WO2014080677A1 - 構造体及び構造体の剥離検出方法 - Google Patents

構造体及び構造体の剥離検出方法 Download PDF

Info

Publication number
WO2014080677A1
WO2014080677A1 PCT/JP2013/073993 JP2013073993W WO2014080677A1 WO 2014080677 A1 WO2014080677 A1 WO 2014080677A1 JP 2013073993 W JP2013073993 W JP 2013073993W WO 2014080677 A1 WO2014080677 A1 WO 2014080677A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
protrusion
peeling
distortion
load
Prior art date
Application number
PCT/JP2013/073993
Other languages
English (en)
French (fr)
Inventor
齋藤 望
孝志 鎗
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2014080677A1 publication Critical patent/WO2014080677A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/086Details about the embedment of the optical fiber within the DUT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0083Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by measuring variation of impedance, e.g. resistance, capacitance, induction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating

Definitions

  • This invention relates to the structure which can detect the peeling damage of an adhesion part with high precision, and the method of detecting the peeling damage in the adhesion part of the said structure.
  • bolt bonding and adhesive bonding have been used to bond structural members together.
  • the adhesive bonding is advantageous because a member such as a fastener is unnecessary.
  • Patent Document 1 there has been proposed a method for detecting separation of an adhesive portion using an optical fiber sensor.
  • an optical fiber sensor is fixed to two members bonded with an adhesive.
  • An optical pulse is input from the end of the optical fiber sensor, strain is measured from the change in scattered light, and the occurrence of separation is detected based on the strain difference between the two optical fiber sensors.
  • the present invention relates to a structure having a shape that can easily detect peeling damage at an adhesive portion, and a peeling detection method that can detect peeling damage at an adhesive portion with high accuracy.
  • the first member and the second member are bonded so as to form an adhesive surface having a plurality of protrusions at one end of the first member, and the protrusions of the second member
  • the strain measuring instrument is installed so that it extends along the direction in which the adhesive surface extends.
  • the one end of the first member is processed into a shape having a plurality of the protrusions.
  • Another aspect of the present invention is a method for detecting separation of the structure on the adhesion surface, wherein a strain generated in the structure is detected while a load is applied to the structure. And a step of acquiring a strain distribution from the detected strain, and a step of detecting presence or absence of peeling of the adhesive surface of the protrusion or a break of the adhesive surface based on the change of the strain distribution; It is the peeling detection method of the structure containing this.
  • the method may further include a step of detecting breakage of the adhesive surface.
  • the end of one member may be an adhesive surface having a protrusion in the in-plane direction, thereby limiting the occurrence of peeling damage to the protrusion at the tip of the protrusion. it can.
  • the strain at the installation position of the strain measuring instrument is measured, and the strain distribution is acquired. Then, by evaluating the change in strain distribution at the position corresponding to the protrusion, it is possible to detect peeling damage or breakage of the bonded portion with high accuracy.
  • the peeling of the adhesive portion generated from the tip of the protrusion gradually progresses. For this reason, sudden destruction can be prevented, and the soundness of the bonded portion can be evaluated to determine the presence or absence of repair, and sufficient time can be secured until repair is performed.
  • the strain detector is provided only on the second member. Since there is no need to install sensors on the two members as in the prior art, the labor of installation is reduced.
  • the protruding portion has a shape in which the width increases from the distal end portion to the root portion of the protruding portion, the progress rate of peeling is suppressed. Since there is no rapid progress of peeling damage, peeling evaluation and repair can be carried out with a margin before breakage occurs.
  • the strain difference between the bonded portion and the peeled portion can be increased.
  • the amount of change in strain at the position corresponding to the protrusion is increased when the adhesive part is peeled off, so that the detection accuracy of the peel can be improved.
  • the strain measuring instrument is bonded to the surface of the second member or embedded in the second member. By doing so, the strain generated in the structure is reliably transmitted to the strain measuring instrument.
  • the present invention it is possible to reduce the trouble of installing the strain measuring instrument and improve the detection accuracy of the presence or absence of peeling.
  • the separation progress rate can be slowed by limiting the separation occurrence location of the adhesive portion, it is possible to prevent sudden breakage and to ensure a sufficient time from separation detection to repair.
  • FIG. 1 is a schematic view illustrating an embodiment of a structure according to the present invention.
  • FIG. 1 illustrates a portion of a structure.
  • the structure 1 is, for example, an aircraft, an automobile, a windmill blade, or the like.
  • the structure 1 includes a first member 2 and a second member 3.
  • the first member 2 and the second member 3 are made of a fiber reinforced resin-based composite material reinforced with carbon fiber or glass fiber, or a metal material such as an aluminum alloy.
  • the first member 2 has a plurality of protrusions 4 at one end.
  • the protrusion 4 has a wave shape whose width increases from the tip 4a toward the root 4b.
  • the protrusion 4 protrudes in the same plane as the bonding surface 5 between the first member 2 and the second member 3.
  • the period of the corrugated protrusions (the distance between the apexes of the protrusions) is designed to be at least 1/2 of the spatial resolution of the strain measuring instrument described later.
  • the bonding surface 5 has a plurality of corrugated protrusions at one end of the first member 2. In the present embodiment, it is preferable that all the surfaces where the first member 2 and the second member 3 are in contact with each other are bonded.
  • the type of the adhesive is not particularly limited, and for example, an epoxy resin adhesive can be used.
  • FIG. 2 is a schematic diagram illustrating another embodiment of the structure.
  • a square protrusion 14 is provided at one end of the first member 12.
  • a trough 16 is provided between adjacent protrusions 14.
  • the period of the square-shaped protrusions (the total width of one protrusion and one valley in FIG. 2) is designed to be 1 ⁇ 2 or more of the spatial resolution of the strain measuring instrument described later.
