WO2014079179A1 - 一种切割超大厚度2000~3500㎜低碳和低合金钢锭的割炬和该割炬的切割工艺 - Google Patents

一种切割超大厚度2000~3500㎜低碳和低合金钢锭的割炬和该割炬的切割工艺 Download PDF

Info

Publication number
WO2014079179A1
WO2014079179A1 PCT/CN2013/072787 CN2013072787W WO2014079179A1 WO 2014079179 A1 WO2014079179 A1 WO 2014079179A1 CN 2013072787 W CN2013072787 W CN 2013072787W WO 2014079179 A1 WO2014079179 A1 WO 2014079179A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
torch
oxygen
low
gas
Prior art date
Application number
PCT/CN2013/072787
Other languages
English (en)
French (fr)
Inventor
韩永馗
于浩楠
周坤
林潮涌
赵松柏
王智新
Original Assignee
机械科学研究院哈尔滨焊接研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210471775.8A external-priority patent/CN102997243B/zh
Priority claimed from CN201210471774.3A external-priority patent/CN102950359B/zh
Application filed by 机械科学研究院哈尔滨焊接研究所 filed Critical 机械科学研究院哈尔滨焊接研究所
Publication of WO2014079179A1 publication Critical patent/WO2014079179A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/002Machines, apparatus, or equipment for cutting plane workpieces, e.g. plates
    • B23K7/003Machines, apparatus, or equipment for cutting long articles, e.g. cast stands, plates, in parts of predetermined length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/38Torches, e.g. for brazing or heating
    • F23D14/42Torches, e.g. for brazing or heating for cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/52Nozzles for torches; for blow-pipes
    • F23D14/54Nozzles for torches; for blow-pipes for cutting or welding metal

