WO2014079388A1 - 汽轮机 - Google Patents

汽轮机 Download PDF

Info

Publication number
WO2014079388A1
WO2014079388A1 PCT/CN2013/087715 CN2013087715W WO2014079388A1 WO 2014079388 A1 WO2014079388 A1 WO 2014079388A1 CN 2013087715 W CN2013087715 W CN 2013087715W WO 2014079388 A1 WO2014079388 A1 WO 2014079388A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
annular
ducted
rotor
coupled
Prior art date
Application number
PCT/CN2013/087715
Other languages
English (en)
French (fr)
Inventor
刘勇
Original Assignee
袁丽君
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201210479039 external-priority patent/CN103195484A/zh
Priority claimed from CN 201210479018 external-priority patent/CN103195483A/zh
Application filed by 袁丽君 filed Critical 袁丽君
Publication of WO2014079388A1 publication Critical patent/WO2014079388A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/22Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine

Definitions

  • the invention relates to a steam turbine. Background technique
  • the existing widely used steam turbine is in the form of a steam turbine.
  • the steam turbine uses the steam burned by the boiler to impinge on the bladed rotor through the nozzle, so that the impeller rotates to drive the propeller to propel the generator or the ship.
  • the power is large, but the structure is complex and bulky. At present, the power efficiency of the steam turbine has not reached the ideal level.
  • expansion media such as steam, compressed gas, and liquefied gas as energy sources.
  • the invention relates to a steam turbine, the structure of which is mainly composed of a plurality of coaxial annular cylinders, and the structure of each annular cylinder comprises: a ring culvert cylinder (GT), a spiral rib (LJ), a culvert a circular disc (P), a coupled rotor (C), wherein the annular ducted cylinder (GT) is a cylinder having a circular annular cavity (K), and the axial sectional view of the circular annular cavity (K) is The circular rib plate (LJ) is located in the circular annular cavity (K), distributed along the circular arc surface of the circular annular cavity (K), and is integrated with the annular ducted cylinder (GT), the cylinder body ( GT ) has a cylinder ring groove, the ducted disc (P) is located in the cylinder ring groove; the coupled rotor (C) is mounted on the ducted disc (P), located in the circular annular cavity, coupled to the rotor ( The outer diameter edge of C) forms
  • the position of the high pressure zone near the ducted disk of the annular ducted cylinder of the steam turbine is the position where the expansion medium enters, and the position of the low pressure zone is the position of the exhaust;
  • the annular ducted cylinder is the fixed cylinder
  • the ducted disc is the output torque of the rotating disc
  • the annular ducted cylinder is the output torque of the rotating cylinder
  • the single annular ducted cylinder can be equipped with multiple a spiral rib plate and a plurality of coupled rotors; a plurality of spiral rib plates may be arranged in parallel or in series; a plurality of coupled rotors are symmetrically arranged symmetrically about the axis of rotation of the ducted disks, and the ducted disks are in a circle
  • the volume occupied by the ring culvert rotating cylinder can be more than half of the volume of the ring tunnel.
  • the steam turbine composed of a plurality of coaxial annular cylinders has a circular cylinder arranged from a high pressure zone to a low pressure zone according to a direction in which the pressure of the expansion medium is lowered, and the annular cylinder of the high pressure zone has a certain discharge
  • the pressure expansion medium continues to enter the annular cylinder in the low pressure zone, so that the energy of the expansion medium is utilized to the greatest extent possible.
  • the expansion medium in the high pressure zone can be Directly enter the ring cylinder in the low pressure zone.
  • the invention proposes a novel steam turbine design scheme, which has the characteristics of simple structure, reliable operation and high efficiency, and has the characteristics of high pressure input and low pressure discharge.
  • the pressure energy of the expansion medium is converted, in whole or in part, to the output torque.
  • the invention relates to a steam turbine, which can be widely applied to economic fields such as transportation industry, construction machinery, generator sets and large ships.
  • Figure 1 is a cross-sectional view of one embodiment of a single cylinder of the present invention
  • Figure 2 is a schematic view showing the combination of the rotor and the ducted disc of the embodiment shown in Figure 1;
  • Figure 3 is a view showing the working principle of the embodiment shown in Figure 1;
  • Figure 4 is a cross-sectional view showing the second embodiment of the single cylinder of the present invention.
  • Figure 5 is a cross-sectional view of the third embodiment of the single cylinder of the present invention.
  • Figure 6 is a view of the rotor of the embodiment shown in Figure 5;
  • Figure 7 is a working principle view of the embodiment shown in Figure 5;
  • Figure 8 is a schematic view of one of the arrangement of the spiral ribs
  • Figure 9 is a cross-sectional view of one of the embodiments of the four-cylinder combination.
  • Figure 10 is a cross-sectional view of one of the embodiments of the two-cylinder combination
  • Figure 11 is a cross-sectional view of the second embodiment of the four-cylinder combination
  • Figure 12 is a cross-sectional view of the third embodiment of the four-cylinder combination.
  • the structure, size and shape of the illustrated components do not represent the actual structure, size and shape of the components, nor do they represent the actual size ratio relationship between the components.
  • the embodiment of the invention will be described in a simplified manner.
  • Axis of rotation the axis of rotation of the rotating body or rotating space.
  • the axis of rotation is 0 in Figures 1 and 4.
  • Axial cross-sectional view A view cut from a plane coincident with the axis of rotation. As shown in Figure 1 and Figure 4.
  • Ring axis The axial section is a circular three-dimensional ring with the surrounding axis of the ring, as shown in Figure 1, Figure 4 and Figure 5, axis Q. detailed description
  • Figure 1 is a cross-sectional view showing one of the embodiments of a single cylinder of the present invention
  • Figure 2 is a three-dimensional view showing the combination of the ducted disc and the coupled rotor of the present embodiment.
  • the structure includes a ring-shaped ducted cylinder GT, a spiral rib LJ, a ducted disk P, and a coupled rotor.
  • the annular culvert cylinder GT is a fixed cylinder having a circular cavity K, which is annularly hollow.
  • the axial cross-sectional view of the cavity is circular.
  • the annular culvert cylinder GT has a cylinder ring groove along the circular cavity K, and the duct disk P is located in the cylinder ring groove.
  • the spiral rib LJ is located in a circular space
  • the cavity K is distributed along the arc surface of K and is integrated with the annular duct GT.
  • the coupled rotor C is mounted on the ducted disc P and is located in the circular cavity K, coupled to the rotor C.
  • the outer circumferential edge forms a mechanical fit with the inner surface of the annular cavity K, that is, the fit between them may be a large clearance fit, or a small clearance fit, coupling the rotational axis R of the rotor C with the duct circle
  • the axis of rotation 0 of the disk P is perpendicular or nearly vertical, and is tangent to the ring axis Q of the annular cavity K.
  • the coupling rotor C has a coupling groove along the radial direction (as shown in Fig. 2), and the spiral rib LJ can Passing through the coupling groove, coupling the rotor C with the duct
  • the spiral rib LJ slidably engages with the coupling groove, and pushes the coupled rotor C to rotate around its own rotation axis R.
  • the spiral rib LJ is distributed along the circular arc surface of the circular cavity K, so that the coupled rotor C follows When the track disc P revolves at the uniform hook speed, the coupling rotor C rotates at a uniform rotation speed about its own rotation axis R due to the sliding engagement of the coupling groove and the spiral rib plate U.
