WO2014075517A1 - 全室外数字微波传输设备独立和委托通道管理方法及装置 - Google Patents

全室外数字微波传输设备独立和委托通道管理方法及装置 Download PDF

Info

Publication number
WO2014075517A1
WO2014075517A1 PCT/CN2013/084219 CN2013084219W WO2014075517A1 WO 2014075517 A1 WO2014075517 A1 WO 2014075517A1 CN 2013084219 W CN2013084219 W CN 2013084219W WO 2014075517 A1 WO2014075517 A1 WO 2014075517A1
Authority
WO
WIPO (PCT)
Prior art keywords
management
digital microwave
microwave transmission
transmission device
transmission equipment
Prior art date
Application number
PCT/CN2013/084219
Other languages
English (en)
French (fr)
Inventor
李亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to ES13854857T priority Critical patent/ES2925600T3/es
Priority to EP13854857.3A priority patent/EP2922211B1/en
Publication of WO2014075517A1 publication Critical patent/WO2014075517A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/28Restricting access to network management systems or functions, e.g. using authorisation function to access network configuration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities

Definitions

  • the present invention relates to the field of digital microwave communications, and in particular, to a method and apparatus for managing independent and trusted channels of a full outdoor digital microwave transmission device. Background technique
  • the traditional digital microwave transmission equipment management method is to create an independent management network element in the network equipment management system for each digital microwave transmission equipment in the network, and allocate an independent network management network protocol (IP, Internet Protocol) for each network element.
  • IP Internet Protocol
  • the address and the virtual local area network (VLAN) are used to operate and maintain the digital microwave transmission equipment through an independent network management access channel formed by the network management IP address and the network management VLAN.
  • digital microwave transmission equipment has also evolved from a traditional split-system architecture to an integrated all-outdoor system architecture.
  • the traditional split-type microwave device is divided into two parts, an indoor unit and an outdoor unit, and is connected by a coaxial cable to implement baseband modulation and demodulation and radio frequency transceiver functions respectively.
  • the integrated all-outdoor digital microwave equipment integrates the baseband modulation and demodulation and RF transceiver units into the outdoor unit, and completely transmits the service in pure IP mode.
  • the characteristics of the integrated all-outdoor digital microwave device determine the two scenarios when it is used.
  • the all-outdoor digital microwave transmission device is directly connected to the base station, using an independent working mode, and the network device management system passes the independent network management. Management channel management;
  • the all-outdoor digital microwave transmission device needs to be combined with the IP transmission device to complete the multi-directional multi-service transmission.
  • the outdoor digital microwave transmission device is used in combination with the IP transmission device, if the traditional digital microwave transmission device management mode is adopted, the IP transmission device management network element and the integrated all-outdoor digital microwave transmission device need to be separately created in the network device management system.
  • Management network elements have the following deficiencies: 1.
  • the digital microwave transmission device and the IP transmission device in the network device management system need to be independently assigned the network management IP address, which increases the use requirement of the device access provider IP address, and too many network elements increase the complexity of the network management topology. Increased maintenance costs and maintenance workload of equipment access providers.
  • the network equipment management system When the microwave transmission service is interrupted by the external environment, if the service transmission link is interrupted, the network equipment management system will receive the service failure alarm reported by the IP transmission equipment management network element and the microwave transmission equipment management network element.
  • the network administrator When analyzing the service fault alarm, the network administrator needs to analyze the IP transmission device management NE and the microwave transmission device management NE alarm information at the same time to increase the alarm analysis workload and the alarm processing operation complexity.
  • the object of the embodiments of the present invention is to provide an independent and trusted channel management method and device for a full outdoor digital microwave transmission device, which can better solve the connection mode and management data of the management channel of the outdoor digital microwave transmission device in different usage scenarios. Forwarding method.
  • Embodiments of the present invention provide an independent and trusted channel management method for an all-outdoor digital microwave transmission device, which completes service transmission by combining a full outdoor digital microwave transmission device with an IP transmission device;
  • the digital microwave transmission device includes: a network processor (NP)
  • the IP transmission device includes: a CPU and a switch chip; the method includes:
  • the management data of the digital microwave transmission device in the entrusted management mode is transmitted by the entrusted management channel.
  • the digital microwave transmission device is directly connected to the base station when the terminal is located at the end of the access site, and uses an independent working mode.
  • the network device management system manages the digital microwave transmission device through the independent network management data channel;
  • the IP transmission device manages the digital microwave transmission device through the entrusted management channel.
  • the establishing an independent network management data channel between the NP of the digital microwave transmission device and the CPU includes:
  • An independent network management data channel between the NP and the CPU of the digital microwave transmission device is established by configuring the network management IP address and the network management VLAN in the CPU Ethernet control port of the digital microwave transmission device.
  • the entrusting management data channel is established between the NP of the digital microwave transmission device and the CPU, including: establishing a digital microwave by configuring a private IP address and a private control VLAN in a CPU Ethernet control port of the digital microwave transmission device The entrusted management data channel between the NP of the transmission device and the CPU.
  • the method further includes: establishing a trusted management data channel between the switching unit CPU and the switching chip of the IP transmission device by configuring a private IP address and a private control VLAN in a CPU Ethernet control port of the IP transmission device.
  • the method further includes: configuring an access control list (ACL, ACCESS CONTROL LIST) and a private control VLAN on an Ethernet port of the switch chip corresponding to the NP, so that the NP pair is trusted from an IP transmission device.
  • the management message is matched and identified, and the identified entrusted management message is forwarded to the digital microwave transmission device CPU; Configuring an access control list ACL and the private control VLAN in the NP corresponding to the Ethernet port of the digital microwave transmission device CPU, so that the NP performs feature matching and identification on the entrusted management message from the digital microwave transmission device CPU, and The identified entrusted management message is sent to the IP transmission device.
  • ACL access control list
  • ACCESS CONTROL LIST ACCESS CONTROL LIST
  • the method further includes: configuring an access control list ACL and the private control VLAN on the Ethernet port of the NP corresponding to the switch chip, and performing feature matching on the entrusted management message from the digital microwave transmission device And identifying, and forwarding the identified entrusted management message to the IP transmission device CPU;
  • the method further includes: switching to a trusted working mode, a trusted management channel established between the digital microwave transmitting device and the IP transmitting device according to the working mode of the sniffing digital microwave transmitting device and the working mode of the digital microwave transmitting device;
  • the link maintenance operation of the management management channel is performed.
  • the entrusted management channel established between the digital microwave transmission device and the IP transmission device according to the working mode of the sniffing digital microwave transmission device includes:
  • the IP transmission device sends a working mode query message to the digital microwave transmission device
  • the digital microwave transmission device After receiving the working mode query message, the digital microwave transmission device feeds back the working mode value configured by the current user to the IP transmission device through the response message form.
  • the switching to the commissioning mode according to the working mode of the digital microwave transmission device includes:
  • the IP transmission device sends a working mode switching message to the independently working digital microwave transmission device;
  • the independently working digital microwave transmission device responds to the working mode switching message, updates the private IP address of its own CPU Ethernet control port using the private IP address assigned to it by the IP transmission device, and establishes a digital microwave transmission device entrusted management channel.
  • the link keep-alive processing after the entrusting the management channel includes: responding to the heartbeat message sent by the peer;
  • the IP transmission device After the link is reconnected, the IP transmission device performs full synchronization of the configuration data of the entrusted management digital microwave transmission device, so that the user reconfigures the pre-configuration of the digital microwave transmission device during the disconnection.
  • the embodiment of the invention further provides an independent and trusted channel management device for the all-outdoor digital microwave transmission device, the device comprising:
  • Digital microwave transmission device data channel establishment module configured for digital microwave transmission equipment
  • An independent network management data channel and a delegation management data channel are respectively established between the NP and the CPU;
  • An IP transmission device data channel establishing module configured to establish a trusted management data channel between the CPU of the IP transmission device and the switching chip;
  • the data transmission module is configured to use the independent management data channel to transmit the network management access data of the network device management system to the digital microwave transmission device in the independent working mode, and use the entrusted management channel to transmit the IP transmission device to the digital transmission in the entrusted management mode Management control data for the device.
  • the beneficial effects of the embodiments of the present invention are: entrusting the cumbersome configuration and maintenance of the digital microwave transmission device to the IP transmission device, and the user only needs to create the IP transmission device network element in the network device management system.
  • the purpose of managing the IP transmission equipment and the digital microwave transmission equipment can be achieved, and the planning of the network management IP of the digital microwave transmission equipment is saved, and the network topology is more clear and simple, which facilitates the later network expansion.
  • the entrusted management method reports the alarm and performance data of the microwave transmission equipment to the IP transmission equipment, which is analyzed by the IP transmission equipment. After being presented to the user, the user's analytical workload is saved.
  • FIG. 1 is a connection diagram of internal hardware of a digital microwave transmission device and an IP transmission device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of two network management channels in a digital microwave transmission device that can be independently and entrustedly managed according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for managing an independent and trusted channel of a full outdoor digital microwave transmission device according to an embodiment of the present invention
  • FIG. 4 is a functional diagram of an independent and trusted channel management apparatus for an all-outdoor digital microwave transmission device according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a data access channel, an ACL rule, and a port private VLAN configuration of a digital microwave transmission device according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a mode sniffing interaction process between an IP transmission device and a digital microwave transmission device according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a mode switching interaction process between an IP transmission device and a digital microwave transmission device according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of link keep-alive processing between an IP transmission device and a digital microwave transmission device according to an embodiment of the present invention
  • FIG. 9 is a flow chart of switching a digital microwave transmission device from an entrusted management mode to an independent mode according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments described below are for illustrative purposes only and are not intended to limit the invention.
  • the implementation method of the embodiment of the present invention can enable the all-outdoor digital microwave transmission device to support the entrusted management while supporting independent management, wherein the independent management channel corresponds to the network management data access of the all-outdoor digital microwave transmission device when used at the end site alone;
  • the management channel corresponds to the control access of the IP transmission device to the digital microwave transmission device when the full outdoor digital microwave transmission and the IP transmission device are used in combination at the relay or aggregation site, and a negotiation is established between the IP transmission device and the digital microwave transmission device.
  • the management channel is entrusted, and the maintenance management of the digital microwave transmission equipment is entrusted to the IP transmission equipment, and the digital microwave transmission equipment is no longer separately maintained and managed by the network equipment management system.
  • FIG. 1 is a hardware connection diagram of a digital microwave transmission device and an IP transmission device according to an embodiment of the present invention.
  • an all-outdoor digital microwave transmission device adopts an integrated all-outdoor system structure, and performs baseband modulation and demodulation and radio frequency.
  • the transceiver units are all integrated into the outdoor unit.
  • the All Outdoor Unit (AOU) 104 includes: a central processing unit CPU 105, a network processor NP 106, a modem, and a radio frequency transceiver MODEM&RF (Radio Frequency) 107.
  • AOU All Outdoor Unit
  • the IP transmission device 101 includes: a central processing unit CPU 102 and a switching chip SWITCH 103 o
  • the microwave device transmits data in pairs
  • the corresponding remote network element has another identical integrated outdoor microwave device and IP transmission device, and a hop microwave transmission link is formed between the two sites.
  • the embodiment of the invention only describes the design method of the independent and entrusted management channel between the IP transmission device on the local network element and the outdoor microwave device.
  • the central processing unit CPU 102 is configured to run the IP transmission device system software, and complete maintenance and management of the IP transmission device by receiving the network management control message forwarded by the switch chip SWITCH103;
