WO2014080601A1 - プラズマcvd装置 - Google Patents
プラズマcvd装置 Download PDFInfo
- Publication number
- WO2014080601A1 WO2014080601A1 PCT/JP2013/006711 JP2013006711W WO2014080601A1 WO 2014080601 A1 WO2014080601 A1 WO 2014080601A1 JP 2013006711 W JP2013006711 W JP 2013006711W WO 2014080601 A1 WO2014080601 A1 WO 2014080601A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- plasma cvd
- space
- cvd apparatus
- magnetic field
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
- C23C16/545—Apparatus specially adapted for continuous coating for coating elongated substrates
Definitions
- the present invention relates to a plasma CVD apparatus for continuously forming a functional film on the surface of a sheet-like substrate such as a plastic film.
- a transparent SiOx coating is applied to the surface of the plastic film as a technique for imparting a barrier property against water vapor or oxygen or a scratch resistance to the plastic film.
- the technology to apply is attracting attention.
- a coating technique that can be carried out at a low temperature and has high productivity is desired.
- PVD method physical vapor deposition method
- CVD plasma enhanced chemical-chemical vapor deposition
- the vacuum deposition method is a highly productive process and is widely used mainly as a film forming technique on food packaging films.
- the barrier property against water vapor and oxygen is about 1 g / m 2 ⁇ day and the oxygen transmission rate is about 1 cc / m 2 ⁇ atm ⁇ day, which satisfies the level required for a display substrate (barrier property). It is not a thing.
- the sputtering method is a process capable of forming a dense film, and by forming a 50 to 100 nm thick SiOx film or SiON film on a substrate having a good surface condition, the detection limit of the Mocon method is 0. .02g / m 2 ⁇ day or less of water vapor permeability, it is possible to achieve 0.02cc / m 2 ⁇ atm ⁇ day or less oxygen permeability.
- high productivity cannot be obtained because the film formation rate is low.
- the film formed by the PVD method is inorganic and fragile, when a film having a thickness exceeding 100 nm is formed, the film is affected by the internal stress of the film, the difference in thermal expansion coefficient between the film and the substrate, and further, the deformation of the film Film defects and peeling problems occur due to failure to follow.
- the plasma CVD method has a film forming speed that is not as high as that of the vacuum vapor deposition method, but has an advantage of more than one digit over the sputtering method, and has a high barrier. There is a possibility that a protective film can be formed.
- a film formed by the same method has a certain degree of flexibility, so a thick film that cannot be achieved by the PVD method on a substrate such as a plastic film, for example, several hundred nm to several It has the feature that a film having a thickness of ⁇ can be formed. Therefore, the plasma CVD method is expected as a new film forming process utilizing these features.
- Patent Documents 1 to 3 There are techniques disclosed in Patent Documents 1 to 3 as techniques employing the above-described roll-to-roll plasma CVD method.
- the plasma processing apparatus disclosed in Patent Document 1 includes a chamber that can be depressurized, and means for forming plasma in the chamber.
- the means for forming the plasma includes an electrode, conductive / exposure means, and confinement means. And having.
- the electrodes form a plasma facing surface in the chamber.
- the conducting / exposing means guides electricity from the electrode to the substrate by rolling the plasma facing surface against the substrate when the substrate is in the chamber, and the substrate is continuously connected during plasma processing. The part that can be changed is exposed to plasma.
- the confinement means has a grounded shield for confining the plasma at a location adjacent to the continuously variable portion of the substrate.
- the plasma processing apparatus of Patent Document 1 further includes a transport mechanism, a film forming roll, a counter electrode, and a magnetic field generation mechanism.
- the transport mechanism transports the film continuously while continuously unwinding and winding the film as the base in the chamber evacuated to a vacuum.
- the said film-forming roll is installed in the middle of the conveyance path
- the film is formed on the film while being wound around the film-forming roll and conveyed.
- the counter electrode faces the film forming roll.
- the magnetic field generation mechanism includes magnetic pole pairs arranged on the counter electrode at regular intervals.
- a film forming material gas for example, HMDSO
- a reactive gas for example, oxygen
- a discharge gas for example, Ar
- electric power is supplied between the film forming roll and the counter electrode using an AC power source or the like, and plasma by glow discharge is generated.
- the plasma decomposes the raw material gas and forms a film such as SiOx by the decomposed raw material gas and the reactive gas on the surface of the film conveyed by the film forming roll.
- Patent Document 2 discloses a magnetron plasma CVD apparatus.
- This apparatus has a vacuum chamber and a film forming unit disposed in the vacuum chamber.
- the film forming unit has a main roller and an anode, and these are arranged to face each other.
- a magnetic circuit is provided inside the main roller.
- the substrate travels on the main roller while being wound up, and plasma is formed on the substrate to form a film.
- plasma is generated by introducing a raw material gas or the like into the space between the main roller and the anode electrode as a counter electrode, and applying power to the film forming roll.
- the region inside the main roller has an atmosphere different from the plasma generation region.
- the plasma CVD apparatus disclosed in Patent Document 3 forms a film on the surface of the base material while continuously transporting the base material in a vacuum chamber.
- This apparatus includes a pair of film forming rolls around which a base material is wound, a pair of magnetic field generating members, a plasma power source, a gas supply unit, and a vacuum exhaust unit.
- the pair of film forming rolls are arranged to face each other in parallel or substantially in parallel so that the substrates wound around the pair of film forming rolls face each other.
- the pair of magnetic field generating members are respectively provided inside the film forming rolls, and generate a magnetic field swollen near the surface of each film forming roll facing the facing space between the pair of film forming rolls.
- the plasma power source has a pair of electrodes, and the polarities of these electrodes are alternately reversed.
- the gas supply means supplies a film forming gas to the facing space.
- the evacuation means evacuates the facing space.
- Each of the magnetic field generating members has a magnetic pole, and these magnetic poles are magnetic lines of force formed by the magnetic field generating member provided on one film forming roll and magnetic lines of force formed by the magnetic field generating member provided on the other film forming roll. Are arranged so that each of the magnetic field generating members forms a substantially closed magnetic circuit.
- the electrodes of the plasma power source one electrode is connected to one film forming roll, and the other electrode is connected to the other film forming roll.
- the greatest feature of the plasma CVD apparatus described in Patent Document 3 is that a film to be deposited is arranged on both sides of a space where plasma is generated by supplying a source gas, thereby efficiently forming a film on the film. It is to be done.
- the plasma CVD apparatus described in Patent Document 3 is characterized in that there is no counter electrode as described in Patent Documents 1 and 2, that is, a counter electrode disposed in a position close to the film forming roll.
- problems that occur in the apparatuses described in Patent Documents 1 and 2 specifically, fluctuations in discharge characteristics due to the formation of a film on the counter electrode No problems such as the occurrence of film flakes and stable film formation over a long period of time.
- an insulating film is deposited on the semicircular counter electrode in contact with the plasma. This growing film covers the surface of the electrode, thereby changing the characteristics of the glow discharge.
- the plasma generating power since the plasma generating power must be supplied to the semicircular counter electrode, it is necessary not only to consume extra power but also to sufficiently cool the counter electrode that generates heat.
- the magnetron plasma CVD apparatus disclosed in Patent Document 2 has the same problem as the plasma processing apparatus disclosed in Patent Document 1. That is, an insulating film is deposited on the semicircular counter electrode in contact with the plasma, and this causes a change in glow discharge characteristics. Similarly to Patent Document 1, since power must be supplied to the semicircular counter electrode, it is necessary not only to consume extra power but also to sufficiently cool the counter electrode.
- Patent Document 3 has been proposed by the inventors of the present application in order to solve the problems associated with the deposition of a film on a counter electrode.
- This plasma CVD apparatus is effective when the film forming roll has a relatively small diameter, specifically, when the diameter is 200 mm or less.
- the area contributing to film formation by increasing the diameter of the film forming roll in order to increase the film forming speed. If it is going to expand, the space where source gas diffuses will spread, and source gas cannot be used effectively. As a result, the film formation rate is lowered contrary to the requirement for a high film formation rate.
- the present invention provides a plasma CVD apparatus that enables both the use of a large film-forming roll to achieve a high film-forming speed, the effective use of source gas, and the formation of a stable film over a long period of time.
- This plasma CVD apparatus forms a film on the surface of the base material by generating plasma in the vicinity of the surface of the sheet-like base material, and is disposed in the vacuum chamber, and A first film-forming roll and a second film-forming roll, to which both poles of an AC power supply are respectively connected, the one on which the substrate is wound, and the first film-forming roll facing the first film-forming roll and the first film-forming roll
- a first space is formed between the film roll and the first film-forming roll at a predetermined distance from the film roll, and a gas flow including a raw material gas for the coating is flowed in the first space.
- a first rectification unit that rectifies the substrate roll so as to follow the surface of the substrate wound around the film roll, and is disposed at a position facing the second film formation roll and spaced apart from the second film formation roll.
- a second rectifying unit that rectifies the flow of the gas containing the raw material gas for the coating along the surface of the substrate wound around the second film-forming roll;
- a magnetic field generator for generating a magnetic field for forming a plasma region for forming plasma in the first space and the second space to decompose the raw material gas, and a gas for supplying the raw material gas to the first space and the second space
- a supply unit and a communication unit configured to communicate the plasma formed in each of the first space and the second space by communicating the first space and the second space with each other.
- FIG. 1 is a cross-sectional front view of a plasma CVD apparatus according to a first embodiment of the present invention.
- (A) (b) And (c) is a figure which shows the output voltage waveform of the power supply used with the plasma CVD apparatus by the said 1st Embodiment. It is a perspective view which shows the structure of the magnetic field generation part of the plasma CVD apparatus by the said 1st Embodiment. It is a cross-sectional front view of the plasma CVD apparatus by the modification 1 of the said 1st Embodiment. It is a cross-sectional front view of the plasma CVD apparatus by the modification 2 of the said 1st Embodiment.
- FIG. 1 shows a plasma CVD apparatus C1 according to the first embodiment of the present invention.
- the plasma CVD apparatus C1 includes a first film forming roll 1, a second film forming roll 2, a power source 3, a vacuum chamber 4, and a magnetic field generator.
- the first and second film forming rolls 1 and 2 constitute a part of a mechanism for transporting the film (base material) W.
- the first and second film forming rolls 1 and 2 can be rotated around a given rotation center axis, and the rotation center axes are parallel to each other in the vacuum chamber 4. Is arranged.
- the power source 3 applies a pulse voltage with alternating current or polarity reversal between the first and second film forming rolls 1 and 2 to perform glow discharge.
- a pulse voltage with alternating current or polarity reversal between the first and second film forming rolls 1 and 2 to perform glow discharge.
- film formation by plasma CVD is performed on the film W.
- FIG. 1 is a cross-sectional view of the film forming rolls 1 and 2 cut along a plane orthogonal to the rotation center axis, and shows a schematic configuration of the plasma CVD apparatus C1.
- the vertical direction on the paper surface of FIG. 1 is the vertical direction of the plasma CVD device C1
- the horizontal direction on the paper surface of FIG. 1 is the horizontal direction of the plasma CVD device C1
- the following description will be made as the front-rear direction (that is, the depth and the front direction).
- the first and second film forming rolls 1 and 2 have substantially the same configuration. Both the film forming rolls 1 and 2 are made of, for example, a stainless material and have a substantially cylindrical shape having substantially the same diameter and the same length.
- the first film forming roll 1 is provided on the left side of the plasma CVD apparatus C1 on the paper surface of FIG. 1, and the second film forming roll 2 is also provided on the right side of the plasma CVD apparatus C1.
- the first and second film forming rolls 1 and 2 are arranged at the left and right positions in the vacuum chamber 4 in such a posture that the rotation center axes thereof are parallel and horizontal to each other, and are held in the vacuum chamber 4. Is done.
- the first and second film forming rolls 1 and 2 are both electrically insulated from the vacuum chamber 4 and are also electrically insulated from each other, and are connected to the common power source 3.
- the power supply 3 has a pair of electrodes, and generates a high-frequency AC voltage or a pulsed voltage capable of reversing the polarity between the electrodes.
- the first film forming roll 1 is connected to one electrode of the power source 3, and the second film forming roll 2 is connected to the other electrode of the power source 3.
- FIG. 2 illustrates the output voltage waveform of the power source 3.
- FIG. 2 illustrates a sine wave, a square wave, and an intermittent square wave, but the waveform of the output voltage is not limited to these waveforms.
- a waveform other than that shown in FIG. 2 may be used as long as it is an output voltage waveform capable of generating discharge.
- the actual waveform is slightly distorted due to the occurrence of discharge during the operation of the plasma CVD apparatus.
- the magnetic field generator has a first magnetic field generator 51 and a second magnetic field generator 52 for promoting discharge in the vicinity of the surfaces of the film forming rolls 1 and 2.
- the first magnetic field generating unit 51 is installed inside the first film forming roll 1
- the second magnetic field generating unit 52 is installed inside the second film forming roll 2.
- the first and second magnetic field generators 51 and 52 are preferably a plurality of magnet elements 5 each having a configuration as shown in FIG.
- the magnet element 5 shown in FIG. 3 has a rod-shaped magnet 5a extending in a specific direction and a magnet 5b surrounding the magnet 5a. These magnets 5a and 5b have opposite polarities.
- the magnet element 5 forms a racetrack-like magnetron magnetic field similar to that used for a planar magnetron sputter cathode, as indicated by the arrows in FIG. This racetrack-like magnetic field induces the generation of plasma preferentially at the location where the magnetic field is present, and has the role of making the plasma uniform in the longitudinal direction of the roll due to plasma drift and the like. As shown in FIG.
- the first and second magnetic field generators 51 and 52 may each include only a single magnet element 5.
- Plasma is generated in the vicinity of the surface of the sheet-like film W wound around the first and second film forming rolls 1 and 2, thereby forming a film on the surface of the film W.
- a film made of an insulating material such as PET, PEN, PES, polycarbonate, polyolefin, polyimide, paper, or the like is appropriate.
- the thickness of the film W is not particularly limited, but is preferably a thickness that enables the film W to be conveyed under reduced pressure or vacuum, for example, 5 ⁇ m to 0.5 mm.
- the plasma CVD apparatus C1 includes a transport mechanism that is stored in the vacuum chamber 4 and transports the film W.
- this transport mechanism is provided with an unwinding unit in which a film W to be supplied to the film forming rolls 1 and 2 and to be subjected to film forming processing is wound in advance. 6, a winding unit 7 that winds up the film W that has passed through the film forming rolls 1 and 2, and a film W that has been unwound from the unwinding unit 6 is applied to the first film forming roll 1.
