WO2014076383A1 - Methode de traitement des boues minerales par floculation en ligne puis hors sol - Google Patents

Methode de traitement des boues minerales par floculation en ligne puis hors sol Download PDF

Info

Publication number
WO2014076383A1
WO2014076383A1 PCT/FR2013/052461 FR2013052461W WO2014076383A1 WO 2014076383 A1 WO2014076383 A1 WO 2014076383A1 FR 2013052461 W FR2013052461 W FR 2013052461W WO 2014076383 A1 WO2014076383 A1 WO 2014076383A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
pipe
excavation
flocculation
flocculating agent
Prior art date
Application number
PCT/FR2013/052461
Other languages
English (en)
Inventor
René Pich
Original Assignee
S.P.C.M. Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.P.C.M. Sa filed Critical S.P.C.M. Sa
Priority to CN201380051358.0A priority Critical patent/CN104768881B/zh
Priority to AU2013346656A priority patent/AU2013346656B2/en
Priority to US14/430,960 priority patent/US9809482B2/en
Priority to CA2886565A priority patent/CA2886565C/fr
Publication of WO2014076383A1 publication Critical patent/WO2014076383A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G5/00Storing fluids in natural or artificial cavities or chambers in the earth
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/14Conveying liquids or viscous products by pumping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • E21B21/068Arrangements for treating drilling fluids outside the borehole using chemical treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/088Pipe-line systems for liquids or viscous products for solids or suspensions of solids in liquids, e.g. slurries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/16Arrangements for supervising or controlling working operations for eliminating particles in suspension