  • the coupling rotor is set to rotate in the direction shown in Fig. 1, the coupling rotor C and the starting end of the spiral rib LJ start to mesh from the left side of the duct disc P, along with the duct disc P and the ring duct
  • the relative rotation of the cylinder GT, the coupling rotor C rotates one revolution to the end of the spiral rib LJ on the right side of the duct disc P under the urging force of the spiral rib LJ, and the coupling groove is disengaged from the spiral rib LJ .
  • the coupling groove returns to the left side of the duct disk P with the rotation of the coupled rotor C, and starts the next meshing process with the starting end of the spiral rib LJ.
  • the coupled rotor C separates the space between the circular arc surface of the annular duct cylinder GT, the ducted disk P and the spiral rib U into a high pressure zone and a low pressure zone.
  • the expansion medium expands from the cylinder GT on the left side opening V of the duct disk P into the high pressure zone to generate pressure, pushes the coupled rotor C and the annular ducted cylinder GT and causes relative rotation between C and GT, so that the high pressure The zone is enlarged and the low pressure zone is reduced, and the torque is output.
  • the gas after the work in the low pressure region of the cylinder is discharged from the right opening E by the pressing force.
  • the ducted disc P before the combination of Fig. 2 is taken as a 1/4 cross-section.
  • the ducted disk P is a rotating disk output torque.
  • Figure 3 shows the expansion curve G of the spiral rib LJ.
  • the starting end of the spiral rib LJ is located at 31 o'clock at the small diameter.
  • the coupling rotor C starts to rotate clockwise around the axis 0, and its coupling groove starts to mesh with the spiral rib U from the 31 o'clock position.
  • the coupling groove rotates with the coupling rotor C to the 33 o'clock position.
  • the high pressure zone is the p zone between 31-32-33 three points, the 32-33 arc is about 1 ⁇ 4 of the arc length; the coupled rotor C rotates the circumference, and the coupling slot reaches the 35 o'clock position, the high voltage q area increase between 32_33_35_34 four regions; coupled when the rotor is rotated from C 3 ⁇ 4 periphery, which groove reaches the coupling point 37, the high pressure zone between the zone r add four points 34-35-37-36; coupled rotor C After one rotation, when the coupling slot reaches 38 o'clock, the high pressure zone increases the s zone between four points of 36-37-38-31.
  • 34-35, 36-37, 31-38 are the arc length of about 1 ⁇ n arc length 1 ⁇ 2, 3 ⁇ 4 and full length. If the gap between 31-32 and 38-41 is set as the opening area, the pressure of the inflation gas will start when the coupling rotor C turns to the position 32-33, which will be 31-38-39-33, 33-39-40-35
  • the regions between the 35-40-41-37 and 37-41-38 points are called t, u, v, w regions, respectively, and the p region is removed, the partial region of q through which the rotor C passes, and r , s, t, u, v are the areas of the power output position.
  • the area of the coupled rotor C increases rapidly. From the t-zone to the w-zone, as the expansion of the medium continues, the area of the coupled rotor C is gradually reduced, from the q-zone to the s-zone. In the range of more than 180 Q , the continuity of the torque output becomes large.
  • the coupled rotor C is turned to the t-zone, the coupled rotor C has been rotated through the stroke from the starting position for one week.
  • the coupling groove of the coupling rotor C is disengaged from the terminating end of the spiral rib LJ, and starts to enter the starting end side of the duct disk P, and once again enters the meshing state with the starting end of the spiral rib LJ, and enters the lower state.
  • each work stroke has 11 ⁇ 4 weeks to 1 1 ⁇ 2 weeks, that is, 45 (k ⁇ 540Q).
  • about 360 Q stroke is the two expansion work simultaneously. While working on the high-pressure side of the coupled rotor C, the other side gradually becomes the low pressure. The zone is simultaneously exhausting gas, so this embodiment has high efficiency and output torque, which is an important reason why the present invention can save expansion medium as compared with the prior art.
  • Figure 4 is a cross-sectional view showing the second embodiment of the single cylinder of the present invention, the structure comprising the annular ducted cylinder GT0, the spiral rib LJ 0 , the ducted disc P0, the coupled rotor CO, the annular duct cylinder
  • the axial cross-sectional view shape of the annular cavity K of the GT0, the distribution of the spiral rib LJ 0 , the coupled rotor CO and the circular ring The fit of the cavity K, the plan view of the spiral rib LJ 0 on the circular arc surface 1 mn of the circular cavity K, the meshing of the spiral rib U 0 with the coupling groove, the rotation mode of the coupled rotor CO, the high pressure zone and the low pressure
  • the area and the like are the same as the embodiment shown in Fig. 1.
  • the ducted disc P0 is a fixed disc
  • the annular ducted cylinder GT0 is a rotating cylinder output torque.
  • Figure 5 is a cross-sectional view of the third embodiment of the single cylinder embodiment of the present invention, which is the same as the above embodiment, and the structure includes a ring tunneling cylinder GT, a spiral rib plate, a ducted disk P, and a coupled rotor.
  • the installation of the ducted disc P, the manner of revolving and rotating the coupled rotor, and the operation of the annular ducted cylinder GT are the same as those of the embodiment shown in Fig. 1.
  • the circular arc surface of the ring culvert cylinder GT is distributed with four spiral ribs, LJ 2 , LJ 3 and LJ 4 which are symmetric with the ring axis Q, respectively corresponding to the coupled rotor shown in Fig. 6.
  • the spiral rib LJ 4 is just at the position of the open slot of the spiral duct cylinder between the start end and the end end, and thus the ducted disc P Occupy, for convenience of explanation, the position of the LJ 4 is still indicated in FIG. 5, and FIG. 7 shows the working principle diagram of the embodiment shown in FIG. 5, in which the mounting positions of the three coupled rotors Cl, C2, C3 are shown.
  • the three coupled rotors are symmetric with each other in a circular axis Q, and the ducted disc P and the transmission shaft X shown in Fig. 5 are integrated, and the details of the actual joint are all technical personnel in the industry. A variety of ways are known and will not be described here.
  • Fig. 7 shows four spiral ribs, LJ 2 , LJ 3 , LJ 4 in the circumferential direction on the circular arc surface 1 - m - ⁇ (shown in Figure 5) of the circular hollow space K Expanding the plan of one week, as shown in Figure 7, the inner circle 1-2-3-4 indicates the arc 1 at the beginning of the spiral rib adjacent to the side of the rotating disk, and the outer circle 8-12-16-20 indicates Rotating the arc ⁇ of the end of the adjacent spiral rib on the other side, the four spiral ribs, LJ 2 , LJ 3 , LJ 4 start from the points 1, 2, 3, 4, respectively, and terminate at the point 8, 12, 16, 20, the angle between each two adjacent spiral ribs occupies a circular arc space of 90°, that is, the radial angle between two adjacent coupling grooves on the coupled rotor is 90 ° (shown in Figure 5), for example, 1 ⁇ 17, 17 ⁇ 14, 14 ⁇ 11, 11 ⁇ 8 occupy the length of 1 ⁇ 17, 17 ⁇
  • the cylinder openings V and E on both sides of the rotating disc are all open along the circumferential direction of the cylinder (as shown in Fig. 4), as shown in Fig. 6, as the air inlet and the air outlet when the coupling rotor rotates. It is necessary that V and E are separated by at least one coupled rotor.
  • the figure shows the installation position and working state of two coupled rotors Cl and C2.
  • the two coupled rotors C1 and C2 are symmetric with each other at an arc axis Q of 180 degrees.
  • three coupled rotors can be used.
  • more coupling rotors, using three coupled rotors can make the three rotors in different stress states, which is beneficial to the relatively uniform torque output of the ducted disc as a steam turbine.