  • the first member 12 and the second member 13 are bonded to each other at least at the protrusion 14.
  • FIG. 3 is a schematic diagram illustrating another embodiment of the structure.
  • a trapezoidal protrusion 24 is provided at one end of the first member 22.
  • the width of the trapezoidal protrusion 24 increases from the tip 24a toward the root 24b.
  • a trough 26 may be provided between the protrusions 24, or there may be no trough.
  • the period of the trapezoidal protrusion (the total width of one protrusion and one valley in FIG. 3 or the width of one protrusion when there is no valley) is 1 of the spatial resolution of the strain measuring instrument described later. Designed to be / 2 or more. Similar to the example of FIG. 1, the first member 22 and the second member 23 are bonded to each other at least at the protrusion 24.
  • FIG. 4 is a schematic diagram illustrating another embodiment of the structure.
  • the protrusion 34 of the structure 31 in FIG. 4 is provided with a protrusion 34 provided with stepped irregularities.
  • the stepped protrusion 34 increases in width from the tip 34a toward the root 34b.
  • a plurality of stepped protrusions 34 are arranged at one end of the first member 32.
  • a trough may be provided between the protrusions 34, or there may be no trough.
  • the number of projections and depressions (the number of steps) of the protrusion 34 is not particularly limited.
  • the period of the stepped protrusion (the total width of one protrusion and one valley in FIG. 4 or the width of one protrusion when there is no valley) is 1 of the spatial resolution of the strain measuring instrument described later. Designed to be / 2 or more. Similar to the example of FIG. 1, the first member 32 and the second member 33 are bonded to each other at least at the protrusion 34.
  • FIG. 5 is a schematic diagram illustrating another embodiment of the structure.
  • one end portion of the first member 42 is linear.
  • the first member 42 and the second member 43 are bonded so that the bonding surface 45 has a plurality of protruding shapes.
  • the protrusion shape of the bonding surface 45 is corrugated, but may be a square shape, a trapezoid shape, a step shape, or the like described above.
  • a strain measuring instrument 7 is installed on the second member 3.
  • the strain measuring instrument 7 is installed in the vicinity of the protrusion 4 of the first member 2 at a predetermined interval.
  • “near” is within 30 mm from the tip of the protrusion 4.
  • the strain measuring instrument 7 may be adhered on the surface of the second member 3 or may be embedded in the second member 3.
  • the distortion measuring instrument 7 is connected to a distortion evaluation unit (not shown).
  • the distortion evaluation unit is, for example, a computer.
  • the strain measuring instrument 7 is installed so as to extend along the direction in which the bonding surface 5 extends.
  • the strain measuring instrument 7 is arranged along the direction in which the plurality of protrusions 4 are arranged (for example, in a direction substantially parallel to the direction in which the protrusions 4 are arranged).
  • a load is applied in the direction in which the protrusion 4 protrudes. For this reason, the strain measuring instrument 7 is installed along the direction in which the plurality of protrusions 4 are arranged.
  • the strain measuring instrument 7 is specifically an optical fiber sensor or a strain gauge.
  • FIG. 1 shows an example in which an optical fiber sensor is used as the strain measuring instrument 7, and one optical fiber sensor is installed so as to extend in a direction substantially perpendicular to the load direction.
  • a strain gauge is used as the strain measuring instrument 7, a plurality of strain gauges are arranged and installed in a direction substantially perpendicular to the load direction.
  • the strain measuring instrument is omitted, but it is installed in the same form as in FIG.
  • peeling damage occurs on the bonding surface 5.
  • the peeling damage starts from the tip of the protrusion 4. Rigidity decreases at the peeled location. Thereby, compressive strain and tensile strain are generated around the peeling damage of the structure 1.
  • the strain generated in the peeling damage part is propagated to the strain measuring instrument 7 near the peeling damage part.
  • distortion occurs in the distortion measuring instrument 7.
  • the distortion generated in the distortion measuring instrument 7 is detected by the distortion evaluation unit. That is, the strain evaluation unit detects the strain of the structure 1 in the vicinity of the bonded portion where peeling damage has occurred via the strain measuring instrument 7.
  • a distortion evaluation part evaluates the presence or absence of the peeling damage of an adhesion part based on the detected distortion.
  • the distortion evaluation unit acquires in advance the position corresponding to the protrusion 4 in the position information of the distortion measuring instrument.
  • the distortion evaluation unit intermittently detects distortion generated in the distortion measuring instrument.
  • the strain evaluation unit acquires a strain distribution at a position corresponding to the protrusion 4.
  • the strain evaluation unit acquires a strain distribution every predetermined time, and monitors a time change of the strain distribution.
  • the strain evaluation unit detects the occurrence of peeling damage or breakage of the bonded portion from the change in strain distribution.
  • FIG. 6 is a schematic view of a specimen used for the test. 6A is a top view, and FIG. 6B is a cross-sectional view taken along line AA ′ in FIG. 6A.
  • a plurality of protrusions 54 are provided at one end portion of the first member 52 located at the center of the specimen 51.
  • the plurality of protrusions 54 are arranged in the horizontal direction on the paper surface.
  • the shape of the protrusion 54 was a wave shape.
  • a peeling damage (pre-crack) 58 in which the first member 52 and the second member 53 are not bonded is introduced at the tip of one protrusion 54.
  • the contact surface between the first member 52 and the second member 53 is bonded by an adhesive other than the pre-crack 58.
  • one optical fiber sensor 57 is installed as a strain measuring instrument.
  • the optical fiber sensor 57 is a single mode fiber having a clad diameter of 125 ⁇ m, and is bonded to the second member 53 with an epoxy adhesive. A known method is applied for bonding the optical fiber sensor 57.
  • the optical fiber sensor 57 extends in the horizontal direction on the paper surface. The distance between the tip of the protrusion 54 and the optical fiber sensor is 5 mm.
  • a tensile load was applied to the specimen 51 of the carbon fiber composite material in a direction perpendicular to the paper surface (that is, a direction substantially orthogonal to the extending method of the optical fiber sensor 57).
  • the tensile load was applied so as to increase the following load load stepwise.
