WO2014080729A1 - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
WO2014080729A1
WO2014080729A1 PCT/JP2013/079245 JP2013079245W WO2014080729A1 WO 2014080729 A1 WO2014080729 A1 WO 2014080729A1 JP 2013079245 W JP2013079245 W JP 2013079245W WO 2014080729 A1 WO2014080729 A1 WO 2014080729A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
region
light transmission
polishing pad
transmission region
Prior art date
Application number
PCT/JP2013/079245
Other languages
French (fr)
Japanese (ja)
Inventor
中村 賢治
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Publication of WO2014080729A1 publication Critical patent/WO2014080729A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • B24B37/16Lapping plates for working plane surfaces characterised by the shape of the lapping plate surface, e.g. grooved

Definitions

  • the present invention relates to a polishing pad for use in planarizing unevenness on the surface of an object to be polished such as a semiconductor wafer by chemical mechanical polishing (CMP), and more specifically, a window for detecting a polishing state or the like by optical means.
  • CMP chemical mechanical polishing
  • the present invention relates to a polishing pad having (light transmission region) and a method for manufacturing a semiconductor device using the polishing pad.
  • a conductive film is formed on the surface of a semiconductor wafer (hereinafter also referred to as a wafer), and a wiring layer is formed by photolithography, etching, or the like.
  • a process for forming an interlayer insulating film is performed on the surface of the wafer, and these processes cause irregularities made of a conductor such as metal or an insulator on the wafer surface.
  • miniaturization of wiring and multilayer wiring have been advanced for the purpose of increasing the density of semiconductor integrated circuits, and along with this, technology for flattening the irregularities on the wafer surface has become important.
  • CMP is a technique of polishing using a slurry-like abrasive (hereinafter referred to as slurry) in which abrasive grains are dispersed in a state where the surface to be polished of a wafer is pressed against the polishing surface of a polishing pad.
  • slurry a slurry-like abrasive
  • a polishing apparatus generally used in CMP includes a polishing surface plate 2 that supports a polishing pad 1 and a support base (polishing head) 5 that supports an object to be polished (wafer or the like) 4. And a backing material for uniformly pressing the wafer and a supply mechanism for the abrasive 3.
  • the polishing pad 1 is attached to the polishing surface plate 2 by attaching it with a double-sided tape, for example.
  • the polishing surface plate 2 and the support base 5 are arranged so that the polishing pad 1 and the object to be polished 4 supported on each of them are opposed to each other, and are provided with rotating shafts 6 and 7 respectively. Further, a pressurizing mechanism for pressing the polishing object 4 against the polishing pad 1 is provided on the support base 5 side.
  • the optical detection means is a method of detecting an end point of polishing by irradiating a wafer with a light beam through a window (light transmission region) through a polishing pad and monitoring an interference signal generated by the reflection. It is.
  • a load is applied between the polishing body and the polishing object, and the relative movement is performed with an abrasive interposed between the polishing body installed on the surface plate and the polishing object.
  • the polishing body used in the flattening apparatus for polishing the object to be polished, the polishing body has one or more openings and a window installed in the opening, and the window with respect to the surface of the polishing body
  • Patent Document 1 a polishing body characterized in that the surface of the object to be polished is recessed and the amount of the recess changes stepwise or continuously
  • the polishing body used in the flattening apparatus for polishing the object to be polished has an opening and a window installed in the opening, and the window is formed by laminating two or more transparent materials.
  • Patent Document 2 A characteristic polishing body has been proposed (Patent Document 2).
  • a first polishing layer including a polishing surface and a first opening having a first length and a first width; and (b) a main body and a second opening having a second length and a second width.
  • the second layer has substantially the same extent as the first polishing layer, and at least one of the first length and the first width is the second length and the second width, respectively.
  • a polishing pad for chemical mechanical polishing including a substantially transparent window portion that is separated from the main body of the second layer by a gap has been proposed (Patent Document 3).
  • the present inventor has found that the above object can be achieved by the polishing pad shown below, and has completed the present invention.
  • the present invention is a polishing pad comprising a polishing layer having a polishing region and a light transmission region, the polishing region has a groove on the surface, the surface of the light transmission region is recessed from the surface of the polishing region,
  • the present invention relates to a polishing pad having a dent amount of 30 to 100% of the depth of the groove.
  • the structure in which the surface of the light transmission region is recessed from the surface of the polishing region can prevent the surface of the polishing object from coming into contact with the surface of the light transmission region during the polishing operation. As a result, scratches are less likely to occur on the surface of the object to be polished.
  • the dent on the surface of the light transmission region is gradually reduced due to wear of the polishing region during the polishing operation of the object to be polished and the dressing operation (sharpening operation) of the surface of the polishing region, By setting the depth of the groove to 30 to 100%, it is possible to extend the life of the polishing pad while maintaining high optical detection accuracy.
  • the dent amount on the surface of the light transmission region is 100% of the depth of the groove in the polishing region, it is possible to maintain a structure in which the surface of the light transmission region is recessed from the surface of the polishing region until there is no groove in the polishing region. This is most preferable from the viewpoint of extending the service life.
  • the dent amount is less than 30% of the groove depth, the surface of the light transmission region becomes the same height as the surface of the polishing region in a short time due to abrasion of the polishing region, and the surface of the object to be polished is brought into contact with the light transmission region. Scratches are likely to occur. Therefore, it is necessary to replace the polishing pad in a short time.
  • the structure in which the surface of the light transmission region is recessed from the surface of the polishing region can be maintained until there is no groove in the polishing region. It is preferable from the viewpoint. However, since the amount of dent on the surface of the light transmission region is large in the initial stage of use of the polishing pad, a large amount of slurry accumulates in the dent portion, thereby reducing the optical detection accuracy, which is not preferable.
  • a polishing region, a cushion layer, and a transparent support film are laminated in this order, and a light transmission region is provided in an opening that penetrates the polishing region and the cushion layer and on the transparent support film.
  • a light transmission region is provided in an opening that penetrates the polishing region and the cushion layer and on the transparent support film.
  • the force that peels off the light transmission region and the polishing region (or the cushion layer) during the polishing operation works from the boundary between the two members. Even if the slurry leaks, the slurry does not leak below the transparent support film.
  • a polishing layer having a polishing region and a light transmission region and a cushion layer having a through hole are laminated via a double-sided adhesive sheet so that the light transmission region and the through hole overlap. It may be.
  • the present invention relates to a semiconductor device manufacturing method including a step of polishing a surface of a semiconductor wafer using the polishing pad.
  • the polishing pad of the present invention has the above-described structure, it is difficult to cause scratches on the surface of the object to be polished and has a longer life.
  • the polishing pad of the present invention includes a polishing layer having a polishing region and a light transmission region, the polishing region has a groove on the surface, and the surface of the light transmission region is recessed from the surface of the polishing region, The amount of recess is 30 to 100% of the depth of the groove.
  • the polishing pad of the present invention may be only the polishing layer or a laminate of the polishing layer and other layers (for example, a cushion layer, an adhesive layer, a support film, etc.).
  • FIG. 2 is a schematic sectional view showing an example of the structure of the polishing pad of the present invention.
  • the polishing pad 1 has a polishing region 8, a cushion layer 11, and a transparent support film 12 laminated in this order, and in the opening 10 penetrating the polishing region 8 and the cushion layer 11 and transparent support film.
  • a light transmissive region 9 is provided on 12.
  • a groove 14 is provided on the surface of the polishing region 8.
  • FIG. 3 is a schematic sectional view showing another example of the structure of the polishing pad of the present invention.
  • a polishing layer having a polishing region 8 and a light transmission region 9 and a cushion layer 11 having a through hole 16 overlap the light transmission region 9 and the through hole 16. In this way, they are laminated via the double-sided adhesive sheet 13.
  • a groove 14 is provided on the surface of the polishing region 8.
  • the material for forming the light transmission region 9 is not particularly limited, but a material that can detect an optical end point with high accuracy while polishing and has a light transmittance of 10% or more in the entire wavelength range of 400 to 800 nm is used. It is preferable that the material has a light transmittance of 50% or more.
  • Such materials include polyurethane resins, polyester resins, phenol resins, urea resins, melamine resins, epoxy resins, and acrylic resins, and other thermosetting resins, polyurethane resins, polyester resins, polyamide resins, cellulose resins, Acrylic resins, polycarbonate resins, halogen resins (polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, etc.), polystyrene, olefin resins (polyethylene, polypropylene, etc.), thermoplastic resins, butadiene rubber, isoprene rubber, etc. Examples thereof include rubber, photo-curing resin that is cured by light such as ultraviolet rays and electron beams, and photosensitive resin. These resins may be used alone or in combination of two or more.
  • the material for forming the light transmission region 9 is preferably the same as the material for forming the polishing region 8 or a material similar to the physical properties of the polishing region 8. In particular, it is preferable to use a polyurethane resin.
  • the polyurethane resin comprises an isocyanate component, a polyol component (high molecular weight polyol, low molecular weight polyol, etc.), and a chain extender.
  • isocyanate component 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate,
  • examples include p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, and the like. . These may be used alone or in combination of two or more.
  • the high molecular weight polyol examples include a polyether polyol typified by polytetramethylene ether glycol, a polyester polyol typified by polybutylene adipate, a polycaprolactone polyol, a reaction product of a polyester glycol such as polycaprolactone and an alkylene carbonate, and the like.
  • a polyether polyol typified by polytetramethylene ether glycol
  • a polyester polyol typified by polybutylene adipate a polycaprolactone polyol
  • a reaction product of a polyester glycol such as polycaprolactone and an alkylene carbonate
  • Exemplified polyester polycarbonate polyol, polyester polycarbonate polyol obtained by reacting ethylene carbonate with polyhydric alcohol and then reacting the obtained reaction mixture with organic dicarboxylic acid, and polycarbonate obtained by transesterification reaction between polyhydroxyl compound and aryl carbonate A polyol etc. are mentioned.
  • Chain extenders include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 3 -Low molecular weight polyols such as methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene, or 2,4-toluenediamine, 2,6-toluenediamine, 3, 5 -diethyl-2, 4 -toluenediamine, 4,4'-di-sec-butyl-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-dichloro-4,4'-diaminodiphenylmethane, 2,2 ', 3,3'-tetrachloro-4
  • polyamines are often colored themselves or resins formed using these are colored in many cases, it is preferable to blend them so as not to impair the physical properties and light transmittance.
  • a compound having an aromatic hydrocarbon group when used, the light transmittance on the short wavelength side tends to be lowered. Therefore, it is particularly preferable not to use such a compound.
  • a compound in which an electron donating group such as a halogen group or a thio group or an electron withdrawing group is bonded to an aromatic ring or the like tends to decrease the light transmittance. Therefore, such a compound may not be used. Particularly preferred. However, you may mix
  • the ratio of the isocyanate component, the polyol component, and the chain extender in the polyurethane resin can be appropriately changed depending on the molecular weight of each and the desired physical properties of the light transmission region produced therefrom.
  • the number of isocyanate groups of the organic isocyanate relative to the total number of functional groups (hydroxyl group + amino group) of the polyol and the chain extender is preferably 0.95 to 1.15, more preferably 0.99 to 1.10.
  • the polyurethane resin can be manufactured by applying a known urethanization technique such as a melting method or a solution method, but it is preferable to manufacture the polyurethane resin by a melting method in consideration of cost, working environment, and the like.
  • the polymerization procedure of the polyurethane resin either a prepolymer method or a one-shot method is possible.
  • an isocyanate-terminated prepolymer from an organic isocyanate and a polyol in advance. Is preferably synthesized, and a prepolymer method in which a chain extender is reacted with this is preferred.
  • the NCO wt% of the prepolymer is preferably about 2 to 8 wt%, more preferably about 3 to 7 wt%. If the NCO wt% is less than 2 wt%, the reaction curing tends to take too much time and the productivity tends to decrease.
  • the reaction rate becomes too fast.
  • air entrainment or the like occurs, and physical properties such as transparency and light transmittance of the polyurethane resin tend to deteriorate.
  • the attenuation of the reflected light increases due to light scattering, and the polishing end point detection accuracy and the film thickness measurement accuracy tend to decrease. Therefore, in order to remove such bubbles and make the light transmission region non-foamed, it is preferable to sufficiently remove the gas contained in the material by reducing the pressure to 10 Torr or less before mixing the material. .
  • the stirring process after mixing in the case of the stirring blade type mixer normally used, it is preferable to stir at the rotation speed of 100 rpm or less so that bubbles may not mix.
  • the stirring step is preferably performed under reduced pressure.
  • the rotation and revolution type mixer is difficult to mix bubbles even at high rotation, it is also preferable to perform stirring and defoaming using the mixer.
  • the production method of the light transmission region 9 is not particularly limited and can be produced by a known method.
  • a polyurethane resin block produced by the above method can be made to have a predetermined thickness using a band saw type or canna type slicer, a method of pouring the resin into a mold having a cavity of a predetermined thickness, a coating technique, A method using a sheet forming technique is used.
  • the Asker D hardness of the light transmission region 9 is preferably 30 to 60 degrees, more preferably 30 to 50 degrees. By using the light transmission region having the hardness, deformation of the light transmission region can be suppressed.
  • Examples of the material for forming the polishing region 8 include polyurethane resin, polyester resin, polyamide resin, acrylic resin, polycarbonate resin, halogen-based resin (polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, etc.), polystyrene, and olefin resin. (Polyethylene, polypropylene, etc.), epoxy resin, photosensitive resin, and the like. These may be used alone or in combination of two or more.
  • the material for forming the polishing region may be the same or different from that of the light transmission region, but it is preferable to use the same type of material as that used for the light transmission region.
  • Polyurethane resin is a particularly preferable material as a material for forming a polishing region because it has excellent abrasion resistance and a polymer having desired physical properties can be easily obtained by variously changing the raw material composition.
  • the isocyanate component to be used is not particularly limited, and examples thereof include the isocyanate component.
  • the high molecular weight polyol to be used is not particularly limited, and examples thereof include the high molecular weight polyol.
  • the number average molecular weight of these high molecular weight polyols is not particularly limited, but is preferably 500 to 2000 from the viewpoint of the elastic properties of the resulting polyurethane. If the number average molecular weight is less than 500, a polyurethane using the number average molecular weight does not have sufficient elastic properties and becomes a brittle polymer. For this reason, the polishing region produced from this polyurethane becomes too hard, which causes scratches on the wafer surface. Moreover, since it becomes easy to wear, it is not preferable from the viewpoint of the pad life. On the other hand, when the number average molecular weight exceeds 2,000, polyurethane using this is too soft, and the polishing region produced from this polyurethane tends to have poor planarization characteristics.
  • the low molecular weight polyol in addition to the high molecular weight polyol, the low molecular weight polyol can be used in combination.