  • the CPU 102 is responsible for generating a delegation management control packet for the AOU 104, and transmitting and receiving by the interface between the CPU 102 and the switching chip SWITCH 103;
  • the switch chip SWITCH103 is configured to delegate the management control data packet, the user service data packet, and the network management control data packet forwarding on the IP transmission device.
  • the main functions include the network management control packet sending and receiving between the panel port and the CPU 102; the panel port and the network
  • the user service data packet is transmitted and received between the processor NP106; and the CPU 102 and the network processor NP106 perform the transmission and reception of the data packet.
  • the central processing unit CPU 105 is configured to run the all-outdoor digital microwave transmission device system software; in the independent mode, the network management independent control function of the AOU 104 is completed by receiving the network management control message forwarded by the network processor NP106; The IP transmission device management message forwarded by the receiving network processor NP106 completes the entrusted management function for the AOU 104.
  • the network processor NP106 is configured as a network management control packet/delegation management control data packet, a user service data packet, and a remote network element network management control packet forwarding on the AOU 104.
  • the main functions include entrusting management control data between the SWITCH 103 and the CPU 105. Transceiver and packet transmission; control user service data packet and remote network element network management control data packet transmission and reception between switch chip SWITCH103 and modem and radio frequency transceiver MODEM&RF107;
  • the modem and radio frequency transceiver unit MODEM&RF107 is configured to perform modulation and demodulation and radio frequency transceiver functions for microwave transmission data. Its main functions include user service data packet and remote network element control between the network processor NP106 and the peer network element AOU108. Send and receive of data packets.
  • FIG. 2 is a schematic diagram of two internal network management channels of a digital microwave transmission device that can be independently and entrustedly managed according to an embodiment of the present invention.
  • different IP addresses and VLANs are used in a CPU Ethernet three-speed enhanced control port.
  • Two data access channels are created separately to enable the digital microwave transmission device to support two different management scenarios.
  • Data stream 1 represents the first independent network management data channel created by the network management system IP and the network management VLAN.
  • the main function is to complete the network management access of the network equipment management system to the digital microwave transmission equipment in the independent working mode;
  • the second entrusted management data channel created by the private IP address and the private control VLAN has the main function of providing management data exchange between the IP transmission device and the digital microwave transmission device in the entrusted management mode.
  • an all-outdoor digital microwave transmission device has two modes of operation, a stand-alone mode of operation and a delegated mode of operation.
  • the two working modes correspond to the two network management channel usage schemes.
  • the two working modes provide external configuration interfaces, allowing the user to select the working mode according to the usage scenarios of the digital microwave transmission device.
  • the user's configuration of the working mode determines the establishment of the independent and trusted management channels of the digital microwave transmission device.
  • the independent and delegated management channels for digital microwave transmission equipment are created by creating two data access channels on the Ethernet three-speed enhanced control port (ETHERNET TRIPLE-SPEED ENHANCE CONTROLLER, ETSEC) connected to the CPU 105 device corresponding to the NP106.
  • the two data access channels are divided into the first independent network management data channel, and the main function is to complete the network management access of the network device management system to the digital microwave transmission device in the independent working mode, by assigning the network management IP address and
  • the network management VLAN is configured; the second entrusted management data channel, whose main function is to complete the management control of the digital transmission device by the IP transmission device in the entrusted management mode, and configure by using the private IP address and the private control VLAN.
  • FIG. 3 is a flowchart of a method for managing an independent and trusted channel of a full outdoor digital microwave transmission device according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step 301 Establish an independent network management data channel and a trusted management data channel between the network processor NP of the digital microwave transmission device and the CPU;
  • Step 302 Establish a trusted management data channel between the CPU of the IP transmission device and the switch chip.
  • Step 303 transmit, by using the independent network management data channel, network management access data of the network device management system to the digital microwave transmission device in the independent working mode;
  • Step 304 Transfer the number of IP transmission device pairs in the entrusted management mode by using the entrusted management channel Management control data for word microwave transmission equipment.
  • the digital microwave transmission device works in different usage scenarios.
  • the all-outdoor digital microwave transmission device is directly connected to the base station, and uses an independent working mode, and the network device management system passes the independent network management.
  • the data channel directly manages the digital microwave transmission device; at the relay site or the aggregation site, the all-outdoor digital microwave transmission device is used in combination with the IP transmission device, and the management of the digital microwave transmission device is completed by entrusting the management channel.
  • a private management IP address and a private control VLAN are configured on the CPU Ethernet control port of the IP transmission device switching unit to establish a trusted management data channel between the IP transmission device switching unit CPU and the switching chip.
  • the embodiment of the present invention further includes: configuring, by the NP corresponding to the Ethernet port of the switch chip, an access control list ACL and the private control VLAN, so that the NP matches the characteristics of the entrusted management message from the IP transmission device. , the entrusted management message is identified, and the identified entrusted management message is forwarded to the digital microwave transmission device CPU; and the access control list ACL and the ACL are configured by the Ethernet port corresponding to the CPU of the digital microwave transmission device
  • the private control VLAN is configured to match the NP to the entrusted management message feature from the digital microwave transmission device CPU, thereby identifying the entrusted management message, and forwarding the identified entrusted management message to the IP transmission device.
  • the embodiment of the invention further includes: the entrusted management channel established between the digital microwave transmission device and the IP transmission device is implemented by sniffing the working mode of the digital microwave transmission device and switching the working mode of the digital microwave transmission device to the commissioning mode; After the digital microwave transmission equipment and the IP transmission equipment are successfully connected to the entrusted management channel, the link maintenance processing of the entrusted management channel is performed.
  • FIG. 4 is a functional diagram of an independent and trusted channel management apparatus for a full outdoor digital microwave transmission device according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • the data channel establishing module 401 of the digital microwave transmission device is configured to establish an independent network management data channel and a delegation management data channel between the network processor NP of the digital microwave transmission device and the CPU;
  • the IP transmission device data channel establishing module 402 is configured to establish a trusted management data channel between the CPU of the IP transmission device and the exchange chip;
  • the data transmission module 403 is configured to use the independent network management data channel to transmit the network management access data of the network equipment management system to the digital microwave transmission device in the independent working mode, and use the entrusted management channel to transmit the IP transmission device pair in the entrusted management mode. Management control data for digital microwave transmission equipment.
  • the digital microwave transmission device data channel establishing module 401, the IP transmission device data channel establishing module 402, and the data transmission module 403 can all be CPU, digital signal processing (DSP, Digital Signal Processor), or field programmable.
  • DSP Digital Signal Processor
  • the gate array (FPGA, Field Programmable Gate Array) or the like is implemented; the CPU, the DSP, and the FPGA may be built in the network side.
  • FIG. 5 is a schematic diagram of a data access channel and an ACL of a digital microwave transmission device according to an embodiment of the present invention; Flowchart of the private VLAN configuration of the rules and ports.
  • the digital microwave transmission device AOU104 can send and receive the entrusted management packets. You need to configure the private control VLAN on the Ethernet port on the NP 106 corresponding to the SWITCH103.
  • the access control list ACL identifies the entrusted management message by matching the characteristics of the entrusted management message, and forwards the identified entrusted management message to the software module on the CPU 105 through the REDIRECT function provided by the NP106 chip.
  • the IP transmission device 101 can send and receive entrusted management messages, and a trusted management data channel needs to be created on the Ethernet three-speed enhanced control port ETSEC connected to the CPU 102 device corresponding to the SWITCH 103, and configured by using a private IP address and a private control VLAN.
  • a trusted management data channel needs to be created on the Ethernet three-speed enhanced control port ETSEC connected to the CPU 102 device corresponding to the SWITCH 103, and configured by using a private IP address and a private control VLAN.
  • Configure the access control list ACL to identify the entrusted management response message by matching the characteristics of the entrusted management response message.
  • the identified entrusted management response message is forwarded to the software module on the CPU 102 through the redirection (REDIRECT) function provided by the SWITCH103 chip.
  • REDIRECT redirection
  • the REDIRECT function provided by the chip is sent directly from the port connected to the AOU104.
  • Step 501 the NP chip VLAN function and the ACL function are called to initialize the interface, and the VLAN function and the ACL function initial configuration of the NP chip are completed.
  • Step 502 Add a private control VLAN to the user port on the upper panel of the NP chip.
  • VLAN 4095 is used as the private control VLAN, so that the VLAN range that the user can use is still 1 to 4094, and the design scalability can be adopted.
  • An interface is provided to allow the user to configure a private control VLAN.
  • the user port on the panel is configured to tag the Ethernet packet with the tag TAGGED.
  • Step 503 Add a private control VLAN to the port connected to the CPU on the NP chip.
  • VLAN 4095 is used as the private control VLAN, so that the VLAN range that the user can use is still 1 to 4094.
  • the Interface allows the user to configure the private control VLAN. Set the port's export label action for Ethernet packets to be tagged TAGGED.
  • Step 504 Add an ACL rule to the port that processes the entrusted management packet on the NP chip.
  • the ACL adding rules and actions are as follows:
  • Step 505 Create a second entrusted management data channel by using a fixed private IP address 192.168.0.1 (mask 255.255.255.0) and private control VLAN 4095 on the Ethernet three-speed enhanced control port (ETSEC) connected to the NP on the CPU.
  • ETSEC Ethernet three-speed enhanced control port
  • Step 506 Obtain a current working mode of the digital microwave transmission device configured by the user from the database.
  • Step 507 Determine whether the current working mode of the digital microwave transmission device is an independent working mode. If the current working mode is the independent management mode, the current working mode is the entrusted management mode, and the process ends; if the current working mode is the independent working mode, then go to step 508. .
  • Step 508 Obtain the network management IP address and the network management VLAN configured by the user from the database.
  • ETSEC Ethernet three-speed enhanced control port
  • the entrusted management channel established by negotiating the entrusted management message between the IP transmission device and the digital microwave transmission device is specifically described below with reference to FIG. 6 and FIG. 7, and the negotiation process includes two processes of mode sniffing and mode switching.
  • FIG. 6 is a schematic diagram of a mode sniffing interaction process between an IP transmission device and a digital microwave transmission device according to an embodiment of the present invention.
  • the IP transmission device actively sends a working mode query to the connected digital microwave transmission device.
  • the digital microwave transmission device feeds back the working mode value (independent working mode or entrusted management working mode) configured by the current user to the IP transmission device through the response message form.
  • the pattern sniffing message is characterized by its The MAC address is all FF and the VLAN value is the private control VLAN.
  • the mode sniffing uses the form of sending packets periodically. Once the entrusted management channel is successfully established, the heartbeat keep-alive packets can be normally exchanged and then stop sending the mode sniffing packets.
  • Step 601 The digital microwave transmission device works normally in the independent mode or the entrusted management mode, and the port A on the digital microwave transmission device NP chip is connected to one of the Ethernet transmission ports B of the IP transmission device.
  • Step 602 The user configures the SWITCH chip port B on the IP transmission device to entrust management.
  • Step 603 After receiving the configuration request of the port B, the entrusted management module sends a mode sniffing message to the packet management module.
  • Step 604 The message management module constructs a mode sniffing packet, the destination MAC field of the packet is FF: FF: FF: FF: FF, the source MAC is the MAC address corresponding to the CPU port of the IP device, and the VLAN of the VLAN field
  • the IP address field is 255.255.255.255
  • the source IP address field is the private IP address of the IP device CPU port
  • the IP packet content field is the current working mode of the digital microwave transmission device.
  • the IP packet content field is added.
  • the authentication code is sent by the packet management module through the designated port of the SWITCH chip.
  • the mode sniffing packet is sent out through port B. This step is performed periodically until the message management module receives the mode sniffing message.
  • Step 605 The VLAN and the ACL rule of the port A of the NP chip on the microwave transmission device identify and process the mode sniffing packet, and the matched mode sniffing packet is sent to the packet through the second entrusted management data channel of the ETSEC network card on the CPU. Text management module.
