WO2014075821A1 - Système et procédure d'assemblage et de commande d'inclinaison de collecteurs solaires - Google Patents

Système et procédure d'assemblage et de commande d'inclinaison de collecteurs solaires Download PDF

Info

Publication number
WO2014075821A1
WO2014075821A1 PCT/EP2013/063325 EP2013063325W WO2014075821A1 WO 2014075821 A1 WO2014075821 A1 WO 2014075821A1 EP 2013063325 W EP2013063325 W EP 2013063325W WO 2014075821 A1 WO2014075821 A1 WO 2014075821A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
collector
supports
mirrors
subsystem
Prior art date
Application number
PCT/EP2013/063325
Other languages
English (en)
Inventor
José Manuel RODRÍGUEZ DE LA CRUZ
Luis Ángeles SEVILLANO LEAL
Marco Antonio Carrascosa Pérez
José Miguel FERNÁNDEZ RODRÍGUEZ
Ignacio ROCES RODILLA
Original Assignee
Termopower, S.L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Termopower, S.L filed Critical Termopower, S.L
Publication of WO2014075821A1 publication Critical patent/WO2014075821A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/874Reflectors formed by assemblies of adjacent similar reflective facets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/014Methods for installing support elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention comprises a system and work process that allows all necessary assembly operations without having to move or rotate the whole module, since that the torque tube or torque box is positioned until mirrors mounting and optical and geometric control of all components are finished.
  • induced arrow system comprises a plurality of hydraulic units configured for apply force on the collector torsion box or torque tube, simulating the effect of the weight of the components of the concentrating solar collector.
  • the process of the invention comprises one or more of the following steps:
  • the system and the abovementioned process object of this invention allow for a high precision assembly, which has the following characteristics:
  • the invention provides a set of processes and mechanisms that can set the primary support element of the structure, apply an induced arrow, block the induced arrow and assemble the different support and reflective elements continuously, using a fixed spatial reference system.
  • FIG. 1 shows a prior art assembly process for sollar collectors, based on 3 jigs, including the following stages:
  • said first embodiment of the assembly system comprises the following features:
  • the system consists of a gantry in a plane YZ, where Z is the vertical axis, the Y axis transversal to the parabola axis and X perpendicular to the other two (axial direction of the parabolic trough) on which the main operating system 2 is supported.
  • the displacement between the gantry and the torque body is relative; it is possible to either move the gantry, either the torque body to perform assembly operations in each support arm or absorber tube assembly specific position.
  • moving the gantry system whose configuration is shown in Figures 4a-4d herein, considering that another embodiment may be holding the gantry fixed and the torque body or module to be assembled with axial movement in the gantry.
  • the torque tube or module to be assembled and the gantry as the movable element.
  • the support system 1 sustains the main operation system 2, so that it can move longitudinally by controlled engines, recognizing its position at all times.
  • the longitudinal beams or lanes of the support system 1 are preferably anchored in a floating manner on the pillars of said support system 1 , so that it can expand longitudinally freely without generating any stress causing unwanted displacements.
  • FIGS 5a-5b show additional features of the main operation system 2:
  • the main operation system 2 comprises a template 2 ' which can move longitudinally on guides installed for this purpose in the supporting system longitudinal beams.
  • the main operation system will support a "master” car restricted in five of the six freedom degrees and a support "slave” car with two freedom degrees, so that expansion of the template is allowed, without generating any tension on the supporting system, and therefore, any control points geometrical variation in components mounting is avoided.
  • the arm assembly operation presents these steps: at first move the hook 4' to load position, then charge the arm and finally it will be placed in its final mounting position versus the references 3' by movable claws included in these references, that force the arm to take the determined ZY position.
  • the system is adaptable to any type of support arm by modifying the arm attachment to the subsystem;