  • Fig. 8 is a schematic view showing one of the arrangement of the spiral ribs of the present invention, and its working principle is the same as that of the above embodiment, and the difference is: among the four spiral ribs, the spiral ribs, ! And spiral rib plate LJ 2 ! In series, the spiral ribs, 2 and the spiral ribs LJ 2 2 are connected in series, that is, the spiral ribs ! LJ ribs and spiral starting end or terminating end 2 respectively ducted helical rib on the other side of the disk 2 P LJ!
  • each coupled rotor revolves around the rotating shaft 0 for one revolution, and the same coupling groove of the coupled rotor is in sliding engagement with the front and rear two spiral ribs, that is, the coupled rotor is to be rotated. 2 weeks; and spiral ribs, and spiral ribs, 2 for parallel, spiral rib LJ 2 !
  • spiral rib LJ 2 2 that is, the 2-parallel 2 series spiral rib structure in the present embodiment, and several coupling rotors, but each coupling rotor has only two coupling grooves, and each of the ducted disks rotates once.
  • the spiral ducted cylinder sucks in and removes twice the volume of the cylinder.
  • Figure 9 is a cross-sectional view showing an embodiment of one of the four-cylinder combined steam turbines, the illustrated steam turbine consisting of spiral-ducted cylinders GT5, GT6, GT7, GT8, their respective ducted discs P5, P6, P7, P8 are connected with the drive shaft.
  • the air outlets E5, E6 and E7 of GT5, GT6 and GT7 are connected with the air inlets V6, V7 and V8 of GT6, GT7 and GT8 respectively, so the air inlet of the steam turbine It is the air inlet V5 of the GT5.
  • the exhaust port of the steam turbine is the exhaust port E8 of the GT8.
  • the illustration shows that the diameter and volume of the cylinders of the GT5, GT6, GT7 and GT8 increase in turn, and the cylinders GT6, GT7, GT8 Multi-channel spiral rib plate parallel multi-channel spiral rib plate series structure, for example, GT6 adopts 4 parallel 2 series structure, GT7 adopts 4 parallel 3 series structure, GT8 adopts 4 parallel 4 series structure; at the same time adopts multiple coupled rotor structures, such as GT5 GT6, GT7, GT8 adopt the structure of 2, 4, 6 and 8 rotors respectively; such that the cylinders GT5, GT6, GT7 and GT8 pass 1x and 2 times of their own volume each time the duct is rotated , 3 times, 4 times the gas Body, if the working volume of the GT8 ring-ducted cylinder is 10 times that of GT5, the volume after expansion of the expansion medium is 40 times from the inlet V5 to the outlet E8.
  • the expansion medium in the high pressure zone for example, the initial gas of the intake port V5
  • the expansion medium in the high pressure zone can be directly input to the annular cylinder of the low pressure zone such as the intake ports of the GT7 and GT8.
  • V7, V8 this allows the turbine to provide greater torque in a short period of time.
  • Figure 10 is a cross-sectional view showing one of the embodiments of the two-cylinder combination, the illustrated steam turbine is composed of spiral-ducted cylinders GT3, GT4, and the cylinder GT4 and the cylinder GT3 have the same structure and are bilaterally symmetrical, so that they have spiral ribs.
  • the rotation directions are opposite, so that when their ducted disks P3, P4 are integrated with the output shaft X, the intake ports V3, V4 are connected through the through holes in the duct discs of the respective cylinders to become a common advance.
  • the port V is as shown by the arrow in Fig. 10; the gas after the work is discharged through the exhaust ports E3, E4 of the respective cylinders.
  • This embodiment has the characteristics of compact structure and large output power.
  • Figure 11 shows a cross-sectional view of an embodiment of one of the four-cylinder combined steam turbines, which is composed of spiral ducted rotating cylinders GT11, GT12, GT13, GT14 and coupled to the drive shaft XI I , their ducted discs and the common fixed disc P11 are connected to the body as a turbine casing.
  • the outlets El l, E12, and E1 of the GT11, GT12, and GT1 3 are respectively connected to the intake ports V12, V1 3, and V14 of the GT12, GT1 3, and GT14, so the intake port of the steam turbine is the intake port Vl of the GT11.
  • the exhaust port of the steam turbine is the exhaust port E14 of the GT14.
  • the cylinder diameter and volume of the GT11, GT12, GT1 3, and GT14 increase sequentially, and the cylinders GT12, GT1 3, and GT14 adopt multi-channel spirals.
  • the rib plate is connected in parallel with the multi-channel spiral rib plate series structure.
  • the GT12 adopts 4 parallel 2 series structure
  • the GT1 3 adopts 4 parallel 3 series structure
  • the GT14 adopts 4 parallel 4 series structure
  • multiple coupled rotor structures such as GT11, GT12, GT1 3, GT14 adopts the structure of 2, 4, 6 and 8 rotors respectively; thus the cylinders GT11, GT12, GT1 3 and GT14 pass through 1 times, 2 times and 3 times of their own volume each time the drive shaft rotates.
  • the working volume of the ring-shaped ducted cylinder of the GT14 is 10 times that of the GT11, the volume after the expansion medium is enlarged by 40 times from the inlet VI I to the outlet E14.
  • the energy of the expansion medium (such as high temperature and high pressure steam, compressed gas, combustion and expansion gas, etc.) is finally converted to the output torque of the transmission shaft.
  • the expansion medium in the high pressure zone for example, the initial gas of the intake port VI I can be directly input into the annular cylinder of the low pressure zone such as GT1 3, GT14.
  • Ports V1 3, V14 which allow the turbine to provide greater torque in a short period of time.
  • Figure 12 is a cross-sectional view showing the third embodiment of the four-cylinder combination of the present invention, the illustrated steam turbine consisting of the spiral-ducted cylinders GT21, GT22, GT23, GT24 and coupled to the drive shaft X2, their duct circle
  • the disk is a fixed disk P21, P22, P23, P24 as a turbine casing and the body is coupled together, and the volume occupied by each of the duct disks in the rotating cylinder of the respective ring duct is the volume of the annular duct cylinder.
  • the air outlets E21, E22, and E23 of GT21, GT22, and GT23 are connected to the air inlets V22, V23, and V24 of GT22, GT23, and GT24, respectively.
  • the intake port of the steam turbine is the air inlet V21 of the GT21, and the steam turbine row.
  • the air port is the exhaust port GT24 of the GT24. It can be seen that the diameter of the ring axis of the ring cylinders GT21, GT22, GT23, GT24 and the cylinder volume increase in turn, using multiple spiral ribs in parallel with multiple spirals.
  • the rib plate series structure and the plurality of coupled rotor structures are the same as those of the embodiment shown in Fig. 11. From the air inlet V21 to the air outlet E24, the volume of the expansion medium after work is enlarged by about 40 times or more.
  • the different combinations of cylinders such as cylinder volume, rotor diameter, diameter of the ring axis, number and arrangement of the spiral ribs, number of rotors, etc.
  • the energy of the medium (such as high temperature and high pressure steam, compressed gas, combustion and expansion gas, etc.) is maximally converted into the output torque of the drive shaft.
  • the expansion medium in the high pressure zone can be directly input to the annular cylinder of the low pressure zone.
  • the intake device the exhaust device, the supply system and the control system of the expansion medium, the sealing system, the lubrication system, the support device, the safety protection device, and the like, are known to those skilled in the art, and are widely used in the field, Here again - repeat.
  • the invention can be applied to steam turbines of the prior art, and can be used as an integral part of the existing steam turbine, for example, to replace the turbine in the high pressure zone, or to fully utilize the residual pressure of the gas in the exhaust zone, thereby increasing the energy of the expansion medium. Utilization.
  • the engine to which the present invention relates can be manufactured using various materials such as various metal materials, high-strength alloy materials, ceramic materials, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及一种汽轮机,包括多个共轴的圆环缸体,每个圆环缸体的结构包括:圆环涵道缸体、螺旋筋板、涵道圆盘、耦合转子,其中圆环涵道缸体是一个有圆环形空腔的缸体,空腔的轴面剖视图为圆形,螺旋筋板位于空腔内,沿空腔的圆弧面分布,并与圆环涵道缸体联结为一体,空腔的缸体开有缸体环槽,涵道圆盘位于缸体环槽中;耦合转子安装在涵道圆盘上,位于空腔内,其外径边缘与空腔的内表面形成机械配合,其转动轴线与涵道圆盘的转动轴线垂直或接近垂直,并与空腔的圆环轴线相切,耦合转子沿半径方向开有耦合槽,螺旋筋板可以穿过耦合槽。

