WO2014079055A1 - 一种在流场测量中使用的五自由度支架系统 - Google Patents

一种在流场测量中使用的五自由度支架系统 Download PDF

Info

Publication number
WO2014079055A1
WO2014079055A1 PCT/CN2012/085254 CN2012085254W WO2014079055A1 WO 2014079055 A1 WO2014079055 A1 WO 2014079055A1 CN 2012085254 W CN2012085254 W CN 2012085254W WO 2014079055 A1 WO2014079055 A1 WO 2014079055A1
Authority
WO
WIPO (PCT)
Prior art keywords
freedom
degree
flow field
support
subsystem
Prior art date
Application number
PCT/CN2012/085254
Other languages
English (en)
French (fr)
Inventor
路明
Original Assignee
Lu Ming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lu Ming filed Critical Lu Ming
Priority to PCT/CN2012/085254 priority Critical patent/WO2014079055A1/zh
Publication of WO2014079055A1 publication Critical patent/WO2014079055A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/062Wind tunnel balances; Holding devices combined with measuring arrangements

Definitions

  • the present invention relates to apparatus for use in the field of fluid measurement. Specifically, it is a five-degree-of-freedom scaffold system used in flow field measurements.
  • the most common flow phenomenon in engineering is three-dimensional flow.
  • Many flow characteristics such as velocity, vorticity, and stress, are represented in the form of three-dimensional vectors. That is, in a Cartesian coordinate system (usually represented by coordinates x, y, z), three components are produced along three mutually perpendicular directions. For example, the flow field at the downwind position of the building, the wake flow field of the wing, etc., and usually are turbulent fields. Research on such physical phenomena must accurately measure the three-dimensional transient velocity, vorticity, stress and other parameters of the fluid flow.
  • fluid measurement methods such as laser Doppler velocimetry (LDA) and particle imaging velocimetry (PIV) have been widely used to achieve non-interference measurement of flow fields.
  • LDA laser Doppler velocimetry
  • PAV particle imaging velocimetry
  • the above fluid measuring instruments often require large manufacturing and use costs, and are applied in a small measuring area, and the measurement results must be obtained by post-processing techniques on the signals.
  • Another traditional measurement tools such as measuring the instantaneous speed of the three-dimensional hot wire anemometer probe (Hot-wire anemometer) ⁇ average speed measuring three-dimensional multi-larvae L pressure probe (multi-hole pressure probe) and the like, although there are flow field Interference, but for large-scale flow field measurements, the measurement probe has a small scale and has little effect on the flow field.
  • the above-mentioned measuring tools are low in cost and easy to manufacture, and thus still occupy a dominant position in the field of flow field measurement.
  • the measurement of the aircraft wake flow field in a large wind tunnel is mainly done by means of a hot wire anemometer probe and a porous pressure probe.
  • the five degrees of freedom described first include two degrees of rotational freedom, and Figure 1 shows the definition of two rotational degrees of freedom. That is, at any point in the space, the measuring probe ⁇ of the thin rod is produced as two degrees of rotational freedom, that is, the rotation of the swing angle "° ( 2 ) and the tilt angle ( 3 ) in the Cartesian coordinate system.
  • the angle of rotation should cover the flow angle in the flow field.
  • the figure is the three-dimensional direction of the Cartesian coordinate system.
  • these two rotational degrees of freedom should also be able to be placed at any point in the measured flow field. Any point in the Cartesian space must be represented by coordinates in three directions, thus requiring three additional degrees of freedom.
  • a five-degree-of-freedom support system for use in flow field measurement proposed by the present invention first includes a subsystem having two rotational degrees of freedom.
  • Figure 2 is a schematic diagram showing the structure of the subsystem. The principle of the two degrees of freedom of the swing angles "° ( 2) and the pitch angle ( 3 ) is also shown.
  • the subsystem includes a probe positioning clamp (4), a worm wheel (5), a worm (6), a stepping motor No. 1 (7), a C-type support (8), a transmission shaft (9), a thrust bearing (10), Stepper motor No. 2 (11), connection support (12) and other components.
  • the connection relationship of each component is as shown in the figure. Specifically: Stepping motor No. 1 (7) rotates the measuring probe (1) to produce a swing angle "° (2), connect the thrust bearing (10), and then connect the C-type support (8);