- the vacuum chamber 4 includes a first chamber element 41 for storing upper portions of the first and second film forming rolls 1 and 2, and a lower part of the first and second film forming rolls 1 and 2. And a second chamber element 42A for storing the side portion. Both chamber elements 41, 42A are joined together.
- the first chamber element 41 stores the upper part of the transport mechanism from the position in the vicinity of the central axis of the film forming rolls 1 and 2. That is, the first chamber element 41 stores the upper portions of the first and second film forming rolls 1 and 2, the unwinding unit 6, the auxiliary rollers 8, 9 and 10, and the winding unit 7. is doing.
- the second chamber element 42A covers each of the film forming rolls 1 and 2 from below.
- the second chamber element 42 ⁇ / b> A has a shape along the outer peripheral surface of the lower portion of the first and second film forming rolls 1 and 2.
- the second chamber element 42 ⁇ / b> A includes a first rectifying unit 11 that covers the first film forming roll 1 from below along the shape of the outer peripheral surface of the first film forming roll 1, and a second film forming roll 2.
- a second rectifying unit 12 that covers the second film-forming roll 2 from the lower side along the shape of the outer peripheral surface. That is, the first rectification unit 11 is provided on the left side of the plasma CVD apparatus C1 on the paper surface of FIG. 1, and the second rectification unit 12 is also provided on the right side of the plasma CVD apparatus C1.
- the first rectifying unit 11 has an inner surface shaped along the outer peripheral surface of the first film forming roll 1.
- the inner side surface is a curved surface having a central axis that substantially coincides with the rotational central axis of the first film forming roll 1 and having a radius of curvature larger than the radius of the first film forming roll 1.
- the inner surface faces the outer peripheral surface at a predetermined interval from the outer peripheral surface of the first film forming roll 1, and the inner surface and the outer peripheral surface of the first film forming roll 1 are substantially concentric.
- straightening part 11 is arrange
- the first rectification unit 11 forms a first film formation zone 13 that is a first space between the first film formation roll 1 and the outer peripheral surface of the first film formation roll 1.
- the flow of the gas containing the raw material gas for the film supplied to the film is rectified along the surface of the film W wound around the first film forming roll 1.
- the second rectification unit 12 has substantially the same configuration as the first rectification unit 11. Specifically, the second rectification unit 12 has an inner side surface shaped along the outer peripheral surface of the second film forming roll 2.
- the inner side surface is a curved surface having a central axis that substantially coincides with the rotation central axis of the second film forming roll 2 and having a radius of curvature larger than the radius of the second film forming roll 2.
- the inner surface faces the outer peripheral surface at a predetermined interval from the outer peripheral surface of the second film forming roll 2, and the inner surface and the outer peripheral surface of the second film forming roll 2 are substantially concentric.
- the second rectification unit 12 is disposed.
- the second rectification unit 12 forms a second film formation zone 14 that is a second space between the second film formation roll 2 and the outer peripheral surface of the second film formation roll 2.
- the flow of the gas containing the raw material gas for the film supplied to is rectified along the surface of the film W wound around the second film forming roll 2.
- the first rectifying unit 11 forms the first film forming zone 13 at a position spaced apart from the first film forming roll 1 by, for example, about 30 to 100 mm, thereby providing an effective gas flow for film formation. Realize.
- the second rectification unit 12 also forms the second film formation zone 14 at a position spaced apart from the second film formation roll 2 by, for example, about 30 to 100 mm, so that an effective gas for film formation can be obtained. Realize the flow.
- FIG. 1 shows the cross-sectional shapes of the first rectification unit 11 and the second rectification unit 12, but both the first rectification unit 11 and the second rectification unit 12 have a depth and a frontward direction on the paper surface of FIG. 1. That is, it has a width in the front-rear direction of the plasma CVD apparatus C1.
- the depth and front ends of the first rectifying unit 11 and the second rectifying unit 12 are closed by front and rear walls that are the wall surfaces of the second chamber element 42A.
- the first and second magnetic field generators 51 and 52 provided in the first and second film forming rolls 1 and 2 are respectively shown in FIG.
- the racetrack-shaped magnetic field formed by 52 is disposed so as to face the first film formation zone 13 and the second film formation zone 14, respectively. Therefore, in the magnetic field generator having both the magnetic field generators 51 and 52, the plasma along the surfaces of the first and second film forming rolls 1 and 2 in the first film forming zone 13 and the second film forming zone 14 respectively. It is possible to generate, that is, to form a plasma region for decomposing the source gas.
- the plasma CVD apparatus C1 further includes a communication unit 15 as shown in FIG.
- the communication unit 15 connects the film forming zones 13 and 14 to each other by connecting adjacent portions of the first film forming zone 13 and the second film forming zone 14 that are adjacent to each other.
- the communication portion 15 is along the straight line in the vicinity of a straight line that connects the first film formation zone 13 and the second film formation zone 14 to the rotation center axes of the first and second film formation rolls 1 and 2.
- plasmas formed in each of the first film formation zone 13 and the second film formation zone 14 can communicate with each other. That is, the communication unit 15 secures a path of a discharge current flow through the plasma between the first film formation zone 13 and the second film formation zone 14.
- the first rectification unit 11 and the second rectification unit 12 of the plasma CVD apparatus C1 are configured by the walls of the vacuum chamber 4 shown in FIG.
- the first rectification unit 11 and the second rectification unit 12 are for keeping the source gas introduced into the first film formation zone 13 and the second film formation zone 14 along the surfaces of the film formation rolls 1 and 2 as much as possible.
- it is preferable that the first and second film forming rolls 1 and 2 are arranged so as to maintain a substantially constant interval from the outer peripheral surface.
- a film W to be formed is at least the first and second film forming units.
- the rolls 1 and 2 are wound so as to exist in the first film formation zone 13 and the second film formation zone 14 formed between the first and second rectification units 11 and 12, respectively.
- the first and second film forming rolls 1 and 2 rotate around the rotation center axis given to each of the first and second film forming rolls 1 and 2, thereby transporting the film W wound around these film forming rolls 1 and 2.
- the first and second film forming rolls 1 and 2 constitute a part of the transport mechanism that transports the film W continuously while continuously unwinding and winding it.
- the vacuum chamber 4 further includes a plurality of gas supply units 16 provided in the vacuum chamber 4 as shown in FIG. These gas supply units 16 are provided at positions on the first chamber element 41 side for each of the first film formation zone 13 and the second film formation zone 14. Specifically, the gas supply section is provided at a contact point between the first and second film formation zones 13 and 14 and the first chamber element 41, in other words, at both ends of the first and second film formation zones 13 and 14, respectively. 16 is provided. Each gas supply unit 16 is connected to both end portions of the first film formation zone 13 and the second film formation zone 14 in the first chamber element 41 from the first film formation zone 13 and the second film formation zone 14. A gas containing a raw material gas is supplied toward the central portion of each. The gas thus supplied is rectified by the first rectification unit 11 and the second rectification unit 12 and flows along the surface of the film W wound around the first and second film forming rolls 1 and 2.
- the gas supply unit 16 may be provided only at one position of the first film formation zone 13 and the second film formation zone 14 in the depth and front direction of the plasma CVD apparatus C1. Or the gas supply part 16 may be provided in the area
- Each gas supply unit 16 supplies not only the raw material gas but also the raw material gas (film forming raw material gas), the reactive gas, and the auxiliary gas alone or a mixture of these gases.
- the film forming raw material gas is a gas containing an element deposited as a film by reacting with the reaction gas.
- the film forming source gas is appropriately selected according to the type of film.
- source gas for forming a film containing silicon Si, HMSO, TEOS, silane, dimethylsilane, trimethylsilane, tetramethylsilane, HMDS, TMOS, etc. form a film containing carbon C.
- As the source gas for forming a film containing methane, ethane, ethylene, acetylene, etc. and as the source gas for forming a film containing Ti, titanium tetrachloride, titanium isopropanol, etc. can be selected. is there.
- the reactive gas itself does not form a film, but contains an element that is incorporated into the film as a compound by a chemical reaction with the raw material gas.
- the reactive gas for example, oxygen, ozone, etc. are selected for oxide formation, and nitrogen, ammonia, etc. are selected for nitride formation, depending on the type of film.
- the auxiliary gas is also called a carrier gas or a discharge gas, and is introduced for the purpose of generating plasma, assisting a chemical reaction, and adjusting the pressure, but does not remain in the formed film.
- the auxiliary gas can be appropriately selected from rare gases such as helium He, argon Ar, neon Ne, and xenon Xe and hydrogen.
- the vacuum chamber 4 includes a vacuum pump (not shown) as exhaust means. As shown by a downward arrow in FIG. 1, this vacuum pump has a portion farthest from the gas supply unit 16 in each of the first rectification unit 11 and the second rectification unit 12, and each rectification unit in the example shown in FIG. 1. 11 and 12 are exhausted from the bottom. This exhaust makes it possible to control the pressures of the first film formation zone 13 and the second film formation zone 14 to appropriate pressures together with the gas supply from the gas supply unit 16 described above.
- each gas supply unit 16 to the vacuum pump is restricted by the first rectification unit 11 and the second rectification unit 12 in the vicinity of the surfaces of the first and second film forming rolls 1 and 2. This is because the gas supplied from each gas supply unit 16 is wasted in a wide space away from the surfaces of the first and second film forming rolls 1 and 2 even when the film forming rolls 1 and 2 have a large diameter. It effectively deters dissipating in
- gas is supplied from each gas supply unit 16 and the pressures in the first film formation zone 13 and the second film formation zone 14 are maintained at appropriate pressures.
- glow discharge is generated on the surface of the film W wound around the surfaces of the film forming rolls 1 and 2.
- This glow discharge is selectively generated in the first film formation zone 13 and the second film formation zone 14 of the second chamber element 42A. This is because although the voltage from the power source 3 is applied to the entire surface of the film forming rolls 1 and 2, each gas supply unit 16 supplies gas exclusively to the first film forming zone 13 and the second film forming zone 14.
- first and second magnetic field generators 51 and 52 of the magnetic field generator generate magnetic fields in the vicinity of the surfaces of the first and second film forming rolls 1 and 2, and these magnetic fields facilitate the generation of the glow discharge.
- the pressure in the first film formation zone 13 and the second film formation zone 14 is in a pressure range of about 0.1 Pa to 10 Pa, the first film formation zone 13 and the second film formation zone 14 and other regions Even if gas shielding is not perfect, glow discharge can be generated around the region where the magnetic field exists.
- the pressure in the first film formation zone 13 and the second film formation zone 14 is less than the above-described pressure range, it is difficult to generate a discharge in a region where a magnetic field exists.
- the discharge voltage from the power source 3 to the first and second film forming rolls 1 and 2 preferably has a peak value in the range of several hundred volts to 2,000 volts.
- first and second film forming rolls 1 and 2 are respectively connected to both electrodes of the power source 3, when a negative voltage is applied to one of the film forming rolls 1 and 2, a positive voltage is always applied to the other. Is applied. As a result, the current flows from one film forming roll of the film forming rolls 1 and 2 to the other film forming roll through the opening communicating with the plasma, and this continues while being reversed at a high frequency.
- the film W is wound around the surfaces of the first and second film forming rolls 1 and 2, and the film W is conveyed, while the film W is transported. It is possible to form a film on the film W on the first and second film forming rolls 1 and 2 by generating glow discharge on the film forming zone 13 and the second film forming zone 14 side. Furthermore, since the first and second film forming rolls 1 and 2 are used as electrodes for generating glow discharge, no further electrode for maintaining the discharge is required.
- the film W exists in the area
- the gas introduced into the first film formation zone 13 and the second film formation zone 14 is the first along the surfaces of the first and second film formation rolls 1 and 2. After flowing through the film formation zone 13 and the second film formation zone 14 and being decomposed by glow discharge, it is exhausted by a vacuum pump.
- a vacuum pump After flowing through the film formation zone 13 and the second film formation zone 14 and being decomposed by glow discharge, it is exhausted by a vacuum pump.
- the plasma CVD apparatus C1 it is possible to increase the diameter of the film-forming rolls 1 and 2, and by increasing the diameter, the area of the film W that is exposed to the plasma for film formation is expanded. It is possible to configure a highly productive device.
- the source gas also flows in the vicinity of the surfaces of the first rectification unit 11 and the second rectification unit 12, deposition of a film on the first rectification unit 11 and the second rectification unit 12 occurs, but the first rectification unit 11 and the 2nd rectification
- the film attached to the first rectifying unit 11 and the second rectifying unit 12 has a low strength, so that it does not easily scatter as flakes and is easy to clean. And since the heat load to the 1st rectification
- the communication portion 15, which is a passage connecting the first film formation zone 13 and the second film formation zone 14, is a film (substrate) to be formed with respect to a part of the first and second film formation zones 13 and 14. 1 has an opening that extends over the entire width direction of W, and the size of the opening along the traveling direction of the film W, that is, the vertical size in FIG. Is preferred.
- the communication portion 15 may be an aggregate of a plurality of passages that are dispersedly arranged along the width direction of the film W.
- the area of the opening of the communication part 15 is 1/3 or less, preferably 1/5 or less with respect to the area of the plasma generation region in the vicinity of the surfaces of the film forming rolls 1 and 2. This is because if the opening of the communication part 15 is too large, the rectifying effect of the first rectification part 11 and the second rectification part 12 on the gas will be reduced, while if the opening of the communication part 15 is too small, the first film formation zone 13 will be described. This is because the plasma generated in the second film formation zone 14 cannot be connected through the communication portion 15. If the opening size of the communication portion 15 is smaller than the so-called plasma sheath, it is considered that it is difficult for plasma to pass through the communication portion 15.
- the opening size of the portion 15 needs to be sufficiently larger than twice the sheath region (1 to 2 mm) observed on the surface of the film W, that is, 2 to 4 mm. Since there is no positive reason for significantly reducing the opening size of the communication part 15, the opening size of the communication part 15 is preferably at least 2 cm.
- the plasma length along the traveling direction of the film W is Since it is about 90 cm
- the opening size of the communication portion 15 along the traveling direction of the film W is preferably in the range of about 2 cm to 18 cm (30 cm at the maximum).
- the size of the opening is preferably 5 cm or more in order to ensure the necessary exhaust capability.
- FIG. 4 is a cross-sectional front view showing a plasma CVD apparatus C2 according to a first modified example (modified example 1) of the first embodiment.
- a plasma CVD apparatus C2 according to Modification 1 has a third chamber element 42B instead of the second chamber element 42A among the components of the vacuum chamber 4 of the plasma CVD apparatus C1 shown in FIG.
