WO2014077656A1 - 초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성물 및 이의 제조방법 - Google Patents

초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성물 및 이의 제조방법 Download PDF

Info

Publication number
WO2014077656A1
WO2014077656A1 PCT/KR2013/010507 KR2013010507W WO2014077656A1 WO 2014077656 A1 WO2014077656 A1 WO 2014077656A1 KR 2013010507 W KR2013010507 W KR 2013010507W WO 2014077656 A1 WO2014077656 A1 WO 2014077656A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
drug
reduced
fine particles
initial
Prior art date
Application number
PCT/KR2013/010507
Other languages
English (en)
French (fr)
Inventor
김홍기
이규호
신호철
오준교
김훈택
Original Assignee
에스케이케미칼 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 (주) filed Critical 에스케이케미칼 (주)
Publication of WO2014077656A1 publication Critical patent/WO2014077656A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods

Definitions

  • compositions comprising polymeric microparticles with reduced initial drug release and methods for preparing the same
  • the present invention relates to an injectable composition comprising a polymer microparticle having a reduced initial drug release and a method for preparing the same, and more particularly, to (a) preparing a polymer microparticle comprising a high-differential compound and a drug. step; (b) redispersing the polymer fine particles of step (a) in a dispersion solvent; And (c) obtaining the polymer particles redispersed in step (b) and treating them with an aqueous solution of alcohol for 1 to 120 minutes to reduce initial burst and injectable drug.
  • the present invention relates to a method for preparing encapsulated polymer microparticles, to highly branched microparticles prepared by the method, and to an injectable composition for drug delivery.
  • Microcapsulation which is designed to solve this problem, refers to a manufacturing process in which a drug is enclosed in a formulation of microparticles (or microspheres, including nanoparticles or nanospheres) composed of a high molecular compound (or polymer material). Since the size of the unit, it can be administered to the human body or animal by intramuscular or subcutaneous injection, and can be prepared to have a variety of drug release rate, it is possible to control the drug delivery period. Therefore, it is possible to maintain the effective drug concentration for a long time even with a single dose, thereby minimizing the total dose of drug required for treatment, and improving the patient's drug therapy. Has shown great promise in the manufacture of drug-containing polymer microparticles.
  • the overall release profile is typically changed to reduce the initial release while at the same time maintaining a constant profile for a desired period of time. It is very difficult to obtain, and even after a lot of effort to achieve the desired profile, it only works with certain drugs and specific polymers applied in the formulation and manufacturing process, so it is completely new to new drugs and polymers. There are limitations to finding and applying methods.
  • the method of washing and removing the drug on the surface of the particulate with a solvent has been mainly used for hydrophilic drugs.
  • the o / w and w / o / w manufacturing methods dissolve the polymer in an organic solvent and then form an emulsion in an aqueous solution to cure, and in the case of hydrophilic chemicals, There is a tendency for a large amount of drug to exist on the surface of the microparticles, which leads to high initial drug release.
  • the effects on hydrophilic drugs have been reported to reduce the initial release of the final formulation by removing the large amount of drug present on these surfaces by pre-washing them with water.
  • organic solvents are required to wash them, and they are generally solvents for particulate materials (poly-lactic-co-glycolic acid (PLGA), polylactic acid (PLA), etc.). To destroy the particulate structure It is imported and cannot be applied.
  • PLGA poly-lactic-co-glycolic acid
  • PLA polylactic acid
  • the present inventors have studied a method of reducing the initial release, by treating the polymer particles with an aqueous solution of alcohol, to prepare a polymer microparticle that can include hydrophobic drugs as well as hydrophilic drugs, significantly reduced initial release
  • the method was developed (Korean Patent Application No. 10-2012-0041030).
  • a phenomenon in which particles are often aggregated was found.
  • this agglomeration is not excessive enough to be visible to the eye, it can have a negative impact on the injectability, which is the property administered to the body through the syringe needle.
  • the present inventors found the method for producing the polymer fine particles with improved injection property while reducing the initial release by changing the processing conditions of the method for producing the polymer fine particles, thereby completing the present invention.
  • step (b) redispersing the polymer fine particles of step (a) in a dispersion solvent
  • Another object of the present invention is to provide a drug-encapsulated polymer microparticle which is capable of reducing the initial release produced by the above production method and can be injected.
  • Another object of the present invention is to reduce the initial release, injectable drug encapsulation
  • step (B) redispersing the polymer fine particles of step (a) in a dispersion solvent
  • jectable Provides a method for preparing drug encapsulated polymer particulates.
  • the present invention provides an injectable drug-encapsulated polymer microparticle with reduced initial release produced by the above method.
  • the present invention provides an injectable composition for drug delivery, the initial release is reduced, and includes an injectable drug-encapsulated polymer microparticles as an active ingredient.
  • the method for preparing the polymer microparticles of the present invention is directed to a method for preparing an injectable drug-encapsulated polymer microparticles with reduced initial burst and comprising: (a) a polymer compound and a drug Preparing polymer fine particles;
  • step (B) redispersing the polymer fine particles of step (a) in a dispersion solvent
  • step (a) The initial release of the present invention is reduced, and the method of preparing the injectable drug-encapsulated polymer microparticles undergoes the preparation step of the polymer microparticles (step (a)) prior to the treatment of the aqueous alcohol solution. Preparation can be by conventional methods known in the art. ⁇ 43>
  • i) solvent evaporation / extraction through solvent or solvent decomposition, ii) spray drying or i) phase separation, more preferably 0 polymer compound, drug and 0 / W (oil-in-water), 0/0 (oil-in-oU) or W / 0 / W (water-in oi 1—in-water) emulsions containing a dispersion solvent are prepared.
  • a method of coagulating the particles into fine particles ii) spraying an organic solvent containing a polymer compound and a drug into heated air, and solidifying the polymer to coarse the particles into a fine particle, or iii) a non-solvent in an organic solvent including a high molecular compound and a drug.
  • the polymer fine particles can be prepared by the method of adding phase-induced phase separation, transferring it to an additional non-solvent, and solidifying the polymer to aggregate the fine particles.
  • a polymer compound, a drug, and a dispersion solvent containing a polymer compound, a drug, and a dispersion solvent are first used. Prepares a / W emulsion.
  • the preparation of the emulsion may be carried out using conventional methods known in the art, and more specifically, for the preparation of 0 / W or 0/0 type emulsion, it is necessary to prepare a dispersed phase containing a polymer compound and a drug. It can be added to the dispersion solvent, and to prepare a W / 0 / W type emulsion, the aqueous solution in which the drug is dissolved is emulsified in the solvent in which the high molecular compound is dissolved.
  • W / 0 type emulsions can be prepared and added back to the dispersion solvent to produce W / 0 / W type emulsions.
  • These drug-containing polymer microparticles are prepared by entraining the emulsion into microparticles by solvent evaporation or solvent extraction, or by coagulation by ammonolysis or hydrolysis processes.
  • ammonolysis ammonolysis or hydrolysis reaction occurs by the addition of ammonia
  • hydrolysis a water-insoluble organic solvent in which the water-insoluble organic solvent is converted into a water-soluble solvent is added.
  • the solvent evaporation method is not limited thereto, for example, the method described in US Pat. Nos. 6,471,996, 5,985,309, and 5,271,945, etc.
  • a dispersion medium such as water.
  • drug-containing polymer microparticles can be formed by diffusing the organic solvent in the emulsion into a dispersion medium and evaporating the organic solvent through the air / water interface.
  • the solvent extraction method includes a conventional solvent extraction method used for the preparation of drug-containing polymer microparticles, such as effectively extracting the organic solvent in the emulsion droplets using a large amount of solubilizing solvent.
  • Agglomeration by ammonolysis can be carried out using a 0 / W type, W / 0 / W type, or 0/0 type emulsion containing a water-insoluble organic solvent, for example, as described in Korean Patent No. 918092.
  • Ammonia is added to induce ammonolysis to convert the water-insoluble organic solvent into a water-soluble solvent to coagulate the fine particles.
  • Bases such as NaOH, LiOH, K0H or HCl, H in a 0 / W, W / 0 / W or 0/0 emulsion containing a water-insoluble organic solvent, as described in 109809, 2010-70407.
  • an acid solution such as 2 S0 4 induces hydrolysis, which is a type of hydrolysis reaction of the ester, and converts the water-insoluble organic solvent into a water-soluble solvent to coagulate the fine particles.
  • the polymer compound in order to prepare the polymer particles by spray drying, the polymer compound is dissolved in a volatile organic solvent, and the drug is dissolved or dispersed together in the polymer solution.
  • this solution or dispersion
  • the solvent evaporates instantly and the polymer solidifies to form polymer microparticles.
  • the polymer compound of step (a) may be polylactic acid, pleactide, polylactic-co-glycolic acid, polylactide-co-glycolide (PLGA), polyphosphazine, Polyiminocarbonate, polyphosphoester, polyanhydride, polyorthoester, copolymer of lactic acid and caprolactone, polycaprolactone, polyhydroxyvalate, polyhydroxybutyrate, polyamino acid, It is characterized in that it is selected from the group consisting of copolymers of lactic acid and amino acids and combinations thereof.
  • the drug used in the present invention includes both hydrophilic and hydrophobic drugs, and can be used without limitation as long as it can be encapsulated in high molecular fine particles.
  • the drugs are for example progesterone haloperidol, thiothixene, olanzapine, clozapine, bromperidol, pimozide, pimozide, risperidone (for example) risperidone, ziprasidone, diazepma, ethyl lof lazepate, alprazolam, nemonapride, fluoxetine, sertraline sertraline, venlafaxine, donepezil 1, tacrine, galantamine, rivastigmine, selegiline, ropinirole, pergolide (pergol ide), tree nucleus when penny dill (trihexyphenidyl), bromocriptine (bromocriptine), ⁇ benzamide Trojan pin (benztropine), kolchi