  • Step 606 The packet management module parses the IP content field of the mode sniffing packet, parses the packet type as a mode sniffing packet, and then completes the entrusted management packet authentication function by using the check byte in the IP content tail. And the message management module saves the source IP address and the source MAC address information in the packet to the local static ARP (Address Resolution Protocol) table, so that the entrustment After the management channel is established, IP communication between the IP transmission device and the digital microwave transmission device can be facilitated.
  • ARP Address Resolution Protocol
  • Step 607 The message management module sends a request to the entrusted management module to obtain a current working mode request message.
  • Step 608 The entrusted management module obtains the current digital microwave transmission device working mode configuration value from the database, and sends the configuration value to the packet management module.
  • Step 609 the message management module constructs a mode sniff response message, the destination MAC field of the message is FF: FF: FF: FF: FF, and the source MAC is the MAC of the second trusted management data channel of the digital microwave transmission device.
  • the VLAN ID of the VLAN field is control VLAN6095; the destination IP address field is 255.255.255.255, and the source IP address field is the private IP address of the second entrusted management data channel of the digital microwave transmission device; the message content field is the digital microwave transmission device.
  • Mode configuration value the packet is sent directly from port A on the NP through the designated port sending function provided by the NP chip.
  • Step 610 The VLAN and the ACL rule of the SWITCH chip port B on the IP transmission device identify and process the mode sniffing response message, and the matched mode sniffing response message is sent to the packet through the ETSEC network card entrusted management data channel on the CPU. Management module.
  • Step 611 The packet management module on the IP transmission device sends the obtained current working mode value message of the digital microwave transmission device to the entrusted management module.
  • Step 612 The entrusted management module on the IP transmission device presents the acquired digital microwave transmission device working mode to the IP transmission device port configuration page.
  • FIG. 7 is a schematic diagram of a mode switching exchange process between an IP transmission device and a digital microwave transmission device according to an embodiment of the present invention.
  • an IP transmission device is used to deliver a working mode switch to an independently operated digital microwave transmission device.
  • the digital microwave transmission equipment working independently will update the second entrusted management channel using the private IP address assigned to it by the IP transmission device, complete the IP address configuration of the entrusted management channel, and then the digital microwave transmission device resets the hardware, waiting for the IP Transmission
  • the parameters in the device database are fully synchronized. Once the configuration parameters are fully synchronized, the independently working digital microwave transmission device switches to the entrusted management mode.
  • a mode switch packet is characterized in that its MAC address is all FF and the VLAN value is a private control VLAN.
  • Step 701 The working mode of the digital microwave transmission device is an independent mode, and the user configuration modifies the working mode of the digital microwave transmission device to be a trusted management working mode; the port A on the NP chip of the digital microwave transmission device is connected to an Ethernet port B of the IP transmission device. .
  • Step 702 After receiving the user configuration parameter, the entrusted management module sends a mode switching message to the packet management module.
  • Step 703 The message management module constructs a mode switching message, where the destination MAC field of the packet is FF: FF: FF: FF: FF, the source MAC is the MAC address corresponding to the CPU port of the IP device, and the VLAN identifier of the VLAN field Private control VLAN 4097; destination IP address field is 277.277.277.277, source IP address field is IP device CPU port private IP address; IP packet content field is switching digital microwave transmission device current working mode to entrusted management working mode; IP packet The content tail field adds an authentication code.
  • the packet management module sends a packet function through the designated port of the SWITCH chip, and sends the mode switching packet through port B.
  • Step 704 The VLAN and the ACL rule of the port A of the NP chip on the microwave transmission device identify and process the mode switch message, and the matched mode switch message is sent to the message management through the second entrusted management data channel of the ETSEC network card on the CPU. Module.
  • Step 705 The packet management module on the digital microwave transmission device parses the IP content field of the mode switching packet, parses the packet type as a mode switching message, and then completes the entrusted management report by using the check byte in the tail of the IP content.
  • the document authentication function, and the packet management module saves the source IP address and source MAC address information in the packet to the local static ARP table.
  • Step 706 The message management module on the digital microwave transmission device pre-allocates the configured entrusted management working mode and IP packet to the private IP address of the digital microwave transmission device entrusted management channel. Send to the entrusted management module on the digital microwave transmission equipment.
  • Step 707 The entrusted management module on the digital microwave transmission device saves the configured working mode to the database, and then invokes the configuration interface provided by the configuration management module to update the private IP address pre-allocated to the second entrusted management channel to the second configuration. Entrust management channels.
  • Step 708 The entrusted management module on the digital microwave transmission device sends a mode switching success message to the message management module.
  • Step 709 The packet management module on the digital microwave transmission device constructs a mode switching response message, where the destination MAC field of the packet is the source MAC address of the IP device in the mode switching message, and the source MAC is the second proxy of the digital microwave transmission device.
  • Address The message content field is the mode switch success; the packet is sent directly from port A on the NP through the designated port sending function provided by the NP chip.
  • Step 710 The packet management module on the IP transmission device receives the handover success packet, parses the packet IP content, and sends a mode switching success message to the entrusted management module.
  • the packet management module organizes the heartbeat keep-alive message.
  • the destination MAC field of the packet is the MAC of the second entrusted management channel of the microwave transmission device
  • the source MAC is the MAC address corresponding to the CPU port of the IP device
  • the VLAN ID of the VLAN field is the private control VLAN 4097
  • the destination IP address field is the digital microwave transmission device.
  • the private IP address of the management channel is entrusted.
  • the source IP address field is the private IP address of the CPU port of the IP device.
  • the IP packet content field is the heartbeat keepalive identifier. The packet is sent from port B through the designated port sending function of the SWITCH chip.
  • Step 711 The message management module on the digital microwave transmission device constructs a heartbeat keep-alive message.
  • the destination MAC field of the packet is the MAC of the IP transmission device entrusted management channel, and the source MAC is the second entrusted management channel corresponding to the digital microwave transmission device.
  • MAC address; the VLAN ID of the VLAN field is private control VLAN 4097; the destination IP address field is the IP transport device CPU port private
  • the source IP address field is the private IP address of the second entrusted management channel of the digital microwave transmission device;
  • the IP packet content field is the heartbeat keepalive identifier; the packet is sent out from port A through the designated port sending function of the NP chip.
  • the entrusted management channel is successfully established.
  • the message transmission is performed by the unicast message constructed by the message management module.
  • the structure of the message header field is 710 and the message header in step 711. Department field description.
  • Step 712 The packet management module on the IP transmission device periodically sends a heartbeat keep-alive packet, and responds to the heartbeat keep-alive packet sent by the peer.
  • Step 713 The message management module on the digital microwave transmission device periodically sends a heartbeat keep-alive message, and responds to the heartbeat keep-alive message sent by the other party.
  • Step 714 The entrusted management module on the digital microwave transmission device sends a full synchronization request to the IP transmission device.
  • Step 715 The entrusted management module on the IP transmission device acquires the configuration parameters of the digital microwave transmission device from the database, and sends the item by item to the digital microwave transmission device for configuration by the entrusted management channel.
  • FIG. 8 is a flowchart of link keep-alive processing between an IP transmission device and a digital microwave transmission device according to an embodiment of the present invention.
  • Link entrusted management channel links need to be kept.
  • the link keep-alive process refers to: the IP transmission device and the digital microwave transmission device periodically send a heartbeat message to the other party, and respond to the heartbeat message sent by the other party; after the link is reconnected, the IP transmission device
  • the entrusted management of the digital microwave transmission device performs full synchronization of the configuration data to reconfigure the pre-configuration of the digital microwave transmission device by the user during the disconnection.
  • the IP transmission device and the digital microwave transmission device periodically send a heartbeat message to the other party, and respond to the heartbeat message sent by the other party.
  • the digital microwave transmission device considers that the management management link channel is interrupted, stops sending its own heartbeat message, and passively waits for the mode sniffing of the IP transmission device.
  • the mode switching process is to re-establish the entrusted management link; when the IP transmission device does not receive the response message of the heartbeat message sent by itself, the IP transmission device stops sending its own heartbeat message, and then starts the mode sniffing process to re-establish the mode again.
  • Entrust management links are examples of the IP transmission device and the digital microwave transmission device periodically send a heartbeat message to the other party, and respond to the heartbeat message sent by the other party.
  • the digital microwave transmission device After the entrusted management link is re-established, the digital microwave transmission device initiates a configuration data full synchronization request to the IP transmission device, and the user pre-configures the digital microwave transmission device on the IP transmission device during the chain-breaking period; The microwave transmission device reports the alarm and performance report data generated by itself during the chain scission to the IP transmission device.
  • Step 801 The packet management module on the IP transmission device periodically sends a heartbeat keep-alive packet, and responds to the heartbeat keep-alive packet sent by the peer.
  • Step 802 The message management module on the digital microwave transmission device periodically sends a heartbeat keep-alive message, and responds to the heartbeat keep-alive message sent by the other party.
  • the packet management module on the IP transmission device does not receive the response packet from the peer to the heartbeat keep-alive packet sent by the peer.
  • Step 804 The packet management module on the digital microwave transmission device cannot receive the response packet of the heartbeat keep-alive message sent by the other party.
  • Step 805 The message management module on the digital microwave transmission device stops sending its own heartbeat protection message, reports the link interruption message to the entrusted management module, and entrusts the management module to notify other software modules to stop the data service that needs to be reported.
  • Step 806 The packet management module on the IP transmission device stops sending its own heartbeat keep-alive message, reports the link interruption message to the entrusted management module, and entrusts the management module to set the digital microwave transmission device to be unavailable; the message management module Restart the send mode sniffing message to the digital microwave transmission device. If the link is not recovered, the mode sniffing packet is sent periodically.
  • Step 807 The digital microwave transmission device installs a mode sniffing process, and sends a mode sniff response message.
  • Step 808 The IP transmission device starts mode switching processing flow processing.
  • Step 809 the digital microwave transmission device starts to switch the packet processing flow.
  • FIG. 9 is a flowchart of a digital microwave transmission device switching from an entrusted management working mode to an independent working mode according to an embodiment of the present invention.
  • the entrusted management digital microwave transmission device receives a handover to an independent working mode configuration message. After that, the existing hardware will be reset, and the hardware will be reconfigured using the configuration parameters in the database on the digital microwave transmission device to switch to the independent working mode.
  • Step 901 The digital microwave transmission device receives a configuration message that is switched to the independent mode.
  • Step 902 The entrusting management module acquires the working mode value of the current digital microwave transmission device from the database.
  • Step 903 The entrusting management module determines whether the current working mode is an independent mode. If it is an independent mode, the process ends; if not, the process proceeds to step 904.
  • step 904 the entrusted management module saves the working mode configuration parameters to the database.
  • Step 905 The entrusted management module sends a message to the message management module to stop sending the heartbeat keep-alive message.
  • Step 906 The message management module stops sending the heartbeat keep-alive message, and notifies the entrusted management that the heartbeat keep-alive message is successfully configured.
  • Step 907 The entrusted management module invokes a hardware reset interface to delete the original hardware configuration.
  • the equipment supplier is designing IP transmission equipment and digital microwave transmission. According to the design manner of the embodiment of the present invention, the device can provide a more flexible digital microwave transmission device management mode for the operator.
  • the user by entrusting the cumbersome configuration and maintenance of the digital microwave transmission device to the IP transmission device, the user only needs to create the IP transmission device network element in the network device management system, so that simultaneous management can be achieved.
  • the purpose of the IP transmission equipment and the digital microwave transmission equipment saves the planning of the network management IP of the digital microwave transmission equipment, and the network topology is more clear and simple, which facilitates the later network expansion.
  • the entrusted management method reports the alarm and performance data of the microwave transmission equipment to the IP transmission equipment, which is analyzed by the IP transmission equipment and presented to the user, thereby saving the user's analysis workload.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明公开了一种全室外数字微波传输设备独立和委托通道管理方法及装置,方法包括:通过全室外数字微波传输设备与IP传输设备组合完成业务传输;在数字微波传输设备的网络处理器NP与CPU之间分别建立独立网管数据通道和委托管理数据通道;在IP传输设备的CPU与交换芯片之间建立委托管理数据通道;利用所述的独立网管数据通道传输在独立工作模式下数字微波传输设备的网管访问数据;利用委托管理通道传输在委托管理模式下数字微波传输设备的管理控制数据。本发明通过对数字微波传输设备管理通道的设计,使得数字微波传输设备可以适应不同场景下的独立管理和委托管理,实现了数字微波设备管理的多样性和便捷性。