- the third chamber element 42B has substantially the same configuration as the first chamber element 41, and has a shape that covers both the first and second film forming rolls 1 and 2 simultaneously from below.
- the plasma CVD apparatus C2 includes a first rectifying plate 17 and a second rectifying plate 18 provided in the third chamber element 42B.
- the first rectifying plate 17 and the second rectifying plate 18 have shapes corresponding to the shapes of the first rectifying unit 11 and the second rectifying unit 12 of the plasma CVD apparatus C1 shown in FIG.
- the first rectifying plate 17 is made of a plate member having a shape corresponding to the first rectifying unit 11. Specifically, the first current plate 17 has an inner surface along the outer peripheral surface of the first film forming roll 1, and the inner surface is a central axis that substantially matches the rotation center axis of the first film forming roll 1. And a cylindrical curved surface having a radius larger than the radius of the first film forming roll 1. The first rectifying plate 17 has an inner surface facing the outer peripheral surface at a predetermined interval from the outer peripheral surface of the first film forming roll 1, and the inner side surface and the outer peripheral surface of the first film forming roll 1. Are arranged at substantially concentric positions. As a result, the first current plate 17 forms the first film formation zone 13 between the first film forming roll 1 and the first film forming roll 1.
- the second rectifying plate 18 has the same configuration as the first rectifying plate 17. Specifically, the second current plate 18 has an inner surface along the outer peripheral surface of the second film forming roll 2, and the inner surface has a central axis that substantially matches the rotation center axis of the second film forming roll 2. It is a cylindrical curved surface having a radius larger than the radius of the second film forming roll 2. The second rectifying plate 18 has an inner surface facing the outer peripheral surface at a predetermined interval from the outer peripheral surface of the second film forming roll 2, and the inner side surface and the outer peripheral surface of the second film forming roll 2. Are arranged at substantially concentric positions. As a result, the second flow rectifying plate 18 forms the second film formation zone 14 between the second film formation roll 2.
- the first rectifying plate 17 has an end opposite to the second film-forming roll 2 and an end connected integrally with the first chamber element 41, and the second film-forming roll 2. And an end portion that is not connected to the first chamber element 41 and forms an opening with the first chamber element 41.
- the second rectifying plate 18 is an end opposite to the first film-forming roll 1 and is connected to the first chamber element 41 integrally with the first film-forming roll 1 side. And an end portion that is not connected to the first chamber element 41 and forms an opening with the first chamber element 41.
- the gap between the opening formed between the first rectifying plate 17 and the first chamber element 41 and the opening formed between the second rectifying plate 18 and the first chamber element 41 is shown in FIG.
- the communication part 15 equivalent to the communication part 15 to be communicated, that is, the communication part 15 that makes the first film formation zone 13 and the second film formation zone 14 communicate with each other is formed.
- the plasma CVD apparatus C ⁇ b> 2 also includes a plurality of gas supply units 16, and these gas supply units 16 are the first film formation zone 13 and the second film formation zone 14 out of the first film formation zone 14.
- the rectifying plate 17 and the second rectifying plate 18 are provided only at the end portion on the side connected to the first chamber element 41.
- the exhaust of the first film formation zone 13 and the second film formation zone 14 is not performed individually as in the apparatus C1 shown in FIG. 1, but is collectively performed by the exhaust in the third chamber element 42B. Is called. Accordingly, the gas supplied from the gas supply units 16 to the first and second film formation zones 13 and 14 flows along the surfaces of the first and second film formation rolls 1 and 2 and then passes through the communication unit 15. It flows out into the third chamber element 42B. Thereby, substantially the same effect as the plasma CVD apparatus C1 shown in FIG. 1 can be obtained.
- FIG. 5 is a cross-sectional front view showing a plasma CVD apparatus C3 according to a second modification (modification 2) of the plasma CVD apparatus C1 according to the first embodiment.
- the plasma CVD apparatus C3 according to the modified example 2 has substantially the same configuration as the plasma CVD apparatus C1 shown in FIG. 1, but differs from the plasma CVD apparatus C1 in the configuration and position of the magnetic field generator.
- the plasma CVD apparatus C3 includes the first magnetic field generation unit 51 and the second magnetic field generation part 52 as in the plasma CVD apparatus C1 shown in FIG. Not the inside of the second film forming rolls 1 and 2, but the outside of the second chamber element 42A, that is, opposite to the first and second film forming rolls 1 and 2 across the first and second film forming zones 13 and 14. Is located on the side.
- the first and second magnetic field generators 51 and 52 of the plasma CVD apparatus C3 are also the same magnets as the magnet element 5 shown in FIG. 3 as with the first and second magnetic field generators 51 and 52 shown in FIG.
- the magnet elements included in the first and second magnetic field generators 51 and 52 of the plasma CVD apparatus C3 are compared with the magnet element 5 shown in FIG.
- the polarities of the rod-shaped magnet 5a and the magnet 5b surrounding the rod-shaped magnet 5a are opposite to each other, and are disposed outside the second chamber element 42A.
- the first and second magnetic field generators 51 and 52 arranged outside the second chamber element 42A can also generate plasma in the first film formation zone 13 and the second film formation zone 14.
- a magnetic field can be generated. That is, the first and second magnetic field generators 51 and 52 shown in FIG. 5 are also formed in the first and second film forming rolls 1 and 2 in the same manner as the plasma CVD apparatus C1 shown in FIG.
- a magnetic field capable of preferentially generating plasma can be formed in a portion facing the zone 13 and the second film formation zone 14.
- FIG. 6 is a cross-sectional front view showing a plasma CVD apparatus C4 according to a third modification (modification 3) of the plasma CVD apparatus C1 according to the first embodiment.
- the plasma CVD apparatus C4 has substantially the same configuration as the plasma CVD apparatus C1 shown in FIG. 1, but includes a communication part gas supply unit 19 provided in the communication part 15, so that the plasma CVD apparatus shown in FIG. Different from C1.
- the communication part gas supply part 19 supplies a gas containing at least one of a reaction gas and an auxiliary gas to the first and second film formation zones 13 and 14 through the communication part 15.
- the plasma CVD apparatus C4 according to Modification 3 has the following two effects.
- the first effect is that contamination of the communication part 15 can be reduced.
- the reaction gas introduced near the communication portion 15 and the discharge gas, which is an auxiliary gas, form a gas flow toward the first film formation zone 13 and the second film formation zone 14, and this gas flow is the first flow.
- the source gas introduced into the film formation zone 13 and the second film formation zone 14 is prevented from flowing into the communication portion 15. As a result, it is possible to reduce film adhesion near the communication portion 15.
- the second effect is an improvement in the reaction activity of plasma CVD.
- the communication part 15 is a place where plasmas in the first film formation zone 13 and the second film formation zone 14 are connected to each other. In this communication part 15, a discharge current flows through the communication part 15 and strong plasma exists. The introduced reaction gas and discharge gas pass this strong plasma and flow into the first film formation zone 13 and the second film formation zone 14 in an activated state. Compared with the case of supplying gas directly to the membrane zone 14, a process with enhanced reactivity can be expected.
- FIG. 7 is a cross-sectional front view showing a plasma CVD apparatus C5 according to a fourth modification (modification 4) of the plasma CVD apparatus C1 according to the first embodiment.
- the plasma CVD apparatus C5 according to the modified example 4 has substantially the same configuration as the plasma CVD apparatus C1 shown in FIG. 1 except that the first film formation zone 13 and the second film formation zone 14 are exhausted through the communication portion 15. And the plasma CVD apparatus C1 shown in FIG. 1 in that the gas supply unit 16 is not provided at the end of the first film formation zone 13 and the second film formation zone 14 on the communication unit 15 side. Is different.
- FIG. 8 is a sectional front view showing a plasma CVD apparatus C5 according to a fifth modification (modification 5) of the plasma CVD apparatus C1 according to the first embodiment.
- the plasma CVD apparatus C6 according to the modified example 5 has substantially the same configuration as the plasma CVD apparatus C1 shown in FIG. 1, but instead of the communication portion 15 shown in FIG. 1, connecting means, specifically, shown in FIG. It differs from the plasma CVD apparatus C1 shown in FIG.
- the connection pipe 20 allows the first film formation zone 13 and the second film formation zone 14 to be exhausted collectively through the connection pipe 20 so that the first film formation zone 13 and the second film formation zone 14 can be exhausted. Connect the bottom of each other.
- the connecting means represented by the connecting pipe 20, that is, the means for connecting the lower portions of the film forming zones 13 and 14 also functions as a communicating portion according to the present invention.
- the communicating portion also serves as a connection to the exhaust means, but in the plasma CVD apparatus C6 shown in FIG. The difference is that the exhaust is performed from the bottom. Since the communication part is an area where the plasmas of the two zones are combined, the action of the plasma is strong in this area, and a film is easily formed on the wall surface of the communication part, but the communication part should be arranged at the lowest part of the apparatus. Makes it possible to minimize the adverse effects of the film formed on the communication part.
- the connecting pipe 20 that connects the lower portions of the first film formation zone 13 and the second film formation zone 14 may be provided continuously in the depth and front direction in the drawing of FIG. It may be provided at a plurality of positions arranged intermittently in the direction. In any case, for example, as shown in FIG. 8, it is preferable that the exhaust is performed from a substantially central portion of the connection pipe 20.
- the gas supplied from the gas supply unit 16 flows along the surfaces of the film forming rolls 1 and 2 and is exhausted, whereby the plasma CVD apparatus C1 shown in FIG. Can be expected to have almost the same effect.
- FIG. 9 is a sectional front view showing the plasma CVD apparatus C7 according to the second embodiment.
- the plasma CVD apparatus C7 includes a first unwinding unit 21A and a second winding unit 22A provided for the first film forming roll 1, and a second forming unit. Both apparatuses C1 and C7 are different by the point provided with the 2nd unwinding part 21B and 2nd winding-up part 22B which are provided about the film
- FIG. The first and second unwinding portions 21A and 21B and the first and second winding portions 22A and 22B are all disposed in the first chamber element 41.
- the first and second film forming rolls 1 and 2 can simultaneously perform film formation on two different films W.
- the apparatus C7 includes a communication unit 15 that allows the first film formation zone 13 and the second film formation zone 14 to communicate with each other, like the communication unit 15 of the plasma CVD apparatus C1 according to the first embodiment. Thereby, the path of the discharge current flow through the plasma can be ensured between the first film formation zone 13 and the second film formation zone 14.
- FIG. 10 is a sectional front view showing a plasma CVD apparatus C8 according to the third embodiment.
- the plasma CVD apparatus C8 according to the present embodiment has substantially the same configuration as the plasma CVD apparatus C1 according to the first embodiment.
- one unwound film W is continuously wound around both the first and second film forming rolls 1 and 2, and the same surface ( The film forming process is performed on one side), but the plasma CVD apparatus C8 of the third embodiment shown in FIG. 10 performs both unwinding and winding of one film W, that is, both surfaces of the film W, Films can be formed on the front and back surfaces.
- the rotation directions of the film forming rolls 1 and 2 are set to be opposite to each other, and an auxiliary roller 23 for inverting the film W being conveyed is provided.
- the auxiliary roller 23 is in the middle of the conveyance path until one film W unwound from the unwinding unit 6 is wound on the winding unit 7, and the first film forming roll 1 and the second film forming roll 2, and the film W sent from the first film forming roll 1 is inverted so that the upper surface (front surface) and the lower surface (back surface) are reversed, and then the film W is formed on the film forming roll 2. Induce.
- the auxiliary roller 23 reverses the film W so that the upper and lower surfaces of the film W that has been subjected to the film formation process on the first film formation roll 1 are reversed, and then the first film formation roll 1. Is supplied to the second film-forming roll 2 that rotates in the opposite direction. As a result, it is possible to obtain the same effect as the effect of the plasma CVD apparatus C1 according to the first embodiment while enabling the film forming process to be performed on both surfaces of the film W.
- the plasma CVD apparatus C1 can include a first deposition plate 61 and a second deposition plate 62 as shown in FIG. 1, and FIGS.
- Each plasma CVD apparatus shown can also be provided with similar first and second deposition plates.
- the first and second deposition preventing plates 61 and 62 are inner surfaces of the first and second rectifying units (first and second rectifying plates) 11 and 12, that is, the first and second film forming rolls 1 and 2, respectively. It is detachably attached to the curved surface facing and protects the inner surface.
- the first and second deposition preventing plates 61 and 62 are plate members having substantially the same curved shape as the inner surface of the first and second rectifying units 11 and 12, and the first and second rectifying units (first 1 and the second rectifying plate) 11 and 12 are mounted on the inner surface, that is, on the curved surface facing the first and second film forming rolls 1 and 2.
- the first and second adhesion preventing plates 61 and 62 protect the first and second rectifying units 11 and 12 by preventing deposition of a film on the inner surfaces of the first and second rectifying units 11 and 12. be able to. Then, it is possible to perform maintenance of these without attaching the first and second rectifying units 11 and 12 only by exchanging these adhesion preventing plates 61 and 62, and the plasma CVD apparatuses C1 to C8 can be maintained. Driving can be continued.
- the first and second deposition plates 61 and 62 may be made of a material that is not damaged or deformed by a temperature rise in the film formation process and that can easily peel off the film deposited on the surface. .
- a lightweight metal material is suitable.
- the plasma CVD apparatus it is possible to avoid the temperature of these deposition preventing plates from rising significantly while having the first and second deposition preventing plates 61 and 62.
- the temperature of the second rectifying unit does not increase, even if the first and second protective plates are attached on the inner side surfaces of the first and second rectifying units, the temperature of these protective plates significantly increases. None do. Therefore, cooling (for example, water cooling) of these adhesion prevention plates can be made unnecessary or simple.
- cooling for example, water cooling
- the gas supplied to the first film forming roll 1 and the gas supplied to the second film forming roll 2 may have the same components. Alternatively, those having different components and blending may be used.
- the gas supply unit according to the present invention includes a first gas supply unit that supplies a gas including a first source gas to the first space, and a gas that includes a second source gas different from the first source gas to the second space.
- the gas supply unit 16 (of the first film formation zone 13) provided for the first film formation zone 13 among the plurality of gas supply units 16 shown in FIG.
- Gas supply sections 16 provided at both ends supply a gas containing the first source gas to the first film formation zone 13, and gas supply sections 16 provided in the second film formation zone 14 (first When the gas supply unit 16) provided at both ends of the two film formation zones 14 supplies a gas containing a second source gas different from the first source gas to the second film formation zone 14, Wrapped around the first and second film forming rollers It is also possible to form a film having a two-layer structure on the surface of that substrate.