  • the distortion of the optical fiber sensor 57 was detected by the optical correlation Brillouin scattering measurement method.
  • the test conditions were as follows. Waveform projection period: 60 mm, Pre-crack protrusion length: 5mm, Applied load: 25 kN (no peeling progress), 50kN (with peeling progress), 65kN (just before break), Spatial resolution of the optical fiber sensor: 30 mm.
  • the strain of the optical fiber sensor when the peel length and the load load shown in Table 1 were applied was calculated by finite element analysis.
  • the mesh size of the optical fiber sensor in the axial direction of the optical fiber sensor was set to 2.5 mm.
  • the physical properties of each member used in the analysis are equivalent to the materials used in the test.
  • FIG. 7 and 8 are strain distributions of the optical fiber sensor in the structure provided with the corrugated protrusions.
  • FIG. 7 shows an example of actual test results
  • FIG. 8 shows calculation results by finite element analysis.
  • the horizontal axis represents the position of the optical fiber sensor (arbitrary unit)
  • the vertical axis represents the strain / load load (strain per unit load load).
  • strain / load load value is positive, tension is applied to the optical fiber sensor.
  • the vertical axis is the strain per unit load load, but the vertical axis can be expressed only by the measured strain.
  • the “exfoliation progressing portion” corresponds to the position of the protrusion 54 where the pre-crack 58 is given.
  • the maximum value of strain / load load when there is peeling progress is about 10% lower than the maximum value of strain / load load when there is no peeling progress.
  • the maximum value of strain / load load immediately before fracture is about 20% lower than the maximum value of strain / load load when there is no delamination progress.
  • Test Example 2 In Test Example 2, an experiment was performed using the same specimen as in FIG. 6 except that the shape of the protrusions was square. The test conditions were as follows. Period of square protrusion: 60 mm, Pre-crack protrusion length: 5mm, Applied load: 20 kN (no peeling progress), 50kN (with peeling progress), 60kN (just before break), Spatial resolution of the optical fiber sensor: 30 mm.
  • the strain of the optical fiber sensor when the peeling length and the load load shown in Table 2 were applied was calculated by finite element analysis.
  • the mesh size of the optical fiber sensor in the axial direction of the optical fiber sensor was set to 2.5 mm.
  • the physical properties of each member used in the analysis are equivalent to the materials used in the test.
  • FIG. 9 and 10 are strain distributions of the optical fiber sensor in the structure provided with the square-shaped protrusions.
  • FIG. 9 shows an example of actual test results
  • FIG. 10 shows calculation results by finite element analysis.
  • the horizontal axis represents the position (arbitrary unit) of the optical fiber sensor
  • the vertical axis represents the strain / load load. When the strain / load load value is positive, tension is applied to the optical fiber sensor.
  • FIG. 10 shows the data processing that averages the distortion calculated from the analysis in the range of 30 mm.
  • Test Example 2 has the same tendency as Test Example 1.
  • the maximum value of strain / load when there is peeling progress is 40% lower than the maximum value of strain / load when there is no peeling progress.
  • the maximum value of strain / load load immediately before fracture is 100% lower than the maximum value of strain / load load when there is no progress of peeling.
  • FIG. 11 shows an embodiment in which a strain measuring instrument (optical fiber sensor) is installed in an aircraft.
  • the main wing 101, the main wing mounting portion 102, and the pressure partition wall portion 103 are structures in which members are bonded so as to form an adhesive surface having a plurality of protrusions, as illustrated in FIGS.
  • the optical fiber sensor 110 is disposed as a continuous wiring to the main wing 101, the main wing mounting portion 102, the pressure bulkhead portion 103, and the fuselage 104 of the aircraft body 100.
  • the arrangement pattern of the optical fiber sensor 110 is not limited to FIG.
  • the optical fiber sensor 110 is connected to the measurement / diagnosis apparatus 105.
  • the measurement diagnostic apparatus 105 includes a distortion evaluation unit.
  • the distortion evaluation unit of the measurement / diagnosis apparatus 105 measures the distortion generated in each part of the actual machine in operation as the distortion of the optical fiber sensor 110.
  • the distortion evaluation unit of the measurement / diagnosis apparatus 105 acquires a distortion distribution based on the measured distortion. Strain measurement and strain distribution acquisition are performed at predetermined time intervals. At this time, the distortion evaluation unit of the measurement / diagnosis apparatus 105 acquires a distortion distribution as an evaluation reference.
  • the strain distribution as an evaluation criterion is a strain distribution under the condition that there is no progress of peeling at each part and the strain is small.
  • the distortion evaluation unit of the measurement / diagnosis apparatus 105 monitors temporal changes in the strain distribution acquired at predetermined time intervals.
  • the distortion evaluation unit of the measurement / diagnosis apparatus 105 compares the distortion distribution acquired at predetermined time intervals with the distortion distribution serving as the evaluation reference at the same position.
  • the measurement / diagnosis apparatus 105 generates peeling damage on a member that is a structure having a protrusion at a position corresponding to the distribution top. And detecting breakage of the bonded portion.
  • the test using the specimen described above was carried out, and the amount of strain change (first amount of change) with respect to the strain distribution of the evaluation standard at the top of the distribution when peeling damage occurred, and fracture occurred.
  • a distortion change amount (second change amount) with respect to the strain distribution of the evaluation reference at the top of the distribution is acquired.
  • the first change amount is ⁇ 10%
  • the second change amount is ⁇ 20%.
  • the first change amount and the second change amount are stored in the distortion evaluation unit of the measurement diagnostic apparatus 105.
  • the distortion evaluation unit of the measurement / diagnosis apparatus 105 monitors the time change of the strain distribution, and acquires the amount of change in distortion at the top of the distribution of the acquired strain distribution with respect to the evaluation criterion.
  • the strain evaluation unit of the measurement / diagnosis apparatus 105 detects the peeling damage at the bonding portion at the corresponding position of the aircraft body 100 when the obtained strain change amount is equal to or less than the first change amount.
  • the distortion evaluation part of the measurement diagnostic apparatus 105 detects the fracture