Description

汽轮机 技术领域
本发明涉及一种汽轮机。 背景技术
现有的被广泛使用的汽轮机, 为蒸汽轮机形式, 蒸汽轮机是利用锅炉烧出 来的蒸汽, 通过喷嘴沖击到装有叶片的转轮, 使得叶轮旋转带动推进器推进发 电机或船舶, 蒸汽轮机功率大但结构较为复杂, 体积庞大, 目前汽轮机的动力 效率都没有达到理想的水平。 而在节能环保要求非常迫切的形势下, 交通运输、 发电等行业更加需要高效率的以膨胀介质如蒸汽、 压缩气、 液化气体等为能量 来源的有较高转换效率的动力装置。 发明内容
本发明涉及一种汽轮机, 其结构主要由若干个共轴的圓环缸体组成, 每个 圓环缸体的结构包括: 圓环涵道缸体(GT ) 、 螺旋筋板(LJ )、 涵道圓盘(P ) 、 耦合转子 (C ) , 其中圓环涵道缸体(GT )是一个有圓环形空腔(K)的缸体, 圓 环形空腔(K)的轴面剖视图形状为圓形; 螺旋筋板(LJ )位于圓环形空腔(K)内, 沿圓环形空腔(K)的圓弧面分布,并与圓环涵道缸体( GT )联结为一体,缸体( GT ) 开有缸体环槽, 涵道圓盘(P )位于缸体环槽中; 耦合转子 (C )安装在涵道圓 盘(P )上, 位于圓环形空腔内, 耦合转子 (C ) 的外径边缘与圓环形空腔的内 表面形成机械配合, 其转动轴线(R)与涵道圓盘(P )的转动轴线(0)垂直或接近 垂直; 耦合转子(C )沿半径方向开有耦合槽, 螺旋筋板(U )可以穿过耦合槽, 当耦合转子 (C )和涵道圓盘(P ) 与圓环涵道缸体(GT )发生相对转动时, 螺 旋筋板( U )与耦合槽的滑动啮合推动耦合转子( C ) 围绕自身转动轴线自转; 螺旋筋板(LJ ) 沿圓环形空腔的圓弧表面分布, 使得耦合转子(C ) 随涵道圓盘 ( P )与圓环涵道缸体( GT )产生相对转动, 并以均匀转速转动时,耦合转子( C ) 因耦合槽与螺旋筋板( U )的滑动啮合而围绕自身转动轴线(R)以均匀转速自转; 螺旋筋板的起始端位于涵道圓盘的一侧, 并与耦合转子的耦合槽开始滑动 啮合, 随着涵道圓盘与圓环涵道缸体之间的相对转动, 耦合转子在螺旋筋板的 推力作用下自转, 到达涵道圓盘的另一侧的螺旋筋板的终止端, 则螺旋筋板与 耦合槽脱离啮合, 并继续转动, 回到螺旋筋板起始端的一侧, 又开始下一次的 滑动啮合; 耦合转子将圓环涵道缸体的圓弧面、 涵道圓盘、 螺旋筋板三者之间 的空间分隔为高压区和低压区, 膨胀介质进入高压区膨胀产生压力, 推动耦合 转子和圓环涵道缸体并使得耦合转子与圓环涵道缸体之间产生相对转动, 使得 高压区增大而低压区缩小, 并输出扭矩。
汽轮机的圓环涵道缸体的涵道圓盘附近的高压区一侧的位置, 为膨胀介质 进入的位置, 低压区一侧的位置为排气的位置; 圓环涵道缸体为固定缸体时, 涵道圓盘为转动盘输出扭矩; 涵道圓盘为固定盘时, 圓环涵道缸体为转动缸体 输出扭矩; 单个的圓环涵道缸体内, 可以装有多个螺旋筋板和多个耦合转子; 多个螺旋筋板可以并联排布也可以串联排布; 多个耦合转子则以涵道圓盘的转 动轴线为对称轴对称排布, 涵道圓盘在圓环涵道转动缸体内所占的体积, 最大 可以超过所述圓环涵道转动缸体容积的一半。
多个共轴圓环缸体组成的所述汽轮机, 其圓环缸体按照膨胀介质的压力降 低的方向从高气压区排列到低气压区, 高气压区的圓环缸体所排放的具有一定 压力的膨胀介质继续进入到低气压区的圓环缸体, 使得膨胀介质的能量得到尽 量大程度的利用, 在汽轮机启动阶段以及需要大功率输出的工况下, 高气压区 的的膨胀介质可以直接输入到低气压区的圓环缸体。
本发明提出了一种全新的汽轮机的设计方案, 具有结构筒单、 运行可靠、 效率高的特点, 同时还具有高压力输入、 低压力排放的特点。 膨胀介质的压力 能量被全部或大部分转换为输出转矩。
本发明涉及一种汽轮机, 可广泛应用于交通运输行业、 工程机械、 发电机 组、 大型轮船等经济领域。 附图说明
图 1 本发明单个缸体实施例之一的剖视图;
图 2 图 1所示实施例转子和涵道圓盘组合示意图;
图 3 图 1所示实施例的工作原理筒图;
图 4 本发明单个缸体实施例之二的剖视图;
图 5 本发明单个缸体实施例之三的剖视图;
图 6 图 5所示实施例的转子视图;
图 7 图 5所示实施例的工作原理筒图;
图 8螺旋筋板的排列方式之一的示意图;
图 9四缸体组合的实施例之一的剖视图;
图 10二缸体组合的实施例之一的剖视图;
图 11 四缸体组合的实施例之二的剖视图;
图 12四缸体组合的实施例之三的剖视图。 在本发明专利的附图说明中, 图示的零部件的结构、 尺寸及形状并不代表 实际的零部件的结构、 尺寸及形状, 也不代表零部件之间的实际大小比例关系, 图示只是用筒明的方式对本发明实施例予以说明。
关于本发明专利叙述中的名词解释:
1.转动轴线:转动体或旋转空间的转动轴线。如图 1和图 4中的转动轴线 0 。
2.轴面剖视图: 与转动轴线相重合的平面上剖切所得的视图。 如图 1和图 4 所示。
3.圓环轴线: 轴面剖视图为圓形的三维体圓环, 其圓环的环绕轴线,如图 1、 图 4和图 5中的轴线 Q 。 具体实施方式
