WO2014077507A1 - 그래핀 합성장치 - Google Patents

그래핀 합성장치 Download PDF

Info

Publication number
WO2014077507A1
WO2014077507A1 PCT/KR2013/008815 KR2013008815W WO2014077507A1 WO 2014077507 A1 WO2014077507 A1 WO 2014077507A1 KR 2013008815 W KR2013008815 W KR 2013008815W WO 2014077507 A1 WO2014077507 A1 WO 2014077507A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
thin film
metal thin
graphene
catalytic metal
Prior art date
Application number
PCT/KR2013/008815
Other languages
English (en)
French (fr)
Inventor
윤종혁
Original Assignee
삼성테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성테크윈 주식회사 filed Critical 삼성테크윈 주식회사
Priority to US14/443,905 priority Critical patent/US20150307358A1/en
Priority to CN201380060353.4A priority patent/CN104797525B/zh
Publication of WO2014077507A1 publication Critical patent/WO2014077507A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same

Definitions

  • the present invention relates to a synthesis apparatus, and more particularly to a graphene synthesis apparatus.
  • carbon nanotubes As carbon-based materials, carbon nanotubes, diamonds, graphite, graphenes, and the like have been studied in various fields. Among these, carbon nanotubes have been in the spotlight since the 1990s, but recently, graphene having a plate-like structure has attracted much attention.
  • Graphene is a thin film material with a few nm thickness of carbon atoms arranged two-dimensionally, and has a very high electrical conductivity because the charge acts as a zero effective mass particle. , Elasticity and the like.
  • graphene since graphene has been studied, many characteristic studies on graphene have been conducted, and studies for use in various fields have been conducted. As such, graphene is suitable for applications in transparent and flexible devices due to its high electrical conductivity and elastic properties.
  • CVD chemical vapor deposition
  • a catalytic metal thin film made of a catalyst metal such as copper or platinum is placed in an interior space of a graphene synthesis chamber, hydrocarbons such as methane or ethane are injected into the interior space of a graphene synthesis chamber, and then graphene synthesis is performed. It is a method for synthesizing graphene on the surface of the catalytic metal thin film by heating the inner space of the chamber to a high temperature.
  • graphene has a very useful property, but since it takes a relatively long time to set a high temperature environment for synthesizing graphene, it is difficult to mass produce a large area graphene sheet in an economic manner.
  • Such graphene synthesis apparatus is disclosed in Korean Patent Publication No. 2012-0088524 (name of the invention: graphene synthesis apparatus and synthesis method, Applicant: Samsung Techwin Co., Ltd., Sungkyunkwan University Industry-Academic Cooperation Group).
  • Embodiments of the present invention to provide a graphene synthesis apparatus capable of synthesizing graphene quickly and continuously.
  • One aspect of the present invention is a heater portion for applying heat on a continuous catalyst metal thin film, and a susceptor portion disposed between the catalyst metal thin film and the heater portion to uniformly provide the heat of the heater portion to the catalyst metal thin film. And, it provides a graphene synthesis device comprising a raw material supply for providing a raw material to the side of the catalytic metal thin film.
  • Embodiments of the present invention may be able to quickly and continuously synthesize the graphene because it can uniformly provide the heat applied from the heater when the graphene is continuously synthesized.
  • embodiments of the present invention can supply a uniform heat with respect to the synthesis area it is possible to synthesize a uniform graphene film.
  • FIG. 1 is a conceptual diagram showing a graphene synthesis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating a graphene synthesis apparatus according to another embodiment of the present invention.
  • One aspect of the present invention is a heater portion for applying heat on a continuous catalyst metal thin film, and a susceptor portion disposed between the catalyst metal thin film and the heater portion to uniformly provide the heat of the heater portion to the catalyst metal thin film. And, it can provide a graphene synthesis device including a raw material supply unit for providing a raw material to the side of the catalyst metal thin film.
  • the heater unit may include a first heater unit disposed on the first surface of the catalyst metal thin film, and a second heater unit disposed on the second surface of the catalyst metal thin film so as to face the first heater unit.
  • the susceptor portion may be provided in plurality, and the plurality of susceptor portions may be disposed in multiple stages, and the catalyst metal thin film may pass between the plurality of susceptor portions.
  • the apparatus may further include a raw material suction unit installed at another side of the catalytic metal thin film so as to face the raw material supply unit and sucking the raw material.
  • the apparatus may further include a tension maintaining roller which maintains the tension of the catalyst metal thin film while transferring the catalyst metal thin film.
  • it may further include a chamber to form an appearance, the heater unit, the susceptor unit and a portion of the raw material supply unit is installed therein.
  • the vacuum pump may further include a vacuum pump installed in the chamber to adjust the pressure inside the chamber.
  • the raw material supply unit may further include: a raw material storage unit for storing the raw material installed outside the chamber, and a raw material material connected to the raw material storage unit and installed through the chamber to allow the raw material to flow; And a raw material injection nozzle connected to a supply pipe and the raw material supply pipe for injecting the raw material into the catalyst metal thin film.
  • FIG. 1 is a conceptual diagram illustrating a graphene synthesis apparatus 100 according to an embodiment of the present invention.
  • the graphene synthesis apparatus 100 may include a chamber 110 forming an appearance.
  • the chamber 110 may be formed so that all the components are installed therein, or may be formed so that some components are installed therein.
  • the graphene synthesizing apparatus 100 may include heater parts 120a and 120b installed in the chamber 110.
  • the heaters 120a and 120b may apply heat on the continuous catalytic metal thin film (C).
  • the catalytic metal thin film (C) may be supplied in the form of a continuous sheet.
  • the heaters 120a and 120b may include a halogen lamp or a far-infrared heating device to continuously synthesize graphene.
  • the heaters 120a and 120b including the far-infrared heating apparatus have the outer housings 122a and 122b formed to surround the heat supply sources 121a and 121b and the heat supply sources 121a and 121b to supply heat. It may include.
  • the heat sources 121a and 121b may be installed in the exterior housings 122a and 122b, and the heat sources 121a and 121b may include all devices and materials capable of generating heat.
  • the heat sources 121a and 121b may be formed of a heater bar or a heating wire.
  • the exterior housings 122a and 122b may be formed of various materials.
  • the exterior housings 122a and 122b may be formed of a metal material, and may be formed of a material containing carbon.
  • the heaters 120a and 120b as described above may be disposed to face the first heater 120a and the first heater 120a disposed on the first surface of the catalytic metal thin film C. ) May be included.
  • the second heater 120b may be disposed on the second surface of the catalyst metal thin film C to apply heat to the catalyst metal thin film C.
  • the graphene synthesis apparatus 100 is disposed between the catalyst metal thin film C and the heaters 120a and 120b to uniformly provide the heat of the heaters 120a and 120b to the catalyst metal thin film C.
  • It may include a acceptor 130.
  • the susceptor 130 may be formed in a plate shape.
  • the susceptor 130 may be formed in a state in which carbon silicon (SiC) is coated on a graphite material or a graphite material.
  • the material of the susceptor 130 is not limited to the above, and may include any material that may be uniformly provided to the catalytic metal thin film C by receiving heat from the heaters 120a and 120b.
  • the susceptor 130 may be provided in plurality.
  • the plurality of susceptors 130 may be formed in multiple stages, and each susceptor 130 may be spaced apart from each other by a predetermined interval.
  • the catalyst metal thin film C may be disposed between the plurality of susceptor portions 130.
  • the plurality of susceptor units 130 may be variously disposed with respect to the ground.
  • the plurality of susceptor portions 130 may be disposed parallel to the ground, or may be disposed perpendicular to the ground.
  • the susceptor 130 will be described in detail with reference to a case where the susceptor 130 is disposed parallel to the ground.
  • the graphene synthesis apparatus 100 may include a raw material supply unit 140 is installed on the side of the catalytic metal thin film (C). At this time, the raw material supply unit 140 may be installed so that a part is disposed inside the chamber 110.
  • the raw material supply unit 140 may include a raw material storage unit 143 installed outside the chamber 110 to store the raw material.
  • the raw material storage unit 143 may be formed in the form of a tank to store the raw material.
  • the raw material storage unit 143 may be provided in plural to store different raw materials. At this time, the plurality of raw material storage unit 143 may store the same raw material.
  • the raw material supply unit 140 may include a raw material supply pipe 142 connected to the raw material storage unit 143 to move the raw material.
  • the raw material supply pipe 142 may be installed to penetrate the chamber 110.
  • the raw material supply unit 140 may be connected to the raw material supply pipe 142 may include a raw material injection nozzle 141 for spraying the raw material to the catalyst metal thin film (C).
  • the raw material injection nozzle 141 may be disposed on the side of the catalytic metal thin film (C).
  • the raw material injection nozzle 141 may be arranged to inject the raw material between the plurality of susceptor portion 130.
  • Raw material injection nozzle 141 may be provided in plurality.
  • the plurality of raw material injection nozzles 141 may be arranged to be spaced apart from each other by a predetermined interval.
  • the plurality of raw material injection nozzles 141 may be installed between the plurality of susceptor units 130. Therefore, the raw material injection nozzle 141 may supply the raw material to the catalyst metal thin film C when the catalyst metal thin film C moves in the plurality of susceptor units 130.
  • the raw material supply unit 140 may include a first shutoff valve 171 installed in at least one of the raw material storage unit 143 and the raw material supply pipe 142 to control the supply of the raw material.
  • the first shut-off valve 171 may control the supply of the raw material by opening and closing at least one of the raw material storage unit 143 and the raw material supply pipe 142 in response to an external control signal.
  • the graphene synthesis apparatus 100 may be installed in the chamber 110 may include a vacuum pump 160 for adjusting the pressure inside the chamber (110).
  • the vacuum pump 160 is similar to the general vacuum pump 160, a detailed description thereof will be omitted.
  • the graphene synthesis apparatus 100 may include a raw material suction unit 150 in which a part is installed in the chamber 110.
  • the raw material suction unit 150 may be installed to face the raw material supply unit 140.
  • the raw material suction unit 150 may include a raw material suction nozzle 151 for sucking the raw material.
  • the raw material suction nozzle 151 may be disposed to face the raw material injection nozzle 141.
  • the raw material suction unit 150 may include a raw material discharge pipe 152 through which the raw material sucked from the raw material suction nozzle 151 moves.
  • the raw material discharge pipe 152 may be connected to the raw material suction nozzle 151.
  • the raw material suction unit 150 may include a discharge pump (not shown) for discharging the raw material flowing through the raw material discharge pipe 152 to the outside.
  • the discharge pump may be formed separately from the vacuum pump 160 described above, or the vacuum pump 160 may play a role.
  • the vacuum pump 160 and the discharge pump will be described in detail with reference to the same case.
  • the raw material discharge pipe 152 may be connected to the vacuum pump 160.
  • the graphene synthesis apparatus 100 may include a second shut-off valve 172 is installed in the vacuum pump 160 to control the amount of fluid sucked into the vacuum pump 160.