Definitions

  • the present invention provides a cutting torch for cutting ultra-high thickness 2000 ⁇ 2500 low carbon and low alloy steel ingots and the cutting process of the low-carbon and low-alloy steel ingots.
  • the cutting process of the torch belongs to the field of oxygen cutting technology, and particularly relates to a high-quality, high-efficiency torch and a cutting process for cutting low-carbon and low-alloy steel ingots having a thickness of 2000 to 2500 mm. Background technique
  • the level of basic manufacturing equipment in the 21st century is mainly reflected in the aspects of large-scale, high-precision, high-efficiency, low-cost and high flexibility.
  • Large-scale is one of the important features of preparing high-end products for manufacturing.
  • To make large equipment and large-scale basic manufacturing equipment large and even large-scale cast/forgings are required as blanks to manufacture parts for large equipment.
  • the first process of processing large castings/forgings is to remove the riser and excess volume and weight of the parts to achieve the required size, shape and weight.
  • the thickness and quality of flame cutting of large castings and forgings are directly related to The size of the subsequent processing and the amount of energy consumption, so the ultra-large cast/forging ultra-thickness oxygen flame cutting device and cutting process can lay the foundation for the high quality, high efficiency, low energy consumption requirements of the large-scale manufacturing equipment. .
  • the maximum cutting thickness of laser cutting method is less than 30.
  • the plasma cutting method can reach 180.
  • the oxygen cutting method can only reach 1500 ⁇ 1800.
  • the current oxygen cutting device and cutting process are still It should be further improved and improved.
  • SUMMARY OF THE INVENTION In order to solve the problem that the oxygen cutting technology in the prior art cuts the thickness of the low carbon and low alloy steel ingots to less than 2000 ⁇ 3500 mm, the present invention proposes an oxygen cutting of a low carbon and low alloy steel ingot capable of cutting 2000 ⁇ 3500 large thickness. The torch and the cutting process of the torch.
  • Preheated oxygen and propane gas are used in the external torch mixing structure, that is, the preheating oxygen channel (5) and the gas tunnel (6) do not cross inside the torch, and the preheated oxygen and gas are not premixed inside the torch. , while cutting the cutting torch
  • the angle between the axis of the gas tunnel (6) and the axis of the torch is 4 °
  • the angle between the axis of the preheating oxygen channel (5) and the axis of the torch is 12 °
  • the gas tunnel (6) and the pre- The hot oxygen channels (5) are inclined and directed toward the axis of the torch.
  • the arrangement of the gas tunnel (6) and the preheating oxygen channel (5) is advantageous for improving the heating effect of the preheated mixed gas on the workpiece to be cut;
  • the cutting nozzle (7) has a throat diameter of 17 ⁇ 22
  • Each of the above gas tunnels (6) is designed to have a slightly diffused lower portion, that is, the inlet diameter of the gas tunnel (6) is 4.5, the diffusion taper is 1.146%, and the length of the diffusion section is 8
  • the above cutting nozzle (7) When cutting low-carbon and low-alloy steel ingots of different diameters or thicknesses, the throat diameter of different cutting nozzles (7) is used, ie
  • the cutting nozzle (7) When the low carbon and low alloy ingots have a thickness or diameter of 2000 to 2500, the cutting nozzle (7) has a throat diameter of 17 when the low carbon and low alloy ingots have a thickness or diameter of 2500 to 3000, the throat of the cutting nozzle (7) Part diameter is 19 When the low carbon and low alloy ingots have a thickness or diameter of 3000 ⁇ 3500, the cutting tip (7) has a throat diameter of 22
  • the cutting process includes:
  • the preheating oxygen channel (5) and the gas channel (6) are both inclined and inclined to the axial direction of the torch, and this configuration is advantageous for heating the workpiece to be cut;
  • the gas inlet pressure is 0. 2 ⁇ 0. 35MPa, the gas flow rate is maintained at 80 ⁇
  • the cutting oxygen or the preheating oxygen is a liquid oxygen or oxygen having a purity of 99.5%; the gas is a propane gas having a purity of 95%.
  • cutting is performed by cutting the workpiece from the edge.
  • the cutting torch and cutting process of the present invention can cut high-temperature and high-efficiency low-carbon and low-alloy steel ingots of 2000 to 3500 mm.
  • Figure 1 Schematic diagram of a low-carbon and low-alloy steel ingot cutting torch with a thickness of 2000 ⁇ 3500 according to the present invention; Figure 2. Side cross-sectional view of Figure 1, which cooperates with Figure 1 to indicate the overall torch Structure
  • Figure 4 B-direction view of Figure 3, showing the distribution of preheated oxygen tunnels (5) gas tunnels (6) and cutting nozzles (7) in the torch;
  • Figure 5 Partially enlarged view C of Figure 3, showing the shape and size of the gas tunnel (6) in the torch;
  • Figure 6 shows the shape and dimensions of the cutting tip (7) used to cut low carbon and low alloy ingots of different thicknesses.