图 1显示了本发明单个缸体实施例之一的轴面剖视图, 图 2显示了本实施 例的涵道圓盘和耦合转子组合体的三维视图。 其结构包括圓环涵道缸体 GT、 螺 旋筋板 LJ 、 涵道圓盘 P 、 耦合转子(。 圓环涵道缸体 GT是一个有圓环形空腔 K的固定缸体, 其圓环形空腔的轴面剖视图形状为圓形。 圓环涵道缸体 GT 沿圓 环形空腔 K开有缸体环槽, 涵道圓盘 P 位于缸体环槽内。 螺旋筋板 LJ 位于圓 环形空腔 K 中, 沿 K的圓弧面分布, 并与圓环涵道缸体 GT联结成一体。 耦合 转子 C 安装在涵道圓盘 P 上, 并位于圓环形空腔 K 内, 耦合转子 C 的外圓边 缘与圓环形空腔 K 的内表面形成机械配合, 也就是说它们之间的配合可以是大 的间隙配合,也可以是小的间隙配合,耦合转子 C 的转动轴线 R与涵道圓盘 P 的 转动轴线 0相垂直或接近垂直, 并与圓环形空腔 K 的圓环轴线 Q相切。 耦合转 子 C 沿半径方向开有耦合槽(如图 2所示) , 螺旋筋板 LJ 可以穿过耦合槽, 耦合转子 C 随着涵道圓盘 P 转动时, 螺旋筋板 LJ 与耦合槽发生滑动啮合, 并 推动耦合转子 C 围绕自身转动轴线 R 自转。 螺旋筋板 LJ 沿圓环形空腔 K 的圓 弧面分布,使得耦合转子 C 随涵道圓盘 P 以均勾速度公转时,耦合转子 C 因耦 合槽与螺旋筋板 U 的滑动啮合而围绕自身转动轴线 R以均匀转速自转。
如果设定耦合转子按图 1所示的方向旋转,则耦合转子 C 与螺旋筋板 LJ 的 起始端从涵道圓盘 P 的左侧开始啮合,随着涵道圓盘 P与圓环涵道缸体 GT的相 对转动,耦合转子 C 在螺旋筋板 LJ 的推动力作用下自转一周到达涵道圓盘 P 的 右侧的螺旋筋板 LJ 的终止端, 则耦合槽与螺旋筋板 LJ 脱离啮合。 耦合槽随耦 合转子 C 的自转又回到涵道圓盘 P 的左侧, 与螺旋筋板 LJ 的起始端开始下一 个啮合过程。 耦合转子 C 将圓环涵道缸体 GT 的圓弧面、 涵道圓盘 P 和螺旋筋 板 U 三者之间的空间分隔为高压区和低压区。 膨胀介质从缸体 GT在涵道圓盘 P 的左侧开孔 V进入高压区膨胀产生压力, 推动耦合转子 C和圓环涵道缸体 GT 并使得 C与 GT之间产生相对转动,使得高压区增大而低压区缩小,并输出扭矩, 同时在此缸体内低压区的作功后的气体在挤压力作用下从右侧开孔 E排出。 为 了便于理解, 图 2的组合之前的涵道圓盘 P采用 1 /4剖视。 在本实施例中圓环 涵道缸体 GT为固定缸体时, 涵道圓盘 P为转动盘输出扭矩。
为了说明上述过程,用图 3显示了螺旋筋板 LJ 在圓环形空腔 K的圓弧面 1 m n上沿周向展开一周的平面图。 尽管空间的圓弧面展开为一个圓形的平面会 失去精确性, 但可筒明地显示其工作原理。
图 3所示, 为螺旋筋板 LJ 的展开曲线 G。 螺旋筋板 LJ 的起始端位于小直 径处的 31点位。 耦合转子 C 围绕轴线 0顺时针方向开始旋转, 其耦合槽从 31 点位起与螺旋筋板 U 开始啮合, 当耦合转子 C 转过 ¼周, 其耦合槽随耦合转子 C 转到 33点位时, 高压区为 31-32-33三个点之间的 p区, 32- 33弧线约是 1 ~ n圓弧长度的 ¼; 耦合转子 C 自转 周, 其耦合槽到达 35点位时, 高压区增 加 32_33_35_34四点之间的 q区; 耦合转子 C 自转过 ¾周, 其耦合槽到达 37点 位时, 高压区再增加 34-35-37-36四点之间的 r区; 耦合转子 C 自转过一周, 其耦合槽到达 38点位时, 高压区增加 36-37- 38-31四点之间的 s 区。 34-35、 36-37、 31 -38弧线长度分别约为 1 ~ n圓弧长的½¾及全长。 如果将 31- 32以 及 38-41之间设为开孔区域, 耦合转子 C 转到 32-33位置时开始受膨胀气体的 压力, 将 31-38-39-33、 33-39-40-35、 35-40-41-37、 37-41-38 点位之间的区 域分别称为 t、 u、 v、 w区, 则除去 p区域,耦合转子 C 所经过的 q的部分区域, 以及 r、 s、 t、 u、 v均为动力输出位置的区域。 , 从 p区到 s区, 耦合转子 C 的 受力面积迅速增大, 从 t区到 w区, 随着介质膨胀的继续, 耦合转子 C 的受力 面积又逐步减少,从 q区到 s区的超过 180Q 范围内,扭矩的输出的连续性变大。 当耦合转子 C 转到 t区时, 耦合转子 C从起始位置已转过一周的行程。 这时, 耦合转子 C 的耦合槽与螺旋筋板 LJ 的终止端脱离啮合,并开始进入涵道圓盘 P 的起始端一侧, 与螺旋筋板 LJ 的起始端再一次进入啮合状态, 进入下一个作功 周期。 与本次循环相同, 从 31→33→35开始下一个做功行程。 因此, 当耦合转 子 C 转至 38点位到 39点位进入 u区时, 下一个膨胀作功状态同时进行。 前面 提到耦合转子 C从 31点位开始循环之时, 本次的上一个工作循环已进入到了 t 区, 因此, 每一次作功行程都有 1¼周至 1 ½周, 也就是 45 (k ~ 540Q 的作功范 围。 在 2周 720Q 的旋转行程中, 约有 360Q 的行程是两个膨胀做功同时进行。 在耦合转子 C 的高压区一侧作功的同时, 另一侧逐步变为低压区, 同时正在排 出气体, 因此本实施例具有很高的效率和输出扭矩, 这也是本发明与现有技术 相比, 能够节约膨胀介质的一个重要原因。
