WO2014080721A1 - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
WO2014080721A1
WO2014080721A1 PCT/JP2013/078891 JP2013078891W WO2014080721A1 WO 2014080721 A1 WO2014080721 A1 WO 2014080721A1 JP 2013078891 W JP2013078891 W JP 2013078891W WO 2014080721 A1 WO2014080721 A1 WO 2014080721A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
output
engine
rated output
temperature
Prior art date
Application number
PCT/JP2013/078891
Other languages
French (fr)
Japanese (ja)
Inventor
小室 敦
健太郎 志賀
史博 板羽
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014080721A1 publication Critical patent/WO2014080721A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control apparatus for a hybrid vehicle equipped with an engine and a motor, and more particularly to a control method and apparatus for increasing the rated output of a motor when the engine is started.
  • Patent Document 1 discloses a hybrid vehicle having a one-motor two-clutch structure provided with a second clutch that uses the friction element as a starting clutch.
  • This hybrid vehicle has an EV travel mode in which only an electric motor is used as a drive source, and an HEV drive mode in which an electric motor and an engine are used as drive sources. Works.
  • the first clutch is set in a semi-engaged state, the engine is cranked using the electric motor as a starter motor, the engine is started by fuel injection and ignition, and then the first clutch is engaged.
  • the motor output that can be turned to the driving force is a value obtained by subtracting the cranking in advance so that the engine can be started from the EV traveling mode without pulling in the driving force.
  • the motor output that can be turned into driving force is rated output because the cranking is ensured despite the fact that the engine start frequency is low.
  • the driving area in the EV mode has become smaller due to the smaller size.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a control device for a hybrid vehicle capable of expanding the traveling region in the EV mode and reliably starting the engine. It is to provide.
  • the motor when the engine is started, the motor is operated using an output that is equal to or higher than the first rated output capable of continuously outputting the motor, and the engine is started.
  • the engine In addition to expanding the travel area, the engine can be reliably started when the engine is started.
  • the control device for a hybrid vehicle it is possible to expand the travel area in the EV mode and to start the engine reliably.
  • 1 is an overall view showing a hybrid vehicle in an embodiment.
  • 4 is a flowchart illustrating processing when starting the engine from the EV mode in the first embodiment. It is a flowchart which shows the process of 2nd rated output calculation. It is a figure which shows an example of the format of 2nd rated output information. It is a figure which shows the relationship between a motor rotation speed and a motor output.
  • 6 is a flowchart illustrating a control process in the second embodiment. It is a time chart showing the operation
  • FIG. 1 is an overall system diagram showing a hybrid vehicle by front wheel drive or rear wheel drive in the first embodiment.
  • the drive system of the hybrid vehicle includes an engine 3, a flywheel FW, a first clutch (fastening means) CL1, a motor / generator (hereinafter referred to as a motor) 4, and a mechanical oil pump M. -O / P, second clutch CL2, automatic transmission CVT, transmission input shaft IN, transmission output shaft OUT, differential 8, left drive shaft DSL, right drive shaft DSR, and left tire (Drive wheel) LT and right tire (drive wheel) RT.
  • the engine 3 is a gasoline engine or a diesel engine. Based on an engine control command from an engine controller (engine control means) 21, engine start control, engine stop control, throttle valve opening control, fuel cut control, etc. Is done.
  • the first clutch CL1 is a clutch interposed between the engine 3 and the motor / generator 4.
  • the first clutch CL1 is controlled to be engaged / semi-engaged / released by the first clutch control hydraulic pressure generated by the first clutch hydraulic unit 6 based on the first clutch control command output from the first clutch controller 5. Is done.
  • a normally closed dry single-plate clutch is used that keeps full engagement with an urging force of a diaphragm spring and controls the engagement state by stroke control using a hydraulic actuator 14 having a piston 14a. It is done.
  • the motor 4 is a synchronous motor / generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. Based on a control command from a motor controller (motor control means) 22, a drive circuit (hereinafter referred to as an inverter) This is controlled by applying a three-phase alternating current generated by 10.
  • the motor 4 operates as an electric motor that is rotationally driven in response to power supplied from the battery 19 during power running.
  • the rotor receives rotational energy from the engine 3 and the drive wheels RT and LT, functions as a generator that generates electromotive force at both ends of the stator coil, and charges the battery 19.
  • the second clutch CL2 is a clutch interposed between the motor 4 and the left and right tires LT, RT and between the motor shaft and the transmission input shaft IN.
  • the second clutch CL2 is controlled to be engaged / slip engaged / released by a control hydraulic pressure generated by the second clutch hydraulic unit 9 based on the second clutch control command output from the CVT controller 23.
  • a normally open wet multi-plate clutch capable of continuously controlling the oil flow rate and hydraulic pressure with a proportional solenoid is used.
  • the automatic transmission CVT is disposed at a downstream position of the second clutch CL2, determines a target input rotational speed according to the vehicle speed, accelerator opening, etc., and automatically changes a continuously variable transmission ratio.
  • a transmission is used.
  • the automatic transmission CVT mainly includes a primary pulley on the transmission input shaft IN side, a secondary pulley on the transmission output shaft OUT side, and a belt stretched over both pulleys. Then, a primary pulley pressure and a secondary pulley pressure are generated using the pump hydraulic pressure as a source pressure. With this pulley pressure, the movable pulley of the primary pulley and the movable pulley of the secondary pulley are moved in the axial direction to change the pulley contact radius of the belt, thereby changing the transmission ratio steplessly.
  • the hybrid vehicle has an electric vehicle travel mode (hereinafter referred to as “EV mode”), a hybrid vehicle travel mode (hereinafter referred to as “HEV mode”), and a drive torque control travel as travel modes depending on driving modes.
  • EV mode electric vehicle travel mode
  • HEV mode hybrid vehicle travel mode
  • WSC mode drive torque control travel as travel modes depending on driving modes.
  • WSC mode is an abbreviation of “Wet Start Clutch”.
  • the “EV mode” is a mode in which the first clutch CL1 is in a disengaged state and travels using the motor 4 as a drive source. This “EV mode” is selected when the required driving force is low and the battery SOC is secured.
  • the “HEV mode” is a mode in which the first clutch CL1 is engaged and travels using the engine 3 and the motor 4 as drive sources, and includes a motor assist travel mode, a power generation travel mode, and an engine travel mode. Travel by mode. This “HEV mode” is selected when the required driving force is high or when the battery SOC is insufficient.
  • the mode is changed to the HEV mode via the engine start control.
  • the first clutch CL1 opened in the EV mode is put into a semi-engaged state, the engine is cranked by using the motor 4 as a starter motor, the engine is started by fuel injection and ignition, and then the first clutch CL1 is fastened.
  • the motor 4 since the motor 4 needs to crank the engine 3 as a starter motor, it is necessary to secure the cranking amount in advance during the EV mode. Therefore, it is impossible to distribute all of the rated output of the motor (hereinafter referred to as the first rated output) to the driving force during EV mode traveling, and the motor output cannot be fully utilized.
  • driving force determination is one of the transition conditions from EV mode to HEV mode.
  • the required driving force of the driver exceeds the motor output that can be output in the EV mode, the engine starts.
  • the engine 3 is likely to start, that is, the EV mode traveling region is small.
  • the present embodiment is focused on that there is no possibility of causing deterioration or thermal damage of the inverter 10 even if the output of the motor 4 is increased beyond the first rated output for a limited short time of engine start.
  • No. 1 expands the EV mode travel region by operating the motor 4 exceeding the first rated output when the engine is started.
  • the upper limit of the output exceeding the first rated output (hereinafter referred to as the second rated output) is determined by the inverter temperature and the cranking time, thereby suppressing the abnormal temperature rise of the inverter 10 and reliably deteriorating the inverter 10. Made it possible to prevent thermal damage.
  • FIG. 2 is a flowchart showing a process when the engine 3 is started from the EV mode.
  • the process of the flowchart shown in FIG. 2 is executed at a predetermined control cycle.
  • step S101 it is determined whether or not the EV mode is set. If the EV mode is not set, the HEV mode in which the engine 3 has already been started is set, so the processing in this flowchart is terminated. On the other hand, in the EV mode, the process proceeds to step S102.
  • the engine 3 may be started as a warm-up operation when the key switch is turned on.
  • the EV mode is used for strong HEV and plug-in HEV.
  • the process proceeds to S102.
  • the warm-up operation is performed after the key switch is turned on even with the strong HEV or the plug-in HEV.
  • the engine is started in the scene where the required driving force of the driver is zero, No output exceeding the rated output is required, and basically switching to the second rated output is unnecessary. If necessary, a method may be adopted in which the processing after step S102 is executed to shift to warm-up operation.
  • step S102 the cranking time t_crk is calculated.
  • the cranking time t_crk the worst time in any scene may be used, or the time may be calculated according to the scene.
  • the cranking time t_crk varies depending on the water temperature and oil temperature of the engine 3, the output and temperature of the battery 19, and so on, and may be estimated from these information.
  • the process proceeds to step S103.
  • step S103 the second rated output is calculated using the cranking time t_crk. A specific calculation method will be described later.
  • step S104 engine start determination is performed.
  • the engine start determination is made in consideration of various conditions such as the battery SOC, driving force, temperature, and learning.
  • driving force e.g., driving force, temperature, and learning.
  • the 1-motor 2-clutch hybrid vehicle must always secure the amount of cranking, so the required driving force of the driver exceeds the value obtained by subtracting the amount of cranking from the first rated output. Sometimes it is determined that the engine has started.
  • the engine since the maximum output of the motor 4 at the time of engine start is the second rated output, the engine is driven when the required driving force of the driver is equal to or greater than the value obtained by subtracting the cranking from the second rated output. Determined to start.
  • the maximum output of the motor 4 shown in FIG. 2 indicates not the maximum output determined from the structure of the motor 4 but the maximum output recognized as control. Although the maximum output determined by the structure is larger than the first rated output, it is necessary to continuously output the motor 4 when traveling in the EV mode, etc., so the rated value that allows continuous output (first rated output) Is set as the maximum motor output for control so that no further output is required of the motor 4. Although it is possible to increase the output of the motor 4 by setting the maximum motor output to the second rated output, the maximum motor output needs to be less than or equal to the maximum output determined by the structure.
  • step S105 it is determined whether an engine start request has been generated based on the engine start determination calculated in step S104.
  • the engine start request is not generated, that is, when the required driving force of the driver is equal to or less than the value obtained by subtracting the cranking from the second rated output, for example, the process returns to step S101 and the EV mode is continued.
  • step S106 the maximum motor output is switched. Since the engine start determination in step S104 is based on the second rated output, the maximum output of the motor 4 is switched from the first rated output to the second rated output in step S106. This is because when the maximum output of the motor 4 remains the first rated output, the cranking output is insufficient and the engine 3 cannot be started or the driving force is drawn.
  • step S107 cranking is started while the first clutch CL1 is engaged at the second rated output, and engine start is completed in step S108.
  • the determination as to whether or not the engine has been started may be calculated from the relationship between the engine speed and time, or from the torque generation information of the engine 3.
  • the engine can be started when the torque value of the motor 4 is inverted from a positive value to a negative value.
  • step S109 the maximum output of the motor 4 is returned from the second rated output to the first rated output, and the mode is changed to the HEV mode.
  • cranking may take longer than the cranking time t_crk estimated in step S102.
  • step S109 when the estimated cranking time t_crk has elapsed, the cranking is continued while watching the temperature rise of the inverter 10 instead of immediately returning the maximum motor output from the second rated output to the first rated output.
