal direction. And
    The first core side end of the third detection-side convex portion is viewed from the thickness direction of the detected object, regardless of which position of the passage in the orthogonal direction the detected object passes through. 3. The coin-shaped detected object identification device according to claim 2, wherein the entire first core side end of the third detection side convex portion is formed and arranged so as to overlap the detected object.
  4.  前記第1方向における前記第1コアの端部と前記第2コアの端部とを繋ぐ第1連結コアと、前記第2方向における前記第1コアの端部と前記第2コアの端部とを繋ぐ第2連結コアと、前記第1コアと、前記第2コアとから構成される環状の環状コアを備えることを特徴とする請求項1から3のいずれかに記載のコイン状被検出体識別装置。 A first connecting core that connects an end of the first core and an end of the second core in the first direction; an end of the first core and an end of the second core in the second direction; 4. A coin-shaped object to be detected according to claim 1, further comprising: an annular annular core composed of a second connecting core connecting the two, the first core, and the second core. 5. Identification device.
  5.  最も前記第1方向側に配置される前記第1端面の前記第2コア側端と前記第1連結コアとの前記直交方向における距離、最も前記第1方向側に配置される前記第3端面の前記第1コア側端と前記第1連結コアとの間の前記直交方向における距離、最も前記第2方向側に配置される前記第2端面の前記第2コア側端と前記第2連結コアとの間の前記直交方向における距離、および、最も前記第2方向側に配置される前記第4端面の前記第1コア側端と前記第2連結コアとの間の前記直交方向における距離は、前記被検出体の前記厚み方向における前記励磁側凸部と前記検出側凸部との距離よりも長くなっていることを特徴とする請求項4記載のコイン状被検出体識別装置。 The distance in the orthogonal direction between the second core side end of the first end face arranged closest to the first direction side and the first connecting core, and the third end face arranged closest to the first direction side. The distance in the orthogonal direction between the first core side end and the first connection core, the second core side end of the second end surface arranged closest to the second direction side, and the second connection core And the distance in the orthogonal direction between the first core side end of the fourth end surface arranged closest to the second direction side and the second connecting core is the distance in the orthogonal direction between The coin-shaped detected object identification device according to claim 4, wherein the coin-shaped detected object identification device is longer than a distance between the excitation-side convex portion and the detection-side convex portion in the thickness direction of the detected object.
  6.  前記検出用コイルとして、第1検出用コイルと、第2検出用コイルとを備え、
     前記第2コアには、前記検出側凸部として、前記通過路の前記第1方向端側に配置される第1検出側凸部と、前記通過路の前記第2方向端側に配置される第2検出側凸部と、前記第1検出側凸部と前記第2検出側凸部との間に配置される第3検出側凸部とが形成され、
     前記第1検出用コイルは、前記第1検出側凸部および前記第2検出側凸部、または、前記第1検出側凸部、前記第2検出側凸部および前記第3検出側凸部に巻回され、
     前記第2検出用コイルは、前記第3検出側凸部に巻回され、
     前記第1コアには、前記励磁側凸部として、前記直交方向において前記第1検出側凸部と同じ位置に配置される第1励磁側凸部と、前記直交方向において前記第2検出側凸部と同じ位置に配置される第2励磁側凸部と、前記直交方向において前記第3検出側凸部と同じ位置に配置される第3励磁側凸部とが形成されていることを特徴とする請求項1から5のいずれかに記載のコイン状被検出体識別装置。
    The detection coil includes a first detection coil and a second detection coil,
    In the second core, as the detection-side convex portion, a first detection-side convex portion disposed on the first direction end side of the passageway and a second direction end side of the passageway are disposed. A second detection-side convex portion and a third detection-side convex portion disposed between the first detection-side convex portion and the second detection-side convex portion are formed;
    The first detection coil is provided on the first detection side convex portion and the second detection side convex portion, or the first detection side convex portion, the second detection side convex portion, and the third detection side convex portion. Wound,
    The second detection coil is wound around the third detection-side convex portion,
    The first core includes, as the excitation side convex portion, a first excitation side convex portion disposed at the same position as the first detection side convex portion in the orthogonal direction, and the second detection side convex portion in the orthogonal direction. A second excitation-side convex portion disposed at the same position as the first portion, and a third excitation-side convex portion disposed at the same position as the third detection-side convex portion in the orthogonal direction. The coin-shaped detection object identification device according to any one of claims 1 to 5.
  7.  前記第4端面である前記第1検出側凸部の前記第2方向側の端面と、前記第3励磁側凸部との最短距離、および、前記第3端面である前記第2検出側凸部の前記第1方向側の端面と、前記第3励磁側凸部との最短距離は、前記被検出体の前記厚み方向における前記第3検出側凸部と前記第3励磁側凸部との距離よりも長くなっていることを特徴とする請求項6記載のコイン状被検出体識別装置。 The shortest distance between the end surface on the second direction side of the first detection side convex portion that is the fourth end surface and the third excitation side convex portion, and the second detection side convex portion that is the third end surface. The shortest distance between the end surface on the first direction side and the third excitation side convex portion is the distance between the third detection side convex portion and the third excitation side convex portion in the thickness direction of the detected object. The coin-shaped detected object identification device according to claim 6, wherein the identification object identification device is longer.