  • FIG. 1 and Figure 2 cooperate to show the overall structure of the torch.
  • the torch mainly includes a preheating oxygen input pipe 1, a cutting oxygen input pipe 2, an air input pipe 3, and a propane gas input pipe 4.
  • the preheated oxygen input from the preheating oxygen input pipe 1 is divided into two forked pipes, and finally enters some preheating oxygen channels 5 annularly distributed at the end of the torch to be sprayed off the torch;
  • the gas input from the gas input pipe 4 of the propane gas is divided into two fork pipes, and finally enters some annular gas passages 6 of the torch end portion to be sprayed off the torch, and the air input from the air input pipe 3 is used for Cool the torch.
  • both the gas tunnel 6 and the preheating oxygen passage 5 are inclined, that is, the axis of each combustion tunnel 6 is at an angle of 4° to the axis of the torch, and each preheating oxygen tunnel
  • the angle between the axis of 5 and the axis of the torch is 12° and both the gas tunnel 6 and the preheating oxygen channel 5 are directed to the axis of the torch.
  • This arrangement of the gas tunnel 6 and the preheating oxygen passage 5 is advantageous for improving the heating effect of the preheated mixed gas on the workpiece to be cut.
  • Figures 3 and 4 above also show that both the preheating oxygen channel 5 and the gas tunnel 6 are distributed in an annular shape at the end of the torch and are also inclined at an angle to the axis of the torch.
  • This configuration of the torch ensures that the preheated oxygen and gas ejected from the torch are not pre-mixed inside the torch, but are mixed and burned in the atmosphere after the torch is ejected.
  • This structure of the torch facilitates the workpiece with a large thickness. Cutting.
  • the inclined arrangement of the preheating oxygen passage 5 and the gas passage 6 indicated above facilitates the heating effect of the mixed preheating gas on the workpiece to be cut.
  • Figure 5 shows the specific structure and size of the gas tunnel 6, which is a slightly diffused structure with a lower inlet diameter of 4.5 and a diffusion taper of 1.146%, and a diffusion length of 8 gas tunnels. Conducive to the preheating effect of the torch on the workpiece being cut.
  • Figure 6 shows the specific shape and dimensions of the cutting nozzle 7 when the torch cuts different thicknesses of low carbon and low alloy steel ingots. When the throat diameter of the cutting nozzle 7 is changed, the size of the other portion of the cutting nozzle 7 is also changed accordingly.
  • the cutting nozzle 7 can be divided into three parts: a constricted section, a throat and a diffusing section, and the dimensions of each part are as shown in Table 1.
  • the invention mainly adopts a cutting process for cutting oxygen, low oxygen and large flow, and mainly comprises:
  • the preheating oxygen channel 5 and the gas channel 6 are both inclined to the axis of the torch, and this configuration is advantageous for heating the workpiece to be cut;
  • the inlet pressure of the input oxygen input from the cutting oxygen input pipe 2 should be controlled at 0.7 1. OMPa;
  • the singularity of the cut oxygen is 1500 m 3 /h, and the cutting oxygen flow rate is 1. 8 2. 2 Mach;
  • both the cutting oxygen and the preheating oxygen are in a purity of 99.5% liquid oxygen or oxygen, and the gas is a propane gas having a purity of 95%.
  • the cutting process should be cut using a program that cuts from the edge of the workpiece.
  • the preheating tunnel 5 and the gas tunnel 6 are not crossed inside the torch.
  • the two gases are not premixed inside the torch, but they are sprayed out of the torch. After that, it is mixed and burned in the atmosphere.
  • the preheating oxygen channel 5 and the gas channel 6 are both inclined channels, and both of the holes are inclined to the torch axis.
  • the gas tunnel 6 is also designed as a structure in which the lower portion is slightly diffused.
  • Example 1 The above three designes significantly enhance the mixing and combustion of the two gases, which advantageously improves the cutting thickness and cutting quality.
  • the cutting material is 25CrlMo alloy steel, and the thickness of the alloy steel is 3100.
  • the cutting nozzle in the torch is surrounded by a number of annular preheating channels 5 and gas tunnels 6
  • the cutting oxygen inlet pressure to the cutting oxygen input pipe 2 is l.OMPa,
  • the cutting oxygen flow rate from the cutting nozzle 7 is 1400 Nm 3 /h
  • the preheating oxygen pressure input from the preheating oxygen input pipe 1 is l.OPMPa
  • the preheated oxygen flow rate from the preheating tunnel 5 is 420 Nm 3 /h
  • the gas pressure input from the gas inlet pipe 4 is 0.2 MPa.
  • the flow rate of gas flowing out of the gas tunnel 6 is 140 Nm 3 /h Using the above cutting torch and process specification, the cutting speed is 15 nim/min o. The material is cut and the cutting section is smooth, which is a high quality section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明提出一种切割超大厚度2000~3500mm低碳和低合金钢锭的割炬和该割炬的切割工艺,属于氧气切割金属的技术领域。割炬包括采用预热氧和丙烷燃气在割炬割嘴内不预先混合,预热氧孔道和燃气孔道的轴线均倾斜并指向割炬的轴线,采用大流量切割氧割嘴,该割嘴的喉部直径为17~22mm,每个燃气孔道设计成下部稍微扩散的结构,其进口直径为4.5mm,扩散锥角为1.146°,扩散段长度为8mm。本发明提出的割炬和切割工艺适用于超大厚度2000~3500mm低碳和低合金钢锭的高质量、高效切割。