  • step (B) redispersing the polymer fine particles in step (a) with a dispersion solvent; And (c) obtaining the polymer fine particles redispersed in the step (b) and treating them with an aqueous alcohol solution for at least 1 minute to 120 minutes.
  • the dispersion solvent of step (b) may be a polyvinyl alcohol solution or a polysorbate-based water.
  • An aqueous dispersion solvent, or a co-solvent thereof, or glycerin fatty acid ester may be a polyvinyl alcohol solution or a polysorbate-based water.
  • a non-aqueous dispersion solvent selected from the group consisting of silicone oil containing emulsifiers such as lecithin, vegetable oil, toluene and xylene.
  • the dispersion solvent may include an emulsifier, and the concentration of the emulsifier to be contained may be 0.05 to 15%. ⁇
  • the process of redispersing the polymer fine particles of step (b) in a dispersion solvent is essential for the injectability of the polymer fine particles.
  • Polymeric microspheres prepared by the general method except steps (b) to (c) of the present invention are injectable, but have a very high initial release rate (see Comparative Example 1).
  • the polymer microparticles prepared by the aqueous alcohol solution treatment showed no injection at all (see Comparative Example 2).
  • the redispersion process was only known to reduce the residual organic solvent concentration, but through the experiments of the present invention, it was confirmed that the redispersion process is essential for the injection of the polymer fine particles.
  • the dispersion solvent can be used by heating, the thin process is not essential to impart a scanability, it is aimed to lower the residual organic solvent.
  • the aqueous alcohol solution is characterized in that 1 to 60% (v / v) of the aqueous alcohol solution.
  • the alcohol used may be a low-cost alcohol such as methane, ethanol, propane, isopropane, butane, pentanol, nucleic acid, and the like, and may be ethane.
  • Treatment with an aqueous alcohol solution in the production method of the present invention is in contact with the aqueous alcohol solution, for example, may be carried out by placing or soaking the polymer fine particles in the aqueous alcohol solution.
  • the alcohol aqueous solution treatment time may vary depending on the type of the polymer compound, the concentration of the alcohol aqueous solution, the treatment temperature, and the like, and is characterized in that 1 minute to 120 minutes. More preferably from 1 minute to less than 120 minutes and most preferably 10 minutes To 90 minutes.
  • the treatment time of the aqueous alcohol solution is suitably 120 minutes (see Comparative Example 3).
  • the injectionability was excellent (see Example 1).
  • the Tg value of the polymer compound in the polymer fine particles decreases.
  • the reduced 3 ⁇ 4 value is referred to as ⁇ 8 ⁇ ) to close or fill the void structure on the surface and inside of the polymer fine particles, thereby densifying the polymer fine particles.
  • Tg represents the glass transition temperature, the temperature at which molecules in an polymer compound become active and start to move.
  • low-molecular substances are to a phase change from a solid phase Applying heat to the solid phase in a liquid phase but, in the case of the polymer present in the while not a liquid and the change in physical properties caused Applying heat in the solid state pliable, such a change is The temperature generated is called Tg.
  • Tg according to the type or content of each polymer compound is determined by manufacturer information or DSC or TGA method (Macromol. Res., Vol. 19, No. 11, (2011); CG Park et al., MPS PharmSciTech, Vol. 9, No. 4, December (2008); measurements according to Dor at i et al.), Which will be apparent to those skilled in the art. ⁇
  • Tg of the polymer compound is lowered by treating the polymer fine particles with an aqueous solution of alcohol.
  • the step may further comprise the step of heating the polymer fine particles to a temperature higher than 3 ⁇ 4 ⁇ of the polymer compound in the fine particles.
  • ⁇ > at the elevated temperature is ⁇ 5 (rc than ⁇ ⁇ 8 rc temperature at a temperature above the temperature ⁇ 8
  • It can be in the range up to a high temperature, ie 3 ⁇ 4 ⁇ + ⁇ to Tg ⁇ + 50 ° C.
  • it may be Tg ⁇ + rC to TgA + 20 ° C.
  • the present invention provides a polymer fine particles prepared according to the method for producing a polymer fine particle of the present invention.
  • Polymeric microparticles of the present invention can significantly reduce initial drug release. Therefore, side effects caused by initial drug release can be significantly reduced.
  • the polymer fine particles of the present invention have injectability (see Example 1).
  • the present invention includes the polymer microparticles prepared by the manufacturing method of the present invention as an active ingredient.
  • injectable compositions for drug delivery are provided.
  • the injectable composition of the present invention may comprise 1 to 99% (w / w) of the polymeric microparticles prepared by the method of the present invention and 99% to O / w of the carrier thereof.
  • compositions for drug delivery of the present invention may vary depending on the drug to be included, which can be easily understood by those skilled in the art.
  • Injectable compositions of the invention may, if necessary, contain buffers (eg, sodium dihydrogen phosphate, disodium hydrogen phosphate, etc.), isotonic agents (eg, glucose, sodium chloride, etc.), Stabilizers (e.g. sodium hydrogensulfite, etc.), non-solvents (e.g. glucose, benzyl alcohol, mepivacaine hydrochloride, xylocaine hydrochloride, procaine hydrochloride, carbocaline hydrochloride, etc.), Preservatives such as, for example, P-oxybenzoic acid esters such as methyl p-oxybenzoate and the like, thimerosal, chlorobutanol, benzyl alcohol and the like.
  • buffers eg, sodium dihydrogen phosphate, disodium hydrogen phosphate, etc.
  • isotonic agents eg, glucose, sodium chloride, etc.
  • Stabilizers e.g. sodium hydrogensulfite,
  • the injectable compositions of the invention may be, containing a water-based solvent if necessary.
  • aqueous solvents include injectable distilled water, containing a physiological saline solution, and glucose solution
  • the injectable composition must always be sterile, and preservatives or preservatives may be added, especially for the purpose of segmental use .
  • Additives used for this purpose include benzyl alcohol, chlorobutanol and phenol. And paraoxybenzoic acid esters, etc.
  • the injectable compositions may involve pain when administered, so that an analgesic agent may be added, and additives used for this purpose include benzyl alcohol, chlorobutane, phenol or procaine. , There are local anesthetics such as xylocaine.
  • compositions of the present invention may be used for intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, intravenous drip infusion and the like.
  • the polymer microparticles of the present invention have a low initial release rate, have injectability, and are effective in preparing an injection composition for drug delivery containing the polymer microparticles as an active ingredient.
  • Ethyl formate solution containing PLA 5E ( ⁇ : 68kDa) and anastrozole and 0.5wt% polyvinyl alcohol (PVA) aqueous solution were mixed, followed by stirring to prepare an o / w emulsion.
  • the prepared emulsion was reacted with NaOH solution, dispersed by adding distilled water, and then filtered to recover fine particles (microspheres).
  • the content of the drug contained in the recovered microparticles was 11.08% (mass ratio) of the total of the microparticles and the drug, and the size was 60um.
  • the particles containing anastrozole were placed in a dialysis membrane, immersed in 37 ° C PBSCphosphated buffered saline, and released by continuous shaking at 100 rpm. After 24 hours, the amount of released anastrozole drug was measured using UPLC Jltra performance liquid chromatography.
  • Comparative Example ⁇ 1-1> were treated with 20% EtOH for 70 minutes.
  • the process of ethane is specifically treated for 1 hour at 25 ⁇ 27 ° C room temperature, filtered and recovered the fine particles ⁇ 20% EtOH was again treated with 10% at 40 ° C.
  • the fine particles were collected by filtration and lyophilized.
  • the prepared microparticles had an initial release rate of 3.52%, which was reduced to 46% based on the comparative example ⁇ 1-1>, so that the initial release rate was reduced.
  • the blockage prevented the entire particulates from being administered.
  • the drug content contained in the prepared microparticles was 7.54%, and the drug released during the day was 1.5%, which was reduced to the level of 19% of the value of Comparative Example ⁇ 1-1>, so that the effect of reducing the initial release rate was excellent. It was. However, the results of the injection test showed that during the intramuscular injection The blockage was bad.
  • the fine particles of Comparative Example ⁇ 1-1> were redispersed in a 0.1 wt% PVA (polyvinyl alcohol) aqueous solution at 40 ° C. for 2 hours, and then filtered to recover the fine particles.
  • the recovered fine particles were treated with ethane for 70 minutes.
  • the ethanol treatment was specifically treated with 20% EtOH, 25-27 ° C for 1 hour and then recovered by filtration, and then treated and filtered at 30 ° C (Tg + rC) for 10 minutes.
  • the fine particles treated for 40 minutes at ethane had an initial release rate of 2.69%.
  • Polymer microparticles containing other drugs in addition to anastrozole were prepared to measure the change in initial drug release rate according to ethanol treatment.
  • an ethyl formate solution containing PLA 5E (MW: 68 kDa) and olanzapine, and 0.5 wt% polyvinyl alcohol (PVA) aqueous solution were mixed and stirred to prepare an o / w emulsion.
  • the prepared emulsion was reacted with NaOH solution, dispersed by adding distilled water, and then filtered to recover fine particles (microspheres).
  • the fine particles were redispersed in an aqueous solution of 0.1 wt% PVAC polyvinyl alcohol) at 40 for 2 hours, and then filtered to recover the fine particles.
  • the recovered fine particles were treated with ethanol for 110 minutes.
  • the ethanol treatment was treated with 20% EtOH, 25-27 ° C for 1 hour, and then recovered by filtration, and then treated and filtered at 30 ° C (Tg ' A + rC) for 10 minutes.
  • Leuprolide acetate-containing polymer microparticles were found to have excellent injection properties and reduced initial release rate.
  • the redispersion time was 30 minutes
  • the ethanol treatment time was 70 minutes
  • the microparticles production and initial drug release rate were measured in the same manner as in ⁇ Example 2-1>. .
  • Goserelin acetate-containing polymer microparticles were found to have excellent injectability and decreased initial release rate.
  • the polymer microparticles of the present invention have a reduced initial release rate, have injectability, and have an injection bath for drug delivery containing the polymer microparticles as an active ingredient. Since the composition can be produced, the industrial applicability is high.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성물 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 (a) 고분자 화합물 및 약물을 포함하는 고분자 미립자를 제조하는 단계; (b) 상기 (a) 단계의 고분자 미립자를 분산용매에 재분산하는 단계; 및 (c) 상기 (b) 단계에서 재분산한 고분자 미립자를 수득하여 알콜 수용액으로 1분 내지 120분 동안 처리하는 단계를 포함하는 초기 방출 (initial burst)이 감소되고, 주사 가능한(injectable) 약물 봉입 고분자 미립자의 제조방법, 상기 방법에 의해 제조된 고분지 미립자 및 이를 포함하는 약물 전달을 위한 주사용 조성물에 관한 것이다. 본 발명의 고분자 미립자는 초기 방출율이 감소되고, 주사성 (injectability)이 있어, 상기 고분자 미립자를 유효성분으로 포함하는 약물전달을 위한 주사용 조성물의 제조에 효과적이다.