  • chain extenders examples include 4,4′-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis (2,3-dichloroaniline), 3, 5-bis (methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene- 2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene oxide-di-p-aminobenzoate, 1,2-bis (2-aminophenylthio) ethane, 4,4′-diamino- 3,3′-diethyl-5,5′-dimethyldiphenylmethane, N, N′-di-sec-butyl-4,4′-diaminodipheny
  • the ratio of the isocyanate component, the polyol component, and the chain extender in the polyurethane resin can be variously changed depending on the molecular weight of each and the desired physical properties of the polishing region produced from these.
  • the number of isocyanate groups in the isocyanate component relative to the total number of functional groups (hydroxyl group + amino group) of the polyol component and the chain extender is preferably 0.95 to 1.15. Preferably it is 0.99 to 1.10.
  • the polyurethane resin can be produced by the same method as described above.
  • stabilizers such as antioxidants, surfactants, lubricants, pigments, solid beads, fillers such as water-soluble particles and emulsion particles, antistatic agents, abrasive grains, and other materials as necessary. Additives may be added.
  • the polishing region is preferably a fine foam.
  • a fine foam By using a fine foam, the slurry can be held in the fine pores on the surface, and the polishing rate can be increased.
  • the method of finely foaming the polyurethane resin is not particularly limited, and examples thereof include a method of adding hollow beads, a method of foaming by a mechanical foaming method, a chemical foaming method, and the like.
  • the mechanical foaming method using the silicone type surfactant which is a copolymer of polyalkylsiloxane and polyether is especially preferable.
  • the silicone surfactant include SH-192, L-5340 (manufactured by Toray Dow Corning Silicon) and the like as suitable compounds.
  • the manufacturing method of this polyurethane foam has the following processes. 1) Foaming step for producing a cell dispersion of isocyanate-terminated prepolymer A silicone-based surfactant is added to the isocyanate-terminated prepolymer (first component), and the mixture is stirred in the presence of a non-reactive gas to remove the non-reactive gas. Disperse as fine bubbles to obtain a cell dispersion. When the prepolymer is solid at normal temperature, it is preheated to an appropriate temperature and melted before use.
  • non-reactive gas used to form the fine bubbles non-flammable gases are preferable, and specific examples include nitrogen, oxygen, carbon dioxide, rare gases such as helium and argon, and mixed gases thereof.
  • nitrogen, oxygen, carbon dioxide, rare gases such as helium and argon, and mixed gases thereof are preferable.
  • air that has been dried to remove moisture is most preferable in terms of cost.
  • a stirring device for making non-reactive gas into fine bubbles and dispersing it in an isocyanate-terminated prepolymer containing a silicone-based surfactant a known stirring device can be used without particular limitation. Specifically, a homogenizer, a dissolver, A two-axis planetary mixer (planetary mixer) is exemplified.
  • the shape of the stirring blade of the stirring device is not particularly limited, but it is preferable to use a whipper-type stirring blade because fine bubbles can be obtained.
  • stirring in the mixing step may not be stirring that forms bubbles, and it is preferable to use a stirring device that does not involve large bubbles.
  • a planetary mixer is suitable. There is no problem even if the same stirring device is used as the stirring device for the stirring step and the mixing step, and it is also preferable to adjust the stirring conditions such as adjusting the rotation speed of the stirring blade as necessary. .
  • the foam reaction solution may be poured into the mold and immediately put into a heating oven for post cure, and heat is not immediately transferred to the reaction components under such conditions, so the bubble size does not increase.
  • the curing reaction is preferably performed at normal pressure because the bubble shape is stable.
  • a catalyst that promotes a known polyurethane reaction such as a tertiary amine type or an organic tin type may be used.
  • the type and addition amount of the catalyst are selected in consideration of the flow time for pouring into a mold having a predetermined shape after the mixing step.
  • the polyurethane foam may be produced by a batch method in which each component is metered into a container and stirred, and each component and a non-reactive gas are continuously supplied to the stirring device and stirred to produce bubbles. It may be a continuous production method in which a dispersion is sent out to produce a molded product.
  • the average cell diameter of the polyurethane foam is preferably 30 to 80 ⁇ m, more preferably 30 to 60 ⁇ m. When deviating from this range, the polishing rate tends to decrease, or the planarity (flatness) of the polished object (wafer) after polishing tends to decrease.
  • the specific gravity of the polyurethane foam is preferably 0.5 to 1.3.
  • the specific gravity is less than 0.5, the surface strength of the polishing region decreases, and the planarity of the object to be polished tends to decrease.
  • the ratio is larger than 1.3, the number of bubbles on the surface of the polishing region decreases, and planarity is good, but the polishing rate tends to decrease.
  • the hardness of the polyurethane foam is preferably 45 to 70 degrees as measured by an Asker D hardness meter.
  • Asker D hardness is less than 45 degrees, the planarity of the object to be polished is reduced.
  • Asker D hardness is more than 70 degrees, the planarity is good but the uniformity of the object to be polished is reduced. There is a tendency.
  • the polishing region 8 is manufactured by cutting the polyurethane foam produced as described above into a predetermined size.
  • the polishing region 8 is provided with a groove 14 (uneven structure) for holding and renewing slurry on the polishing side surface in contact with the wafer.
  • a groove 14 (uneven structure) for holding and renewing slurry on the polishing side surface in contact with the wafer.
  • the polishing region is formed of fine foam, it has many openings on the polishing surface and has the function of holding the slurry, but in order to more efficiently maintain the slurry and renew the slurry.
  • the groove 14 is not particularly limited as long as it has a surface shape that holds and renews the slurry.
  • an XY lattice groove, a concentric circular groove, a through hole, a non-through hole, a polygonal column, a cylinder, and a spiral groove Eccentric circular grooves, radial grooves, and combinations of these grooves.
  • the groove pitch, groove width, groove depth and the like are not particularly limited and are appropriately selected and formed.
  • these uneven structures are generally regular, but in order to make the slurry retention and renewability desirable, the groove pitch, groove width, groove depth, etc. should be changed for each range. Is also possible.
  • the thickness of the polishing region 8 is not particularly limited, but is usually about 0.8 to 4 mm, preferably 1.2 to 2.5 mm.
  • a method of producing the polishing region of the thickness a method of making the block of the fine foam a predetermined thickness using a band saw type or a canna type slicer, pouring resin into a mold having a cavity of a predetermined thickness, and curing And a method using a coating technique or a sheet forming technique.
  • the depth of the groove 14 is not particularly limited, but is usually about 20 to 70% of the thickness of the polishing region 8 and preferably 20 to 50%.
  • the cushion layer 11 supplements the characteristics of the polishing region 8.
  • the cushion layer 11 is necessary in order to achieve both planarity and uniformity in a trade-off relationship in CMP.
  • Planarity refers to the flatness of a pattern portion when a polishing object having minute irregularities generated during pattern formation is polished, and uniformity refers to the uniformity of the entire polishing object.
  • the planarity is improved by the characteristics of the polishing region 8, and the uniformity is improved by the characteristics of the cushion layer 11.
  • the cushion layer 11 is preferably softer than the polishing region 8.
  • the material for forming the cushion layer 11 is not particularly limited.
  • fiber nonwoven fabrics such as polyester nonwoven fabric, nylon nonwoven fabric, and acrylic nonwoven fabric
  • resin-impregnated nonwoven fabrics such as polyester nonwoven fabric impregnated with polyurethane
  • polymer resins such as polyurethane foam and polyethylene foam
  • rubber resins such as foam, butadiene rubber and isoprene rubber, and photosensitive resins.
  • the resin film material include polyesters such as polyethylene terephthalate, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, fluorine-containing resins such as polyfluoroethylene, nylon, cellulose, and general-purpose engineering plastics such as polycarbonate; Special engineering plastics such as polyetherimide, polyetheretherketone, and polyethersulfone can be mentioned.
  • the composition of the adhesive layer include rubber adhesives and acrylic adhesives.
  • the adhesive layer of the transparent support film 12 is provided to bond the resin film to the cushion layer 11 or the polishing surface plate 2 and to bond the light transmission region 9 to the resin film.
  • the thickness of the resin film is not particularly limited, but is preferably about 20 to 200 ⁇ m from the viewpoint of transparency and strength.
  • the transparent support film 12 needs to have at least a size that completely closes the opening 10, and usually has the same size as the cushion layer 11.
  • the manufacturing method of the polishing pad 1 in FIG. 2 is not particularly limited, and various methods are conceivable. Specific examples will be described below.
  • the manufacturing method of the polishing pad 1 in FIG. 3 is not particularly limited.
  • the polishing region 8 provided with the through-hole 15 and the cushion layer 11 provided with the through-hole 16 are bonded to the adhesive layer of the double-sided adhesive sheet 13 so that the through-holes overlap each other, and then the through-hole 15 It can be manufactured by attaching the light transmission region 9 to the adhesive layer inside.
  • a double-sided tape may be provided on the surface of the cushion layer 11 to be bonded to the polishing surface plate (platen).
  • the surface of the light transmission region 9 needs to be recessed from the surface of the polishing region 8, and the amount of the recess is 30 to 100% of the depth of the groove 14, preferably 50 to 100%, more preferably 80 to 100%.
  • Examples of means for bonding the polishing region 8 and the cushion layer 11 include a method in which the polishing region 8 and the cushion layer 11 are sandwiched between the double-sided adhesive sheets 13 and pressed.
  • the double-sided adhesive sheet 13 has a general configuration in which an adhesive layer is provided on both sides of a substrate such as a nonwoven fabric or a film, and is generally called a double-sided tape.
  • Examples of the composition of the adhesive layer include rubber adhesives and acrylic adhesives. Considering the content of metal ions, an acrylic adhesive is preferable because the metal ion content is low.
  • the composition may differ between the grinding
  • the means for forming the opening 10 and the through holes 15 and 16 are not particularly limited.
  • a method of pressing or grinding with a cutting tool, a method of using a laser such as a carbonic acid laser, and the shape of the through hole are provided.
  • a method may be used in which a raw material is poured into a mold and cured.
  • the size and shape of the opening 10 and the through holes 15 and 16 are not particularly limited.
  • the semiconductor device is manufactured through a process of polishing the surface of the semiconductor wafer using the polishing pad.
  • a semiconductor wafer is generally a laminate of a wiring metal and an oxide film on a silicon wafer.
  • the method and apparatus for polishing the semiconductor wafer are not particularly limited.
  • a polishing surface plate 2 that supports the polishing pad 1
  • a support table 5 that supports the semiconductor wafer 4
  • This is performed using a backing material for performing uniform pressurization and a polishing apparatus equipped with a polishing agent 3 supply mechanism.
  • the polishing pad 1 is attached to the polishing surface plate 2 by attaching it with a double-sided tape, for example.
  • the polishing surface plate 2 and the support base 5 are disposed so that the polishing pad 1 and the semiconductor wafer 4 supported on each of the polishing surface plate 2 and the support table 5 face each other, and are provided with rotating shafts 6 and 7 respectively. Further, a pressurizing mechanism for pressing the semiconductor wafer 4 against the polishing pad 1 is provided on the support base 5 side. In polishing, the semiconductor wafer 4 is pressed against the polishing pad 1 while rotating the polishing surface plate 2 and the support base 5, and polishing is performed while supplying slurry.
  • the flow rate of the slurry, the polishing load, the polishing platen rotation speed, and the wafer rotation speed are not particularly limited and are appropriately adjusted.
  • the protruding portion of the surface of the semiconductor wafer 4 is removed and polished flat. Thereafter, a semiconductor device is manufactured by dicing, bonding, packaging, or the like. The semiconductor device is used for an arithmetic processing device, a memory, and the like.
  • Example 1 [Production of light transmission region] A thermoplastic polyurethane A1098A (manufactured by Toyobo Co., Ltd.) was used to produce a light transmission region (length 60 mm, width 20 mm, thickness 2.4 mm, D hardness 48 degrees) by injection molding.
  • This buffed sheet is punched out to a diameter of 61 cm, and a concentric groove having a groove width of 0.40 mm, a groove pitch of 3.1 mm, and a groove depth of 0.76 mm is used on the surface using a groove processing machine (manufactured by Toho Steel Co., Ltd.). Processing was performed. Using a laminator on the surface opposite to the grooved surface of this sheet, double-sided tape (manufactured by Sekisui Chemical Co., Ltd., double tack tape, thickness: 0.10 mm) is bonded to produce a polishing area with double-sided tape. did.
  • a cushion layer made of polyethylene foam (Toray Industries Inc., TORAYPEF, thickness: 0.8 mm) buffed and corona-treated is bonded to the adhesive surface of the prepared polishing area with double-sided tape using a laminator.
  • An abrasive sheet was prepared.
  • an opening having a size of 60 mm ⁇ 20 mm was formed in the polishing sheet.
  • the transparent support film base material: polyethylene terephthalate, thickness: 50 micrometers
  • a light transmission region was pasted on the transparent support film in the opening of the laminate to prepare a polishing pad having the structure shown in FIG.
  • the amount of depression in the light transmission region was 0.5 mm, which was 65.8% of the groove depth.
  • Examples 2 to 4 Comparative Examples 1 and 2 A polishing pad was prepared in the same manner as in Example 1 except that the groove depth in the polishing region and the thickness of the light transmission region were changed to change the dent amount to the value shown in Table 1.
  • Example 5 [Production of light transmission region] 128 parts by weight of a polyester polyol (number average molecular weight 2400) composed of adipic acid, hexanediol and ethylene glycol and 30 parts by weight of 1,4-butanediol were mixed, and the temperature was adjusted to 70 ° C. To this mixed solution, 100 parts by weight of 4,4′-diphenylmethane diisocyanate previously adjusted to 70 ° C. was added and stirred for about 1 minute. Then, the mixed solution was poured into a container kept at 100 ° C. and post-cured at 100 ° C. for 8 hours to produce a polyurethane resin. Using the produced polyurethane resin, a light transmission region (length 56 mm, width 20 mm, thickness 1.5 mm) was prepared by injection molding.
  • a polyester polyol number average molecular weight 2400
  • 1,4-butanediol 1,4-butanediol
  • a sheet having a diameter of 61 cm and a thickness of 2.0 mm having a concentric groove having a groove width of 0.40 mm, a groove pitch of 3.1 mm, and a groove depth of 0.76 mm was produced in the same manner as in Example 1.
  • a through-hole (56 mm ⁇ 20 mm) was formed at a position of about 12 cm from the center of the substrate to prepare a polished region.
  • polishing pad Using a laminator on the surface opposite to the grooved surface of the prepared polishing region, a double-sided tape (manufactured by Sekisui Chemical Co., Ltd., double tack tape) was bonded to prepare a polishing region with double-sided tape.
  • a laminator on one side (surface on the polishing surface plate side) of a cushion layer made of polyethylene foam (Toray Industries, Toraypef, thickness: 0.8 mm) buffed and corona-treated a polishing surface plate A double-sided tape for laminating was laminated to a diameter of 61 cm to produce a cushion layer with a double-sided tape.
  • a through hole (50 mm ⁇ 14 mm) was formed at a position of about 12 cm from the center of the cushion layer with the double-sided tape.
  • the structure shown in FIG. 3 is formed by laminating the polishing region with double-sided tape and the cushion layer with double-sided tape so that the through-holes overlap each other, and further bonding the produced light transmission region to the adhesive layer in the through-hole of the polishing region.
  • a polishing pad was prepared.
  • the amount of depression in the light transmission region was 0.5 mm, which was 65.8% of the groove depth.
  • Comparative Example 3 A polishing pad was produced in the same manner as in Example 5 except that the thickness of the light transmission region was changed and the dent amount was changed to the value shown in Table 1.
  • the polishing pad of the present invention provides stable and high leveling of flattening of optical materials such as lenses and reflecting mirrors, silicon wafers, aluminum substrates, and materials requiring high surface flatness such as general metal polishing. Can be done with efficiency.
  • the polishing pad of the present invention is particularly suitable for a step of planarizing a silicon wafer and a device having an oxide layer, a metal layer, etc. formed thereon, before further laminating and forming these oxide layers and metal layers. Can be used for
  • Polishing pad 2 Polishing surface plate (platen) 3: Abrasive (slurry) 4: Polishing object (semiconductor wafer) 5: Support base (polishing head) 6, 7: Rotating shaft 8: Polishing area 9: Light transmission area 10: Opening part 11: Cushion layer 12: Transparent support film 13: Double-sided adhesive sheet 14: Grooves 15, 16: Through-hole