  • the engine 3 can be reliably started.
  • cranking is continued while monitoring the inverter temperature from the temperature sensor inside the inverter or the integrated value of the current during cranking.
  • the EV mode travel region can be expanded, and deterioration and thermal damage due to the temperature rise of the inverter 10 can be reliably prevented.
  • step S201 the temperature Tinv_base of the inverter 10 is calculated.
  • a temperature sensor is provided inside the inverter, and the current temperature is calculated using this temperature sensor.
  • the maximum temperature of each phase is set as the temperature Tinv_base of the inverter 10.
  • the allowable temperature rise ⁇ Tinv is calculated from the difference between the current inverter temperature Tinv_base and the limit temperature Tmax.
  • the limit temperature Tmax is a temperature at which an element in the inverter 10 deteriorates due to a temperature rise and causes thermal damage, and can be calculated in advance by an inverter unit test or the like.
  • the inverter 10 is composed of a plurality of elements, and the element here refers to the most thermally weak element in the inverter 10.
  • the allowable temperature rise ⁇ Tinv is a temperature rise that does not cause deterioration or thermal damage even if the temperature rises, and a margin is secured to some extent in order to ensure more safety in consideration of machine difference variation.
  • step S203 the second rated output is calculated from the allowable temperature rise ⁇ Tinv and the cranking time t_crk calculated in step S102 of FIG. Since the temperature rise of the inverter 10 is caused by a loss in the inverter 10, it can be determined by the magnitude of the current flowing in the inverter and its time. Therefore, as shown in FIG. 4 as an example, if the second rated output is secured as map information with the vertical axis representing the duration and the horizontal axis representing the allowable temperature rise, in step S203, the map is retrieved. The second rated output can be calculated.
  • FIG. 4 shows a method of calculating the second rated output Pa from the allowable temperature rise Tinv and the duration t_crk.
  • the second rated output here is calculated on the premise that the second rated output is continuously output for the same duration, for example. In an actual scene, the current fluctuates below the second rated output, and therefore, the temperature rise is set to have a margin rather than the second rated output always being constant for a predetermined time.
  • the second rated output is similarly calculated for other factors that limit the motor output such as the motor temperature and the battery temperature, and the minimum It is realistic to use the value as the final second rated output.
  • the motor 4 when the engine is started, the motor 4 is operated using the output exceeding the normal first rated output, and the engine 3 is started.
  • the output that can be supplied by the motor 4 as a driving force is increased, it is possible to expand the traveling region in the EV mode.
  • the inverter 10 may rise in temperature and cause problems such as deterioration of the inverter 10 and thermal damage. Therefore, by calculating the output at the time of starting the engine (second rated output) based on the temperature of the inverter 10, it is possible to reliably suppress an excessive temperature rise of the inverter 10 while ensuring an output capable of starting the engine. .
  • cranking time t_crk cranking time t_crk
  • FIG. 5 is a graph in which the motor rotation speed is plotted on the horizontal axis and the motor output is plotted on the vertical axis.
  • L1 is the first rated output that can be continuously operated
  • Lcrk is the rated output during cranking described in the first embodiment (FIG. 2) (in the first embodiment (FIG. 2), the second rated output is described.
  • the rated output during cranking is used).
  • the cranking rated output varies depending on the cranking time t_crk as described above. It is large when the cranking time t_crk is short, and it is small when the cranking time t_crk is long.
  • L2 is an output line obtained by subtracting the cranking from the rated output during cranking.
  • the travel area in the EV mode is expanded using the area surrounded by L1 and L2.
  • processing when the engine is started from the EV mode in the second embodiment will be described based on a flowchart shown in FIG.
  • a configuration in which an engine start request is generated when the required driving force exceeds the first rated output will be described as an example.
  • step S302 it is determined whether or not the required driving force of the driver exceeds the first rated output. If the driver's required driving force does not exceed the first rated output, the driver's required driving force can be covered by the output of the motor 4, so there is no need to start the engine, the process returns to step S301 and the EV mode is set. continue. When the driver's required driving force exceeds the first rated output, the driver's required driving force cannot be satisfied by the motor output alone, so the engine is normally started and the mode is shifted to the HEV mode.
  • step S303 an output excess duration time in which the driver's required driving force exceeds the first rated output is estimated.
  • the information is calculated using, for example, slope information or overtaking information, using information from an external recognition device such as navigation, a stereo camera, or a laser.
  • step S304 the second rated output is calculated from the output excess duration calculated in step S303.
  • the calculation method is calculated from the allowable temperature increase ⁇ Tinv and the output excess duration as in the case described with reference to FIG.
  • step S305 it is determined whether or not the required driving force of the driver exceeds the second rated output. If the required driving force of the driver is smaller than the second rated output (S305: YES), the process proceeds to step S306, assuming that the output of the motor 4 can be increased without deterioration of the inverter and thermal damage, and the maximum output of the motor 4 is set to the second output. Switching to the rated output, the travel in the EV mode with the second rated output is continued in step S307. After the travel in the EV mode by the second rated output is completed, the process proceeds to step S308, the maximum output of the motor 4 is returned to the first rated output, and the flow is terminated. The end determination of EV traveling by the second rated output can be determined by the fact that the required driving force of the driver is smaller than the first rated output.
  • step S305 determines that the travel area in the EV mode cannot be expanded, and the process proceeds to step S309 to perform engine start determination.
  • step S310 the mode shifts to the HEV mode. Thereafter, the motor 4 and the engine 3 are controlled so as to satisfy the driver's required driving force.
  • step S305 when it is determined in step S305 that the required driving force does not exceed the second rated output, depending on the operation scene, the duration for which the required driving force exceeds the first rating (hereinafter referred to as duration) is step.
  • the output excess duration estimated in S303 may be exceeded.
  • the temperature of the inverter 10 rises, which may cause deterioration and thermal damage. Therefore, if the duration exceeds the output excess duration, the engine is started according to the inverter temperature or the cranking rated output.
  • FIG. 7 shows a time chart when the duration exceeds the output excess duration.
  • the relationship of the motor output in this time chart is an example when the motor rotational speed is the rotational speed R1 shown in FIG.
  • Tq1 is the first rated output
  • Tq2 is the cranking rated output
  • Tq3 is the cranking rated output minus the cranking
  • Tq4 is the second rated output.
  • the required driving force exceeds the first rated output Tq1 at time T71 from the state of the first rated output Tq1 or less
  • the output excess duration is estimated at time T71
  • the second rated output Tq4 is based on the output excess duration. Is calculated.
  • the motor maximum output is set to the second rated output Tq4 as shown in FIG. 7, and the traveling in the EV mode is continued.
  • the duration is also measured from time T71.
  • the control at the second rated output Tq4 should be terminated, but the state where the driving force becomes equal to or higher than the first rated output Tq1 depending on the driving situation continues.
  • the temperature of the inverter 10 rises and the cranking rated output Tq2 falls.
  • the cranking rated output Tq2 is calculated from the allowable temperature increase ⁇ Tinv, which is the difference between the inverter temperature Tinv_base and the limit temperature Tmax, so that the allowable temperature increase ⁇ Tinv decreases as the inverter temperature Tinv_base increases. Because.
  • the inverter temperature Tinv_base As the inverter temperature Tinv_base, a temperature sensor inside the inverter may be used. When the response of the temperature sensor is slow, the loss of the inverter 10 is obtained from the integrated value of the current value, and the temperature rise is estimated. May be calculated. Of course, a final determination method using both the temperature sensor value and the calculated value may be used.
  • the inverter temperature Tinv_base further increases, and the cranking rated output Tq2 further decreases.
  • the engine is started at time T73 when Tq3 obtained by subtracting the cranking from the cranking rated output Tq2 intersects the second rated output Tq4.
  • the reason for starting the engine at this timing is that after time T73, Tq3 obtained by subtracting the cranking from the cranking rated output Tq2 further decreases, and the engine cannot be started while satisfying the driver's required driving force. Because.
  • the motor maximum output is set to the cranking rated output Tq2, and the engine is returned to the first rated output Tq1 at time T74 when the engine is started. Thereafter, by running in the HEV mode, the temperature increase of the inverter 10 can be prevented.
  • the increase in motor output has been described on the assumption that the vehicle is traveling in the EV mode.
  • the present invention can be similarly applied during the HEV mode.
  • the driver's request When the driving force increases, if the increased required driving force can cover the motor 4 with the second rated output Tq4, the output distribution of the engine 3 may be left unchanged and the output of the motor 4 increased. .
  • FIG. 8 is a time chart showing an example of the operation of the second rated output restriction control.
  • the cumulative temperature of the inverter temperature when operated at the second rated output is calculated, and the threshold value of this cumulative temperature (threshold value 1 and threshold value 2 in FIG. 8) is set in advance.
  • the accumulated temperature exceeds the threshold value 1 at time T83.
  • an upper limit restriction is imposed on the second rated output at the next second rated output switching in order to prevent the deterioration of the inverter 10 from being promoted. That is, the value of the upper limit output at the second rated output is lowered.
  • the second rated output is controlled in a state where the upper limit is imposed.
  • the temperature Tinv_base of the inverter 10 increases.
  • the upper limit output in the second rated output is further restricted to suppress the temperature rise.
  • the selection of the second rated output can be prohibited by setting the upper limit output to the first rated output.
  • Another example of the second output restriction control will be described based on the graph of FIG.
  • a histogram as shown in FIG. 9 is plotted.
  • the number of times of accumulation can be set in advance for each temperature range, and if the number of accumulation exceeds the limit number of times, it is possible to suppress repeated temperature rise by prohibiting operation beyond that temperature range. It becomes. In general, damage caused by repeated temperature increases is greater at higher temperatures than at lower temperatures.
  • the motor output It is possible to cope with this by increasing.
  • the driver's required driving force can be satisfied by changing the output of the motor 4 without changing the output of the engine 3. Can be suppressed, and fuel consumption and exhaust deterioration can be prevented.
  • the second rated output obtained based on the output excess continuation time is used in a state where the temperature of the inverter 10 is high, the temperature of the inverter 10 may become too high in some cases, leading to deterioration of the inverter 10 and thermal damage. There is. Therefore, by calculating the second rated output in consideration of the temperature of the inverter 10, for example, when the temperature of the inverter 10 is high, the inverter 10 can be protected by reducing the second rated output. . Further, when the temperature of the inverter 10 is low, there is still a thermal margin, so that the second rated output can be increased and the motor 4 can be used more effectively.
  • the temperature of the inverter 10 rises. This temperature rise is set so that it does not cause deterioration of the inverter 10 and thermal damage. However, if this temperature rise occurs frequently, thermal fatigue accumulates and deterioration tends to proceed. there is a possibility. Therefore, when the accumulated temperature is measured and the accumulated temperature exceeds a predetermined value, the maximum output of the motor 4 is limited, thereby suppressing excessive repetition of temperature rise, deterioration of the inverter 10, and thermal Damage can be prevented.
  • the first and second embodiments describe a hybrid vehicle with one motor and two clutches, but the present invention is not limited to this configuration, and the second rated output is used even in a hybrid vehicle that drives an engine with a starter. This makes it possible to expand the EV mode travel area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A travel range in an EV mode is expanded, and the engine is reliably started. A hybrid vehicle control apparatus includes a drive system provided with: an engine (3); a motor (4); and a fastening means (CL1) disposed between the engine (3) and the motor (4), in which the engine (3) is started by the motor (4) and the fastening means (CL1). When the engine (3) is started, the motor (4) is driven at an output equal to or greater than a first rated output at which the motor (4) can produce an output continuously so as to start the engine (3). Thus, the travel range in the EV mode in which the engine (3) is not operated is expanded, while the engine (3) can be reliably started.