Description

【명세서】
【발명의 명칭】
초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성물 및 이의 제조방법
【기술분야]
<ι> 본 출원은 2012년 11월 19일에 출원된 대한민국 특허출원 제 10-2012-0131239 호 (출원번호)를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이 다.
<2> 본 발명은 초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성 물 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 (a) 고분차 화합물 및 약 물을 포함하는 고분자 미립자를 제조하는 단계; (b) 상기 (a) 단계의 고분자 미립 자를 분산용매에 재분산하는 단계; 및 (c) 상기 (b) 단계에서 재분산한 고분자 미 립자를 수득하여 알콜 수용액으로 1분 내지 120분 동안 처리하는 단계를 포함하는 초기 방출 (initial burst)이 감소되고, 주사 가능한 (injectable) 약물 봉입 고분자 미립자의 제조방법 , 상기 방법에 의해 제조된 고분지 미립자 및 이를 포함하는 약 물 전달을 위한 주사용 조성물에 관한 것이다.
<3>
【배경기술】
<4> 수액제, 현탁제 및 유제와 같은 종래 주사제형들은 근육이나 피하 투여 후 재빨리 체내에서 제거되기 때문에 만성질환 치료시에는 빈번한 주사 투여가 필수적 이었다. 이러한 문제점을 해결하고자 고안된 마이크로캅셀화 (microcapsulation)는 고분자 화합물 (또는 고분자 물질)로 구성된 미립자 (microparticle, microsphere; nanoparticle 또는 nanosphere도 포함) 제형에 약물을 봉입시키는 제조공정을 지칭 하는데, 미립자는 보통 urn 단위의 크기를 지니므로, 인체나 동물에 근육 또는 피하 주사로 투여 가능하며, 다양한 약물 방출 속도를 지니도록 제조할 수 있어, 약물 전달기간을 제어할 수 있다. 그러므로, 단 한번의 투여만으로도 장시간 동안 유효 한 치료약물농도를 유지할 수 있어 치료에 필요한 약물 총 투여량을 극소화시킬 수 있으며, 환자의 약물치료 순웅도를 향상시킬 수 있어, 현재 유수한 전 세계 제약회 사에서 약물 함유 고분자 미립자 제조에 지대한 ¾심을 보이고 있다.
<5> 하지만, 서방형 제형 (prolonged release formulation)인 미립자 시스템
(microparticle system) 에 있어서, 많은 경우에 높은 초기 약물 방출 (high initial drug release), 즉 초기 방출 (initial burst)이 일어난다. 이는 미립자의 표면 및 내부에 존재하는 물이 채워진 공극 (water-filled pores) 와 이들을 연결 하는 수 채널 (water channel)을 통해 약물이 빠르게 확산하는 것이 원인이다. 이 런 초기 방출은 독성 반응을 비롯한 부작용을 일으킬 수 있기 때문에, 미립자 시스 템의 개발에 있어 이런 초기 방출을 없애거나 적어도 최소화 시키는 것이 필요하 다.
<6> 이런 이유로 초기 방출올 감소시키고자 하는 수많은 노력이 있어왔는데, 제 조 후 미립자를 다른 물질로 코팅 (coating), 미립자를 다른 조절형 방출 시스템 (control led. release system; hydrogel 등)안에 삽입, 제형 의 조절, 제조 공정의 조절, 미립자 표면의 약물을 용매로 씻어서 제거하는 등의 노력이 있어왔다.
<7> 그러나 이런 방법들은 각각 아래와 같은 단점 /한계를가지고 있다.
<8> 코팅이나 다른 조절형 방출 시스템 (hydrogel 등)에 삽입하는 경우 추가적인 물질 및 공정을 요구하게 되어, 경제성이 상대적으로 떨어지고 제품 개발 과정이 보다 복잡하며, 미립자가 주사제인 특징으로 인해 사용할 수 있는 추가적인 물질이 매우 제한적인 한계가 있다.
<9> 제형 및 제조 공정의 조절을 통해 초기 방출을 감소시키려 할 경우, 통상적 으로 전체적인 방출 프로파일 (release profile)까지 변하게 되어 초기 방출을 감 소시키면서 동시에 원하는 기간 동안 일정하게 지속되는 프로파일 (profile)을 얻 는 것이 매우 어려우며, 또한 많은 노력 끝에 원하는 프로파일을 얻는다 해도, 그 제형 및 제조 공정에 적용된 특정 약물 (drug) 및 특정 폴리머 (polymer)에서만 작 용하는 것에 그치므로, 새로운 약물 및 폴리머에 대해서는 완전히 새로운 방법을 찾아서 적용해야 하는 한계가 있다.
<ιο> 용매로 미립자 표면의 약물을씻어서 제거하는 방법은 주로 친수성의 약물에 대해 사용되었다. 미립자의 제조 방법 중 o/w 및 w/o/w 제조 방법의 경우 폴리머를 유기용매에 녹인 후 수용성 용액에서 에멀견을 형성하여 경화시키므로, 친수성 약 물의 경우 외부의 수용성 상 (phase)으로 나가려는 경향이 있어 미립자의 표면에 다량의 약물이 존재하는 경우가 많이 발생하고, 이로 인해 높은 초기 약물 방출이 발생한다. 이러한 표면에 존재하는 다량의 약물을 미리 물로 씻어서 제거하여 최종 제형 의 초기 방출을 감소시키는 것으로 친수성 약물에서의 효과들이 보고된 바 있 다. 다만, 소수성 약물의 경우에는 이를 씻기 위해서는 유기 용매가 요구되는 데, 이들은 대체로 미립자의 재료 (PLGA(poly-lactic-co-glycolic acid), PLA(poly- lactic acid) 등)에 대해서도 용매 (solvent)로 작용하므로 미립자 구조의 파괴를 가져오게 되므로 적용할 수 없다.
<11> 이에 본 발명자들은 초기 방출을 감소시키는 방법을 연구한 결과, 고분자 미 립자에 알콜 수용액을 처리함으로서, 친수성 약물 뿐만 아니라 소수성 약물을 포함 할 수 있으면서, 초기 방출이 현저하게 감소된 고분자 미립자 제조방법을 개발하였 다 (한국특허 출원번호 제 10-2012-0041030호). 그러나 상기 제조방법으로 제조한 고분자 미립자에서 종종 입자가 응집되는 현상이 발견되었다. 이런 응집 현상이 육 안으로 눈에 될 만큼 과도하지는 않더라도, 주사기 바늘을 통해 체내에 투여되는 물성인 주사성 (injectability)에 부정적인 영향을줄 수 있다.
<12>
[발명의 상세한 설명】
【기술적 과제】
<13> 이에 본 발명자는 상기 고분자 미립자 제조방법의 처리 조건 등을 변화시켜, 초기 방출이 감소되면서도, 주사성이 향상된 고분자 미립자 제조방법을 발견하여, 본 발명을 완성하였다.
<14>
<15> 따라서 본 발명의 목적은
<i6> (a) 고분자 화합물 및 약물을 포함하는 고분자 미립자를 제조하는 단계;
<i7> (b) 상기 (a) 단계의 고분자 미립자를 분산용매에 재분산하는 단계 ; 및
<i8> (c) 상기 (b) 단계에서 재분산한 고분자 미립자를 수득하여 알콜 수용액으로
1분 내지 120분 동안 처리하는 단계
<19> 를 포함하는 초기 방출 (initial burst)이 감소되고, 주사 가능한
(injectable) 약물 붕입 고분자 미립자의 제조방법을 제공하는 것이다.
<20>
<21> 본 발명의 다른 목적은 상기 제조방법으로 제조된 초기 방출이 감소되고, 주 사 가능한 약물 봉입 고분자 미립자를 제공하는 것이다.
<22>
<23> 본 발명의 다른 목적은 상기 초기 방출이 감소되고, 주사 가능한 약물 봉입
고분자 미립자를 유효성분으로 포함하는 약물전달올 위한 주사용 조성물을 제공하 는 것이다 ·
<24>
【기술적 해결방법】
<25> 상기 본 발명의 목적올 달성하기 위해ᅳ 본 발명은 <26> (a) 고분자 화합물 및 약물을 포함하는 고분자 미립자를 제조하는 단계 ;
<27> (b) 상기 (a) 단계의 고분자 미립자를 분산용매에 재분산하는 단계; 및
<28> (C) 상기 (b) 단계에서 재분산한 고분자 미립자를 수득하여 알콜 수용액으로
1분 내지 120분 동안 처리하는 단계
<29> 를 포함하는 초기 방출 (initial burst)이 감소되고, 주사 가능한
(injectable) 약물 봉입 고분자 미립.자의 제조받법을 제공한다.