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 接着部の剥離損傷を高精度で検出できる構造体及び構造体の剥離検出方法に関する。構造体(1)は、第1部材(2)の一端部において複数の突起部(4)を有する接着面(5)となるように第1部材(2)と第2部材(3)と接着され、第2部材(3)の突起部(4)近傍において、構造体(1)の接着面(5)が延在する方向に沿って歪み計測器(7)が設置されている。構造体(1)に荷重が与えられた時の構造体(1)に発生する歪みが検出され、突起部(4)に対応する位置における歪み分布が取得され、歪み分布の変化に基づいて接着部の剥離損傷の有無及び破断が判定される。

Description

構造体及び構造体の剥離検出方法
 本発明は、接着部の剥離損傷を高精度で検出することができる構造体、及び、当該構造体の接着部における剥離損傷を検出する方法に関する。
 航空機、自動車、風車翼などの構造体においては、構造部材同士を結合するためにボルト結合や接着結合が用いられてきた。特に接着結合は、ファスナ等の部材が不要であるため、有利である。
 接着部を有する構造体では、接着強度にばらつきがあった場合に、剥離などの破壊が突発的に発生する可能性がある。このため、特に航空機構造体においては、接着結合部に剥離等の突発的破壊が発生しても構造体に致命的な損傷が与えられないよう、接着結合はフェアリングや舵面などの二次構造(接合部が外れても航空機の飛行が維持される部分)や安全性に十分余裕を有した構造に対して適用されている。
 超音波探傷等の公知の検査技術では、接着部の品質を正確に評価できない。このため、特許文献1に開示されているように、光ファイバセンサを用いて接着部の剥離を検出する方法が提案されている。
 特許文献1に記載の方法では、接着剤で接着された2つの部材に光ファイバセンサが固定されている。光ファイバセンサの端部から光パルスを入力し、散乱光の変化から歪みを測定して、2つの光ファイバセンサの歪み差に基づいて剥離の発生が検出される。
特開2001-21384号公報
 引用文献1の方法では歪み差により剥離を検知するために、光ファイバセンサを2か所に取り付ける必要があるため、設置に手間がかかる。
 また、接着部に剥離が発生しない場合であっても、2つの部材に生じる歪みは同等ではない。接着部の端部が最も破壊の起点となり得るが、特許文献1に示される部材のように端部が直線状になって接着されている場合には、剥離によって生じる部材の歪みが光ファイバセンサに伝播しにくい。このため、特許文献1の方法では剥離が発生していない初期状態を特定することが困難であるために、剥離発生を高い精度で検知することが困難であった。
 特許文献1に例示される構造では、光ファイバセンサを用いて歪みを計測している間に接着部に突発的破壊が発生する可能性がある。このため、突発的破壊が発生する場合は、接着部の健全性評価を行い、評価結果に基づいて修理を行うまでの時間的余裕がなかった。
 本発明は、接着部の剥離損傷を検出しやすい形状の構造体、及び、接着部の剥離損傷を高精度で検出することが可能である剥離検出方法に関する。
 本発明の一態様は、第1部材と第2部材とが、前記第1部材の一の端部において複数の突起部を有する接着面となるように接着され、前記第2部材の前記突起部の近傍において、前記接着面が延在する方向に沿って延在するように、歪み計測器が設置される構造体である。
 上記態様において、前記第1部材の前記一端部が、複数の前記突起部を有する形状に加工されていることが好ましい。
 本発明の別の態様は、上記の構造体の前記接着面における剥離を検出する方法であって、前記構造体に荷重が負荷されている間に前記構造体に発生する歪みが検出される工程と、前記検出された歪みから歪み分布が取得される工程と、前記歪み分布の変化に基づいて、前記突起部の前記接着面の剥離の有無または前記接着面の破断が検出される工程と、を含む構造体の剥離検出方法である。
 上記剥離検出方法において、前記歪み分布から、前記突起部に対応する位置の歪みの変化量が取得される工程と、前記歪みの変化量に基づいて、前記突起部の前記接着面の剥離の有無または前記接着面の破断が検出される工程と、を更に含んでも良い。
 2つの部材を接着させた構造体において、一方の部材の端部を面内方向に突起部を有する接着面とすることにより、接着部の剥離損傷の発生個所を突起部先端に限定することができる。構造体の接着部の剥離を判断するに当たっては、歪み計測器の設置位置における歪みが計測され、歪み分布が取得される。そして、突起部に対応する位置での歪み分布の変化を評価することによって、接着部の剥離損傷や破断を高精度で検出することができる。
 本発明の構造体では突起部先端から発生する接着部の剥離は徐々に進展する。このため、突発的な破壊を防止することができ、接着部の健全性を評価して修理の有無を判断し、修理を行うまで十分な時間を確保することができる。
 また本発明では第2部材のみに歪み検出器が設けられる。従来技術のように2つの部材にそれぞれセンサを設置する必要が無いので、設置の手間が軽減される。
 上記態様において、前記突起部が前記突起部の先端部から根元部に向かって幅が増大する形状を有すると、剥離の進展速度が抑制される。剥離損傷の急激な進展がない為、破壊が発生する前に余裕を持って剥離評価及び修理が実施できる。
 上記態様において、前記突起部が方形を有すると、接着部分と剥離部分との歪み差を大きくすることができる。方形の突起の場合は接着部の剥離が発生する際に突起部に対応する位置での歪みの変化量が大きくなるので、剥離の検出精度を向上させることができる。