Description

一种切割超大厚度 2000〜3500皿低碳和低合金钢锭的割炬和该割炬的切割工艺 技术领域 本发明申请提出一种切割超大厚度 2000〜2500皿低碳和低合金钢锭的割炬和该割炬的 切割工艺属于氧气切割技术领域, 尤其涉及到切割 2000〜2500 mm厚度或直径的低碳和低合 金钢锭的高质量、 高效率的割炬和该割炬的切割工艺。 背景技术
21世纪基础制造装备的水平主要体现在大型化、 高精度、 高效率、 低成本和高柔性等 几个方面。大型化是准备制造业高端产品的重要特征之一。要制造大型设备和大型基础制造 装备,就需要大型甚至超大型的铸 /锻件作为毛坯来制造大型装备的零部件。而大型铸 /锻件 进行加工的第一道工序就是要通过切割来去除零件的冒口及多余体积和重量来达到要求的 尺寸、形状和重量,所以大型铸锻件的火焰切割厚度和质量直接关系到后续加工的工作量的 大小以及能源消耗的多少, 因此超大型的铸 /锻件超大厚度氧气火焰切割装置和切割工艺能 够为制造装备大型化提出的高质量、 高效率、 低能耗等要求创造了基础。
目前热切割方法中, 激光切割法最大切割厚度不超过 30 等离子切割法能达到 180 氧气切割法也只能达到 1500〜1800 为了能切割 2000〜3500 大厚度钢锭, 目 前的氧切割装置和切割工艺还应当进一步改进和提高。 发明内容 为了解决背景技术中存在的氧气切割技术切割低碳和低合金钢锭厚度达不到 2000〜 3500mm的问题, 本发明提出一种能够切割 2000〜3500 大厚度低碳和低合金钢锭氧 气切割割炬和该割炬的切割工艺。
本发明的技术方案如下:
1、 一种切割超大厚度 2000〜3500 超低碳和低合金钢锭的割炬, 采用氧气为切割气体, 以及采用 3 : 1比例的预热氧和丙烷燃气做为切割预热气体,
其特征在于,
1 ) 采用预热氧和丙烷燃气在割炬外混合式结构, 即预热氧孔道 (5 ) 和燃气孔道 (6 ) 在割炬内部不交叉, 预热氧与燃气在割炬内部不预先混合, 而在喷出切割氧的割嘴
( 7 ) 后在大气中混合燃烧, 这种结构有利于切割超大厚度工件;
2 ) 燃气孔道 (6 ) 的轴线与割炬的轴线间夹角为 4 ° , 预热氧孔道 (5 ) 的轴线与割炬 的轴线间的夹角为 12 ° , 燃气孔道 (6 )和预热氧孔道(5 ) 均倾斜并指向割炬的轴 线, 这种燃气孔道 (6 ) 和预热氧孔道 (5 ) 的配置有利于提高预热混合气体对被切 割工件的加热效果;
3 ) 采用大尺寸切割氧的割嘴 (7), 该割嘴 (7 ) 的喉部直径为 17〜22
4 ) 上述每个燃气孔道 (6 ) 设计成下部稍微扩散的结构, 即燃气孔道 (6 ) 的进口直径 为 4.5 扩散锥度为 1.146%, 扩散段长度为 8
2.上述割嘴 (7 ) 切割不同直径或厚度的低碳和低合金钢锭时, 采用不同的割嘴 (7 ) 的 喉部直径, 即
当低碳和低合金钢锭厚度或直径为 2000〜2500 时, 割嘴 (7 ) 的喉部直径为 17 当低碳和低合金钢锭厚度或直径为 2500〜3000 时, 割嘴 (7 ) 的喉部直径为 19 当低碳和低合金钢锭厚度或直径为 3000〜3500 割嘴 (7 ) 的喉部直径为 22