Abstract

The purpose of the present invention is to provide a polishing pad, which hardly generates scratches on a surface of a subject to be polished, and which has a longer service-life. This polishing pad is characterized in that: the polishing pad is provided with a polishing layer having a polishing region and a light transmissive region; the polishing region has a groove on the surface thereof; the surface of the light transmissive region is recessed from the surface of the polishing region; and the recessed quantity of the light transmissive region is 30-100 % of the depth of the groove.

Description

研磨パッドPolishing pad
 本発明は、半導体ウエハなどの研磨対象物表面の凹凸をケミカルメカニカルポリシング(CMP)で平坦化する際に使用される研磨パッドに関し、詳しくは、研磨状況等を光学的手段により検知するための窓(光透過領域)を有する研磨パッド、及び該研磨パッドを用いた半導体デバイスの製造方法に関する。 The present invention relates to a polishing pad for use in planarizing unevenness on the surface of an object to be polished such as a semiconductor wafer by chemical mechanical polishing (CMP), and more specifically, a window for detecting a polishing state or the like by optical means. The present invention relates to a polishing pad having (light transmission region) and a method for manufacturing a semiconductor device using the polishing pad.
 半導体装置を製造する際には、半導体ウエハ(以下、ウエハともいう)表面に導電性膜を形成し、フォトリソグラフィー、エッチング等をすることにより配線層を形成する形成する工程や、配線層の上に層間絶縁膜を形成する工程等が行われ、これらの工程によってウエハ表面に金属等の導電体や絶縁体からなる凹凸が生じる。近年、半導体集積回路の高密度化を目的として配線の微細化や多層配線化が進んでいるが、これに伴い、ウエハ表面の凹凸を平坦化する技術が重要となってきた。 When manufacturing a semiconductor device, a conductive film is formed on the surface of a semiconductor wafer (hereinafter also referred to as a wafer), and a wiring layer is formed by photolithography, etching, or the like. A process for forming an interlayer insulating film is performed on the surface of the wafer, and these processes cause irregularities made of a conductor such as metal or an insulator on the wafer surface. In recent years, miniaturization of wiring and multilayer wiring have been advanced for the purpose of increasing the density of semiconductor integrated circuits, and along with this, technology for flattening the irregularities on the wafer surface has become important.
 ウエハ表面の凹凸を平坦化する方法としては、一般的にCMP法が採用されている。CMPは、ウエハの被研磨面を研磨パッドの研磨面に押し付けた状態で、砥粒が分散されたスラリー状の研磨剤(以下、スラリーという)を用いて研磨する技術である。 As a method for flattening the irregularities on the wafer surface, a CMP method is generally employed. CMP is a technique of polishing using a slurry-like abrasive (hereinafter referred to as slurry) in which abrasive grains are dispersed in a state where the surface to be polished of a wafer is pressed against the polishing surface of a polishing pad.
 CMPで一般的に使用する研磨装置は、例えば、図1に示すように、研磨パッド1を支持する研磨定盤2と、研磨対象物(ウエハなど)4を支持する支持台(ポリシングヘッド)5とウエハの均一加圧を行うためのバッキング材と、研磨剤3の供給機構を備えている。研磨パッド1は、例えば、両面テープで貼り付けることにより、研磨定盤2に装着される。研磨定盤2と支持台5とは、それぞれに支持された研磨パッド1と研磨対象物4が対向するように配置され、それぞれに回転軸6、7を備えている。また、支持台5側には、研磨対象物4を研磨パッド1に押し付けるための加圧機構が設けてある。 As shown in FIG. 1, for example, a polishing apparatus generally used in CMP includes a polishing surface plate 2 that supports a polishing pad 1 and a support base (polishing head) 5 that supports an object to be polished (wafer or the like) 4. And a backing material for uniformly pressing the wafer and a supply mechanism for the abrasive 3. The polishing pad 1 is attached to the polishing surface plate 2 by attaching it with a double-sided tape, for example. The polishing surface plate 2 and the support base 5 are arranged so that the polishing pad 1 and the object to be polished 4 supported on each of them are opposed to each other, and are provided with rotating shafts 6 and 7 respectively. Further, a pressurizing mechanism for pressing the polishing object 4 against the polishing pad 1 is provided on the support base 5 side.
 このようなCMPを行う上で、ウエハ表面平坦度の判定の問題がある。すなわち、希望の表面特性や平面状態に到達した時点を検知する必要がある。従来、酸化膜の膜厚や研磨速度等に関しては、テストウエハを定期的に処理し、結果を確認してから製品となるウエハを研磨処理することが行われてきた。 There is a problem of determining the wafer surface flatness in performing such CMP. In other words, it is necessary to detect when the desired surface characteristics or planar state is reached. Conventionally, with regard to the thickness of the oxide film, the polishing rate, and the like, a test wafer is periodically processed, and after confirming the result, a product wafer is polished.
 しかし、この方法では、テストウエハを処理する時間とコストが無駄になり、また、あらかじめ加工が全く施されていないテストウエハと製品ウエハでは、CMP特有のローディング効果により、研磨結果が異なり、製品ウエハを実際に加工してみないと、加工結果の正確な予想が困難である。 However, in this method, the time and cost for processing the test wafer are wasted, and the polishing result differs between the test wafer and the product wafer that have not been processed in advance due to the loading effect peculiar to CMP. If it is not actually processed, it is difficult to accurately predict the processing result.
 そのため、最近では上記の問題点を解消するために、CMPプロセス時に、その場で、希望の表面特性や厚さが得られた時点を検出できる方法が望まれている。このような検知については様々な方法が用いられているが、測定精度や非接触測定における空間分解能の点から光学的検知手段が主流となりつつある。 Therefore, recently, in order to solve the above-mentioned problems, there is a demand for a method capable of detecting when a desired surface property or thickness is obtained on the spot during the CMP process. Various methods are used for such detection, but optical detection means are becoming mainstream in terms of measurement accuracy and spatial resolution in non-contact measurement.
 光学的検知手段とは、具体的には光ビームを窓(光透過領域)を通して研磨パッド越しにウエハに照射して、その反射によって発生する干渉信号をモニターすることによって研磨の終点を検知する方法である。 Specifically, the optical detection means is a method of detecting an end point of polishing by irradiating a wafer with a light beam through a window (light transmission region) through a polishing pad and monitoring an interference signal generated by the reflection. It is.
 このような光学的手段による研磨の終点検知法およびその方法に用いられる研磨パッドについては様々なものが提案されている。 Various types of polishing end point detection methods using such optical means and polishing pads used in the methods have been proposed.
 例えば、定盤上に設置されている研磨体と研磨対象物との間に研磨剤を介在させた状態で、前記研磨体と前記研磨対象物との間に荷重を加え、且つ、相対移動させることにより、前記研磨対象物を研磨する平坦化装置に用いる研磨体において、1以上の開口部と、該開口部に設置されている窓とを有し、前記研磨体の表面に対して前記窓の前記研磨対象物側の表面が凹んでいて、該凹み量が段階的もしくは連続的に変化していることを特徴とする研磨体が提案されている(特許文献1)。 For example, a load is applied between the polishing body and the polishing object, and the relative movement is performed with an abrasive interposed between the polishing body installed on the surface plate and the polishing object. Thus, in the polishing body used in the flattening apparatus for polishing the object to be polished, the polishing body has one or more openings and a window installed in the opening, and the window with respect to the surface of the polishing body There has been proposed a polishing body characterized in that the surface of the object to be polished is recessed and the amount of the recess changes stepwise or continuously (Patent Document 1).
 また、定盤上に設置されている研磨体と研磨対象物の間に研磨剤を介在させた状態で、前記研磨体と前記研磨対象物の間に荷重を加え、且つ、相対移動させることにより、前記研磨対象物を研磨する平坦化装置に用いる研磨体において、開口部と、該開口部に設置されている窓を有し、該窓は2枚以上の透明材料が積層されていることを特徴とする研磨体が提案されている(特許文献2)。 In addition, by applying a load between the polishing body and the polishing object in a state where an abrasive is interposed between the polishing body installed on the surface plate and the polishing object, and by relatively moving the polishing object and the polishing object The polishing body used in the flattening apparatus for polishing the object to be polished has an opening and a window installed in the opening, and the window is formed by laminating two or more transparent materials. A characteristic polishing body has been proposed (Patent Document 2).
 また、(a)研磨表面と第1長さおよび第1幅を有する第1開口部とを含む第1研磨層、(b)本体と第2長さおよび第2幅を有する第2開口部とを含む第2層であって、該第2層は第1研磨層と実質的に同一の広がりを有し、第1長さおよび第1幅の少なくとも一方はそれぞれ第2長さおよび第2幅よりも小さい、第2層、および(c)実質的に透明な窓部分であって、第1研磨層の第1開口部と整合するように第2層の第2開口部内に配置され、且つ第2層の本体から隙間により分離れる実質的に透明な窓部分を含む化学機械研磨用の研磨パッドが提案されている(特許文献3)。 (A) a first polishing layer including a polishing surface and a first opening having a first length and a first width; and (b) a main body and a second opening having a second length and a second width. The second layer has substantially the same extent as the first polishing layer, and at least one of the first length and the first width is the second length and the second width, respectively. A second layer, and (c) a substantially transparent window portion disposed within the second opening of the second layer so as to be aligned with the first opening of the first polishing layer; and A polishing pad for chemical mechanical polishing including a substantially transparent window portion that is separated from the main body of the second layer by a gap has been proposed (Patent Document 3).
 一方、半導体デバイスの微細化に伴い、半導体ウエハ表面のスクラッチ(傷)の発生を抑えることが今まで以上に要求されており、スクラッチを生じさせ難い研磨パッドの開発が望まれている。また、製造コスト削減の観点から長寿命タイプの研磨パッドの開発が望まれている。 On the other hand, with the miniaturization of semiconductor devices, it is required more than ever to suppress the generation of scratches (scratches) on the surface of a semiconductor wafer, and the development of a polishing pad that hardly causes scratches is desired. In addition, development of a long-life type polishing pad is desired from the viewpoint of manufacturing cost reduction.
特開2001-198802号公報JP 2001-198802 A 特開2001-162520号公報JP 2001-162520 A 特表2007-506280号公報Special table 2007-506280 gazette
 本発明は、研磨対象物表面にスクラッチを生じさせ難く、さらに長寿命の研磨パッドを提供することを目的とする。 It is an object of the present invention to provide a polishing pad that hardly causes scratches on the surface of an object to be polished and that has a longer life.
 本発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す研磨パッドにより上記目的を達成できることを見出し本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has found that the above object can be achieved by the polishing pad shown below, and has completed the present invention.
 すなわち、本発明は、研磨領域及び光透過領域を有する研磨層を備えた研磨パッドにおいて、研磨領域は表面に溝を有しており、光透過領域の表面は研磨領域の表面より凹んでおり、その凹み量が前記溝の深さの30~100%であることを特徴とする研磨パッド、に関する。 That is, the present invention is a polishing pad comprising a polishing layer having a polishing region and a light transmission region, the polishing region has a groove on the surface, the surface of the light transmission region is recessed from the surface of the polishing region, The present invention relates to a polishing pad having a dent amount of 30 to 100% of the depth of the groove.
 光透過領域の表面が研磨領域の表面より凹んだ構造にすることにより、研磨作業時に研磨対象物の表面が光透過領域の表面に接触することを防止することができる。その結果、研磨対象物の表面にスクラッチが生じ難くなる。また、研磨対象物の研磨作業時及び研磨領域表面のドレス作業(目立て作業)時における研磨領域の磨耗により、光透過領域表面の凹みは次第に小さくなるが、光透過領域表面の凹み量を研磨領域の溝の深さの30~100%にすることにより、光学的検知精度を高く維持したまま研磨パッドの長寿命化を図ることができる。光透過領域表面の凹み量を研磨領域の溝の深さの100%にすれば、研磨領域の溝がなくなるまで光透過領域の表面が研磨領域の表面より凹んだ構造を維持できるため、研磨パッドの長寿命化の観点から最も好ましい。凹み量が溝深さの30%未満の場合には、研磨領域の磨耗によって短時間で光透過領域表面が研磨領域表面と同じ高さになり、光透過領域との接触によって研磨対象物表面にスクラッチが生じやすくなる。そのため、短時間で研磨パッドを交換しなければならなくなる。一方、凹み量が溝深さの100%を超える場合には、研磨領域の溝がなくなるまで光透過領域の表面が研磨領域の表面より凹んだ構造を維持できるため、研磨パッドの長寿命化の観点から好ましい。しかし、研磨パッドの使用初期には、光透過領域表面の凹み量が大きいため、凹み部分に多くのスラリーが溜まり、それにより光学的検知精度が低下するため好ましくない。 The structure in which the surface of the light transmission region is recessed from the surface of the polishing region can prevent the surface of the polishing object from coming into contact with the surface of the light transmission region during the polishing operation. As a result, scratches are less likely to occur on the surface of the object to be polished. In addition, although the dent on the surface of the light transmission region is gradually reduced due to wear of the polishing region during the polishing operation of the object to be polished and the dressing operation (sharpening operation) of the surface of the polishing region, By setting the depth of the groove to 30 to 100%, it is possible to extend the life of the polishing pad while maintaining high optical detection accuracy. By setting the dent amount on the surface of the light transmission region to 100% of the depth of the groove in the polishing region, it is possible to maintain a structure in which the surface of the light transmission region is recessed from the surface of the polishing region until there is no groove in the polishing region. This is most preferable from the viewpoint of extending the service life. When the dent amount is less than 30% of the groove depth, the surface of the light transmission region becomes the same height as the surface of the polishing region in a short time due to abrasion of the polishing region, and the surface of the object to be polished is brought into contact with the light transmission region. Scratches are likely to occur. Therefore, it is necessary to replace the polishing pad in a short time. On the other hand, when the dent amount exceeds 100% of the groove depth, the structure in which the surface of the light transmission region is recessed from the surface of the polishing region can be maintained until there is no groove in the polishing region. It is preferable from the viewpoint. However, since the amount of dent on the surface of the light transmission region is large in the initial stage of use of the polishing pad, a large amount of slurry accumulates in the dent portion, thereby reducing the optical detection accuracy, which is not preferable.