 上記態様において、前記歪み計測器は、前記第2部材の表面に接着されている、または、前記第2部材中に埋設されていることが好ましい。こうすることにより、構造体に発生した歪みが確実に歪み計測器に伝播される。
 本発明によれば、歪み計測器の設置の手間が軽減されるとともに、剥離の有無の検出精度を向上させることができる。また、接着部の剥離発生個所を限定して剥離進展速度を遅くすることができるため、突発的な破壊を防止するとともに、剥離検出から修理までの時間を十分に確保することができる。
構造体の一実施形態を説明する概略図である。 構造体の別の実施形態を説明する概略図である。 構造体の別の実施形態を説明する概略図である。 構造体の別の実施形態を説明する概略図である。 構造体の別の実施形態を説明する概略図である。 剥離評価試験に用いた供試体の概略図である。 波形形状の突起部を設けた構造体における光ファイバセンサの歪み分布の試験結果である。 波形形状の突起部を設けた構造体における単位負荷荷重当たりの光ファイバセンサの歪み分布の有限要素解析結果である。 方形形状の突起部を設けた構造体における単位負荷荷重当たりの光ファイバセンサの歪み分布の試験結果である。 方形形状の突起部を設けた構造体における単位負荷荷重当たりの光ファイバセンサの歪み分布の有限要素解析結果である。 航空機に歪み計測器を設置する実施例である。
 図1は、本発明に係る構造体の一実施形態を説明する概略図である。図1は、構造体の一部分を図示している。
 構造体1は、例えば航空機、自動車、風車翼などとされる。
 構造体1は、第1部材2と第2部材3とで構成される。第1部材2及び第2部材3は、炭素繊維やガラス繊維などで強化された繊維強化樹脂基複合材料や、アルミ合金などの金属材料からなる。
 第1部材2は、一の端部に複数の突起部4を有する。図1では突起部4は、先端部4aから根元部4bに向かって幅が増大する波型形状とされる。突起部4は、第1部材2と第2部材3との接着面5と同じ面内に突出する。波形形状の突起部の周期(突起部の頂点間の距離)は、後述する歪み計測器の空間分解能の1/2以上となるように設計される。
 少なくとも突起部4において、第1部材2と第2部材3とが接着されている。従って、接着面5は、第1部材2の一端部において複数の波型の突起形状となる。なお、本実施形態においては、第1部材2と第2部材3とが接触する面の全てが接着されていることが好ましい。接着剤の種類は特に限定されず、例えばエポキシ樹脂系の接着剤が使用可能である。
 図2は、構造体の別の実施形態を説明する概略図である。図2の構造体11では、第1部材12の一の端部に方形の突起部14が設けられる。隣接する突起部14の間に谷部16が設けられる。方形形状の突起部の周期(図2において1つの突起部と1つの谷部との合計幅)は、後述する歪み計測器の空間分解能の1/2以上となるように設計される。
 図1の例と同様に、少なくとも突起部14において第1部材12と第2部材13とが接着されている。
 図3は、構造体の別の実施形態を説明する概略図である。図3の構造体21では、第1部材22の一の端部に台形の突起部24が設けられる。台形の突起部24は、先端部24aから根元部24bに向かって幅が増大している。突起部24の間に谷部26が設けられても良いし、谷部が無くても良い。台形形状の突起部の周期(図3において1つの突起部と1つの谷部との合計幅、谷部が無い場合は1つの突起部の幅)は、後述する歪み計測器の空間分解能の1/2以上となるように設計される。
 図1の例と同様に、少なくとも突起部24において第1部材22と第2部材23とが接着されている。
 図4は、構造体の別の実施形態を説明する概略図である。図4の構造体31の突起部34は、階段状の凹凸が設けられた突起部34が設けられる。階段状の突起部34は、先端部34aから根元部34bに向かって幅が増大する。階段状の突起部34は、第1部材32の一端部に複数配列されて設けられる。突起部34の間に谷部が設けられても良いし、谷部が無くても良い。突起部34の凹凸の数(段数)は特に制限されない。階段形状の突起部の周期(図4において1つの突起部と1つの谷部との合計幅、谷部が無い場合は1つの突起部の幅)は、後述する歪み計測器の空間分解能の1/2以上となるように設計される。
 図1の例と同様に、少なくとも突起部34において第1部材32と第2部材33とが接着されている。
 図5は、構造体の別の実施形態を説明する概略図である。図5の構造体41は、第1部材42の一端部が直線状となっている。当該一端部で、接着面45が複数の突起形状を有するように、第1部材42と第2部材43とが接着されている。図5では接着面45の突起形状を波形としたが、上記で説明した方形、台形、階段状等としても良い。
 図1に示すように、第2部材3に歪み計測器7が設置される。歪み計測器7は、第1部材2の突起部4の近傍に、所定の間隔で離間して設置される。ここでの「近傍」とは、突起部4の先端から30mm以内とされる。歪み計測器7は、第2部材3の表面上に接着されても良いし、第2部材3の内部に埋設されていても良い。歪み計測器7は、歪み評価部(不図示)に接続される。歪み評価部は、例えばコンピュータとされる。
 歪み計測器7は、接着面5が延在する方向に沿って延在するように設置される。図1では、複数の突起部4が配列する方向に沿って(例えば、突起部4が配列する方向と略平行になる方向に)、歪み計測器7が配置されている。図1の構造体1においては、突起部4が突出する方向に荷重が負荷される。このため、歪み計測器7は複数の突起部4が配列する方向に沿って設置されている。
 歪み計測器7は、具体的に光ファイバセンサまたは歪みゲージとされる。図1は歪み計測器7として光ファイバセンサを用いる例であり、1本の光ファイバセンサが荷重負荷方向と略垂直な方向に延在するように設置される。歪み計測器7として歪みゲージを用いる場合、複数の歪みゲージが荷重負荷方向と略垂直な方向に配列されて設置される。