  • the graphene synthesis apparatus 100 may include a third shut-off valve 173 installed in the raw material suction unit 150 to control the amount of raw material sucked. At this time, the third shut-off valve 173 may be installed in the raw material discharge pipe 152.
  • the second shut-off valve 172 and the third shut-off valve 173 as described above may be formed similarly to each other. Specifically, the second shutoff valve 172 and the third shutoff valve 173 may operate to maintain a constant pressure.
  • the second shutoff valve 172 may control the amount of fluid flowing into the vacuum pump 160 to maintain the set pressure in the chamber 110.
  • the third shut-off valve 173 may control the amount of the raw material to move the raw material discharge pipe 152 so that the pressure of the raw material discharge pipe 152 is kept constant.
  • the graphene synthesis apparatus 100 may include tension maintaining rollers 181 and 182 for transferring the catalyst metal thin film C and maintaining the tension of the catalyst metal thin film C.
  • the tension maintaining rollers (181, 182) may be provided in plurality.
  • the tension maintaining rollers 181 and 182 may include a first tension maintaining roller 181 installed at a portion where the catalytic metal thin film C is introduced into the chamber 110.
  • the tension holding rollers 181 and 182 may include a second tension holding roller 182 installed at a portion where the catalyst metal thin film C is drawn out of the chamber 110.
  • the first tension holding roller 181 and the second tension holding roller 182 may prevent the catalyst metal thin film C from being struck due to the load of the catalyst metal thin film C.
  • the first tension holding roller 181 and the second tension holding roller 182 may prevent the portion of the catalytic metal thin film C disposed between the susceptor 130 from being struck by the load.
  • the first tension holding roller 181 and the second tension holding roller 182 may be disposed at various positions. have.
  • the first tension holding roller 181 and the second tension holding roller 182 may be installed in the chamber 110 as shown in FIG. 1.
  • the first roller cooling unit ( Not shown) and a second roller cooling unit (not shown) may be installed.
  • the first roller cooling unit and the second roller cooling unit may be formed to circulate cooling water or a refrigerant to cool the first tension holding roller 181 and the second tension holding roller 182, respectively.
  • the first roller cooling unit and the second roller cooling unit are not limited to the above, and may include all devices for cooling the first tension holding roller 181 and the second tension holding roller 182, respectively.
  • first tension holding roller 181 and the second tension holding roller 182 may be installed outside the chamber 110.
  • a plurality of chambers 110 may be provided and connected to each other. That is, the chamber 110 may be installed with other chambers so as to be connected to the chamber 110 where the susceptor unit 130 is installed, and the first tension maintaining roller 181 and the second tension maintaining roller 182 may stand. It may be installed in a chamber in which the acceptor 130 is not installed.
  • first tension holding roller 181 and the second tension holding roller 182 will be described in detail with reference to a case where the first tension holding roller 182 is installed outside the chamber 110 in which the susceptor 130 is installed. do.
  • the graphene synthesis apparatus 100 may include a temperature measuring unit 190 to check the internal temperature of the chamber 110 is installed in the chamber (110).
  • the temperature measuring unit 190 may check the internal temperature of the chamber 110 and transmit it to an external controller (not shown).
  • the controller may control operations of the heaters 120a and 120b and the vacuum pump 160 based on the temperature of the temperature measuring unit 190.
  • the graphene synthesizing apparatus 100 may include a chamber cooling unit (not shown) capable of controlling the temperature inside the chamber 110.
  • the chamber cooling unit may control the temperature of the chamber 110 by circulating a cooling water or a refrigerant along the outer surface of the chamber 110.
  • the chamber cooling unit may control the temperature of the chamber 110 according to a control signal transmitted from the controller based on the temperature measured by the temperature measuring unit 190.
  • the controller may operate the chamber cooling unit to cool the chamber 110.
  • the controller may prevent the chamber 110 from being cooled by stopping the operation of the chamber cooling unit.
  • the first tension maintaining roller 181 and the second tension maintaining roller 182 may operate to move the catalytic metal thin film C on the inside of the chamber 110.
  • the metal forming the catalytic metal thin film (C) is nickel (Ni), cobalt (Co), iron (Fe), platinum (Pt), gold (Au), aluminum (Al), chromium (Cr), copper ( At least any one selected from the group consisting of Cu, magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium (Ti), tungsten (W) and the like It may include one. However, hereinafter, for convenience of description, the metal forming the catalyst metal thin film C will be described in detail with reference to the case of copper.
  • the catalyst metal thin film C When the catalyst metal thin film C is supplied as described above, the catalyst metal thin film C may move between the susceptor portions 130. At this time, the raw material supply unit 140 may supply the raw material to the surface of the catalytic metal thin film (C).
  • such raw materials are generally carbon monoxide including carbon, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene,
  • One or more selected from the group containing carbon atoms such as toluene can be used.
  • the raw material contains methane for the convenience of description.
  • methane gas which is a carbon source of gaseous phase
  • CH4 methane gas
  • increases in temperature inside the chamber so that methane gas is separated into carbon atoms and hydrogen atoms, and the separated carbon atoms are absorbed on the surface of the catalytic metal.
  • the separated carbon atoms diffuse onto the surface of the catalytic metal.
  • the raw material may include hydrogen in addition to the carbon supply material. At this time, hydrogen may serve to remove foreign substances on the surface of the catalytic metal thin film (C) and transfer heat of the heaters 120a and 120b.
  • the heaters 120a and 120b may operate to supply heat to the surface of the catalytic metal thin film C.
  • the heat generated from the heaters 120a and 120b is transferred to the susceptor 130, and the susceptor 130 is heated to heat the surface of the catalytic metal thin film C in the susceptor 130.
  • the temperature of the susceptor 130 is increased by the heat transmitted through the heaters 120a and 120b, and the temperature inside the chamber 110 may maintain a high temperature of 900 degrees to 1080 degrees.
  • graphene may be synthesized on the surface of the catalytic metal thin film (C).
  • the graphene is synthesized may be performed according to chemical vapor deposition.
  • chemical vapor deposition For example, Thermal Chemical Vapor Deposition (T-CVD), Rapid Thermal Chemical Vapor Deposition (RT-CVD), Inductive Coupled Plasma Chemical Vapor Deposition (ICP-CVD). Plasma Enhanced Chemical Vapor Deposition may be used.
  • the raw material suction unit 150 may suck the raw material on the opposite side of the raw material supply unit 140. Particularly, the raw material may be sucked from the raw material suction nozzle 151 to discharge the raw material through the raw material discharge pipe 152.
  • the vacuum pump 160 may operate to maintain a constant pressure inside the chamber 110.
  • the concentration of the raw material between the susceptor 130 may be constant.
  • the flow of the raw material is smooth, so that the raw material concentration between the susceptor 130 may be maintained uniformly.
  • the synthesis of graphene may be smoothly performed by maintaining a uniform concentration of raw materials on the surface of the catalytic metal thin film (C).
  • the carrier member for example, polydimethylsiloxane (PDMS) can be used.
  • the graphene from which the catalytic metal thin film C is removed may be carried by the carrier member and transferred to a target substrate (not shown).
  • the target substrate may be, for example, polyethylene terephthalate (PET).
  • the graphene synthesis apparatus 100 may uniformly provide the heat applied from the heaters 120a and 120b, and thus may rapidly and continuously synthesize the graphene.
  • the graphene synthesis apparatus 100 may supply uniform heat with respect to the synthesis area, thereby synthesizing a uniform graphene film.
  • the graphene synthesizing apparatus 100 may effectively supply heat of the heater parts 120a and 120b through the susceptor part 130.
  • FIG. 2 is a conceptual diagram illustrating a graphene synthesis apparatus 200 according to another embodiment of the present invention.
  • the graphene synthesis apparatus 200 includes a chamber 210, heaters 220a and 220b, susceptor 230, a raw material supply 240, a raw material suction 250, and a vacuum.
  • the pump 260 may include a first shutoff valve 271, a second shutoff valve 272, a third shutoff valve 273, a temperature measuring part 290, and a chamber cooling part (not shown).
  • the second shutoff valve 272, the third shutoff valve 273, the temperature measuring part 290, and the chamber cooling part may include the chamber 110, the heater parts 120a and 120b, and the susceptor part described with reference to FIG. 1. 130, the raw material supply unit 140, the raw material suction unit 150, the vacuum pump 160, the first shut-off valve 171, the second shut-off valve 172, the third shut-off valve 173, the temperature measuring unit 290 and the chamber cooling unit may be formed similarly.
  • the heaters 220a and 220b include a first heater 220a and a second heater 220b
  • the raw material supply unit 240 includes a raw material injection nozzle 241 and a raw material supply pipe 242. It may include a raw material storage unit 243.
  • the raw material suction unit 250 may include a raw material suction nozzle 251 and a raw material discharge pipe 252.
  • the first heater unit 220a, the second heater unit 220b, and the susceptor unit 230 may be disposed perpendicularly to the ground.
  • the plurality of susceptor portions 230 may be disposed to be spaced apart from each other by a predetermined interval so that the catalyst metal thin film C may move between the susceptor portions 230.
  • the catalytic metal thin film (C) may move between the susceptor portion 230 in a direction perpendicular to the ground.
  • the raw material supply unit 240 may supply the raw material to the side of the catalyst metal thin film (C).
  • the raw material injection nozzle 241 may inject the raw material from the upper surface of Figure 2 toward the side of the catalyst metal thin film (C).
  • the raw material suction unit 250 may suck the raw material.
  • the raw material may be sucked in the raw material suction nozzle 251 and discharged to the outside of the chamber 210 through the raw material discharge pipe 252.
  • the heat supplied from the heaters 220a and 220b may apply heat to the surface of the catalytic metal thin film C through the susceptor 230.
  • the catalyst metal thin film C when heat is applied to the surface of the catalyst metal thin film C, the catalyst metal thin film C may be deformed. In particular, the catalytic metal thin film (C) may be stretched by heat. At this time, since the catalyst metal thin film (C) moves in a state perpendicular to the ground, it may not move toward the susceptor portion 230 by a load.
  • the raw material may be supplied and graphene may be synthesized.
  • the method for synthesizing the graphene has been described in detail above, a detailed description thereof will be omitted.
  • the vacuum pump 260 may maintain a constant pressure inside the chamber 210.
  • the second shut-off valve 272 and the third shut-off valve 273 can be controlled according to the set pressure value to control the discharge of the raw material and the pressure inside the chamber 210.
  • the graphene synthesis apparatus 200 may uniformly provide the heat applied from the heaters 220a and 220b, so that graphene may be rapidly and continuously synthesized.
  • the graphene synthesis apparatus 200 may supply uniform heat with respect to the synthesis area, thereby synthesizing a uniform graphene film.
  • a graphene manufacturing method for producing graphene with improved electrical properties it is possible to commercialize large-area graphene, a transparent electrode containing a graphene, an active layer, having the same Embodiments of the present invention can be applied to a display device, an electronic device, an optoelectronic device, a battery, a solar cell, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)