Definitions

  • the invention relates to a method of online treatment and above ground sludge.
  • Sludge refers to all types of sludge, such as urban sludge, drilling muds, industrial sludge, and all mine effluents, waste from mining operations such as coal mines. , metals, or heavy oil (oil sand). These suspensions generally include clays, sediments, sand, metal oxides, etc., mixed with water. The concentration of suspended materials is such that the mixture is viscous.
  • This method is all the more advantageous as the first two do not allow natural drying and give a mud of low consistency. Their thermal drying is too expensive to use.
  • US 3,908,387 discloses a method for consolidating lands for subsequent constructions. To do this, a stabilizing agent is mixed with soil extracted from soil. The mixture thus formed is reinjected into the soil and then removed again to be remixed with the stabilizing agent. In this process, the earth systematically contains stabilizing agent. In addition, no reference is made to a flocculation process.
  • Document FR 2 922 123 A1 describes a sludge treatment process in which sludge previously treated with polymer is poured into a crater. Sludge is discharged at the end of the pipe above the excavation.
  • the flocculated sludge is pumped and discharged as it is above the ground or in the form of successive layers, in all cases under conditions such that the end of the pipe from which the sludge is discharged is located above the level the highest of the mud.
  • the objective is therefore to obtain, after the flocculation, flocs of homogeneous size whose angle of repose is as high as possible. This allows to spread the treated sludge on a larger slope and thus to discharge a maximum volume of sludge on a minimum surface.
  • the sludge Given the speed of the flocculated suspension at the outlet of the pipe, the sludge can not be deposited immediately. On the contrary, it is driven by the flow of liquid and is deposited only when the weight of the flocs (vertical component of the force applied to the floc) is greater than the flow force (horizontal component of the force applied to the floc ). More specifically it is necessary that the treated sludge does not arise in rigid or semi-rigid form at the outlet of the piping
  • the distance to which the sludge is deposited with respect to the outlet of the pipe can be significant, up to several tens, or even hundreds of meters.
  • the final criterion is to obtain, after this deposit, a clear water, which means that the whole mass is flocculated which will lead to a faster drying.
  • the limit is then the length of the treatment rack which gives the height of the deposit as a function of the angle formed.
  • the pumping speeds are high, of the order of 1 to 3 meters per second, on pipes usually 200 to 600 mm in diameter.
  • the subject of the invention is thus an improved process for treating sludge by flocculation according to which:
  • At least one flocculating agent is then injected into the pipe conveying the sludge to be treated
  • the slurry is then mixed with said flocculating agent
  • the process according to the invention thus makes it possible, in an on-line treatment process, to better separate the mixing and flocculation steps.
  • the mixing step is optimum and that of the flocculation is limited.
  • the mixture of the flocculating agent and the sludge is generally done naturally by the turbulence generated in the pipe.
  • the flocculation is carried out in the excavation, when it is filled, thanks to natural movements or eddies related to the injection of the mud.
  • the shears are then weak, favorable to good flocculation. This is made possible by injecting the mixture at a lower level than the high level of the excavation. It is found that a bubbling crater is formed in which flocculation is very effective.
  • the excavation can be natural or artificial.
  • the excavation is formed directly in a soil on which no sludge has yet been spread, when starting a new installation.
  • the injection point of the polymer in the pipeline carrying the sludge to be treated is preferably carried out near the outlet of the pipe carrying the sludge to the unloading zone.
  • the injection point must be chosen so that the mixing is done in line and the flocculation, partly, after the exit of the pipe. This is usually obtained by successive tests, the distance between the injection point and the outlet of the pipe ranging from 10 to 200 times the internal diameter of the pipe.
  • the flocculating agent is injected near the free end of the pipe, preferably at a distance from the free end of between 10 and 200 times the internal diameter of the pipe.
  • the submerged pipe is positioned vertically.
  • the pipe in which the mixture is transported and from which the mixture is discharged is advantageously positioned vertically at least in its terminal part. Under these conditions, as the excavation fills, the vertical pipe is progressively immersed.
  • the flocculation crater is formed using a mechanical shovel at the outlet of the unloading pipe.
  • the crater is naturally formed outside the presence of any excavation, as the mixture is discharged onto the soil whether it is covered or not with previously dried mud.
  • injecting the mud-flocculant mixture formed in the pipe near the outlet at an altitude lower than that of the mud once spread, ie under the mud layer allows by the speed of the liquid at the time of unloading, to form a crater where the speeds are reduced very rapidly allowing optimized flocculation in a low turbulent regime, preferably laminar (low Reynolds number).
  • a low turbulent regime preferably laminar (low Reynolds number).
  • the start of the process can be done either by digging a hole in the excavator at the arrival of the pipe, or until the layer is sufficient to form a crater.
  • the point of introduction of the polymer is critical and the arrival pipe will have several. The selection will be made by successive trials.
  • flocculants can be used: natural flocculants such as polysaccharides or synthetic flocculants.
  • Flocculants are preferably based on acrylamide.
  • the copolymers prepared from the following monomers are particularly interesting: acrylic acid, ATBS (2-acrylamido-2-methylpropanesulfonic acid), diallyl dimethyl ammonium chloride (DADMAC) and dialkylaminoethyl acrylate ( ADAME) and dialkylaminoethyl methacrylate (MADAME) as well as their acidified or quaternized salts, N-vinyl pyrrolidone.
  • Polyoxides of ethylene, polyethylene amine can also be used in these polymers.
  • Figure 1 is a schematic representation of a method according to the prior art.
  • FIGS 2, 3 and 5 are schematic representations of variants of the method according to the invention.
  • Figure 4 is a schematic representation of an off-line flocculation process.
  • Example 3 The polymer of Example 3 described in document US 2010/0105976 is used at a concentration of 3 g / liter. Laboratory tests show that 420 grams of flocculant per ton of dry matter are needed to obtain very good flocculation without thickening in the form of a viscous mass (rigid or semi-rigid).
  • the flocculant (4) is injected at 30 meters from the exit point and the volume is adjusted visually so as to obtain the outlet of the pipe, a perfectly clear water and large flocs well formed.
  • the optimum amount of flocculant (or consumption) is 830 grams per ton.
  • overflocculation ie an addition of a greater amount of flocculating agent, renders the sludge consistent, as a gel, and that it decreases the amount of water extracted from the sludge. .
  • the amount of flocculant is divided into 2 equal parts injected at 60 meters and 20 meters from the outlet.
  • the optimum amount of flocculant is 760 grams per ton.
  • Example 3 is reproduced with the difference that the flocculant is distributed at 50% 10 meters from the outlet point and 50% at the bottom of the crater by a pipe attached to the main pipe.
  • the optimum amount of flocculant is reduced to 490 grams per ton.
  • the flocculent is entirely sent through an independent pipe at the bottom of the crater.
  • the observed consumption is 650 grams / ton. It appears that some of the flocculant has not been well mixed and is an excess although flocs are well formed at this dosage. However, this process remains less effective than an online mixture followed by crater flocculation. In addition there is a tendency to quickly plug the hole by solid deposition.
  • the mixed sludge is injected directly onto the ground and it is found that rapidly a crater more or less deep depending on the type of sludge is formed and the consumption monitored visually decreases with time and the depth of the crater. Consumption, starting from 810 grams / ton, decreases when the crater is about one meter high at 550 grams per ton and decreases slowly again when successive layers are put in place.
  • the quantity and nature of the flocculant must be adapted according to each type of sludge. The amount used should not lead to thickening and stiffening of the mud in the crater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Procédé amélioré de traitement de boue par floculation selon lequel: -on transporte la boue à traiter dans une canalisation, -on injecte ensuite au moins un agent floculant dans la canalisation transportant la boue à traiter, -on mélange alors la boue avec ledit agent floculant, -enfin, on transporte puis on décharge le mélange obtenu dans une excavation naturelle ou artificielle à une distance du fond de ladite excavation inférieure à celle de sa profondeur.