  • This subsystem 4 acquires the spatial position of mirrors and other relevant components, such as absorber tube supports (in case of parabolic trough, or CCP, technology). From the recorded data, it is necessary to calculate parameters that determine the assembly quality, such as Z and Y position of the curved mirrors and Z and Y position of the 3 absorber tube supports.
  • Control position gauges T are used for perform this measurement, preferably with an uncertainty smaller than 0.05 mm. The number of control position gauges can be, preferably, between
  • All operation of the sequence shown in said figure 9 is performed, preferably, without moving the module reference axis and in working position, with the parabola aperture toward the zenith (facing up). All operations are carried out, preferably, continuously without moving the SCE until it is completely finished and balanced, thus there are not interprocess waiting points.
  • the load to be applied to induce the structure induced arrow is entered in the automated control system according to the type of collector and its size. This is always the same regardless of the module to be reinforced or regular.
  • M i rror su pport elements assem bly This operation is performed simultaneously on both sides of the SCE parabola.
  • the arm assembly subsystem When detecting a connection element for fixing the support arms to the main torque body, the arm assembly subsystem is positioned over this, longitudinally aligned, and blocks its position to perform the operation of catching and positioning of the arms. Then deploy the support hook 4' and open the two handles 3' automatically in an accessible position with space enough for the arm placement. These actions occur simultaneously on both assembly sides, on the right and left sides of the torque body.
  • This process sequence is executed for each of the positions of supporting elements of SCE m irrors, it is to say about 1 4 times for a geometry RP3 and about 28 times for a geometry RP5.
  • the system When the system detects that a support has been manually placed in the locator, it automatically moves along the rail 6' until is in the theoretical position of the parabola centered location on the Y axis, to be finally fixed to the main torque body using mechanical fasteners. Before taking the centered position of the parabola axis, the system ensures the focal position of the Z axis by contacting the support with fixed stops. This process sequence is executed for each of the positions of the absorber tube (SCE) supports.
  • SCE absorber tube
  • Geometric optic chain measurement and SCE intercept factor calculation To perform this operation, the main operation system 2 will pass over the entire mirrored surface, starting at the opposite end of the structure from where the arms and HCE supports assembly operation started and ending at the starting position of the assembly. In another possible application the system can make two measurements a non-stop measure of the reflecting surface and another in the way back to the mounting position stopping at the 3 stops HCE supports.
  • control position gauges 7' will measure the spatial position of the HCE supports.
  • control position gauges strokes are defined, representing the maximum tolerances allowed for each of them. This allows easily detecting failures or improper assembly of any of the involved components, such as mirrors or arms.
  • control position gauges forming part of subsystem 4 are preferably adjustable in position, in order to ensure that control position gauges 4 can be regulated to be always in an accurate measuring position.
  • the transversal template 2 ' can be a lattice structure, as an alternative.
  • Suppl ies are manufactured accord ing to technical specifications with predetermined tolerances. The system is configured to allow mounting of components within these tolerances.
  • Snapshot detection and correction of deviations Working online and realtime measurement, allows configuring the system to generate an alarm if any of the measurement parameters exceeds a certa in threshold . It wil l immediately detect possible failures in assembly. Furthermore, the system is configured to detect precise mounting locations of the various components. In case a component is damaged, improperly manufactured or just badly positioned, the system will not allow their assembly, thus avoiding mounting errors. Online Auto-Calibration: The new interception factor measurement system allows rapid calibration of it because of having an integrated calibration standard, which ensures the accuracy of measurements, increasing correction in the measures and offsetting any effect of changes in temperature without having to use costly and slow external checking systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Telescopes (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