Description

ハイブリッド車両の制御装置Control device for hybrid vehicle
 本発明は、エンジンとモータが搭載されたハイブリッド車両の制御装置に係り、詳しくはエンジン始動時にモータの定格出力を増加させる制御方法及び装置に関する。 The present invention relates to a control apparatus for a hybrid vehicle equipped with an engine and a motor, and more particularly to a control method and apparatus for increasing the rated output of a motor when the engine is started.
 エンジン、電動モータ及び自動変速機を備え、エンジンと電動モータの間に設けた第1のクラッチと、自動変速機内の遊星ギア架け替えに用いられるクラッチ及びブレーキといった複数の摩擦要素のうち、幾つかの摩擦要素を発進用のクラッチとして使用する第2のクラッチを備えた1モータ2クラッチ構造のハイブリッド車両が特許文献1に開示されている。 Among a plurality of friction elements including an engine, an electric motor, and an automatic transmission, a first clutch provided between the engine and the electric motor, and a clutch and a brake used for changing the planetary gear in the automatic transmission. Patent Document 1 discloses a hybrid vehicle having a one-motor two-clutch structure provided with a second clutch that uses the friction element as a starting clutch.
 このハイブリッド車両は、電動モータのみを駆動源として走行するEV走行モードと、電動モータとエンジンを駆動源としたHEV走行モードの駆動形態を有しており、基本的には何れかの走行モードにて動作する。 This hybrid vehicle has an EV travel mode in which only an electric motor is used as a drive source, and an HEV drive mode in which an electric motor and an engine are used as drive sources. Works.
 EV走行モードからHEV走行モードに遷移させるためには、エンジンを始動させる必要があるが、1モータ2クラッチ構造のハイブリッド車では、エンジンをクランキングするための力が電動モータから供給される。すなわち、第1クラッチを半締結状態にし、電動モータをスタータモータとしてエンジンをクランキングし、燃料噴射と点火によりエンジンを始動させ、その後、第1クラッチを締結することで実現している。 In order to make the transition from the EV traveling mode to the HEV traveling mode, it is necessary to start the engine. However, in a hybrid vehicle having a one-motor two-clutch structure, a force for cranking the engine is supplied from the electric motor. That is, the first clutch is set in a semi-engaged state, the engine is cranked using the electric motor as a starter motor, the engine is started by fuel injection and ignition, and then the first clutch is engaged.
特開2011-20543号公報JP 2011-20543 A
 しかしながら、上記構成の場合、EV走行モードから駆動力の引き込み無しでエンジン始動できるようにするため、駆動力に回すことのできるモータ出力は、あらかじめクランキング分を差し引いた値となっている。そのため、EV走行を主体とするストロングHEVやプラグインハイブリッドでは、エンジン始動頻度を低くしたいのにも関わらず、クランキング分を確保していることから駆動力に回すことのできるモータ出力は定格出力より小さくなり、EVモードでの走行領域が小さくなってしまっていた。 However, in the case of the above configuration, the motor output that can be turned to the driving force is a value obtained by subtracting the cranking in advance so that the engine can be started from the EV traveling mode without pulling in the driving force. For this reason, in strong HEVs and plug-in hybrids that are mainly driven by EV, the motor output that can be turned into driving force is rated output because the cranking is ensured despite the fact that the engine start frequency is low. The driving area in the EV mode has become smaller due to the smaller size.
 本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、EVモードでの走行領域を拡大すると共に、エンジンを確実に始動することのできるハイブリッド車両の制御装置を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a control device for a hybrid vehicle capable of expanding the traveling region in the EV mode and reliably starting the engine. It is to provide.
 そこで、本発明では、エンジン始動の際に、モータを連続して出力可能な第一定格出力以上の出力を用いてモータを運転し、エンジンを始動させることで、エンジン非動作であるEVモードでの走行領域を拡大すると共に、エンジン始動の際には確実にエンジンを始動できるようにしたものである。 Therefore, in the present invention, when the engine is started, the motor is operated using an output that is equal to or higher than the first rated output capable of continuously outputting the motor, and the engine is started. In addition to expanding the travel area, the engine can be reliably started when the engine is started.
 本発明によれば、ハイブリット車両の制御装置において、EVモードでの走行領域を拡大すると共に、エンジンを確実に始動することが可能となる。 According to the present invention, in the control device for a hybrid vehicle, it is possible to expand the travel area in the EV mode and to start the engine reliably.
実施形態におけるハイブリッド車両を示す全体図である。1 is an overall view showing a hybrid vehicle in an embodiment. 実施形態1におけるEVモードからエンジン始動する際の処理を示すフローチャートである。4 is a flowchart illustrating processing when starting the engine from the EV mode in the first embodiment. 第二定格出力算出の処理を示すフローチャートである。It is a flowchart which shows the process of 2nd rated output calculation. 第二定格出力情報の形式の一例を示す図である。It is a figure which shows an example of the format of 2nd rated output information. モータ回転数とモータ出力の関係を示す図である。It is a figure which shows the relationship between a motor rotation speed and a motor output. 実施形態2における制御の処理を示すフローチャートである。6 is a flowchart illustrating a control process in the second embodiment. 出力超過継続時間推定値を超えた場合の動作を表すタイムチャートである。It is a time chart showing the operation | movement when exceeding an output excess continuation time estimated value. 第二定格出力制限制御の一例を示すタイムチャートである。It is a time chart which shows an example of the 2nd rated output restriction control. 第二定格出力制限制御の他例を示すグラフである。It is a graph which shows the other example of 2nd rated output restriction | limiting control.
 以下、本発明の実施形態1,2におけるハイブリット車両の制御装置を図面に基づいて詳細に説明する。 Hereinafter, a hybrid vehicle control apparatus according to Embodiments 1 and 2 of the present invention will be described in detail with reference to the drawings.
 [実施形態1]
 図1は、本実施形態1における前輪駆動もしくは後輪駆動によるハイブリッド車両を示す全体システム図である。
[Embodiment 1]
FIG. 1 is an overall system diagram showing a hybrid vehicle by front wheel drive or rear wheel drive in the first embodiment.
 ハイブリッド車両の駆動系は、図1に示すように、エンジン3と、フライホイールFWと、第1クラッチ(締結手段)CL1と、モータ/ジェネレータ(以下、モータと称する)4と、メカオイルポンプM-O/Pと、第2クラッチCL2と、自動変速機CVTと、変速機入力軸INと、変速機出力軸OUTと、ディファレンシャル8と、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左タイヤ(駆動輪)LTと、右タイヤ(駆動輪)RTと、を有する。前記エンジン3は、ガソリンエンジンやディーゼルエンジンであり、エンジンコントローラ(エンジン制御手段)21からのエンジン制御指令に基づいて、エンジン始動制御,エンジン停止制御,スロットルバルブのバルブ開度制御,燃料カット制御等が行われる。 As shown in FIG. 1, the drive system of the hybrid vehicle includes an engine 3, a flywheel FW, a first clutch (fastening means) CL1, a motor / generator (hereinafter referred to as a motor) 4, and a mechanical oil pump M. -O / P, second clutch CL2, automatic transmission CVT, transmission input shaft IN, transmission output shaft OUT, differential 8, left drive shaft DSL, right drive shaft DSR, and left tire (Drive wheel) LT and right tire (drive wheel) RT. The engine 3 is a gasoline engine or a diesel engine. Based on an engine control command from an engine controller (engine control means) 21, engine start control, engine stop control, throttle valve opening control, fuel cut control, etc. Is done.
 前記第1クラッチCL1は、エンジン3とモータ/ジェネレータ4の間に介装されたクラッチである。この第1クラッチCL1は、第1クラッチコントローラ5から出力された第1クラッチ制御指令に基づいて第1クラッチ油圧ユニット6によって作り出された第1クラッチ制御油圧により、締結・半締結状態・解放に制御される。この第1クラッチCL1としては、例えば、ダイアフラムスプリングによる付勢力にて完全締結を保ち、ピストン14aを有する油圧アクチュエータ14を用いたストローク制御により、締結状態を制御するノーマルクローズの乾式単板クラッチが用いられる。 The first clutch CL1 is a clutch interposed between the engine 3 and the motor / generator 4. The first clutch CL1 is controlled to be engaged / semi-engaged / released by the first clutch control hydraulic pressure generated by the first clutch hydraulic unit 6 based on the first clutch control command output from the first clutch controller 5. Is done. As the first clutch CL1, for example, a normally closed dry single-plate clutch is used that keeps full engagement with an urging force of a diaphragm spring and controls the engagement state by stroke control using a hydraulic actuator 14 having a piston 14a. It is done.
 前記モータ4は、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータ/ジェネレータであり、モータコントローラ(モータ制御手段)22からの制御指令に基づいて、駆動回路(以下、インバータと称する)10により生成された三相交流を印加することにより制御される。このモータ4は、力行時にはバッテリ19からの電力の供給を受けて回転駆動する電動機として動作する。一方、回生時には、ロータがエンジン3や駆動輪RT,LTから回転エネルギーを受け、ステータコイルの両端に起電力を生じさせる発電機として機能し、バッテリ19を充電する。 The motor 4 is a synchronous motor / generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. Based on a control command from a motor controller (motor control means) 22, a drive circuit (hereinafter referred to as an inverter) This is controlled by applying a three-phase alternating current generated by 10. The motor 4 operates as an electric motor that is rotationally driven in response to power supplied from the battery 19 during power running. On the other hand, at the time of regeneration, the rotor receives rotational energy from the engine 3 and the drive wheels RT and LT, functions as a generator that generates electromotive force at both ends of the stator coil, and charges the battery 19.
 前記第2クラッチCL2は、モータ4と左右タイヤLT,RTの間のうち、モータ軸と変速機入力軸INの間に介装されたクラッチである。この第2クラッチCL2は、CVTコントローラ23から出力された第2クラッチ制御指令に基づいて第2クラッチ油圧ユニット9によって作り出された制御油圧により、締結・スリップ締結・解放に制御される。この第2クラッチCL2としては、例えば、比例ソレノイドで油流量および油圧を連続的に制御できるノーマルオープンの湿式多板クラッチ等が用いられる。 The second clutch CL2 is a clutch interposed between the motor 4 and the left and right tires LT, RT and between the motor shaft and the transmission input shaft IN. The second clutch CL2 is controlled to be engaged / slip engaged / released by a control hydraulic pressure generated by the second clutch hydraulic unit 9 based on the second clutch control command output from the CVT controller 23. As the second clutch CL2, for example, a normally open wet multi-plate clutch capable of continuously controlling the oil flow rate and hydraulic pressure with a proportional solenoid is used.