Description

METHODE DE TRAITEMENT DES BOUES MINERALES PAR FLOCULATION EN LIGNE PUIS HORS SOL
L'invention concerne un procédé de traitement en ligne puis hors sol de boues.
Le traitement des boues minérales s 'accumulant au-dessus du sol est devenu une nécessité à la fois au point de vue technique et réglementaire.
Par « boues », on désigne notamment tous les types de boues comme par exemple les boues urbaines, les boues de forage, les boues industrielles, ainsi que tous les effluents miniers, déchets de l'exploitation des mines comme par exemple les mines de charbons, de métaux, ou encore d'huile lourde (oil sand). Ces suspensions comprennent généralement des argiles, des sédiments, du sable, des oxydes métalliques etc, mélangés avec de l'eau. La concentration des matières en suspensions est telle que le mélange est visqueux.
Traditionnellement, ces boues étaient déversées dans des lagunes ou des barrages sous forme semi liquide et sur des épaisseurs allant à plusieurs dizaines de mètres. L'eau piégée dans ces boues ne pouvait s'évaporer et ces boues restaient semi liquides à vie.
Leur traitement pour les rendre solide peut être effectué de plusieurs manières :
par fîltration au moyen de filtres à plateaux ou de filtres à bandes après floculation, par centrifugation après floculation.
Eu égard aux gigantesques volumes mis en jeu, s'est développé depuis les années 70, la méthode de floculation hors sol en couches relativement minces et successives permettant à la fois une séparation immédiate du liquide par floculation puis une évaporation conduisant à obtenir un solide facilement transportable. Dans la plupart des cas, ces solides sont transportés vers les excavations des mines pour remblaiement.
Cette méthode est d'autant plus avantageuse que les deux premières ne permettent pas le séchage naturel et donnent une boue à faible consistance. Leur séchage thermique est trop onéreux pour être utilisé.
Ces méthodes sont aujourd'hui appliquées soit aux boues provenant d'épaississeurs, soit de boues provenant de lagunes et prélevées par l'intermédiaire de dragues.
Cette méthode est maintenant ancienne, le premier brevet US 3,312,070, ayant été déposé le 9 mars 1960. On peut également citer comme autres documents les brevets US 4,347,140 de 1981, CA 1,273,888 de 1986, WO 96/05146 de 1994, CA 2,407,869 de 2000 et CA 1,515,581 en 2004.
Le document US 3 908 387 décrit un procédé pour consolider des terrains en vue de constructions ultérieures. Pour ce faire, un agent stabilisant est mélangé avec de la terre extraite de sol. Le mélange ainsi formé est réinjecté dans le sol puis retiré à nouveau pour être remélangé avec de l'agent stabilisant. Dans ce procédé, la terre contient systématiquement de l'agent stabilisant. En outre, aucune référence n'est faite à un procédé de floculation.
Le document FR 2 922 123 Al décrit un procédé de traitement de boues selon lequel on vient déverser dans un cratère de la boue préalablement traitée avec du polymère. La boue est déchargée à l'extrémité du tuyau au-dessus de l'excavation.
Toutes les méthodes décrites dans ces documents utilisent la floculation en ligne dans le tuyau de transport, en une ou plusieurs injections de fioculant, à une certaine distance du point de sortie.
La boue floculée est pompée et déchargée telle quelle au-dessus du sol ou sous la forme de couches successives, dans tous les cas dans des conditions telles que l'extrémité de la canalisation depuis laquelle la boue est déversée est située au-dessus du niveau le plus haut de la boue.
Il est important de ne pas obtenir un épaississement par structuration de la boue donnant une consistance rigide ou semi rigide de la boue, tel un slurry gélifié qui ne se déshydraterait pas ou mal. La formation d'une boue dans laquelle un réseau unique entre les particules est formé grâce aux floculants ne donne pas de bons résultats en termes de séchage. Or la finalité du traitement des boues est bien leur séchage le plus complet possible permettant de les extraire par bulldozer ou de re-forester la zone.
Une floculation très grenue avec des flocs bien séparés est nécessaire pour un meilleur séchage. Autrement dit, le meilleur compromis entre la déshydratation et le séchage de la boue est obtenu lorsque la boue traitée se présente sous la forme de flocs multiples et de larges dimensions.