 なお、図2乃至図5では歪み計測器は省略されているが、図1と同様の形態で設置される。
 本実施形態の構造体において接着部の剥離を検出する工程の概略を、図1を用いて以下で説明する。
 上述のように、突起部4において、第1部材2と第2部材3とが接着されている。接着面の剥離損傷が発生していない場合、接着部を含む構造体は、部材2つ分の剛性を有している。
 歪み計測器7が延在する方向と交差する方向(例えば略直交する方向)に引張荷重や圧縮荷重が構造体1に対して負荷されると、接着面5に剥離損傷が発生する。剥離損傷は突起部4の先端から開始する。剥離した箇所では剛性が低下する。これにより、構造体1の剥離損傷の周囲に圧縮歪みや引張歪みが発生する。
 剥離損傷部分に発生した歪みは、剥離損傷部分近傍の歪み計測器7に伝播される。これにより、歪み計測器7に歪みが発生する。損傷部に近いほど、歪み計測器7に与えられる歪みが大きくなる。歪み計測器7に発生した歪みは、歪み評価部で検出される。つまり、歪み評価部は、歪み計測器7を介して剥離損傷が発生した接着部近傍の構造体1の歪みを検出する。
 歪み評価部は、検出された歪みに基づいて、接着部の剥離損傷の有無を評価する。
 歪み評価部は、歪み計測器の位置情報において突起部4に対応する位置を予め取得している。歪み評価部は、歪み計測器に発生した歪みを間欠的に検出する。歪み評価部は、突起部4に対応する位置での歪み分布を取得する。歪み評価部は、所定時間毎に歪み分布を取得し、歪み分布の時間変化をモニタリングする。歪み評価部は、歪み分布の変化から、接着部の剥離損傷の発生や破断を検出する。
 接着部の剥離及び破断を検出する工程を、具体的な試験例を用いて以下で説明する。
(試験例1)
 図6は、試験に用いた供試体の概略図である。図6(A)は上面図であり、図6(B)は図6(A)のA-A’における断面図である。
 第1部材52の供試体51中央に位置する一端部に、複数の突起部54が設けられる。この複数の突起部54は紙面水平方向に配列されている。突起部54の形状は、波形形状とした。
 供試体51は、1つの突起部54の先端に第1部材52と第2部材53とが接着されていない剥離損傷(予き裂)58が導入されている。第1部材52と第2部材53との接触面は、予き裂58以外で接着剤によって接着されている。
 第2部材53上に、歪み計測器として光ファイバセンサ57が1本設置される。光ファイバセンサ57はクラッド径125μmのシングルモードファイバであり,エポキシ系接着剤によって第2部材53に接着されている。光ファイバセンサ57の接着には、公知の方法が適用される。光ファイバセンサ57は、紙面水平方向に延在する。突起部54先端と光ファイバセンサとの距離は5mmである。
 試験では、炭素繊維複合材料の供試体51に対して紙面垂直方向(即ち、光ファイバセンサ57の延在方法と略直交する方向)に引張荷重を付与した。引張荷重は、下記負荷荷重をステップ状に増大させるように付与した。光ファイバセンサ57の歪みを、光相関ブリルアン散乱計測法により検出した。試験条件は以下の通りとした。
  波形突起部の周期:60mm、
  予き裂の突起部突出方向の長さ:5mm、
  負荷荷重:25kN(剥離進展なし)、
       50kN(剥離進展あり)、
       65kN(破断直前)、
  光ファイバセンサの空間分解能:30mm。
 上記と同形状の供試体を想定した場合について、表1に示す剥離長さ及び負荷荷重を与えた場合の光ファイバセンサの歪みを有限要素解析により計算した。解析では光ファイバセンサの光ファイバセンサ軸方向のメッシュサイズを2.5mmに設定した。解析で用いた各部材の物性は、試験で使用した材料と同等の物性である。
Figure JPOXMLDOC01-appb-T000001
 図7及び図8は、波形形状の突起部を設けた構造体における光ファイバセンサの歪み分布である。図7は実際の試験結果の一例であり、図8は有限要素解析による計算結果である。同図において、横軸は光ファイバセンサの位置(任意単位)、縦軸は歪み/負荷荷重(単位負荷荷重当たりの歪み)である。歪み/負荷荷重の値が正のとき、光ファイバセンサに引張が付与されている。なお、図7及び図8では縦軸を単位負荷荷重当たりの歪みとしたが、縦軸を計測された歪みのみで表すこともできる。
 図7及び図8中に示される「接着範囲」は、光ファイバセンサ57が第2部材53に接着されている領域を示している。「剥離進展部」は、予き裂58が与えられた突起部54の位置に相当する。
 図7における剥離進展がない場合は表1のケース1-2(予き裂が5mmであるため)に、剥離進展がある場合は表1のケース1-4、破断直前は表1のケース1-5に相当する。図8は、試験時の空間分解能と合わせるために、解析から算出した歪みを30mmの範囲で平均化するデータ処理を行った。
 図7及び図8を比較すると、歪み分布の傾向が一致している。図7及び図8を参照すると、損傷が小さいほど「剥離進展部」における分布頂部の歪み/負荷荷重の値が大きく、「接着範囲」での歪み分布が上に凸の形状である。剥離損傷が大きくなるにつれて、分布頂部の歪み/負荷荷重の値が小さくなる。図7及び図8に示すように、破断直前になると「接着範囲」での歪み分布が平坦となる。
 図7の剥離進展部において、剥離進展がある場合の歪み/負荷荷重の最大値は、剥離進展がない場合の歪み/負荷荷重の最大値に対して、約10%低下している。破断直前の歪み/負荷荷重の最大値は、剥離進展がない場合の歪み/負荷荷重の最大値に対して、約20%低下している。