  • the thrust bearing (10) is located on the connecting support (12);
  • the connecting support (12) is connected to a three-degree-of-freedom translation mechanism (13).
  • the three-degree-of-freedom translation mechanism (13) refers to the movement in the three-dimensional plane direction in the Cartesian coordinate system, and is controlled by three stepping motors, respectively.
  • the above two rotational degrees of freedom and three translational degrees of freedom constitute a total of five spatial degrees of freedom.
  • Figure 3 shows a subsystem (3) with two rotational degrees of freedom fixed to a three-degree-of-freedom translation mechanism (13), also showing a five-degree-of-freedom bracket for use in flow field measurements proposed by the present invention. The formation of a relationship between the five spatial degrees of freedom of the system.
  • the figure shows: The translational (14) along the X-direction, the translation (15) in the y_ direction and the translation (16) in the Z-direction can move the two-rotation degree bracket subsystem to Any space point on the x_y, y_z, ⁇ - ⁇ plane, where the rotation angle “° ( 2) and pitch angle ( 3 ) shown in Figure 1 can be generated by a subsystem with two rotational degrees of freedom. .
  • Figure 1 shows the definition of two rotational degrees of freedom.
  • 1 measuring probe 2 swing angle ", 3 tilt angle.
  • Figure 2 is a schematic diagram of the structure of a subsystem with two degrees of rotational freedom.
  • 1 measuring probe, 2 swing angle "°, 3 tilt angle, 4 positioning clip 5 worm gear, 6 worm, 7 stepping motor No. 1, 8C type support, 9 drive shaft, 10 thrust bearing, 11 steps Into the motor 2, 12 connection support, 13 three degrees of freedom translation mechanism.
  • Figure 3 is a diagram showing the relationship between five spatial degrees of freedom.
  • 1 measuring probe 2 pitch angle, 3 swing angle ", 14 translation in the X-direction, translation in the 15 Z-direction, translation in the 16 y_ direction, 13 three-degree-of-freedom translation mechanism,
  • This embodiment is a five-degree-of-freedom support system for use in flow field measurements, as described in the present invention, for measuring a three-dimensional transient velocity flow field at a downwind of a large building.
  • the measurement probe in the measurement scheme uses a three-dimensional hot wire probe and a seven-hole pressure probe.
  • the other components and connections are the same as those shown in Figures 2 and 3, and will not be described here.
  • the rotation of the stepper motor No. 1 (7) controlled by the computer allows the measuring probe (here, the three-dimensional hot wire probe and the seven-hole pressure probe) to generate the swing angle "° ( 2); the stepping motor controlled by the computer 2
  • the rotation of the number (11) is transmitted through the drive shaft (9), the worm gear (5), and the worm (6), so that the measuring probe (here, the three-dimensional hot wire probe and the seven-hole pressure probe) is used to generate the pitch angle (3). ;
  • the connecting support (12) is connected to a three-degree-of-freedom translation mechanism (13) that moves the measuring probe (which should be a three-dimensional hot wire probe and a seven-hole pressure probe) to any coordinate point in space.
  • the measuring probe can first be calibrated locally in a large wind or in the flow field to be measured. At this point, the three-degree-of-freedom translation mechanism (13) is required to move the subsystem with two degrees of rotational freedom to any point in the flow field.
  • the subsystem allows the measuring probe to be rotated at an angular interval within the range of angles to be measured, resulting in a swing angle " fl (2) and a pitch angle ⁇ (3). At each angle of rotation, calibrate the measurement probe and record the calibration results. During the measurement, let the subsystem with two degrees of rotational freedom measure the swing angle of the probe "° ( 2) and the tilt angle ⁇ >
  • the three-degree-of-freedom translation mechanism (13) moves the subsystem with two rotational degrees of freedom to any measurement point in the flow field, starts the measurement, and gives the measurement result using the calibration record.
  • the five-degree-of-freedom support system used in the flow field measurement proposed by the present invention can realize any point in the three-dimensional space.
  • Thrust bearing Stepper motor No. 2 Connection support Three-degree-of-freedom translation mechanism X-direction translation Z-direction translation y-direction translation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