Description

全室外数字微波传输设备独立和委托通道管理方法及装置 技术领域
本发明涉及数字微波通信领域, 特别涉及一种全室外数字微波传输设 备独立和委托通道管理方法及装置。 背景技术
传统的数字微波传输设备管理方式是通过给网络中的每一个数字微波 传输设备在网络设备管理系统中创建独立的管理网元, 针对每个网元分配 独立的网管网际协议( IP, Internet Protocol )地址和网管虚拟局域网( VLAN, Virtual Local Area Network ), 通过网管 IP地址和网管 VLAN形成的独立网 管访问通道进行数字微波传输设备的操作维护。
随着无线传输业务向全 IP时代的演进, 数字微波传输设备也从传统的 分体式系统结构向一体化全室外系统结构方向发展。 传统的分体式微波设 备分为室内单元和室外单元两个部分, 通过同轴电缆连接, 分别实现基带 调制解调和射频收发功能。 与传统的分体式系统结构不同, 一体化全室外 数字微波设备将基带调制解调和射频收发单元全部集成到室外单元之中, 并完全采用纯 IP方式传输业务。
一体化全室外数字微波设备的特点决定它在使用时的两种场景, 在末 端接入站点, 全室外数字微波传输设备与基站直接连接, 使用独立的工作 模式, 由网络设备管理系统通过独立网管管理通道管理; 在中继站点或者 汇聚站点, 全室外数字微波传输设备需要与 IP传输设备组合使用来完成多 方向多业务的传输。当全室外数字微波传输设备与 IP传输设备组合使用时, 若按照传统数字微波传输设备管理方式, 则需要在网络设备管理系统中分 别创建 IP传输设备管理网元和一体化全室外数字微波传输设备管理网元, 存在如下不足: 1、需要给网络设备管理系统中的数字微波传输设备和 IP传输设备独立 分配网管 IP地址,增大了设备接入商 IP地址使用需求, 而且过多的网元增 加了网管拓朴复杂性, 增加了设备接入商的维护成本和维护工作量。
2、 当要求多个数字微波传输设备的配置参数一致时, 需要网管管理员 针对每一个数字微波传输设备进行单独配置, 增加了管理的复杂性和操作 不便性。
3、 当微波传输业务由于外界环境影响, 出现业务传输链路中断故障时, 在网络设备管理系统上将同时收到 IP传输设备管理网元和微波传输设备管 理网元上报的业务故障告警。 网络管理员在分析业务故障告警时, 需要同 时分析 IP传输设备管理网元和微波传输设备管理网元告警信息, 增加告警 分析工作量和告警处理操作复杂度。
4、 当对站点的传输业务的性能数据进行分析维护时, 需要同时分析 IP 传输设备和数字微波传输设备性能数据, 增加性能数据分析工作量。 发明内容
本发明实施例的目的在于提供一种全室外数字微波传输设备独立和委 托通道管理方法及装置, 能更好地解决全室外数字微波传输设备在不同使 用场景下管理通道的连接方式和管理数据的转发方法。
本发明实施例提供了一种全室外数字微波传输设备独立和委托通道管 理方法, 通过全室外数字微波传输设备与 IP传输设备组合完成业务传输; 所述数字微波传输设备包括: 网络处理器 (NP, Network Processor ) 与中 央处理器(CPU, Central Processing Unit ); 所述 IP传输设备包括: CPU与 交换芯片; 所述方法包括:
在数字微波传输设备的 NP与 CPU之间分别建立独立网管数据通道和 委托管理数据通道;
在 IP传输设备的 CPU与交换芯片之间建立委托管理数据通道; 利用所述的独立网管数据通道传输在独立工作模式下数字微波传输设 备的网管访问数据;
利用委托管理通道传输在委托管理模式下数字微波传输设备的管理控 制数据。
上述方案中, 所述数字微波传输设备位于在接入站点末端时, 与基站 直接连接, 使用独立的工作模式, 通过所述独立网管数据通道, 网络设备 管理系统对数字微波传输设备进行管理;
所述数字微波传输设备位于中继站点或者汇聚站点时, 通过所述委托 管理通道, IP传输设备对数字微波传输设备进行管理。
上述方案中, 所述在数字微波传输设备的 NP与 CPU之间建立独立网 管数据通道, 包括:
通过在数字微波传输设备中的 CPU以太网控制端口配置网管 IP地址和 网管 VLAN, 建立数字微波传输设备的 NP与 CPU之间的独立网管数据通 道。
上述方案中, 所述在数字微波传输设备的 NP与 CPU之间建立委托管 理数据通道, 包括: 通过在数字微波传输设备中的 CPU以太网控制端口配 置私有 IP地址和私有控制 VLAN,建立数字微波传输设备的 NP与 CPU之 间的委托管理数据通道。
上述方案中, 所述方法还包括: 通过在 IP传输设备的 CPU以太网控制 端口配置私有 IP地址和私有控制 VLAN, 建立 IP传输设备交换单元 CPU 与交换芯片之间的委托管理数据通道。
上述方案中, 所述方法还包括: 在所述 NP对应的所述交换芯片的以太 网端口配置访问控制列表(ACL, ACCESS CONTROL LIST )和私有控制 VLAN, 使所述 NP对来自 IP传输设备委托管理报文进行特征匹配并识别, 并将所识别的委托管理报文转发给数字微波传输设备 CPU; 以及 在所述 NP对应于数字微波传输设备 CPU的以太网端口配置访问控制 列表 ACL和所述私有控制 VLAN,使所述 NP对来自数字微波传输设备 CPU 的委托管理报文进行特征匹配并识别, 并将所识别的委托管理报文发送至 IP传输设备。
上述方案中, 所述方法还包括: 在所述交换芯片对应的所述 NP的以太 网端口配置访问控制列表 ACL和所述私有控制 VLAN, 对来自数字微波传 输设备的委托管理报文进行特征匹配并识别, 并将所识别的委托管理报文 转发给 IP传输设备 CPU; 以及
在所述交换芯片对应的 IP传输设备 CPU的以太网端口配置访问控制列 表 ACL和所述私有控制 VLAN, 对来自 IP传输设备 CPU的委托管理报文 进行特征匹配并识别, 并将所识别的委托管理报文转发给数字微波传输设 备。
上述方案中, 所述方法还包括: 依据嗅探数字微波传输设备工作模式 和数字微波传输设备工作模式切换到委托工作模式, 数字微波传输设备和 IP传输设备之间建立的委托管理通道;
数字微波传输设备和 IP传输设备在委托管理通道建链成功后, 进行委 托管理通道的链路保活处理。
上述方案中, 所述依据嗅探数字微波传输设备工作模式, 数字微波传 输设备和 IP传输设备之间建立的委托管理通道, 包括:
IP传输设备下发工作模式查询报文至数字微波传输设备;
数字微波传输设备收到工作模式查询报文后, 把当前用户配置的工作 模式值通过应答报文形式反馈给 IP传输设备。
上述方案中, 所述依据数字微波传输设备工作模式切换到委托工作模 式, 包括:
IP传输设备给独立工作的数字微波传输设备下发工作模式切换报文; 独立工作的数字微波传输设备响应所述工作模式切换报文, 使用 IP传 输设备分配给它的私有 IP地址更新自身的 CPU以太网控制端口的私有 IP 地址, 并建立数字微波传输设备委托管理通道。
上述方案中, 所述进行委托管理通道之后链路保活处理, 包括: 对方发送的心跳报文进行应答响应;
IP传输设备在链路重新连接之后, 对委托管理的数字微波传输设备进 行配置数据的全同步, 使断链期间用户对数字微波传输设备的预配置进行 重新生效配置。
本发明实施例还提供了一种全室外数字微波传输设备独立和委托通道 管理装置, 所述装置包括:
数字微波传输设备数据通道建立模块, 配置为在数字微波传输设备的
NP与 CPU之间分别建立独立网管数据通道和委托管理数据通道;
IP传输设备数据通道建立模块, 配置为在 IP传输设备的 CPU与交换 芯片之间建立委托管理数据通道;
数据传输模块, 配置为利用所述的独立管理数据通道传输独立工作模 式下网络设备管理系统对数字微波传输设备的网管访问数据, 并利用委托 管理通道传输在委托管理模式下 IP传输设备对数字传输设备的管理控制数 据。
与现有技术相比较, 本发明实施例的有益效果在于: 将对数字微波传 输设备的繁瑣配置和维护委托给 IP传输设备进行操作, 用户只需要在网络 设备管理系统中创建 IP传输设备网元,就可以达到管理 IP传输设备和数字 微波传输设备的目的, 节省了数字微波传输设备网管 IP的规划, 同时网络 拓朴结构更加清晰简单, 方便后期的网络扩容。 此外, 委托管理的方式将 微波传输设备的告警和性能数据都上报到 IP传输设备,由 IP传输设备分析 后再呈现给用户, 节省了用户分析工作量。 附图说明
图 1是本发明实施例一种数字微波传输设备和 IP传输设备内部硬件连 接图;
图 2是本发明实施例一种可独立和委托管理的数字微波传输设备内部 两种网管通道示意图;
图 3 是本发明实施例提供的一种全室外数字微波传输设备独立和委托 通道管理方法的流程图;
图 4是本发明实施例提供的一种全室外数字微波传输设备独立和委托 通道管理装置的功能图;
图 5是本发明实施例的一种数字微波传输设备对数据访问通道、 ACL 规则和端口私有 VLAN配置的流程图;
图 6是本发明实施例的一种 IP传输设备和数字微波传输设备之间的模 式嗅探交互流程示意图;
图 7是本发明实施例的一种 IP传输设备和数字微波传输设备之间的模 式切换交互流程示意图;
图 8是本发明实施例的一种 IP传输设备和数字微波传输设备之间的链 路保活处理流程图;