Les boues mises en couches de 10 à 50 cm environ sèchent en quelques jours ou quelques dizaines de jours donnant un solide plus ou moins consistant selon le type de boue. Le critère de floculation est visuel. Dans tous les cas, on ajoute une quantité de floculant telle que l'eau qui ruisselle soit totalement claire ou la plus claire possible lorsqu'elle contient des matières en solution. Plus la floculation sera grenue, c'est-à-dire sous forme de grains, et non épaissie ou gélifiée, plus le séchage par évaporation sera efficace.
L'objectif est donc d'obtenir à l'issue de la floculation des flocs de taille homogène dont l'angle de repos soit le plus élevé possible. Cela permet d'étaler la boue traitée sur une pente plus importante et donc de décharger un volume maximum de boue sur une surface minimum.
Eu égard à la vitesse de la suspension floculée à la sortie du tuyau, la boue ne peut pas se déposer immédiatement. Au contraire, elle est entraînée par le flux de liquide et ne se dépose que lorsque le poids des flocs (composante verticale de la force appliquée sur le floc) est supérieur à la force d'écoulement (composante horizontale de la force appliquée sur le floc). Plus précisément il est nécessaire que la boue traitée ne se pose pas sous forme rigide ou semi-rigide à la sortie de la tuyauterie
Suivant la structure des boues et la pente en cours de formation, la distance à laquelle la boue se dépose par rapport à la sortie de la canalisation peut être importante, jusqu'à plusieurs dizaines, voire centaines de mètres. Le critère final est l'obtention après ce dépôt, d'une eau claire, ce qui signifie que toute la masse est bien floculée ce qui entraînera un séchage plus rapide. La limite est alors la longueur du casier de traitement qui donne la hauteur du dépôt en fonction de l'angle formé.
La floculation dans le tuyau d'arrivée se heurte au fait que la floculation n'est pas une opération unitaire. Pour une bonne floculation, il faut :
d'abord un mélange rapide entre la boue et le floculant, qui peut se faire dans la canalisation dans un régime turbulent où le nombre de Reynolds est très élevé puis la floculation elle-même qui requiert des cisaillements faibles où le nombre de Reynolds beaucoup plus faibles (régime laminaire) que ceux donnés par la vitesse du liquide dans la tuyauterie.
Or, les vitesses de pompage sont importantes, de l'ordre de 1 à 3 mètres par seconde, sur des canalisations habituellement de 200 à 600 mm de diamètre.
Alors que le mélange est satisfaisant, il faut, pour obtenir une floculation totale un excès de floculant qui peut aller de 20 à 200 % de la quantité constatée au laboratoire. Cet excès permet, dans le milieu turbulent, de re-floculer les flocs cassés par cisaillement. La floculation en ligne nécessite donc une quantité de floculant supplémentaire pour floculer les microflocs qui se sont formés par le cisaillement dû à la vitesse du liquide. Un inconvénient est que l'excès de polymère reste en partie libre conduisant à une eau de floculation visqueuse qui diminue la vitesse de séchage.
Il existe donc un besoin d'améliorer les procédés de traitement des boues par floculation.
La floculation en ligne étant impossible à obtenir avec une consommation très faible de floculant, il est apparu qu'il fallait séparer le phénomène de mélange du phénomène de floculation, de la manière la plus optimale possible.
L'invention a ainsi pour objet un procédé amélioré de traitement de boue par floculation selon lequel :
on transporte la boue à traiter dans une canalisation,
on injecte ensuite au moins un agent floculant dans la canalisation transportant la boue à traiter,
on mélange alors la boue avec ledit agent floculant,
enfin, on transporte puis on décharge le mélange obtenu dans une excavation naturelle ou artificielle à une distance du fond de ladite excavation inférieure à celle de sa profondeur.
Le procédé selon l'invention permet ainsi dans un procédé de traitement en ligne, de mieux séparer les étapes de mélange et de floculation. Lors du transport, l'étape de mélange est optimum et celle de la floculation est limitée. Le mélange de l'agent floculant et de la boue se fait généralement naturellement grâce aux turbulences générées dans la canalisation.
La floculation est effectuée dans l'excavation, lorsque celle-ci est remplie, grâce à des mouvements naturels ou remous liés à l'injection de la boue. Les cisaillements sont alors faibles, favorables à une bonne floculation. Cela est rendu possible par l'injection du mélange à un niveau inférieur au niveau haut de l'excavation. On constate qu'un cratère bouillonnant se forme dans lequel la floculation est très efficace.
Comme déjà dit, l'excavation peut être naturelle ou artificielle. L'excavation est formée directement dans un sol sur lequel aucune boue n'a encore été étalée, lorsqu'il s'agit de mettre en route une nouvelle installation.