 前記自動変速機CVTは、第2クラッチCL2の下流位置に配置され、車速やアクセル開度等に応じて目標入力回転数を決め、無段階の変速比を自動的に変更するベルト式による無段変速機が用いられる。この自動変速機CVTは、変速機入力軸IN側のプライマリプーリと、変速機出力軸OUT側のセカンダリプーリと、両プーリに掛け渡されたベルトを主要構成とする。そして、ポンプ油圧を元圧としてプライマリプーリ圧とセカンダリプーリ圧を作り出す。このプーリ圧によってプライマリプーリの可動プーリとセカンダリプーリの可動プーリを軸方向に動かし、ベルトのプーリ接触半径を変化させることによって、変速比を無段階に変更する。 The automatic transmission CVT is disposed at a downstream position of the second clutch CL2, determines a target input rotational speed according to the vehicle speed, accelerator opening, etc., and automatically changes a continuously variable transmission ratio. A transmission is used. The automatic transmission CVT mainly includes a primary pulley on the transmission input shaft IN side, a secondary pulley on the transmission output shaft OUT side, and a belt stretched over both pulleys. Then, a primary pulley pressure and a secondary pulley pressure are generated using the pump hydraulic pressure as a source pressure. With this pulley pressure, the movable pulley of the primary pulley and the movable pulley of the secondary pulley are moved in the axial direction to change the pulley contact radius of the belt, thereby changing the transmission ratio steplessly.
 このハイブリッド車両は、駆動形態の違いによる走行モードとして、電気自動車走行モード(以下、「EVモード」と称する)と、ハイブリッド車走行モード(以下、「HEVモード」と称する)と、駆動トルクコントロール走行モード(以下、「WSCモード」と称する。なお、WSCは、「Wet Start Clutch」の略である。)と、を有する。 The hybrid vehicle has an electric vehicle travel mode (hereinafter referred to as “EV mode”), a hybrid vehicle travel mode (hereinafter referred to as “HEV mode”), and a drive torque control travel as travel modes depending on driving modes. Mode (hereinafter referred to as “WSC mode”. WSC is an abbreviation of “Wet Start Clutch”).
 なお、以下では本発明に関係のある「EVモード」と「HEVモード」について述べる。 In the following, “EV mode” and “HEV mode” related to the present invention will be described.
 前記「EVモード」は、第1クラッチCL1を解放状態とし、モータ4を駆動源として走行するモードであり、モータ走行モード・回生走行モードを有し、何れかのモードにより走行する。この「EVモード」は、要求駆動力が低く、バッテリSOCが確保されているときに選択される。 The “EV mode” is a mode in which the first clutch CL1 is in a disengaged state and travels using the motor 4 as a drive source. This “EV mode” is selected when the required driving force is low and the battery SOC is secured.
 前記「HEVモード」は、第1クラッチCL1を締結状態とし、エンジン3とモータ4を駆動源として走行するモードであり、モータアシスト走行モード・発電走行モード・エンジン走行モードを有し、何れかのモードにより走行する。この「HEVモード」は、要求駆動力が高いとき、あるいは、バッテリSOCが不足するようなときに選択される。 The “HEV mode” is a mode in which the first clutch CL1 is engaged and travels using the engine 3 and the motor 4 as drive sources, and includes a motor assist travel mode, a power generation travel mode, and an engine travel mode. Travel by mode. This “HEV mode” is selected when the required driving force is high or when the battery SOC is insufficient.
 次に、本発明に関係のあるEVモードからHEVモードへのモード遷移動作について説明する。 Next, the mode transition operation from the EV mode to the HEV mode related to the present invention will be described.
 EVモード中に、SOC残量やトルク要求などによりHEVモードへの移行が要求された場合、エンジン始動制御を経由してHEVモードに遷移する。このエンジン始動制御は、EVモードで開放されている第1クラッチCL1を半締結状態にし、モータ4をスタータモータとしてエンジンをクランキングし、燃料噴射と点火によりエンジンを始動させ、その後、第1クラッチCL1を締結するものである。 In the EV mode, when the shift to the HEV mode is requested due to the SOC remaining amount or the torque request, the mode is changed to the HEV mode via the engine start control. In this engine start control, the first clutch CL1 opened in the EV mode is put into a semi-engaged state, the engine is cranked by using the motor 4 as a starter motor, the engine is started by fuel injection and ignition, and then the first clutch CL1 is fastened.
 このエンジン始動制御が開始されると、モータ4をトルク制御から回転数制御に変更し、エンジン3のクランキングやエンジン3との回転同期が出来るようにしている。また第2クラッチCL2をスリップ締結することにより、エンジン始動制御に伴うトルク変動を第2クラッチCL2により吸収し、駆動軸へのトルク伝達によるエンジン始動ショックを防止している。 When this engine start control is started, the motor 4 is changed from torque control to rotation speed control so that cranking of the engine 3 and rotation synchronization with the engine 3 can be performed. Further, by slip-engaging the second clutch CL2, torque fluctuations associated with engine start control are absorbed by the second clutch CL2, and engine start shock due to torque transmission to the drive shaft is prevented.
 このように1モータ2クラッチのハイブリッド車両では、モータ4がスタータモータとしてエンジン3をクランキングする必要があるため、EVモード中に予めそのクランキング分を確保しておく必要がある。そのため、EVモード走行中にモータの定格出力(以下、第一定格出力と称する)すべてを駆動力に配分することはできず、モータ出力を最大限生かしきれていない。 In this way, in the 1-motor 2-clutch hybrid vehicle, since the motor 4 needs to crank the engine 3 as a starter motor, it is necessary to secure the cranking amount in advance during the EV mode. Therefore, it is impossible to distribute all of the rated output of the motor (hereinafter referred to as the first rated output) to the driving force during EV mode traveling, and the motor output cannot be fully utilized.
 また、EVモードからHEVモードの遷移条件の一つに駆動力判定がある。ドライバの要求駆動力がEVモードで出力可能なモータ出力を超えたときにエンジン始動に移行する。前述のようにEVモード走行中には、クランキング分を確保する必要があるため、1モータ2クラッチのハイブリッド車両ではエンジン3が始動しやすい、すなわちEVモード走行領域が小さくなっている。 Also, driving force determination is one of the transition conditions from EV mode to HEV mode. When the required driving force of the driver exceeds the motor output that can be output in the EV mode, the engine starts. As described above, during EV mode traveling, it is necessary to secure the amount of cranking. Therefore, in a one-motor two-clutch hybrid vehicle, the engine 3 is likely to start, that is, the EV mode traveling region is small.
 そこで、エンジン始動という限られた短時間に限ってはモータ4の出力を第一定格出力以上に増加させてもインバータ10の劣化・熱的ダメージを引き起こす恐れが無いことに着眼し、本実施形態1は、エンジン始動時に第一定格出力を超えてモータ4を作動させることにより、EVモードの走行領域を拡大したものである。 Therefore, the present embodiment is focused on that there is no possibility of causing deterioration or thermal damage of the inverter 10 even if the output of the motor 4 is increased beyond the first rated output for a limited short time of engine start. No. 1 expands the EV mode travel region by operating the motor 4 exceeding the first rated output when the engine is started.
 さらに、第一定格出力を超えた出力の上限(以下、第二定格出力)は、インバータ温度とクランキング時間により決定することにより、インバータ10の異常温度上昇を抑え、確実にインバータ10の劣化、熱的ダメージを防止することができるようにした。 Further, the upper limit of the output exceeding the first rated output (hereinafter referred to as the second rated output) is determined by the inverter temperature and the cranking time, thereby suppressing the abnormal temperature rise of the inverter 10 and reliably deteriorating the inverter 10. Made it possible to prevent thermal damage.
 図2は、EVモードからエンジン3を始動する際の処理を示すフローチャートである。ハイブリッド車両のキースイッチが投入されると所定の制御周期で図2を示すフローチャートの処理が実行される。 FIG. 2 is a flowchart showing a process when the engine 3 is started from the EV mode. When the key switch of the hybrid vehicle is turned on, the process of the flowchart shown in FIG. 2 is executed at a predetermined control cycle.
 まず、ステップS101では、EVモードか否かの判定を実行する。EVモードでない場合には、既にエンジン3が始動したHEVモードとなっているため、本フローチャートにおける処理を終了する。一方、EVモードの場合にはステップS102へ移行する。 First, in step S101, it is determined whether or not the EV mode is set. If the EV mode is not set, the HEV mode in which the engine 3 has already been started is set, so the processing in this flowchart is terminated. On the other hand, in the EV mode, the process proceeds to step S102.
 エンジン始動の頻度が高いマイルドHEVなどモータ出力が小さいハイブリッド車両では、水温が低い場合にはキースイッチ投入時に暖機運転としてエンジン3を始動させる場合があるが、ストロングHEVやプラグインHEVではEVモードを基本としているため、基本的にはS102へ移行する。もちろん、車両構成よっては、ストロングHEVやプラグインHEVでもキースイッチ投入後に暖機運転をする場合もあるが、そのときはドライバの要求駆動力が0のシーンでのエンジン始動であるため、第一定格出力を超えた出力を要求することがなく、基本的には第二定格出力への切り替えは特別不要としている。必要であるならば、ステップS102以降の処理を実行して暖機運転に移行する方法としてもよい。 In hybrid vehicles with low motor output, such as mild HEV with high engine start-up frequency, when the water temperature is low, the engine 3 may be started as a warm-up operation when the key switch is turned on. However, the EV mode is used for strong HEV and plug-in HEV. Basically, the process proceeds to S102. Of course, depending on the vehicle configuration, there is a case where the warm-up operation is performed after the key switch is turned on even with the strong HEV or the plug-in HEV. In this case, since the engine is started in the scene where the required driving force of the driver is zero, No output exceeding the rated output is required, and basically switching to the second rated output is unnecessary. If necessary, a method may be adopted in which the processing after step S102 is executed to shift to warm-up operation.
 ステップS102では、クランキング時間t_crkの算出を行う。クランキング時間t_crkは、あらゆるシーンにおける最悪時間を用いてもよいし、シーンに応じて時間を算出してもよい。たとえば、クランキング時間t_crkは、エンジン3の水温や油温、バッテリ19の出力や温度などによって変動するため、これらの情報から推定してもよい。クランキング時間t_crkを算出後ステップS103へ移行する。 In step S102, the cranking time t_crk is calculated. As the cranking time t_crk, the worst time in any scene may be used, or the time may be calculated according to the scene. For example, the cranking time t_crk varies depending on the water temperature and oil temperature of the engine 3, the output and temperature of the battery 19, and so on, and may be estimated from these information. After calculating the cranking time t_crk, the process proceeds to step S103.
 ステップS103では、クランキング時間t_crkを使って第二定格出力を算出する。具体的な算出方法に関しては後述する。 In step S103, the second rated output is calculated using the cranking time t_crk. A specific calculation method will be described later.
 そして、ステップS104では、エンジン始動判定を行う。エンジン始動判定は、バッテリSOCや駆動力、温度、学習などさまざまな条件を考慮してなされる。ここでは駆動力に限定したエンジン始動判定の例について説明する。 In step S104, engine start determination is performed. The engine start determination is made in consideration of various conditions such as the battery SOC, driving force, temperature, and learning. Here, an example of engine start determination limited to driving force will be described.
 一般にドライバの要求駆動力がモータ4の最大出力(第一定格出力)を超える場合、モータ4だけではドライバの要求駆動力を満足することができないため、エンジン始動と判定する。ただし、前述したように1モータ2クラッチのハイブリッド車はクランキング分を常に確保しておく必要があるため、ドライバの要求駆動力が第一定格出力からクランキング分を差し引いた値以上となったときにエンジン始動と判定する。 Generally, when the driver's required driving force exceeds the maximum output (first rated output) of the motor 4, the motor 4 alone cannot satisfy the driver's required driving force, so it is determined that the engine is started. However, as mentioned above, the 1-motor 2-clutch hybrid vehicle must always secure the amount of cranking, so the required driving force of the driver exceeds the value obtained by subtracting the amount of cranking from the first rated output. Sometimes it is determined that the engine has started.