图 4 所示为本发明单个缸体实施例之二的剖视图, 其结构包括圓环涵道缸 体 GT0、 螺旋筋板 LJ 0 、 涵道圓盘 P0 、 耦合转子 CO , 圓环涵道缸体 GT0的圓 环形空腔 K的的轴面剖视图形状、 螺旋筋板 LJ 0的分布、 耦合转子 CO与圓环形 空腔 K 的配合、 螺旋筋板 LJ 0 在圓环形空腔 K的圓弧面 1 m n上展开的平面 图、 螺旋筋板 U 0 与耦合槽的啮合、耦合转子 CO的转动方式、 高压区和低压区 等等与图 1所示实施例相同,与图 1所示实施例不同的是涵道圓盘 P0为固定盘, 圓环涵道缸体 GT0为转动缸体输出扭矩。
图 5所示,为本发明单个缸体实施例之三的轴面剖视图,与上述实施例相同, 其结构包括圓环涵道缸体 GT 、 螺旋筋板 、 涵道圓盘 P 、 耦合转子如图 6所示 的三维图像, 以及缸体开孔 V和 E , 和这些开口的位置。 涵道圓盘 P 的安装、 耦合转子的公转及自转的方式, 圓环涵道缸体 GT 的工作方式等与上述图 1所示 实施例相同。 所不同的是: 圓环涵道缸体 GT的圓弧表面分布着以圓环轴线 Q为 对称的 4道螺旋筋板 、 LJ2 、 LJ3 、 LJ4 , 分别对应图 6所示耦合转子的 4道耦合槽, 在图 5所示的上半部剖切位置, 螺旋筋板 LJ4 刚好处于起始端和 终止端之间的螺旋涵道缸体开口槽的位置, 因此被涵道圓盘 P 占据, 为了方便 说明, 依然在图 5中指出了 LJ4 的位置, 图 7显示了图 5所述实施例的工作原 理图, 在图中显示了 3个耦合转子 Cl、 C2、 C3的安装位置及工作状态, 3个耦 合转子以圓弧轴线 Q为对称相互之间成同平面状态, 图 5所示的涵道圓盘 P和 传动轴 X联为一体, 实际联结的细节本行业技术人员均已知晓多种方式, 在这 里不再赘述。
与图 3相同, 图 7显示了 4道螺旋筋板 , 、 LJ2 、 LJ3 、 LJ4 在圓环形 空月空 K的圓弧面 1— m— η (图 5所示)上沿周向展开一周的平面图, 图 7所示, 内圓 1-2-3-4 表示与转动盘 Ρ —侧相邻的螺旋筋板起始端的圓弧 1 , 外圓 8-12-16-20表示与转动盘 Ρ另一侧相邻的螺旋筋板的终止端的圓弧 η , 4条螺旋 筋板 、 LJ2 、 LJ3 、 LJ4 分别从点位 1、 2、 3、 4开始, 终止于点位 8、 12、 16、 20 , 每两条相邻的螺旋筋板之间的角度分别占有 90° 的圓弧空间, 也 就是耦合转子上的两个相邻的耦合槽的径向夹角为 90° (图 5所示) , 例如 1 ~ 17、 17 ~ 14、 14 ~ 11、 11 ~ 8分别占有 1 ~ 8线段的长度 ,其它如 2 ~ 12、 3 ~ 16、 4 ~ 20之间依此相同。 在转动盘两侧的缸体开口 V 、 E均沿着缸体的周向开 口一圏 (如图 4所示) , 在图 6 中显示, 在耦合转子旋转时作为进气口和出气 口的 V和 E至少被一个耦合转子隔开, 这是必要的。 图中显示了 2个耦合转子 Cl、 C2的安装位置及工作状态, 2个耦合转子 Cl、 C2以圓弧轴线 Q为对称相互 之间的夹角为 180度, 当然, 可以采用三个耦合转子或者更多耦合转子的方案, 采用三个耦合转子, 可以使得三个转子处于不同的受力状态, 这样有利于作为 汽轮机的涵道圓盘输出相对均匀的扭力。
图 8 显示了本发明的螺旋筋板的排列方式之一的示意图, 其工作原理与上 述实施例相同, 不同的是: 4 个螺旋筋板之中, 螺旋筋板 , ! 和螺旋筋板 LJ2 ! 为串联, 螺旋筋板 , 2 与螺旋筋板 LJ2 2 为串联, 也就是螺旋筋板 ! 和螺旋筋板 LJ 2 的起始端或终止端分别与涵道圓盘 P另一侧的螺旋筋 板 LJ2 ! 和螺旋筋板 LJ2 2 的终止端或起始端相对应, 每个耦合转子围绕转动 轴 0公转一周, 耦合转子的同一个耦合槽与前后两个螺旋筋板滑动啮合, 也就 是耦合转子要自转 2周; 而螺旋筋板 , , 和螺旋筋板 , 2 为并联, 螺旋筋 板 LJ2 ! 与螺旋筋板 LJ2 2 并联, 也就是本实施例中的 2并联 2串联螺旋筋板 结构, 并有若干个耦合转子, 但每个耦合转子只有两个耦合槽, 涵道圓盘每转 动一周, 螺旋涵道缸体则吸入及排除 2倍的缸体容积的气体。
图 9显示了一种 4缸体组合的汽轮机之一的实施例的剖示图, 图示的汽轮 机由螺旋涵道缸体 GT5、 GT6、 GT7、 GT8组成, 它们各自的涵道圓盘 P5、 P6、 P7、 P8与传动轴联结在一起, 其中 GT5、 GT6、 GT7的出气口 E5、 E6、 E7分别与 GT6、 GT7、 GT8 的进气口 V6、 V7、 V8连通, 因此汽轮机的进气口就是 GT5 的进气口 V5 , 汽轮机的排气口就是 GT8的排气口 E8 , 图示可以看出 GT5、 GT6、 GT7、 GT8 的缸体直径和体积依次增大, 缸体 GT6、 GT7、 GT8 采用多道螺旋筋板并联多道 螺旋筋板串联结构, 例如 GT6采用 4并联 2串联结构, GT7采用 4并联 3串联结 构, GT8采用 4并联 4串联结构; 同时采用多个耦合转子结构, 例如 GT5、 GT6、 GT7、 GT8分别采用 2个、 4个、 6个、 8个转子的结构; 这样涵道圓盘每转动一 周缸体 GT5、 GT6、 GT7、 GT8分别通过自身体积的 1倍、 2倍、 3倍、 4倍的气体, 如果 GT8的圓环涵道缸体的工作容积是 GT5的 10倍, 则从进气口 V5到出气口 E8 , 膨胀介质作功之后的体积放大了 40倍。 由此可以看出, 无论膨胀介质的初 始压力是多少, 都可以通过若干个缸体的不同组合, 例如缸体容积、 转子直径、 转子的公转直径、 螺旋筋板的数量和排列方式、 转子的数量等等, 最终将膨胀 介质 (例如高温高压蒸汽、 压缩气体、 燃烧膨胀的气体等) 的能量最大限度地 转换成涵道圓盘的输出扭矩。 在汽轮机启动阶段以及需要大功率输出的工况下, 高气压区的的膨胀介质, 例如进气口 V5的初始气体可以直接输入到低气压区的 圓环缸体例如 GT7、 GT8的进气口 V7、 V8 , 这样可以使得汽轮机在 ^艮短的时间内 提供较大的扭矩。