  8.  前記第1端面である前記第1励磁側凸部の前記第1方向側の端面の前記第2コア側端と前記第1端面である前記第2励磁側凸部の前記第1方向側の端面の前記第2コア側端との前記直交方向における距離、前記第2端面である前記第1励磁側凸部の前記第2方向側の端面の前記第2コア側端と前記第2端面である前記第2励磁側凸部の前記第2方向側の端面の前記第2コア側端との前記直交方向における距離、前記第3端面である前記第1検出側凸部の前記第1方向側の端面の前記第1コア側端と前記第3端面である前記第2検出側凸部の前記第1方向側の端面の前記第1コア側端との前記直交方向における距離、および、前記第4端面である前記第1検出側凸部の前記第2方向側の端面の前記第1コア側端と前記第4端面である前記第2検出側凸部の前記第2方向側の端面の前記第1コア側端との前記直交方向における距離は、前記被検出体の外径よりも小さくなっていることを特徴とする請求項6または7記載のコイン状被検出体識別装置。 The second core side end of the first direction side end surface of the first excitation side convex portion which is the first end surface and the first direction side end surface of the second excitation side convex portion which is the first end surface. The distance between the second core side end and the second core side end of the first excitation side convex portion, which is the second end surface, and the second core side end and the second end surface. The distance in the orthogonal direction between the end face on the second direction side of the second excitation side convex part and the second core side end on the first direction side of the first detection side convex part that is the third end face. A distance in the orthogonal direction between the first core side end of the first direction side end surface of the second detection side convex portion which is the third end surface of the first core side end, and the fourth end surface; The first core side end and the second end surface of the end surface on the second direction side of the first detection side convex portion that is the end surface are the second end surfaces. The distance in the said orthogonal direction with the said 1st core side end of the said end surface of the said 2nd direction side of an output side convex part is smaller than the outer diameter of the said to-be-detected body, or 8. A coin-shaped detected object identifying device according to 7.
  9.  前記被検出体の通過方向における、前記第1検出側凸部の表面および裏面と、前記第2検出側凸部の表面および裏面と、前記第3検出側凸部の表面および裏面と、前記第3端面と、前記第4端面とを覆う筒状の第1検出用ボビンと、
     前記被検出体の通過方向における、前記第3検出側凸部の表面および裏面と、前記直交方向における前記第3検出側凸部の前記第3端面側の端面と、前記直交方向における前記第3検出側凸部の前記第4端面側の端面とを覆う筒状の第2検出用ボビンとを備え、
     前記第1検出用コイルは、前記第1検出用ボビンを介して、前記第1検出側凸部と、前記第2検出側凸部と、前記第3検出側凸部に巻き回され、
     前記第2検出用コイルは、前記第2検出用ボビンを介して、前記第3検出側凸部に巻き回されていることを特徴とする請求項1に記載のコイン状被検出識別装置。
    The front and back surfaces of the first detection-side convex portion, the front and back surfaces of the second detection-side convex portion, the front and back surfaces of the third detection-side convex portion, and A cylindrical first detection bobbin covering three end faces and the fourth end face;
    The front and back surfaces of the third detection-side convex portion in the passing direction of the detected object, the end surface on the third end surface side of the third detection-side convex portion in the orthogonal direction, and the third in the orthogonal direction A cylindrical second bobbin for detection covering the end face on the fourth end face side of the detection-side convex part,
    The first detection coil is wound around the first detection-side convex portion, the second detection-side convex portion, and the third detection-side convex portion via the first detection bobbin,
    2. The coin-shaped detected / identified apparatus according to claim 1, wherein the second detection coil is wound around the third detection-side convex portion via the second detection bobbin.
  10.  前記第1端面と、前記第2端面と、前記第3端面と、前記第4端面の、前記被検出体の前記厚み方向における距離は、前記被検出体の前記厚み方向における前記励磁側凸部と前記検出側凸部との距離よりも長い距離で形成されることを特徴とする請求項1に記載のコイン状被検出識別装置。 The distance between the first end surface, the second end surface, the third end surface, and the fourth end surface in the thickness direction of the detection target is the excitation-side convex portion in the thickness direction of the detection target. The coin-shaped detected / identified apparatus according to claim 1, wherein the coin-shaped detected / identified device is longer than a distance between the first convex portion and the detection-side convex portion.
  11.  前記環状コアは、1枚の金属板から一体に形成されていること特徴とする請求項4に記載のコイン状被検出体識別装置。 The coin-shaped object identification device according to claim 4, wherein the annular core is integrally formed from a single metal plate.
  12.  前記環状コアの一部には、前記被検出体の前記厚み方向における前記励磁側凸部と前記検出側凸部との距離よりも短いギャップが形成されていることを特徴とする請求項4に記載のコイン状被検出識別装置。 The gap which is shorter than the distance of the said excitation side convex part and the said detection side convex part in the said thickness direction of the said to-be-detected body is formed in a part of said annular core. The coin-shaped to-be-detected identification apparatus of description.
PCT/JP2013/081105 2012-11-20 2013-11-19 Device for identifying coin-shaped object to be detected WO2014080880A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380060343.0A CN104813370A (en) 2012-11-20 2013-11-19 Device for identifying coin-shaped object to be detected
KR1020157011062A KR101741932B1 (en) 2012-11-20 2013-11-19 Device for identifying coin-shaped object to be detected