 本発明の研磨パッドは、研磨領域、クッション層、及び透明支持フィルムがこの順に積層されており、研磨領域及びクッション層を貫く開口部内かつ透明支持フィルム上に光透過領域が設けられているものであることが好ましい。光透過領域、研磨領域及びクッション層が透明支持フィルム上に成形されているため、研磨作業中に光透過領域と、研磨領域(又はクッション層)とを引き剥がす力が働いて両部材の境界からスラリーが漏れた場合であっても、透明支持フィルムより下にスラリーが漏れることがない。 In the polishing pad of the present invention, a polishing region, a cushion layer, and a transparent support film are laminated in this order, and a light transmission region is provided in an opening that penetrates the polishing region and the cushion layer and on the transparent support film. Preferably there is. Since the light transmission region, the polishing region, and the cushion layer are formed on the transparent support film, the force that peels off the light transmission region and the polishing region (or the cushion layer) during the polishing operation works from the boundary between the two members. Even if the slurry leaks, the slurry does not leak below the transparent support film.
 また、本発明の研磨パッドは、研磨領域及び光透過領域を有する研磨層と、貫通孔を有するクッション層とが、光透過領域と貫通孔とが重なるように両面接着シートを介して積層されているものであってもよい。 In the polishing pad of the present invention, a polishing layer having a polishing region and a light transmission region and a cushion layer having a through hole are laminated via a double-sided adhesive sheet so that the light transmission region and the through hole overlap. It may be.
 さらに本発明は、前記研磨パッドを用いて半導体ウエハの表面を研磨する工程を含む半導体デバイスの製造方法、に関する。 Furthermore, the present invention relates to a semiconductor device manufacturing method including a step of polishing a surface of a semiconductor wafer using the polishing pad.
 本発明の研磨パッドは、上記の構造を有するため、研磨対象物表面にスクラッチを生じさせ難く、さらに長寿命である。 Since the polishing pad of the present invention has the above-described structure, it is difficult to cause scratches on the surface of the object to be polished and has a longer life.
CMP研磨で使用する研磨装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the grinding | polishing apparatus used by CMP grinding | polishing. 本発明の研磨パッドの構造の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure of the polishing pad of this invention. 本発明の研磨パッドの構造の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the structure of the polishing pad of this invention.
 本発明の研磨パッドは、研磨領域及び光透過領域を有する研磨層を備えており、研磨領域は表面に溝を有しており、光透過領域の表面は研磨領域の表面より凹んでおり、その凹み量が前記溝の深さの30~100%である。 The polishing pad of the present invention includes a polishing layer having a polishing region and a light transmission region, the polishing region has a groove on the surface, and the surface of the light transmission region is recessed from the surface of the polishing region, The amount of recess is 30 to 100% of the depth of the groove.
 本発明の研磨パッドは、前記研磨層のみであってもよく、研磨層と他の層(例えばクッション層、接着剤層、及び支持フィルムなど)との積層体であってもよい。 The polishing pad of the present invention may be only the polishing layer or a laminate of the polishing layer and other layers (for example, a cushion layer, an adhesive layer, a support film, etc.).
 図2は、本発明の研磨パッドの構造の一例を示す概略断面図である。図2に示すように、研磨パッド1は、研磨領域8、クッション層11、及び透明支持フィルム12がこの順に積層されており、研磨領域8及びクッション層11を貫く開口部10内かつ透明支持フィルム12上に光透過領域9が設けられている。そして、研磨領域8の表面には溝14が設けられている。 FIG. 2 is a schematic sectional view showing an example of the structure of the polishing pad of the present invention. As shown in FIG. 2, the polishing pad 1 has a polishing region 8, a cushion layer 11, and a transparent support film 12 laminated in this order, and in the opening 10 penetrating the polishing region 8 and the cushion layer 11 and transparent support film. A light transmissive region 9 is provided on 12. A groove 14 is provided on the surface of the polishing region 8.
 図3は、本発明の研磨パッドの構造の他の一例を示す概略断面図である。図3に示すように、研磨パッド1は、研磨領域8及び光透過領域9を有する研磨層と、貫通孔16を有するクッション層11とが、前記光透過領域9と前記貫通孔16とが重なるように両面接着シート13を介して積層されている。そして、研磨領域8の表面には溝14が設けられている。 FIG. 3 is a schematic sectional view showing another example of the structure of the polishing pad of the present invention. As shown in FIG. 3, in the polishing pad 1, a polishing layer having a polishing region 8 and a light transmission region 9 and a cushion layer 11 having a through hole 16 overlap the light transmission region 9 and the through hole 16. In this way, they are laminated via the double-sided adhesive sheet 13. A groove 14 is provided on the surface of the polishing region 8.
 光透過領域9の形成材料は特に制限されないが、研磨を行っている状態で高精度の光学終点検知を可能とし、波長400~800nmの全範囲で光透過率が10%以上である材料を用いることが好ましく、より好ましくは光透過率が50%以上の材料である。そのような材料としては、例えば、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、及びアクリル樹脂などの熱硬化性樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、セルロース系樹脂、アクリル樹脂、ポリカーボネート樹脂、ハロゲン系樹脂(ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、ポリスチレン、及びオレフィン系樹脂(ポリエチレン、ポリプロピレンなど)などの熱可塑性樹脂、ブタジエンゴムやイソプレンゴムなどのゴム、紫外線や電子線などの光により硬化する光硬化性樹脂、及び感光性樹脂などが挙げられる。これらの樹脂は単独で用いてもよく、2種以上を併用してもよい。 The material for forming the light transmission region 9 is not particularly limited, but a material that can detect an optical end point with high accuracy while polishing and has a light transmittance of 10% or more in the entire wavelength range of 400 to 800 nm is used. It is preferable that the material has a light transmittance of 50% or more. Examples of such materials include polyurethane resins, polyester resins, phenol resins, urea resins, melamine resins, epoxy resins, and acrylic resins, and other thermosetting resins, polyurethane resins, polyester resins, polyamide resins, cellulose resins, Acrylic resins, polycarbonate resins, halogen resins (polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, etc.), polystyrene, olefin resins (polyethylene, polypropylene, etc.), thermoplastic resins, butadiene rubber, isoprene rubber, etc. Examples thereof include rubber, photo-curing resin that is cured by light such as ultraviolet rays and electron beams, and photosensitive resin. These resins may be used alone or in combination of two or more.
 光透過領域9の形成材料は、研磨領域8の形成材料と同じもの、又は研磨領域8の物性に類似する材料を用いることが好ましい。特に、ポリウレタン樹脂を用いることが好ましい。 The material for forming the light transmission region 9 is preferably the same as the material for forming the polishing region 8 or a material similar to the physical properties of the polishing region 8. In particular, it is preferable to use a polyurethane resin.
前記ポリウレタン樹脂は、イソシアネート成分、ポリオール成分(高分子量ポリオール、低分子量ポリオールなど)、及び鎖延長剤からなるものである。 The polyurethane resin comprises an isocyanate component, a polyol component (high molecular weight polyol, low molecular weight polyol, etc.), and a chain extender.
 イソシアネート成分としては、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 As the isocyanate component, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, Examples include p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, and the like. . These may be used alone or in combination of two or more.
 高分子量ポリオールとしては、ポリテトラメチレンエーテルグリコールに代表されるポリエ-テルポリオール、ポリブチレンアジペートに代表されるポリエステルポリオール、ポリカプロラクトンポリオール、ポリカプロラクトンのようなポリエステルグリコールとアルキレンカーボネートとの反応物などで例示されるポリエステルポリカーボネートポリオール、エチレンカーボネートを多価アルコールと反応させ、次いで得られた反応混合物を有機ジカルボン酸と反応させたポリエステルポリカーボネートポリオール、及びポリヒドキシル化合物とアリールカーボネートとのエステル交換反応により得られるポリカーボネートポリオールなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the high molecular weight polyol include a polyether polyol typified by polytetramethylene ether glycol, a polyester polyol typified by polybutylene adipate, a polycaprolactone polyol, a reaction product of a polyester glycol such as polycaprolactone and an alkylene carbonate, and the like. Exemplified polyester polycarbonate polyol, polyester polycarbonate polyol obtained by reacting ethylene carbonate with polyhydric alcohol and then reacting the obtained reaction mixture with organic dicarboxylic acid, and polycarbonate obtained by transesterification reaction between polyhydroxyl compound and aryl carbonate A polyol etc. are mentioned. These may be used alone or in combination of two or more.
 また、ポリオールとして上述した高分子量ポリオールの他に、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン等の低分子量ポリオールを併用してもよい。 In addition to the high molecular weight polyols described above as the polyol, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1, Low molecular weight polyols such as 4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene may be used in combination.
 鎖延長剤としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン等の低分子量ポリオール類、あるいは2,4-トルエンジアミン、2,6-トルエンジアミン、3 ,5 -ジエチル-2 ,4 -トルエンジアミン、4,4’-ジ-sec-ブチルージアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、2,2’,3,3’-テトラクロロ-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-メチレン-ビス-メチルアンスラニレート、4,4’-メチレン-ビス-アンスラニリックアシッド、4,4’-ジアミノジフェニルスルフォン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、4,4’-メチレン-ビス(3-クロロ-2,6-ジエチルアニリン)、4,4’-メチレンビス(o-クロロアニリン)、3,3’-ジクロロ-4,4’-ジアミノ-5,5’-ジエチルジフェニルメタン、1,2-ビス(2-アミノフェニルチオ)エタン、トリメチレングリコールージ-p-アミノベンゾエート、3,5-ビス(メチルチオ)-2,4-トルエンジアミン等に例示されるポリアミン類を挙げることができる。これらは1種で用いても、2種以上を混合しても差し支えない。ただし、ポリアミン類については自身が着色していたり、これらを用いてなる樹脂が着色する場合も多いため、物性や光透過性を損なわない程度に配合することが好ましい。また、芳香族炭化水素基を有する化合物を用いると短波長側での光透過率が低下する傾向にあるため、このような化合物を用いないことが特に好ましい。また、ハロゲン基やチオ基などの電子供与性基又は電子吸引性基が芳香環等に結合している化合物は、光透過率が低下する傾向にあるため、このような化合物を用いないことが特に好ましい。ただし、短波長側要求される光透過性を損なわない程度に配合してもよい。 Chain extenders include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 3 -Low molecular weight polyols such as methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene, or 2,4-toluenediamine, 2,6-toluenediamine, 3, 5 -diethyl-2, 4 -toluenediamine, 4,4'-di-sec-butyl-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-dichloro-4,4'-diaminodiphenylmethane, 2,2 ', 3,3'-tetrachloro-4,4'-dia Nodiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 4,4'-methylene-bis-methyl Anthranilate, 4,4'-methylene-bis-anthranilic acid, 4,4'-diaminodiphenylsulfone, N, N'-di-sec-butyl-p-phenylenediamine, 4,4'-methylene- Bis (3-chloro-2,6-diethylaniline), 4,4′-methylenebis (o-chloroaniline), 3,3′-dichloro-4,4′-diamino-5,5′-diethyldiphenylmethane, , 2-bis (2-aminophenylthio) ethane, trimethylene glycol di-p-aminobenzoate, 3,5-bis (methylthio) -2 Polyamines exemplified 4-toluenediamine, and the like. These may be used alone or in combination of two or more. However, since the polyamines are often colored themselves or resins formed using these are colored in many cases, it is preferable to blend them so as not to impair the physical properties and light transmittance. In addition, when a compound having an aromatic hydrocarbon group is used, the light transmittance on the short wavelength side tends to be lowered. Therefore, it is particularly preferable not to use such a compound. In addition, a compound in which an electron donating group such as a halogen group or a thio group or an electron withdrawing group is bonded to an aromatic ring or the like tends to decrease the light transmittance. Therefore, such a compound may not be used. Particularly preferred. However, you may mix | blend to such an extent that the light transmittance requested | required by the short wavelength side is not impaired.
 前記ポリウレタン樹脂におけるイソシアネート成分、ポリオール成分、及び鎖延長剤の比は、各々の分子量やこれらから製造される光透過領域の所望物性などにより適宜変更できる。ポリオールと鎖延長剤の合計官能基(水酸基+アミノ基)数に対する有機イソシアネートのイソシアネート基数は、0.95~1.15であることが好ましく、さらに好ましくは0.99~1.10である。前記ポリウレタン樹脂は、溶融法、溶液法など公知のウレタン化技術を応用して製造することができるが、コスト、作業環境などを考慮した場合、溶融法で製造することが好ましい。 The ratio of the isocyanate component, the polyol component, and the chain extender in the polyurethane resin can be appropriately changed depending on the molecular weight of each and the desired physical properties of the light transmission region produced therefrom. The number of isocyanate groups of the organic isocyanate relative to the total number of functional groups (hydroxyl group + amino group) of the polyol and the chain extender is preferably 0.95 to 1.15, more preferably 0.99 to 1.10. The polyurethane resin can be manufactured by applying a known urethanization technique such as a melting method or a solution method, but it is preferable to manufacture the polyurethane resin by a melting method in consideration of cost, working environment, and the like.