Lorsqu'il s'agit d'adapter une installation existante, l'excavation est effectuée dans tout ou partie de l'épaisseur de la couche de boue lorsque celle-ci est déjà présente et avantageusement au-delà, dans le sol naturel. Selon une première caractéristique le point d'injection du polymère dans la canalisation transportant la boue à traiter s'effectue préférentiellement près de la sortie de la tuyauterie transportant la boue à la zone de déchargement. On doit choisir le point d'injection de manière à ce que le mélange se fasse en ligne et la floculation, pour partie, après la sortie du tuyau. Ceci est habituellement obtenu par essais successifs, la distance entre le point d'injection et la sortie de la canalisation allant de 10 à 200 fois le diamètre interne de la canalisation.
En d'autres termes et selon l'invention, on injecte l'agent floculant à proximité de l'extrémité libre de la canalisation, préférentiellement à une distance depuis l'extrémité libre comprise entre 10 à 200 fois le diamètre interne de la canalisation.
Selon une autre caractéristique, le tuyau immergé est positionné verticalement.
Plus précisément, la canalisation dans laquelle on transporte et depuis laquelle on décharge le mélange est avantageusement positionnée verticalement au moins dans sa partie terminale. Dans ces conditions, au fur et à mesure que l'excavation se remplit, on immerge progressivement la canalisation verticale.
Lorsqu'il s'agit d'une excavation artificielle, on forme le cratère de floculation à l'aide d'une pelle mécanique à la sortie du tuyau de déchargement.
Dans certains cas, on forme le cratère naturellement en dehors de la présence de toute excavation, au fur et à mesure que l'on décharge le mélange sur le sol qu'il soit recouvert ou non de boue ayant préalablement séché.
Dans la pratique toutes les configurations du procédé permettent de diminuer de manière significative la consommation de floculant.
En outre, il semble que le procédé dans lequel le floculant est en partie ajouté lors du transport dans la canalisation et parallèlement directement dans le cratère de floculation, soit celui pour lequel les consommations soient les plus faibles. En particulier, on obtient de bons résultats lorsqu'une majorité du floculant est ajouté dans la canalisation lors du transport et qu'un complément l'est dans le cratère de floculation.
De manière générale, le fait d'injecter le mélange boue-floculant, formé dans le tuyau, près de la sortie, à une altitude inférieure à celle de la boue une fois étalée, c'est-à-dire sous la couche de boue, permet de par la vitesse du liquide au moment du déchargement, de former un cratère où les vitesses se réduisent très rapidement permettant une floculation optimisée dans un régime peu turbulent, préférentiellement laminaire (nombre de Reynolds faible). Lors de cette injection, on constate que le liquide bouillonne en surface laissant échapper sur le bord du cratère des flocs bien formés et se déposant rapidement avec des quantités de floculant bien inférieures à la floculation en ligne.
Le démarrage du procédé peut se faire soit en creusant un trou à la pelle mécanique à l'arrivée du tuyau, soit en attendant que la couche soit suffisante pour former un cratère.
Evidemment, le point d'introduction du polymère est critique et le tuyau d'arrivée en possédera plusieurs. La sélection se fera par essais successifs.
Il est possible d'injecter un ou plusieurs floculants lors du transport.
Toutes les natures chimiques de floculants peuvent être utilisées : les floculants naturels comme les polysaccharides ou les floculants synthétiques.
Les floculants sont préférentiellement à base d'acrylamide. Parmi ces polymères, les copolymères préparés à partir des monomères suivants sont particulièrement intéressants : l'acide acrylique, l'ATBS (2-acrylamido-2-methylpropanesulfonic acide), le chlorure de diallyl diméthyl ammonium (DADMAC) l'acrylate de dialkylaminoéthyle (ADAME) et le méthacrylate de dialkylaminoéthyle (MADAME) ainsi que leurs sels acidifiés ou quaternisés, la N-vinyl pyrrolidone. Les polyoxydes d'éthylène, la polyéthylène aminé peuvent également être utilisés dans ces polymères.
L'invention et les avantages qui en découlent ressortiront mieux des exemples de réalisation suivants à l'appui des figures annexées.
La figure 1 est une représentation schématique d'un procédé selon l'art antérieur.
Les figures 2, 3 et 5 sont des représentations schématiques de variantes du procédé selon l'invention.