 本実施形態1では、エンジン始動時のモータ4の最大出力は第二定格出力となることから、ドライバの要求駆動力が第二定格出力からクランキング分を差し引いた値以上となったときにエンジン始動と判定する。 In the first embodiment, since the maximum output of the motor 4 at the time of engine start is the second rated output, the engine is driven when the required driving force of the driver is equal to or greater than the value obtained by subtracting the cranking from the second rated output. Determined to start.
 図2で示しているモータ4の最大出力とは、モータ4の構造から決まる最大出力ではなく、制御として認識する最大出力のことを指している。構造から決まる最大出力は、第一定格出力より大きな値となるが、EVモードでの走行などでは連続してモータ4を出力する必要があるため、連続出力可能な定格値(第一定格出力)を制御上のモータ最大出力と設定して、それ以上の出力がモータ4に要求されないようにしている。このモータ最大出力を第二定格出力に設定することで、モータ4の出力を増加させることが可能であるが、モータ最大出力は構造から決まる最大出力以下にしておく必要がある。 The maximum output of the motor 4 shown in FIG. 2 indicates not the maximum output determined from the structure of the motor 4 but the maximum output recognized as control. Although the maximum output determined by the structure is larger than the first rated output, it is necessary to continuously output the motor 4 when traveling in the EV mode, etc., so the rated value that allows continuous output (first rated output) Is set as the maximum motor output for control so that no further output is required of the motor 4. Although it is possible to increase the output of the motor 4 by setting the maximum motor output to the second rated output, the maximum motor output needs to be less than or equal to the maximum output determined by the structure.
 ステップS105では、ステップS104で演算したエンジン始動判定に基づき、エンジン始動要求が発生したか否かの判定を行う。エンジン始動要求が発生していない、すなわち、たとえばドライバの要求駆動力が第二定格出力からクランキング分を差し引いた値以下の場合には、ステップS101に戻りEVモードを継続する。 In step S105, it is determined whether an engine start request has been generated based on the engine start determination calculated in step S104. When the engine start request is not generated, that is, when the required driving force of the driver is equal to or less than the value obtained by subtracting the cranking from the second rated output, for example, the process returns to step S101 and the EV mode is continued.
 一方、エンジン始動要求が発生した場合には、ステップS106へ進みモータ最大出力の切り換えを行う。ステップS104でのエンジン始動判定は、第二定格出力が前提となっているため、ステップS106ではモータ4の最大出力を第一定格出力から第二定格出力に切り換える。モータ4の最大出力が第一定格出力のままの場合では、クランキング出力が足りずエンジン3が始動できなくなる、もしくは駆動力の引き込みが発生してしまうからである。 On the other hand, if an engine start request is generated, the process proceeds to step S106 and the maximum motor output is switched. Since the engine start determination in step S104 is based on the second rated output, the maximum output of the motor 4 is switched from the first rated output to the second rated output in step S106. This is because when the maximum output of the motor 4 remains the first rated output, the cranking output is insufficient and the engine 3 cannot be started or the driving force is drawn.
 その後、ステップS107では、第二定格出力で第1クラッチCL1を締結しながらクランキングを開始し、ステップS108でエンジン始動を完了する。エンジン始動したかどうかの判定は、エンジン回転数と時間の関係から算出してもよいし、エンジン3のトルク発生情報から算出してもよい。一例として、モータ4のトルク値が正値から負値に反転したことをもって、エンジン始動とすることができる。エンジン始動後はステップS109へ進み、モータ4の最大出力を第二定格出力から第一定格出力に戻してHEVモードに遷移する。 Thereafter, in step S107, cranking is started while the first clutch CL1 is engaged at the second rated output, and engine start is completed in step S108. The determination as to whether or not the engine has been started may be calculated from the relationship between the engine speed and time, or from the torque generation information of the engine 3. As an example, the engine can be started when the torque value of the motor 4 is inverted from a positive value to a negative value. After the engine is started, the process proceeds to step S109, the maximum output of the motor 4 is returned from the second rated output to the first rated output, and the mode is changed to the HEV mode.
 なお、エンジン3の状態によっては、ステップS102で推定したクランキング時間t_crk以上にクランキングに時間を要する場合がある。ステップS109では、推定したクランキング時間t_crkが経過した段階で即モータ最大出力を第二定格出力から第一定格出力に戻すのではなく、インバータ10の温度上昇を見ながら、クランキングを継続させることで、エンジン3を確実に始動させることができる。 Note that, depending on the state of the engine 3, cranking may take longer than the cranking time t_crk estimated in step S102. In step S109, when the estimated cranking time t_crk has elapsed, the cranking is continued while watching the temperature rise of the inverter 10 instead of immediately returning the maximum motor output from the second rated output to the first rated output. Thus, the engine 3 can be reliably started.
 一般にクランキングに使われるトルクは、回転数が上昇するにつれて小さくなるため、推定したクランキング時間t_crkが経過したとしても、ある程度は時間を延長することができる。このときは、インバータ内部の温度センサもしくは、クランキング中の電流の積算値からインバータ温度を監視しながら、クランキングを継続させる。 Generally, the torque used for cranking becomes smaller as the rotational speed increases, so that the time can be extended to some extent even if the estimated cranking time t_crk elapses. At this time, cranking is continued while monitoring the inverter temperature from the temperature sensor inside the inverter or the integrated value of the current during cranking.
 上述のように図2に示すフローチャートの処理を実行することにより、EVモードの走行領域を拡大することができると共に、確実にインバータ10の温度上昇による劣化、熱的ダメージを防止することができる。 As described above, by executing the processing of the flowchart shown in FIG. 2, the EV mode travel region can be expanded, and deterioration and thermal damage due to the temperature rise of the inverter 10 can be reliably prevented.
 ここで、図3に示すフローチャートに基づいて、第二定格出力算出方法の一例を説明する。 Here, an example of the second rated output calculation method will be described based on the flowchart shown in FIG.
 まず、ステップS201でインバータ10の温度Tinv_baseを算出する。一般にインバータ内部には温度センサが設けられており、この温度センサを使って現在の温度を算出する。U相,V相,W相の各相に温度センサが設けられている場合には、各相の最大温度をインバータ10の温度Tinv_baseとする。 First, in step S201, the temperature Tinv_base of the inverter 10 is calculated. In general, a temperature sensor is provided inside the inverter, and the current temperature is calculated using this temperature sensor. When a temperature sensor is provided in each of the U phase, the V phase, and the W phase, the maximum temperature of each phase is set as the temperature Tinv_base of the inverter 10.
 ステップS204では、現在のインバータ温度Tinv_baseと限界温度Tmaxの差から許容温度上昇ΔTinvを算出する。限界温度Tmaxとは、インバータ10内の素子が温度上昇により劣化、熱的ダメージを引き起こす温度であり、あらかじめインバータ単体試験等で算出することが可能である。インバータ10は複数の素子で構成されているが、ここでの素子とは、インバータ10内部でもっとも熱的に弱い素子のこと指している。許容温度上昇ΔTinvは温度上昇しても劣化、熱的ダメージを引き起こさない温度上昇分であり、機差ばらつきなどを考慮して、より安全を確保するために、ある程度マージンを確保しておく。 In step S204, the allowable temperature rise ΔTinv is calculated from the difference between the current inverter temperature Tinv_base and the limit temperature Tmax. The limit temperature Tmax is a temperature at which an element in the inverter 10 deteriorates due to a temperature rise and causes thermal damage, and can be calculated in advance by an inverter unit test or the like. The inverter 10 is composed of a plurality of elements, and the element here refers to the most thermally weak element in the inverter 10. The allowable temperature rise ΔTinv is a temperature rise that does not cause deterioration or thermal damage even if the temperature rises, and a margin is secured to some extent in order to ensure more safety in consideration of machine difference variation.
 ステップS203では、許容温度上昇ΔTinvと、図2のステップS102で算出したクランキング時間t_crkから第二定格出力を算出する。インバータ10の温度上昇は、インバータ10内の損失によって発生するため、インバータ内に流れる電流の大きさ及びその時間により決定することができる。そこで、一例として図4に示すように、縦軸に継続時間、横軸に許容温度上昇として、第二定格出力をマップ情報として確保しておけば、ステップS203では、このマップを検索することより、第二定格出力を算出することができる。 In step S203, the second rated output is calculated from the allowable temperature rise ΔTinv and the cranking time t_crk calculated in step S102 of FIG. Since the temperature rise of the inverter 10 is caused by a loss in the inverter 10, it can be determined by the magnitude of the current flowing in the inverter and its time. Therefore, as shown in FIG. 4 as an example, if the second rated output is secured as map information with the vertical axis representing the duration and the horizontal axis representing the allowable temperature rise, in step S203, the map is retrieved. The second rated output can be calculated.
 図4では、許容温度上昇Tinvと継続時間t_crkから第二定格出力Paを算出する方法を表している。なお、ここでの第二定格出力は、例えば、継続時間同じ第二定格を出力し続けることを前提として算出している。実際のシーンでは第二定格出力以下で電流が変動するため、所定時間、常に第二定格出力が一定で継続するよりは、温度上昇に余裕がある設定となる。 FIG. 4 shows a method of calculating the second rated output Pa from the allowable temperature rise Tinv and the duration t_crk. The second rated output here is calculated on the premise that the second rated output is continuously output for the same duration, for example. In an actual scene, the current fluctuates below the second rated output, and therefore, the temperature rise is set to have a margin rather than the second rated output always being constant for a predetermined time.
 上記ではインバータ10の温度に限定して記載しているが、モータ温度やバッテリ温度などモータの出力を制限するほかの要因にも関しても同様にそれぞれ第二定格出力を算出し、それらの最小値を最終的な第二定格出力とするのが現実的である。 Although the above description is limited to the temperature of the inverter 10, the second rated output is similarly calculated for other factors that limit the motor output such as the motor temperature and the battery temperature, and the minimum It is realistic to use the value as the final second rated output.
 以上示したように、本実施形態1によれば、エンジン始動時には、通常の第一定格出力を超えた出力を使用してモータ4を運転し、エンジン3を始動することにより、EVモード走行中に駆動力としてモータ4が供給できる出力が大きくなるため、EVモードの走行領域の拡大を図ることが可能となる。 As described above, according to the first embodiment, when the engine is started, the motor 4 is operated using the output exceeding the normal first rated output, and the engine 3 is started. In addition, since the output that can be supplied by the motor 4 as a driving force is increased, it is possible to expand the traveling region in the EV mode.
 また、モータ4を第一定格出力以上に拡大して使用するとインバータの温度上昇によりインバータ10の劣化、熱的ダメージなどの不具合を発生させてしまうことがある。そこで、エンジン始動時の出力(第二定格出力)をインバータ10の温度に基づいて算出することにより、エンジン始動を行える出力を確保しつつ、インバータ10の過度な温度上昇を確実に抑えることができる。 In addition, when the motor 4 is used with the output larger than the first rated output, the inverter 10 may rise in temperature and cause problems such as deterioration of the inverter 10 and thermal damage. Therefore, by calculating the output at the time of starting the engine (second rated output) based on the temperature of the inverter 10, it is possible to reliably suppress an excessive temperature rise of the inverter 10 while ensuring an output capable of starting the engine. .