一种在流场测量中使用的五自由度支架系统,包括一个有两个旋转自由度的子系统,该子系统产生摆动角度α°(2)和仰俯角度β°(3),该子系统包括探头定位夹子(4)、蜗轮(5)、蜗杆(6)、步进电机1号(7)、C型支撑(8)、传动轴(9)、止推轴承(10)、步进电机2号(11)、连接支撑(12)等部件。该子系统连接到一个三自由度平动机构(13)上。

Description

一种在流场测量中使用的五自由度支架系统
技术领域
本发明涉及流体测量领域使用的设备。 具体是一种在流场测量中使用的五自由度支架系 统。
背景技术
工程中最常见的流动现象是三维流动。 许多流动特性, 如速度、 涡量、 应力都是以三维 矢量的形式表示。 即在笛卡尔坐标系下(通常用坐标 x、 y、 z表示), 沿着三个相互垂直的方 向产生三个分量。 例如, 建筑物下风位置的流场、 机翼的尾迹流场等等, 而且通常都是湍流 场。 针对这类物理现象的研究必须精确测量流体流动的三维瞬态速度、 涡量、 应力等参数。
随着电子、 光学技术日益进步, 激光多普勒测速仪(LDA), 粒子成像测速技术(PIV)等 流体测量方法已经有了广泛的应用, 实现了流场的非干扰测量。 然而用上述流体测量仪器往 往需要较大的制造和使用成本, 而且都是应用在较小的测量区域内, 测量结果必须通过对信 号的后处理技术才能获得。 另一类传统的测量工具, 如测量瞬态三维速度的热线风速仪探头 (Hot-wire anemometer )Λ 测量三维平均速度的多孑 L压力探头 (multi-hole pressure probe ) 等, 虽然对流场有干扰, 但对于大尺度的流场测量, 测量探头的尺度很小, 对流场的影响很 小。 此外上述测量工具成本低、 易于加工制造, 因而在流场测量领域仍占据主要地位。 例如 在大型风洞中进行的飞行器尾迹流场的测量, 主要是依靠热线风速仪探头和多孔压力探头来 完成的。
实现上述测量的必要工具之一是一个具有五个自由度的支架系统。 该系统用于上述测量 探头的测量和标定。 所述的五自由度, 首先包括两个转动自由度, 图 1表示了两个转动自由 度的定义。 即在空间任一点让细杆装的测量探头 α )产生如两个转动自由度, 即是指在笛卡 尔坐标系下产生摆动角度《° ( 2 ) 和仰俯角度 ( 3 ) 的转动。 转动的角度应该覆盖流场中 的流动角度。 图中 是笛卡尔坐标系的三维方向。 此外, 这两个转动自由度还应该可以 被安置在被测量流场中的任何一个空间点。 而笛卡尔空间的任何一个点必须用 三个方 向的坐标表示, 因而, 需要另外三个自由度。
总之, 为实现诸如线风速仪探头和多孔压力探头一类的测量探头的标定和测量, 需要一 种具有上述功能的五个自由度的支架系统。 发明内容
为实现上述目的, 本发明提出的一种在流场测量中使用的五自由度支架系统首先包括一 个有两个旋转自由度的子系统。 图 2是该子系统的结构示意图也表示了摆动角度《° ( 2) 和 仰俯角度 ( 3) 两个自由度产生的原理。 该子系统包括探头定位夹子 (4)、 蜗轮 (5)、 蜗 杆(6)、步进电机 1号(7)、 C型支撑(8)、传动轴(9)、止推轴承(10)、步进电机 2号(11 )、 连接支撑 (12) 等部件。 各个部件的连接关系如图中所示。 具体是: 步进电机 1号 (7) 的转动让测量探头 (1 )产生摆动角度《° ( 2)、 连接止推轴承 (10)、 再连接 C型支撑 (8);
止推轴承 (10) 坐落在连接支撑 (12) 上;