- the present invention is a plasma CVD that enables both the use of a large film forming roll to achieve a high film forming speed, the effective use of a source gas, and the formation of a stable film over a long period of time. Providing equipment.
- This plasma CVD apparatus forms a film on the surface of the base material by generating plasma in the vicinity of the surface of the sheet-like base material, and is disposed in the vacuum chamber, and A first film-forming roll and a second film-forming roll, to which both poles of an AC power supply are respectively connected, the one on which the substrate is wound, and the first film-forming roll facing the first film-forming roll and the first film-forming roll
- a first space is formed between the film roll and the first film-forming roll at a predetermined distance from the film roll, and a gas flow including a raw material gas for the coating is flowed in the first space.
- a first rectification unit that rectifies the substrate roll so as to follow the surface of the substrate wound around the film roll, and is disposed at a position facing the second film formation roll and spaced apart from the second film formation roll.
- a second rectifying unit that rectifies the flow of the gas containing the raw material gas for the coating along the surface of the substrate wound around the second film-forming roll;
- a magnetic field generator for generating a magnetic field for forming a plasma region for decomposing the source gas by forming plasma in the first space and the second space; and a gas for supplying the source gas to the first space and the second space
- a supply unit and a communication unit configured to communicate the plasma formed in each of the first space and the second space by communicating the first space and the second space with each other.
- the first rectification unit and the second rectification unit are arranged so that the gas flow supplied from the gas supply unit is along the surface of the substrate wound around the first and second film forming rolls, respectively.
- the gas can be prevented from diffusing to a place away from the vicinity of the surface of the film forming roll.
- This effect is particularly remarkable when a film-forming roll having a large diameter is used in order to realize a high film-forming speed, and enables the raw material gas to be used effectively.
- a film-forming roll having a large diameter is used in order to realize a high film-forming speed, and enables the raw material gas to be used effectively.
- a film-forming roll having a large diameter is used in order to realize a high film-forming speed, and enables the raw material gas to be used effectively.
- a film is not formed on the counter electrode to be insulated as in the prior art. . Therefore, it is possible to form a stable film for a long time.
- the magnetic field generator includes a first magnetic field generator that generates a first magnetic field in the first space, and a second magnetic field generator that generates a second magnetic field in the second space.
- the first magnetic field generation unit may be disposed inside the first film formation roll
- the second magnetic field generation unit may be disposed inside the second film formation roll
- the first magnetic field generation unit may be disposed.
- the generator is disposed at a position opposite to the first space across the first rectifier
- the second magnetic field generator is disposed at a position opposite to the second space across the second rectifier.
- the first and second magnetic field generators can form preferable first and second magnetic fields in the first and second spaces around the first and second film forming rolls, respectively. .
- each of the first magnetic field generation unit and the second magnetic field generation unit generate a plurality of racetrack magnetron magnetic fields.
- the racetrack magnetron magnetic field induces the generation of plasma preferentially at the location where the magnetic field exists, and can make the plasma uniform in the longitudinal direction of the roll due to plasma drift or the like.
- the plasma CVD apparatus includes a communication unit gas supply unit that is provided in the communication unit and supplies a gas containing at least one of a reaction gas and an auxiliary gas to the first space and the second space through the communication unit. It is preferable to provide further.
- the communication part gas supply part can suppress the raw material gas introduced into the first and second spaces from flowing into the communication part and reduce the adhesion of the film near the communication part. In addition, the supply of gas to the communication portion enables processing with enhanced reactivity.
- the plasma CVD apparatus may further include a vacuum exhaust pump that decompresses the interior of the vacuum chamber.
- the said vacuum exhaust pump can decompress
- a plasma CVD apparatus includes a first deposition plate that is detachably attached to a surface facing the first space among the surfaces of the first rectifying unit and protects the surface of the second rectifying unit; It is preferable to further include a second deposition plate that is detachably attached to a surface facing the second space among the surfaces of the second rectifying unit and protects the surface of the second rectifying unit.
- first and second deposition plates can effectively protect the first and second rectification units.
- maintenance of the first and second rectifying units can be easily performed by exchanging the first and second deposition preventing plates.
- the gas supply unit supplies a gas containing a first source gas to the first space and a gas containing a second source gas different from the first source gas to the second space. And a second gas supply unit.
- These first and second gas supply units make it possible to perform more various film formations using the first and second film formation rolls as compared with the case where only a single kind of gas is supplied.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Vapour Deposition (AREA)
- Plasma Technology (AREA)
Abstract
高い成膜速度を実現するための大きな成膜ロールの使用と、原料ガスの有効利用と、長時間にわたる安定した皮膜形成と、をいずれも可能とするプラズマCVD装置(C1)が提供される。この装置は、第1及び第2成膜ロール(1,2)と、真空チャンバ(4)と、第1及び第2成膜ロール(1,2)との間に第1及び第2空間(13,14)を形成し、第1及び第2空間(13,14)において原料ガスの流れを成膜ロール(1,2)に巻き掛けられた基材(W)の表面に沿うように整流する第1及び第2整流部(11,12)と、第1及び第2空間(13,14)を相互に連通させることにより両空間(13,14)で形成されるプラズマ同士を連通させる連通部(15)と、を備える。
Description
本発明は、プラスチックフィルムなどシート状の基材の表面に機能性皮膜を連続的に成膜するプラズマCVD装置に関する。
近年、プラスチックフィルムをディスプレイ基板として用いるための様々な検討の中で、当該プラスチックフィルムに水蒸気や酸素に対するバリア性、あるいは、耐擦傷性を付与する技術として、当該プラスチックフィルムの表面に透明のSiOxコーティングを施す技術が注目されている。特に、低温の状態で実施可能であり、かつ、生産性の高いコーティング技術が望まれている。
プラスチックフィルム表面へのロールツーロール式によるSiOxコーティングの技術としては、真空蒸着法やスパッタ法などの物理蒸着法(PVD法)、及びプラズマCVD(PlasmaEnhanced-Chemical Vapor Deposition)法がある。真空蒸着法は、生産性の高いプロセスであり、主に食品包装用フィルムへの成膜技術として広く用いられている。しかし、水蒸気や酸素に対するバリア性に関して、水蒸気透過率は1g/m2・day、酸素透過率は1cc/m2・atm・day程度であり、ディスプレイ基板として要求される水準(バリア性)を満たすものではない。一方、スパッタ法は、緻密な皮膜が形成可能なプロセスであり、表面状態の良い基板上に厚さ50~100nmのSiOx皮膜やSiON皮膜を成膜することで、モコン法の検出限界である0.02g/m2・day以下の水蒸気透過率、0.02cc/m2・atm・day以下の酸素透過率を達成可能である。しかし、成膜速度が低いため高い生産性を得ることができない。加えて、PVD法で形成した皮膜は無機質で脆いため、厚さ100nmを超える成膜を行うと、皮膜の内部応力、皮膜・基板間の熱膨張係数の相違、さらにはフィルムの変形に皮膜が追従できないことによる皮膜欠陥や剥離の問題が生じる。