图 10显示了二缸体组合的实施例之一的剖视图, 图示的汽轮机由螺旋涵道 缸体 GT3、 GT4组成, 缸体 GT4与缸体 GT3的结构相同并左右对称, 因此它们螺 旋筋板的旋转方向相反, 这样当它们的涵道圓盘 P3、 P4与输出轴 X联结为一体 时, 进气口 V3、 V4通过各自缸体的涵道圓盘上的通孔联结起来成为共同的进气 口 V,如图 10的箭头所示;作功之后的气体通过各自缸体的排气口 E3、 E4排出。 本实施例具有结构紧凑、 输出功率大的特点。
图 11显示了一种 4缸体组合的汽轮机之一的实施例的剖示图, 图示的汽轮 机由螺旋涵道转动缸体 GT11、 GT12、 GT13、 GT14组成并与传动轴 XI I联结在一 起, 它们的涵道圓盘与共同的固定盘 P11 作为汽轮机外壳与机体联结在一起, 其中 GT11、 GT12、 GT1 3的出气口 El l、 E12、 E1 3分别与 GT12、 GT1 3、 GT14的 进气口 V12、 V1 3、 V14连通, 因此汽轮机的进气口就是 GT11的进气口 Vl l , 汽 轮机的排气口就是 GT14的排气口 E14 , 图示可以看出 GT11、 GT12、 GT1 3、 GT14 的缸体直径和体积依次增大, 缸体 GT12、 GT1 3、 GT14采用多道螺旋筋板并联多 道螺旋筋板串联结构, 例如 GT12采用 4并联 2串联结构, GT1 3采用 4并联 3串 联结构, GT14采用 4并联 4串联结构; 同时采用多个耦合转子结构, 例如 GT11、 GT12、 GT1 3、 GT14分别采用 2个、 4个、 6个、 8个转子的结构; 这样传动轴每 转动一周缸体 GT11、 GT12、 GT1 3、 GT14分别通过自身体积的 1倍、 2倍、 3倍、 4倍的气体, 如果 GT14的圓环涵道缸体的工作容积是 GT11的 10倍, 则从进气 口 VI I到出气口 E14 , 膨胀介质作功之后的体积放大了 40倍。 由此可以看出, 无论膨胀介质的初始压力是多少, 都可以通过若干个缸体的不同组合, 例如缸 体容积、 转子直径、 转子的直径、 螺旋筋板的数量和排列方式、 转子的数量等 等, 最终将膨胀介质 (例如高温高压蒸汽、 压缩气体、 燃烧膨胀的气体等) 的 能量最大限度地转换成传动轴的输出扭矩。 在汽轮机启动阶段以及需要大功率 输出的工况下, 高气压区的的膨胀介质, 例如进气口 VI I 的初始气体可以直接 输入到低气压区的圓环缸体例如 GT1 3、 GT14的进气口 V1 3、 V14 , 这样可以使得 汽轮机在很短的时间内提供较大的扭矩。
图 12显示了本发明四缸体组合的实施例之三的剖视图, 图示的汽轮机由螺 旋涵道缸体 GT21、 GT22、 GT23、 GT24组成并与传动轴 X2联结在一起, 它们的 涵道圓盘为固定盘 P21、 P22、 P23、 P24作为汽轮机外壳与机体联结在一起, 每 个涵道圓盘在在各自圓环涵道转动缸体内所占的体积为圓环涵道缸体容积的一 半, 其中 GT21、 GT22、 GT23的出气口 E21、 E22、 E23分别与 GT22、 GT23、 GT24 的进气口 V22、 V23、 V24连通, 汽轮机的进气口就是 GT21的进气口 V21 , 汽轮 机的排气口就是 GT24的排气口 Ε24 , 图示可以看出圓环缸体 GT21、 GT22、 GT23、 GT24 的圓环轴线的直径和缸体容积依次增大, 采用多道螺旋筋板并联多道螺旋 筋板串联结构和采用多个耦合转子结构与图 11所示实施例相同, 从进气口 V21 到出气口 E24 , 膨胀介质作功之后的体积放大了约 40倍以上。 与图 1所示实施 例一样, 通过若干个缸体的不同组合, 例如缸体容积、 转子直径、 圓环轴线的 直径、 螺旋筋板的数量和排列方式、 转子的数量等等, 最终将膨胀介质 (例如 高温高压蒸汽、 压缩气体、 燃烧膨胀的气体等) 的能量最大限度地转换成传动 轴的输出扭矩。 在汽轮机启动阶段以及需要大功率输出的工况下, 高气压区的 膨胀介质可以直接输入到低气压区的圓环缸体。
关于进气装置、 排气装置、 膨胀介质的供应系统及控制系统, 密封系统、 润滑系统、 支承装置、 安全保护装置等等, 本领域的技术人员均已知晓, 并在 本领域广泛应用, 不再在此——赘述。 本发明可以应用于现有技术的汽轮机当中, 可以作为现有汽轮机的一个组 成部分, 例如代替高压区的透平, 或者用于排气区气体余压的充分利用, 这样 都可以提高膨胀介质能量的利用率。
本发明所涉及的发动机, 可以采用多种材料制造, 例如各种金属材料、 高 强度合金材料以及陶瓷材料等等。
上述实施例以图示的方式说明了本发明, 但是以图示方式说明的上述实施 例不是对本发明的限制, 本发明由权利要求限定。