(試験例2)
 試験例2では、突起部の形状を方形にした以外は図6と同じ供試体を用いて実験を行った。試験条件は以下の通りとした。
  方形突起部の周期:60mm、
  予き裂の突起部突出方向の長さ:5mm、
  負荷荷重:20kN(剥離進展なし)、
       50kN(剥離進展あり)、
       60kN(破断直前)、
  光ファイバセンサの空間分解能:30mm。
 同形状の供試体を想定した場合について、表2に示す剥離長さ及び負荷荷重を与えた場合の光ファイバセンサの歪みを有限要素解析により計算した。解析では光ファイバセンサの光ファイバセンサ軸方向のメッシュサイズを2.5mmに設定した。解析で用いた各部材の物性は、試験で使用した材料と同等の物性である。
Figure JPOXMLDOC01-appb-T000002
 図9及び図10は、方形形状の突起部を設けた構造体における光ファイバセンサの歪み分布である。図9は実際の試験結果の一例であり、図10は有限要素解析による計算結果である。同図において、横軸は光ファイバセンサの位置(任意単位)、縦軸は歪み/負荷荷重である。歪み/負荷荷重の値が正のとき、光ファイバセンサに引張が付与されている。
 図9における剥離進展がない場合は表2のケース2-2(予き裂が5mmであるため)に、剥離進展がある場合は表2のケース2-4、破断直前は表2のケース2-5に相当する。図10は、解析から算出した歪みを30mmの範囲で平均化するデータ処理を行ったものである。
 試験例2の歪み分布においても、試験例1と同様の傾向がある。図9の剥離進展部において、剥離進展がある場合の歪み/負荷荷重の最大値は、剥離進展がない場合の歪み/負荷荷重の最大値に対して、40%低下している。破断直前の歪み/負荷荷重の最大値は、剥離進展がない場合の歪み/負荷荷重の最大値に対して、100%低下している。
 上記試験例に基づくと、剥離損傷の有無の評価においては、突起部に対応する位置において剥離進展がない場合の歪みに対して歪みの値が10%低下した場合に、構造体の接着部に剥離損傷が発生したと判断される。また、剥離進展がない場合の歪みに対して歪みの値が20%低下した場合に、接着部が破断したと判断される。
 上記試験例を航空機や風車等の実機に適用するには、実機の計測対象部位に歪み計測器が設置される。図11は、航空機に歪み計測器(光ファイバセンサ)を設置する実施例である。主翼101、主翼取付部102及び圧力隔壁部103は、図1~5に例示されるように、複数の突起部を有する接着面となるように部材が接着された構造体である。
 光ファイバセンサ110は、航空機機体100の主翼101、主翼取付部102、圧力隔壁部103、胴体104に連続した配線として配設される。なお、光ファイバセンサ110の配設パターンは、図11に限定されない。
 光ファイバセンサ110は、計測診断装置105に接続される。計測診断装置105は歪み評価部を備える。
 実機の運用により、航空機機体100の各部位に種々の荷重が負荷される。これにより、主翼101、主翼取付部102及び圧力隔壁部103において、歪みが発生する。計測診断装置105の歪み評価部は、運用中の実機の各部位に発生する歪みを光ファイバセンサ110の歪みとして計測する。計測診断装置105の歪み評価部は、計測した歪みに基づいて歪み分布を取得する。歪みの計測及び歪み分布の取得は、所定時間間隔で行われる。この時、計測診断装置105の歪み評価部は、評価基準となる歪み分布を取得する。評価基準となる歪み分布は、各部位に剥離進展がなく、歪みが小さい条件での歪み分布とする。
 計測診断装置105の歪み評価部は、所定時間間隔で取得した歪み分布の時間変化をモニタリングする。計測診断装置105の歪み評価部は、所定時間間隔で取得した歪み分布と、同一位置における評価基準となる歪み分布とを比較する。計測診断装置105は、図7~図10で説明した分布頂部における歪み分布が評価基準から逸脱した場合に、その分布頂部に対応する位置において突起部を有する構造体である部材の剥離損傷の発生及び接着部の破断を検出する。
 具体的には、上述した供試体による試験が実施され、剥離損傷が発生した場合の分布頂部での評価基準の歪み分布に対する歪みの変化量(第1の変化量)、及び、破断が発生した場合の分布頂部での評価基準の歪み分布に対する歪みの変化量(第2の変化量)が取得される。上記試験例に依れば、剥離進展及び破断が発生する場合は歪みが低下するので、第1の変化量及び第2の変化量は負の値である。上述した試験例では、第1の変化量は-10%、第2の変化量は-20%である。第1の変化量及び第2の変化量は、計測診断装置105の歪み評価部に格納される。
 計測診断装置105の歪み評価部は、歪み分布の時間変化をモニタリングし、評価基準に対する取得した歪み分布の分布頂部の歪みの変化量を取得する。計測診断装置105の歪み評価部は、取得した歪み変化量が第1の変化量以下となった時、航空機機体100の対応する位置における接着部における剥離損傷を検出する。また、計測診断装置105の歪み評価部は、取得した歪み変化量が第2の変化量以下となった時、航空機機体100の対応する位置における接着部における破断を検出する。
 1,11,21,31,41 構造体
 2,12,22,32,42,52 第1部材
 3,13,23,33,43,53 第2部材
 4,14,24,34,54 突起部
 4a,24a 先端部
 4b,24b 根元部
 5,45 接着面
 16,26 谷部
 7 歪み計測器
 51 供試体
 57,110 光ファイバセンサ
 58 予き裂
 100 航空機機体
 101 主翼
 102 主翼取付部
 103 圧力隔壁部
 104 胴体
 105 計測診断装置