<30> 본 발명의 다른 목적올 달성하기 위해, 본 발명은 상기 제조방법으로 제조된 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분자 미립자를 제공한다.
<31> 본 발명의 다른 목적을 달성하기 위해, 본 발명은 상기 초기 방출이 감소되 고, 주사 가능한 약물 봉입 고분자 미립자를 유효성분으로 포함하는 약물전달을 위 한주사용 조성물을 제공한다.
<32>
<33> 다른 정의가 없는 한, 본 명세서에 사용된 모든 기술적 및 과학적 용어는 당 업자들에 의해 통상적으로 이해되는 동일한 의미를 가진다. 다음의 참고문헌은 본 발명의 명세서에 사용된 여러 용어들의 일반적인 정의를 갖는 기술 (skill)의 하나 를 제공한다: Singleton ei al . , DICTIONARY OF MICROBIOLOGY AND MOLECULAR BI0L0TY (2ded.l994); THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY (Walkered.,1988); 및 Hale & Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY.
<34>
<35> 이하 본 발명을 상세히 설명한다 .
<36>
<37> 본 발명의 고분자 미립자 제조방법은 초기 방출 (initial burst)이 감소되고, 주사 가능한 (injectable) 약물 봉입 고분자 미립자의 제조방법에 관한 것으로, <38> (a) 고분자 화합물 및 약물을 포함하는 고분자 미립자를 제조하는 단계;
<39> (b) 상기 (a) 단계의 고분자 미립자를 분산용매에 재분산하는 단계 ; 및
<40> (C) 상기 (b) 단계에서 재분산한 고분자 미립자를 수득하여 알콜 수용액으로
1분 내지 120분 동안 처리하는 단계를 포함하는 것을 특징으로 한다.
<41>
<42> 본 발명의 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분자 미립자의 제조방법은 알콜 수용액의 처리에 앞서 고분자 미립자의 제조단계 ((a) 단계)를 거 치게 되는데, 이 때의 고분자 미립자의 제조는 당업계에 공지된 통상의 방법에 의 할 수 있다. <43>
<44> 바람직하게는 i) 유제를 통한 용매증발 /추출 또는 용매 분해 방법, ii) 분무 건조에 의한 방법 또는 i) 상분리에 의한 방법에 의할 수 있으며, 더 바람직하게 는 0 고분자 화합물, 약물 및 분산용매를 포함하는 0/W(oil-in-water)형, 0/0(oil-in-oU)형 또는 W/0/W(water-in oi 1— in-water)형 유제를 제조하고, 이를 미립자로 웅집시키는 방법, ii) 고분자 화합물, 약물을 포함한 유기용매를 가열된 공기 중에 분무하여 , 고분자를 고화시켜 미립자로 웅집시키는 방법 또는 iii) 고 분자 화합물, 약물올 포함한 유기용매에 비용매를 첨가하여 상분리를 유도하고, 이 를 추가적인 비용매에 옮기어 고분자를 고화시켜 미립자로 응집시키는 방법에 의해 서 고분자 미립자를 제조할 수 있다.
<45>
<46> 이를 보다 구체적으로 설명하면 ,
<47> 고분자 미립자의 제조 방법 중, 유제를 제조하여 이를 고분자 미립자로 응집 시키는 방법으로 제조하기 위하여 우선 고분자 화합물, 약물 및 분산용매를 포함하 는 0/W형 , 0/0형 또는 W/0/W형 유제를 제조한다.
<48>
<49> 유제의 제조는 당업계에 공지된 통상적인 방법이 이용될 수 있으며, 보다 구 체적으로, 0/W형 또는 0/0형 유제의 제조를 위해서는 고분자 화합물 및 약물을 포 함하는 분산상을 분산용매에 첨가하여 제조할 수 있으며, W/0/W형 유제의 제조를 위해서는 약물이 녹아있는 수용액을 고분자 화합물이 녹아있는 용매에 유화시켜
W/0형 유제를 만든 후 이를 다시 분산용매에 첨가하여 W/0/W형 유제를 제조할 수 있다.
<50>
<51> 이러한 약물 함유 고분자 미립자는 용매증발법 또는 용매추출법에 의해 유제 를 미립자로 웅집시키거나 ammonolysis 또는 hydrolysis 과정에 의한 웅집에 의해 제조된다. ammonolysis 과정에 의하는 경우 암모니아의 첨가, hydrolysis 과정에 의하는 경우 산 또는 염기의 첨가로 ammonolysis 또는 hydrolysis 반웅이 일어나 수불용성인 유기용매가 수용성 용매로 변환되는 수불용성 유기용매가 유제의 제조 시 추가로 포함된다.
<52>
<53> 용매증발법은 이에 제한되지는 않으나, 예를 들어, 미국 특허 제 6, 471,996 호, 제 5, 985,309호 및 제 5, 271,945호 등에 기재된 방법, 고분자 화합물을 녹인 유 기용매 상에 약물을 분산 또는 녹인 후, 물과 같은 분산매에 유화시켜 수증유형
(0/ , oil-in-water) 유제를 제조한 다음, 유제에 있는 유기용매를 분산매로 확산 시켜 공기 /물 계면을 통하여 유기용매를 증발시킴으로써 약물 함유 고분자 미립자 를 형성시킬 수 있다.
<54>
<55> 용매추출법은 유제방울에 있는 유기용매를 대량의 가용화 용매를 사용하여 효과적으로 추출하는 것과 같이 약물 함유 고분자 미립자의 제조에 사용되는 통상 의 용매추출법을 포함한다.
<56>
<5?> 아울러, 용매증발법과 용매추출법을 동시에 적용시키는 방법, 예를 들어, 미 국 특허 제 4,389,840호, 제 4, 530,840호, 제 6, 544,559호, 제 6,368,632호 및 제 6, 572, 894호 등에 기재된 방법 등이 포함된다.
<58>
<59> ammono lysis 과정에 의한 응집은 예를 들어, 대한민국 특허 제 918092호에 기 재된 방법과 같이 수불용성 유기용매가 포함된 0/W형, W/0/W형 , 또는 0/0형 유제에 ammonia를 첨가하여 ammonolysis를 유도하여 상기 수불용성 유기용매를 수용성 용 매로 변환시켜 미립자를 웅집시키는 방법을 나타낸다.
<60>
<6i> hydrolysis 과정에 의한 웅집은 예를 들어, 대한민국 특허출원 제 2009-
109809호, 제 2010-70407호에 기재된 방법과 같이 수불용성 유기용매가 포함된 0/W 형 , W/0/W형 또는 0/0형 유제에 NaOH, LiOH, K0H와 같은 염기 또는 HCl, H2S04와 같 은 산 용액을 첨가하여 에스테르의 가수분해 반응의 일종인 hydrolysis을 유도하여 상기 수불용성 유기용매를 수용성 용매로 변환시켜 미립자를 웅집시키는 방법을 나 타낸다.
<62>
<63> 고분자 미립자의 제조 방법 중, 분무 건조 (spray drying)에 의해 고분자 미 립자를 제조하기 위하여, 고분자 화합물을 휘발성 유기용매에 녹이고, 약물은 이 고분자 용액에 함께 녹이거나 분산시킨다. 이 용액 (또는 분산액)을 가열된 공기 중 에 분무하면 , 용매가 순간적으로 증발되며 고분자가 고화되어 고분자 미립자가 형 성된다.
<64> 고분자 미립자의 제조 방법 증, 상분리 (코아세르베이션 , phase separation) 에 의해 고분자 미립자를 제조하기 위하여 , 고분자 화합물을 유기용매에 녹이고, 약물은 이 고분자 용액에 함께 녹이거나, 고체 분말 상태로 분산시키거나, 물에 녹 인 후 유기 용매에 분산시킨다. 이 용액 (또는 분산액 )에 비용매를 조금씩 첨가하여 상분리를 유도하고, 이를 추가적인 비용매에 옮기어 고분자를 고화시켜 고분자 미 립자를 형성시킨다.
<65>
<66> 상기 (a) 단계의 고분자 화합물은 폴리락트산, 플리락타이드, 폴리락틱-코- 글리콜산, 폴리락타이드 -코-글리콜라이드 (PLGA), 폴리포스파진,. 폴리이미노카보네 이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 락트산과 카 프로락톤의 공중합체, 폴리카프로락톤, 폴리하이드록시발레이트, 폴라하이드록시부 티레이트, 폴리아미노산, 락트산과 아미노산의 공중합체 및 이들의 흔합물로 이루 어진 군으로부터 선택된 것임을 특징으로 한다.
<67>