Claims

权利要求书
1. 一种汽轮机, 包括多个共轴的圓环缸体, 每个圓环缸体包括: 圓环涵道 缸体、 螺旋筋板、 涵道圓盘、 和耦合转子, 其特征在于: 所述圓环涵道缸体具 有圓环形空腔, 所述圓环形空腔的轴面剖视图形状为圓形, 所述螺旋筋板位于 所述圓环形空腔内, 沿圓环形空腔的圓弧面分布, 并与所述圓环涵道缸体联结 为一体, 所述圓环形空腔的缸体设置有缸体环槽, 所述涵道圓盘位于缸体环槽 中;
所述耦合转子安装在涵道圓盘上, 位于所述圓环形空腔内, 耦合转子的外 径边缘与圓环形空腔的内表面形成机械配合, 其转动轴线与涵道圓盘转动轴线 垂直或接近垂直, 所述耦合转子沿半径方向形成有耦合槽, 螺旋筋板可以穿过 耦合槽, 当耦合转子和涵道圓盘与圓环涵道缸体发生相对转动时, 螺旋筋板与 耦合槽的滑动啮合推动耦合转子围绕自身转动轴线自转;
所述螺旋筋板沿所述圓环形空腔的圓弧表面分布, 使得耦合转子随涵道圓 盘与圓环涵道缸体产生相对转动, 耦合转子因耦合槽与螺旋筋板的滑动啮合而 围绕自身转动轴线匀速自转;
所述螺旋筋板的起始端位于涵道圓盘的一侧, 并与耦合转子的耦合槽开始 滑动啮合, 随着涵道圓盘与圓环涵道缸体之间的相对转动, 耦合转子在螺旋筋 板的推力作用下自转, 到达涵道圓盘的另一侧的螺旋筋板的终止端, 则螺旋筋 板与耦合槽脱离啮合, 并继续转动, 回到螺旋筋板起始端的一侧, 又开始下一 次的滑动啮合;
所述耦合转子将圓环涵道缸体的圓弧面、 涵道圓盘、 螺旋筋板三者之间 的空间分隔成高压区和低压区, 膨胀介质进入高压区膨胀产生压力, 推动耦合 转子和圓环涵道缸体并使得耦合转子与圓环涵道缸体之间产生相对转动, 使得 高压区增大而低压区缩小, 并输出扭矩。
2.根据权利要求 1 所述的汽轮机, 其特征在于: 所述圓环涵道缸体的涵道 圓盘附近的高压区一侧的位置, 为膨胀介质进入的位置, 所述圓环涵道缸体的 涵道圓盘附近的低压区一侧的位置, 为排气的位置。
3.根据权利要求 1所述的汽轮机, 其特征在于: 所述圓环涵道缸体为 固定缸体时, 所述涵道圓盘为转动盘, 转动盘输出扭矩。
4.根据权利要求 1所述的汽轮机, 其特征在于: 所述涵道圓盘为固定 盘时, 所述圓环涵道缸体为转动缸体, 转动缸体输出扭矩。
5.根据权利要求 1所述的汽轮机, 其特征在于: 所述单个的圓环涵道 缸体内装有多个螺旋筋板和多个耦合转子。
6.根据权利要求 3所述的汽轮机, 其特征在于: 所述单个的圓环涵道 缸体内的多个螺旋筋板为并联排布或串联排布。
7.根据权利要求 3所述的汽轮机, 其特征在于: 所述圓环涵道缸体内 的多个耦合转子, 以涵道圓盘的转动轴线为对称轴对称排布。
8.根据权利要求 1所述的汽轮机, 其特征在于: 所述涵道圓盘在圓环 涵道转动缸体内所占的体积, 最大超过所述圓环涵道转动缸体容积的一半。
9.根据权利要求 1所述的汽轮机, 其特征在于: 由多个共轴圓环缸体 组成的所述汽轮机, 其圓环缸体按照膨胀介质的压力降低的方向从高气压区排 列到低气压区, 高气压区的圓环缸体所排放的具有一定压力的膨胀介质继续进 入到低气压区的圓环缸体, 使得膨胀介质的能量得到尽量大程度的利用。
10.根据权利要求 1所述的汽轮机, 其特征在于: 由多个圓环缸体组 成的所述汽轮机, 在所述汽轮机启动阶段以及需要大功率输出的工况下, 高气 压区的膨胀介质可以直接输入到低气压区的圓环缸体。
PCT/CN2013/087715 2012-11-22 2013-11-22 汽轮机 WO2014079388A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210479039.7 2012-11-22
CN201210479018.5 2012-11-22
CN 201210479039 CN103195484A (zh) 2012-11-22 2012-11-22 新型汽轮机
CN 201210479018 CN103195483A (zh) 2012-11-22 2012-11-22 新型汽轮机

Publications (1)

Publication Number Publication Date
WO2014079388A1 true WO2014079388A1 (zh) 2014-05-30

Family

ID=50775560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087715 WO2014079388A1 (zh) 2012-11-22 2013-11-22 汽轮机

Country Status (1)

Country Link
WO (1) WO2014079388A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661195A (zh) * 2012-04-20 2012-09-12 袁丽君 圆周旋转式活塞发动机
CN103195483A (zh) * 2012-11-22 2013-07-10 袁丽君 新型汽轮机
CN103195484A (zh) * 2012-11-22 2013-07-10 袁丽君 新型汽轮机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661195A (zh) * 2012-04-20 2012-09-12 袁丽君 圆周旋转式活塞发动机
CN103195483A (zh) * 2012-11-22 2013-07-10 袁丽君 新型汽轮机
CN103195484A (zh) * 2012-11-22 2013-07-10 袁丽君 新型汽轮机

Similar Documents

Publication Publication Date Title
US9726047B2 (en) Method and turbine for expanding an organic operating fluid in a rankine cycle
EP2742214B1 (en) Parallel cascaded cycle gas expander
WO2014079388A1 (zh) 汽轮机
CN103835770B (zh) 汽轮机
CN103835769B (zh) 汽轮机
US11326478B2 (en) Strut structure with strip for exhaust diffuser and gas turbine having the same
US11401826B2 (en) Stator structure and gas turbine having the same
US11352912B2 (en) Steam turbine facility and combined cycle plant
KR100843540B1 (ko) 동력발생용 터빈
EP3119991B1 (en) Centrifugal radial turbine
RU2688050C1 (ru) Роторный двигатель
CN110159353B (zh) 一种兆瓦级超临界二氧化碳向心透平装置
CN203847174U (zh) 一种径流式汽轮机的定子进汽孔结构
US1038295A (en) Turbine.
US20230128974A1 (en) Turbine vane, and turbine and gas turbine including same
JP3154518U (ja) マルチベーン型膨張機
JP5698888B2 (ja) 半径流蒸気タービン
CN112780352A (zh) 一种新型涡轮做功装置
US823447A (en) Steam-turbine.
WO2024083762A1 (en) Pressure compounded radial flow re-entry turbine
CN103993914A (zh) 一种径流式汽轮机的定子进汽孔结构
WO2013056437A1 (zh) 多工质涡轮发动机
JP2011241812A (ja) 半径流反動蒸気タービン
CN111188651A (zh) 一种双转子膨胀机及其使用方法
TWM595696U (zh) 容積式氣動馬達改良結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856895

Country of ref document: EP

Kind code of ref document: A1