3.利用上述割炬切割超大厚度 2OOO〜3500 mm低碳和低合金钢锭的切割工艺, 该切割工 艺包括:
采用切割氧低压大流量切割工艺,
1 ) 上述预热氧和丙烷气体在割炬内部不预先混合, 而在喷出割炬后在大气中混合燃 烧, 这有利于切割超大厚度工件;
2 ) 预热氧孔道(5 )和燃气孔道(6 )均倾斜并倾斜指向割炬的轴向, 这种配置有利于 被切割工件加热;
3 ) 由切割氧输入管 (2 ) 输入的切割氧的进口压力应控制在 0. 7〜1. 0MPa;
4) 通过切割氧的割嘴 (7 ) 的大流量为 1500m3 /h, 并且形成切割氧流速为 1. 8〜2. 2 马赫;
5 ) 通过燃气输入管 (4 )输入燃气的进口压力为 0. 2〜0. 35MPa, 燃气流量保持在 80〜
150Nm3 /h;
6) 切割速度为 10〜60mm/min
4.上述切割工艺中, 切割氧或预热氧均采用纯度为 99. 5%的液氧或氧气; 燃气采用纯 度 95%的丙烷燃气。
5.上述切割工艺中, 采用被切割工件从边缘起切方法进行切割。
与氧气切割超大厚度低碳和低合金钢锭的背景技术相比,本发明的割炬和切割工艺 能够高质量、 高效的切割 2000〜3500mm超大厚度的低碳和低合金钢锭。
附图说明
图 1.本发明的一种切割超大厚度 2000〜3500 低碳和低合金钢锭割炬的结构示意图; 图 2.图 1的侧视剖视图, 该图与图 1相配合, 表示该割炬的整体结构;
图 3.图 1的割炬的局部放大图 A, 表示该割炬头部的结构;
图 4.图 3的 B向端视图, 表示割炬中预热氧孔道 (5 ) 燃气孔道 (6) 和割嘴 (7 ) 的分 布;
图 5.图 3的局部放大图 C, 表示割炬中燃气孔道 (6) 的形状和尺寸;
图 6.表示用于切割不同厚度的低碳和低合金钢锭的割嘴 (7 ) 的形状和尺寸。
图 1和图 2相配合, 表示该割炬的整体结构, 该割炬主要包括预热氧输入管 1, 切割氧 输入管 2, 空气输入管 3, 丙烷燃气输入管 4。 正如图 3和图 4表示的, 由预热氧输入管 1 输入的预热氧通过分成两叉管路,最终进入割炬端部环状分布的一些预热氧孔道 5而喷离割 炬; 类似的, 丙烷燃气由燃气输入管 4输入的燃气通过分成两叉管路后, 最终进入割炬端部 分布的一些环形的燃气孔道 6而喷离割炬, 空气输入管 3输入的空气用于冷却割炬。
图 3和图 5清楚的表明, 燃气孔道 6和预热氧孔道 5都是倾斜设置的, 即每个燃烧孔道 6 的轴线均与割炬的轴线夹角为 4° , 每个预热氧孔道 5的轴线与割炬的轴线间夹角为 12° 并且燃气孔道 6和预热氧孔道 5均指向割炬的轴线。燃气孔道 6和预热氧孔道 5的这种配置 有利于提高预热混合气体对被切割工件的加热效果。
上述图 3和图 4还表明,预热氧孔道 5和燃气孔道 6均以环状分布在割炬的端部,并且 还以一定的角度向割炬的轴线倾斜。割炬的这种配置保证从割炬喷出的预热氧和燃气在割炬 内部不预先混合,而在喷出割炬后在大气中混合燃烧,割炬的这种结构有利于超大厚度工件 的切割。应当说明, 上面指出的预热氧孔道 5和燃气孔道 6的倾斜设置, 有利于混合的预热 气体对被切割工件的加热效果。