 前記ポリウレタン樹脂の重合手順としては、プレポリマー法、ワンショット法のどちらでも可能であるが、研磨時のポリウレタン樹脂の安定性及び透明性の観点から、事前に有機イソシアネートとポリオールからイソシアネート末端プレポリマーを合成しておき、これに鎖延長剤を反応させるプレポリマー法が好ましい。また、前記プレポリマーのNCO重量%は2~8重量%程度であることが好ましく、さらに好ましくは3~7重量%程度である。NCO重量%が2重量%未満の場合には、反応硬化に時間がかかりすぎて生産性が低下する傾向にあり、一方NCO重量%が8重量%を超える場合には、反応速度が速くなり過ぎて空気の巻き込み等が発生し、ポリウレタン樹脂の透明性や光透過率等の物理特性が悪くなる傾向にある。なお、光透過領域に気泡がある場合には、光の散乱により反射光の減衰が大きくなり研磨終点検出精度や膜厚測定精度が低下する傾向にある。したがって、このような気泡を除去して光透過領域を無発泡体にするために、前記材料を混合する前に10Torr以下に減圧することにより材料中に含まれる気体を十分に除去することが好ましい。また、混合後の撹拌工程においては気泡が混入しないように、通常用いられる撹拌翼式ミキサーの場合には、回転数100rpm以下で撹拌することが好ましい。また、撹拌工程においても減圧下で行うことが好ましい。さらに、自転公転式混合機は、高回転でも気泡が混入しにくいため、該混合機を用いて撹拌、脱泡を行うことも好ましい方法である。 As the polymerization procedure of the polyurethane resin, either a prepolymer method or a one-shot method is possible. From the viewpoint of stability and transparency of the polyurethane resin during polishing, an isocyanate-terminated prepolymer from an organic isocyanate and a polyol in advance. Is preferably synthesized, and a prepolymer method in which a chain extender is reacted with this is preferred. Further, the NCO wt% of the prepolymer is preferably about 2 to 8 wt%, more preferably about 3 to 7 wt%. If the NCO wt% is less than 2 wt%, the reaction curing tends to take too much time and the productivity tends to decrease. On the other hand, if the NCO wt% exceeds 8 wt%, the reaction rate becomes too fast. As a result, air entrainment or the like occurs, and physical properties such as transparency and light transmittance of the polyurethane resin tend to deteriorate. When there are bubbles in the light transmission region, the attenuation of the reflected light increases due to light scattering, and the polishing end point detection accuracy and the film thickness measurement accuracy tend to decrease. Therefore, in order to remove such bubbles and make the light transmission region non-foamed, it is preferable to sufficiently remove the gas contained in the material by reducing the pressure to 10 Torr or less before mixing the material. . Moreover, in the stirring process after mixing, in the case of the stirring blade type mixer normally used, it is preferable to stir at the rotation speed of 100 rpm or less so that bubbles may not mix. In addition, the stirring step is preferably performed under reduced pressure. Furthermore, since the rotation and revolution type mixer is difficult to mix bubbles even at high rotation, it is also preferable to perform stirring and defoaming using the mixer.
 光透過領域9の作製方法は特に制限されず、公知の方法により作製できる。例えば、前記方法により製造したポリウレタン樹脂のブロックをバンドソー方式やカンナ方式のスライサーを用いて所定厚みにする方法や所定厚みのキャビティーを持った金型に樹脂を流し込み硬化させる方法や、コーティング技術やシート成形技術を用いた方法などが用いられる。 The production method of the light transmission region 9 is not particularly limited and can be produced by a known method. For example, a polyurethane resin block produced by the above method can be made to have a predetermined thickness using a band saw type or canna type slicer, a method of pouring the resin into a mold having a cavity of a predetermined thickness, a coating technique, A method using a sheet forming technique is used.
 光透過領域9のアスカーD硬度は、30~60度であることが好ましく、より好ましくは30~50度である。該硬度の光透過領域を用いることにより、光透過領域の変形を抑制できる。 The Asker D hardness of the light transmission region 9 is preferably 30 to 60 degrees, more preferably 30 to 50 degrees. By using the light transmission region having the hardness, deformation of the light transmission region can be suppressed.
 研磨領域8の形成材料としては、例えば、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、ポリカーボネート樹脂、ハロゲン系樹脂(ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、ポリスチレン、オレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、エポキシ樹脂、及び感光性樹脂などが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。なお、研磨領域の形成材料は、光透過領域と同組成でも異なる組成であってもよいが、光透過領域に用いられる形成材料と同種の材料を用いることが好ましい。 Examples of the material for forming the polishing region 8 include polyurethane resin, polyester resin, polyamide resin, acrylic resin, polycarbonate resin, halogen-based resin (polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, etc.), polystyrene, and olefin resin. (Polyethylene, polypropylene, etc.), epoxy resin, photosensitive resin, and the like. These may be used alone or in combination of two or more. The material for forming the polishing region may be the same or different from that of the light transmission region, but it is preferable to use the same type of material as that used for the light transmission region.
 ポリウレタン樹脂は耐摩耗性に優れ、原料組成を種々変えることにより所望の物性を有するポリマーを容易に得ることができるため、研磨領域の形成材料として特に好ましい材料である。 Polyurethane resin is a particularly preferable material as a material for forming a polishing region because it has excellent abrasion resistance and a polymer having desired physical properties can be easily obtained by variously changing the raw material composition.
 使用するイソシアネート成分は特に制限されず、例えば、前記イソシアネート成分が挙げられる。 The isocyanate component to be used is not particularly limited, and examples thereof include the isocyanate component.
 使用する高分子量ポリオールは特に制限されず、例えば、前記高分子量ポリオールが挙げられる。なお、これら高分子量ポリオールの数平均分子量は、特に限定されるものではないが、得られるポリウレタンの弾性特性等の観点から500~2000であることが好ましい。数平均分子量が500未満であると、これを用いたポリウレタンは十分な弾性特性を有さず、脆いポリマーとなる。そのためこのポリウレタンから製造される研磨領域は硬くなりすぎ、ウエハ表面のスクラッチの原因となる。また、摩耗しやすくなるため、パッド寿命の観点からも好ましくない。一方、数平均分子量が2000を超えると、これを用いたポリウレタンは軟らかくなりすぎるため、このポリウレタンから製造される研磨領域は平坦化特性に劣る傾向にある。 The high molecular weight polyol to be used is not particularly limited, and examples thereof include the high molecular weight polyol. The number average molecular weight of these high molecular weight polyols is not particularly limited, but is preferably 500 to 2000 from the viewpoint of the elastic properties of the resulting polyurethane. If the number average molecular weight is less than 500, a polyurethane using the number average molecular weight does not have sufficient elastic properties and becomes a brittle polymer. For this reason, the polishing region produced from this polyurethane becomes too hard, which causes scratches on the wafer surface. Moreover, since it becomes easy to wear, it is not preferable from the viewpoint of the pad life. On the other hand, when the number average molecular weight exceeds 2,000, polyurethane using this is too soft, and the polishing region produced from this polyurethane tends to have poor planarization characteristics.
 また、ポリオールとしては、高分子量ポリオールの他に、前記低分子量ポリオールを併用することもできる。 Further, as the polyol, in addition to the high molecular weight polyol, the low molecular weight polyol can be used in combination.
 鎖延長剤としては、4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、及びp-キシリレンジアミン等に例示されるポリアミン類、あるいは、上述した低分子量ポリオール成分を挙げることができる。これらは1種で用いても、2種以上を混合しても差し支えない。 Examples of chain extenders include 4,4′-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis (2,3-dichloroaniline), 3, 5-bis (methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene- 2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene oxide-di-p-aminobenzoate, 1,2-bis (2-aminophenylthio) ethane, 4,4′-diamino- 3,3′-diethyl-5,5′-dimethyldiphenylmethane, N, N′-di-sec-butyl-4,4′-diaminodiphenylmethane, 4 4'-diamino-3,3'-diethyldiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5 , 5'-dimethyldiphenylmethane, 4,4'-diamino-3,3 ', 5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3', 5,5'-tetraisopropyldiphenylmethane, m- List polyamines exemplified by xylylenediamine, N, N′-di-sec-butyl-p-phenylenediamine, m-phenylenediamine, and p-xylylenediamine, or the low molecular weight polyol components described above. Can do. These may be used alone or in combination of two or more.
 前記ポリウレタン樹脂におけるイソシアネート成分、ポリオール成分、及び鎖延長剤の比は、各々の分子量やこれらから製造される研磨領域の所望物性などにより種々変え得る。研磨特性に優れる研磨領域を得るためには、ポリオール成分と鎖延長剤の合計官能基(水酸基+アミノ基)数に対するイソシアネート成分のイソシアネート基数は0.95~1.15であることが好ましく、さらに好ましくは0.99~1.10である。 The ratio of the isocyanate component, the polyol component, and the chain extender in the polyurethane resin can be variously changed depending on the molecular weight of each and the desired physical properties of the polishing region produced from these. In order to obtain a polishing region having excellent polishing characteristics, the number of isocyanate groups in the isocyanate component relative to the total number of functional groups (hydroxyl group + amino group) of the polyol component and the chain extender is preferably 0.95 to 1.15. Preferably it is 0.99 to 1.10.
 ポリウレタン樹脂は、前記方法と同様の方法により製造することができる。なお、必要に応じてポリウレタン樹脂に酸化防止剤等の安定剤、界面活性剤、滑剤、顔料、中実ビーズや水溶性粒子やエマルション粒子等の充填剤、帯電防止剤、研磨砥粒、その他の添加剤を添加してもよい。 The polyurethane resin can be produced by the same method as described above. In addition, stabilizers such as antioxidants, surfactants, lubricants, pigments, solid beads, fillers such as water-soluble particles and emulsion particles, antistatic agents, abrasive grains, and other materials as necessary. Additives may be added.
 研磨領域は、微細発泡体であることが好ましい。微細発泡体にすることにより表面の微細孔にスラリーを保持することができ、研磨速度を大きくすることができる。 The polishing region is preferably a fine foam. By using a fine foam, the slurry can be held in the fine pores on the surface, and the polishing rate can be increased.
 ポリウレタン樹脂を微細発泡させる方法は特に制限されないが、例えば中空ビーズを添加する方法、機械的発泡法、及び化学的発泡法等により発泡させる方法などが挙げられる。なお、各方法を併用してもよいが、特にポリアルキルシロキサンとポリエーテルとの共重合体であるシリコーン系界面活性剤を使用した機械的発泡法が好ましい。該シリコーン系界面活性剤としては、SH-192、L-5340(東レダウコーニングシリコン製)等が好適な化合物として例示される。 The method of finely foaming the polyurethane resin is not particularly limited, and examples thereof include a method of adding hollow beads, a method of foaming by a mechanical foaming method, a chemical foaming method, and the like. In addition, although each method may be used together, the mechanical foaming method using the silicone type surfactant which is a copolymer of polyalkylsiloxane and polyether is especially preferable. Examples of the silicone surfactant include SH-192, L-5340 (manufactured by Toray Dow Corning Silicon) and the like as suitable compounds.
 微細気泡タイプのポリウレタン発泡体を製造する方法の例について以下に説明する。かかるポリウレタン発泡体の製造方法は、以下の工程を有する。
1)イソシアネート末端プレポリマーの気泡分散液を作製する発泡工程
 イソシアネート末端プレポリマー(第1成分)にシリコーン系界面活性剤を添加し、非反応性気体の存在下で撹拌し、非反応性気体を微細気泡として分散させて気泡分散液とする。前記プレポリマーが常温で固体の場合には適宜の温度に予熱し、溶融して使用する。
2)硬化剤(鎖延長剤)混合工程
 上記の気泡分散液に鎖延長剤(第2成分)を添加、混合、撹拌して発泡反応液とする。 3)注型工程
 上記の発泡反応液を金型に流し込む。
4)硬化工程
 金型に流し込まれた発泡反応液を加熱し、反応硬化させる。
An example of a method for producing a micro-bubble type polyurethane foam will be described below. The manufacturing method of this polyurethane foam has the following processes.
1) Foaming step for producing a cell dispersion of isocyanate-terminated prepolymer A silicone-based surfactant is added to the isocyanate-terminated prepolymer (first component), and the mixture is stirred in the presence of a non-reactive gas to remove the non-reactive gas. Disperse as fine bubbles to obtain a cell dispersion. When the prepolymer is solid at normal temperature, it is preheated to an appropriate temperature and melted before use.
2) Curing Agent (Chain Extender) Mixing Step A chain extender (second component) is added to the above cell dispersion, mixed and stirred to obtain a foaming reaction solution. 3) Casting process The above foaming reaction liquid is poured into a mold.
4) Curing step The foaming reaction solution poured into the mold is heated to cause reaction curing.
 微細気泡を形成するために使用される非反応性気体としては、可燃性でないものが好ましく、具体的には窒素、酸素、炭酸ガス、ヘリウムやアルゴン等の希ガスやこれらの混合気体が例示され、乾燥して水分を除去した空気の使用がコスト的にも最も好ましい。 As the non-reactive gas used to form the fine bubbles, non-flammable gases are preferable, and specific examples include nitrogen, oxygen, carbon dioxide, rare gases such as helium and argon, and mixed gases thereof. The use of air that has been dried to remove moisture is most preferable in terms of cost.
 非反応性気体を微細気泡状にしてシリコーン系界面活性剤を含むイソシアネート末端プレポリマーに分散させる撹拌装置としては、公知の撹拌装置を特に限定なく使用可能であり、具体的にはホモジナイザー、ディゾルバー、2軸遊星型ミキサー(プラネタリーミキサー)等が例示される。撹拌装置の撹拌翼の形状も特に限定されないが、ホイッパー型の撹拌翼を使用すると微細気泡が得られるため好ましい。 As a stirring device for making non-reactive gas into fine bubbles and dispersing it in an isocyanate-terminated prepolymer containing a silicone-based surfactant, a known stirring device can be used without particular limitation. Specifically, a homogenizer, a dissolver, A two-axis planetary mixer (planetary mixer) is exemplified. The shape of the stirring blade of the stirring device is not particularly limited, but it is preferable to use a whipper-type stirring blade because fine bubbles can be obtained.
 なお、撹拌工程において気泡分散液を作成する撹拌と、混合工程における鎖延長剤を添加して混合する撹拌は、異なる撹拌装置を使用することも好ましい態様である。特に混合工程における撹拌は気泡を形成する撹拌でなくてもよく、大きな気泡を巻き込まない撹拌装置の使用が好ましい。このような撹拌装置としては、遊星型ミキサーが好適である。撹拌工程と混合工程の撹拌装置を同一の撹拌装置を使用しても支障はなく、必要に応じて撹拌翼の回転速度を調整する等の撹拌条件の調整を行って使用することも好適である。 In addition, it is also a preferable aspect that different stirring devices are used for stirring for creating the bubble dispersion in the stirring step and stirring for adding and mixing the chain extender in the mixing step. In particular, the stirring in the mixing step may not be stirring that forms bubbles, and it is preferable to use a stirring device that does not involve large bubbles. As such an agitator, a planetary mixer is suitable. There is no problem even if the same stirring device is used as the stirring device for the stirring step and the mixing step, and it is also preferable to adjust the stirring conditions such as adjusting the rotation speed of the stirring blade as necessary. .
 ポリウレタン発泡体の製造方法においては、発泡反応液を型に流し込んで流動しなくなるまで反応した発泡体を、加熱、ポストキュアすることは、発泡体の物理的特性を向上させる効果があり、極めて好適である。金型に発泡反応液を流し込んで直ちに加熱オーブン中に入れてポストキュアを行う条件としてもよく、そのような条件下でもすぐに反応成分に熱が伝達されないので、気泡径が大きくなることはない。硬化反応は、常圧で行うと気泡形状が安定するため好ましい。 In the production method of polyurethane foam, heating and post-curing the foam that has reacted until the foaming reaction liquid is poured into the mold and no longer flows is effective in improving the physical properties of the foam and is extremely suitable. It is. The foam reaction solution may be poured into the mold and immediately put into a heating oven for post cure, and heat is not immediately transferred to the reaction components under such conditions, so the bubble size does not increase. . The curing reaction is preferably performed at normal pressure because the bubble shape is stable.