Claims (7)

  1.  第1部材と第2部材とが、前記第1部材の一の端部において複数の突起部を有する接着面となるように接着され、
     前記第2部材の前記突起部の近傍において、前記接着面が延在する方向に沿って延在するように、歪み計測器が設置される構造体。
  2.  前記第1部材の前記一端部が、複数の前記突起部を有する形状に加工されている請求項1に記載の構造体。
  3.  前記突起部が、前記突起部の先端部から根元部に向かって幅が増大する形状を有する請求項1または請求項2に記載の構造体。
  4.  前記突起部が方形を有する請求項1または請求項2に記載の構造体。
  5.  前記歪み計測器は、前記第2部材の表面に接着されている、または、前記第2部材中に埋設されている請求項1乃至請求項4のいずれかに記載の構造体。
  6.  請求項1乃至請求項5のいずれかに記載の構造体の前記接着面における剥離を検出する方法であって、
     前記構造体に荷重が負荷されている間に前記構造体に発生する歪みが検出される工程と、
     前記検出された歪みから歪み分布が取得される工程と、
     前記歪み分布の変化に基づいて、前記突起部の前記接着面の剥離の有無または前記接着面の破断が検出される工程と、を含む構造体の剥離検出方法。
  7.  前記歪み分布から、前記突起部に対応する位置の歪みの変化量が取得される工程と、
     前記歪みの変化量に基づいて、前記突起部の前記接着面の剥離の有無または前記接着面の破断が検出される工程と、を更に含む請求項6に記載の構造体の剥離検出方法。
PCT/JP2013/073993 2012-11-20 2013-09-05 構造体及び構造体の剥離検出方法 WO2014080677A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254477A JP6016589B2 (ja) 2012-11-20 2012-11-20 構造体及び構造体の剥離検出方法
JP2012-254477 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080677A1 true WO2014080677A1 (ja) 2014-05-30

Family

ID=50775868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073993 WO2014080677A1 (ja) 2012-11-20 2013-09-05 構造体及び構造体の剥離検出方法

Country Status (2)

Country Link
JP (1) JP6016589B2 (ja)
WO (1) WO2014080677A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183373A1 (ja) * 2016-04-18 2017-10-26 三菱重工業株式会社 はく離検出方法及びはく離検出装置
US10495608B2 (en) 2016-08-21 2019-12-03 Elbit Systems Ltd. System and method for detecting weakening of the adhesion strength between structural elements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983027B2 (ja) * 2017-10-06 2021-12-17 三菱重工業株式会社 航空機の健全性診断装置及び航空機の健全性診断方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101255A (ja) * 1995-07-07 1997-04-15 British Aerospace Plc <Baf> 接合継手分析法
JPH11218475A (ja) * 1998-01-30 1999-08-10 Ishikawajima Harima Heavy Ind Co Ltd 試験片による繊維強化複合材製プレートのシングルラップ継手部剥離発生評価方法
JP2001021384A (ja) * 1999-07-07 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> 光ファイバセンサによる剥離検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101255A (ja) * 1995-07-07 1997-04-15 British Aerospace Plc <Baf> 接合継手分析法
JPH11218475A (ja) * 1998-01-30 1999-08-10 Ishikawajima Harima Heavy Ind Co Ltd 試験片による繊維強化複合材製プレートのシングルラップ継手部剥離発生評価方法
JP2001021384A (ja) * 1999-07-07 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> 光ファイバセンサによる剥離検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKASHI YARI: "Development of a BOCDA-SHM System to Reduce Airplane Operating Costs", MITSUBISHI HEAVY INDUSTRIES TECHNICAL REVIEW, vol. 48, no. 4, December 2011 (2011-12-01) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183373A1 (ja) * 2016-04-18 2017-10-26 三菱重工業株式会社 はく離検出方法及びはく離検出装置
US10809051B2 (en) 2016-04-18 2020-10-20 Mitsubishi Heavy Industries, Ltd. Debonding detecting method and debonding detecting device
US10495608B2 (en) 2016-08-21 2019-12-03 Elbit Systems Ltd. System and method for detecting weakening of the adhesion strength between structural elements

Also Published As

Publication number Publication date
JP6016589B2 (ja) 2016-10-26
JP2014102158A (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5705862B2 (ja) 留め具の締まりばめを検証するための超音波法
CN108204876B (zh) 一种螺栓装配过程中预紧力实时检测装置与方法
US8596135B2 (en) System and method for monitoring health of structural joints
Güemes SHM technologies and applications in aircraft structures
EP0757238A1 (en) Bonded joint analysis
JP4027258B2 (ja) 接着部の剥離検査方法
JP6016589B2 (ja) 構造体及び構造体の剥離検出方法
JP2013501238A (ja) 多層構造の隠れ層の異常を検出するシステム及び方法
Davis et al. Evaluation of a distributed fibre optic strain sensing system for full-scale fatigue testing
JPS5830899A (ja) 航空機構造体の完全性評価システム
JP5865100B2 (ja) 欠陥検査装置および検査方法
JP2004212210A (ja) 締結具の剪断荷重測定方法
Aljets Acoustic emission source location in composite aircraft structures using modal analysis
JP5265152B2 (ja) Cfrp板貼付域の疲労き裂進展のモニタリング方法
CN109374682B (zh) 一种脆性材料起裂时间的监测装置
EP2472242B1 (en) Brazed joint strain shift detection method for monitoring instrument fatigue
JP6128432B2 (ja) アンカーの健全性検査装置およびアンカーの健全性検査方法
JP6267720B2 (ja) 構造材の接合部を監視するためのインジケータピン
Soejima et al. Demonstration of detectability of SHM system with FBG/PZT hybrid system in composite wing box structure
JP2007315810A (ja) 繰返し応力センサ
Zhang et al. Effect of bending modes on failure analysis of adhesively bonded composite structures
JP2010112942A (ja) 鋼構造物のモニタリング方法
Mi et al. Effect of blind-bolt repair method on vibration and compression characteristics of delaminated composite aircraft panels
Crawford et al. Modal acoustic emission analysis of mode-I and mode-II fracture of adhesively-bonded joints.
Dvořák et al. Damage detection of the adhesive layer of skin doubler specimens using SHM system based on fibre Bragg gratings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857583

Country of ref document: EP

Kind code of ref document: A1