步进电机 2号 (11 ) 在 C型支撑 (8) 内部、 其转动通过传动轴 (9)、 利用蜗轮 (5)、 蜗 杆 (6), 让测量探头 (1 ) 产生仰俯角度 ( 3);
连接支撑 (12) 连接到一个三自由度平动机构 (13) 上。 所述的三自由度平动机构 (13) 是指笛卡尔坐标系下的三维平面方向上的运动, 分别由 三台步进电机控制。 上述两个转动自由度和三个平动自由度共构成五个空间自由度。 图 3表 示了有两个转动自由度的子系统 (3) 固定在一个三自由度平动机构 (13)上, 也表示了本发 明提出的一种在流场测量中使用的五自由度支架系统的五个空间自由度之间的关系的形成。 图中表示: 沿着 X-方向的平动 (14)、 y_方向的平动 (15)和 Z-方向的平动 (16) ,可以将有 两个转动自由度的支架子系统移动到 x_y、 y_z、 χ-ζ平面上的任意空间点, 在当地可以由有 两个转动自由度的子系统产生如图 1所示的摆动角度《° ( 2) 和仰俯角度 ( 3) 的转动。
附图说明
图 1是两个转动自由度的定义。 图中, 1测量探头、 2摆动角度《 、 3仰俯角度 。 图 2是有两个旋转自由度的子系统的结构示意图。 图中, 1测量探头、 2摆动角度《°、 3仰 俯角度 、 4定位夹子、 5蜗轮、 6蜗杆、 7步进电机 1号、 8C型支撑、 9传动轴、 10 止推轴承、 11步进电机 2号、 12连接支撑、 13三自由度平动机构。
图 3是五个空间自由度之间的关系的形成。图中, 1测量探头、 2仰俯角度 、 3摆动角度《 、 14 X-方向的平动、 15 Z-方向的平动、 16 y_方向的平动、 13三自由度平动机构,
具体实施方式
以下结合具体实施例子对本发明的结构和原理做进一步说明。 该实施例子是用本发明提 出的一种在流场测量中使用的五自由度支架系统在大型建筑物下风处测量三维瞬态速度流 场。 测量方案中的测量探头采用的是三维维热线探头和七孔压力探头, 其他部件以及连接关 系与图 2、 3 所示相同, 这里不再叙述。
由计算机控制的步进电机 1号(7)的转动让测量探头(此处应为三维维热线探头和七孔 压力探头), 产生摆动角度《° ( 2); 由计算机控制的步进电机 2号 (11 ) 的转动通过传动轴 (9)、 利用蜗轮 (5)、 蜗杆 (6), 让测量探头 (此处应为三维维热线探头和七孔压力探头), 产生仰俯角度 ( 3);
连接支撑(12)连接到一个一个三自由度平动机构(13)上, 该机构可以将测量探头(此 处应为三维维热线探头和七孔压力探头) 移动至空间任一坐标点。
测量探头首先可以在大型风动中或是在欲测量的流场当地进行标定。 此时只需让三自由 度平动机构 (13) 将有两个旋转自由度的子系统移动至流场中的任一空间点。 该子系统让测 量探头以一定的角度间隔在欲测量的角度范围内, 产生摆动角度《fl ( 2)和仰俯角度^ > ( 3) 的转动。 在每一个转动角度下, 标定测量探头, 记录标定结果。 测量过程中,让有两个旋转自由度的子系统将测量探头的摆动角度《° ( 2)和仰俯角度^ >
( 3)都回归到 0°。 然后让三自由度平动机构 (13)将有两个旋转自由度的子系统移动至流场 中的任一测量点, 开始测量, 利用标定的记录给出测量结果。
利用本发明提出的一种在流场测量中使用的五自由度支架系统即可实现三维空间任一点
说明书附图标号列表
1测量探头 2摆动角度《° 仰俯角度/ r 定位夹子 蜗轮
蜗杆
步进电机 1号 C型支撑 传动轴
止推轴承 步进电机 2号 连接支撑 三自由度平动机构 X-方向的平动 Z-方向的平动 y-方向的平动

