WO2014075402A1 - 微机械磁场传感器及其应用 - Google Patents

微机械磁场传感器及其应用 Download PDF

Info

Publication number
WO2014075402A1
WO2014075402A1 PCT/CN2013/071256 CN2013071256W WO2014075402A1 WO 2014075402 A1 WO2014075402 A1 WO 2014075402A1 CN 2013071256 W CN2013071256 W CN 2013071256W WO 2014075402 A1 WO2014075402 A1 WO 2014075402A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
field sensor
resonant
resonant oscillator
anchor point
Prior art date
Application number
PCT/CN2013/071256
Other languages
English (en)
French (fr)
Inventor
熊斌
吴国强
徐德辉
王跃林
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Publication of WO2014075402A1 publication Critical patent/WO2014075402A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0286Electrodynamic magnetometers comprising microelectromechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers

Definitions

  • the invention belongs to the technical field of design and detection of micro-mechanical magnetic field sensors, and relates to a magnetic field sensor, in particular to a micro-mechanical magnetic field sensor and its circuit structure working in an expanded mode. Background technique
  • the magnetic field sensor can be divided into: superconducting quantum interference magnetic field sensor, Hall magnetic field sensor, fluxgate magnetometer, giant magnetoresistive magnetic field sensor and induction coil magnetic field sensor.
  • the superconducting quantum interference magnetic field sensor has the highest sensitivity among all magnetic field sensors, but its structure is complex, bulky, expensive, and needs to work in a low temperature environment.
  • the Hall magnetic field sensor has low power consumption and small size, and can measure static or dynamic magnetic fields. However, its sensitivity is low, noise level and static offset are large; fluxgate magnetometer is used to measure static or slowly changing magnetic field, high resolution, low power consumption, but large volume and low frequency response; giant magnetoresistance Magnetic field sensors are highly sensitive, but cannot measure large magnetic fields.
  • Inductive coil magnetic field sensors are based on Faraday's law of electromagnetic induction to detect changing magnetic fields. They have low power consumption and simple structure (AL Herrera- May, LA Aguilera-Corts, PJ Garca- Ramrez and E. Manjarrez, "Resonant magnetic field sensors based on MEMS technology", Sensors, vol. 9, no. 10, pp. 7875-7813, 2009. ).
  • MEMS Micro Electro Mechanical System
  • CMOS IC Complementary Metal Oxide Semiconductor Integrated Circuit
  • MEMS magnetic field sensors have the advantages of small size, light weight, low power consumption, low cost, high reliability, excellent performance and powerful functions that are unmatched by traditional sensors.
  • the development of MEMS technology has enabled micro-structure processing on the chip, while reducing the cost of MEMS, and can also accomplish tasks that many large-scale electromechanical systems cannot perform, thus promoting the development of magnetic field sensors.
  • the main working principle of the magnetic field sensor of the MEMS structure is: After the Lorentz force of the induction coil of the current is subjected to the magnetic field, the structure of the support coil is bent or twisted, and the method of capacitance detection or piezoresistive detection, optical detection, etc.
  • the magnitude of the magnetic field signal can be detected by measuring the amount of torsional deformation or the amount of bending deformation of the supporting coil structure.
  • These devices typically have inductive coils fabricated on cantilever beams, U-beams, or plates that can be bent or twisted. Device When working, place the device in a magnetic field and apply current to the induction coil.
  • the induction coil is subjected to Lorentz forces, which cause bending or torsion of the cantilever beam, U-beam or plate.
  • Lorentz forces By measuring the amount of bending or the amount of twist of the cantilever beam, U-beam or plate, the magnitude of the magnetic field can be detected.
  • these devices all need to pass current to the induction coil, their power consumption is relatively large; in addition, these devices generally operate in a bending mode or a torsional mode, and thus they operate at a lower resonance frequency.
  • the MEMS-structured magnetic field sensor can also be implemented by loading a metal coil on a resonant oscillator structure operating in an expanded mode (in the case of a bulk mode).
  • the resonant resonator may be a square plate, a circular plate or a circular plate structure.
  • Figures la to lc are modal diagrams of several resonant oscillator structures operating in a bulk mode, where the dashed line indicates the deformation trend of the outer contour of the resonant oscillator structure during operation (resonant state), and Figure la is for operation at the Square Extensional ( SE) modal square plate resonant oscillator structure, Figure lb is a circular plate resonant oscillator structure operating in the Radial Extensional (RE) mode, and Figure lc is a circular plate resonant oscillator structure operating in the Radial Extensional (RE) mode .
  • the micromechanical magnetic field sensor in the magnetic field sensor is an electrostatically driven device.
  • the measured output signal contains a capacitive coupling signal caused by capacitive coupling.
  • the effect of capacitive coupling is generally reduced by reducing the parasitic capacitance between the input signal and the output port.
  • this method can only reduce the capacitive coupling signal and cannot completely eliminate it. In other words, there is still a capacitive coupling signal in the output signal, and a simple magnetic field output signal cannot be obtained. Summary of the invention
  • the present invention provides a micro-mechanical magnetic field sensor, the micro-mechanical magnetic field sensor comprising: a pair of resonant oscillators and an insulating layer and a metal coil sequentially formed on a surface thereof;
  • the resonant oscillator pair includes:
  • each of the resonant axes of the resonant oscillator structure includes at least a first axis of symmetry and a second axis of symmetry, and the first axis of symmetry is perpendicular to the second axis of symmetry;