Abstract

본 발명은 그래핀 합성장치를 개시한다. 본 발명은, 연속적인 촉매금속박막 상에 열을 가하는 히터부와, 상기 촉매금속박막과 상기 히터부 사이에 배치되어 상기 히터부의 열을 상기 촉매금속박막에 균일하게 제공하는 서셉터부와, 상기 촉매금속박막의 측면으로 원료물질을 제공하는 원료물질공급부를 포함한다.

Description

그래핀 합성장치
본 발명은 합성장치에 관한 것으로서, 보다 상세하게는 그래핀 합성장치에 관한 것이다.
현재 탄소에 기반을 둔 재료로서, 탄소 나노튜브(carbon nanotube), 다이아몬드(diamond), 그라파이트(graphite), 그래핀(graphene) 등이 다양한 분야에서 연구되고 있다. 이 중, 탄소나노튜브가 1990년대 이후부터 각광을 받아 오고 있으나 최근에는 판상 구조의 그래핀(graphene)이 많은 주목을 받고 있다. 그래핀은 탄소원자들이 2차원적으로 배열된 수 nm 두께의 박막 물질로서, 그 내부에서 전하가 제로 유효 질량 입자(zero effective mass particle)로 작용하기 때문에 매우 높은 전기전도도를 가지며, 또한 높은 열전도도, 탄성 등을 가진다.
따라서, 그래핀이 연구된 이후로 그래핀에 대한 많은 특성 연구가 진행되고 있으며 다양한 분야에서 활용하기 위한 연구가 진행되고 있다. 이와 같은, 그래핀은 높은 전기 전도도 및 탄성 특성으로 인해 투명하고 플렉서블(flexible)한 소자에 적용하기에 적합하다.
그래핀을 합성하기 위한 방법으로 화학기상증착법(chemical vapor deposition-CVD)이 사용된다. 화학기상증착법은 구리 또는 백금 등의 촉매금속으로 이루어진 촉매금속박막을 그래핀 합성 챔버의 내부공간에 안치시키고, 메탄 또는 에탄 등의 탄화수소를 그래핀 합성 챔버의 내부공간에 주입한 후, 그래핀 합성 챔버의 내부공간을 고온으로 가열함으로써 촉매금속박막의 표면에 그래핀을 합성하는 방법이다.
상술한 바와 같이 그래핀은 매우 유용한 성질을 가지고 있지만 그래핀을 합성하기 위해 고온의 환경을 설정하는데 비교적 많은 시간이 걸리므로, 대면적의 그래핀 시트를 경제적인 방식으로 양산하기 어렵다.
이러한 그래핀 합성장치는 한국공개특허공보 제2012-0088524호(발명의 명칭 : 그래핀 합성장치 및 합성방법, 출원인 : 삼성테크윈 주식회사, 성균관대학교산학협력단)에 구체적으로 개시되어 있다.
본 발명의 실시예들은 그래핀을 신속하고 연속적으로 합성 가능한 그래핀 합성장치를 제공하고자 한다.
본 발명의 일 측면은, 연속적인 촉매금속박막 상에 열을 가하는 히터부와, 상기 촉매금속박막과 상기 히터부 사이에 배치되어 상기 히터부의 열을 상기 촉매금속박막에 균일하게 제공하는 서셉터부와, 상기 촉매금속박막의 측면으로 원료물질을 제공하는 원료물질공급부를 포함하는 그래핀 합성장치를 제공한다.
본 발명의 실시예들은 그래핀을 연속적으로 합성할 때, 히터부에서 가해지는 열을 균일하게 제공할 수 있으므로 그래핀을 신속하고 연속적으로 합성 가능할 수 있다. 또한, 본 발명의 실시예들은 합성 면적에 대해서 균일한 열을 공급할 수 있으므로 균일한 그래핀 필름을 합성할 수 있다.
도 1은 본 발명의 일 실시예에 따른 그래핀 합성장치를 보여주는 개념도이다.
도 2는 본 발명의 다른 실시예에 따른 그래핀 합성장치를 보여주는 개념도이다.
본 발명의 일 측면은, 연속적인 촉매금속박막 상에 열을 가하는 히터부와, 상기 촉매금속박막과 상기 히터부 사이에 배치되어 상기 히터부의 열을 상기 촉매금속박막에 균일하게 제공하는 서셉터부와, 상기 촉매금속박막의 측면으로 원료물질을 제공하는 원료물질공급부를 포함하는 그래핀 합성장치를 제공할 수 있다.
또한, 상기 히터부는, 상기 촉매금속박막의 제 1 면에 배치되는 제 1 히터부와, 상기 제 1 히터부와 대향하도록 상기 촉매금속박막의 제 2 면에 배치되는 제 2 히터부를 구비할 수 있다.
또한, 상기 서셉터부는 복수개 구비되며, 상기 복수개의 서셉터부는 다단으로 배치되며, 상기 복수개의 서셉터부 사이로 상기 촉매금속박막이 통과할 수 있다.
또한, 상기 원료물질공급부와 대향하도록 상기 촉매금속박막의 다른 측면에 설치되어 상기 원료물질을 흡입하는 원료물질흡입부를 더 포함할 수 있다.
또한, 상기 촉매금속박막을 이송시키면서 상기 촉매금속박막의 장력을 유지시키는 장력유지롤러를 더 포함할 수 있다.
또한, 외관을 형성하며, 상기 히터부, 상기 서셉터부 및 상기 원료물질공급부의 일부가 내부에 설치되는 챔버를 더 포함할 수 있다.
또한, 상기 챔버에 설치되어 상기 챔버 내부의 압력을 조절하는 진공펌프를 더 포함할 수 있다.
또한, 상기 원료물질공급부는, 상기 챔버의 외부에 설치되는 상기 원료물질를 저장하는 원료물질저장부와, 상기 원료물질저장부와 연결되고, 상기 챔버를 관통하도록 설치되어 상기 원료물질이 유동하는 원료물질공급관과, 상기 원료물질공급관에 연결되어 상기 원료물질을 상기 촉매금속박막에 분사하는 원료물질분사노즐을 구비할 수 있다.
본 발명은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
도 1은 본 발명의 일 실시예에 따른 그래핀 합성장치(100)를 보여주는 개념도이다.
도 1을 참고하면, 그래핀 합성장치(100)는 외관을 형성하는 챔버(110)를 포함할 수 있다. 이때, 챔버(110)는 전체 구성요소가 내부에 전부 설치되도록 형성될 수 있으며, 일부 구성요소가 내부에 설치되도록 형성되는 것도 가능하다.
한편, 그래핀 합성장치(100)는 챔버(110)의 내부에 설치되는 히터부(120a, 120b)를 포함할 수 있다. 이때, 히터부(120a, 120b)는 연속적인 촉매금속박막(C) 상에 열을 가할 수 있다. 특히 촉매금속박막(C)은 연속적인 시트 형태로 공급될 수 있다.
또한, 히터부(120a, 120b)는 연속적으로 그래핀을 합성하기 위하여 할로겐 램프나 원적외선 가열 장치를 포함할 수 있다. 이때, 원적외선 가열 장치를 포함하는 히터부(120a, 120b)는 열을 공급하도록 내부에 열공급원(121a, 121b) 및 열공급원(121a, 121b)을 감싸도록 형성되는 외관하우징(122a, 122b)을 포함할 수 있다.
이때, 열공급원(121a, 121b)은 외관하우징(122a, 122b)의 내부에 설치될 수 있으며, 열공급원(121a, 121b)은 열을 생성할 수 있는 모든 장치 및 재질을 포함할 수 있다. 예를 들면, 열공급원(121a, 121b)은 히터 바(heater bar) 또는 열선 등으로 형성될 수 있다.
또한, 외관하우징(122a, 122b)은 다양한 재질로 형성될 수 있다. 예를 들면, 외관하우징(122a, 122b)은 금속 재질로 형성될 수 있으며, 탄소를 함유한 재질로 형성될 수 있다.
상기와 같은 히터부(120a, 120b)는 촉매금속박막(C)의 제 1 면에 배치되는 제 1 히터부(120a)와 제 1 히터부(120a)와 대향하도록 설치되는 제 2 히터부(120b)를 포함할 수 있다. 이때, 제 2 히터부(120b)는 촉매금속박막(C)의 제 2 면에 배치되어 촉매금속박막(C)에 열을 가할 수 있다.