Claims

WO 2014/079055 权 利 要 求 书 PCT/CN2012/085254
1. 一种在流场测量中使用的五自由度支架系统, 其特征在于, 该包括一个产生两个旋转自由 度, 摆动角度《° (2) 和仰俯角度 (3) 的子系统, 该子系统包括探头定位夹子 (4)、 蜗轮 (5)、 蜗杆 (6)、 步进电机 1号 (7)、 C型支撑 (8)、 传动轴 (9)、 止推轴承 (10)、 步进电机 2号 (11)、 连接支撑 (12) 等部件, 上述部件的连接关系: 步进电机 1号 (7) 的转动让测量探头 (1) 产生摆动角度《 (2)、 连接止推轴承 (10)、 再连接 C型支撑 (8);
止推轴承 (10) 坐落在连接支撑 (12) 上;
步进电机 2号 (11) 在 C型支撑 (8) 内部、 其转动通过传动轴 (9)、 利用蜗轮 (5)、 蜗 杆 (6), 让测量探头 (1) 产生仰俯角度 (3) 。
2. 根据权利要求 1所述的一种在流场测量中使用的五自由度支架系统, 其特征在于, 所述的 连接支撑( 12)将所述的产生两个旋转自由度的子系统连接到一个三自由度平动机构( 13) 上。
PCT/CN2012/085254 2012-11-26 2012-11-26 一种在流场测量中使用的五自由度支架系统 WO2014079055A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085254 WO2014079055A1 (zh) 2012-11-26 2012-11-26 一种在流场测量中使用的五自由度支架系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085254 WO2014079055A1 (zh) 2012-11-26 2012-11-26 一种在流场测量中使用的五自由度支架系统

Publications (1)

Publication Number Publication Date
WO2014079055A1 true WO2014079055A1 (zh) 2014-05-30

Family

ID=50775421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085254 WO2014079055A1 (zh) 2012-11-26 2012-11-26 一种在流场测量中使用的五自由度支架系统

Country Status (1)

Country Link
WO (1) WO2014079055A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784316A (zh) * 2016-05-11 2016-07-20 中国空气动力研究与发展中心超高速空气动力研究所 一种用于高超声速风洞多体分离试验的高刚度嵌入式装置
CN106124157A (zh) * 2016-05-11 2016-11-16 中国空气动力研究与发展中心超高速空气动力研究所 一种用于高超声速风洞多体分离试验的空间六自由度机构
CN113125101A (zh) * 2021-04-22 2021-07-16 中国空气动力研究与发展中心空天技术研究所 一种用于气动探针校准的五自由度探针夹持装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795990A (en) * 1997-07-30 1998-08-18 Center For Tribology, Inc. Method and apparatus for measuring friction and wear characteristics of materials
CN201662459U (zh) * 2009-09-07 2010-12-01 天津空中代码工程应用软件开发有限公司 流场压力和速度的组合测量工具
CN202288731U (zh) * 2011-10-09 2012-07-04 东南大学 康复训练机器人性能的标定测试装置
CN202305563U (zh) * 2011-07-25 2012-07-04 天津空中代码工程应用软件开发有限公司 气液两相流的速度与气体含量的传感器的标定装置
CN202548013U (zh) * 2012-04-09 2012-11-21 赵宏伟 跨尺度微纳米级原位拉伸压缩力学性能测试平台
CN203053472U (zh) * 2012-09-18 2013-07-10 天津空中代码工程应用软件开发有限公司 测量旋流场的压力和速度的工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795990A (en) * 1997-07-30 1998-08-18 Center For Tribology, Inc. Method and apparatus for measuring friction and wear characteristics of materials
CN201662459U (zh) * 2009-09-07 2010-12-01 天津空中代码工程应用软件开发有限公司 流场压力和速度的组合测量工具
CN202305563U (zh) * 2011-07-25 2012-07-04 天津空中代码工程应用软件开发有限公司 气液两相流的速度与气体含量的传感器的标定装置
CN202288731U (zh) * 2011-10-09 2012-07-04 东南大学 康复训练机器人性能的标定测试装置
CN202548013U (zh) * 2012-04-09 2012-11-21 赵宏伟 跨尺度微纳米级原位拉伸压缩力学性能测试平台
CN203053472U (zh) * 2012-09-18 2013-07-10 天津空中代码工程应用软件开发有限公司 测量旋流场的压力和速度的工具