 さらに、状況によって変動するエンジン始動時間(クランキング時間t_crk)を、関連するパラメータから推定して決定しているため、例えばエンジン始動が長く掛かる低水温始動時の場合には、通常の始動より第二定格出力をより小さい値に設定することで、クランキング時間t_crkの長継続による温度上昇を抑制することが可能となる。 Further, since the engine start time (cranking time t_crk) that varies depending on the situation is determined by estimation from related parameters, for example, at the time of low water temperature start where engine start takes a long time, By setting the two rated outputs to a smaller value, it is possible to suppress an increase in temperature due to a long continuation of the cranking time t_crk.
 [実施形態2]
 次に、実施形態2におけるハイブリッド車両の制御装置について説明する。実施形態2は、実施形態1に対して、EVモードの走行領域をさらに拡大したものである。
[Embodiment 2]
Next, a control apparatus for a hybrid vehicle in the second embodiment will be described. The second embodiment further expands the EV mode travel area as compared to the first embodiment.
 まず、モータ出力の関係について、図5を用いて説明する。図5は横軸にモータ回転数、縦軸にモータ出力をプロットしたグラフである。L1が連続運転できる第一定格出力であり、Lcrkが実施形態1(図2)で述べたクランキング時の定格出力である(実施形態1(図2)では、第二定格出力として説明していたが、実施形態2ではクランキング時定格出力とする)。このクランキング時定格出力は、前述のとおりクランキング時間t_crkによって変動するものである。クランキング時間t_crkが短い場合には大きく、クランキング時間t_crkが長い場合には小さくなる。L2がクランキング時定格出力からクランキング分を差し引いた出力のラインとなる。 First, the relationship of motor output will be described with reference to FIG. FIG. 5 is a graph in which the motor rotation speed is plotted on the horizontal axis and the motor output is plotted on the vertical axis. L1 is the first rated output that can be continuously operated, and Lcrk is the rated output during cranking described in the first embodiment (FIG. 2) (in the first embodiment (FIG. 2), the second rated output is described. However, in Embodiment 2, the rated output during cranking is used). The cranking rated output varies depending on the cranking time t_crk as described above. It is large when the cranking time t_crk is short, and it is small when the cranking time t_crk is long. L2 is an output line obtained by subtracting the cranking from the rated output during cranking.
 本実施形態2では、このL1とL2に囲まれた領域を使ってEVモードでの走行領域を拡大する。ここで、本実施形態2におけるEVモードからエンジン始動する際の処理を図6に示すフローチャートに基づいて説明する。なお、本実施形態2では、要求駆動力が第一定格出力を超えたときに、エンジン始動要求が発生する構成を例として説明する。 In the second embodiment, the travel area in the EV mode is expanded using the area surrounded by L1 and L2. Here, processing when the engine is started from the EV mode in the second embodiment will be described based on a flowchart shown in FIG. In the second embodiment, a configuration in which an engine start request is generated when the required driving force exceeds the first rated output will be described as an example.
 まず、ステップS301にあるように、EVモードとなっていることを前提としている。 First, it is assumed that the EV mode is set as in step S301.
 ステップS302では、ドライバの要求駆動力が第一定格出力を超えたか否かの判定を行っている。ドライバの要求駆動力が第一定格出力を超えない場合には、ドライバの要求駆動力はモータ4の出力で賄うことが可能であるため、エンジン始動させる必要はなく、ステップS301に戻りEVモードを継続する。ドライバの要求駆動力が第一定格出力を超えた場合には、モータ出力だけではドライバの要求駆動力を満足することができないため、通常はエンジン始動を行い、HEVモードに移行する。 In step S302, it is determined whether or not the required driving force of the driver exceeds the first rated output. If the driver's required driving force does not exceed the first rated output, the driver's required driving force can be covered by the output of the motor 4, so there is no need to start the engine, the process returns to step S301 and the EV mode is set. continue. When the driver's required driving force exceeds the first rated output, the driver's required driving force cannot be satisfied by the motor output alone, so the engine is normally started and the mode is shifted to the HEV mode.
 しかし、本実施形態2では、EVモードでの走行領域を拡大するため、以下の演算を実行する。まず、ステップS303では、ドライバの要求駆動力が第一定格出力を超える出力超過継続時間を推定する。推定に当たっては、ナビゲーションやステレオカメラやレーザーなどの外界認識装置の情報を使って、例えば、坂道情報や、追い越し情報を用いて算出する。 However, in the second embodiment, the following calculation is executed in order to expand the traveling area in the EV mode. First, in step S303, an output excess duration time in which the driver's required driving force exceeds the first rated output is estimated. In the estimation, the information is calculated using, for example, slope information or overtaking information, using information from an external recognition device such as navigation, a stereo camera, or a laser.
 次に、ステップS304に移行し、ステップS303で算出した出力超過継続時間から第二定格出力を算出する。算出方法は、図3で説明した場合と同様に許容温度上昇ΔTinvと出力超過継続時間から算出する。 Next, the process proceeds to step S304, and the second rated output is calculated from the output excess duration calculated in step S303. The calculation method is calculated from the allowable temperature increase ΔTinv and the output excess duration as in the case described with reference to FIG.
 ステップS305では、ドライバの要求駆動力が第二定格出力を超えるか否かを判定する。ドライバの要求駆動力が第二定格出力より小さい場合(S305:YES)、インバータの劣化,熱的ダメージなくモータ4の出力増加で対応できるとして、ステップS306に進み、モータ4の最大出力を第二定格出力に切り換えて、ステップS307にて第二定格出力によるEVモードでの走行を継続する。第二定格出力によるEVモードでの走行が終了した後は、ステップS308へ進みモータ4の最大出力を第一定格出力に戻してフローを終了する。第二定格出力によるEV走行の終了判定は、ドライバの要求駆動力が第一定格出力より小さくなったことで判定することができる。 In step S305, it is determined whether or not the required driving force of the driver exceeds the second rated output. If the required driving force of the driver is smaller than the second rated output (S305: YES), the process proceeds to step S306, assuming that the output of the motor 4 can be increased without deterioration of the inverter and thermal damage, and the maximum output of the motor 4 is set to the second output. Switching to the rated output, the travel in the EV mode with the second rated output is continued in step S307. After the travel in the EV mode by the second rated output is completed, the process proceeds to step S308, the maximum output of the motor 4 is returned to the first rated output, and the flow is terminated. The end determination of EV traveling by the second rated output can be determined by the fact that the required driving force of the driver is smaller than the first rated output.
 一方、ステップS305でドライバの要求駆動力が第二定格出力を超えた場合(S305:NO)には、EVモードでの走行領域を拡大できないと判断し、ステップS309に進み、エンジン始動判定を行い、ステップS310にてHEVモードに移行する。その後は、モータ4とエンジン3にてドライバの要求駆動力を満足するように制御していく。 On the other hand, if the driver's required driving force exceeds the second rated output in step S305 (S305: NO), it is determined that the travel area in the EV mode cannot be expanded, and the process proceeds to step S309 to perform engine start determination. In step S310, the mode shifts to the HEV mode. Thereafter, the motor 4 and the engine 3 are controlled so as to satisfy the driver's required driving force.
 とこで、ステップS305で要求駆動力が第二定格出力を超えないと判断された場合において、運転シーンによっては、要求駆動力が第一定格を超える継続時間(以下、継続時間と称する)がステップS303で推定した出力超過継続時間を越えてしまう場合がある。この場合、そのまま出力を継続してしまうとインバータ10の温度上昇が進行してしまい、劣化、熱的ダメージを引き起こす可能性がある。そこで、前記継続時間が出力超過継続時間を越えた場合には、インバータ温度もしくはクランキング時定格出力の大きさに応じてエンジン始動させることにする。図7に、前記継続時間が出力超過継続時間を越えた場合のタイムチャートを示す。なお、このタイムチャートのモータ出力の関係は、モータ回転数が図5に示す回転数R1の時を例にしている。 Here, when it is determined in step S305 that the required driving force does not exceed the second rated output, depending on the operation scene, the duration for which the required driving force exceeds the first rating (hereinafter referred to as duration) is step. The output excess duration estimated in S303 may be exceeded. In this case, if the output is continued as it is, the temperature of the inverter 10 rises, which may cause deterioration and thermal damage. Therefore, if the duration exceeds the output excess duration, the engine is started according to the inverter temperature or the cranking rated output. FIG. 7 shows a time chart when the duration exceeds the output excess duration. The relationship of the motor output in this time chart is an example when the motor rotational speed is the rotational speed R1 shown in FIG.
 図7中、Tq1が第一定格出力、Tq2がクランキング時定格出力、Tq3がクランキング時定格出力からクランキング分を差し引いた出力、Tq4が第二定格出力を示している。要求駆動力が第一定格出力Tq1以下の状態から時刻T71で第一定格出力Tq1を超えたとすると、時刻T71で出力超過継続時間を推定し、その出力超過継続時間を基に第二定格出力Tq4を算出する。要求駆動力が第二定格出力Tq4以下の場合には、図7に示すようにモータ最大出力を第二定格出力Tq4に設定してEVモードでの走行を継続する。 In FIG. 7, Tq1 is the first rated output, Tq2 is the cranking rated output, Tq3 is the cranking rated output minus the cranking, and Tq4 is the second rated output. Assuming that the required driving force exceeds the first rated output Tq1 at time T71 from the state of the first rated output Tq1 or less, the output excess duration is estimated at time T71, and the second rated output Tq4 is based on the output excess duration. Is calculated. When the required driving force is equal to or lower than the second rated output Tq4, the motor maximum output is set to the second rated output Tq4 as shown in FIG. 7, and the traveling in the EV mode is continued.
 また、それと同時に継続時間も時刻T71から計測していく。継続時間が出力超過継続時間推定値となる時刻T72では、本来第二定格出力Tq4での制御は終了するはずにも関わらず、運転状況によって駆動力が第一定格出力Tq1以上となる状態が継続すると、インバータ10の温度が上昇すると共に、クランキング時定格出力Tq2が低下していく。クランキング時定格出力Tq2は図3で説明したようにインバータ温度Tinv_baseと限界温度Tmaxの差である許容温度上昇ΔTinvから算出されるため、インバータ温度Tinv_baseが上昇することにより許容温度上昇ΔTinvが小さくなるためである。 At the same time, the duration is also measured from time T71. At the time T72 when the duration is the estimated output excess duration, the control at the second rated output Tq4 should be terminated, but the state where the driving force becomes equal to or higher than the first rated output Tq1 depending on the driving situation continues. Then, the temperature of the inverter 10 rises and the cranking rated output Tq2 falls. As described with reference to FIG. 3, the cranking rated output Tq2 is calculated from the allowable temperature increase ΔTinv, which is the difference between the inverter temperature Tinv_base and the limit temperature Tmax, so that the allowable temperature increase ΔTinv decreases as the inverter temperature Tinv_base increases. Because.
 なお、インバータ温度Tinv_baseは、インバータ内部にある温度センサを用いてもよいし、温度センサの応答が遅い場合には、電流値の積算値からインバータ10の損失を求めて、温度上昇分を推定して算出してもよい。もちろん、温度センサ値と演算値の両方を用いて最終決定する方法でもよい。 As the inverter temperature Tinv_base, a temperature sensor inside the inverter may be used. When the response of the temperature sensor is slow, the loss of the inverter 10 is obtained from the integrated value of the current value, and the temperature rise is estimated. May be calculated. Of course, a final determination method using both the temperature sensor value and the calculated value may be used.