L'invention se rapporte à un système d'assemblage pour un collecteur solaire, en tant que collecteur cylindro-parabolique ou héliostat, doté d'un portique d'assemblage comprenant au moins : un système d'actionnement principal (2) comprenant un châssis transversal (2'), un système de support (1) pour ledit système d'actionnement principal, un sous-système (4) pour mesure de position de miroir et géométrie de collecteur inclus dans le système d'actionnement principal ; un système de support (6) pour le tube de torsion ou caisson de torsion du collecteur, et un appareil de traitement de données pour commander le déplacement du portique d'assemblage et pour le calcul de paramètres optiques du collecteur solaire.
PCT/EP2013/063325 2012-11-13 2013-06-25 Système et procédure d'assemblage et de commande d'inclinaison de collecteurs solaires WO2014075821A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201231754 2012-11-13
ESP201231754 2012-11-13

Publications (1)

Publication Number Publication Date
WO2014075821A1 true WO2014075821A1 (fr) 2014-05-22

Family

ID=48790364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/063325 WO2014075821A1 (fr) 2012-11-13 2013-06-25 Système et procédure d'assemblage et de commande d'inclinaison de collecteurs solaires

Country Status (1)

Country Link
WO (1) WO2014075821A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3064863A1 (fr) 2015-03-05 2016-09-07 Ricardo Lozano Peña Système de montage et d'inclinaison de surfaces réfléchissantes
CN108195287A (zh) * 2017-12-28 2018-06-22 北京信息科技大学 一种适用于槽式太阳能集热器支架的测量系统
CN109693808A (zh) * 2017-10-24 2019-04-30 空中客车简化股份公司 移动机械系统及使用这种系统引入上部和下部模块的方法
CN112696835A (zh) * 2020-12-16 2021-04-23 苏州西热节能环保技术有限公司 一种聚光式太阳能发电站的性能考核试验方法
CN112880816A (zh) * 2021-01-21 2021-06-01 内蒙古工业大学 一种线性菲涅尔能流密度测试系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2078328A (en) 1980-06-24 1982-01-06 Building Profiles Ltd Shims
US4502200A (en) 1982-03-08 1985-03-05 Atlantic Richfield Company Method of preparing lightweight mirror module
EP0136211A2 (fr) 1983-08-04 1985-04-03 Jean-Paul Begouen Rondelles antifriction pour charnières d'ouvrants et dispositif de pose de celles-ci
US5069540A (en) * 1990-10-18 1991-12-03 Gonder Warren W Parabolic solar collector body and method
DE202005009936U1 (de) 2005-06-22 2006-10-26 Wagner & Co. Solartechnik Gmbh Distanzgabel zum Ausgleich von Höhenunterschieden an Montageschienensystemen mit Schraubverbindungen
DE102007016297A1 (de) 2007-04-04 2008-10-09 Merges, Veit, Dipl.-Ing. (FH) Vorrichtung zur zielgenauen Umlenkung von Sonnenlicht
WO2009031977A1 (fr) * 2007-09-08 2009-03-12 Senersys Pte. Ltd. Appareil pour supporter un réflecteur et procédé d'assemblage associé
ES1072792U (es) * 2010-07-09 2010-09-17 Termopower, S.L. Concentrador solar cilindrico parabolico.
WO2011083197A1 (fr) * 2010-01-05 2011-07-14 Urssa Energy, S.L. Capteur solaire cylindro-parabolique et procédé de montage correspondant
US20110215073A1 (en) * 2010-03-02 2011-09-08 Universidad Nacional Autonoma De Mexico Method and device for mirrors position adjustment of a solar concentrator
WO2011163563A1 (fr) * 2010-06-24 2011-12-29 Magna International Inc Ensemble support solaire modulaire
EP2410259A1 (fr) 2010-07-23 2012-01-25 Sener Ingenieria Y Sistemas, S.A. Système de alignement d'héliostat
WO2012024411A1 (fr) 2010-08-18 2012-02-23 Sundrop Fuels, Inc. Procédés et systèmes destinés à un héliostat et ensemble suiveur solaire
DE102011001947A1 (de) * 2011-04-11 2012-10-11 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines mit Stützträgern versehenen gewölbten Reflektors