このような物理蒸着法に対して、前記のプラズマCVD法は、その成膜速度について、真空蒸着法には及ばないもののスパッタ法に対しては1桁以上の優位性があり、且つ、高バリア性の皮膜を形成できる可能性がある。これに加え、プラズマCVD法は、同方法により成膜された皮膜がある程度の柔軟性を持つことから、プラスチックフィルムなどの基板上にPVD法では達成不可能な厚い皮膜、例えば数百nm~数μという厚みをもつ皮膜、を形成可能であるといった特長がある。従って、プラズマCVD法は、これらの特長を生かした新しい成膜プロセスとして期待されている。
上述したロールツーロール方式のプラズマCVD法を採用した技術としては、特許文献1~特許文献3に開示されたものがある。
特許文献1に開示のプラズマ処理装置は、減圧可能なチャンバと、該チャンバ内にプラズマを形成する手段とを有し、該プラズマを形成する手段は、電極と、導電/露出手段と、閉じ込め手段と、を有する。前記電極は、前記チャンバ内にプラズマ対面表面を形成する。前記導電/露出手段は、前記基体が前記チャンバ内にあるときに前記プラズマ対面表面を前記基体に対して転がり接触させることにより前記電極から基体に電気を導き、且つ、プラズマ処理中に基体の連続的変化可能部分をプラズマに露出させる。前記閉じ込め手段は、前記基体の連続的変化可能部分に隣接する位置にプラズマを閉じ込めるための接地形シールドを有する。
特許文献1のプラズマ処理装置は、さらに、搬送機構と、成膜ロールと、対向電極と、磁場発生機構と、を有する。前記搬送機構は、真空に排気された前記チャンバ内で、前記基体であるフィルムを連続的に巻き出し巻き取りながら当該フィルムを連続的に搬送する。前記成膜ロールは、当該フィルムの搬送経路の途中に設置され、電極として機能する。前記フィルムが当該成膜ロールに巻きつけられ搬送されながら当該フィルムに成膜が行われる。前記対向電極は前記成膜ロールに対向する。前記磁場発生機構は、前記対向電極に一定間隔で配置された磁極対を有する。この装置において、前記成膜ロールと前記対向電極の間に形成された空間に成膜の原料ガス(例えばHMDSO)、反応ガス(例えば酸素)、補助ガスとしての放電ガス(例えばAr)が供給され、その上で、交流電源などを用いて成膜ロールと対向電極の間に電力が供給され、グロー放電によるプラズマが生成される。このプラズマは、前記原料ガスを分解し、前記成膜ロールによって搬送される前記フィルムの表面に、分解した原料ガスと反応ガスによるSiOxなどの皮膜を形成する。
特許文献2は、マグネトロンプラズマCVD装置を開示する。この装置は、真空槽と、その内部に配置される成膜部と、を有する。成膜部は、主ローラ及び陽極を有し、これらは互いに対向して配置される。該主ローラの内部には磁気回路が設けられる。この装置では、基材が巻き取られながら該主ローラ上を走行し、この基材上にプラズマが形成されて成膜が行われる。具体的には、主ローラと対向電極であるアノード電極との間の空間への原料ガス等の導入と、成膜ロールへの電力の印加と、によりプラズマが生成される。前記成膜の際に前記磁気回路が前記プラズマにさらされないように、前記主ローラ内部の領域がプラズマ発生領域と異なる雰囲気とされている。
特許文献3に開示されるプラズマCVD装置は、真空チャンバー内で基材を連続的に搬送しながら当該基材の表面に皮膜を形成する。この装置は、基材が巻き掛けられる一対の成膜ロールと、一対の磁場発生部材と、プラズマ電源と、ガス供給手段と、真空排気手段と、を有する。前記一対の成膜ロールは、これらにそれぞれ巻き掛けられた基材同士が対向するように、互いに平行ないしほぼ平行に対向して配置される。前記一対の磁場発生部材は、前記各成膜ロールの内部にそれぞれ設けられ、前記一対の成膜ロール同士の間の対向空間に面した各成膜ロールの表面付近に膨らんだ磁場を発生させる。前記プラズマ電源は、一対の電極を有し、これらの電極の極性が交互に反転する。前記ガス供給手段は、前記対向空間に成膜ガスを供給する。前記真空排気手段は、前記対向空間を真空排気する。前記各磁場発生部材はそれぞれ磁極を有し、これらの磁極は、一方の成膜ロールに設けられた磁場発生部材が形成する磁力線と他方の成膜ロールに設けられた磁場発生部材が形成する磁力線とが互いにまたがらず、それぞれの磁場発生部材がほぼ閉じた磁気回路を形成するように、配置される。前記プラズマ電源の電極のうち、一方の電極は一方の成膜ロールに接続され、他方の電極は他方の成膜ロールに接続されている。
特許文献3に記載されるプラズマCVD装置の最大の特徴は、原料ガスの供給によりプラズマが発生する空間の両側に成膜対象のフィルムが配置され、これにより当該フィルム上に皮膜が効率的に形成されることにある。加えて、特許文献3に記載されるプラズマCVD装置は、特許文献1及び2に記載されるような対向電極、つまり、成膜ロールに近接した場所に配置される対向電極、が存在しないという特徴を有する。このため、特許文献3に記載されるプラズマCVD装置では、特許文献1及び2に記載される装置で生じる問題、具体的には、前記対向電極に皮膜が形成されることによる放電の特性の変動や皮膜フレークの発生といった問題、が生じることがなく、長時間にわたって安定的な皮膜形成が可能である。
上述の特許文献1~3に開示されるように、プラスチックフィルムなどの表面に皮膜を形成する技術として様々なプラズマCVD装置が知られているが、これらの装置にはそれぞれ下記のような問題点がある。
特許文献1に開示されるプラズマ処理装置では、半円状の対向電極においてプラズマと接する部分に絶縁性の皮膜が堆積してしまう。この成長する皮膜は電極表面を覆い、これによりグロー放電の特性を変化させる要因となる。また、当該半円状の対向電極にもプラズマ発生用の電力を供給しなくてはならないため、電源パワーを余分に消費するだけでなく、発熱する対向電極を十分に冷却する必要がある。
特許文献2に開示されるマグネトロンプラズマCVD装置も、特許文献1に開示のプラズマ処理装置と同様の問題がある。つまり、半円状の対向電極においてプラズマと接する部分に絶縁性の皮膜が堆積し、これがグロー放電の特性を変化させる要因となる。また、特許文献1と同様に、半円状の対向電極にも電力を供給しなくてはならないため、電源パワーを余分に消費するだけでなく対向電極を十分に冷却する必要がある。
特許文献3のプラズマCVD装置は、対向電極への皮膜の堆積に伴う問題点を解消する目的で、本願の発明者らによって提案されたものである。このプラズマCVD装置は、成膜ロールが比較的小径の場合、具体的にはその直径が200mm以下である場合は有効である。しかし、原料ガスが流れる領域を成膜が発生する成膜ロールの周辺に限定するのは困難であるので、成膜速度を高めるために成膜ロールの直径を大きくして成膜に寄与する面積を拡大しようとすると、原料ガスが拡散する空間が広がってしまい原料ガスを有効に利用できなくなる。その結果として、高い成膜速度の要求とは逆に成膜速度が低下してしまう。
本発明は、高い成膜速度を実現するための大きな成膜ロールの使用と、原料ガスの有効利用と、長時間にわたる安定した皮膜形成と、をいずれも可能とするプラズマCVD装置を提供することを目的とする。このプラズマCVD装置は、シート状の基材の表面近傍にプラズマを生成することで当該基材の表面に皮膜を形成するものであって、真空チャンバと、該真空チャンバ内に配置され、且つ、交流電源の両極がそれぞれ接続される第1成膜ロール及び第2成膜ロールであって、これらに前記基材が巻き掛けられるものと、前記第1成膜ロールに対向すると共に前記第1成膜ロールから所定間隔を隔てた位置に配置されて前記第1成膜ロールとの間に第1空間を形成し、前記第1空間において前記皮膜の原料ガスを含むガスの流れを前記第1成膜ロールに巻き掛けられた基材の表面に沿うように整流する第1整流部と、前記第2成膜ロールに対向すると共に前記第2成膜ロールから所定間隔を隔てた位置に配置されて前記第2成膜ロールとの間に第2空間を形成し、前記第2空間において前記皮膜の原料ガスを含むガスの流れを前記第2成膜ロールに巻き掛けられた基材の表面に沿うように整流する第2整流部と、前記第1空間及び第2空間にプラズマを形成して前記原料ガスを分解するプラズマ領域を形成するための磁場を発生させる磁場発生装置と、前記第1空間及び第2空間に原料ガスを供給するガス供給部と、前記第1空間と第2空間とを互いに連通させることにより前記第1空間及び第2空間のそれぞれで形成されるプラズマ同士を連通させる連通部と、を備える。
以下、図面を参照しながら、本発明の実施形態によるプラズマCVD装置を説明する。なお、以下に説明する各実施形態及び図面において、プラズマCVD装置における同一の構成部材には、同一の符号及び同一の名称を付すこととする。従って、同一の符号及び同一の名称が付された構成部材については、同じ説明を繰り返さない。
[第1実施形態]
図1は、本発明の第1実施形態によるプラズマCVD装置C1を示す。このプラズマCVD装置C1は、第1成膜ロール1と、第2成膜ロール2と、電源3と、真空チャンバ4と、磁場発生装置と、を備える。前記第1及び第2成膜ロール1,2は、フィルム(基材)Wを搬送する機構の一部を構成する。前記第1及び第2成膜ロール1,2は、それぞれ与えられた回転中心軸の回りを回転することが可能であり、それぞれの回転中心軸が互いに平行となるように前記真空チャンバ4内に配置されている。当該真空チャンバ4内が減圧又は真空にされた状態で、前記電源3が前記第1及び第2成膜ロール1,2同士の間に交流又は極性反転を伴うパルス電圧を印加してグロー放電を発生させることにより、前記フィルムWに対してプラズマCVDによる成膜が行われる。
図1は、本発明の第1実施形態によるプラズマCVD装置C1を示す。このプラズマCVD装置C1は、第1成膜ロール1と、第2成膜ロール2と、電源3と、真空チャンバ4と、磁場発生装置と、を備える。前記第1及び第2成膜ロール1,2は、フィルム(基材)Wを搬送する機構の一部を構成する。前記第1及び第2成膜ロール1,2は、それぞれ与えられた回転中心軸の回りを回転することが可能であり、それぞれの回転中心軸が互いに平行となるように前記真空チャンバ4内に配置されている。当該真空チャンバ4内が減圧又は真空にされた状態で、前記電源3が前記第1及び第2成膜ロール1,2同士の間に交流又は極性反転を伴うパルス電圧を印加してグロー放電を発生させることにより、前記フィルムWに対してプラズマCVDによる成膜が行われる。
図1は、前記両成膜ロール1,2の回転中心軸と直交する平面で切断したときの断面図であり、プラズマCVD装置C1の概略構成を示す。図1の紙面上での上下方向をプラズマCVD装置C1の上下方向、図1の紙面上での左右方向をプラズマCVD装置C1の左右方向、図1の紙面と直交する方向をプラズマCVD装置C1の前後方向(つまり、奥行き及び手前方向)として、以下、説明する。
前記第1及び第2成膜ロール1,2は、互いにほぼ同じ構成を有している。両成膜ロール1,2は、例えばステンレス材料で形成され、ほぼ同径及び同長の略円筒形状を有する。第1成膜ロール1は、図1の紙面上でプラズマCVD装置C1の左側の部位に設けられ、第2成膜ロール2は、同じくプラズマCVD装置C1の右側に設けられている。このように、第1及び第2成膜ロール1,2は、それぞれの回転中心軸が互いに平行且つ水平となる姿勢で前記真空チャンバ4内の左右の位置に配置され、当該真空チャンバ4に保持される。
前記第1及び第2成膜ロール1,2は、いずれも前記真空チャンバ4から電気的に絶縁され、かつ相互にも電気的に絶縁されていながら、共通の前記電源3に接続されている。電源3は一対の電極を有し、これらの電極同士の間に高周波の交流電圧、または、極性の反転が可能なパルス状の電圧を発生させる。前記第1成膜ロール1は当該電源3の一方の電極に接続され、第2成膜ロール2は当該電源3の他方の電極に接続されている。
図2は、電源3の出力電圧の波形を例示する。図2は、サイン波と方形波、および間欠的な方形波を例示しているが、前記出力電圧の波形はこれらの波形に限定されない。放電の発生が可能な出力電圧波形であれば、図2に示した波形以外の波形でもよい。実際の波形はプラズマCVD装置の動作中には放電発生により若干歪んだ形状となる。
前記磁場発生装置は、成膜ロール1,2の表面近傍での放電を促進するための第1磁場発生部51及び第2磁場発生部52を有する。前記第1磁場発生部51は前記第1成膜ロール1の内部に設置され、前記第2磁場発生部52は前記第2成膜ロール2の内部に設置される。これら第1及び第2磁場発生部51,52は、第1及び第2成膜ロール1,2が回転しても当該成膜ロール1,2と共には回転しないように、つまり、真空チャンバ4内での位置が変化しないように、固定されている。
前記各第1及び第2磁場発生部51,52としては、複数の磁石要素5であって各磁石要素5が例えば図3に示すような構成を有するものが、好適である。図3に示す磁石要素5は、特定方向に延びる棒状の磁石5aと、これを包囲する磁石5bと、を有する。これらの磁石5a,5bは互いに反対の極性を有する。この磁石要素5は、図3に矢印で示すような、プレーナーマグネトロンスパッタカソードに用いられるのと同様のレーストラック状のマグネトロン磁場を形成する。このレーストラック状の磁場は、プラズマの発生が磁場の存在箇所に優先的に起こるように誘導すると共に、プラズマのドリフト等によりプラズマをロールの長手方向に均一化する役割を有する。図1に示すように前記第1及び第2成膜ロール1,2の直径が大きい場合は、前記のように複数の磁石要素5が当該成膜ロール1,2の周方向に並べられて成膜ロール1,2の表面における放電面積を拡大することが望ましいが、第1及び第2磁場発生部51及び52はそれぞれ単一の磁石要素5のみを含むものでもよい。
前記第1及び第2成膜ロール1,2に巻き掛けられたシート状のフィルムWの表面近傍にプラズマが生成され、これにより当該フィルムWの表面に成膜が施される。この成膜が施されるフィルムWとしては、PET,PEN,PES、ポリカーボネート、ポレオレフィン、ポリイミド、紙等の絶縁性の材料からなるものが適当である。フィルムWの厚みは、特に限定されないが、減圧下又は真空下でのフィルムWの搬送を可能にする厚み、例えば5μm~0.5mmが好適である。
以下、図1を参照しながら、前記プラズマCVD装置C1の構成をさらに詳しく説明する。
プラズマCVD装置C1は、前記真空チャンバ4内に格納されて前記フィルムWを搬送するための搬送機構を備える。この搬送機構は、上述した第1及び第2成膜ロール1,2に加え、成膜ロール1,2に供給されて成膜処理が施されるべきフィルムWが予め巻回された巻き出し部6と、成膜ロール1,2を通過して成膜処理が施されたフィルムWを巻き取る巻取り部7と、巻き出し部6から巻き出されたフィルムWを第1成膜ロール1に導く補助ローラ8と、第1成膜ロール1を通過したフィルムWを第2成膜ロール2に導く補助ローラ9と、第2成膜ロール2を通過したフィルムWを巻取り部7に導く補助ローラ10と、を有する。
図1に示すように、前記真空チャンバ4は、第1及び第2成膜ロール1,2の上側部分を格納する第1チャンバ要素41と、第1及び第2成膜ロール1,2の下側部分を格納する第2チャンバ要素42Aと、を有している。両チャンバ要素41,42Aは一体に結合されている。
第1チャンバ要素41は、前記搬送機構のうち前記成膜ロール1,2の中心軸の近傍の位置からそれよりも上側の部分を格納する。つまり、当該第1チャンバ要素41は、前記第1及び第2成膜ロール1,2の上側部分と、巻き出し部6と、補助ローラ8,9,10と、巻取り部7と、を格納している。
図1に示すように、第2チャンバ要素42Aは、成膜ロール1,2のそれぞれを下方から覆う。第2チャンバ要素42Aは、第1及び第2成膜ロール1,2の下部の外周面に沿った形状を有する。具体的に、第2チャンバ要素42Aは、第1成膜ロール1の外周面の形状に沿って当該第1成膜ロール1を下側から覆う第1整流部11と、第2成膜ロール2の外周面の形状に沿って当該第2成膜ロール2を下側から覆う第2整流部12と、を有している。つまり、第1整流部11は、図1の紙面上でプラズマCVD装置C1の左側の部位に設けられ、第2整流部12は、同じくプラズマCVD装置C1の右側の部位に設けられている。
前記第1整流部11は、前記第1成膜ロール1の外周面に沿った形状の内側面を有する。この内側面は、前記第1成膜ロール1の回転中心軸とほぼ合致する中心軸を有し且つ当該第1成膜ロール1の半径よりも大きな曲率半径を有する曲面である。この内側面が前記第1成膜ロール1の外周面から所定間隔を隔てて当該外周面に対向し、かつ、当該内側面と当該第1成膜ロール1の外周面がほぼ同心となる位置に、第1整流部11が配置される。この配置によって、第1整流部11は、第1成膜ロール1の外周面との間に第1空間である第1成膜ゾーン13を形成し、この第1成膜ゾーン13に後述のように供給される皮膜の原料ガスを含むガスの流れを、第1成膜ロール1に巻き掛けられたフィルムWの表面に沿うように整流する。