한편, 그래핀 합성장치(100)는 촉매금속박막(C)과 히터부(120a, 120b) 사이에 배치되어 히터부(120a, 120b)의 열을 촉매금속박막(C)에 균일하게 제공하는 서셉터부(130)를 포함할 수 있다. 이때, 서셉터부(130)는 플레이트 형태로 형성될 수 있다. 또한, 서셉터부(130)는 그라파이트(Graphite) 재질이나 그라파이트 재질에 탄소규소(SiC)를 코팅한 상태로 형성될 수 있다. 서셉터부(130)의 재질은 상기에 한정되지 않으며 히터부(120a, 120b)로부터 열을 제공받아 촉매금속박막(C)에 균일하게 제공할 수 있는 모든 재질을 포함할 수 있다.
이러한 서셉터부(130)는 복수개 구비될 수 있다. 이때, 복수개의 서셉터부(130)는 다단으로 형성되며, 각 서셉터부(130)는 서로 일정 간격 이격되도록 배치될 수 있다. 특히 복수개의 서셉터부(130) 사이에는 촉매금속박막(C)이 통과하도록 배치될 수 있다.
또한, 복수개의 서셉터부(130)는 지면에 대해서 다양하게 배치될 수 있다. 예를 들면, 복수개의 서셉터부(130)는 지면에 대해서 평행하게 배치될 수 있으며, 지면에 대해서 수직하게 배치되는 것도 가능하다. 다만, 이하에서는 설명의 편의를 위하여 서셉터부(130)는 지면에 대해서 평행하게 배치되는 경우를 중심으로 상세히 설명하기로 한다.
한편, 그래핀 합성장치(100)는 촉매금속박막(C)의 측면에 설치되는 원료물질공급부(140)를 포함할 수 있다. 이때, 원료물질공급부(140)는 챔버(110)의 내부에 일부가 배치되도록 설치될 수 있다.
원료물질공급부(140)는 챔버(110)의 외부에 설치되어 원료물질을 저장하는 원료물질저장부(143)를 포함할 수 있다. 이때, 원료물질저장부(143)는 탱크(Tank) 형태로 형성되어 원료물질을 저장할 수 있다. 또한, 원료물질저장부(143)는 복수개 구비되어 서로 상이한 원료물질을 저장할 수 있다. 이때, 복수개의 원료물질저장부(143)는 동일한 원료물질을 저장하는 것도 가능하다.
원료물질공급부(140)는 원료물질저장부(143)와 연결되어 원료물질이 이동하는 원료물질공급관(142)을 포함할 수 있다. 이때, 원료물질공급관(142)은 챔버(110)를 관통하도록 설치될 수 있다.
또한, 원료물질공급부(140)는 원료물질공급관(142)에 연결되어 원료물질을 촉매금속박막(C)에 분사하는 원료물질분사노즐(141)을 포함할 수 있다. 이때, 원료물질분사노즐(141)은 촉매금속박막(C)의 측면에 배치될 수 있다. 특히 원료물질분사노즐(141)은 복수개의 서셉터부(130) 사이로 원료물질을 분사하도록 배치될 수 있다.
원료물질분사노즐(141)은 복수개 구비될 수 있다. 이때, 복수개의 원료물질분사노즐(141)은 서로 일정 간격 이격되도록 배치될 수 있다. 구체적으로 복수개의 원료물질분사노즐(141)은 복수개의 서셉터부(130) 사이에 각각 설치될 수 있다. 따라서 원료물질분사노즐(141)은 복수개의 서셉터부(130)에서 촉매금속박막(C)이 이동하는 경우 촉매금속박막(C)에 원료물질을 공급할 수 있다.
원료물질공급부(140)는 원료물질저장부(143) 및 원료물질공급관(142) 중 적어도 하나에 설치되어 원료물질의 공급을 제어하는 제 1 차단밸브(171)를 포함할 수 있다. 이때, 제 1 차단밸브(171)는 외부 제어신호에 반응하여 원료물질저장부(143) 및 원료물질공급관(142) 중 적어도 하나를 개폐함으로써 원료물질의 공급을 제어할 수 있다.
한편, 그래핀 합성장치(100)는 챔버(110)에 설치되어 챔버(110) 내부의 압력을 조절하는 진공펌프(160)를 포함할 수 있다. 이때, 진공펌프(160)는 일반적인 진공펌프(160)와 유사하므로 상세한 설명은 생략하기로 한다.
그래핀 합성장치(100)는 챔버(110) 내부에 일부가 설치되는 원료물질흡입부(150)를 포함할 수 있다. 이때, 원료물질흡입부(150)는 원료물질공급부(140)와 대향하도록 설치될 수 있다.
구체적으로 원료물질흡입부(150)는 원료물질을 흡입하는 원료물질흡입노즐(151)을 포함할 수 있다. 이때, 원료물질흡입노즐(151)은 원료물질분사노즐(141)과 대향하도록 배치될 수 있다.
원료물질흡입부(150)는 원료물질흡입노즐(151)로부터 흡입된 원료물질이 이동하는 원료물질배출관(152)을 포함할 수 있다. 이때, 원료물질배출관(152)은 원료물질흡입노즐(151)과 연결될 수 있다.
원료물질흡입부(150)는 원료물질배출관(152)을 유동하는 원료물질을 외부로 배출시키는 배출펌프(미도시)를 포함할 수 있다. 이때, 상기 배출펌프는 상기에서 설명한 진공펌프(160)와 별도로 형성되거나 진공펌프(160)가 그 역할을 수행할 수 있다. 이하에서는 설명의 편의를 위하여 진공펌프(160)와 상기 배출펌프가 동일한 경우를 중심으로 상세히 설명하기로 한다. 상기와 같이 진공펌프(160)와 상기 배출펌프가 동일한 경우 원료물질배출관(152)은 진공펌프(160)와 연결될 수 있다.
한편, 그래핀 합성장치(100)는 진공펌프(160)에 설치되어 진공펌프(160)로 흡입되는 유체의 양을 제어하는 제 2 차단밸브(172)를 포함할 수 있다. 또한, 그래핀 합성장치(100)는 원료물질흡입부(150)에 설치되어 흡입되는 원료물질의 양을 제어하는 제 3 차단밸브(173)를 포함할 수 있다. 이때, 제 3 차단밸브(173)는 원료물질배출관(152)에 설치될 수 있다.
상기와 같은 제 2 차단밸브(172)와 제 3 차단밸브(173)는 서로 유사하게 형성될 수 있다. 구체적으로 제 2 차단밸브(172)와 제 3 차단밸브(173)는 일정한 압력을 유지하도록 작동할 수 있다.
예를 들면, 제 2 차단밸브(172)는 챔버(110) 내부의 압력이 설정된 압력을 유지하도록 진공펌프(160)로 유입되는 유체의 양을 제어할 수 있다. 또한, 제 3 차단밸브(173)는 원료물질배출관(152)의 압력이 일정하게 유지되도록 원료물질배출관(152)을 이동하는 원료물질의 양을 제어할 수 있다.
한편, 그래핀 합성장치(100)는 촉매금속박막(C)을 이송시키면서 촉매금속박막(C)의 장력을 유지시키는 장력유지롤러(181, 182)를 포함할 수 있다. 이때, 장력유지롤러(181, 182)는 복수개 구비될 수 있다. 구체적으로 장력유지롤러(181, 182)는 촉매금속박막(C)이 챔버(110) 내부로 인입되는 부분에 설치되는 제 1 장력유지롤러(181)를 포함할 수 있다. 또한, 장력유지롤러(181, 182)는 촉매금속박막(C)이 챔버(110)의 외부로 인출되는 부분에 설치되는 제 2 장력유지롤러(182)를 포함할 수 있다.
이때, 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)는 촉매금속박막(C)의 하중으로 인하여 촉매금속박막(C)이 쳐지는 것을 방지할 수 있다. 특히 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)는 서셉터부(130) 사이에 배치되는 촉매금속박막(C) 부분이 하중으로 인하여 쳐지는 것을 방지할 수 있다.