 ポリウレタン樹脂の製造において、第3級アミン系、有機スズ系等の公知のポリウレタン反応を促進する触媒を使用してもかまわない。触媒の種類、添加量は、混合工程後、所定形状の型に流し込む流動時間を考慮して選択する。 In the production of a polyurethane resin, a catalyst that promotes a known polyurethane reaction such as a tertiary amine type or an organic tin type may be used. The type and addition amount of the catalyst are selected in consideration of the flow time for pouring into a mold having a predetermined shape after the mixing step.
 ポリウレタン発泡体の製造は、容器に各成分を計量して投入し、撹拌するバッチ方式であってもよく、また撹拌装置に各成分と非反応性気体を連続して供給して撹拌し、気泡分散液を送り出して成形品を製造する連続生産方式であってもよい。 The polyurethane foam may be produced by a batch method in which each component is metered into a container and stirred, and each component and a non-reactive gas are continuously supplied to the stirring device and stirred to produce bubbles. It may be a continuous production method in which a dispersion is sent out to produce a molded product.
 ポリウレタン発泡体の平均気泡径は、30~80μmであることが好ましく、より好ましくは30~60μmである。この範囲から逸脱する場合は、研磨速度が低下したり、研磨後の研磨対象物(ウエハ)のプラナリティ(平坦性)が低下する傾向にある。 The average cell diameter of the polyurethane foam is preferably 30 to 80 μm, more preferably 30 to 60 μm. When deviating from this range, the polishing rate tends to decrease, or the planarity (flatness) of the polished object (wafer) after polishing tends to decrease.
 ポリウレタン発泡体の比重は、0.5~1.3であることが好ましい。比重が0.5未満の場合、研磨領域の表面強度が低下し、研磨対象物のプラナリティが低下する傾向にある。また、1.3より大きい場合は、研磨領域表面の気泡数が少なくなり、プラナリティは良好であるが、研磨速度が低下する傾向にある。 The specific gravity of the polyurethane foam is preferably 0.5 to 1.3. When the specific gravity is less than 0.5, the surface strength of the polishing region decreases, and the planarity of the object to be polished tends to decrease. On the other hand, when the ratio is larger than 1.3, the number of bubbles on the surface of the polishing region decreases, and planarity is good, but the polishing rate tends to decrease.
 ポリウレタン発泡体の硬度は、アスカーD硬度計にて、45~70度であることが好ましい。アスカーD硬度が45度未満の場合には、研磨対象物のプラナリティが低下し、また、70度より大きい場合は、プラナリティは良好であるが、研磨対象物のユニフォーミティ(均一性)が低下する傾向にある。 The hardness of the polyurethane foam is preferably 45 to 70 degrees as measured by an Asker D hardness meter. When the Asker D hardness is less than 45 degrees, the planarity of the object to be polished is reduced. When the Asker D hardness is more than 70 degrees, the planarity is good but the uniformity of the object to be polished is reduced. There is a tendency.
 研磨領域8は、以上のようにして作製されたポリウレタン発泡体を、所定のサイズに裁断して製造される。 The polishing region 8 is manufactured by cutting the polyurethane foam produced as described above into a predetermined size.
 研磨領域8は、ウエハと接触する研磨側表面に、スラリーを保持・更新するための溝14(凹凸構造)が設けられている。研磨領域が微細発泡体により形成されている場合には研磨表面に多くの開口を有し、スラリーを保持する働きを持っているが、更なるスラリーの保持性とスラリーの更新を効率よく行うため、またウエハの吸着によるデチャックエラーの誘発やウエハの破壊や研磨効率の低下を防ぐためにも、研磨側表面に溝を設けることが好ましい。溝14は、スラリーを保持・更新する表面形状であれば特に限定されるものではなく、例えば、XY格子溝、同心円状溝、貫通孔、貫通していない穴、多角柱、円柱、螺旋状溝、偏心円状溝、放射状溝、及びこれらの溝を組み合わせたものが挙げられる。また、溝ピッチ、溝幅、溝深さ等も特に制限されず適宜選択して形成される。さらに、これらの凹凸構造は規則性のあるものが一般的であるが、スラリーの保持・更新性を望ましいものにするため、ある範囲ごとに溝ピッチ、溝幅、溝深さ等を変化させることも可能である。 The polishing region 8 is provided with a groove 14 (uneven structure) for holding and renewing slurry on the polishing side surface in contact with the wafer. When the polishing region is formed of fine foam, it has many openings on the polishing surface and has the function of holding the slurry, but in order to more efficiently maintain the slurry and renew the slurry. Also, it is preferable to provide a groove on the surface on the polishing side in order to prevent dechucking error due to wafer adsorption, destruction of the wafer, and reduction in polishing efficiency. The groove 14 is not particularly limited as long as it has a surface shape that holds and renews the slurry. For example, an XY lattice groove, a concentric circular groove, a through hole, a non-through hole, a polygonal column, a cylinder, and a spiral groove , Eccentric circular grooves, radial grooves, and combinations of these grooves. Further, the groove pitch, groove width, groove depth and the like are not particularly limited and are appropriately selected and formed. Furthermore, these uneven structures are generally regular, but in order to make the slurry retention and renewability desirable, the groove pitch, groove width, groove depth, etc. should be changed for each range. Is also possible.
 研磨領域8の厚みは特に限定されるものではないが、通常0.8~4mm程度であり、1.2~2.5mmであることが好ましい。前記厚みの研磨領域を作製する方法としては、前記微細発泡体のブロックをバンドソー方式やカンナ方式のスライサーを用いて所定厚みにする方法、所定厚みのキャビティーを持った金型に樹脂を流し込み硬化させる方法、及びコーティング技術やシート成形技術を用いた方法などが挙げられる。 The thickness of the polishing region 8 is not particularly limited, but is usually about 0.8 to 4 mm, preferably 1.2 to 2.5 mm. As a method of producing the polishing region of the thickness, a method of making the block of the fine foam a predetermined thickness using a band saw type or a canna type slicer, pouring resin into a mold having a cavity of a predetermined thickness, and curing And a method using a coating technique or a sheet forming technique.
 溝14の深さは特に限定されないが、通常、研磨領域8の厚みの20~70%程度であり、好ましくは20~50%である。 The depth of the groove 14 is not particularly limited, but is usually about 20 to 70% of the thickness of the polishing region 8 and preferably 20 to 50%.
 クッション層11は、研磨領域8の特性を補うものである。クッション層11は、CMPにおいて、トレードオフの関係にあるプラナリティとユニフォーミティの両者を両立させるために必要なものである。プラナリティとは、パターン形成時に発生する微小凹凸のある研磨対象物を研磨した時のパターン部の平坦性をいい、ユニフォーミティとは、研磨対象物全体の均一性をいう。研磨領域8の特性によって、プラナリティを改善し、クッション層11の特性によってユニフォーミティを改善することを行う。本発明の研磨パッドにおいては、クッション層11は研磨領域8より柔らかいものを用いることが好ましい。 The cushion layer 11 supplements the characteristics of the polishing region 8. The cushion layer 11 is necessary in order to achieve both planarity and uniformity in a trade-off relationship in CMP. Planarity refers to the flatness of a pattern portion when a polishing object having minute irregularities generated during pattern formation is polished, and uniformity refers to the uniformity of the entire polishing object. The planarity is improved by the characteristics of the polishing region 8, and the uniformity is improved by the characteristics of the cushion layer 11. In the polishing pad of the present invention, the cushion layer 11 is preferably softer than the polishing region 8.
 クッション層11の形成材料は特に制限されないが、例えば、ポリエステル不織布、ナイロン不織布、アクリル不織布などの繊維不織布、ポリウレタンを含浸したポリエステル不織布のような樹脂含浸不織布、ポリウレタンフォーム、ポリエチレンフォームなどの高分子樹脂発泡体、ブタジエンゴム、イソプレンゴムなどのゴム性樹脂、及び感光性樹脂などが挙げられる。 The material for forming the cushion layer 11 is not particularly limited. For example, fiber nonwoven fabrics such as polyester nonwoven fabric, nylon nonwoven fabric, and acrylic nonwoven fabric, resin-impregnated nonwoven fabrics such as polyester nonwoven fabric impregnated with polyurethane, polymer resins such as polyurethane foam and polyethylene foam Examples thereof include rubber resins such as foam, butadiene rubber and isoprene rubber, and photosensitive resins.
 図2の透明支持フィルム12は、透明性が高い樹脂フィルムの片面又は両面に接着剤層を設けたものである。樹脂フィルムの材料としては、例えば、ポリエチレンテレフタレートなどのポリエステル;ポリエチレン;ポリプロピレン;ポリスチレン;ポリイミド;ポリビニルアルコール;ポリ塩化ビニル;ポリフルオロエチレンなどの含フッ素樹脂;ナイロン;セルロース;ポリカーボネートなどの汎用エンジニアリングプラスチック;ポリエーテルイミド、ポリエーテルエーテルケトン、及びポリエーテルスルホンなどの特殊エンジニアリングプラスチックなどを挙げることができる。接着剤層の組成としては、例えば、ゴム系接着剤やアクリル系接着剤等が挙げられる。透明支持フィルム12の接着剤層は、前記樹脂フィルムをクッション層11又は研磨定盤2に貼り合わせるため、及び光透過領域9を前記樹脂フィルムに貼り合わせるために設けられる。 2 is provided with an adhesive layer on one or both sides of a highly transparent resin film. Examples of the resin film material include polyesters such as polyethylene terephthalate, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, fluorine-containing resins such as polyfluoroethylene, nylon, cellulose, and general-purpose engineering plastics such as polycarbonate; Special engineering plastics such as polyetherimide, polyetheretherketone, and polyethersulfone can be mentioned. Examples of the composition of the adhesive layer include rubber adhesives and acrylic adhesives. The adhesive layer of the transparent support film 12 is provided to bond the resin film to the cushion layer 11 or the polishing surface plate 2 and to bond the light transmission region 9 to the resin film.
 樹脂フィルムの厚さは特に制限されないが、透明性及び強度等の観点から20~200μm程度であることが好ましい。 The thickness of the resin film is not particularly limited, but is preferably about 20 to 200 μm from the viewpoint of transparency and strength.
 透明支持フィルム12は、少なくとも開口部10を完全に塞ぐ大きさのものを用いることが必要であり、通常はクッション層11と同じ大きさのものを用いる。 The transparent support film 12 needs to have at least a size that completely closes the opening 10, and usually has the same size as the cushion layer 11.
 図2の研磨パッド1の製造方法は特に制限されず種々の方法が考えられるが、具体的な例を以下に説明する。 The manufacturing method of the polishing pad 1 in FIG. 2 is not particularly limited, and various methods are conceivable. Specific examples will be described below.
 ケース1
 研磨領域8とクッション層11を貼り合わせ、その後、研磨領域8及びクッション層11を貫く開口部10を形成する。その後、クッション層11の片面に透明支持フィルム12を貼り合わせる。そして、開口部10内かつ透明支持フィルム12上に光透過領域9を設置する。
Case 1
The polishing region 8 and the cushion layer 11 are bonded together, and then an opening 10 that penetrates the polishing region 8 and the cushion layer 11 is formed. Thereafter, the transparent support film 12 is bonded to one side of the cushion layer 11. Then, the light transmission region 9 is installed in the opening 10 and on the transparent support film 12.
 ケース2
 研磨領域8とクッション層11を貼り合わせ、その後、研磨領域8及びクッション層11を貫く開口部10を形成する。その後、クッション層11の片面に透明支持フィルム12を貼り合わせる。そして、開口部10内かつ透明支持フィルム12上に光透過樹脂組成物を注入して加熱、光照射又は湿気等により硬化させることにより光透過領域9を形成する。
Case 2
The polishing region 8 and the cushion layer 11 are bonded together, and then an opening 10 that penetrates the polishing region 8 and the cushion layer 11 is formed. Thereafter, the transparent support film 12 is bonded to one side of the cushion layer 11. And the light transmissive area | region 9 is formed by inject | pouring a light transmissive resin composition in the opening part 10 and on the transparent support film 12, and making it harden | cure by heating, light irradiation, or moisture.
 また、図3の研磨パッド1の製造方法も特に制限されない。例えば、貫通孔15を設けた研磨領域8と、貫通孔16を設けたクッション層11とを、貫通孔同士が重なるように両面接着シート13の接着剤層にそれぞれ貼り合わせ、その後、貫通孔15内の接着剤層に光透過領域9を貼り合わせることにより製造することができる。クッション層11の研磨定盤(プラテン)と接着する面には両面テープが設けられていてもよい。 Further, the manufacturing method of the polishing pad 1 in FIG. 3 is not particularly limited. For example, the polishing region 8 provided with the through-hole 15 and the cushion layer 11 provided with the through-hole 16 are bonded to the adhesive layer of the double-sided adhesive sheet 13 so that the through-holes overlap each other, and then the through-hole 15 It can be manufactured by attaching the light transmission region 9 to the adhesive layer inside. A double-sided tape may be provided on the surface of the cushion layer 11 to be bonded to the polishing surface plate (platen).
 図2及び3に示すように、光透過領域9の表面は研磨領域8の表面より凹んでいることが必要であり、その凹み量は溝14の深さの30~100%であり、好ましくは50~100%であり、より好ましくは80~100%である。 As shown in FIGS. 2 and 3, the surface of the light transmission region 9 needs to be recessed from the surface of the polishing region 8, and the amount of the recess is 30 to 100% of the depth of the groove 14, preferably 50 to 100%, more preferably 80 to 100%.
 研磨領域8とクッション層11とを貼り合わせる手段としては、例えば、研磨領域8とクッション層11を両面接着シート13で挟み、プレスする方法が挙げられる。両面接着シート13は、不織布やフィルム等の基材の両面に接着剤層を設けた一般的な構成を有するものであり、一般的に両面テープと呼ばれるものである。接着剤層の組成としては、例えば、ゴム系接着剤やアクリル系接着剤等が挙げられる。金属イオンの含有量を考慮すると、アクリル系接着剤は金属イオン含有量が少ないため好ましい。また、研磨領域8とクッション層11は組成が異なることもあるため、両面接着シート13の各接着剤層の組成を異なるものとし、各層の接着力を適正化することも可能である。 Examples of means for bonding the polishing region 8 and the cushion layer 11 include a method in which the polishing region 8 and the cushion layer 11 are sandwiched between the double-sided adhesive sheets 13 and pressed. The double-sided adhesive sheet 13 has a general configuration in which an adhesive layer is provided on both sides of a substrate such as a nonwoven fabric or a film, and is generally called a double-sided tape. Examples of the composition of the adhesive layer include rubber adhesives and acrylic adhesives. Considering the content of metal ions, an acrylic adhesive is preferable because the metal ion content is low. Moreover, since the composition may differ between the grinding | polishing area | region 8 and the cushion layer 11, it is also possible to make the composition of each adhesive bond layer of the double-sided adhesive sheet 13 different, and to optimize the adhesive force of each layer.