<68> 본 발명에 사용되는 약물은 친수성 약물과 소수성 약물을 모두 포함하며, 고 분자 미립자에 봉입될 수 있으면 제한없이 사용할 수 있다. 상기 약물은 예를 들 어, 프로게스테론 (progesterone) 할로페리돌 (haloperidol ) , 티오틱센 (thiothixene), 을란자핀 (olanzapine) , 클로자핀 (clozapine), 브롬페리돌 (bromperidol), 피모자이드 (pimozide) , 리스페리돈 (risperidone), 지프라시돈 (ziprasidone), 디아제프마 (diazepma) , 에틸 로플라제페이트 (ethyl lof lazepate) , 알프라졸람 (alprazolam), 네모나프라이드 (nemonapride), 플루옥세틴 (fluoxetine), 세르트랄린 (sertraline), 베늘라팍신 (venlafaxine), 도네페질 (donepezi 1), 타크린 (tacrine), 갈란타민 (galantamine), 리바스티그민 (rivast igmine) , 셀레길린 (selegiline), 로피니롤 (ropinirole), 페르골리드 (pergol ide), 트리핵시페니딜 (trihexyphenidyl) , 브로모크립틴 (bromocriptine), 벤즈트로핀 (benztropine) , 콜치 킨 (colchicine), 노르다제팜 (nordazepam), 에티졸람 (etizolam), 브로마제팜 (bromazepam) , 클로티아제팔 (clot iazepam), 멕사졸룸 (mexazolura) ' 부스피론 (buspirone), 고세렐린 아세테이트 (goserelin acetate), 소마토트로핀 (somatotropin), 루프를리드 아세테이트 (leuprolide acetate), 옥트레오티드 (octreotide), 세트로렐릭스 (cetrorel ix), 산도스타틴 아세테아트 (sandostatin acetate), 고나도트로핀 (gonadotropin), 플루코나졸 (fluconazole ) , 이트라코나졸 (itraconazole), 미조리빈 (mizoribine), 사이클로스포린 (cyclosporin), 타크를리무 스 (tacrolimus), 날록손 (naloxone ) , 날트렉손 (naltrexone), 클라드리빈 (cladribine), 클람부실 (chlorambuci 1 ) , 트레티노인 (tretinoin) , 카르무시틴 (carmusitne), 아나그텔리드 (anagrelide), 독소루비신 (doxorubicin) , 아나스트로졸 (anastrozole), 이다루비신 (idarubicin), 시스플라틴 (cisplat in), 닥티노마이신 (dactinomycin), 도세탁셀 (docetaxel ) , 파클리탁셀 (paclitaxel), 랄티트렉세드 (raltitrexed), 에피루비신 (epirubicin), 레트로졸 Oetrozole), 메플로퀸 (mefloquine), 프리마퀸 (primaquine), 옥시부티닌 (oxybutynin) , 를트레로딘 (toltrerodine), 알릴에스트레놀 (al lylestrenol ), 로보스타틴 Govostatin), 심바스 타틴 (simvastatin), 프로바스타틴 (provastatin) , 아트로바스타틴 (atrovastatin) , 알렌드로네이트 (alendronate), 살카토닌 (salcatonin), 랄록시펜 (raloxifene) , 옥사 드를론 (oxadro lone)., 콘쥬게이티드 에스트로겐 (conjugated estrogen), 에스트라디 을 (estradiol), 에스트라디올 발러레이트 (estradiol valerate), 에스트라디을 벤조 에이트 (estradiol benzoate) , 에티닐 에스트라디을 (ethinylestradiol) , 에토노게스 트텔 (etonogestrel), 레보노르게스트텔 (levonorgestrel ), 티볼론 (tibolone), 노르 에티스테론 (norethisterone)일 수 있으며, 인터루킨 (interleukin), 인터페론 (interferon), 종양괴사인자 (tumor necrosis f iactor) , 인슐린 (insulin), 글루카곤 (glucagon) , 성장호르몬 (gni th hormone) , 생식선자극호르몬 (gonadotropin) , 옥시 토신 (자궁수축호르몬, oxytocin;), 갑상선 자극호르몬 (thyroid stimulating hormone) , 부갑상선호르몬 (parathyroid hormone) , 칼시토닌 (calcitonin), 콜로니 촉진 인자 (colony stimulation factor), 에리쓰로포이에틴 (erythropoiet in), 트롬 보포이에틴 (thrombopoietion), 인슐린양 성장인자 ( insul in-like growth factor), 상피세포 성장인자 (epidermal growth factor), 혈소판 유래 성장인자 (platelet- derived growth factor), 형질전환 성장인자 (transforming growth factor) , 섬유아 세포 성장인자 (fibroblast growth factor), 혈관내피세포 성장인자 (vascular endothelial growth factor) , 골형성단백질 (bone morphogenetic protein) 같은 단 백질 및 핵산등의 고분자 물질 일 수도 있다.
<69>
<70> 다시 말하면, 본 발명의 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분 자 미립자의 제조방법은
<71> (b) 상기 (a) 단계꾀 고분자 미립자를 분산용매에 재분산하는 단계; 및 (c) 상기 (b) 단계에서 재분산한 고분자 미립자를 수득하여 알콜 수용액으로 1분 이상 내지 120분 동안 처리하는 단계를 포함하는 것을 특징으로 한다.
<72>
<73> 상기 (b) 단계의 분산용매는 폴리비닐 알코올 수용액, 폴리소베이트 계열 수 용액 또는 이의 공용매인 수성 분산용매이거나, 또는 글리세린지방산에스터
(Glycerin Esters of Fatty Acids), 레시틴 ( lecithin)과 같은 유화제를 함유하는 실리콘 오일, 야채 기름, 를루엔 및 자일렌으로 이루어진 군으로부터 선택된 비수 성 분산용매임을 특징으로 한다.
<74> 상기 분산용매는 유화제를 포함할 수 있고, 함유되는 유화제의 농도는 0.05 내지 15% 일 수 있다. ᅳ
<75>
<76> 상기 (b) 단계의 고분자 미립자를 분산용매에 재분산시키는 공정은 고분자 미립자의 주사성 (injectability)에 필수적이다. 본 발명의 (b) 내지 (c) 단계를 제 외한 일반적인 방법으로 제조한 고분자 미립구는 주사성이 있지만, 초기 방출율이 매우 높다 (비교예 1 참조). 그러나 일반적인 방법으로 제조한 고분자 미립자에 상 기 (b) 단계를 제외하고, 알콜 수용액 처리만으로 제조한 고분자 미립자는 주사성 을 전혀 보이지 않았다 (비교예 2 참조). 재분산 과정은 잔류 유기용매 농도를 감소 시키는 역할만 하는 것으로 알고 있었으나, 본 발명의 실험올 통해서, 재분산 공정 이 고분자 미립자의 주사성에 필수적이라는 것을 확인하였다.
<77> 또한, 상기 분산용매는 가온하여 사용할 수 있는데, 가은 공정은 주사성을 부여하는데 필수적이지는 않고, 잔류 유기용매를 낮추는데 목적이 있다.
<78>
<79> 본 발명의 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분자 미립자를 제조하기 위해서는, 상기 재분산 공정을 거친 고분자 미립자에 알콜 수용액으로 1 분 내지 120분 동안 처리하는 단계가 필요하다.
<80> 상기 알콜 수용액은 1 내지 60%(v/v)의 알콜 수용액인 것을 특징으로 한다.
더 바람직하게는 10 내지 50¾(v/v)일 수 있고, 가장 바람직하게는 20 내지
30%(v/v)일 수 있다. 또한, 사용되는 알콜은 저가 알콜인 메탄을, 에탄올, 프로판 을, 이소프로판을, 부탄을, 펜탄올, 핵산을 등 탄소수 1 내지 6의 저가알콜 일 수 있으며 , 바람직하게는 에탄을일 수 있다.
<81> 본 발명의 제조방법에서 알콜 수용액으로 처리한다는 것은 알콜 수용액과 접 촉하는 것으로 예를 들어 고분자 미립자를 알콜 수용액에 넣거나 담가 두는 것에 의해 수행될 수 있다.