 さらに、時間が継続するとインバータ温度Tinv_baseがさらに上昇し、さらにクランキング時定格出力Tq2が低下する。クランキング時定格出力Tq2からクランキング分差し引いたTq3が第二定格出力Tq4に交差する時刻T73でエンジン始動させる。このタイミングでエンジン始動させる理由は、時刻T73以降では、クランキング時定格出力Tq2からクランキング分を差し引いたTq3がさらに低下していき、ドライバの要求駆動力を満足させつつ、エンジン始動ができなくなるためである。エンジン始動する際は、モータ最大出力をクランキング時定格出力Tq2にし、エンジン始動した時刻T74で第一定格出力Tq1に戻す。以降はHEVモードで走行を行うことにより、インバータ10の温度上昇を防ぐことができる。 Furthermore, when the time continues, the inverter temperature Tinv_base further increases, and the cranking rated output Tq2 further decreases. The engine is started at time T73 when Tq3 obtained by subtracting the cranking from the cranking rated output Tq2 intersects the second rated output Tq4. The reason for starting the engine at this timing is that after time T73, Tq3 obtained by subtracting the cranking from the cranking rated output Tq2 further decreases, and the engine cannot be started while satisfying the driver's required driving force. Because. When the engine is started, the motor maximum output is set to the cranking rated output Tq2, and the engine is returned to the first rated output Tq1 at time T74 when the engine is started. Thereafter, by running in the HEV mode, the temperature increase of the inverter 10 can be prevented.
 図6では、EVモード走行中を前提にモータ出力の増加について述べたが、HEVモード走行中でも同様に適用することが可能である。HEVモード走行中のモータ4とエンジン3の出力配分を決定する際、例えば、エンジン3がある最適燃費運転点で動作し、かつモータ4も最大出力付近で動作している状態で、ドライバの要求駆動力が増えた時、その増加した要求駆動力がモータ4を第二定格出力Tq4で賄える場合には、エンジン3の出力配分はそのままに、モータ4の出力を増大させて対応してもよい。 In FIG. 6, the increase in motor output has been described on the assumption that the vehicle is traveling in the EV mode. However, the present invention can be similarly applied during the HEV mode. When determining the output distribution between the motor 4 and the engine 3 running in the HEV mode, for example, when the engine 3 is operating at an optimal fuel consumption operating point and the motor 4 is operating near the maximum output, the driver's request When the driving force increases, if the increased required driving force can cover the motor 4 with the second rated output Tq4, the output distribution of the engine 3 may be left unchanged and the output of the motor 4 increased. .
 図8は、第二定格出力制限制御の動作の一例を表すタイムチャートである。第二定格出力を使ってモータ4を駆動するとインバータ10の温度が上昇する。また、第二定格出力の制御を繰り返すと熱疲労が蓄積して、劣化が進行しやすくなる。そこで、温度上昇の蓄積が所定以上となった場合には、第二定格出力に対して上限制限をかけることにより、温度上昇を抑えてインバータ10の劣化促進を防止する。 FIG. 8 is a time chart showing an example of the operation of the second rated output restriction control. When the motor 4 is driven using the second rated output, the temperature of the inverter 10 rises. Further, when the control of the second rated output is repeated, thermal fatigue accumulates and deterioration tends to proceed. Therefore, when the accumulation of the temperature rise exceeds a predetermined value, an upper limit is imposed on the second rated output, thereby suppressing the temperature rise and preventing the deterioration of the inverter 10.
 時刻T81でモータ最大出力が第二定格出力に設定されて運転されると、運転に応じてインバータ温度が上昇する。同様に、時刻T82、T83でも第二定格出力で運転されることによりインバータ温度の上昇が見られる。 When the motor maximum output is set to the second rated output at time T81 and the operation is performed, the inverter temperature rises according to the operation. Similarly, at times T82 and T83, an increase in inverter temperature can be seen by operating at the second rated output.
 図8に示すように、第二定格出力で運転された時のインバータ温度の累積温度を算出すると共に、この累積温度の閾値(図8では、閾値1,閾値2)を設定しておく。図8に示すように、時刻T83の時に、その累積温度が閾値1を超える。このように累積温度が閾値1を超えた場合、インバータ10の劣化が促進されてしまうことを抑制するため、次回第二定格出力切り換え時に第二定格出力に対して上限制約をかける。すなわち、第二定格出力における上限出力の値を低くする。 As shown in FIG. 8, the cumulative temperature of the inverter temperature when operated at the second rated output is calculated, and the threshold value of this cumulative temperature (threshold value 1 and threshold value 2 in FIG. 8) is set in advance. As shown in FIG. 8, the accumulated temperature exceeds the threshold value 1 at time T83. In this way, when the accumulated temperature exceeds the threshold 1, an upper limit restriction is imposed on the second rated output at the next second rated output switching in order to prevent the deterioration of the inverter 10 from being promoted. That is, the value of the upper limit output at the second rated output is lowered.
 これより、モータ出力を低下させ、温度上昇幅を小さくすることが可能となる。さらに時刻T84では、上限制約が掛かった状態で第二定格出力において制御されるが、継続時間が長いために、インバータ10の温度Tinv_baseが上昇していく。これにより、累積温度が次の閾値である閾値2を超えたため、さらに第二定格出力における上限出力に制約をかけて、温度上昇を抑制している。この累積温度が大きくなっていった場合には、上限出力を第一定格出力にすることで、第二定格出力の選択を禁止することもできる。 This makes it possible to reduce the motor output and reduce the temperature rise. Further, at time T84, the second rated output is controlled in a state where the upper limit is imposed. However, since the duration is long, the temperature Tinv_base of the inverter 10 increases. Thereby, since the accumulated temperature has exceeded the threshold value 2 which is the next threshold value, the upper limit output in the second rated output is further restricted to suppress the temperature rise. When the accumulated temperature increases, the selection of the second rated output can be prohibited by setting the upper limit output to the first rated output.
 第二出力制限制御の他例を図9のグラフに基づいて説明する。第二定格出力にて制御中の最大温度を算出し、第二定格出力で制御する毎にその温度に該当する累積回数を記憶しておくことにより、図9に示すようなヒストグラムがプロットされる。温度領域毎に累積回数の制限回数を予め設定しておき、その累積回数が制限回数を超える場合には、その温度領域以上の運転を禁止することで、温度上昇の繰り返しを抑制することが可能となる。一般に高温度のほうが低温度に比べて、温度上昇の繰り返しによるダメージは大きくなる。そこで、高温度となる領域では累積回数の制限回数を小さくし、低温度となる領域では累積回数の制限回数を大きくすることで、モータ4の出力拡大と劣化促進防止の両立を図ることができる。図9では温度Tmp6~Tmp7の累積回数が制限回数を超えているため、Tmp6以上となる第二定格出力の選択は禁止されることになる。これにより、熱疲労による劣化促進を防ぐことが可能となる。 Another example of the second output restriction control will be described based on the graph of FIG. By calculating the maximum temperature during control at the second rated output and storing the cumulative number of times corresponding to that temperature every time control is performed at the second rated output, a histogram as shown in FIG. 9 is plotted. . The number of times of accumulation can be set in advance for each temperature range, and if the number of accumulation exceeds the limit number of times, it is possible to suppress repeated temperature rise by prohibiting operation beyond that temperature range. It becomes. In general, damage caused by repeated temperature increases is greater at higher temperatures than at lower temperatures. Therefore, by reducing the limit of the cumulative number in the region where the temperature is high and increasing the limit number of the cumulative number in the region where the temperature is low, it is possible to achieve both expansion of the output of the motor 4 and prevention of deterioration. . In FIG. 9, since the cumulative number of temperatures Tmp6 to Tmp7 exceeds the limit number, selection of the second rated output that is equal to or higher than Tmp6 is prohibited. Thereby, it becomes possible to prevent deterioration acceleration due to thermal fatigue.
 以上示したように、本実施形態2によれば、ドライバの要求駆動力が第一定格出力を超えたとしても、それが出力超過継続時間から算出される第二定格出力以内であればモータ出力を増加させることで対応することが可能となる。 As described above, according to the second embodiment, even if the required driving force of the driver exceeds the first rated output, if it is within the second rated output calculated from the output excess duration, the motor output It is possible to cope with this by increasing.
 これによれば、例えばHEVモードの場合には、エンジン3の出力を変更することなくモータ4の出力を変えることで、ドライバの要求駆動力を満足することができるため、エンジン3の過渡運転状態を抑制することができ、燃費・排気の劣化を防ぐことができる。 According to this, for example, in the HEV mode, the driver's required driving force can be satisfied by changing the output of the motor 4 without changing the output of the engine 3. Can be suppressed, and fuel consumption and exhaust deterioration can be prevented.
 また、インバータ10の温度が高い状態で出力超過継続時間に基づいて求めた第二定格出力を使用すると、場合によってはインバータ10の温度が大きくなりすぎてインバータ10の劣化、熱的ダメージを招く恐れがある。そこで、インバータ10の温度も考慮して第二定格出力を算出することにより、例えば、インバータ10の温度が高い場合には、第二定格出力を小さくすることにより、インバータ10を保護することができる。また、インバータ10の温度が低い場合には、まだ熱的な余裕があるため、第二定格出力を大きくすることができ、モータ4をさらに有効活用することが可能となる。 In addition, if the second rated output obtained based on the output excess continuation time is used in a state where the temperature of the inverter 10 is high, the temperature of the inverter 10 may become too high in some cases, leading to deterioration of the inverter 10 and thermal damage. There is. Therefore, by calculating the second rated output in consideration of the temperature of the inverter 10, for example, when the temperature of the inverter 10 is high, the inverter 10 can be protected by reducing the second rated output. . Further, when the temperature of the inverter 10 is low, there is still a thermal margin, so that the second rated output can be increased and the motor 4 can be used more effectively.
 さらに、EVモードでの走行の場合、EVモードでの走行領域を拡大することができるので、より一層の燃費の向上を図ることができる。 Furthermore, in the case of traveling in the EV mode, since the traveling area in the EV mode can be expanded, further improvement in fuel consumption can be achieved.
 また、その出力超過継続時間の算出に当たっては、ナビゲーションやステレオカメラやレーダなどの外界認識装置によって行うことにより、精度よく推定することが可能となる。 In addition, when calculating the output excess duration, it is possible to estimate with high accuracy by using an external recognition device such as navigation, a stereo camera, or a radar.
 さらに、モータ4の最大出力を第二定格出力に切り換えた場合は、インバータ10の温度上昇が発生する。この温度上昇は、インバータ10の劣化、熱的ダメージを招かないような上昇幅となるように設定するが、この温度の上昇が頻繁に発生すると熱疲労が蓄積して、劣化が進行しやすくなる可能性がある。そこで、累積温度を計測して、その累積温度が所定値を超えた場合には、モータ4の最大出力を制限することにより、過度な温度上昇の繰り返しを抑制し、インバータ10の劣化、熱的ダメージを防ぐことができる。 Furthermore, when the maximum output of the motor 4 is switched to the second rated output, the temperature of the inverter 10 rises. This temperature rise is set so that it does not cause deterioration of the inverter 10 and thermal damage. However, if this temperature rise occurs frequently, thermal fatigue accumulates and deterioration tends to proceed. there is a possibility. Therefore, when the accumulated temperature is measured and the accumulated temperature exceeds a predetermined value, the maximum output of the motor 4 is limited, thereby suppressing excessive repetition of temperature rise, deterioration of the inverter 10, and thermal Damage can be prevented.
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.