图 5表示的是燃气孔道 6具体的结构和尺寸,该燃气孔道 6是一个下部为稍微扩散型结构, 其进口直径为 4.5 扩散锥度 1.146%, 扩散长度为 8 燃气孔道 6的这种结构也有利于 割炬对被切割工件的预热效果。 图 6表示割炬切割不同厚度低碳和低合金钢锭时采用割嘴 7的具体形状和尺寸。当割嘴 7 的喉部直径改变时, 割嘴 7的其它部分的尺寸也有相应的改变。
割嘴 7可分成收缩段、 喉部和扩散段三部分, 各部分的尺寸如表 1所示,
表 1 不同尺寸的三种割嘴 7
Figure imgf000005_0001
从表 1可以看出, 当割嘴 7的喉部直径改变时, 仅其出口直径和扩散段长度有一定变化,其 它部位尺寸没有变化。
开始切割时,首先开启预热氧和丙烷燃气阀门,上述两种预热气体进入割炬后最终进入预热 孔道 5和燃气孔道 6, 切割氧通过割炬后进入割嘴 7
本发明主要采用切割氧低氧大流量的切割工艺, 主要包括:
1 ) 上述预热氧和丙烷燃气在割炬内部不预先混合, 而在喷出割炬后在大气中混合燃 烧, 这有利于切割超大厚度工件;
2 ) 预热氧孔道 5和燃气孔道 6均倾斜直向割炬的轴线,这种配置有利于被切割工件加 热;
3 ) 由切割氧输入管 2输入的输入氧的进口压力应控制在 0.7 1. OMPa;
4 ) 切割氧通过割嘴 7的大流量为 1500m3 /h,并且形成切割氧气流速为 1. 8 2. 2马赫;
5 ) 通过燃气输入口 4输入的燃气的进口压力为 0. 2 0. 35MPa, 燃气流量保持在 80
6 ) 切割速度为 10 60mm/min
本发明的切割工艺中, 切割氧和预热氧均采用纯度 99. 5%的液氧或氧气, 燃气采用纯度为 95%的丙烷燃气。
切割工艺应当采用从工件边缘起切的程序进行切割。
关于本发明的切割工艺, 有以下几点应当强调说明:
1、 由于采用了特殊的割炬头部设计,从而保证了预热孔道 5和燃气孔道 6在割炬内部不交叉, 这两种气体在割炬内部不预先混合, 而在他们喷出割炬后在大气中混合燃烧。
2、 预热氧孔道 5和燃气孔道 6均为倾斜孔道, 并且这两孔道都倾斜指向割炬轴线。
3、 燃气孔道 6也设计成其下部稍微扩散的结构。
以上三点设计都明显加强了两种气体的混合和燃烧, 有利地提高了切割厚度和切割质量。 实施例 1:
采用本发明的如图 1~6所示的割炬和本发明的切割工艺, 切割材料为 25CrlMo合金钢, 该 合金钢的厚度为 3100
割炬中的割嘴 7周围设置着一些环状分布的预热孔道 5和燃气孔道 6
利用本发明的割炬切割的工艺规范如下:
通入切割氧输入管 2的切割氧进口压力为 l.OMPa ,
由割嘴 7流出的切割氧流量为 1400Nm3/h
由预热氧输入管 1输入的预热氧压力为 l.OPMPa ,
由预热孔道 5流出的预热氧流量为 420Nm3/h
由燃气输入管 4输入的燃气压力为 0.2MPa
由燃气孔道 6流出的燃气流量为 140Nm3/h 利用上述割炬和工艺规范的切割速度为 15 nim/min o 完成材料切割, 切割断面光滑, 属优质断面。