图 9是本发明实施例的一种数字微波传输设备从委托管理工作模式切 换到独立工作模式流程图。 具体实施方式 当理解, 以下所说明的优选实施例仅用于说明和解释本发明, 并不用于限 定本发明。 本发明实施例的实现方法可以使得全室外数字微波传输设备在支持独 立管理的同时也支持委托管理, 其中独立管理通道对应于全室外数字微波 传输设备单独在末端站点使用时的网管数据访问; 委托管理通道对应于全 室外数字微波传输和 IP传输设备在中继或者汇聚站点组合使用时, IP传输 设备对数字微波传输设备的控制访问, 通过在 IP传输设备和数字微波传输 设备之间协商建立一个委托管理通道, 将对数字微波传输设备的维护管理 委托给 IP传输设备进行, 不再通过网络设备管理系统单独对数字微波传输 设备进行维护管理。
由于 IP传输设备上的处理方式和流程与数字微波传输设备上的处理方 式和流程相同, 则在具体实施方式描述时, 将只描述数字微波传输设备的 实现方式。
图 1为本发明实施例一种数字微波传输设备和 IP传输设备内部硬件连 接图, 如图 1 所示, 全室外数字微波传输设备, 采用一体化全室外系统结 构, 将基带调制解调和射频收发单元全部集成到室外单元之中。 全室外工 作单元(AOU, All Outdoor Unit ) 104包括: 中央处理器 CPU105 , 网络处 理器 NP 106, 调制解调和射频收发 MODEM&RF ( Radio Frequency ) 107。
所述 IP 传输设备 101 包括: 中央处理器 CPU102 和交换芯片 SWITCH103 o
因为微波设备是成对传输数据的, 所以对应的远端网元还有另一个相 同的一体化全室外微波设备和 IP传输设备, 两个站点之间构成一跳微波传 输链路。 本发明实施例只描述本端网元上 IP传输设备与全室外微波设备之 间的独立和委托管理通道的设计方法。
各个硬件器件的功能如下:
中央处理器 CPU102配置为运行 IP传输设备系统软件, 通过接收交换 芯片 SWITCH103转发的网管控制报文完成对 IP传输设备的维护管理; 同 时 CPU102负责产生对 AOU104的委托管理控制数据包, 通过 CPU102与 交换芯片 SWITCH 103之间的接口收发;
交换芯片 SWITCH103配置为 IP传输设备上委托管理控制数据包、 用 户业务数据包、 网管控制数据包的转发, 主要功能包括在面板端口和 CPU 102 之间进行网管控制数据包收发; 在面板端口和网络处理器 NP106 之间进行用户业务数据包收发; 在 CPU102和网络处理器 NP106之间进行 委托管理数据包的收发。
中央处理器 CPU105配置为运行全室外数字微波传输设备系统软件;其 中在独立模式下, 通过接收网络处理器 NP106转发的网管控制报文完成对 AOU104 的网管独立管理功能; 在委托管理模式下, 通过接收网络处理器 NP106转发的 IP传输设备管理报文完成对 AOU104的委托管理功能。
网络处理器 NP106配置为 AOU104上的网管控制数据包 /委托管理控制 数据包、 用户业务数据包、 远端网元网管控制数据包的转发, 主要功能包 括在 SWITCH103和 CPU105之间进行委托管理控制数据包的收发;在交换 芯片 SWITCH103和调制解调和射频收发 MODEM&RF107之间进行控制用 户业务数据包和远端网元网管控制数据包的收发;
调制解调和射频收发单元 MODEM&RF107 配置为微波传输数据的调 制解调和射频收发功能, 其主要功能包括在网络处理器 NP106和对端网元 AOU108之间进行用户业务数据包和远端网元控制数据包的收发。
图 2 为本发明实施例一种可独立和委托管理的数字微波传输设备内部 两种网管通道示意图, 如图 2所示, 通过在 CPU以太网三速增强型控制端 口使用不同的 IP地址和 VLAN分别创建两种数据访问通道来使得数字微波 传输设备可以支持两种不同的管理场景。 其中, 数据流 1表示通过网管 IP 和网管 VLAN创建的第一独立网管数据通道, 主要功能是在独立工作模式 下完成网络设备管理系统对数字微波传输设备的网管访问; 数据流 2表示 通过私有 IP地址和私有控制 VLAN创建的第二委托管理数据通道,其主要 功能是在委托管理模式下提供在 IP传输设备和数字微波传输设备之间交换 管理数据。
具体地说, 一种全室外数字微波传输设备具有两种工作模式, 独立工 作模式和委托管理工作模式。 两种工作模式分别对应于两种网管通道使用 方案, 两种工作模式对外提供配置接口, 允许用户根据数字微波传输设备 的使用场景进行工作模式的选择。 用户对工作模式的配置, 决定了数字微 波传输设备的独立和委托管理通道的建立方式。
对数字微波传输设备的独立和委托管理通道的建立方式是通过在连接 NP106对应的 CPU105器件上的以太网三速增强型控制端口 (ETHERNET TRIPLE- SPEED ENHANCE CONTROLLER, ETSEC )上创建两种数据访问 通道来实现的, 所述两种数据访问通道分为第一独立网管数据通道, 其主 要功能是在独立工作模式下完成网络设备管理系统对数字微波传输设备的 网管访问, 通过分配的网管 IP地址和网管 VLAN进行配置; 第二委托管理 数据通道, 其主要功能是在委托管理工作模式下完成 IP传输设备对数字微 波传输设备的管理控制,通过使用私有 IP地址和私有控制 VLAN进行配置。
图 3 为本发明实施例提供的一种全室外数字微波传输设备独立和委托 通道管理方法的流程图, 如图 3所示, 包括如下步骤:
步骤 301 : 在数字微波传输设备的网络处理器 NP与 CPU之间分别建 立独立网管数据通道和委托管理数据通道;
步骤 302: 在 IP传输设备的 CPU与交换芯片之间建立委托管理数据通 道;
步骤 303:利用所述的独立网管数据通道传输在独立工作模式下网络设 备管理系统对数字微波传输设备的网管访问数据;
步骤 304: 利用委托管理通道传输在委托管理模式下 IP传输设备对数 字微波传输设备的管理控制数据。
在本发明实施例中所述数字微波传输设备工作于不同的使用场景, 在 末端接入站点, 全室外数字微波传输设备与基站直接连接, 使用独立的工 作模式, 由网络设备管理系统通过独立网管数据通道直接管理数字微波传 输设备; 在中继站点或者汇聚站点, 全室外数字微波传输设备与 IP传输设 备组合使用, 通过委托管理通道来完成对数字微波传输设备的管理。
通过在数字微波传输设备中的 CPU以太网控制端口配置所分配的网管 IP地址和网管 VLAN, 建立数字微波传输设备的网络处理器 NP与 CPU之 间的独立网管数据通道; 通过在数字微波传输设备中的 CPU以太网控制端 口配置私有 IP地址和私有控制 VLAN,建立数字微波传输设备的 NP与 CPU 之间的委托管理数据通道。
此外,还有通过在 IP传输设备交换单元的 CPU以太网控制端口配置私 有 IP地址和私有控制 VLAN, 建立 IP传输设备交换单元 CPU与交换芯片 之间的委托管理数据通道。
本发明实施例还包括:通过在所述 NP对应于所述交换芯片的以太网端 口配置访问控制列表 ACL和所述私有控制 VLAN,使所述 NP对来自 IP传 输设备委托管理报文特征进行匹配, 由此识别委托管理报文, 并将所识别 的委托管理报文转发给数字微波传输设备 CPU; 以及通过在所述 NP对应 于数字微波传输设备 CPU的以太网端口配置访问控制列表 ACL和所述私 有控制 VLAN, 使所述 NP对来自数字微波传输设备 CPU的委托管理报文 特征进行匹配, 由此识别委托管理报文, 并将所识别的委托管理报文转发 给 IP传输设备。
通过在所述交换芯片对应于所述 NP 的以太网端口配置访问控制列表 ACL和所述私有控制 VLAN, 对来自数字微波传输设备的委托管理报文特 征进行匹配, 由此识别委托管理报文, 并将所识别的委托管理报文转发给 IP传输设备 CPU; 以及通过在所述交换芯片对应于 IP传输设备 CPU的以 太网端口配置访问控制列表 ACL和所述私有控制 VLAN, 对来自 IP传输 设备 CPU的委托管理报文特征进行匹配, 由此识别委托管理报文, 并将所 识别的委托管理报文转发给数字微波传输设备。
本发明实施例还包括: 数字微波传输设备和 IP传输设备之间建立的委 托管理通道是通过嗅探数字微波传输设备工作模式和数字微波传输设备工 作模式切换到委托工作模式两个过程来实现; 数字微波传输设备和 IP传输 设备在委托管理通道建链成功后, 进行委托管理通道的链路保活处理。
图 4 为本发明实施例提供的一种全室外数字微波传输设备独立和委托 通道管理装置的功能图, 如图 4所示, 包括:
数字微波传输设备数据通道建立模块 401,配置为在数字微波传输设备 的网络处理器 NP与 CPU之间分别建立独立网管数据通道和委托管理数据 通道;
IP传输设备数据通道建立模块 402,配置为在 IP传输设备的 CPU与交 换芯片之间建立委托管理数据通道;
数据传输模块 403,配置为利用所述的独立网管数据通道传输在独立工 作模式下网络设备管理系统对数字微波传输设备的网管访问数据, 并利用 委托管理通道传输在委托管理模式下 IP传输设备对数字微波传输设备的管 理控制数据。
在实际应用中,所述数字微波传输设备数据通道建立模块 401、 IP传输 设备数据通道建立模块 402及数据传输模块 403均可由 CPU、 或数字信号 处理(DSP, Digital Signal Processor ), 或现场可编程门阵列 ( FPGA, Field Programmable Gate Array )等来实现; 所述 CPU、 DSP 、 FPGA均可内置于 网络侧中。