La figure 4 est une représentation schématique d'un procédé de floculation hors ligne. Exemples
Exemple comparatif 1 (fig 1)
On souhaite traiter une boue de lagune (MFT ou Mature Fine Tailings) issue d'un procédé d'extraction du bitume des sables bitumeux. Pour cela, on pompe au moyen d'une drague suceuse la boue que l'on transporte jusqu'à une zone de déchargement. La boue contient 33 à 35% de matière solide en suspension. Le tuyau de déchargement (1) est positionné sur une levée de terre (2) au-dessus du niveau (3) que la boue atteint une fois traitée.
On utilise le polymère de l'exemple 3 décrit dans le document US 2010/0105976 à une concentration de 3gr/litre. Les essais de laboratoire montrent que l'on a besoin de 420 grammes de floculant par tonne de matière sèche pour obtenir une très bonne floculation sans épaississement sous forme de masse visqueuse (rigide ou semi-rigide).
Industriellement, sur le tuyau (1) de diamètre 300mm dans lequel la boue circule à une vitesse de 1.4 m/seconde, on injecte le floculant (4) à 30 mètres du point de sortie et on règle le volume visuellement de manière à obtenir à la sortie du tuyau, une eau parfaitement claire et de gros flocs bien formés.
La quantité optimum de floculant (ou consommation) est de 830 grammes par tonne.
On constate qu'une sur- floculation, c'est-à-dire un ajout d'une quantité supérieure d'agent floculant, rend la boue consistante, comme un gel, et que cela diminue la quantité d'eau extraite de la boue.
Exemple comparatif 2 :
Dans ce cas, la quantité de floculant est divisée en 2 parties égales injectées à 60 mètres et 20 mètres de la sortie. Avec les mêmes critères la quantité optimum de floculant est de 760 grammes par tonne.
Exemple 3 (fig 2) :
Dans ce cas, on creuse à l'aide d'une pelle mécanique un trou (5) carré lm par lm de 1,5 mètre de profondeur. On injecte la boue mélangée à proximité du fond du trou à une distance du fond inférieure à celle de sa profondeur au moyen d'une tuyauterie (6) positionnée verticalement. Le floculant est injecté à 10 mètres du point de sortie.
On constate que la boue forme progressivement un cratère dans l'excavation où elle flocule à faible vitesse par phénomène de bouillonnement et se répand à la sortie du cratère avec une eau très claire et une quantité optimum de floculant de 540 grammes par tonne. Exemple 4 (fig 3) :
L'exemple 3 est reproduit à la différence près que le floculant est réparti à 50% à 10 mètres du point de sortie et 50% au fond du cratère par un tuyau fixé sur le tuyau principal. La quantité optimum de floculant est réduite à 490 gramme par tonne.
Lorsque 70%> du floculant est ajouté à 10 mètres du point de sortie et que 30%> l'est au fond du cratère, alors la quantité optimum de floculant est réduite à 460 gramme par tonne.
Exemple 5 (fig 4) :
Le floculant est entièrement envoyé par une canalisation indépendante au fond du cratère. La consommation constatée est 650 grammes/tonne. Il semble qu'une partie du floculant n'ait pas été bien mélangée et constitue un excès bien que les flocs soient bien formés à ce dosage. Cependant ce procédé reste moins efficace qu'un mélange en ligne suivi d'une floculation en cratère. De plus on observe une tendance à colmater rapidement le trou par dépôt de solide.
Exemple 6 (fig 5) :
Dans ce cas, on injecte la boue mélangée directement sur le sol et on constate que rapidement un cratère plus ou moins profond suivant le type de boue se forme et la consommation suivie visuellement diminue avec le temps et la profondeur du cratère. La consommation, au départ de 810 grammes/ tonne, diminue lorsque le cratère a environ un mètre de hauteur à 550 grammes par tonne et diminue encore lentement lorsque des couches successives sont mises en place.
On s'aperçoit aussi que, même si les couches mises en place ont séché, la remise en route du matériel casse la couche sèche et forme très rapidement un nouveau cratère donnant des résultats semblables. L'augmentation de ce cratère à 3-4 mètres de hauteur ne change pas en pratique, l'effet de floculation.
La quantité et nature du floculant doivent être adaptées en fonction de chaque type de boue. La quantité utilisée ne doit pas conduire à un épaississement et à une rigidifîcation de la boue dans le cratère.
L'homme de l'art pourra faire varier d'une manière technique les différents paramètres :
- Vitesse du liquide,
- Points d'introduction,
- Concentration du polymère,
- Profondeur du cratère,
- Hauteur de couche permettant un bon séchage...
pour optimiser le procédé.