한편, 상기와 같이 설치되는 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)의 경우 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)는 다양한 위치에 배치될 수 있다. 예를 들면, 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)는 도 1에 도시된 것과 같이 챔버(110)의 내부에 설치될 수 있다. 이때, 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)에는 각각 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)가 가열되는 것을 방지하도록 제 1 롤러냉각부(미도시) 및 제 2 롤러냉각부(미도시)가 설치될 수 있다. 특히 상기 제 1 롤러냉각부 및 상기 제 2 롤러냉각부는 냉각수 또는 냉매 등이 순환하여 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)를 각각 냉각시키도록 형성될 수 있다. 이때, 상기 제 1 롤러냉각부 및 상기 제 2 롤러냉각부는 상기에 한정되지 않으며, 각각 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)를 냉각시키는 모든 장치를 포함할 수 있다.
또한, 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)는 챔버(110)의 외부에 설치될 수 있다. 특히 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)가 챔버(110)의 외측에 배치되는 경우 챔버(110)는 복수개 구비되어 서로 연결된 형태로 형성될 수 있다. 즉, 챔버(110)는 서셉터부(130)가 설치되는 챔버(110)와 연결되도록 다른 챔버들이 설치될 수 있으며, 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)는 서셉터부(130)가 설치되지 않는 챔버에 설치될 수 있다.
이하에서는 설명의 편의를 위하여 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)가 서셉터부(130)가 설치되는 챔버(110) 외부에 설치되는 경우를 중심으로 상세히 설명하기로 한다.
한편, 그래핀 합성장치(100)는 챔버(110)에 설치되는 챔버(110) 내부 온도를 확인할 수 있는 온도측정부(190)를 포함할 수 있다. 이때, 온도측정부(190)는 챔버(110) 내부 온도를 확인하여 외부의 제어부(미도시)로 전송할 수 있다. 또한, 상기 제어부는 온도측정부(190)의 온도를 근거로 히터부(120a, 120b), 진공펌프(160) 등의 작동을 제어할 수 있다.
또한, 그래핀 합성장치(100)는 챔버(110) 내부의 온도를 제어할 수 있는 챔버냉각부(미도시)를 포함할 수 있다. 이때, 상기 챔버냉각부는 챔버(110)의 외면을 따라 냉각수 또는 냉매 등을 순환시켜 챔버(110)의 온도를 제어할 수 있다. 특히 상기 챔버냉각부는 온도측정부(190)를 통하여 측정된 온도를 근거로 상기 제어부에서 전송되는 제어신호에 따라 챔버(110)의 온도를 제어할 수 있다.
구체적으로 온도측정부(190)에서 측정된 온도가 설정 온도 이상인 경우 상기 제어부는 상기 챔버냉각부를 작동시켜 챔버(110)를 냉각시킬 수 있다. 또한, 온도측정부(190)에서 측정된 온도가 설정 온도 이하인 경우 상기 제어부는 상기 챔버냉각부의 작동을 중지시켜 챔버(110)가 냉각되는 것을 방지할 수 있다.
한편, 이하에서는 그래핀 합성장치(100)의 작동에 대해서 상세히 설명하기로 한다.
그래핀 합성장치(100)가 작동하는 경우, 제 1 장력유지롤러(181) 및 제 2 장력유지롤러(182)가 작동하여 촉매금속박막(C)을 챔버(110) 내부 상에서 이동시킬 수 있다. 이때, 촉매금속박막(C)을 형성하는 금속은 니켈(Ni), 코발트(Co), 철(Fe), 백금(Pt), 금(Au), 알루미늄(Al), 크롬(Cr), 구리(Cu), 마그네슘(Mg), 망간(Mn), 몰리브덴(Mo), 로듐(Rh), 규소(Si), 탄탈륨(Ta), 티타늄(Ti), 텅스텐(W) 등으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함할 수 있다. 다만, 이하에서는 설명의 편의를 위하여 촉매금속박막(C)을 형성하는 금속이 구리인 경우를 중심으로 상세히 설명하기로 한다.
상기와 같이 촉매금속박막(C)이 공급되는 경우 촉매금속박막(C)은 서셉터부(130) 사이를 이동할 수 있다. 이때, 원료물질공급부(140)에서 원료물질을 촉매금속박막(C)의 표면으로 공급할 수 있다.
구체적으로 상기와 같은 원료물질은 일반적으로 탄소를 포함하는 일산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타티엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등 탄소 원자가 포함된 군에서 선택된 하나 이상이 사용될 수 있다. 다만, 이하에서는 설명의 편의를 위하여 원료물질이 메탄을 포함하는 경우를 중심으로 상세히 설명하기로 한다.
예를 들면, 기상의 탄소 공급원인 메탄가스(CH4)는 챔버의 내부의 온도가 상승됨에 따라, 메탄가스는 탄소 원자와 수소 원자로 분리되고 분리된 탄소 원자는 촉매금속의 표면에 흡수된다. 분리된 탄소원자는 촉매금속의 표면에 확산된다.
원료물질은 상기 탄소 공급하는 물질 이외에도 수소를 포함할 수 있다. 이때, 수소는 촉매금속박막(C) 표면의 이물질 들을 제거하고 히터부(120a, 120b)의 열을 전달하는 역할을 수행할 수 있다.
상기와 같이 원료물질이 공급되는 동안, 히터부(120a, 120b)가 작동하여 촉매금속박막(C)의 표면으로 열을 공급할 수 있다. 이때, 히터부(120a, 120b)에서 발생된 열은 서셉터부(130)에 전달되고, 서셉터부(130)가 가열됨으로써 서셉터부(130)에서 촉매금속박막(C)의 표면에 열을 가할 수 있다. 특히 히터부(120a, 120b)를 통하여 전달된 열에 의하여 서셉터부(130)의 온도가 상승하고 챔버(110) 내부의 온도는 900도~1080도의 고온을 유지할 수 있다.
상기와 같이 서셉터부(130)에서 열이 가해지는 경우 촉매금속박막(C)의 표면에서는 그래핀이 합성될 수 있다. 이때, 그래핀이 합성되는 방법은 화학기상증착법에 따라 수행될 수 있다. 예컨대, 열 화학 기상 증착(T-CVD, Thermal Chemical Vapor Deposition), 급속 화학 기상 증착법(RT-CVD, Rapid Thermal Chemical Vapor Deposition), 유도 결합 화학 기상 증착법(ICP-CVD, Inductive Coupled Plasma Chemical Vapor Deposition), 플라즈마 화학 기상 증착법(Plasma Enhanced Chemical Vapor Deposition)이 사용될 수 있다.