图 5 为本发明实施例的一种数字微波传输设备对数据访问通道、 ACL 规则和端口私有 VLAN 配置的流程图, 如图 5 所示, 数字微波传输设备 AOU104 能够对委托管理报文进行收发处理, 需要在 SWITCH103 对应的 NP 106上的以太网端口配置私有控制 VLAN,同时配置访问控制列表 ACL, 通过对委托管理报文的特征进行匹配来识别委托管理报文, 并将识别后的 委托管理报文通过 NP106 芯片提供的重定向 (REDIRECT ) 功能转发到 CPU 105上的软件模块内处理; 在 CPU105对应的 NP106上的以太网端口 配置私有控制 VLAN, 同时配置访问控制列表 ACL, 通过对 AOU104软件 处理后的委托管理应答报文的特征进行匹配来识别委托管理应答报文, 并 将识别后的委托管理应答报文通过 NP106芯片提供的重定向(REDIRECT ) 功能从 NP106上连接 IP传输设备的端口上的发送出去。
IP传输设备 101能够收发委托管理报文, 需要在连接 SWITCH103对 应的 CPU 102器件上的以太网三速增强型控制端口 ETSEC上创建委托管理 数据通道, 通过使用私有 IP 地址和私有控制 VLAN 进行配置。 为了使 SWITCH103 可以收发委托管理报文, 需要在 SWITCH103 器件上连接 NP106的以太网端口配置私有控制 VLAN; 配置访问控制列表 ACL, 通过 对委托管理应答报文的特征进行匹配来识别委托管理应答报文, 并将识别 后的委托管理应答报文通过 SWITCH103芯片提供的重定向 (REDIRECT ) 功能转发到 CPU102 上的软件模块内处理。 在 SWITCH103 器件上连接 CPU 102的以太网端口配置私有控制 VLAN; 配置访问控制列表 ACL, 通 过对委托管理报文的特征进行匹配来识别委托管理报文, 并将识别后的委 托管理报文通过 SWITCH103芯片提供的重定向(REDIRECT )功能从连接 AOU104的端口直接发送出去。
具体包括以下步骤:
步骤 501, 调用 NP芯片 VLAN功能和 ACL功能初始化接口, 完成 NP 芯片的 VLAN功能和 ACL功能初始化配置。 步骤 502, 在 NP芯片上面板上的用户端口添加私有控制 VLAN, 此实 施例中使用 VLAN4095作为私有控制 VLAN, 这样用户可以使用的 VLAN 范围仍然为 1〜4094, 考虑到设计扩展性时, 可以通过提供接口, 允许用户 配置私有控制 VLAN, 设置面板上的用户端口对以太网数据包的出口标签 动作为有标签 TAGGED。
步骤 503, 在 NP芯片上连接 CPU的端口添加私有控制 VLAN, 此实 施例中使用 VLAN4095作为私有控制 VLAN, 这样用户可以使用的 VLAN 范围仍然为 1〜4094, 考虑到设计扩展性时, 可以通过提供接口, 允许用户 配置私有控制 VLAN, 设置该端口对以太网数据包的出口标签动作为有标 签 TAGGED。
步骤 504, 在 NP芯片上处理委托管理报文的端口添加 ACL规则。 ACL添加规则和动作如下:
1、为了在数字微波传输设备 NP芯片内部识别 IP传输设备的模式嗅探 和模式切换报文,在 NP芯片上连接 IP传输设备的端口添加 ACL规则和动 作:
(目的媒体接入控制地址(MAC, Media Access Control )地址 ==广播地 址) && (VLAN==4095), 则数据包 REDIRECT to CPU。
2、为了在数字微波传输设备 NP芯片内部识别 IP传输设备在委托管理 通道建立后的管理报文,在 NP芯片上连接 IP传输设备的端口添加 ACL规 则和动作:
(源 IP地址 ==IP传输设备私有 IP地址) && (VLAN==4095),则数据包 REDIRECT to CPU。
3、为了将数字微波设备软件处理后的应答报文发送到 IP传输设备,在 NP芯片上连接 CPU的端口上添加 ACL规则和动作:
((目的 IP地址 ==IP传输设备私有 IP地址) && (VLAN==4095)) || ((目的 IP地址 ==其他 AOU传输设备私有 IP地址) && (VLAN==4095)), 则数据包 REDIRECT到 NP芯片上连接 IP传输设备的端口发送出去。
步骤 505, 在 CPU上连接 NP的以太网三速增强型控制端口 (ETSEC ) 上, 使用固定私有 IP地址 192.168.0.1 (掩码 255.255.255.0 )和私有控制 VLAN4095创建第二委托管理数据通道。使用 vconfig配置命令, 将私有 IP 地址和私有控制 VLAN在 ETSEC物理网卡上添加一个虚拟网卡,完成第二 委托管理通道配置。
步骤 506,从数据库中获取用户配置的数字微波传输设备当前的工作模 式。
步骤 507, 判断数字微波传输设备的当前工作模式是否为独立工作模 式, 如果不是独立工作模式, 则当前工作模式为委托管理模式, 则流程结 束; 如果当前工作模式为独立工作模式, 则转步骤 508。
步骤 508, 从数据库中获取用户配置的网管 IP地址和网管 VLAN。 步骤 509, 在 CPU上连接 NP的以太网三速增强型控制端口 (ETSEC ) 上,使用网管 IP地址和网管 VLAN创建第一委托管理数据通道。使用 vconfig 配置命令, 将网管 IP地址和网管 VLAN在 ETSEC物理网卡上再添加一个 虚拟网卡, 完成第一委托管理通道配置。
下面结合图 6和图 7具体说明通过在 IP传输设备与数字微波传输设备 之间互发委托管理报文进行协商建立的委托管理通道, 该协商过程包括模 式嗅探和模式切换两个过程。
图 6为本发明实施例的一种 IP传输设备和数字微波传输设备之间的模 式嗅探交互流程示意图, 如图 6所示, IP传输设备主动给连接的数字微波 传输设备下发工作模式查询报文; 数字微波传输设备收到工作模式查询报 文后, 把当前用户配置的工作模式值(独立工作模式或者委托管理工作模 式)通过应答报文形式反馈给 IP 传输设备。 模式嗅探报文的特征在于其 MAC地址为全 FF, VLAN值为私有控制 VLAN。 模式嗅探采用周期发送 报文的形式, 一旦委托管理通道建立成功, 心跳保活报文可以正常交互后, 停止发送模式嗅探报文。
具体包括如下步骤:
步骤 601, 数字微波传输设备在独立模式或者委托管理模式下正常工 作, 并且数字微波传输设备 NP芯片上的端口 A与 IP传输设备某一个以太 网端口 B连接。
步骤 602,用户配置 IP传输设备上 SWITCH芯片端口 B委托管理使能。 步骤 603,委托管理模块收到端口 B配置使能消息之后,给报文管理模 块发送模式嗅探消息。
步骤 604, 报文管理模块构造模式嗅探报文, 该报文的目的 MAC字段 为 FF:FF:FF:FF:FF:FF, 源 MAC为 IP设备 CPU端口对应的 MAC地址; VLAN 字段的 VLAN 标识为私有控制 VLAN6095; 目的 IP 地址字段为 255.255.255.255, 源 IP地址字段为 IP设备 CPU端口私有 IP地址; IP报文 内容字段为询问数字微波传输设备当前工作模式; IP报文内容尾部字段添 加鉴权码; 报文管理模块通过 SWITCH芯片的指定端口发送报文功能, 将 模式嗅探报文通过端口 B发送出去。 此步骤周期性进行, 直到报文管理模 块收到了模式嗅探报文为止。
步骤 605, 微波传输设备上 NP芯片的端口 A的 VLAN和 ACL规则对 模式嗅探报文进行识别处理, 匹配到的模式嗅探报文通过 CPU上 ETSEC 网卡第二委托管理数据通道上送到报文管理模块。
步骤 606, 报文管理模块解析模式嗅探报文的 IP内容字段, 解析出该 报文类型为模式嗅探报文, 然后通过 IP内容尾部中的校验字节完成委托管 理报文鉴权功能, 并且报文管理模块将报文中的源 IP地址和源 MAC地址 信息保存到本地的静态 ARP(Address Resolution Protocol)表中, 这样在委托 管理通道建立之后,可以方便 IP传输设备和数字微波传输设备之间的 IP通 信。
步骤 607,报文管理模块给委托管理模块发送获取当前工作模式请求消 息。
步骤 608,委托管理模块从数据库中获取当前数字微波传输设备工作模 式配置值, 发送到报文管理模块。
步骤 609, 报文管理模块构造模式嗅探应答报文, 该报文的目的 MAC 字段为 FF:FF:FF:FF:FF:FF, 源 MAC为数字微波传输设备第二委托管理数 据通道的 MAC地址; VLAN字段的 VLAN标识为控制 VLAN6095; 目的 IP地址字段为 255.255.255.255, 源 IP地址字段为数字微波传输设备第二委 托管理数据通道的私有 IP地址; 报文内容字段为数字微波传输设备工作模 式配置值;报文通过 NP芯片提供的指定端口发包功能从 NP上的端口 A直 接发送出去。
步骤 610, IP传输设备上 SWITCH芯片端口 B的 VLAN和 ACL规则 对模式嗅探应答报文进行识别处理, 匹配到的模式嗅探应答报文通过 CPU 上 ETSEC网卡委托管理数据通道上送到报文管理模块。
步骤 611, IP传输设备上报文管理模块给委托管理模块发送获取的数字 微波传输设备当前工作模式值消息。
步骤 612, IP传输设备上委托管理模块将获取的数字微波传输设备工作 模式呈现到 IP传输设备端口配置页面上。
图 7为本发明实施例的一种 IP传输设备和数字微波传输设备之间的模 式切换交换流程示意图, 如图 7所示, 通过 IP传输设备给独立工作的数字 微波传输设备下发工作模式切换报文; 独立工作的数字微波传输设备将使 用 IP传输设备分配给它的私网 IP地址更新第二委托管理通道,完成委托管 理通道 IP地址配置, 然后数字微波传输设备对硬件进行复位, 等待 IP传输 设备数据库中的参数全同步配置, 一旦配置参数完成全同步配置之后, 独 立工作的数字微波传输设备切换到委托管理工作模式工作。 模式切换报文 的特征在于其 MAC地址为全 FF, VLAN值为私有控制 VLAN。
具体包括如下步骤:
步骤 701, 数字微波传输设备工作模式为独立模式, 并且用户配置修改 数字微波传输设备工作模式为委托管理工作模式;数字微波传输设备 NP芯 片上的端口 A与 IP传输设备某一个以太网端口 B连接。
步骤 702, 委托管理模块接收用户配置参数后, 给报文管理模块发送模 式切换消息。
步骤 703, 报文管理模块构造模式切换报文, 该报文的目的 MAC字段 为 FF:FF:FF:FF:FF:FF, 源 MAC为 IP设备 CPU端口对应的 MAC地址; VLAN 字段的 VLAN 标识为私有控制 VLAN4097; 目的 IP 地址字段为 277.277.277.277, 源 IP地址字段为 IP设备 CPU端口私有 IP地址; IP报文 内容字段为切换数字微波传输设备当前工作模式为委托管理工作模式; IP 报文内容尾部字段添加鉴权码; 报文管理模块通过 SWITCH芯片的指定端 口发送报文功能, 将模式切换报文通过端口 B发送出去。
步骤 704, 微波传输设备上 NP芯片的端口 A的 VLAN和 ACL规则对 模式切换报文进行识别处理, 匹配到的模式切换报文通过 CPU上 ETSEC 网卡第二委托管理数据通道上送到报文管理模块。
步骤 705,数字微波传输设备上的报文管理模块解析模式切换报文的 IP 内容字段, 解析出该报文类型为模式切换报文, 然后通过 IP内容尾部中的 校验字节完成委托管理报文鉴权功能, 并且报文管理模块将报文中的源 IP 地址和源 MAC地址信息保存到本地的静态 ARP表中。
步骤 706,数字微波传输设备上的报文管理模块将配置的委托管理工作 模式和 IP报文中预分配给数字微波传输设备委托管理通道的私有 IP地址发 送给数字微波传输设备上的委托管理模块。
步骤 707,数字微波传输设备上的委托管理模块将配置的工作模式保存 到数据库中, 然后调用配置管理模块提供的配置接口, 将预分配给第二委 托管理通道的私有 IP地址更新配置到第二委托管理通道。
步骤 708,数字微波传输设备上的委托管理模块给报文管理模块发送模 式切换成功消息。
步骤 709, 数字微波传输设备上的报文管理模块构造模式切换应答报 文, 该报文的目的 MAC字段为模式切换报文中的 IP设备源 MAC地址, 源 MAC为数字微波传输设备第二委托管理数据通道的 MAC地址; VLAN 字段的 VLAN标识为控制 VLAN4097; 目的 IP地址字段为模式切换报文中 IP设备源 IP地址, 源 IP地址字段为数字微波传输设备第二委托管理数据 通道的私有 IP地址; 报文内容字段为模式切换成功; 报文通过 NP芯片提 供的指定端口发包功能从 NP上的端口 A直接发送出去。
步骤 710, IP传输设备上的报文管理模块收到切换成功报文,解析报文 IP 内容后, 给委托管理模块发送模式切换成功消息; 同时报文管理模块组 织构造心跳保活报文,该报文的目的 MAC字段为微波传输设备第二委托管 理通道的 MAC, 源 MAC为 IP设备 CPU端口对应的 MAC地址; VLAN 字段的 VLAN标识为私有控制 VLAN4097; 目的 IP地址字段为数字微波传 输设备第二委托管理通道私有 IP地址, 源 IP地址字段为 IP设备 CPU端口 私有 IP地址; IP报文内容字段为心跳保活标识;报文通过 SWITCH芯片的 指定端口发送功能从端口 B发送出去。
步骤 711, 数字微波传输设备上的报文管理模块构造心跳保活报文, 该 报文的目的 MAC字段为 IP传输设备委托管理通道的 MAC, 源 MAC为数 字微波传输设备第二委托管理通道对应的 MAC地址; VLAN字段的 VLAN 标识为私有控制 VLAN4097; 目的 IP地址字段为 IP传输设备 CPU端口私 有 IP地址, 源 IP地址字段为数字微波传输设备第二委托管理通道私有 IP 地址; IP报文内容字段为心跳保活标识; 报文通过 NP芯片的指定端口发 送功能从端口 A发送出去。
上述步骤进行完成之后, 委托管理通道建立成功。 IP传输设备和数字 微波传输设备在委托管理通道建立之后, 进行的消息发送都通过报文管理 模块构造的单播报文传输, 报文头部字段的结构类型步骤 710和步骤 711 中的报文头部字段描述。
步骤 712, IP传输设备上的报文管理模块周期性发送心跳保活报文, 并 对对方发送的心跳保活报文进行应答。
步骤 713,数字微波传输设备上的报文管理模块周期性发送心跳保活报 文, 并对对方发送的心跳保活报文进行应答。
步骤 714, 数字微波传输设备上的委托管理模块给 IP传输设备发送全 同步请求。
步骤 715, IP传输设备上委托管理模块从数据库中获取数字微波传输设 备配置参数, 逐项发送通过委托管理通道发送到数字微波传输设备进行配 置。
图 8为本发明实施例的一种 IP传输设备和数字微波传输设备之间的链 路保活处理流程图, 如图 8所示, 在 IP传输设备与数字微波传输设备委托 管理通道建立之后, 需要对委托管理通道链路进行链路保活。 链路保活过 程指的是: IP传输设备和数字微波传输设备周期性的向对方发送心跳报文, 并对对方发送的心跳报文进行应答响应; IP传输设备在链路重新连接之后, 对委托管理的数字微波传输设备进行配置数据的全同步, 以便将断链期间 用户对数字微波传输设备的预配置进行重新生效配置。
具体地说, 在建立委托管理通道之后, IP传输设备和数字微波传输设 备周期性的向对方发送心跳报文, 并对对方发送的心跳报文进行应答响应。 一旦数字微波传输设备收不到自己发送的心跳报文的应答报文, 则数字微 波传输设备认为委托管理链路通道中断, 停止发送自己的心跳报文, 被动 等待 IP传输设备的模式嗅探和模式切换过程以便重新建立委托管理链路; IP传输设备在收不到自己发送的心跳报文的应答报文时, 将停止发送自己 的心跳报文, 转而开始模式嗅探过程以便再次重新建立委托管理链路。 当 委托管理链路重新恢复建立后, 数字微波传输设备要向 IP传输设备发起配 置数据全同步要求, 将断链期间用户在 IP传输设备上对数字微波传输设备 的预配置都重新生效; 同时数字微波传输设备将断链期间自己产生的告警 和性能上报数据补报给 IP传输设备。
具体包括如下步骤:
步骤 801, IP传输设备上的报文管理模块周期性发送心跳保活报文, 并 对对方发送的心跳保活报文进行应答。
步骤 802,数字微波传输设备上的报文管理模块周期性发送心跳保活报 文, 并对对方发送的心跳保活报文进行应答。
步骤 803, 由于链路中断, IP传输设备上的报文管理模块收不到对方对 自己发送的心跳保活报文的应答报文。
步骤 804, 由于链路中断, 数字微波传输设备上的报文管理模块收不到 对方对自己发送的心跳保活报文的应答报文。
步骤 805,数字微波传输设备上的报文管理模块停止发送自己的心跳保 活报文, 上报链路中断消息给委托管理模块, 委托管理模块通知其他软件 模块停止需要上报的数据服务。
步骤 806, IP传输设备上的报文管理模块停止发送自己的心跳保活报 文, 上报链路中断消息给委托管理模块, 委托管理模块设置数字微波传输 设备为不可用状态; 报文管理模块又重新开始发送模式嗅探报文给数字微 波传输设备。 如果链路没有恢复, 则周期性发送模式嗅探报文。 步骤 807, 数字微波传输设备安装模式嗅探处理流程, 发送模式嗅探应 答报文。
步骤 808, IP传输设备开始模式切换处理流程处理。
步骤 809, 数字微波传输设备开始切换报文处理流程。
图 9 为本发明实施例的一种数字微波传输设备从委托管理工作模式切 换到独立工作模式流程图, 如图 9所示, 当委托管理的数字微波传输设备 收到切换到独立工作模式配置消息后, 将对现有硬件进行复位, 使用数字 微波传输设备上的数据库中的配置参数对硬件进行重新配置, 切换到独立 工作模式。
具体包括如下步骤:
步骤 901, 数字微波传输设备收到切换到独立模式的配置消息。
步骤 902,委托管理模块从数据库中获取当前数字微波传输设备的工作 模式值。
步骤 903, 委托管理模块判断当前的工作模式是否为独立模式, 若为独 立模式, 则流程结束; 若不是独立模式, 则转步骤 904。
步骤 904, 委托管理模块将工作模式配置参数保存到数据库中。
步骤 905, 委托管理模块给报文管理模块发送消息, 让其停止发送心跳 保活报文。
步骤 906, 报文管理模块停止发送心跳保活消息, 并通知委托管理停发 心跳保活消息配置成功。
步骤 907, 委托管理模块调用硬件复位接口, 将硬件原有配置删除。 步骤 908, 委托管理模块从本地数据库中获取配置参数, 对硬件重新配 置, 完成独立模式下参数配置。
由于运营商在中继或者汇聚节点采购设备时, 一般都会使用同一个设 备供应商的传输设备, 所以设备供应商在设计 IP传输设备和数字微波传输 设备时按照本发明实施例的设计方式, 可以给运营商提供更加灵活的数字 微波传输设备管理方式。
综上所述, 本发明实施例通过将对数字微波传输设备的繁瑣配置和维 护委托给 IP传输设备进行操作, 用户只需要在网络设备管理系统中创建 IP 传输设备网元, 就可以达到同时管理 IP传输设备和数字微波传输设备的目 的, 节省了数字微波传输设备网管 IP的规划, 同时网络拓朴结构更加清晰 简单, 方便后期的网络扩容。 此外, 委托管理的方式将微波传输设备的告 警和性能数据都上报到 IP传输设备, 由 IP传输设备分析后再呈现给用户, 节省了用户分析工作量。
尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本技术领 域技术人员可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原 理所作的修改, 都应当理解为落入本发明的保护范围。