Claims

权利要求书
、 一种切割超大厚度 2000〜3500mm低碳和低合金钢锭的割炬, 采用氧气为切割气体, 以 及采用 3:1比例的予热氧气和丙烷燃气混合气体做为切割予热气体,
其特征在于,
1) 采用予热氧和丙烷燃气在割炬外混合式割炬结构,即予热氧孔道(5)和燃气孔道(6) 在割炬内部不交叉, 予热氧和丙烷燃气在割炬内部不予先混合, 而在喷出割炬后在 大气中混合燃烧, 这种结构有利于切割超大厚度工件;
2) 燃气孔道 (6) 的轴线与割炬的轴线间夹角为 4° , 予热氧孔道 (5) 的轴线与割炬 的轴线间的夹角为 12° , 燃气孔道 (6) 和予热氧孔道 (5) 均倾斜并指向割炬的轴 线, 这种燃气孔道 (6) 和予热氧孔道 (5) 的配置有利于提高予热混合气体对被切 割工件的加热效果;
3) 采用大流量切割氧气割嘴 (7), 该割嘴 (7) 的喉部直径为 17〜22
4) 上述每个燃气孔道 (6) 设计成下部稍微扩散的结构, 即燃气孔道 (6) 的进口直径 为 4.5 扩散锥角为 1.146。, 扩散段长度为 8
、 根据权利要求 1所述的一种切割超大厚度 2000〜3500皿低碳和低合金钢锭的割炬, 其特征在于:
选择不同尺寸割嘴 (7) 的喉部直径切割不同厚度的低碳和低合金钢锭, 即
当低碳和低合金钢锭厚度或直径为 2000〜2500 时, 割嘴 (7) 的喉部直径为 17 当低碳和低合金钢锭厚度或直径为 2500〜3000 时, 割嘴 (7) 的喉部直径为 19 当低碳和低合金钢锭厚度或直径为 3000〜3500 割嘴 (7) 的喉部直径为 22 、 一种利用权利要求 1所述的割炬切割超大厚度 2000〜3500mm低碳和低合金钢锭的切割 工艺,
1) 采用专用割炬, 预热氧由预热氧输入管(1)输入割炬, 丙烷燃气由燃气输入管(4) 输入割炬, 切割氧由切割氧输入管 (2) 输入割炬;
2) 开启预热氧和丙烷燃气的阀门, 两种预热气体进入割炬后最终均进入割炬前端环状 分布的预热氧孔道 (5) 和燃气孔道 (6) 后再喷出割炬, 切割氧进入割炬后最终进 入割嘴 (7) 后喷出割炬,
其特征在于, 采用切割氧低压大流量切割工艺,
1) 上述预热氧和丙烷燃气在割炬内部不预先混合, 而在喷出割炬后在大气中混合燃 烧, 这有利于切割超大厚度工件;
2) 预热氧孔道(5)和燃气孔道(6)均倾斜并且倾斜指向割炬的轴线; 这种配置有利 于被切割件加热;
3) 由切割氧输入管 (2) 输入的切割氧的进口压力应控制在 0.7〜1.0MPa;
4) 切割氧通过割嘴 ( 7 ) 的大流量为 1500Nm3 /h,并且形成切割氧流速为 1.8〜2.2 马赫;
5) 通过燃气输入口 (4)输入的燃气进口压力为 0.2〜0.35MPa, 燃气流量保持在 80〜
150Nm3 /h;
6) 切割速度为 10〜60mm/min。
、 根据权利要求 3所述的一种超大厚度 2000〜3500mm低碳和低合金钢锭的切割工艺, 其特征在于,
切割氧和预热氧采用纯度为 99.5%的液氧或氧气; 燃气采用纯度为 95%的丙 烷燃气。
、 根据权利要求 3所述的一种超大厚度 2000〜3500mm低碳钢和低合金钢锭的切割工艺, 其特征在于,
采用被切工件从边缘起切方法进行切割。
PCT/CN2013/072787 2012-11-20 2013-03-18 一种切割超大厚度2000~3500㎜低碳和低合金钢锭的割炬和该割炬的切割工艺 WO2014079179A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210471775.8A CN102997243B (zh) 2012-11-20 2012-11-20 一种切割超大厚度2000~3500㎜低碳和低合金钢锭的割炬
CN201210471774.3 2012-11-20
CN201210471775.8 2012-11-20
CN201210471774.3A CN102950359B (zh) 2012-11-20 2012-11-20 一种2000~3500㎜超大厚度低碳和低合金钢锭的切割工艺

Publications (1)

Publication Number Publication Date
WO2014079179A1 true WO2014079179A1 (zh) 2014-05-30

Family

ID=50775455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072787 WO2014079179A1 (zh) 2012-11-20 2013-03-18 一种切割超大厚度2000~3500㎜低碳和低合金钢锭的割炬和该割炬的切割工艺