<82> 또한, 상기 알콜 수용액 처리 시간은 고분자 화합물의 종류, 알콜 수용액의 농도, 처리 온도 등에 따라 달라질 수 있으나, 1분 내지 120분 인 것을 특징으로 한다. 더 바람직하게는 1분 내지 120분 미만일 수 있고 가장 바람직하게는 10분 내지 90분일 수 있다.
<83> 제조된 고분자 미립자에 알콜 수용액을 2시간 처리를 했을 경우, 주사성이 없는 것으로 나왔다. 따라서 알콜 수용액 처리 시간은 120분인 것이 적당하다 (비교 예 3 참조). 또한 40분, 70분, 90분으로 처리한 경우 주사성이 우수하였다 (실시예 1 참조).
<84>
<85> 알콜 수용액 처리로 인해, 고분자 미립자 내의 고분자 화합물의 Tg값이 감소
(감소된 ¾값을 Τ8Δ라고 함)되어 고분자 미립자의 표면 및 내부의 공극구조가 닫 히거나 채워져 고분자 미립자가 보다 조밀해지는 효과가 있다.
<86> Tg는 고분자 화합물에서 분자들이 활성을 가지며 움직이기 시작하는 온도인 유리전이 은도 (glass transition temperature)를 나타낸다. 일반적으로 '저분자 물 질은 고체상에 열을 가하면 고체상에서 액상으로 상변화를 하지만, 고분자의 경우 고체 상태에서 열을 가하면 물성의 변화가 발생하여 액상이 아니면서 유연한 상태 로 존재하게 되며, 이런 변화가 발생하는 온도를 Tg 라고 한다. 각 고분자 화합물 의 종류 또는 함량에 따른 Tg는 제조사 정보 또는 DSC 또는 TGA 방법 (Macromol. Res. , Vol. 19, No. 11, (2011); C. G. Park et al . , MPS PharmSciTech, Vol. 9, No. 4, December (2008); Dor at i et al.)에 따른 측정으로 확인할 수 있고, 이는 당업자에게 자명한 것이다. ―
<87>
<88> 상기 알콜 수용액 처리 단계를 더 상세히 설명하자면,
<89> 고분자 미립자를 알콜 수용액으로 처리하여 고분자 화합물의 Tg를 낮추어 Tg
Δ로 되도록 하는 단계를 의미한다. 또는 약물 또는 사용하는 화합물에 따라, 상기 단계에 고분자 미립자를 상기 미립자 내의 고분자 화합물의 ¾Δ보다 높은 온도로 승온하는 단계를 추가로 포함할 수 있다.
<90>
< ΐ> 상기에서 승온 온도는 Τ8Δ 온도보다 rc높은 온도에서 Τ8Δ 온도보다 5(rc
높은 온도까지의 범위, 즉 ¾Δ+Π 내지 Tgᅀ +50°C 일 수 있다. 바람직하게는 Tg Δ+rC내지 TgA+20°C일 수 있다. 3(C(TgA+rc)및 40°C(TgA+irc)로 알콜 수 용액 처리를 하였을 때, 주사성이 우수한 것을 확인하였다 (실시예 1 참조).
<92>
<93> 한편, 본 발명은 본 발명의 고분자 미립자 제조방법에 따라 제조된 고분자 미립자를 제공한다. 본 발명의 고분자 미립자는 초기 약물 방출이 현저하게 감소하 므로 초기 약물 방출로 인해 발생되는 부작용을 현저하게 감소시킬 수 있다. 또한, 본 발명의 고분자 미립자는 주사성 (injectability)을 갖는다 (실시예 1 참조).
<94>
<95> 본 발명의 고분자 미립자를 사용하는 경우, 고분자 미립자에 포함되는 약물 올 효과적으로 전달할 수 있고 주사 주입이 가능하므로, 본 발명은 본 발명의 제조 방법에 의해 제조된 고분자 미립자를 유효성분으로 포함하는 약물 전달을 위한 주 사용 조성물을 제공한다. 본 발명의 주사용 조성물은 본 발명의 제조방법에 의해 쎄조된 고분자 미립자 1 내지 99%(w/w) 및 이의 담체 99% 내지 O/w)를 포함할 수 있다.
<96>
<97> 본 발명의 약물 전달을 위한 주사용 조성물은 포함되는 약물에 따라 대상질 환이 달라질 수 있으며, 이는 당업자가 용이하게 이해할 수 있다.
<98> 또한, 본 발명의 주사용 조성물은 필요한 경우, 완충제 (예를 들어, 소듐 디 히드로겐 포스페이트, 디소듐 히드로겐 포스페이트 등), 등장화제 (예를 들어, 글 루코스, 염화나트륨 등), 안정화제 (예를 들어, 소듐 히드로겐술피트 등), 무통화 제 (예 1"들어, 글루코스, 벤질 알콜, 염산 메피바카인, 염산 크실로카인, 염산 프 로카인, 염산 카르보카인 등), 보존제 (예를 들어, P-옥시벤조산 에스테르, 예컨대 메틸 p—옥시벤조에이트 등, 티메로살 (thimerosal), 클로로부탄올, 벤질 알콜 등) 등을 함유할 수 있다. 또한, 본 발명의 주사용 조성물은 비타민'등을 함유할 수 있 다. 또한, 본 발명의 주사용 조성물은 필요한 경우, 수성 용매를 함유할 수 있다. 수성 용매의 예로는 주사용 정제수, 생리 식염액, 및 글루코스 용액이 포함된다. <99> 또한, 주사용 조성물은 항상 무균 상태이어야 하며 , 특히 분할 사용을 목적 으로 할 경우에는 보존제 또는 방부제가 첨가될 수 있다. 이러한 목적으로 사용되 는 첨가제로는 벤질 알코올, 클로로부탄올, 페놀 및 파라옥시안식향산에스테르류 등이 있다. 주사용 조성물은 투여시 통증을 수반할 수 있으므로, 무통화제를 첨가 할 수도 있다. 이러한 목적으로 사용되는 첨가제로는 밴질알코올, 클로로부탄을, 페놀 또는 프로카인, 크실로카인 (xylocaine) 등의 국소 마취제가 있다.
<ιοο> 본 발명의 주사용 조성물은 정맥 주사, 피하 주사, 피내 주사, 근육 주사, 정맥 점적 주사 (intravenous drip infusion) 등에 이용될 수 있다.
<101>
<102> 참고로, 상기에서 언급한 뉴클레오티드 및 단백질 작업에는 다음의 문헌을 참조할 수 있다 (Maniatis et al . , Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, Cold Spring Harbor , N.Y. (1982); Sambrook et al . , Molecular Cloning: A Laboratory Manual , 2d Ed. , Cold Spring Harbor Laboratory Press (1989); Deutscher , M. , Guide to Protein Purification Methods Enzymology, vol. 182. Academic Press. Inc. , San Diego, CA(1990)).
<103>
【유리한 효과]
<i04> 본 발명의 고분자 미립자는 초기 방출율이 감소되고, 주사성 (injectability) 이 있어 , 상기 고분자 미립자를 유효성분으로 포함하는 약물전달을 위한 주사용 조 성물의 제조에 효과적이다.
<105>
【발명의 실시를 위한 형태】
<106> 이하 본 발명을 상세히 설명한다 .
<107> 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실 시예에 한정되는 것은 아니다.
<108>
<109> <비교예 1>
<110> 일반방법으로 제조한더립자의 초기 방출률 및 주사성 시험
<111>
<112> <1-1>미림자의 제조
<ii3> 15%(w/v) 의 8515 Po 1 y ( DL- 1 ac t i de-co-g 1 yco 1 i de ) 4.5E(丽 : 66.1kDa) 및
PLA 5E (丽 : 68kDa)와 아나스트로졸을 함유한 에틸 포르메이트 용액과 0.5wt% 폴리 비닐알콜 (PVA) 수용액을 흔합한 후, 교반하여 o/w 유제를 제조하였다. 제조된 유제 를 NaOH 용액과 반웅시키고, 증류수를 추가하여 분산 후, 여과시켜 미립자 (미립구) 를 회수하였다. 회수한 미립자에 포함된 약물의 함량은 미립자와 약물의 총합의 11.08% (질량비)아고 크기는 60um 이었다.
<114>
<ιΐ5> <1-2>초기 방출율및 주사성 측정
<ιΐ6> 초기 방출 측정 방법은 아나스트로졸을 함유한 미립자를 dialysis membrane 에 넣고, 37°C PBSCphosphated buffered saline)에 담그어 100 rpm으로 continuous shaking 하여 방출시켰다. 24시간 경과 후, UPLC Jltra performance liquid chromatography)를 사용해 방출된 아나스트로졸 약물 양을 측정하였다.
<Π7> 측정 결과, 처음 미립자에 포함된 약물 함량 중 7.기¾ 가 첫 1일 동안 용출 되는 높은 초기 방출율을 보였다.
<118> 주사성 측정은 다음과 같은 방법으로 하였다.