  • a main support beam on the first axis of symmetry, and two resonant oscillator structures are coupled to each other through respective main support beams;
  • Driving electrodes are respectively disposed on opposite sides of each of the resonant oscillator structures, and a driving gap is formed between each of the resonant oscillator structures, the driving electrode is connected to a DC power source through a resistor, and the driving electrode is connected to the AC through a capacitor a power source, wherein the driving electrodes of each of the resonant oscillator structures are respectively connected to an alternating current power source having opposite phase amplitudes;
  • the insulating layer is formed on the resonant oscillator structure of the pair of resonant oscillators and the upper surface of the main supporting beam, and an insulating layer is formed between the first anchor point and the pad formed thereon;
  • the metal coils are respectively formed on the insulating layer on each of the resonant oscillator structures, and the metal coils are metal coils whose inner ends are surrounded by the center of the insulating layer, wherein the two resonant resonator structures are The metal coils are in the same direction; the beginning ends of the metal coils are connected to the pads on the corresponding first anchor points through the first connecting bridge, and the ends of the metal coils are connected to each other through the second connecting bridge.
  • each metal coil On the first insulating layer on the main support beam, or the end of each metal coil is connected to the pad on the corresponding first anchor point through the second connecting bridge, and the beginning end of each metal coil passes through the first connecting bridge Connected to the first insulating layer on the main supporting beam of the coupled connection; an insulating layer is formed between each of the first connecting bridge and each of the metal coils located under the connecting bridge.
  • the resonant oscillator pair further includes a first coupling beam connected at one end to the main supporting beam coupled to each other, and a second anchor point connected to the other end of the first coupling beam, where The second anchor point is grounded through a pad formed thereon, and an insulating layer is formed between the upper surface of the first coupling beam and the pad formed on the second anchor point and the pad formed thereon.
  • each of the metal coils is connected to the pad on the second anchor point through a second connecting bridge via a main support beam coupled to each other and a first insulating layer on the first coupling beam; or
  • the beginning of the metal coil is connected to the pad on the second anchor point through the first connecting bridge via the main support beam coupled to each other and the first insulating layer on the first coupling beam.
  • the resonant oscillator structure is a rectangular plate, a circular plate or a circular annular plate.
  • the first coupling beam is a straight beam or a curved folding beam.
  • the resonant oscillator pair further includes a second coupling beam, and the second coupling beam is also connected to the main supporting beam on the first symmetry axis and connected to each other, and the second coupling beam is connected There is a third anchor point; wherein the second coupling beam and the first coupling beam are respectively distributed on two sides of the first symmetry axis.
  • the second coupling beam is a straight beam or a curved folding beam.
  • the first axis of symmetry is parallel to a long side or a wide side of the rectangular plate.
  • the first symmetry axis and the second symmetry axis are respectively extension lines of two diagonal lines of the square plate.
  • the resonant oscillator pair further includes a side support beam on the second symmetry axis and one end connected to the resonant oscillator structure, and a fourth anchor point connected to the other end of the side support beam.
  • the metal coil is a plurality of layers, and the metal coils of each layer are connected in series, and the metal coils of each layer have the same winding direction, and an insulating layer is formed between the metal coils of each layer.
  • the metal coils are connected in series by a continuous even-numbered layer and an odd-numbered layer, the ends of the metal coils are connected, and the continuous odd-numbered layer and the even-numbered layer are connected to the beginning of the metal coil, and each of the The metal coils connected in series have an insulating layer in addition to the joint.
  • a metal support post supporting the metal coil to hang over the insulating layer is formed between the metal coil and the insulating layer under the metal coil.
  • the metal coil is a circle, and the metal coil is circular or rectangular.
  • the metal coil is a plurality of turns, and the metal coil is a circular spiral or a rectangular spiral.
  • the present invention also provides a circuit structure of a micro-mechanical magnetic field sensor, the circuit structure including at least: a phase-locked loop circuit, a differential operational amplifier, the micro-mechanical magnetic field sensor, a voltage amplifier, and a voltage follower, wherein the lock
  • the phase loop circuit includes a voltage controlled oscillator, a phase detector, and a low pass filter;
  • An output of the micromechanical magnetic field sensor for generating an induced voltage is coupled to an input of the voltage amplifier; and an output of the voltage amplifier for amplifying the induced voltage is coupled to the phase detector An input terminal, wherein the amplified induced voltage signal output by the voltage amplifier is used as a measurement signal;
  • An output of the phase detector for identifying a phase difference between the measurement signal and the reference signal is coupled to an input of the low pass filter