Country Status (1)

Country Link
WO (1) WO2014079179A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105889888A (zh) * 2016-06-01 2016-08-24 天津中油锐思技术开发有限责任公司 纯氧复合热载体发生器及复合热载体产生方法
CN105910086A (zh) * 2016-06-01 2016-08-31 天津中油锐思技术开发有限责任公司 发生器头部结构及其组装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516511A1 (de) * 1985-05-08 1986-11-13 Messer Griesheim Gmbh, 6000 Frankfurt Schneidbrenner
RU2113948C1 (ru) * 1997-05-08 1998-06-27 Государственное предприятие "ВНИИавтогенмаш" Резак для кислородной резки стали
CN2911443Y (zh) * 2006-05-12 2007-06-13 王连生 大型板坯燃气切割器火焰割嘴
CN202224806U (zh) * 2011-08-17 2012-05-23 黄晓刚 一种射吸式工业燃气焊割炬

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516511A1 (de) * 1985-05-08 1986-11-13 Messer Griesheim Gmbh, 6000 Frankfurt Schneidbrenner
RU2113948C1 (ru) * 1997-05-08 1998-06-27 Государственное предприятие "ВНИИавтогенмаш" Резак для кислородной резки стали
CN2911443Y (zh) * 2006-05-12 2007-06-13 王连生 大型板坯燃气切割器火焰割嘴
CN202224806U (zh) * 2011-08-17 2012-05-23 黄晓刚 一种射吸式工业燃气焊割炬

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105889888A (zh) * 2016-06-01 2016-08-24 天津中油锐思技术开发有限责任公司 纯氧复合热载体发生器及复合热载体产生方法
CN105910086A (zh) * 2016-06-01 2016-08-31 天津中油锐思技术开发有限责任公司 发生器头部结构及其组装方法
CN105889888B (zh) * 2016-06-01 2018-02-23 中油锐思技术开发有限责任公司 纯氧复合热载体发生器及复合热载体产生方法
CN105910086B (zh) * 2016-06-01 2018-02-23 中油锐思技术开发有限责任公司 发生器头部结构及其组装方法

Similar Documents

Publication Publication Date Title
CN102585945B (zh) 一种高能焊割气
WO2014079179A1 (zh) 一种切割超大厚度2000~3500㎜低碳和低合金钢锭的割炬和该割炬的切割工艺
CN201636866U (zh) 一种超音速火焰切割炬
CN105318330A (zh) 一种可改善蓄热式炉窑燃烧效果的烧嘴及方法
CN204127955U (zh) 燃气富氧喷枪
WO2019114184A1 (zh) 一种连铸钢坯增效节能切割方法
CN104296142A (zh) 燃气无焰纯氧燃烧器
CN102950359B (zh) 一种2000~3500㎜超大厚度低碳和低合金钢锭的切割工艺
CN207569871U (zh) 一种高温燃气火焰枪
CN102997243B (zh) 一种切割超大厚度2000~3500㎜低碳和低合金钢锭的割炬
CN202947136U (zh) 一种氢氧燃气切割枪及其割嘴
CN203221182U (zh) 一种模具烤模器
CN2911443Y (zh) 大型板坯燃气切割器火焰割嘴
CN106838988A (zh) 一种燃油喷嘴
CN207230548U (zh) 一种抗回火的射吸式割炬
CN205170914U (zh) 一种带有冷却装置的气焊枪
CN205690397U (zh) 一种连铸钢材的快速切割嘴
CN202419650U (zh) 焊前加热用加热管
CN202188508U (zh) 空燃气多通道蓄热式烧嘴
CN210208583U (zh) 一种切割装置
CN204251685U (zh) 具有预热与喷管冷却功能的火焰喷嘴
CN104456566A (zh) 一种整体结构乙炔气喷嘴
CN204893148U (zh) 一种高效切割机
CN102328042B (zh) 一体式连铸割嘴及其加工方法
CN202240223U (zh) 固定式多头割枪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857261

Country of ref document: EP

Kind code of ref document: A1