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784316A (zh) * 2016-05-11 2016-07-20 中国空气动力研究与发展中心超高速空气动力研究所 一种用于高超声速风洞多体分离试验的高刚度嵌入式装置
CN106124157A (zh) * 2016-05-11 2016-11-16 中国空气动力研究与发展中心超高速空气动力研究所 一种用于高超声速风洞多体分离试验的空间六自由度机构
CN105784316B (zh) * 2016-05-11 2018-06-29 中国空气动力研究与发展中心超高速空气动力研究所 一种用于高超声速风洞多体分离试验的高刚度嵌入式装置
CN113125101A (zh) * 2021-04-22 2021-07-16 中国空气动力研究与发展中心空天技术研究所 一种用于气动探针校准的五自由度探针夹持装置

Similar Documents

Publication Publication Date Title
CN203053472U (zh) 测量旋流场的压力和速度的工具
WO2011026445A1 (zh) 流场压力和速度的组合测量工具和方法
CN108519103B (zh) 利用自准直仪的稳定平台多姿态精度同步评定装置及方法
CN101067628B (zh) 无陀螺加速度计阵列安装误差的矢量修正方法
WO2014079055A1 (zh) 一种在流场测量中使用的五自由度支架系统
US20140123751A1 (en) Apparatus and method for measuring velocity and void fraction in gas-liquid two-phase flows
CN105043414B (zh) 一种三轴惯性稳定平台系统的台体控制参数计算方法
CN107741238B (zh) 一种角速率陀螺测试装置
US20190265732A1 (en) Velocity sensing for aircraft
CN104820108A (zh) 一种基于空间摆的机械式二维风速风向传感器
CN209727992U (zh) 一种微型多角度风速传感器标定系统
WO2014036701A1 (zh) 测量旋流场的压力和速度的工具
CN102809367A (zh) 一种基于双轴倾角传感器的空间旋转角度测量方法
Mertens et al. Integrated aeroelastic measurements of the periodic gust response of a highly flexible wing
Ghaemi-Nasab et al. A procedure for calibrating the spinning ultrasonic wind sensors
CN109596295B (zh) 一种多轴向振动台线振动的激光绝对校准装置
CN108036756B (zh) 一种利用加速度计进行双轴旋转惯性测量装置相邻轴线垂直度检查的方法
CN202216726U (zh) 旋转式稳流器
Du et al. Time‐accurate blade surface static pressure behaviour on a rotating H‐Darrieus wind turbine
CN111721962B (zh) 一种基于马格努斯效应的流速测量方法
CN111457920B (zh) 一种基于加速度计的旋转角度测量方法
CN104655115B (zh) 一种角速率测量方法
CN204575675U (zh) 一种基于空间摆的机械式二维风速风向传感器
Shehata et al. Aerodynamic response of a NACA-0012 airfoil undergoing non-sinusoidal pitching waveforms
CN102426039B (zh) 旋转式稳流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888622

Country of ref document: EP

Kind code of ref document: A1