<119> 약물 90mg 에 해당하는 양의 미립자를 diluent 와 섞어서 총 부피가 3mL 이 되도록 현탁시켰다. 이를 실험용 beagle dog 의 근육에 주사하면서, 전체 부피가 원활히 근육 속으로 주사 되는지 아니면 중간에 더 이상 투여가 되지 않고 막히는 지를 관찰하였다.
<120> 그 결과, 상기 비교예 <1-1>에서 제조된 미립자는 근육 속으로 원활히 투여 되는 것을 확인하였다.
<121>
<122> <비교예 2>
<123> 일반적인 방법에 에탄을 처리만 하여 제조한 미립자 및 이의 초기 방출율.
주사성 측정
<124>
<125> 상기 비교예 <1-1>의 미립자를 20% EtOH에 70분 동안 처리하였다. 에탄을 처 리 과정은 세부적으로는 25~27°C 상온에서 1시간 동안 처리 후, 여과시켜, 미립자 를 회수하였다ᅳ 회수한 상기 미립자에 다시 20% EtOH를 40°C에서 10분간 처리한 후 , 여과시켜 미립자를 회수하여, 동결건조시켰다.
<126> 상기 제조한 미립자는 초기 방출율은 3.52%로 비교예 <1— 1>올 기준으로 46% 로 감소하여 초기 방출율의 감소 효과는 좋은 편이었으나, 주사성 측정 시에는 beadlg dog 의 근육 주사 도중에 막혀서 전체 미립자를 투여할 수 없었다.
<127>
<128> <비교예 3>
<129> 일반적인 방법에 PVA지!분산. 에탄을처리를모두한미립자의 제조및 이의 초기 방출율. 주사성 측정
<130>
<i3i> 상기 비교예 <1-1>의 미립자를 0.1wt% PVA (폴리비닐알코올) 수용액에 40°C에 서 2시간 동안 재분산 시킨 후, 여과시켜 미립자를 회수하였다. 회수한 미립자에 에탄을을 2시간 동안 처리하였다. 에탄올 처리 과정은 세부적으로는 20% EtOH, 25-27 °C 1시간 처리 후, 여과하여 회수 후, 다시 20% EtOH, 40 , 1시간으로 처리, 여과 회수하였다. 그 결과, 제조된 미립자에 함유된 약물 함량은 7.54% 였고, 1일 동안의 방출된 약물은 1.5%로서, 비교예 <1— 1> 수치의 19% 수준으로 감소하여 초기 방출율의 감소 효과는 우수하였다. 하지만, 주사성 시험 결과는 근육 주사 도중에 막히는 나쁜 결과를 보였다.
<132> , <133> <실시예 1>
<134> 에탄을 처리 시간에 따른더립자의 초기 방출율및 주사성 측정
<135> <1-1> 70분동안처리
<136> 상기 비교예 <1-1>의 미립자를 0.1wt% PVA (폴리비닐알코을) 수용액에 40°C에 서 2시간 재분산 시킨 후, 여과시켜 미립자를 회수하였다. 회수한 미립자에 에탄을 을 70분으로 처리하였다. 에탄올 처리 과정은 세부적으로는 20% EtOH, 25-27 °C 1시 간 처리 후, 여과 회수하여, 다시 30°C(Tg +rC)에서 10분 동안 처리 및 여과하였 다.
<137> 상기 에탄을에서 70분간 처리한 미립자는 초기 방출율이 4.8%로, 비교예 <1-
1>을 기준으로 62% 로 감소하는 우수한 초기 방출율 감소효과를 보였을 뿐 아니라, 주사성 까지도 우수하였다.
<138>
<139> <1— 2> 40분, 70분, 90분에서 처리
<140> 상기 비교예 <1— 1>의 미립자를 0.1wt¾ PVA(#리비닐알코올) 수용액에 40°C에 서 2시간 재분산 시킨 후, 여과시켜 미립자를 회수하였다. 회수한 미립자를 에탄올 로 40분, 70분, 90분으로 처리하였다. 에탄을 처리과정은 세부적으로는 40분 처리 는 20% EtOH, 25~27 °C 30분 처리 후, 여과 회수하여, 다시 40°C Γ Δ +11°C )에서 10분 동안 처리 및 여과하였다. 70분과 90분 처리의 세부적으로는 20% EtOH, 25~27 °C 1시간 처리 후, 여과 회수하여, 다시 40°C에서 10분, 30분 동안 처리 및 여과하 였다.
<141> 상기 에탄을에서 40분간 처리한 미립자는 초기 방출율이 2.69%로 비교예<1-
1>을 기준으로 35% 로 감소하는 우수한 초기 방출율 감소효과를 보였을 뿐 아니라, 주사성 까지도 우수하였다. 또한 70분간 처리한 미립자는 초기 방출율이 3.1¾로 비 교예 <1-1>을 기준으로 40% 로 감소하는 우수한 초기 방출율 감소효과를 보였을 뿐 아니라, 주사성까지도 우수하였다. 또한 90분 동안 처리한 미립자는 초기 방출율이
2.7% (초기 함량 8.7¾ 로 비교예 <1-1>을 기준으로 35% 로 감소하는 우수한 초기 방 출율 감소효과를 보였을 뿐 아니라, 주사성 까지도 우수하였다.
<142>
<143> <실시예 2>
<144> 약물함유미립자의 에탄올처리에 파른초기 약물 방출율비교 <145>
<146> · 아나스트로졸 외에 다른 약물을 봉입한 고분자 미립자를 제조하여 에탄올 처 리 여부에 따른 초기 약물 방출율의 변화를 측정하였다.
<147>
<148> <2-1>올란자핀 함유미림자의 에탄을처리에 따른초기 약물방출율비교
<149> 상기 <실시예 1>에 기재된 방법에서 약물의 종류가 변경되고, 에탄을 처리 시간이 다론 것을 제외하고는 동일한 방법으로 을란자핀이 봉입된 고분자 미립자와 에탄올 처리를 하지 않은 을란자핀이 봉입된 고분자 미랍자를 각각 제조하여 초기 약물 방출율을 측정하여 비교하였다.
<150> 구체적으로, 15%(w/v)의 8515 Poly(DL-lact ide-co-glycol ide) 4.5E(MW :
66.1kDa) 및 PLA 5E(MW : 68kDa)와 올란자핀을 함유한 에틸 포르메이트 용액과 0.5wt% 폴리비닐알콜 (PVA) 수용액을 흔합한 후, 교반하여 o/w 유제를 제조하였다. 제조된 유제를 NaOH 용액과 반웅시키고, 증류수를 추가하여 분산 후, 여과시켜 미 립자 (미립구)를 회수하였다. 상기 미립자를 0.1wt% PVAC폴리비닐알코올) 수용액에 40 에서 2시간 재분산 시킨 후, 여과시켜 미립자를 회수하였다. 회수한 미립자에 에탄올을 110분으로 처리하였다. 에탄올 처리 과정은 세부적으로 20% EtOH, 25-27 °C 1시간 처리 후, 여과 회수하여, 다시 30°C(Tg'A+rC)에서 10분 동안 처리 및 여 과하였다.
<151> 에탄을을 처리하기 전에 회수된 미립자와 에탄올을 처리한 후의 미립자의 초 기 약물 방출율을 비교예 <1-2>와 동일한 방법으로 측정하였다.
<152> '
<153> [표 1】
Figure imgf000016_0001
<154>
<155> 상기 [표 1]에 기재된 바와 같이, 본 발명의 방법에 의해 제조된 을란자핀이 함유된 고분자 미립자는 주사성이 우수하고, 초기 방출율이 감소된 것을 확인하였 다.
<156>
<i57> <2-2> Leuprolide acetate함유 미립자의 에탄을 처라에 따른 초기 약물 방 출율비교 <i58> 봉입 약물로 Leuprolide acetate을 사용하고, 재분산 시간을 30분, 에탄올 처리시간을 60분으로 하여 상기 <실시예 2-1〉와 동일한 방법으로 미립자 제조 및 초기 약물 방출율 측정을 하였다.
<159>
<160> 【표 2】
Figure imgf000017_0001
<161>
<162> 그 결과 [표 2]에 기재된 바와 같이, 본 발명의 방법에 의해 제조된
Leuprolide acetate가 함유된 고분자 미립자는 주사성이 우수하고, 초기 방출율이 감소된 것을 확인하였다.
<163>
<i64> <2-3> Goserelin acetate함유미립자의 에탄올처리에 따른초기 약물방출 율비교
<165> 봉입 약물로 Goserelin acetate을 사용하고, 재분산 시간을 30분, 에탄올 처 리시간을 70분으로 하여 상기 <실시예 2-1>와 동일한 방법으로 미립자 제조 및 초 기 약물 방출율 측정을 하였다.
<166>
<167> 【표 3】
Figure imgf000017_0002
<168>
<169> -
<πο> 그 결과 [표 3]에 기재된 바와 같이, 본 발명의 방법에 의해 제조된
Goserelin acetate가 함유된 고분자 미립자는 주사성이 우수하고, 초기 방출율이 감소된 것을 확인하였다.
<171>
【산업상 이용가능성】
<172> 본 발명의 고분자 미립자는 초기 방출율이 감소되고, 주사성 (injectability) 이 있어, 상기 고분자 미립자를 유효성분으로 포함하는 약물전달을 위한 주사용 조 성물의 제조할 수 있으므로 산업상 이용가능성이 높다.