Claims

REVENDICATIONS
1/ Procédé amélioré de traitement de boue par floculation selon lequel :
on transporte la boue à traiter dans une canalisation,
on injecte ensuite au moins un agent floculant dans la canalisation transportant la boue à traiter,
on mélange alors la boue avec ledit agent floculant,
enfin, on transporte puis on décharge le mélange obtenu dans une excavation naturelle ou artificielle à une distance du fond de ladite excavation inférieure à celle de sa profondeur.
21 Procédé selon la revendication 1 , caractérisé en ce qu'on forme l'excavation directement dans un sol sur lequel aucune boue n'a encore été étalée.
3/ Procédé selon la revendication 1 , caractérisé en ce qu'on forme l'excavation dans tout ou partie de l'épaisseur de la couche de boue lorsque celle-ci est déjà présente et avantageusement au-delà, dans le sol naturel.
4/ Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la canalisation dans laquelle on transporte et depuis laquelle on décharge le mélange est positionnée verticalement au moins dans sa partie terminale.
5/ Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on injecte l'agent floculant à proximité de l'extrémité libre de la canalisation, préférentiellement à une distance depuis l'extrémité libre comprise entre 10 à 200 fois le diamètre interne de la canalisation.
6/ Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on injecte en parallèle au moins un agent floculant directement dans l'excavation.
7/ Procédé selon la revendication 6, caractérisé en ce qu'on injecte la majorité de l'agent floculant directement dans l'excavation.
8/ Procédé selon l'une des revendications précédentes, caractérisé en ce que l'agent floculant est choisi dans le groupe comprenant l'acide acrylique, l'ATBS (2-acrylamido-2- methylpropanesulfonic acide), le chlorure de diallyl diméthyl ammonium (DADMAC) l'acrylate de dialkylaminoéthyle (ADAME) et le méthacrylate de dialkylaminoéthyle (MADAME) ainsi que leurs sels acidifiés ou quaternisés, la N-vinyl pyrrolidone, les polyoxydes d'éthylène, la polyéthylène aminé.
PCT/FR2013/052461 2012-11-16 2013-10-15 Methode de traitement des boues minerales par floculation en ligne puis hors sol WO2014076383A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380051358.0A CN104768881B (zh) 2012-11-16 2013-10-15 用于通过在线絮凝然后在地面上方处理矿质污泥的方法
AU2013346656A AU2013346656B2 (en) 2012-11-16 2013-10-15 Method for treating mineral sludge by flocculation in-line then above ground
US14/430,960 US9809482B2 (en) 2012-11-16 2013-10-15 Method for treating mineral sludge by flocculation in-line then above ground
CA2886565A CA2886565C (fr) 2012-11-16 2013-10-15 Methode de traitement des boues minerales par floculation en ligne puis hors sol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260931 2012-11-16
FR1260931A FR2998291B1 (fr) 2012-11-16 2012-11-16 Methode de traitement des boues minerales par floculation en ligne puis hors sol

Publications (1)

Publication Number Publication Date
WO2014076383A1 true WO2014076383A1 (fr) 2014-05-22

Family

ID=47754670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052461 WO2014076383A1 (fr) 2012-11-16 2013-10-15 Methode de traitement des boues minerales par floculation en ligne puis hors sol

Country Status (6)

Country Link
US (1) US9809482B2 (fr)
CN (1) CN104768881B (fr)
AU (1) AU2013346656B2 (fr)
CA (1) CA2886565C (fr)
FR (1) FR2998291B1 (fr)
WO (1) WO2014076383A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312070A (en) 1960-03-09 1967-04-04 Daiichi Kogyo Seiyaku Kabushik Method of making reclaimed ground with coagulative surface active agents
US3908387A (en) 1973-01-13 1975-09-30 Fudo Kensetsu Kabushiki Kaisha Apparatus for solidifying and improving fragile ground
US4347140A (en) 1981-01-13 1982-08-31 Alsthom-Atlantique Installation for and a method of spreading clayey mud and reclaiming land
CA1273888A (fr) 1986-10-01 1990-09-11 Amar J. Sethi Floculant pour rejets du bitume
WO1996005146A1 (fr) 1994-08-12 1996-02-22 Cytec Technology Corp. Procede de stabilisation des boues
CA2407869A1 (fr) 2000-05-31 2001-12-06 Ciba Specialty Chemicals Water Treatments Limited Traitement de matieres minerales
CA2515581A1 (fr) 2003-05-07 2004-07-22 Ciba Specialty Chemicals Water Treatments Limited Traitement de suspensions aqueuses
FR2922123A1 (fr) 2007-10-12 2009-04-17 S P C M Sa Sa Installation pour la floculation de boues chargees de matieres en suspension, procede mettant en oeuvre l'installation
US20100105976A1 (en) 2008-10-23 2010-04-29 Snf S.A.S. Method for treating mineral sludge above ground using polymers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399039A (en) * 1980-10-30 1983-08-16 Suncor, Inc. Treatment of tailings pond sludge
CA2248479A1 (fr) * 1997-09-29 1999-03-29 Calvin T. Tobison Combinaisons d'amidon et de polymdre cationique utiles comme coagulants pour l'industrie miniere