한편, 상기와 같이 촉매금속박막(C)에 원료물질이 공급되는 동안, 원료물질공급부(140)의 반대편에서는 원료물질흡입부(150)가 원료물질을 흡입할 수 있다. 특히 원료물질흡입노즐(151)에서 원료물질을 흡입하여 원료물질배출관(152)을 통하여 원료물질을 배출시킬 수 있다. 또한, 상기와 같은 작업이 진행되는 동안, 진공펌프(160)가 작동하여 챔버(110) 내부의 압력을 일정하게 유지할 수 있다.
상기와 같이 원료물질공급부(140)를 통하여 원료물질을 공급함과 동시에 원료물질흡입부(150)를 작동시키는 경우 서셉터부(130) 사이의 원료물질의 농도는 일정하게 유질될 수 있다. 또한, 상기와 같은 경우 원료물질의 흐름이 원활하게 됨으로써 서셉터부(130) 사이의 원료물질 농도는 균일하게 유지될 수 있다.
따라서 촉매금속박막(C)의 표면에는 균일한 원료물질의 농도가 유지됨으로써 그래핀의 합성이 원활하게 수행될 수 있다.
한편, 상기와 같이 촉매금속박막(C)의 표면에 형성된 그래핀은 이후, 필요에 따라 그래핀 상에 캐리어 부재(미도시)를 적층하고, 촉매금속박막(C)을 에칭 등의 방법에 따라 제거할 수 있다. 캐리어 부재는 예컨대, 폴리디메틸실록산(PDMS)을 사용할 수 있다.
촉매금속박막(C)이 제거된 그래핀은 캐리어 부재에 의해 운반되며, 타겟 기판(미도시)에 전사될 수 있다. 타겟 기판은 예컨대, PET(Polyethyleneterephthalate)이 될 수 있다.
따라서 그래핀 합성장치(100)는 그래핀을 연속적으로 합성할 때, 히터부(120a, 120b)에서 가해지는 열을 균일하게 제공할 수 있으므로 그래핀을 신속하고 연속적으로 합성 가능할 수 있다. 또한, 그래핀 합성장치(100)는 합성 면적에 대해서 균일한 열을 공급할 수 있으므로 균일한 그래핀 필름을 합성할 수 있다.
특히 상기와 같은 그래핀을 형성하기 위하여 종래에 사용되는 화학기상증착방법의 경우 그래핀을 합성하기 위하여 900℃ 내지 1080℃ 사이의 고온에서 합성이 이루어지므로 승온 또는 하강이 자유롭지 못할 수 있다. 특히 상기와 같은 종래의 방법을 사용하는 경우 승온 또는 하강을 하기 위하여 많은 시간이 소요될 수 있다.
그러나 본 발명의 실시예들에 따른 그래핀 합성장치(100)는 서셉터부(130)를 통하여 히터부(120a,120b)의 열을 효과적으로 균일하게 공급할 수 있으며,
도 2는 본 발명의 다른 실시예에 따른 그래핀 합성장치(200)를 보여주는 개념도이다.
도 2를 참고하면, 그래핀 합성장치(200)는 챔버(210), 히터부(220a, 220b), 서셉터부(230), 원료물질공급부(240), 원료물질흡입부(250), 진공펌프(260), 제 1 차단밸브(271), 제 2 차단밸브(272), 제 3 차단밸브(273), 온도측정부(290) 및 챔버냉각부(미도시)를 포함할 수 있다. 이때, 챔버(210), 히터부(220a, 220b), 서셉터부(230), 원료물질공급부(240), 원료물질흡입부(250), 진공펌프(260), 제 1 차단밸브(271), 제 2 차단밸브(272), 제 3 차단밸브(273), 온도측정부(290) 및 상기 챔버냉각부는 상기 도 1에서 설명한 챔버(110), 히터부(120a, 120b), 서셉터부(130), 원료물질공급부(140), 원료물질흡입부(150), 진공펌프(160), 제 1 차단밸브(171), 제 2 차단밸브(172) 제 3 차단밸브(173), 온도측정부(290) 및 상기 챔버냉각부와 유사하게 형성될 수 있다.
구체적으로 히터부(220a, 220b)는 제 1 히터부(220a)와 제 2 히터부(220b)를 포함하며, 원료물질공급부(240)는 원료물질분사노즐(241), 원료물질공급관(242), 원료물질저장부(243)를 포함할 수 있다. 또한, 원료물질흡입부(250)는 원료물질흡입노즐(251) 및 원료물질배출관(252)을 포함할 수 있다.
제 1 히터부(220a), 제 2 히터부(220b), 서셉터부(230)는 지면에 대해서 수직하게 배치될 수 있다. 이때, 복수개의 서셉터부(230)는 서로 일정 간격 이격되도록 배치되어 촉매금속박막(C)이 서셉터부(230) 사이로 이동할 수 있다. 특히 촉매금속박막(C)은 지면과 수직한 방향으로 서셉터부(230) 사이를 이동할 수 있다.
한편, 그래핀 합성장치(200)의 작동을 살펴보면, 상기에서 설명한 바와 유사하게 그래핀을 합성할 수 있다.
구체적으로 촉매금속박막(C)이 지면과 수직한 상태로 이송되는 경우 원료물질공급부(240)는 촉매금속박막(C)의 측면으로 원료물질을 공급할 수 있다. 이때, 원료물질분사노즐(241)은 상기 도 2의 상면으로부터 촉매금속박막(C)의 측면으로 원료물질을 분사할 수 있다.
상기와 같이 원료물질이 분사되는 경우 원료물질흡입부(250)에서는 원료물질을 흡입할 수 있다. 특히 원료물질은 원료물질흡입노즐(251)에서 흡입되어 원료물질배출배관(252)를 통하여 챔버(210)의 외부로 배출될 수 있다. 이때, 히터부(220a, 220b)에서 공급된 열은 서셉터부(230)를 통하여 촉매금속박막(C)의 표면에 열을 가할 수 있다.
상기와 같이 촉매금속박막(C)의 표면에 열이 가해지는 경우 촉매금속박막(C)은 변형될 수 있다. 특히 촉매금속박막(C)은 열에 의하여 늘어나게 될 수 있다. 이때, 촉매금속박막(C)은 지면에 수직하게 세워진 상태로 이동하므로 하중에 의하여 서셉터부(230) 측으로 이동하지 않을 수 있다.
한편, 상기와 같이 촉매금속박막(C)이 이동하는 경우 원료물질이 공급되어 그래핀이 합성될 수 있다. 이때, 그래핀이 합성되는 방법은 상기에서 상세히 설명하였으므로 상세한 설명은 생략하기로 한다.
또한, 상기와 같은 공정이 진행되는 동안, 진공펌프(260)는 챔버(210) 내부의 압력을 일정하게 유지시킬 수 있다. 이때, 제 2 차단밸브(272) 및 제 3 차단밸브(273)는 설정된 압력값에 따라서 개폐함으로써 원료물질의 배출과 챔버(210) 내부의 압력을 제어할 수 있다.
한편, 상기와 같이 제조된 그래핀의 경우 외부로 반출될 수 있다. 이때, 외부로 반출되기 위하여 촉매금속박막(C)을 제거하는 방법, 외부에 반출되어 사용되는 방법은 상기와 유사하므로 상세한 설명은 생략하기로 한다.
따라서 그래핀 합성장치(200)는 그래핀을 연속적으로 합성할 때, 히터부(220a, 220b)에서 가해지는 열을 균일하게 제공할 수 있으므로 그래핀을 신속하고 연속적으로 합성 가능할 수 있다. 또한, 그래핀 합성장치(200)는 합성 면적에 대해서 균일한 열을 공급할 수 있으므로 균일한 그래핀 필름을 합성할 수 있다.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되었지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위에는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.
본 발명의 일 실시예에 의하면, 전기적 특성이 향상된 그래핀을 제조하는 그래핀의 제조 방법을 제공하여, 대면적 그래핀을 상용화할 수 있으며, 그래핀을 포함하는 투명전극, 활성층, 이를 구비하는 표시소자, 전자소자, 광전소자, 배터리, 태양전지 등에 본 발명의 실시예들을 적용할 수 있다.