Claims

权利要求书
1、 一种全室外数字微波传输设备独立和委托通道管理方法, 通过全室 外数字微波传输设备与 IP传输设备组合完成业务传输; 所述数字微波传输 设备包括: 网络处理器 NP与中央处理器 CPU; 所述网际协议 IP传输设备 包括: CPU与交换芯片; 所述方法包括:
在数字微波传输设备的 NP与 CPU之间分别建立独立网管数据通道和 委托管理数据通道;
在 IP传输设备的 CPU与交换芯片之间建立委托管理数据通道; 利用所述的独立网管数据通道传输在独立工作模式下数字微波传输设 备的网管访问数据;
利用委托管理通道传输在委托管理模式下数字微波传输设备的管理控 制数据。
2、 根据权利要求 1所述的方法, 其中, 所述数字微波传输设备位于接 入站点末端时, 与基站直接连接, 使用独立的工作模式, 通过所述独立网 管数据通道, 网络设备管理系统对数字微波传输设备进行管理;
所述数字微波传输设备位于中继站点或者汇聚站点时, 通过所述委托 管理通道, IP传输设备对数字微波传输设备进行管理。
3、 根据权利要求 1 所述的方法, 其中, 所述在数字微波传输设备的 NP与 CPU之间建立独立网管数据通道, 包括:
通过在数字微波传输设备中的 CPU以太网控制端口配置网管 IP地址和 网管虚拟局域网 VLAN, 建立数字微波传输设备的网络处理器 NP与 CPU 之间的独立网管数据通道。
4、 根据权利要求 1 所述的方法, 其中, 所述在数字微波传输设备的 NP与 CPU之间建立委托管理数据通道, 包括:
通过在数字微波传输设备中的 CPU以太网控制端口配置私有 IP地址和 私有控制 VLAN, 建立数字微波传输设备的 NP与 CPU之间的委托管理数 据通道。
5、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
通过在 IP传输设备的 CPU以太网控制端口配置私有 IP地址和私有控 制 VLAN, 建立 IP传输设备 CPU与交换芯片之间的委托管理数据通道。
6、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
在所述 NP对应的所述交换芯片的以太网端口配置访问控制列表 ACL 和所述私有控制 VLAN, 使所述 NP对来自 IP传输设备委托管理报文进行 特征匹配并识别, 并将所识别的委托管理报文发送至数字微波传输设备的 CPU; 以及
在所述 NP对应的数字微波传输设备 CPU的以太网端口配置访问控制 列表 ACL和所述私有控制 VLAN,使所述 NP对来自数字微波传输设备 CPU 的委托管理报文进行特征匹配并识别, 并将所识别的委托管理报文发送至 IP传输设备。
7、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
在所述交换芯片对应的所述 NP的以太网端口配置访问控制列表 ACL 和所述私有控制 VLAN, 对来自数字微波传输设备的委托管理报文进行特 征匹配并识别, 并将所识别的委托管理报文发送至 IP传输设备 CPU; 以及 在所述交换芯片对应的 IP传输设备 CPU的以太网端口配置访问控制列 表 ACL和所述私有控制 VLAN, 对来自 IP传输设备 CPU的委托管理报文 进行特征匹配并识别, 并将所识别的委托管理报文发送至数字微波传输设 备。
8、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
依据嗅探数字微波传输设备工作模式和数字微波传输设备工作模式切 换到委托工作模式, 数字微波传输设备和 IP传输设备之间建立的委托管理 通道;
数字微波传输设备和 IP传输设备在委托管理通道建链成功后, 进行委 托管理通道的链路保活处理。
9、 根据权利要求 8所述的方法, 其中, 所述依据嗅探数字微波传输设 备工作模式, 数字微波传输设备和 IP传输设备之间建立的委托管理通道, 包括:
IP传输设备下发工作模式查询报文至数字微波传输设备;
数字微波传输设备收到工作模式查询报文后, 把当前用户配置的工作 模式值通过应答报文形式反馈给 IP传输设备。
10、 根据权利要求 8 所述的方法, 其中, 所述依据数字微波传输设备 工作模式切换到委托工作模式, 包括:
IP传输设备给独立工作的数字微波传输设备下发工作模式切换报文; 独立工作的数字微波传输设备响应所述工作模式切换报文, 使用 IP传 输设备分配给它的私有 IP地址更新自身的 CPU以太网控制端口的私有 IP 地址, 并建立数字微波传输设备委托管理通道。
11、根据权利要求 8所述的方法, 其中, 所述进行委托管理通道的链路 保活处理, 包括: 对方发送的心跳报文进行应答响应;
IP传输设备在链路重新连接之后, 对委托管理的数字微波传输设备进 行配置数据的全同步, 使断链期间用户对数字微波传输设备的预配置进行 重新生效配置。
12、 一种全室外数字微波传输设备独立和委托通道管理装置, 所述装 置包括:
数字微波传输设备数据通道建立模块, 配置为在数字微波传输设备的 NP与 CPU之间分别建立独立网管数据通道和委托管理数据通道;
IP传输设备数据通道建立模块, 配置为在 IP传输设备的 CPU与交换 芯片之间建立委托管理数据通道;
数据传输模块, 配置为利用所述的独立管理数据通道传输独立工作模 式下数字微波传输设备的网管访问数据, 并利用委托管理通道传输在委托 管理模式下数字传输设备的管理控制数据。
PCT/CN2013/084219 2012-11-15 2013-09-25 全室外数字微波传输设备独立和委托通道管理方法及装置 WO2014075517A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES13854857T ES2925600T3 (es) 2012-11-15 2013-09-25 Un método de gestión de canales para un dispositivo y un sistema de transmisión de microondas digital totalmente para exteriores
EP13854857.3A EP2922211B1 (en) 2012-11-15 2013-09-25 A channel management method for an all outdoor digital microwave transmission device and a system.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210460122.XA CN103812684B (zh) 2012-11-15 2012-11-15 一种全室外数字微波传输设备独立和委托管理通道的实现方法及装置
CN201210460122.X 2012-11-15

Publications (1)

Publication Number Publication Date
WO2014075517A1 true WO2014075517A1 (zh) 2014-05-22

Family

ID=50708926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084219 WO2014075517A1 (zh) 2012-11-15 2013-09-25 全室外数字微波传输设备独立和委托通道管理方法及装置

Country Status (4)

Country Link
EP (1) EP2922211B1 (zh)
CN (1) CN103812684B (zh)
ES (1) ES2925600T3 (zh)
WO (1) WO2014075517A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493037A (zh) * 2019-07-31 2019-11-22 瑞斯康达科技发展股份有限公司 一种网络管理方法、装置和系统、计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428761B (zh) * 2017-09-04 2021-06-25 凌云天博光电科技股份有限公司 一种基于网络管理系统的网络可用性分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141094A1 (en) * 2007-05-10 2008-11-20 Comsys Communication & Signal Processing Ltd. Multiple-input multiple-output (mimo) detector incorporating efficient signal point search and soft information refinement
CN101552679A (zh) * 2008-03-31 2009-10-07 中兴通讯股份有限公司 用户前端设备
CN101945491A (zh) * 2009-07-09 2011-01-12 中兴通讯股份有限公司 宽带网络接入方法及接入服务器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630212A (en) * 1994-03-28 1997-05-13 P-Com, Inc. Microwave radio system with software configuration of operating parameters
CN102480413B (zh) * 2010-11-24 2015-05-20 中兴通讯股份有限公司 数字微波设备、网络及网管数据传输方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141094A1 (en) * 2007-05-10 2008-11-20 Comsys Communication & Signal Processing Ltd. Multiple-input multiple-output (mimo) detector incorporating efficient signal point search and soft information refinement
CN101552679A (zh) * 2008-03-31 2009-10-07 中兴通讯股份有限公司 用户前端设备
CN101945491A (zh) * 2009-07-09 2011-01-12 中兴通讯股份有限公司 宽带网络接入方法及接入服务器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2922211A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493037A (zh) * 2019-07-31 2019-11-22 瑞斯康达科技发展股份有限公司 一种网络管理方法、装置和系统、计算机可读存储介质

Also Published As

Publication number Publication date
ES2925600T3 (es) 2022-10-18
CN103812684A (zh) 2014-05-21
EP2922211B1 (en) 2022-07-13
EP2922211A1 (en) 2015-09-23
EP2922211A4 (en) 2015-12-09
CN103812684B (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
US10009267B2 (en) Method and system for controlling an underlying physical network by a software defined network
US7733859B2 (en) Apparatus and method for packet forwarding in layer 2 network
US10098164B2 (en) System and methods for providing virtualized cloud peering emulation services
US20070064673A1 (en) Flexible, scalable, wireless data forwarding and mobility for secure wireless networks
CN102625325B (zh) 一种无线网络部署方法和无线接入点
KR102543905B1 (ko) 5G Ethernet service를 제공하는 방법 및 장치
WO2016177030A1 (zh) Sdn网络设备建链方法、设备和系统
AU2014261983B2 (en) Communication managing method and communication system
TWI639325B (zh) 自動配置的交換機、自動配置交換機的方法、交換機自動部署的軟體定義網路系統及其方法
WO2012100509A1 (zh) 自动发现同轴宽带接入头端的方法、管理方法及系统
JP6218166B2 (ja) 基地局間ハンドオーバ方法
WO2011091696A1 (zh) 相邻基站连接的建立方法、建立设备和建立系统
CN109361558B (zh) 基于栅格网络设备代理节点的分布式无线自组网管理方法
CN103200283A (zh) 多中继无线通信系统及该系统空中接口ip化的实现方法
EP3583751B1 (en) Method for an improved deployment and use of network nodes of a switching fabric of a data center or within a central office point of delivery of a broadband access network of a telecommunications network
EP3632081B1 (en) Session layer communications using an id-oriented network
WO2011137621A1 (zh) 管理分布式基站的方法和装置
KR102366156B1 (ko) 협대역 무선 통신 시스템을 위한 네트워크 중계 시스템 및 데이터 전송 방법
WO2014075517A1 (zh) 全室外数字微波传输设备独立和委托通道管理方法及装置
WO2021120285A1 (zh) Profinet协议在工业sdn中的接入方法
JP5976571B2 (ja) 無線lanルータ
Gawłowicz et al. Nxwlan: Neighborhood extensible wlan
TWI511496B (zh) 無線通訊系統與管理方法
Owada et al. An Implementation of layer 2 overlay mesh network and edge computing platform for IoT
WO2017119219A1 (ja) 通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013854857

Country of ref document: EP