前記第2整流部12は、前記第1整流部11とほぼ同様の構成を有している。具体的に、前記第2整流部12は、前記第2成膜ロール2の外周面に沿った形状の内側面を有する。この内側面は、前記第2成膜ロール2の回転中心軸とほぼ合致する中心軸を有し且つ当該第2成膜ロール2の半径よりも大きな曲率半径を有する曲面である。この内側面が前記第2成膜ロール2の外周面から所定間隔を隔てて当該外周面に対向し、かつ、当該内側面と当該第2成膜ロール2の外周面がほぼ同心となる位置に、第2整流部12が配置される。この配置によって、第2整流部12は、第2成膜ロール2の外周面との間に第2空間である第2成膜ゾーン14を形成し、この第2成膜ゾーン14に後述のように供給される皮膜の原料ガスを含むガスの流れを、第2成膜ロール2に巻き掛けられたフィルムWの表面に沿うように整流する。
第1整流部11は、前記第1成膜ロール1から例えば30~100mmほどの間隔を隔てた位置に前記第1成膜ゾーン13を形成することにより、成膜に効果的なガスの流れを実現する。同様に、第2整流部12も、第2成膜ロール2から例えば30~100mmほどの間隔を隔てた位置に前記第2成膜ゾーン14を形成することで、成膜に効果的なガスの流れを実現する。
図1には、第1整流部11及び第2整流部12の断面形状が示されているが、第1整流部11及び第2整流部12とも、図1の紙面上での奥行き及び手前方向、つまりプラズマCVD装置C1の前後方向に幅を有している。第1整流部11及び第2整流部12の奥行き及び手前方向の両端部は、第2チャンバ要素42Aの壁面である前後壁によって閉塞されている。
前記のように第1及び第2成膜ロール1,2の内部に設けられた第1及び第2磁場発生部51,52は、それぞれ、図1に示すように、これらの磁場発生部51,52が形成する前記レーストラック状の磁場が第1成膜ゾーン13及び第2成膜ゾーン14にそれぞれ向くように配置されている。従って、前記両磁場発生部51,52を有する磁場発生装置は、第1成膜ゾーン13及び第2成膜ゾーン14において第1及び第2成膜ロール1,2の表面にそれぞれ沿ったプラズマが発生すること、つまり、原料ガスを分解するためのプラズマ領域を形成すること、を可能にする。
このプラズマCVD装置C1は、さらに、図1に示すような連通部15を備える。前記連通部15は、前記第1成膜ゾーン13及び前記第2成膜ゾーン14のうち互いに隣り合って近接する部分同士を接続することにより両成膜ゾーン13,14を互いに連通させる。詳しくは、連通部15は、第1成膜ゾーン13と第2成膜ゾーン14を前記第1及び第2成膜ロール1,2の回転中心軸同士を結ぶ直線の近傍において当該直線に沿った方向に連通させ、これにより、第1成膜ゾーン13と第2成膜ゾーン14のそれぞれで形成されるプラズマ同士が互いに連通することを可能にする。つまり、連通部15は、第1成膜ゾーン13と第2成膜ゾーン14の間でプラズマを通じた放電電流の流れの経路を確保する。
上述のように、本実施形態によるプラズマCVD装置C1の第1整流部11及び第2整流部12は、図1に示す真空チャンバ4の壁によって構成されている。第1整流部11及び第2整流部12は、第1成膜ゾーン13と第2成膜ゾーン14に導入された原料ガスを可能な限り成膜ロール1,2の表面に沿って留めるために、図1に示すように第1及び第2成膜ロール1,2の外周面からそれぞれ略一定間隔を保つように配置されることが好ましい。これら第1整流部11及び第2整流部12に対向する第1及び第2成膜ロール1,2の外周面上には、成膜対象のフィルムWが、少なくとも当該第1及び第2成膜ロール1,2と第1及び第2整流部11,12との間にそれぞれ形成された第1成膜ゾーン13と第2成膜ゾーン14に存在するように、巻き付けられる。第1及び第2成膜ロール1,2は、それぞれに与えられた回転中心軸回りに回転することにより、これらの成膜ロール1,2に巻き付けられたフィルムWを搬送することができる。このようにして、第1及び第2成膜ロール1,2は、フィルムWを連続的に巻き出し及び巻取りながら連続的に搬送する前記搬送機構の一部を構成する。
前記真空チャンバ4は、図1に示すように真空チャンバ4内に設けられる複数のガス供給部16をさらに備える。これらのガス供給部16は、第1成膜ゾーン13と第2成膜ゾーン14のそれぞれについて、第1チャンバ要素41側の位置に設けられている。詳しくは、前記第1及び第2成膜ゾーン13,14と前記第1チャンバ要素41との接点、言い換えれば、第1及び第2成膜ゾーン13,14の両端部のそれぞれに前記ガス供給部16が設けられている。各ガス供給部16は、前記第1チャンバ要素41において前記第1成膜ゾーン13及び第2成膜ゾーン14の両端部にそれぞれ接する位置から前記第1成膜ゾーン13及び第2成膜ゾーン14の中央部に向かってそれぞれ原料ガスを含むガスを供給する。このように供給されたガスは、第1整流部11及び第2整流部12により整流されて、第1及び第2成膜ロール1,2に巻き付けられたフィルムWの表面に沿って流れる。
前記ガス供給部16は、プラズマCVD装置C1の奥行き及び手前方向において、第1成膜ゾーン13及び第2成膜ゾーン14の一カ所だけに設けられてもよい。あるいは、ガス供給部16は、第1成膜ゾーン13及び第2成膜ゾーン14に奥行き及び手前方向にわたって連続する領域、または断続する複数の箇所に設けられていてもよい。
各ガス供給部16は、原料ガスに限らず、原料ガス(成膜原料ガス)、反応ガス、補助ガスをそれ単独で、あるいはこれらのガスが混合されたものを、供給する。
前記成膜原料ガスは、前記反応ガスと反応することにより皮膜として堆積する元素を含むガスである。成膜原料ガスは、具体的には、皮膜の種類に応じて適切に選択される。例えば、ケイ素Siを含有する皮膜を成膜するための原料ガスとしては、HMDSO,TEOS,シラン、ジメチルシラン、トリメチルシラン、テトラメチルシラン、HMDS,TMOS等が、炭素Cを含有する皮膜を成膜するための原料ガスとしては、メタン、エタン、エチレン、アセチレン等が、Tiを含有する皮膜を成膜するための原料ガスとしては、4塩化チタン、チタンイソプロパノール等が、選択されることが可能である。
前記反応ガスは、それ単体では皮膜とはならないが前記原料ガスとの化学反応による化合物として皮膜中に取り込まれる元素を含むものである。この反応ガスとして、例えば酸化物形成用には酸素、オゾン等が、窒化物形成用には窒素、アンモニア等が、それぞれ皮膜の種類に応じて選ばれる。前記補助ガスは、キャリアガス、放電用ガスとも呼ばれ、プラズマの生成、化学反応の補助、圧力の調整を目的として導入されるが、形成される皮膜中には残らないものである。この補助ガスは、たとえば、ヘリウムHe,アルゴンAr,ネオンNe,キセノンXeのような希ガスや水素から適宜選択することが可能である。
前記真空チャンバ4は、排気手段として図示されない真空ポンプを備える。この真空ポンプは、図1に下向きの矢印で示すように、第1整流部11及び第2整流部12のそれぞれにおいて、ガス供給部16から最も離れた部位、図1に示す例では各整流部11,12の底部、から排気を行う。この排気は、上述のガス供給部16からのガス供給とともに、第1成膜ゾーン13及び第2成膜ゾーン14の圧力を適切な圧力に制御することを可能にする。
前記各ガス供給部16から前記真空ポンプに至るガスの流れは、第1整流部11及び第2整流部12によって第1及び第2成膜ロール1,2の表面付近に制約される。このことは、特に成膜ロール1,2の直径が大きい場合でも、前記各ガス供給部16から供給されたガスが第1及び第2成膜ロール1,2の表面から離れた広い空間に無駄に散逸することを有効に抑止する。
以上に述べた構成を有する本実施形態によるプラズマCVD装置C1において、各ガス供給部16からガスが供給されて第1成膜ゾーン13及び第2成膜ゾーン14内の圧力が適切な圧力に維持された状態で、電源3が成膜ロール1,2に高周波の交流またはパルス状の電圧を印加すると、成膜ロール1,2の表面に巻き付けられたフィルムWの表面でグロー放電が発生する。このグロー放電は第2チャンバ要素42Aの第1成膜ゾーン13及び第2成膜ゾーン14に選択的に発生する。なぜならば、前記電源3からの電圧は成膜ロール1,2の表面全体に印加されるものの、前記各ガス供給部16は専ら第1成膜ゾーン13及び第2成膜ゾーン14にガスを供給していてそれ以外の領域(特に第1チャンバ要素41内の領域)の圧力は真空ポンプによる排気で低いためである。従って、前記原料ガスは、第1及び第2成膜ゾーン13,14に供給されていれば、前記グロー放電によって分解されることが可能である。こうして、プラズマCVDプロセスによりフィルムWの表面に皮膜が形成される。
さらに、磁場発生装置の第1及び第2磁場発生部51,52が第1及び第2成膜ロール1,2の表面近傍に磁場を発生させ、これらの磁場が前記グロー放電の発生を容易にする。従って、前記第1成膜ゾーン13及び第2成膜ゾーン14の圧力が0.1Pa~10Pa程度の圧力範囲にあれば、第1成膜ゾーン13及び第2成膜ゾーン14と他の領域のガス遮蔽が完全でなくても、前記磁場の存在する領域を中心にグロー放電を発生させることができる。第1成膜ゾーン13及び第2成膜ゾーン14の圧力が上述の圧力範囲未満であると、磁場の存在する領域での放電発生は難しい。逆に、第1成膜ゾーン13及び第2成膜ゾーン14の圧力が上述の圧力範囲を超えると、第1成膜ゾーン13及び第2成膜ゾーン14以外での放電発生も顕著になり、第1及び第2成膜ロール1,2の表面以外のフィルムWが存在しない場所で成膜が起こるなどの好ましくない状態が生じる。
前記第1及び第2成膜ロール1,2に対して直流電圧が印加される場合、その印加された電圧を絶縁性材料からなる前記フィルムWが遮断してプラズマの生成を困難にするが、第1及び第2成膜ロール1,2に対して適切な周波数(およそ1kHz以上、好ましくは10kHz以上)をもつ電力が印加される場合は、当該電力がフィルムWを通してプラズマにまで伝播することが可能である。電源3から第1及び第2成膜ロール1,2への放電の電圧は、波高値としては数百V~2千Vの範囲が好ましい。前記第1及び第2成膜ロール1,2は前記電源3の両極にそれぞれ接続されているため、当該成膜ロール1,2の一方に負の電圧が印加されるときには必ず他方に正の電圧が印加される。これにより、電流はプラズマを連通する開口部を通じて成膜ロール1,2の一方の成膜ロールから他方の成膜ロールに流れ、これが高周波で逆転しながら継続する。
以上のように本実施形態によるプラズマCVD装置C1では、第1及び第2成膜ロール1,2の表面にフィルムWを巻き付けて当該フィルムWを搬送しながら、成膜ロール1,2の第1成膜ゾーン13及び第2成膜ゾーン14側でグロー放電を発生させて、前記第1及び第2成膜ロール1,2上のフィルムWに対して皮膜形成を行なうことが可能である。さらに、第1及び第2成膜ロール1,2がグロー放電を発生させる電極として利用されるために、放電を維持するためのさらなる電極が必要ではない。また、第1及び第2成膜ロール1,2の外周面のうち第1成膜ゾーン13及び第2成膜ゾーン14に面した領域にはフィルムWが存在するため、当該第1及び第2成膜ロール1,2自体に皮膜が堆積することもなく、従来の技術では課題となっていた電極への皮膜堆積に伴う放電の変動が発生しない。
加えて、本実施形態によるプラズマCVD装置C1では、第1成膜ゾーン13及び第2成膜ゾーン14に導入されたガスが第1及び第2成膜ロール1,2の表面に沿った第1成膜ゾーン13及び第2成膜ゾーン14を流れてグロー放電で分解された後に、真空ポンプによって排気される。このことは、従来の技術で課題となっていたような不都合、具体的には、成膜ロール1,2の直径を特に大きくした場合に成膜ロール1,2の表面から離れた広い空間に原料ガスが無駄に散逸して成膜効率を低下させるという不都合、を抑止する。このため、本実施形態によるプラズマCVD装置C1では、成膜ロール1,2の大径化が可能であり、この大径化により皮膜形成のプラズマに晒されるフィルムWの面積を拡大し、結果として高い生産性の装置を構成することが可能である。
一方で、原料ガスは第1整流部11及び第2整流部12の表面近傍にも流れるため、第1整流部11及び第2整流部12への皮膜の堆積は発生するが、第1整流部11及び第2整流部12は電極としての機能はない。そのため、従来のCVD装置において、プラズマ発生用の電力を供給するために成膜ロールに対向する位置に配置された対向電極とは異なり、本実施形態によるプラズマCVD装置C1の第1整流部11及び第2整流部12では、該対向電極と比較して相対的に皮膜の付着量が少なく、又皮膜が付着したとしても放電特性に影響を与えることがない。つまり、第1整流部11及び第2整流部12に付着する皮膜は、その強度が低いためフレークとして飛散しにくく、清掃がし易い。そして、第1整流部11及び第2整流部12への熱負荷が小さいため当該箇所の冷却を簡単にできる。このことは、第1整流部11及び第2整流部12に皮膜の防着板を取り付け易いというメリットを招く。
本実施形態によるプラズマCVD装置C1を実施するにあたっての望ましい実施条件について、以下に説明する。
第1成膜ゾーン13と第2成膜ゾーン14とを接続する通路である連通部15は、第1及び第2成膜ゾーン13,14の一部に対して成膜対象のフィルム(基板)Wの幅方向全域にわたって開口する開口部を有し、この開口部のフィルムWの進行方向に沿ったサイズ、図1では上下方向のサイズ、は、フィルムWの幅方向全域にわたってほぼ同一であることが好ましい。あるいは、連通部15は、フィルムWの幅方向に沿って分散配置された複数の通路の集合体であっても良い。
また、連通部15の開口の面積は、成膜ロール1,2の表面近傍におけるプラズマ発生領域の面積に対して、1/3以下、好ましくは1/5以下が望ましい。これは、連通部15の開口が大きすぎると、ガスに対する第1整流部11と第2整流部12の整流効果が低下する一方、連通部15の開口が小さすぎると、第1成膜ゾーン13及び第2成膜ゾーン14で発生したプラズマ同士を連通部15を通じて連結することができなくなるためである。連通部15の開口サイズがいわゆるプラズマシースより小さいと、プラズマが連通部15を通過するのは困難であると考えられる。実際の放電プラズマを観察すると、成膜ロール1,2に巻いたフィルムWの表面の1~2mmにシース領域が観察されるので、開口部の両側もシース領域が形成されると考えると、連通部15の開口サイズは、フィルムWの表面に観察されるシース領域(1~2mm)の2倍、すなわち2~4mmよりも十分大きいことが必要である。前記連通部15の開口サイズを著しく狭くする積極的な理由は存在しないから、連通部15の開口サイズは、少なくとも2cm以上とすると良い。例えば、第1及び第2成膜ロール1,2の直径が600mmで、当該成膜ロール1,2の下半分の領域がプラズマ領域である場合、前記フィルムWの進行方向に沿ったプラズマ長は約90cmなので、フィルムWの進行方向に沿った連通部15の開口サイズとしては、2cm~18cm(最大で30cm)程度が好ましい範囲である。
また、連通部15に真空排気のラインとの接続のための開口が設けられる場合、その開口のサイズは、必要な排気能力を確保する必要性から、5cm以上であることが好ましい。
次に、図4~図8を参照しながら、本実施形態によるプラズマCVD装置C1の変形例1~変形例5について説明する。
(変形例1)
図4は、第1実施形態の一つめの変形例(変形例1)に係るプラズマCVD装置C2を示す断面正面図である。
図4は、第1実施形態の一つめの変形例(変形例1)に係るプラズマCVD装置C2を示す断面正面図である。
変形例1によるプラズマCVD装置C2は、図1に示したプラズマCVD装置C1の真空チャンバ4の構成要素のうちの第2チャンバ要素42Aに代えて第3チャンバ要素42Bを有する。第3チャンバ要素42Bは、第1チャンバ要素41とほぼ同じ構成を有し、第1及び第2成膜ロール1,2の両方を同時に下方から覆う形状を有している。さらに、当該プラズマCVD装置C2は、第3チャンバ要素42B内に設けられる第1整流板17及び第2整流板18を有する。これら第1整流板17及び第2整流板18は、図1に示される前記プラズマCVD装置C1の第1整流部11及び第2整流部12の形状にそれぞれ相当する形状を有している。