Claims (14)

  1. 연속적인 촉매금속박막 상에 열을 가하는 히터부;
    상기 촉매금속박막과 상기 히터부 사이에 배치되어 상기 히터부의 열을 상기 촉매금속박막에 균일하게 제공하는 서셉터부; 및
    상기 촉매금속박막의 측면으로 원료물질을 제공하는 원료물질공급부;를 포함하는 그래핀 합성장치.
  2. 제 1 항에 있어서,
    상기 히터부는,
    상기 촉매금속박막의 제 1 면에 배치되는 제 1 히터부; 및
    상기 제 1 히터부와 대향하도록 상기 촉매금속박막의 제 2 면에 배치되는 제 2 히터부;를 구비하는 그래핀 합성장치.
  3. 제 1 항에 있어서,
    상기 서셉터부는 복수개 구비되며,
    상기 복수개의 서셉터부는 다단으로 배치되며, 상기 복수개의 서셉터부 사이로 상기 촉매금속박막이 통과하는 그래핀 합성장치.
  4. 제 1 항에 있어서,
    상기 원료물질공급부와 대향하도록 상기 촉매금속박막의 다른 측면에 설치되어 상기 원료물질을 흡입하는 원료물질흡입부;를 더 포함하는 그래핀 합성장치.
  5. 제 1 항에 있어서,
    상기 촉매금속박막을 이송시키면서 상기 촉매금속박막의 장력을 유지시키는 장력유지롤러;를 더 포함하는 그래핀 합성장치.
  6. 제 1 항에 있어서,
    외관을 형성하며, 상기 히터부, 상기 서셉터부 및 상기 원료물질공급부의 일부가 내부에 설치되는 챔버;를 더 포함하는 그래핀 합성장치.
  7. 제 6 항에 있어서,
    상기 챔버에 설치되어 상기 챔버 내부의 압력을 조절하는 진공펌프;를 더 포함하는 그래핀 합성장치.
  8. 제 6 항에 있어서,
    상기 원료물질공급부는,
    상기 챔버의 외부에 설치되는 상기 원료물질를 저장하는 원료물질저장부;
    상기 원료물질저장부와 연결되고, 상기 챔버를 관통하도록 설치되어 상기 원료물질이 유동하는 원료물질공급관; 및
    상기 원료물질공급관에 연결되어 상기 원료물질을 상기 촉매금속박막에 분사하는 원료물질분사노즐;을 구비하는 그래핀 합성장치.
  9. 히터부에서 열을 방출하여 서셉터부를 가열하는 단계;
    상기 히터부의 열을 상기 서셉터부를 통하여 연속적으로 제공되는 상기 촉매금속박막에 균일하게 제공하는 단계; 및
    상기 촉매금속박막의 측면으로 원료물질을 제공하여 그래핀을 합성하는 단계;를 포함하는 그래핀 합성방법.
  10. 제 9 항에 있어서,
    상기 히터부는 상기 촉매금속박막의 양면에서 열을 방출하는 그래핀 합성방법.
  11. 제 9 항에 있어서,
    상기 서셉터부는 복수개 구비되어 다단으로 배치되며,
    상기 촉매금속박막은 상기 복수개의 서셉터부 사이로 연속적으로 통과하는 그래핀 합성방법.
  12. 제 9 항에 있어서,
    상기 원료물질이 공급되는 반대 측에서 상기 원료물질을 흡입하는 단계;를 더 포함하는 그래핀 합성방법.
  13. 제 9 항에 있어서,
    상기 촉매금속박막은 장력이 유지된 상태에서 이송되는 그래핀 합성장치.
  14. 제 9 항에 있어서,
    상기 그래핀은 진공 환경에서 합성되는 그래핀 합성장치.
PCT/KR2013/008815 2012-11-19 2013-10-02 그래핀 합성장치 WO2014077507A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/443,905 US20150307358A1 (en) 2012-11-19 2013-10-02 Graphene synthesizing apparatus
CN201380060353.4A CN104797525B (zh) 2012-11-19 2013-10-02 石墨烯合成装置及石墨烯合成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0131108 2012-11-19
KR1020120131108A KR102025365B1 (ko) 2012-11-19 2012-11-19 그래핀 합성장치 및 그래핀 합성방법

Publications (1)

Publication Number Publication Date
WO2014077507A1 true WO2014077507A1 (ko) 2014-05-22

Family

ID=50731384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008815 WO2014077507A1 (ko) 2012-11-19 2013-10-02 그래핀 합성장치

Country Status (4)