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312070A (en) 1960-03-09 1967-04-04 Daiichi Kogyo Seiyaku Kabushik Method of making reclaimed ground with coagulative surface active agents
US3908387A (en) 1973-01-13 1975-09-30 Fudo Kensetsu Kabushiki Kaisha Apparatus for solidifying and improving fragile ground
US4347140A (en) 1981-01-13 1982-08-31 Alsthom-Atlantique Installation for and a method of spreading clayey mud and reclaiming land
CA1273888A (fr) 1986-10-01 1990-09-11 Amar J. Sethi Floculant pour rejets du bitume
WO1996005146A1 (fr) 1994-08-12 1996-02-22 Cytec Technology Corp. Procede de stabilisation des boues
CA2407869A1 (fr) 2000-05-31 2001-12-06 Ciba Specialty Chemicals Water Treatments Limited Traitement de matieres minerales
CA2515581A1 (fr) 2003-05-07 2004-07-22 Ciba Specialty Chemicals Water Treatments Limited Traitement de suspensions aqueuses
FR2922123A1 (fr) 2007-10-12 2009-04-17 S P C M Sa Sa Installation pour la floculation de boues chargees de matieres en suspension, procede mettant en oeuvre l'installation
US20100105976A1 (en) 2008-10-23 2010-04-29 Snf S.A.S. Method for treating mineral sludge above ground using polymers

Also Published As

Publication number Publication date
CA2886565A1 (fr) 2014-05-22
AU2013346656B2 (en) 2017-10-12
FR2998291A1 (fr) 2014-05-23
US9809482B2 (en) 2017-11-07
CA2886565C (fr) 2021-07-13
CN104768881B (zh) 2019-08-09
FR2998291B1 (fr) 2014-12-05
US20150239764A1 (en) 2015-08-27
CN104768881A (zh) 2015-07-08
AU2013346656A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
CA2789678C (fr) Floculation de residus fins des sables bitumineux au moyen d'un melange dynamique
EP1358130B1 (fr) Procede d'epaississement des boues issues du traitement d'eau par floculation-decantation a floc leste
EP0069136B1 (fr) Installation d'epandage de boues argileuses pour la rehabilitation des sols
FR2932470A1 (fr) Procede de traitement de boues minerales et equipement pour la mise en oeuvre du procede
CA3007272A1 (fr) Procede de traitement d'effluent aqueux
FR2937635A1 (fr) Procede de traitement hors sol de boues minerales mettant en oeuvre des polymeres
EP0088697B1 (fr) Procédé pour épandre une pulpe en vue de son séchage naturel
EP3297742B1 (fr) Système de traitement d'une boue de forage et procede correspondant
US20140116955A1 (en) Disposal of oil sand tailings centrifuge cake
EP3256426B1 (fr) Procédé pour le traitement de suspensions de particules solides dans l'eau à l'aide de polymères amphotères
FR2695383A1 (fr) Composition et procédé pour augmenter la résistance au cisaillement des déchets de traitement utilisés pour la construction de remblais et la consolidation souterraine.
WO2014068211A2 (fr) Dispositif pour l'injection puis le melange de polymere dans une canalisation transportant une suspension de particules solides et procede mettant en oeuvre le dispositif
EP3585836B1 (fr) Suspension polyphasique de polymère et son utilisation
KR101234432B1 (ko) 오니준설토 처리 방법
EP2632860A1 (fr) Procede et dispositif de clarification des eaux
KR101234470B1 (ko) 오니준설토 처리 시스템
WO2014076383A1 (fr) Methode de traitement des boues minerales par floculation en ligne puis hors sol
EP1157727A1 (fr) Procédés de récupération de minerai
FR2534241A1 (fr) Procede de separation de solides contenus dans une dispersion aqueuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13785567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14430960

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2886565

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013346656

Country of ref document: AU

Date of ref document: 20131015

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13785567

Country of ref document: EP

Kind code of ref document: A1