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2078328A (en) 1980-06-24 1982-01-06 Building Profiles Ltd Shims
US4502200A (en) 1982-03-08 1985-03-05 Atlantic Richfield Company Method of preparing lightweight mirror module
EP0136211A2 (fr) 1983-08-04 1985-04-03 Jean-Paul Begouen Rondelles antifriction pour charnières d'ouvrants et dispositif de pose de celles-ci
US5069540A (en) * 1990-10-18 1991-12-03 Gonder Warren W Parabolic solar collector body and method
DE202005009936U1 (de) 2005-06-22 2006-10-26 Wagner & Co. Solartechnik Gmbh Distanzgabel zum Ausgleich von Höhenunterschieden an Montageschienensystemen mit Schraubverbindungen
DE102007016297A1 (de) 2007-04-04 2008-10-09 Merges, Veit, Dipl.-Ing. (FH) Vorrichtung zur zielgenauen Umlenkung von Sonnenlicht
WO2009031977A1 (fr) * 2007-09-08 2009-03-12 Senersys Pte. Ltd. Appareil pour supporter un réflecteur et procédé d'assemblage associé
WO2011083197A1 (fr) * 2010-01-05 2011-07-14 Urssa Energy, S.L. Capteur solaire cylindro-parabolique et procédé de montage correspondant
US20110215073A1 (en) * 2010-03-02 2011-09-08 Universidad Nacional Autonoma De Mexico Method and device for mirrors position adjustment of a solar concentrator
WO2011163563A1 (fr) * 2010-06-24 2011-12-29 Magna International Inc Ensemble support solaire modulaire
ES1072792U (es) * 2010-07-09 2010-09-17 Termopower, S.L. Concentrador solar cilindrico parabolico.
EP2410259A1 (fr) 2010-07-23 2012-01-25 Sener Ingenieria Y Sistemas, S.A. Système de alignement d'héliostat
WO2012024411A1 (fr) 2010-08-18 2012-02-23 Sundrop Fuels, Inc. Procédés et systèmes destinés à un héliostat et ensemble suiveur solaire
DE102011001947A1 (de) * 2011-04-11 2012-10-11 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines mit Stützträgern versehenen gewölbten Reflektors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORA CASTAÑEDA ET AL: "SENER PARABOLIC TROUGH COLLECTOR DESING AND TESTING", INTERNET CITATION, 22 November 2006 (2006-11-22), XP008132283, Retrieved from the Internet <URL:http://www.fundacionsener.es/EPORTAL_DOCS/GENERAL/FILE-cwe83f79056b754d8db91b/PARABOLICTROUGHCOLLECTOR.pdf> [retrieved on 20110126] *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3064863A1 (fr) 2015-03-05 2016-09-07 Ricardo Lozano Peña Système de montage et d'inclinaison de surfaces réfléchissantes
WO2016139343A1 (fr) 2015-03-05 2016-09-09 Ricardo Lozano Peña Système d'inclinaison de surface réfléchissante
CN108633302A (zh) * 2015-03-05 2018-10-09 R·洛萨诺·佩纳 反射表面倾斜系统
CN108633302B (zh) * 2015-03-05 2020-09-08 R·洛萨诺·佩纳 反射表面倾斜系统
CN109693808A (zh) * 2017-10-24 2019-04-30 空中客车简化股份公司 移动机械系统及使用这种系统引入上部和下部模块的方法
CN109693808B (zh) * 2017-10-24 2024-06-11 空中客车简化股份公司 移动机械系统及使用这种系统引入上部和下部模块的方法
CN108195287A (zh) * 2017-12-28 2018-06-22 北京信息科技大学 一种适用于槽式太阳能集热器支架的测量系统
CN112696835A (zh) * 2020-12-16 2021-04-23 苏州西热节能环保技术有限公司 一种聚光式太阳能发电站的性能考核试验方法
CN112696835B (zh) * 2020-12-16 2022-07-19 苏州西热节能环保技术有限公司 一种聚光式太阳能发电站的性能考核试验方法
CN112880816A (zh) * 2021-01-21 2021-06-01 内蒙古工业大学 一种线性菲涅尔能流密度测试系统

Similar Documents

Publication Publication Date Title
US20130087138A1 (en) System and method for the articulated attachment of solar reflector elements to supporting structures
Pfahl et al. Progress in heliostat development
CN101187724B (zh) 一种定日镜支撑装置
WO2014075821A1 (fr) Système et procédure d&#39;assemblage et de commande d&#39;inclinaison de collecteurs solaires
Bernhard et al. Linear Fresnel Collector Demonstration on the PSA—Part I: Design, Construction and Quality Control
AU2009246639B2 (en) Method of manufacturing large dish reflectors for a solar concentrator apparatus
US8835747B2 (en) Components of a two-axis tracking assembly in a concentrated photovoltaic system
US7667833B1 (en) Alignment method for parabolic trough solar concentrators
CN108474395B (zh) 间隙减小装置和具有间隙减小结构的定日镜
US20120152312A1 (en) Assembling and aligning a two-axis tracker assembly in a concentrated photovoltaic system
US20110235025A1 (en) Solar concentrator systems
US20120325314A1 (en) Solar Power Collection Using High-Focus-Accuracy Mirror Array
WO2008092195A1 (fr) Ferme solaire à dispositif anticollision
US20120325313A1 (en) Solar-Tower System With High-Focus-Accuracy Mirror Array
WO2014155217A1 (fr) Champ solaire modulaire
CN109693064B (zh) 主梁与次梁连接结构、焊接治具及焊接方法
US20150146314A1 (en) Solar collector module
CN106680964B (zh) 一种塔式定日镜组装工装及组装方法
Meiser et al. Analysis of parabolic trough concentrator mirror shape accuracy in different measurement setups
JP5153953B1 (ja) ヘリオスタット及びその制御方法
Angel et al. Actively shaped focusing heliostat
Collares State of the Art in Heliostats and Definition of Specifications
EP2818806A1 (fr) Système destiné au positionnement d&#39;une surface réfléchissant le soleil au moyen d&#39;un capteur solaire dans la lumière réfléchie
CN116907535A (zh) 一种采用人工光源和相机进行定日镜的校验方法
Ganapathi et al. Development and prototype testing of low-cost lightweight thin film solar concentrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13736808

Country of ref document: EP

Kind code of ref document: A1