 例えば、実施形態1,2では、1モータ2クラッチのハイブリッド車両に関して記述しているが、この構成に限定されることはなく、エンジンをスタータで駆動するハイブリッド車でも、第二定格出力を使用することにより、EVモード走行領域を拡大することが可能となる。 For example, the first and second embodiments describe a hybrid vehicle with one motor and two clutches, but the present invention is not limited to this configuration, and the second rated output is used even in a hybrid vehicle that drives an engine with a starter. This makes it possible to expand the EV mode travel area.
 3…エンジン
 4…モータ
 10…インバータ(駆動回路)
 21…エンジンコントローラ(エンジン制御手段)
 22…モータコントローラ(モータ制御手段)
 CL1…第一クラッチ(締結手段)
 t_crk…クランキング時間
 Tinv_base…インバータ(駆動回路)の温度
3 ... Engine 4 ... Motor 10 ... Inverter (drive circuit)
21 ... Engine controller (engine control means)
22 ... Motor controller (motor control means)
CL1 ... first clutch (engagement means)
t_crk: Cranking time Tinv_base: Inverter (drive circuit) temperature

Claims (8)

  1.  駆動系に、エンジンと、モータと、前記エンジンと前記モータの間に介装された締結手段と、を備え、前記モータと前記締結手段によって前記エンジン始動を行うハイブリッド車両の制御装置であって、
     前記エンジンを制御するエンジン制御手段と、
     前記モータを駆動する駆動回路を制御するモータ制御手段と、を有し、
     前記エンジン始動の際には、モータを連続して出力可能な第一定格出力以上の出力を用いてモータを運転し、エンジンを始動させることを特徴とするハイブリッド車両の制御装置。
    A control system for a hybrid vehicle comprising an engine, a motor, and a fastening means interposed between the engine and the motor in a drive system, wherein the engine is started by the motor and the fastening means,
    Engine control means for controlling the engine;
    Motor control means for controlling a drive circuit for driving the motor,
    When starting the engine, the hybrid vehicle control device starts the engine by operating the motor using an output of a first rated output or higher that can continuously output the motor.
  2.  前記駆動回路の温度に基づいて、前記エンジン始動時においてモータで出力可能な第二定格出力を決定し、
     前記エンジン始動の際には、モータ最大出力を第一定格出力から第二定格出力に切り換えることを特徴とする請求項1記載のハイブリッド車両の制御装置。
    Based on the temperature of the drive circuit, the second rated output that can be output by the motor at the time of starting the engine is determined,
    2. The control apparatus for a hybrid vehicle according to claim 1, wherein when the engine is started, the maximum motor output is switched from the first rated output to the second rated output.
  3.  前記第二定格出力は、
     前記駆動回路の温度と、
     前記エンジンの水温、油温、バッテリ温度のうち何れかの1つ以上の情報に基づき決定されるクランキング時間と、に基づいて決定されることを特徴とする請求項2記載のハイブリッド車両の制御装置。
    The second rated output is
    The temperature of the drive circuit;
    The hybrid vehicle control according to claim 2, wherein the control is determined based on cranking time determined based on one or more information of any one of the engine water temperature, oil temperature, and battery temperature. apparatus.
  4.  駆動系に、エンジンと、モータと、前記エンジンと前記モータの間に介装された締結手段と、を備え、前記モータと前記締結手段によって前記エンジン始動を行うハイブリッド車両の制御装置であって、
     前記エンジンを制御するエンジン制御手段と、
     前記モータを駆動する駆動回路を制御するモータ制御手段と、を有し、
     前記第一定格出力以上の要求駆動力が発生すると推定された場合、その前記要求駆動力と、前記第一定格出力以上の要求駆動力が継続する出力超過継続時間を推定し、この出力超過継続時間に基づいて前記出力超過時間においてモータで出力可能な第二定格出力を算出し、
     前記要求駆動力が前記第二定格出力以内の場合には、モータの最大出力を前記第一定格出力から前記第二定格出力に切り換えることを特徴とする請求項1記載のハイブリッド車両の制御装置。
    A control system for a hybrid vehicle comprising an engine, a motor, and a fastening means interposed between the engine and the motor in a drive system, wherein the engine is started by the motor and the fastening means,
    Engine control means for controlling the engine;
    Motor control means for controlling a drive circuit for driving the motor,
    When it is estimated that the required driving force equal to or greater than the first rated output is generated, the output excess continuation time during which the required driving force and the required driving force equal to or greater than the first rated output continue is estimated. Based on the time, calculate the second rated output that can be output by the motor in the output excess time,
    2. The control apparatus for a hybrid vehicle according to claim 1, wherein when the required driving force is within the second rated output, the maximum output of the motor is switched from the first rated output to the second rated output.
  5.  前記第二定格出力は、
     前記推定された出力超過継続時間と、前記駆動回路の温度と、に基づいて決定されることを特徴とする請求項4記載のハイブリッド車両の制御装置。
    The second rated output is
    The hybrid vehicle control device according to claim 4, wherein the control device is determined based on the estimated output excess duration and the temperature of the drive circuit.
  6.  前記モータのみで前記ハイブリッド車両を駆動させるEVモード走行中に前記第二定格出力を算出し、
     前記要求駆動力が前記第二定格出力以内の場合には、
     前記エンジンを始動させることなくモータ最大出力を前記第一定格出力から前記第二定格出力に切り換えて前記EVモードでの走行を継続することを特徴とする請求項4~5記載のハイブリッド車両の制御装置。
    Calculating the second rated output during EV mode driving in which the hybrid vehicle is driven only by the motor;
    When the required driving force is within the second rated output,
    6. The hybrid vehicle control according to claim 4, wherein the maximum motor output is switched from the first rated output to the second rated output without starting the engine to continue running in the EV mode. apparatus.
  7.  前記出力超過継続時間は、ナビゲーションシステム,外界認識装置などの情報に基づいて推定されることを特徴とする請求項4~6記載のハイブリッド車両の制御装置。 The hybrid vehicle control device according to any one of claims 4 to 6, wherein the output excess duration time is estimated based on information such as a navigation system and an external recognition device.
  8.  前記モータ最大出力を第二定格出力に切り換えた後の前記駆動回路の温度を計測して、温度の情報の累積値を算出し、前記温度の情報の累積値に応じて前記第二定格出力の上限を制限することを特徴とする請求項2~7記載のハイブリッド車両の制御装置。 Measure the temperature of the drive circuit after switching the motor maximum output to the second rated output, calculate the accumulated value of the temperature information, and according to the accumulated value of the temperature information of the second rated output 8. The control apparatus for a hybrid vehicle according to claim 2, wherein an upper limit is limited.
PCT/JP2013/078891 2012-11-21 2013-10-25 Hybrid vehicle control device WO2014080721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-254859 2012-11-21
JP2012254859A JP2014101051A (en) 2012-11-21 2012-11-21 Hybrid vehicle control device

Publications (1)

Publication Number Publication Date
WO2014080721A1 true WO2014080721A1 (en) 2014-05-30

Family

ID=50775909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078891 WO2014080721A1 (en) 2012-11-21 2013-10-25 Hybrid vehicle control device

Country Status (2)

Country Link
JP (1) JP2014101051A (en)
WO (1) WO2014080721A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812456B1 (en) 2014-07-24 2017-12-26 쟈트코 가부시키가이샤 Hybrid vehicle control device and control method therefor
US10279687B2 (en) 2014-11-27 2019-05-07 Aisin Aw Co., Ltd. Control device for vehicle drive device
JP7137361B2 (en) * 2018-06-04 2022-09-14 株式会社Subaru Hybrid vehicle control device
JP7091987B2 (en) * 2018-10-09 2022-06-28 トヨタ自動車株式会社 Hybrid vehicle control device and hybrid vehicle control system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322401A (en) * 1994-05-19 1995-12-08 Fuji Heavy Ind Ltd Motor output limiter for electric car
JPH10169535A (en) * 1996-12-10 1998-06-23 Mitsubishi Motors Corp Starting controller for engine and hybrid electric vehicle using thereof
JP2002058113A (en) * 2000-08-07 2002-02-22 Toyota Motor Corp Power-outputting apparatus and its control method
JP2005039989A (en) * 2003-07-02 2005-02-10 Toyota Motor Corp Output management device and electric automobile having the same
JP2005045861A (en) * 2003-07-22 2005-02-17 Toyota Motor Corp Power output device, method for controlling the same and automobile
JP2007236109A (en) * 2006-03-01 2007-09-13 Mitsubishi Fuso Truck & Bus Corp Controller of electric vehicle
JP2009029386A (en) * 2007-07-31 2009-02-12 Nissan Motor Co Ltd Control device for hybrid vehicle
JP2010047187A (en) * 2008-08-22 2010-03-04 Toyota Motor Corp Device for controlling power transmission device for vehicle
JP2011130642A (en) * 2009-12-21 2011-06-30 Hitachi Ltd Cooling system for electric vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322401A (en) * 1994-05-19 1995-12-08 Fuji Heavy Ind Ltd Motor output limiter for electric car
JPH10169535A (en) * 1996-12-10 1998-06-23 Mitsubishi Motors Corp Starting controller for engine and hybrid electric vehicle using thereof
JP2002058113A (en) * 2000-08-07 2002-02-22 Toyota Motor Corp Power-outputting apparatus and its control method
JP2005039989A (en) * 2003-07-02 2005-02-10 Toyota Motor Corp Output management device and electric automobile having the same
JP2005045861A (en) * 2003-07-22 2005-02-17 Toyota Motor Corp Power output device, method for controlling the same and automobile
JP2007236109A (en) * 2006-03-01 2007-09-13 Mitsubishi Fuso Truck & Bus Corp Controller of electric vehicle
JP2009029386A (en) * 2007-07-31 2009-02-12 Nissan Motor Co Ltd Control device for hybrid vehicle
JP2010047187A (en) * 2008-08-22 2010-03-04 Toyota Motor Corp Device for controlling power transmission device for vehicle
JP2011130642A (en) * 2009-12-21 2011-06-30 Hitachi Ltd Cooling system for electric vehicle

Also Published As

Publication number Publication date
JP2014101051A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
KR101466460B1 (en) Engine start control device for a hybrid vehicle
JP4798154B2 (en) Control device for hybrid vehicle
JP5728996B2 (en) Engine starter
KR101297020B1 (en) Control apparatus for hybrid vehicle
JP5569654B2 (en) Control device for hybrid vehicle
JP5880735B2 (en) Control device for hybrid vehicle
JP4862624B2 (en) Control device for hybrid vehicle
JP6015774B2 (en) Control device for hybrid vehicle
KR20100109421A (en) Controlling apparatus of hybrid vehicle
JP2011079478A (en) Controller for hybrid vehicle
JP5975115B2 (en) Control device for hybrid vehicle
MX2014002567A (en) Hybrid vehicle control apparatus.
JP5973710B2 (en) Control device for hybrid vehicle
KR20140010191A (en) Control device for hybrid vehicle
JP6485292B2 (en) Electric vehicle power control method and power control apparatus
WO2014103551A1 (en) Hybrid vehicle control device
JP5212199B2 (en) Clutch control device for hybrid vehicle
JP2010143448A (en) Control device for hybrid vehicle
US20140088813A1 (en) Control device
JP5765426B2 (en) Vehicle control system
JP6015773B2 (en) Control device for hybrid vehicle
WO2014080721A1 (en) Hybrid vehicle control device
JP6705403B2 (en) Vehicle control device
JP2013155605A (en) Engine control device
JP5338473B2 (en) Engine start control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857410

Country of ref document: EP

Kind code of ref document: A1