前記第1整流板17は、前記第1整流部11に相当する形状を有する板部材からなる。具体的には、第1整流板17は、第1成膜ロール1の外周面に沿う内側面を有し、この内側面は、第1成膜ロール1の回転中心軸とほぼ合致する中心軸を有しかつ当該第1成膜ロール1の半径よりも大きな半径を有する円筒状の曲面である。当該第1整流板17は、その内側面が前記第1成膜ロール1の外周面から所定間隔を隔てて当該外周面に対向すると共に、当該内側面と当該第1成膜ロール1の外周面がほぼ同心となる位置に配置される。これによって第1整流板17は、前記第1成膜ロール1との間に前記第1成膜ゾーン13を形成している。
第2整流板18は、第1整流板17と同様の構成を有している。具体的に、第2整流板18は、第2成膜ロール2の外周面に沿う内側面を有し、この内側面は、第2成膜ロール2の回転中心軸とほぼ合致する中心軸を有しかつ当該第2成膜ロール2の半径よりも大きな半径を有する円筒状の曲面である。当該第2整流板18は、その内側面が前記第2成膜ロール2の外周面から所定間隔を隔てて当該外周面に対向すると共に、当該内側面と当該第2成膜ロール2の外周面がほぼ同心となる位置に配置される。これによって第2整流板18は、前記第2成膜ロール2との間に前記第2成膜ゾーン14を形成している。
図4に示すように、第1整流板17は、第2成膜ロール2と反対側の端部であって第1チャンバ要素41と一体に接続される端部と、第2成膜ロール2側の端部であって第1チャンバ要素41に接続されずに第1チャンバ要素41との間に開口を形成する端部と、を有している。これに対して、第2整流板18は、第1成膜ロール1とは反対側の端部であって第1チャンバ要素41と一体に接続される端部と、第1成膜ロール1側の端部であって第1チャンバ要素41に接続されずに第1チャンバ要素41との間に開口を形成する端部と、を有している。このようにして第1整流板17が第1チャンバ要素41との間に形成する開口と第2整流板18が第1チャンバ要素41との間に形成する開口との間に、図1に示される連通部15と同等の連通部15、つまり、第1成膜ゾーン13と第2成膜ゾーン14とを相互に連通させる連通部15、が形成されている。
この変形例1に係るプラズマCVD装置C2も複数のガス供給部16を有するが、これらのガス供給部16は、第1成膜ゾーン13及び第2成膜ゾーン14の両端部のうち前記第1整流板17及び第2整流板18がそれぞれ第1チャンバ要素41に接続される側の端部にのみ設けられている。一方、第1成膜ゾーン13及び第2成膜ゾーン14の排気は、図1に示される装置C1のように個別に行われるのではなく、第3チャンバ要素42B内の排気によって一括して行われる。従って、前記各ガス供給部16から第1及び第2成膜ゾーン13,14に供給されるガスは、第1及び第2成膜ロール1,2の表面に沿って流れた後に連通部15を通じて第3チャンバ要素42B内に流出する。これによって、図1に示されるプラズマCVD装置C1とほぼ同等の効果を得ることができる。
(変形例2)
図5は、第1実施形態によるプラズマCVD装置C1の二つめの変形例(変形例2)に係るプラズマCVD装置C3を示す断面正面図である。
図5は、第1実施形態によるプラズマCVD装置C1の二つめの変形例(変形例2)に係るプラズマCVD装置C3を示す断面正面図である。
変形例2によるプラズマCVD装置C3は、図1に示されるプラズマCVD装置C1とほぼ同様の構成を有するが、磁場発生装置の構成及び位置において当該プラズマCVD装置C1と相違する。
図5に示すように、変形例2によるプラズマCVD装置C3は、図1に示すプラズマCVD装置C1と同様に第1磁場発生部51及び第2磁場発生部52を有するが、これらは第1及び第2成膜ロール1,2の内部ではなく第2チャンバ要素42Aの外側、つまり、第1及び第2成膜ゾーン13,14を挟んで第1及び第2成膜ロール1,2と反対の側、に配置されている。このプラズマCVD装置C3の第1及び第2磁場発生部51,52も、図1に示される第1及び第2磁場発生部51,52と同様に図3に示される磁石要素5と同様の磁石要素を含んでレーストラック状の磁場を発生するものであるが、このプラズマCVD装置C3の第1及び第2磁場発生部51,52が含む磁石要素は、図3に示す磁石要素5と比べてその棒状の磁石5a及び該棒状の磁石5aの周囲を包囲する磁石5bの極性が逆であり、かつ、第2チャンバ要素42Aの外側に配置されている。
このように第2チャンバ要素42Aの外側に配置された第1及び第2磁場発生部51,52も、第1成膜ゾーン13及び第2成膜ゾーン14にプラズマを生成することを可能にする磁場を生成することができる。つまり、図5に示される第1及び第2磁場発生部51,52も、図1に示されるプラズマCVD装置C1と同様に、第1及び第2成膜ロール1,2において、第1成膜ゾーン13及び第2成膜ゾーン14に面する部分に優先的にプラズマを生成可能な磁場を形成することができる。
(変形例3)
図6は、第1実施形態によるプラズマCVD装置C1の三つめの変形例(変形例3)に係るプラズマCVD装置C4を示す断面正面図である。
図6は、第1実施形態によるプラズマCVD装置C1の三つめの変形例(変形例3)に係るプラズマCVD装置C4を示す断面正面図である。
このプラズマCVD装置C4は、図1に示されるプラズマCVD装置C1とほぼ同様の構成を有するが、連通部15に設けられる連通部ガス供給部19を備える点で、図1に示されるプラズマCVD装置C1と相違する。前記連通部ガス供給部19は、反応ガス及び補助ガスの少なくとも一方を含むガスを前記連通部15を通じて第1及び第2成膜ゾーン13,14に供給する。
変形例3に係るプラズマCVD装置C4には、以下の2つの効果がある。一つめの効果は、連通部15の汚染を低減できることである。連通部15付近に導入された反応ガスや補助ガスである放電ガスは、第1成膜ゾーン13及び第2成膜ゾーン14へと向かうガスの流れを形成するが、このガスの流れは第1成膜ゾーン13及び第2成膜ゾーン14に導入された原料ガスが連通部15に流入することを抑制する。結果として連通部15付近への皮膜付着を低減することが可能となる。
二つめの効果は、プラズマCVDの反応活性の向上である。連通部15は第1成膜ゾーン13及び第2成膜ゾーン14におけるプラズマ同士を連結する箇所であり、この連通部15には放電電流が連通部15を通じて流れ、強いプラズマが存在する。導入された反応ガス、放電ガスはこの強いプラズマを通過し、活性化された状態で第1成膜ゾーン13及び第2成膜ゾーン14に流入するため、第1成膜ゾーン13及び第2成膜ゾーン14に直接ガスを供給する場合に比べてより反応性の強化された処理が期待できる。
(変形例4)
図7は、第1実施形態によるプラズマCVD装置C1の四つめの変形例(変形例4)に係るプラズマCVD装置C5を示す断面正面図である。
図7は、第1実施形態によるプラズマCVD装置C1の四つめの変形例(変形例4)に係るプラズマCVD装置C5を示す断面正面図である。
変形例4によるプラズマCVD装置C5は、図1に示されるプラズマCVD装置C1とほぼ同様の構成を有するが、第1成膜ゾーン13及び第2成膜ゾーン14が連通部15を通じて排気される点と、第1成膜ゾーン13及び第2成膜ゾーン14の端部のうち連通部15側の端部にはガス供給部16が設けられていない点で、図1に示されるプラズマCVD装置C1と相違する。
変形例4のプラズマCVD装置C5によれば、連通部15がガス供給部16から離れた位置にあるので、原料ガスが連通部15に流入することによる連通部15の汚染を低減することができる。
(変形例5)
図8は、第1実施形態によるプラズマCVD装置C1の五つめの変形例(変形例5)に係るプラズマCVD装置C5を示す断面正面図である。変形例5によるプラズマCVD装置C6は、図1に示されるプラズマCVD装置C1とほぼ同様の構成を有するが、図1に示される連通部15に代えて接続手段、具体的には図8に示す接続管20を備える点で、図1に示されるプラズマCVD装置C1と相違する。前記接続管20は、この接続管20を通じて第1成膜ゾーン13及び第2成膜ゾーン14の排気を一括して行うことができるように、第1成膜ゾーン13及び第2成膜ゾーン14の下部同士を接続する。また、当該接続管20に代表される接続手段、つまり両成膜ゾーン13,14の下部同士を接続する手段は、本発明に係る連通部としても機能する。図7に示される変形例4との比較でいうと、連通部が排気手段への接続を兼ねている点では同じであるが、図8に示すプラズマCVD装置C6では両成膜ゾーン13,14の排気が最下部から行われる点が相違する。連通部は2つのゾーンのプラズマを結合する領域であるので、この領域ではプラズマの作用が強く、当該連通部の壁面に皮膜が形成され易いが、当該連通部を装置の最下部に配置することは、当該連通部に形成される皮膜による悪影響を最低限に抑えることを可能にする。
図8は、第1実施形態によるプラズマCVD装置C1の五つめの変形例(変形例5)に係るプラズマCVD装置C5を示す断面正面図である。変形例5によるプラズマCVD装置C6は、図1に示されるプラズマCVD装置C1とほぼ同様の構成を有するが、図1に示される連通部15に代えて接続手段、具体的には図8に示す接続管20を備える点で、図1に示されるプラズマCVD装置C1と相違する。前記接続管20は、この接続管20を通じて第1成膜ゾーン13及び第2成膜ゾーン14の排気を一括して行うことができるように、第1成膜ゾーン13及び第2成膜ゾーン14の下部同士を接続する。また、当該接続管20に代表される接続手段、つまり両成膜ゾーン13,14の下部同士を接続する手段は、本発明に係る連通部としても機能する。図7に示される変形例4との比較でいうと、連通部が排気手段への接続を兼ねている点では同じであるが、図8に示すプラズマCVD装置C6では両成膜ゾーン13,14の排気が最下部から行われる点が相違する。連通部は2つのゾーンのプラズマを結合する領域であるので、この領域ではプラズマの作用が強く、当該連通部の壁面に皮膜が形成され易いが、当該連通部を装置の最下部に配置することは、当該連通部に形成される皮膜による悪影響を最低限に抑えることを可能にする。
前記のように第1成膜ゾーン13及び第2成膜ゾーン14の下部同士を接続する接続管20は、図8の紙面における奥行き及び手前方向に連続して設けられていてもよく、あるいは同方向に断続的に並ぶ複数の位置に設けられていてもよい。いずれの場合も、例えば図8に示すように、接続管20の略中央部から排気が行われることが好ましい。
変形例5のプラズマCVD装置C6によっても、ガス供給部16から供給されたガスは、成膜ロール1,2の表面に沿って流れて排気され、これにより、図1に示されるプラズマCVD装置C1とほぼ同等の効果を期待することができる。
[第2実施形態]
図9を参照しながら、本発明の第2実施形態について説明する。図9は、当該第2実施形態によるプラズマCVD装置C7を示す断面正面図である。
図9を参照しながら、本発明の第2実施形態について説明する。図9は、当該第2実施形態によるプラズマCVD装置C7を示す断面正面図である。
第1実施形態によるプラズマCVD装置C1では、巻き出し部6から巻き出された一本のフィルムWが第1及び第2成膜ロール1,2に巻き付けられることにより当該フィルムWに対して2度にわたる成膜処理が施されるのに対し、第2実施形態によるプラズマCVD装置C7は、第1成膜ロール1について設けられる第1巻き出し部21A及び第2巻き取り部22Aと、第2成膜ロール2について設けられる第2巻き出し部21B及び第2巻き取り部22Bと、を備える点で、両装置C1,C7は相違する。前記第1及び第2巻出し部21A,21B及び前記第1及び第2巻き取り部22A,22Bはすべて第1チャンバ要素41内に配置されている。
つまり、第2実施形態によるプラズマCVD装置C7では、第1及び第2成膜ロール1,2によって、異なる2本のフィルムWに対して同時に成膜処理を施すことができる。さらに、当該装置C7は、第1実施形態によるプラズマCVD装置C1の連通部15と同様に第1成膜ゾーン13及び第2成膜ゾーン14同士を互いに連通させる連通部15を備える。これにより、第1成膜ゾーン13と第2成膜ゾーン14の間でプラズマを通じた放電電流の流れの経路を確保することができる。
[第3実施形態]
図10を参照しながら、本発明の第3実施形態について説明する。図10は、第3実施形態によるプラズマCVD装置C8を示す断面正面図である。本実施形態によるプラズマCVD装置C8は、第1実施形態によるプラズマCVD装置C1とほぼ同様の構成を有している。
図10を参照しながら、本発明の第3実施形態について説明する。図10は、第3実施形態によるプラズマCVD装置C8を示す断面正面図である。本実施形態によるプラズマCVD装置C8は、第1実施形態によるプラズマCVD装置C1とほぼ同様の構成を有している。
第1実施形態によるプラズマCVD装置C1では、巻き出された1本のフィルムWが第1及び第2の成膜ロール1,2の双方に連続して巻き掛けられ、当該フィルムWの同一面(片面)に対して成膜処理が施されるが、図10に示す第3実施形態のプラズマCVD装置C8は、1本のフィルムWの一回の巻き出しと巻取りによって当該フィルムWの両面すなわち表面と裏面に成膜を施すことができる。
具体的に、図10に示すプラズマCVD装置C8では、成膜ロール1,2の回転方向が互いに逆向きに設定されるとともに、搬送中のフィルムWを反転させるための補助ローラ23を備える。この補助ローラ23は、巻き出し部6から巻き出された一本のフィルムWが巻取り部7に巻き取られるまでの搬送経路の途中であって第1成膜ロール1と第2成膜ロール2との間の位置に設けられ、第1成膜ロール1から送られて来るフィルムWをその上面(表面)と下面(裏面)とが逆になるように反転させてから成膜ロール2に誘導する。
つまり、この補助ローラ23は、第1成膜ロール1上で成膜処理が施されたフィルムWの上下面を逆にするように当該フィルムWを反転させてから、当該第1成膜ロール1とは反対に回転する第2成膜ロール2に供給するものである。これによって、フィルムWの両面に成膜処理を施すことを可能にしながら、第1実施形態によるプラズマCVD装置C1の効果と同様の効果を得ることができる。
以上開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、各実施形態において明示的に開示されていない事項、例えば、動作条件や測定条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲において自由に設定されればよく、通常の当業者であれば容易に想定することが可能な値を採用することが可能である。
例えば、前記第1実施形態に係るプラズマCVD装置C1は、図1に示すような第1防着板61及び第2防着板62を備えることが可能であり、また、図4~図10に示される各プラズマCVD装置も同様の第1及び第2防着板を備えることが可能である。
前記第1及び第2防着板61,62は、前記第1及び第2整流部(第1及び第2整流板)11,12の内側面すなわち前記第1及び第2成膜ロール1,2と対向する曲面に着脱可能に取付けられて当該内側面を保護する。第1及び第2防着板61,62は、第1及び第2整流部11,12の内側面の形状とほぼ同じ曲面形状を有する板材であって、当該第1及び第2整流部(第1及び第2整流板)11,12の内側面すなわち第1及び第2成膜ロール1,2と対向する曲面上に装着される。これら第1及び第2防着板61,62は、第1及び第2整流部11,12の内側面への皮膜の堆積を防ぐことにより当該第1及び第2整流部11,12を保護することができる。そして、これらの防着板61,62を交換するだけで、特に第1及び第2整流部11,12を清掃することなくこれらのメンテナンスをすることが可能であり、プラズマCVD装置C1~C8の運転を継続させることができる。
前記第1及び第2防着板61,62は、成膜処理における温度上昇によっても破損及び変形せず、且つ表面に堆積した皮膜を容易に剥離することのできる材料で構成されていればよい。例えば、軽量の金属材料などが好適である。
本発明に係るプラズマCVD装置によれば、前記第1及び第2防着板61,62を具備しながらこれらの防着板の温度が顕著に上昇することを回避することができる。すなわち、本発明に係るプラズマCVD装置では、プラズマ発生のための電力を供給する電気回路が第1及び第2整流部に設けられる必要がなく、従来のプラズマCVD装置における対向電極のように第1及び第2整流部の温度が上昇することはないので、第1及び第2整流部の内側面上に第1及び第2防着板が取り付けられてもこれらの防着板の温度が著しく上昇することはない。従って、これらの防着板の冷却(例えば水冷)を不要または簡単なものにすることができる。加えて、水冷のための構造を要しない防着板の交換作業は容易であるので、プラズマCVD装置のメンテナンス性が大幅に向上するという利点がある。