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012253831A JP6066684B2 (en) 2012-11-20 2012-11-20 Coin-like object identification device
JP2012-253831 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080880A1 true WO2014080880A1 (en) 2014-05-30

Family

ID=50776062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081105 WO2014080880A1 (en) 2012-11-20 2013-11-19 Device for identifying coin-shaped object to be detected

Country Status (4)

Country Link
JP (1) JP6066684B2 (en)
KR (1) KR101741932B1 (en)
CN (1) CN104813370A (en)
WO (1) WO2014080880A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192378A1 (en) * 2013-05-31 2014-12-04 日本電産サンキョー株式会社 Apparatus for identifying coin-shaped detection object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417482U (en) * 1987-07-22 1989-01-27
JP2002098744A (en) * 2000-09-25 2002-04-05 Sankyo Seiki Mfg Co Ltd Magnetic sensor
JP2008293337A (en) * 2007-05-25 2008-12-04 Magune Brain:Kk Coin sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363305B2 (en) * 1996-03-08 2003-01-08 グローリー工業株式会社 Coin identification device with temperature correction function in coin processing machine
DE69931267T2 (en) * 1999-12-02 2007-03-08 Glory Kogyo K.K., Himeji Method and device for coin identification
JP2007048203A (en) * 2005-08-12 2007-02-22 Mamiya Op Co Ltd Coin identification method and coin sensor
CN100568298C (en) * 2007-12-21 2009-12-09 中钞长城金融设备控股有限公司 Coin magnetoelectric characteristic parameters static sweep frequency detection method and detector
JP2011248775A (en) * 2010-05-28 2011-12-08 Glory Ltd Coin identification sensor
CN202033824U (en) * 2011-03-14 2011-11-09 吉鸿电子股份有限公司 Coin detection device
JP5882772B2 (en) * 2012-02-10 2016-03-09 グローリー株式会社 Magnetic sensor for coin identification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417482U (en) * 1987-07-22 1989-01-27
JP2002098744A (en) * 2000-09-25 2002-04-05 Sankyo Seiki Mfg Co Ltd Magnetic sensor
JP2008293337A (en) * 2007-05-25 2008-12-04 Magune Brain:Kk Coin sensor

Also Published As

Publication number Publication date
KR101741932B1 (en) 2017-05-30
KR20150064139A (en) 2015-06-10
CN104813370A (en) 2015-07-29
JP2014102666A (en) 2014-06-05
JP6066684B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6175301B2 (en) Coin-like object identification device
WO2014080880A1 (en) Device for identifying coin-shaped object to be detected
WO2018097055A1 (en) Magnetic head for paper currency identification
KR20150090088A (en) Magnetic sensor device
KR20120075383A (en) Magnetic sensor device and method of manufacturing magnetic sensor device
JP6141685B2 (en) Coin-like object identification device
WO2014181584A1 (en) Medallion discrimination device
JP6141686B2 (en) Coin-like object identification device
JP2008234186A (en) Coin counter
JP6454086B2 (en) Coin-like object identification device
WO2014192378A1 (en) Apparatus for identifying coin-shaped detection object
JP2014233331A (en) Apparatus for identifying coin-shaped detection object
JP4682342B2 (en) Coin selector for bimetallic coin with weak magnetism
JP6401465B2 (en) Coin-like object identification device
WO2014119193A1 (en) Coin-shaped detection object identification device and control method for coin-shaped detection object identification device
JP6175241B2 (en) Coin-like object identification device and method for controlling coin-like object identification device
JP2015201061A (en) Card processor
JP4431732B2 (en) Coin selector
JP6328804B2 (en) Coin detection device and coin dispensing device
JP6100543B2 (en) Coin-like object identification device and method for controlling coin-like object identification device
JP2011180958A (en) Detection unit for coin identification device
JP6077431B2 (en) Coin detection device and coin dispensing device
JP2005234626A (en) Sensor and device for paper sheet discrimination
JP2018142081A (en) Stacked coin detection device and coin bar storage
JP2017067608A (en) Magnetic sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011062

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857396

Country of ref document: EP

Kind code of ref document: A1