Claims

【청구의 범위】
【청구항 1】
(a) 고분자 화합물 및 약물을 포함하는 고분자 미립자를 제조하는 단계 ;
(b) 상기 (a) 단계의 고분자 미립자를 분산용매에 재분산하는 단계 ; 및
(c) 상기 (b) 단계에서 재분산한 고분자 미립자를 수득하여 알콜 수용액으로 1분 내지 120분 동안 처리하는 단계
를 포함하는 초기 방출 (initial burst)이 감소되고, 주사 가능한 (injectable) 약물 봉입 고분자 미립자의 제조방법.
[청구항 2】
제 1항에 있어서, 상기 (a) 단계의 고분자 미립자 제조방법은 고분자 화합물, 약물 및 분산용매를 포함하는 0/W(oil-in-water)형, OAKoi 1-in-oi 1 )형 또는 W/0/W(water-in oil-in-water)형 유제를 제조하고, 이를 미립자로 응집시키는 방법 인 것을 특징으로 하는 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분자 미립 자의 제조방법.
【청구항 3】
제 1항에 있어서, 상기 (a) 단계의 고분자 미립자의 제조방법은 고분자 화합 물, 약물을 포함한 유기용매를 가열된 공기 증에 분무하여, 고분자를 고화시켜 미 립자로 응집시키는 방법인 것을 특징으로 하는 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분자 미립자의 제조방법 .
【청구항 4】
제 1항에 있어서, 상기 (a) 단계의 고분자 미립자의 제조방법은 고분자 화합 물, 약물을 포함한 유기용매에 비용매를 첨가하여 상분리를 유도하고, 이를 추가적 인 비용매에 옮기어 고분자를 고화시켜 미립자로 응집시킨 방법인 것을 특징으로 하는 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분자 미립자의 제조방법 .
【청구항 5】
제 1항에 있어서, 상기 ) 단계의 고분자 화합물은 폴리락트산, 풀리락타이 드, 폴리락틱-코 -글리콜산, 폴리락타이드-코 _글리콜라이드 (PLGA), 폴리포스파진, 폴리이미노카보네이트, ¾리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스 테르, 락트산과 카프로락톤의 공중합체, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산, 락트산과 아미노산의 공중합체 및 이들 의 흔합물로 이루어진 군으로부터 선택된 것임을 특징으로 하는 초기 방출이 감소 되고, 주사 가능한 약물 봉입 고분자 미립자의 제조방법 .
【청구항 6】
제 1항에 있어서, 상기 (b) 단계의 분산용매는 플리비닐 알코을 수용액, 플리 소베이트 계열 수용액 또는 이의 공용매인 수성 분산용매이거나, 또는 글리세린지 방산에스터 (Glycerin Esters of Fatty Acids), 레시틴 (lecithin)과 같은 유화제를 함유하는 실리콘 오일, 야채 기름, 를루엔 및 자일렌으로 이루어진 군으로부터 선 택된 비수성 분산용매임을 특징으로 하는 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분자 미립자의 제조방법 .
【청구항 7】
제 1항에 있어서, (c) 단계의 알콜 수용액 처리 시간은 10분 내지 90분인 것 을 특징으로 하는 초기 방출이 감소돠고, 주사 가능한 약물 봉입 고분자 미립자의 제조방법.
【청구항 8】
계 1항에 있어서, 상기 약물은 프로게스테론 (progesterone) 할로페리돌 (haloperidol), 티오틱센 (thiothixene) , 을란자핀 (olanzapine) , 클로자핀 (clozapine), 브름페리돌 (bromperidol), 피모자이드 (pimozide) , 리스페리돈 (risperidone), 지프라시돈 (ziprasidone), 디아제프마 (diazepma), 쌔틸 로플라제페 이트 (ethyl loflazepate), 알프라졸람 (alprazolam), 네모나프라이드 (nemonapride) , 플루옥세틴 (fluoxetine), 세르트랄린 (sertraline), 베늘라팍신 (venlafaxine), 도네 페질 (donepezil), 타크린 (tacrine), 갈란타민 (galantamine), 리바스티그민 (rivastigmine) , 셀레길린 (selegi line) , 로피니를 (ropinirole), 페르골 '리드 (pergolide), 트리핵시페니딜 (trihexyphenidyl), 브로모크립틴 (bromocriptine), 벤 즈트로핀 (benztropine), 콜치킨 (colchicine), 노르다제팜 (nordazepam), 에티졸람 (etizolam), 브로마제팜 (brotnazepam), 클로티아제팜 (clot iazepam)ᅳ 멕사졸룸 (mexazolum), 부스피론 (buspirone), 고세텔린 아세테이트 (goserelin acetate) , 소 마토트로핀 (somatotropin), 루프를리드 아세테이트 (leuprolide acetate), 옥트레오 티드 (octreotide), 세트로텔릭스 (cetrorelix), 산도스타틴 아세테이트 (sandostatin acetate), 고나도트로핀 (gonadotropin) , 플루코나졸 (fluconazole), 이트라코나졸 (itraconazole), 미조리빈 (mizoribine) , 사이클로스포린 (cyclosporin), 타크를리무 스 (tacrolimus), 날록손 (naloxone) , 날트렉손 (naltrexone), 클라드리빈 (cladribine), 클람부실 (chlorambuci 1) , 트레티노인 (tretinoin) , 카르무시틴 (carmusitne), 아나그렐리드 (anagrel ide), 독소루비신 (doxorubicin) , 아나스트로졸 (anastrozole), 이다루비신 (idarubidn), 시스플라틴 (cisplatin) , 닥티노마이신 (dactinomycin), 도세탁샐 (docetaxel ), 파클리탁셀 (paclitaxel), 랄티트렉세드 (raltitrexed), 에피루비신 (epirubicin) , 레트로졸 (letrozole) , 메플로퀸 (mefloquine), 프리마퀸 (primaquine), 옥시부티닌 (oxybut nin), 를트레로딘 (toltrerodine), 알릴에스트레놀 (al lylestrenol), 로보스타틴 (lovostatin), 심바스 타틴 (simvastatin), 프로바스타틴 (provastat in), 아트로바스타틴 (atrovastatin) , 알렌드로네이트 (alendronate), 살카토닌 (salcatonin), 랄록시펜 (raloxifene), 옥사 드를론 (oxadro lone), 콘쥬게이티드 에스트로겐 (conjugated estrogen), 에스트라디 을 (estradiol), 에스트라디을 발러레이트 (estradiol valerate), 에스트라디을 벤조 에이트 (estradiol benzoate), 에티닐 에스트라디을 (ethinylestradiol ), 에토노게스 트렐 (etonogestrel), 레보노르게스트텔 (levonorgestrel), 티불론 (tibolone), 노르 에티스테론 (norethisterone), 인터루킨^^^^!止^) , 인터페론 (interferon) , 종양 괴사인자 (tumor necrosis f iactor) , 인술린 (insuUn), 글루카곤 (glucagon), 성장호 르몬 (growth hormone), 생식선자극호르몬 (gonadotropin), 옥시토신 (자궁수축호르 몬, oxytocin), 갑상선 자극호르몬 (thyroid stimulating hormone), 부갑상선호르몬 (parathyroid hormone), 칼시토닌 (calcitonin) , 콜로니 촉진 인자 (colony stimulation factor), 에리쓰로포이에틴 (erythropoietin), 트롬보포이에틴 (thrombopoietion), 인술린양 성장인자 (insulin-like growth factor), 상피세포 성 장인자 (epidermal growth factor), 혈소판 유래 성장인자 (plateletᅳ derived growth factor), 형질전환 성장인자 (transforming growth factor), 섬유아세포 성장인자 (fibroblast growth factor) '.혈관내피세포 성장인자 (vascular endothelial growth factor) 및 골형성단백질 (bone morphogenet i c protein) 로 이루어진 군에서 선택된 하나 또는 들이상인 것올 특징으로 하는 초기 방출이 감소된 약물 봉입 고분자 미 립자의 제조방법.
【청구항 9] 제 1항 내지 제 8항 중 어느 한 항의 방법에 의해 제조된 초기 방출이 감소되 고, 주사 가능한 약물 봉입 고분자 미립자.
【청구항 10】
제 9항의 초기 방출이 감소되고, 주사 가능한 약물 봉입 고분자 미립자를 유 효성분으로포함하는 약물전달을 위한 주사용조성물.
PCT/KR2013/010507 2012-11-19 2013-11-19 초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성물 및 이의 제조방법 WO2014077656A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0131239 2012-11-19
KR1020120131239A KR101307729B1 (ko) 2012-11-19 2012-11-19 초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성물 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2014077656A1 true WO2014077656A1 (ko) 2014-05-22

Family

ID=49455951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010507 WO2014077656A1 (ko) 2012-11-19 2013-11-19 초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성물 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101307729B1 (ko)
WO (1) WO2014077656A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107157956A (zh) * 2017-05-25 2017-09-15 长春金赛药业股份有限公司 骨架型黄体酮缓释微球及其制备方法和黄体酮缓释注射剂

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019108029A1 (ko) * 2017-11-30 2019-06-06 주식회사 지투지바이오 도네페질을 함유하는 서방성 주사제제 및 그 제조방법
MX2022000489A (es) * 2019-07-12 2022-02-03 G2Gbio Inc Formulacion de larga duracion que contiene rivastigmina y metodo para prepararla.
CN111728957B (zh) * 2020-07-06 2022-04-19 济南大学 一种托特罗定长效缓释微球及其制备方法
CN112587505A (zh) * 2020-10-16 2021-04-02 长春斯菲尔生物科技有限公司 一种奥氮平双羟萘酸盐缓释微粒制剂及其制备方法
EP4285892A1 (en) * 2021-01-29 2023-12-06 Tionlab Therapeutics Depot composition with controlled initial release, and method for preparing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722607B1 (ko) * 2006-05-11 2007-05-28 주식회사 펩트론 분산성 및 주사 투여능이 향상된 서방성 미립구의 제조방법
KR20100092581A (ko) * 2009-02-13 2010-08-23 동국제약 주식회사 균일한 서방출성 미립구의 제조방법
KR20120011344A (ko) * 2010-07-21 2012-02-08 에스케이케미칼주식회사 고분자 미립구의 제조방법 및 그 방법에 의해 제조된 고분자 미립구

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722607B1 (ko) * 2006-05-11 2007-05-28 주식회사 펩트론 분산성 및 주사 투여능이 향상된 서방성 미립구의 제조방법
KR20100092581A (ko) * 2009-02-13 2010-08-23 동국제약 주식회사 균일한 서방출성 미립구의 제조방법
KR20120011344A (ko) * 2010-07-21 2012-02-08 에스케이케미칼주식회사 고분자 미립구의 제조방법 및 그 방법에 의해 제조된 고분자 미립구

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, CHEOL-WAN ET AL.: "Fabrication of Fibroin Microspheres and Hollow Spheres", POLYMER, vol. 34, no. 4, 2010, Korea, pages 321 - 325 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107157956A (zh) * 2017-05-25 2017-09-15 长春金赛药业股份有限公司 骨架型黄体酮缓释微球及其制备方法和黄体酮缓释注射剂
CN107157956B (zh) * 2017-05-25 2021-02-05 长春金赛药业有限责任公司 骨架型黄体酮缓释微球及其制备方法和黄体酮缓释注射剂

Also Published As

Publication number Publication date
KR101307729B1 (ko) 2013-09-11

Similar Documents

Publication Publication Date Title
JP6318271B2 (ja) 初期過多放出が減少された高分子微小粒子の製造方法及びその方法により製造された高分子微小粒子
Giri et al. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery
EP2595606B1 (en) Method for preparing microspheres and microspheres produced thereby
Kim et al. Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone
Haggag et al. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG
Lee et al. Long acting injectable formulations: the state of the arts and challenges of poly (lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal
WO2014077656A1 (ko) 초기 약물 방출이 감소된 고분자 미립자를 포함하는 주사용 조성물 및 이의 제조방법
Blanco et al. Protein encapsulation and release from poly (lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants
AU2012259657A1 (en) Method for preparing microparticles with reduced initial burst and microparticles prepared thereby
KR20190064509A (ko) 안전성 및 저장 안정성이 향상된 생분해성 미립구의 제조방법
US20060188583A1 (en) In situ controlled release drug delivery system
JP2011037882A (ja) 残留溶媒抽出方法および同により生成される微粒子
CN106177974B (zh) 一种载抗原聚合物脂质纳米球的制备及作为疫苗佐剂的应用
Singh et al. Biodegradable polymeric microspheres as drug carriers; A review
JP6249584B2 (ja) 薬物含有徐放性微粒子の製造方法
Choi et al. Development of drug-loaded PLGA microparticles with different release patterns for prolonged drug delivery
Rafienia et al. In vitro evaluation of drug solubility and gamma irradiation on the release of betamethasone under simulated in vivo conditions
JP2017527611A (ja) 脊髄損傷を有する患者において炎症を阻害するための組成物、及びそれを使用する方法
Sailaja et al. Review on microspheres as a drug delivery carrier
WO2018038461A1 (ko) C18:1, c18:1(oh) 또는 c18:2의 장쇄 지방산이 포함된 오일류를 포함한 방출억제제를 적용한 서방출성 마이크로스피어 및 이의 제조방법
Kumari et al. Mucoadhesive microspheres: A review
Kim et al. Implantable delivery systems
Takata Studies on clarification of gelation mechanism of temperature-responsive biodegradable smart biomaterials and their utility as drug releasing devices
WO2019066649A1 (en) PROCESS FOR THE PREPARATION OF MICROPARTICLES BY A DOUBLE EMULSION TECHNIQUE
Komoike et al. Michiio fshizaki1, Yukinao Kohda1', Yasuyuki Baba1, Hironobu Fukuzaki2 and Etsuro Sagara1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854921

Country of ref document: EP

Kind code of ref document: A1