前記各装置C1~C8において、第1成膜ロール1に対して供給されるガスと、第2成膜ロール2に対して供給されるガスとは、互いに同一の成分を有するものでも良いし、あるいは互いに成分や配合の異なるものでもよい。本発明に係るガス供給部が、第1空間に第1原料ガスを含むガスを供給する第1ガス供給部と、前記第2空間に前記第1原料ガスとは異なる第2原料ガスを含むガスを供給する第2ガス供給部と、を含む場合、例えば、図1に示される複数のガス供給部16のうち第1成膜ゾーン13について設けられるガス供給部16(第1成膜ゾーン13の両端部にそれぞれ設けられているガス供給部16)が当該第1成膜ゾーン13に対して第1原料ガスを含むガスを供給し、第2成膜ゾーン14について設けられるガス供給部16(第2成膜ゾーン14の両端部にそれぞれ設けられているガス供給部16)が当該第2成膜ゾーン14に対して前記第1原料ガスとは異なる第2原料ガスを含むガスを供給する場合、第1及び第2成膜ローラに巻き掛けられる基材の表面上に2層構造の皮膜を形成することもできる。
以上のように、本発明は、高い成膜速度を実現するための大きな成膜ロールの使用と、原料ガスの有効利用と、長時間にわたる安定した皮膜形成と、をいずれも可能とするプラズマCVD装置を提供する。このプラズマCVD装置は、シート状の基材の表面近傍にプラズマを生成することで当該基材の表面に皮膜を形成するものであって、真空チャンバと、該真空チャンバ内に配置され、且つ、交流電源の両極がそれぞれ接続される第1成膜ロール及び第2成膜ロールであって、これらに前記基材が巻き掛けられるものと、前記第1成膜ロールに対向すると共に前記第1成膜ロールから所定間隔を隔てた位置に配置されて前記第1成膜ロールとの間に第1空間を形成し、前記第1空間において前記皮膜の原料ガスを含むガスの流れを前記第1成膜ロールに巻き掛けられた基材の表面に沿うように整流する第1整流部と、前記第2成膜ロールに対向すると共に前記第2成膜ロールから所定間隔を隔てた位置に配置されて前記第2成膜ロールとの間に第2空間を形成し、前記第2空間において前記皮膜の原料ガスを含むガスの流れを前記第2成膜ロールに巻き掛けられた基材の表面に沿うように整流する第2整流部と、前記第1空間及び第2空間にプラズマを形成して前記原料ガスを分解するプラズマ領域を形成するための磁場を発生させる磁場発生部と、前記第1空間及び第2空間に原料ガスを供給するガス供給部と、前記第1空間と第2空間とを互いに連通させることにより前記第1空間及び第2空間のそれぞれで形成されるプラズマ同士を連通させる連通部と、を備える。
このプラズマCVD装置によれば、ガス供給部から供給されるガスの流れを第1整流部及び第2整流部が第1及び第2成膜ロールにそれぞれ巻き掛けられた基材の表面に沿うように整流することにより、当該ガスが成膜ロールの表面近傍から離れた場所へ拡散するのを防ぐことができる。この効果は、高い成膜速度を実現するために大きな径を有する成膜ロールを用いた場合において特に顕著であり、原料ガスを有効に利用することを可能にする。また、当該プラズマCVD装置では、グロー放電を発生させるための電極を成膜ロールに対向する位置に設ける必要がないので、従来のように対向電極に皮膜が形成されて絶縁されてしまうことがない。従って長時間にわたる安定した皮膜の形成が可能である。
前記磁場発生装置は、具体的には、前記第1空間に第1磁場を発生させる第1磁場発生部と、前記第2空間に第2磁場を発生させる第2磁場発生部と、を含むのが、好ましい。この場合において、前記第1磁場発生部が前記第1成膜ロールの内部に配置され、前記第2磁場発生部が前記第2成膜ロールの内部に配置されてもよいし、前記第1磁場発生部が前記第1整流部を挟んで第1空間と反対側の位置に配置され、前記第2磁場発生部が前記第2整流部を挟んで第2空間と反対側の位置に配置されてもよい。いずれの場合も、第1及び第2磁場発生部はそれぞれ第1及び第2成膜ロールの周辺の第1及び第2空間に好ましい第1及び第2磁場をそれぞれ形成することが、可能である。
例えば、前記第1磁場発生部及び前記第2磁場発生部のそれぞれは、複数のレーストラック状マグネトロン磁場を発生させるのが、好ましい。当該レーストラック状マグネトロン磁場は、プラズマの発生が磁場の存在箇所に優先的に起こるように誘導すると共に、プラズマのドリフト等によりプラズマをロールの長手方向に均一化することができる。
本発明に係るプラズマCVD装置は、前記連通部に設けられ、反応ガス及び補助ガスの少なくとも一方を含むガスを、当該連通部を通じて前記第1空間及び第2空間に供給する連通部ガス供給部をさらに備えることが、好ましい。当該連通部ガス供給部は、第1及び第2空間に導入された原料ガスが連通部に流入することを抑制して連通部付近への皮膜付着を低減することができる。また、連通部へのガスの供給は反応性の強化された処理を可能にする。
本発明に係るプラズマCVD装置は、前記真空チャンバの内部を排気することで減圧する真空排気ポンプをさらに備えることが可能である。この場合、前記真空排気ポンプは、前記第1空間及び第2空間を前記連通部から排気することで両空間を一括して減圧することができる。
本発明に係るプラズマCVD装置は、前記第1整流部の表面のうち前記第1空間側を向く表面に着脱自在に取付けられて当該第2整流部の表面を保護する第1防着板と、前記第2整流部の表面のうち前記第2空間側を向く表面に着脱自在に取付けられて当該第2整流部の表面を保護する第2防着板と、をさらに備えることが、好ましい。これらの第1及び第2防着板は、第1及び第2整流部を有効に保護することができる。また、当該第1及び第2防着板の交換によって第1及び第2整流部のメンテナンスも容易に行うことが可能である。
前記ガス供給部は、前記第1空間に第1原料ガスを含むガスを供給する第1ガス供給部と、前記第2空間に前記第1原料ガスとは異なる第2原料ガスを含むガスを供給する第2ガス供給部と、を含むものであってもよい。これら第1及び第2ガス供給部は、単一種のガスのみを供給する場合に比べ、第1及び第2成膜ロールを利用してより多様な成膜を行うことを可能にする。
Claims (9)
- シート状の基材の表面近傍にプラズマを生成することで当該基材の表面に皮膜を形成するプラズマCVD装置であって、
真空チャンバと、
該真空チャンバ内に配置され、且つ、交流電源の両極がそれぞれ接続される第1成膜ロール及び第2成膜ロールであって、これらに前記基材が巻き掛けられるものと、
前記第1成膜ロールに対向すると共に前記第1成膜ロールから所定間隔を隔てた位置に配置されて前記第1成膜ロールとの間に第1空間を形成し、前記第1空間において前記皮膜の原料ガスを含むガスの流れを前記第1成膜ロールに巻き掛けられた基材の表面に沿うように整流する第1整流部と、
前記第2成膜ロールに対向すると共に前記第2成膜ロールから所定間隔を隔てた位置に配置されて前記第2成膜ロールとの間に第2空間を形成し、前記第2空間において前記皮膜の原料ガスを含むガスの流れを前記第2成膜ロールに巻き掛けられた基材の表面に沿うように整流する第2整流部と、
前記第1空間及び第2空間にプラズマを形成して前記原料ガスを分解するプラズマ領域を形成するための磁場を発生させる磁場発生装置と、
前記第1空間及び第2空間に原料ガスを供給するガス供給部と、
前記第1空間と第2空間とを互いに連通させることにより前記第1空間及び第2空間のそれぞれで形成されるプラズマ同士を連通させる連通部と、を備える、プラズマCVD装置。 - 請求項1に記載のプラズマCVD装置であって、前記磁場発生装置は、前記第1空間に第1磁場を発生させる第1磁場発生部と、前記第2空間に第2磁場を発生させる第2磁場発生部と、を含む、プラズマCVD装置。
- 請求項2に記載のプラズマCVD装置であって、前記第1磁場発生部は、前記第1成膜ロールの内部に配置され、前記第2磁場発生部は、前記第2成膜ロールの内部に配置される、プラズマCVD装置。
- 請求項2に記載のプラズマCVD装置であって、前記第1磁場発生部は、第1整流部を挟んで第1空間と反対側の位置に配置され、前記第2磁場発生部は、前記第2整流部を挟んで第2空間と反対側の位置に配置されている、プラズマCVD装置。
- 請求項2記載のプラズマCVD装置であって、前記第1磁場発生部及び前記第2磁場発生部のそれぞれが、複数のレーストラック状マグネトロン磁場を発生させる、プラズマCVD装置。
- 請求項1記載のプラズマCVD装置であって、前記連通部に設けられ、反応ガス及び補助ガスの少なくとも一方を含むガスを、当該連通部を通じて前記第1空間及び第2空間に供給する連通部ガス供給部をさらに備える、プラズマCVD装置。
- 請求項1記載のプラズマCVD装置であって、前記真空チャンバの内部を排気することで減圧する真空排気ポンプを備え、前記真空排気ポンプは、前記第1空間及び第2空間を前記連通部から排気することで減圧する、プラズマCVD装置。
- 請求項1記載のプラズマCVD装置であって、前記第1整流部の表面のうち前記第1空間側を向く表面に着脱自在に取付けられて当該第2整流部の表面を保護する第1防着板と、前記第2整流部の表面のうち前記第2空間側を向く表面に着脱自在に取付けられて当該第2整流部の表面を保護する第2防着板と、をさらに備える、プラズマCVD装置。
- 請求項1記載のプラズマCVD装置であって、前記ガス供給部は、前記第1空間に第1原料ガスを含むガスを供給する第1ガス供給部と、前記第2空間に前記第1原料ガスとは異なる第2原料ガスを含むガスを供給する第2ガス供給部と、を含む、プラズマCVD装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-254249 | 2012-11-20 | ||
JP2012254249 | 2012-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014080601A1 true WO2014080601A1 (ja) | 2014-05-30 |
Family
ID=50775796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006711 WO2014080601A1 (ja) | 2012-11-20 | 2013-11-15 | プラズマcvd装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014122419A (ja) |
WO (1) | WO2014080601A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3871876A4 (en) * | 2018-10-23 | 2022-08-03 | Sumitomo Chemical Company Limited | LAMINATED BODY, FLEXIBLE ELECTRONIC DEVICE AND METHOD OF MAKING LAMINATED BODY |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102018106B1 (ko) * | 2017-08-08 | 2019-09-04 | (주)유니플라텍 | 롤투롤 대면적증착 pecvd장치 |
JP2020121308A (ja) * | 2020-03-27 | 2020-08-13 | 泉工業株式会社 | プラズマ処理装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3155278B2 (ja) * | 1991-09-27 | 2001-04-09 | ヴァルメット ジェネラル リミテッド | 迅速プラズマ処理装置及び方法 |
JP3880697B2 (ja) * | 1997-08-21 | 2007-02-14 | 株式会社アルバック | マグネトロンプラズマcvd装置 |
JP2011080104A (ja) * | 2009-10-05 | 2011-04-21 | Kobe Steel Ltd | プラズマcvd装置 |
-
2013
- 2013-11-15 WO PCT/JP2013/006711 patent/WO2014080601A1/ja active Application Filing
- 2013-11-15 JP JP2013236926A patent/JP2014122419A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3155278B2 (ja) * | 1991-09-27 | 2001-04-09 | ヴァルメット ジェネラル リミテッド | 迅速プラズマ処理装置及び方法 |
JP3880697B2 (ja) * | 1997-08-21 | 2007-02-14 | 株式会社アルバック | マグネトロンプラズマcvd装置 |
JP2011080104A (ja) * | 2009-10-05 | 2011-04-21 | Kobe Steel Ltd | プラズマcvd装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3871876A4 (en) * | 2018-10-23 | 2022-08-03 | Sumitomo Chemical Company Limited | LAMINATED BODY, FLEXIBLE ELECTRONIC DEVICE AND METHOD OF MAKING LAMINATED BODY |
Also Published As
Publication number | Publication date |
---|---|
JP2014122419A (ja) | 2014-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4268195B2 (ja) | プラズマcvd装置 | |
TWI475127B (zh) | Plasma CVD device | |
US20080139003A1 (en) | Barrier coating deposition for thin film devices using plasma enhanced chemical vapor deposition process | |
WO2012056707A1 (ja) | プラズマcvd装置 | |
WO2011043047A1 (ja) | プラズマcvd装置 | |
WO2012046778A1 (ja) | プラズマcvd成膜による積層体の製造方法 | |
WO2014080601A1 (ja) | プラズマcvd装置 | |
JP2011195873A (ja) | 成膜装置 | |
JP2014189890A (ja) | 成膜装置及び成膜方法 | |
US20120291706A1 (en) | Atmospheric Pressure Plasma Processing Apparatus | |
JP5144393B2 (ja) | プラズマcvd成膜方法およびプラズマcvd装置 | |
JP2011162851A (ja) | ガスバリアフィルムの製造方法 | |
TWI524387B (zh) | Film forming apparatus | |
JP2002180257A (ja) | プラズマ処理装置と薄膜形成方法および表面処理方法 | |
JP2013040378A (ja) | プラズマcvd成膜装置、成膜方法 | |
CN106460173A (zh) | 等离子体化学气相沉淀成膜装置 | |
WO2016080447A1 (ja) | 成膜装置及びガスバリアーフィルムの製造方法 | |
JP2012177174A (ja) | 薄膜形成装置 | |
JPWO2017104357A1 (ja) | プラズマcvd成膜装置用電極、電極の製造方法、プラズマcvd成膜装置および機能性フィルムの製造方法 | |
JP6642587B2 (ja) | プラズマcvd成膜装置 | |
JP2014001444A (ja) | 成膜方法 | |
JP7286477B2 (ja) | 薄膜形成装置 | |
WO2015163358A1 (ja) | ガスバリアーフィルム及びその製造方法 | |
JP6288082B2 (ja) | 成膜装置、電極ロールおよびガスバリア性フィルムの製造方法 | |
JP4648935B2 (ja) | ガスバリアフィルムの製造方法、及びガスバリアフィルムの製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13856169 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13856169 Country of ref document: EP Kind code of ref document: A1 |