 開口部10、貫通孔15及び16を形成する手段は特に制限されるものではないが、例えば、切削工具でプレス又は研削する方法、炭酸レーザーなどのレーザーを利用する方法、貫通孔の形状を備えた金型に原料を流し込んで硬化させて形成する方法などが挙げられる。なお、開口部10、貫通孔15及び16の大きさや形状は特に制限されない。 The means for forming the opening 10 and the through holes 15 and 16 are not particularly limited. For example, a method of pressing or grinding with a cutting tool, a method of using a laser such as a carbonic acid laser, and the shape of the through hole are provided. For example, a method may be used in which a raw material is poured into a mold and cured. The size and shape of the opening 10 and the through holes 15 and 16 are not particularly limited.
 半導体デバイスは、前記研磨パッドを用いて半導体ウエハの表面を研磨する工程を経て製造される。半導体ウエハとは、一般にシリコンウエハ上に配線金属及び酸化膜を積層したものである。半導体ウエハの研磨方法、研磨装置は特に制限されず、例えば、図1に示すように研磨パッド1を支持する研磨定盤2と、半導体ウエハ4を支持する支持台5(ポリシングヘッド)とウエハへの均一加圧を行うためのバッキング材と、研磨剤3の供給機構を備えた研磨装置などを用いて行われる。研磨パッド1は、例えば、両面テープで貼り付けることにより、研磨定盤2に装着される。研磨定盤2と支持台5とは、それぞれに支持された研磨パッド1と半導体ウエハ4が対向するように配置され、それぞれに回転軸6、7を備えている。また、支持台5側には、半導体ウエハ4を研磨パッド1に押し付けるための加圧機構が設けてある。研磨に際しては、研磨定盤2と支持台5とを回転させつつ半導体ウエハ4を研磨パッド1に押し付け、スラリーを供給しながら研磨を行う。スラリーの流量、研磨荷重、研磨定盤回転数、及びウエハ回転数は特に制限されず、適宜調整して行う。 The semiconductor device is manufactured through a process of polishing the surface of the semiconductor wafer using the polishing pad. A semiconductor wafer is generally a laminate of a wiring metal and an oxide film on a silicon wafer. The method and apparatus for polishing the semiconductor wafer are not particularly limited. For example, as shown in FIG. 1, a polishing surface plate 2 that supports the polishing pad 1, a support table 5 (polishing head) that supports the semiconductor wafer 4, and the wafer. This is performed using a backing material for performing uniform pressurization and a polishing apparatus equipped with a polishing agent 3 supply mechanism. The polishing pad 1 is attached to the polishing surface plate 2 by attaching it with a double-sided tape, for example. The polishing surface plate 2 and the support base 5 are disposed so that the polishing pad 1 and the semiconductor wafer 4 supported on each of the polishing surface plate 2 and the support table 5 face each other, and are provided with rotating shafts 6 and 7 respectively. Further, a pressurizing mechanism for pressing the semiconductor wafer 4 against the polishing pad 1 is provided on the support base 5 side. In polishing, the semiconductor wafer 4 is pressed against the polishing pad 1 while rotating the polishing surface plate 2 and the support base 5, and polishing is performed while supplying slurry. The flow rate of the slurry, the polishing load, the polishing platen rotation speed, and the wafer rotation speed are not particularly limited and are appropriately adjusted.
 これにより半導体ウエハ4の表面の突出した部分が除去されて平坦状に研磨される。その後、ダイシング、ボンディング、パッケージング等することにより半導体デバイスが製造される。半導体デバイスは、演算処理装置やメモリー等に用いられる。 Thus, the protruding portion of the surface of the semiconductor wafer 4 is removed and polished flat. Thereafter, a semiconductor device is manufactured by dicing, bonding, packaging, or the like. The semiconductor device is used for an arithmetic processing device, a memory, and the like.
 以下、本発明を実施例を上げて説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 [測定、評価方法] [Measurement and evaluation method]
 (スクラッチの測定)
 研磨装置としてARW-8C1A(MAT社製)を用い、作製した研磨パッドを用いて、スクラッチの評価を行った。研磨条件としては、スラリーとして、セリアスラリー(日立化成社製)を研磨中に流量150ml/min添加した。研磨荷重としては350g/cm、研磨定盤回転数65rpm、ウエハ回転数60rpmとした。前記条件で8インチのダミーウエハを4枚研磨し、その後、厚み10000Åの熱酸化膜を堆積させた8インチのウエハを1分間研磨した。そして、KLA テンコール社製の欠陥評価装置(Surfscan SP1)を用いて、研磨後のウエハ上に0.19μm以上の条痕がいくつあるかを測定した。
(Scratch measurement)
Using ARW-8C1A (manufactured by MAT) as a polishing apparatus, scratches were evaluated using the prepared polishing pad. As polishing conditions, ceria slurry (manufactured by Hitachi Chemical Co., Ltd.) was added as a slurry at a flow rate of 150 ml / min. The polishing load was 350 g / cm 2 , the polishing platen rotation speed was 65 rpm, and the wafer rotation speed was 60 rpm. Four 8-inch dummy wafers were polished under the above conditions, and then an 8-inch wafer on which a thermal oxide film having a thickness of 10,000 mm was deposited was polished for 1 minute. Then, using a defect evaluation apparatus (Surfscan SP1) manufactured by KLA Tencor, the number of streaks of 0.19 μm or more on the polished wafer was measured.
 実施例1
 〔光透過領域の作製〕
 熱可塑性ポリウレタンA1098A(東洋紡績社製)を用い、インジェクション成型にて光透過領域(縦60mm、横20mm、厚さ2.4mm、D硬度48度)を作製した。
Example 1
[Production of light transmission region]
A thermoplastic polyurethane A1098A (manufactured by Toyobo Co., Ltd.) was used to produce a light transmission region (length 60 mm, width 20 mm, thickness 2.4 mm, D hardness 48 degrees) by injection molding.
 〔研磨領域の作製〕
 反応容器内に、ポリエーテル系プレポリマー(ユニロイヤル社製、アジプレンL-325、NCO濃度:2.22meq/g)100重量部、及びシリコーン系界面活性剤(東レダウコーニングシリコーン社製、SH-192)3重量部を混合し、温度を80℃に調整した。撹拌翼を用いて、回転数900rpmで反応系内に気泡を取り込むように約4分間激しく撹拌を行った。そこへ予め120℃で溶融した4,4’-メチレンビス(o-クロロアニリン)(イハラケミカル社製、イハラキュアミンMT)26重量部を添加した。その後、約1分間撹拌を続けてパン型のオープンモールドへ反応溶液を流し込んだ。この反応溶液の流動性がなくなった時点でオーブン内に入れ、110℃で6時間ポストキュアを行い、ポリウレタン発泡体ブロックを得た。このポリウレタン発泡体ブロックをバンドソータイプのスライサー(フェッケン社製)を用いてスライスし、ポリウレタン発泡体シート(平均気泡径50μm、比重0.86、D硬度55度)を得た。次にこのシートをバフ機(アミテック社製)を使用して、所定の厚さに表面バフをし、厚み精度を整えたシートとした(厚さ:2.0mm)。このバフ処理をしたシートを直径61cmに打ち抜き、溝加工機(東邦鋼機社製)を用いて表面に溝幅0.40mm、溝ピッチ3.1mm、溝深さ0.76mmの同心円状の溝加工を行った。このシートの溝加工面と反対側の面にラミ機を使用して、両面テープ(積水化学工業社製、ダブルタックテープ、厚さ:0.10mm)を貼り合わせて両面テープ付き研磨領域を作製した。
[Production of polishing area]
In a reaction vessel, 100 parts by weight of a polyether-based prepolymer (manufactured by Uniroyal, adiprene L-325, NCO concentration: 2.22 meq / g), and a silicone-based surfactant (manufactured by Toray Dow Corning Silicone, SH- 192) 3 parts by weight were mixed and the temperature was adjusted to 80 ° C. Using a stirring blade, the mixture was vigorously stirred for about 4 minutes so that bubbles were taken into the reaction system at 900 rpm. Thereto was added 26 parts by weight of 4,4′-methylenebis (o-chloroaniline) (Iharacamine MT, manufactured by Ihara Chemical Co.) previously melted at 120 ° C. Thereafter, stirring was continued for about 1 minute, and the reaction solution was poured into a pan-shaped open mold. When the fluidity of this reaction solution disappeared, it was put in an oven and post-cured at 110 ° C. for 6 hours to obtain a polyurethane foam block. This polyurethane foam block was sliced using a band saw type slicer (manufactured by Fecken) to obtain a polyurethane foam sheet (average cell diameter 50 μm, specific gravity 0.86, D hardness 55 degrees). Next, this sheet was subjected to surface buffing to a predetermined thickness using a buffing machine (manufactured by Amitech Co., Ltd.) to obtain a sheet with adjusted thickness accuracy (thickness: 2.0 mm). This buffed sheet is punched out to a diameter of 61 cm, and a concentric groove having a groove width of 0.40 mm, a groove pitch of 3.1 mm, and a groove depth of 0.76 mm is used on the surface using a groove processing machine (manufactured by Toho Steel Co., Ltd.). Processing was performed. Using a laminator on the surface opposite to the grooved surface of this sheet, double-sided tape (manufactured by Sekisui Chemical Co., Ltd., double tack tape, thickness: 0.10 mm) is bonded to produce a polishing area with double-sided tape. did.
 〔研磨パッドの作製〕
 表面をバフがけし、コロナ処理したポリエチレンフォーム(東レ社製、トーレペフ、厚さ:0.8mm)からなるクッション層を、作製した両面テープ付き研磨領域の接着面にラミ機を用いて貼り合わせて研磨シートを作製した。次に、研磨シートに60mm×20mmの大きさの開口部を形成した。そして、両面に接着剤層を有する透明支持フィルム(基材:ポリエチレンテレフタレート、厚さ:50μm)を研磨シートのクッション層に貼り合わせて積層体を得た。その後、該積層体の開口部内の透明支持フィルムに光透過領域を貼り付けて図2記載の構造の研磨パッドを作製した。光透過領域の凹み量は0.5mmであり、溝深さの65.8%であった。
[Production of polishing pad]
A cushion layer made of polyethylene foam (Toray Industries Inc., TORAYPEF, thickness: 0.8 mm) buffed and corona-treated is bonded to the adhesive surface of the prepared polishing area with double-sided tape using a laminator. An abrasive sheet was prepared. Next, an opening having a size of 60 mm × 20 mm was formed in the polishing sheet. And the transparent support film (base material: polyethylene terephthalate, thickness: 50 micrometers) which has an adhesive bond layer on both surfaces was bonded together to the cushion layer of the polishing sheet, and the laminated body was obtained. Thereafter, a light transmission region was pasted on the transparent support film in the opening of the laminate to prepare a polishing pad having the structure shown in FIG. The amount of depression in the light transmission region was 0.5 mm, which was 65.8% of the groove depth.
 実施例2~4、比較例1、2
 研磨領域の溝深さ、及び光透過領域の厚さを変えて凹み量を表1記載の値に変更した以外は実施例1と同様の方法で研磨パッドを作製した。
Examples 2 to 4, Comparative Examples 1 and 2
A polishing pad was prepared in the same manner as in Example 1 except that the groove depth in the polishing region and the thickness of the light transmission region were changed to change the dent amount to the value shown in Table 1.
 実施例5
 〔光透過領域の作製〕
 アジピン酸とヘキサンジオールとエチレングリコールからなるポリエステルポリオール(数平均分子量2400)128重量部、及び1,4-ブタンジオール30重量部を混合し、70℃に温調した。この混合液に、予め70℃に温調した4,4’-ジフェニルメタンジイソシアネート100重量部を加え、約1分間撹拌した。そして、100℃に保温した容器中に該混合液を流し込み、100℃で8時間ポストキュアを行ってポリウレタン樹脂を作製した。作製したポリウレタン樹脂を用い、インジェクション成型にて光透過領域(縦56mm、横20mm、厚さ1.5mm)を作製した。
Example 5
[Production of light transmission region]
128 parts by weight of a polyester polyol (number average molecular weight 2400) composed of adipic acid, hexanediol and ethylene glycol and 30 parts by weight of 1,4-butanediol were mixed, and the temperature was adjusted to 70 ° C. To this mixed solution, 100 parts by weight of 4,4′-diphenylmethane diisocyanate previously adjusted to 70 ° C. was added and stirred for about 1 minute. Then, the mixed solution was poured into a container kept at 100 ° C. and post-cured at 100 ° C. for 8 hours to produce a polyurethane resin. Using the produced polyurethane resin, a light transmission region (length 56 mm, width 20 mm, thickness 1.5 mm) was prepared by injection molding.
 〔研磨領域の作製〕
 実施例1と同様の方法で溝幅0.40mm、溝ピッチ3.1mm、溝深さ0.76mmの同心円状の溝を有する直径61cm、厚さ:2.0mmのシートを作製し、当該シートの中心から約12cmの位置に貫通孔(56mm×20mm)を形成して研磨領域を作製した。
[Production of polishing area]
A sheet having a diameter of 61 cm and a thickness of 2.0 mm having a concentric groove having a groove width of 0.40 mm, a groove pitch of 3.1 mm, and a groove depth of 0.76 mm was produced in the same manner as in Example 1. A through-hole (56 mm × 20 mm) was formed at a position of about 12 cm from the center of the substrate to prepare a polished region.
 〔研磨パッドの作製〕
 作製した研磨領域の溝加工面と反対側の面にラミ機を使用して、両面テープ(積水化学工業社製、ダブルタックテープ)を貼り合わせて両面テープ付き研磨領域を作製した。表面をバフがけし、コロナ処理したポリエチレンフォーム(東レ社製、トーレペフ、厚さ:0.8mm)からなるクッション層の片面(研磨定盤側の面)にラミ機を使用して、研磨定盤に貼り合せるための両面テープを貼り合わせ、直径61cmの大きさに打ち抜いて両面テープ付きクッション層を作製した。両面テープ付きクッション層の中心から約12cmの位置に貫通孔(50mm×14mm)を形成した。両面テープ付き研磨領域と両面テープ付きクッション層とを、貫通孔同士が重なるように貼り合わせ、さらに作製した光透過領域を研磨領域の貫通孔内の接着剤層に貼り付けて図3記載の構造の研磨パッドを作製した。光透過領域の凹み量は0.5mmであり、溝深さの65.8%であった。
[Production of polishing pad]
Using a laminator on the surface opposite to the grooved surface of the prepared polishing region, a double-sided tape (manufactured by Sekisui Chemical Co., Ltd., double tack tape) was bonded to prepare a polishing region with double-sided tape. Using a laminator on one side (surface on the polishing surface plate side) of a cushion layer made of polyethylene foam (Toray Industries, Toraypef, thickness: 0.8 mm) buffed and corona-treated, a polishing surface plate A double-sided tape for laminating was laminated to a diameter of 61 cm to produce a cushion layer with a double-sided tape. A through hole (50 mm × 14 mm) was formed at a position of about 12 cm from the center of the cushion layer with the double-sided tape. The structure shown in FIG. 3 is formed by laminating the polishing region with double-sided tape and the cushion layer with double-sided tape so that the through-holes overlap each other, and further bonding the produced light transmission region to the adhesive layer in the through-hole of the polishing region. A polishing pad was prepared. The amount of depression in the light transmission region was 0.5 mm, which was 65.8% of the groove depth.
 比較例3
 光透過領域の厚さを変えて凹み量を表1記載の値に変更した以外は実施例5と同様の方法で研磨パッドを作製した。
Comparative Example 3
A polishing pad was produced in the same manner as in Example 5 except that the thickness of the light transmission region was changed and the dent amount was changed to the value shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の研磨パッドはレンズ、反射ミラー等の光学材料やシリコンウエハ、アルミ基板、及び一般的な金属研磨加工等の高度の表面平坦性を要求される材料の平坦化加工を安定、かつ高い研磨効率で行うことができる。本発明の研磨パッドは、特にシリコンウエハ並びにその上に酸化物層、金属層等が形成されたデバイスを、さらにこれらの酸化物層や金属層を積層・形成する前に平坦化する工程に好適に使用できる。 The polishing pad of the present invention provides stable and high leveling of flattening of optical materials such as lenses and reflecting mirrors, silicon wafers, aluminum substrates, and materials requiring high surface flatness such as general metal polishing. Can be done with efficiency. The polishing pad of the present invention is particularly suitable for a step of planarizing a silicon wafer and a device having an oxide layer, a metal layer, etc. formed thereon, before further laminating and forming these oxide layers and metal layers. Can be used for
1:研磨パッド
2:研磨定盤(プラテン)
3:研磨剤(スラリー)
4:研磨対象物(半導体ウエハ)
5:支持台(ポリシングヘッド)
6、7:回転軸
8:研磨領域
9:光透過領域
10:開口部
11:クッション層
12:透明支持フィルム
13:両面接着シート
14:溝
15、16:貫通孔
 