Country Link
US (1) US20150307358A1 (ko)
KR (1) KR102025365B1 (ko)
CN (1) CN104797525B (ko)
WO (1) WO2014077507A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110668432A (zh) * 2019-09-27 2020-01-10 北京碳垣新材料科技有限公司 以金属粉末液相为基底生长石墨烯的装置
US10533264B1 (en) * 2015-12-02 2020-01-14 General Graphene Corp. Apparatus for producing graphene and other 2D materials
WO2022246443A1 (en) * 2021-05-20 2022-11-24 Nabors Energy Transition Solutions Llc Graphene synthesis unit
WO2023122664A1 (en) * 2021-12-22 2023-06-29 Nabors Energy Transition Solutions Llc Carbon-based nanomaterial composition and methods of forming the same from a gas mixture that includes acetylene and methane gas
WO2023122652A1 (en) * 2021-12-22 2023-06-29 Nabors Energy Transition Solutions Llc Carbon-based nanomaterial composition and methods of forming the same from a gas mixture that includes hydrogen gas and oxygen gas
WO2023122658A1 (en) * 2021-12-22 2023-06-29 Nabors Energy Transition Solutions Llc Carbon-based nanomaterial composition and methods of forming the same from a gas mixture that includes acetylene gas
WO2023122660A1 (en) * 2021-12-22 2023-06-29 Nabors Energy Transition Solutions Llc Carbon-based nanomaterial composition and method of forming the same from a gas mixture that includes acetylene gas and methane gas
WO2024123782A1 (en) * 2022-12-06 2024-06-13 Nabors Energy Transition Solutions Llc Nano-drug delivery component including a carbon-based nanomaterial composition, method of delivering a nano-drug delivery component including a carbon-based nanomaterial composition, and methods of forming the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692371B (zh) * 2015-02-25 2016-11-09 王干 一种微正压连续生产石墨烯膜的方法及装置
KR101860019B1 (ko) * 2015-07-30 2018-05-23 한국과학기술연구원 그래핀 습식 전사를 위한 장치 및 방법
RU2712973C1 (ru) * 2016-08-31 2020-02-03 Эриез Мануфэкчуринг Ко. Датчиковая система состояния барботажного устройства
CN107164739B (zh) * 2017-06-12 2023-03-10 中国科学技术大学 Cvd生长多层异质结的方法和装置
CN107720733B (zh) * 2017-11-09 2018-12-07 绍兴蓝能光伏科技有限公司 一种具有搅拌和调节温度功能的石墨烯生产设备
GB2571573A (en) * 2018-03-02 2019-09-04 Donal Oflynn Graphene and carbon nanostructure production
BR112021012136B1 (pt) 2018-12-21 2023-10-31 Performance Nanocarbon,Inc. Método para produzir um grafeno ou material semelhante ao grafeno
CN111892042A (zh) * 2020-08-07 2020-11-06 河南墨特石墨烯科技有限公司 一种生产石墨烯的装置及利用该装置生产石墨烯的方法
US11718526B2 (en) 2021-12-22 2023-08-08 General Graphene Corporation Systems and methods for high yield and high throughput production of graphene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110092207A (ko) * 2010-02-08 2011-08-17 성균관대학교산학협력단 그래핀 롤투롤 코팅 장치 및 이를 이용한 그래핀 롤투롤 코팅 방법
KR20120106020A (ko) * 2011-03-17 2012-09-26 삼성테크윈 주식회사 그래핀 합성 장치
KR20120108748A (ko) * 2011-03-25 2012-10-05 삼성테크윈 주식회사 그래핀 제조 장치 및 제조 방법
KR101190603B1 (ko) * 2012-03-20 2012-10-12 남원식 기판 처리 장치
KR20130098663A (ko) * 2012-02-28 2013-09-05 (주)앤피에스 박막 제조 장치 및 그 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065255A1 (en) * 2002-10-02 2004-04-08 Applied Materials, Inc. Cyclical layer deposition system
US20120180725A1 (en) * 2011-01-17 2012-07-19 Furukawa Electric Co., Ltd. Cvd apparatus
KR101912798B1 (ko) 2011-01-31 2018-10-30 한화에어로스페이스 주식회사 그래핀 합성장치 및 합성방법
US20120234240A1 (en) * 2011-03-17 2012-09-20 Nps Corporation Graphene synthesis chamber and method of synthesizing graphene by using the same
CN102220566A (zh) * 2011-06-09 2011-10-19 无锡第六元素高科技发展有限公司 一种化学气相沉积制备单层和多层石墨烯的方法
CN102344131B (zh) * 2011-07-06 2013-03-20 中国科学院上海微系统与信息技术研究所 一种在钼基衬底上制备石墨烯薄膜的方法
US10023468B2 (en) * 2012-01-06 2018-07-17 Ut-Battelle, Llc High quality large scale single and multilayer graphene production by chemical vapor deposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110092207A (ko) * 2010-02-08 2011-08-17 성균관대학교산학협력단 그래핀 롤투롤 코팅 장치 및 이를 이용한 그래핀 롤투롤 코팅 방법
KR20120106020A (ko) * 2011-03-17 2012-09-26 삼성테크윈 주식회사 그래핀 합성 장치
KR20120108748A (ko) * 2011-03-25 2012-10-05 삼성테크윈 주식회사 그래핀 제조 장치 및 제조 방법
KR20130098663A (ko) * 2012-02-28 2013-09-05 (주)앤피에스 박막 제조 장치 및 그 제조 방법
KR101190603B1 (ko) * 2012-03-20 2012-10-12 남원식 기판 처리 장치

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533264B1 (en) * 2015-12-02 2020-01-14 General Graphene Corp. Apparatus for producing graphene and other 2D materials
US11542632B1 (en) * 2015-12-02 2023-01-03 General Graphene Corp. Methods for producing 2D materials by moving forming layers disposed on carriers through a reaction chamber open to the atmosphere
CN110668432A (zh) * 2019-09-27 2020-01-10 北京碳垣新材料科技有限公司 以金属粉末液相为基底生长石墨烯的装置
WO2022246443A1 (en) * 2021-05-20 2022-11-24 Nabors Energy Transition Solutions Llc Graphene synthesis unit
GB2621077A (en) * 2021-05-20 2024-01-31 Nabors Energy Transition Solutions Llc Graphene synthesis unit
WO2023122664A1 (en) * 2021-12-22 2023-06-29 Nabors Energy Transition Solutions Llc Carbon-based nanomaterial composition and methods of forming the same from a gas mixture that includes acetylene and methane gas
WO2023122652A1 (en) * 2021-12-22 2023-06-29 Nabors Energy Transition Solutions Llc Carbon-based nanomaterial composition and methods of forming the same from a gas mixture that includes hydrogen gas and oxygen gas
WO2023122658A1 (en) * 2021-12-22 2023-06-29 Nabors Energy Transition Solutions Llc Carbon-based nanomaterial composition and methods of forming the same from a gas mixture that includes acetylene gas
WO2023122660A1 (en) * 2021-12-22 2023-06-29 Nabors Energy Transition Solutions Llc Carbon-based nanomaterial composition and method of forming the same from a gas mixture that includes acetylene gas and methane gas
WO2024123782A1 (en) * 2022-12-06 2024-06-13 Nabors Energy Transition Solutions Llc Nano-drug delivery component including a carbon-based nanomaterial composition, method of delivering a nano-drug delivery component including a carbon-based nanomaterial composition, and methods of forming the same

Also Published As

Publication number Publication date
CN104797525A (zh) 2015-07-22
US20150307358A1 (en) 2015-10-29
CN104797525B (zh) 2018-02-02
KR102025365B1 (ko) 2019-09-25
KR20140064132A (ko) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2014077507A1 (ko) 그래핀 합성장치
US9334167B2 (en) Nanostructure production methods and apparatus
US7988941B2 (en) Graphene sheet and method of preparing the same
KR101828528B1 (ko) 그래핀의 제조 장치 및 제조 방법
WO2012008789A9 (ko) 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트
WO2011087301A2 (ko) 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도
US20100196600A1 (en) Apparatus and method for producing aligned carbon-nanotube aggregates
WO2011001969A1 (ja) カーボンナノチューブ配向集合体の製造装置
US8617650B2 (en) Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon
KR20110092207A (ko) 그래핀 롤투롤 코팅 장치 및 이를 이용한 그래핀 롤투롤 코팅 방법
TW201201305A (en) Apparatus for processing substrate
TW200535274A (en) Growth of carbon nanotubes at low temperature
JPWO2005081298A1 (ja) 気相成長装置
CN104108706A (zh) 一种大面积优质氮掺杂石墨烯及其制备方法与应用
WO2013149572A1 (zh) 规模化连续制备二维纳米薄膜的装备
WO2014115942A1 (ko) 그래핀 합성 장치 및 이를 이용한 그래핀 합성 방법
US10260147B2 (en) Device for depositing nanotubes
WO2012118200A1 (ja) 金属薄膜の製膜方法、金属薄膜、および金属薄膜の製膜装置
WO2014137057A1 (ko) 그래핀의 결정립 경계 탐지 방법 및 이러한 방법을 사용하는 장치
KR101458045B1 (ko) 대면적 고품질의 그래핀 성장을 위한 cvd 보조 장치
WO2012177099A2 (en) Apparatus and method for deposition
KR20220090604A (ko) 배치 타입 원자층 증착 장치
KR100829926B1 (ko) 탄소 나노 튜브 합성용 기판 및 탄소 나노 튜브 합성시스템
WO2012177064A2 (en) Deposition apparatus
WO2016028012A1 (ko) 박막 형성을 위한 전구체 공급 장치 및 이를 포함하는 박막 형성 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14443905

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13856017

Country of ref document: EP

Kind code of ref document: A1