1: Polishing pad 2: Polishing surface plate (platen)
3: Abrasive (slurry)
4: Polishing object (semiconductor wafer)
5: Support base (polishing head)
6, 7: Rotating shaft 8: Polishing area 9: Light transmission area 10: Opening part 11: Cushion layer 12: Transparent support film 13: Double-sided adhesive sheet 14: Grooves 15, 16: Through-hole

Claims (4)

  1. 研磨領域及び光透過領域を有する研磨層を備えた研磨パッドにおいて、研磨領域は表面に溝を有しており、光透過領域の表面は研磨領域の表面より凹んでおり、その凹み量が前記溝の深さの30~100%であることを特徴とする研磨パッド。 In a polishing pad having a polishing layer having a polishing region and a light transmission region, the polishing region has a groove on the surface, the surface of the light transmission region is recessed from the surface of the polishing region, and the amount of the recess is the groove. A polishing pad characterized by being 30 to 100% of the depth of the surface.
  2. 前記研磨パッドは、研磨領域、クッション層、及び透明支持フィルムがこの順に積層されており、研磨領域及びクッション層を貫く開口部内かつ透明支持フィルム上に光透過領域が設けられているものである請求項1記載の研磨パッド。 In the polishing pad, a polishing region, a cushion layer, and a transparent support film are laminated in this order, and a light transmission region is provided in an opening that penetrates the polishing region and the cushion layer and on the transparent support film. Item 10. A polishing pad according to Item 1.
  3. 前記研磨パッドは、研磨領域及び光透過領域を有する研磨層と、貫通孔を有するクッション層とが、光透過領域と貫通孔とが重なるように両面接着シートを介して積層されているものである請求項1記載の研磨パッド。 The polishing pad is formed by laminating a polishing layer having a polishing region and a light transmission region and a cushion layer having a through hole via a double-sided adhesive sheet so that the light transmission region and the through hole overlap. The polishing pad according to claim 1.
  4. 請求項1~3のいずれかに記載の研磨パッドを用いて半導体ウエハの表面を研磨する工程を含む半導体デバイスの製造方法。
     
    A method for manufacturing a semiconductor device, comprising a step of polishing a surface of a semiconductor wafer using the polishing pad according to any one of claims 1 to 3.
PCT/JP2013/079245 2012-11-26 2013-10-29 Polishing pad WO2014080729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012257773A JP2014104521A (en) 2012-11-26 2012-11-26 Polishing pad
JP2012-257773 2012-11-26

Publications (1)

Publication Number Publication Date
WO2014080729A1 true WO2014080729A1 (en) 2014-05-30

Family

ID=50775916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079245 WO2014080729A1 (en) 2012-11-26 2013-10-29 Polishing pad

Country Status (3)

Country Link
JP (1) JP2014104521A (en)
TW (1) TW201429622A (en)
WO (1) WO2014080729A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016105495U1 (en) 2015-10-05 2016-11-07 Sliding S.R.L. Fitting for sliding plate-shaped elements with damping function
CN108701600A (en) * 2016-02-26 2018-10-23 应用材料公司 Window in slim polishing pad
US11161218B2 (en) 2016-02-26 2021-11-02 Applied Materials, Inc. Window in thin polishing pad

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002343B1 (en) * 2016-03-25 2016-10-05 富士紡ホールディングス株式会社 Polishing brush
US11325221B2 (en) * 2017-11-16 2022-05-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad with multipurpose composite window
JP7348860B2 (en) * 2020-02-26 2023-09-21 富士紡ホールディングス株式会社 Polishing pad and polishing pad manufacturing method
TW202225286A (en) 2020-09-30 2022-07-01 日商富士紡控股股份有限公司 Polishing pad and method for manufacturing polishing pad

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287158A (en) * 1999-03-31 2001-10-16 Nikon Corp Polishing member, polishing machine, adjusting method, measuring method, semiconductor device manufacturing method, and semiconductor device
JP2005506682A (en) * 2001-03-30 2005-03-03 ラム リサーチ コーポレーション Reinforced polishing pad with molded or flexible window structure
WO2008126578A1 (en) * 2007-03-15 2008-10-23 Toyo Tire & Rubber Co., Ltd. Polishing pad
JP2009172727A (en) * 2008-01-25 2009-08-06 Toyo Tire & Rubber Co Ltd Polishing pad
JP2010536583A (en) * 2007-08-16 2010-12-02 キャボット マイクロエレクトロニクス コーポレイション Polishing pad

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287158A (en) * 1999-03-31 2001-10-16 Nikon Corp Polishing member, polishing machine, adjusting method, measuring method, semiconductor device manufacturing method, and semiconductor device
JP2005506682A (en) * 2001-03-30 2005-03-03 ラム リサーチ コーポレーション Reinforced polishing pad with molded or flexible window structure
WO2008126578A1 (en) * 2007-03-15 2008-10-23 Toyo Tire & Rubber Co., Ltd. Polishing pad
JP2010536583A (en) * 2007-08-16 2010-12-02 キャボット マイクロエレクトロニクス コーポレイション Polishing pad
JP2009172727A (en) * 2008-01-25 2009-08-06 Toyo Tire & Rubber Co Ltd Polishing pad

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016105495U1 (en) 2015-10-05 2016-11-07 Sliding S.R.L. Fitting for sliding plate-shaped elements with damping function
CN108701600A (en) * 2016-02-26 2018-10-23 应用材料公司 Window in slim polishing pad
EP3420579A4 (en) * 2016-02-26 2019-08-14 Applied Materials, Inc. Window in thin polishing pad
US11161218B2 (en) 2016-02-26 2021-11-02 Applied Materials, Inc. Window in thin polishing pad
CN108701600B (en) * 2016-02-26 2023-03-14 应用材料公司 Window in thin polishing pad
US11826875B2 (en) 2016-02-26 2023-11-28 Applied Materials, Inc. Window in thin polishing pad

Also Published As

Publication number Publication date
JP2014104521A (en) 2014-06-09
TW201429622A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
JP5110677B2 (en) Polishing pad
WO2011129254A1 (en) Polishing pad
JP4971028B2 (en) Polishing pad manufacturing method
JP5088865B2 (en) Polishing pad
WO2014080729A1 (en) Polishing pad
JP5732354B2 (en) Polishing pad
JP2007260827A (en) Method of manufacturing polishing pad
WO2016103862A1 (en) Circular polishing pad, and semiconductor device manufacturing method
WO2014087771A1 (en) Polishing pad
JP2009224384A (en) Polishing pad, and manufacturing method of semiconductor device
JP4859109B2 (en) Polishing pad manufacturing method
JP2008100331A (en) Method for manufacturing long polishing pad
JP2006110686A (en) Polishing pad
JP5255286B2 (en) Polishing pad
JP5146927B2 (en) Manufacturing method of long polishing pad
JP4869017B2 (en) Manufacturing method of long polishing pad
JP4621014B2 (en) Polishing pad and method for manufacturing semiconductor device
WO2016052155A1 (en) Abrasive pad
JP2007015058A (en) Method for manufacturing long polishing pad
JP4941735B2 (en) Polishing pad manufacturing method
JP2008080479A (en) Polishing pad
JP4831476B2 (en) Polishing pad manufacturing method
JP4730605B2 (en) Manufacturing method of long polishing pad
JP2017117976A (en) Abrasive pad and method of manufacturing semiconductor device
JP5165923B2 (en) Polishing pad manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857225

Country of ref document: EP

Kind code of ref document: A1