  • An output of the low pass filter for filtering an alternating current portion of the phase detector output signal is connected to a control end of the voltage controlled oscillator and an input end of the voltage follower, wherein the low pass The DC signal outputted by the filter is used as a control voltage signal of the voltage controlled oscillator to ensure that the entire phase locked loop circuit is in a stable working state;
  • the output of the voltage follower is connected to an external measuring device, wherein the magnitude of the DC voltage signal output by the voltage follower characterizes the magnitude of the magnetic field to be measured of the micromechanical magnetic field sensor.
  • the voltage amplifier is a differential voltage amplifier having two inputs; when one first anchor of the two resonant oscillator structure is connected to the output and the other first anchor is grounded, the voltage amplifier is a conventional voltage amplifier having one input.
  • the micromechanical magnetic field sensor of the present invention has the following advantageous effects:
  • the present invention uses a coupling beam to couple two resonant oscillator structures to form a resonant oscillator pair, and uses differential capacitive excitation and electromagnetic induction to measure the magnitude of the magnetic field, wherein the two resonant oscillator structures operate in an anti-phase mode, each of the resonant oscillators
  • the metal coils in the structure are wound in the same direction, and the induced electromotive forces generated by the metal coils on the two resonant oscillator structures are connected in series; since the driving signals are differential signals, the two differential driving signals respectively form two opposite phases with the output signals.
  • the capacitively coupled signal and because the two capacitively coupled signals are equal in magnitude and opposite in sign, they cancel each other out at the voltage output of the measured induced electromotive force, thereby eliminating the capacitively coupled signal in the output signal.
  • the simple magnetic field output signal realizes the simple magnetic field output signal detection of the micro-mechanical magnetic field sensor;
  • the invention couples two resonant oscillator structures by using a coupling structure, and the two resonant resonator structures are integrally connected by the coupling structure, thereby ensuring that the entire micro-mechanical magnetic field sensor has a single resonant frequency;
  • the resonant oscillator of the micromechanical magnetic field sensor proposed by the invention operates in an expanding mode, so that each small metal cutting magnetic line on the metal coil generates an induced electromotive force which is superposed in series with each other to enhance the intensity of the output signal;
  • the metal coil of the present invention It can be one or more layers of spiral coils, which is beneficial to further increase the intensity of the output signal and improve the sensitivity of detection;
  • the present invention can also suspend the metal coil over the resonant oscillator through the metal support column, thereby reducing the problem of crosstalk between the resonant oscillator structure and the metal coil at high frequencies;
  • the invention has a simple structure, does not need to pass current on the metal coil, and reduces the power consumption of the device; at the same time, the magnitude of the magnetic field is measured by measuring the induced electromotive force at both ends of the metal coil, so that the temperature is less affected; and since the invention adopts The two resonant oscillator structures further enhance the strength of the output signal and also increase the sensitivity of the output signal.
  • Figures la to lc show schematic diagrams of modalities of several resonant oscillator structures operating in bulk mode in the prior art, wherein Figure la is a square plate resonant oscillator structure operating in the Square Extensional (SE) mode, Figure Lb is a circular plate resonant oscillator structure operating in the Radial Extensional (RE) mode, and Figure lc is a circular plate resonant oscillator structure operating in the Radial Extensional (RE) mode.
  • SE Square Extensional
  • Figure Lb is a circular plate resonant oscillator structure operating in the Radial Extensional (RE) mode
  • Figure lc is a circular plate resonant oscillator structure operating in the Radial Extensional (RE) mode.
  • FIG. 2a is a schematic view showing a test circuit of the micromechanical magnetic field sensor of the present invention in the first embodiment, wherein the resonant oscillator structure is a SE modal square plate.
  • FIG. 2b is a schematic diagram showing a test circuit of a micro-mechanical magnetic field sensor of the present invention, wherein the resonant vibration
  • the substructure is a SE modal square plate.
  • Fig. 2c is a schematic view showing a related structure of a resonator pair of a micromechanical magnetic field sensor of the present invention.
  • Fig. 2d is a schematic view showing the structure of a pair of resonant oscillators of the micromechanical magnetic field sensor of the present invention in the first embodiment.
  • 2e is a schematic view showing the circuit structure of the micro-mechanical magnetic field sensor of the present invention in the first embodiment.
  • Fig. 3a is a schematic view showing the test circuit of the micromechanical magnetic field sensor of the present invention in the second embodiment, wherein the resonant oscillator structure is a Width Extensional (WE) mode rectangular plate.
  • WE Width Extensional
  • Fig. 3b is a schematic view showing a test circuit of the micromechanical magnetic field sensor of the present invention, wherein the resonant oscillator structure is a WE mode rectangular plate.
  • Fig. 3c is a schematic view showing the structure of a pair of resonant oscillators of the micromechanical magnetic field sensor of the present invention in the second embodiment.
  • Fig. 3d is a schematic view showing the circuit structure of the micromechanical magnetic field sensor of the present invention in the second embodiment.
  • Fig. 4a is a schematic view showing the test circuit of the micromechanical magnetic field sensor of the present invention in the third embodiment, wherein the resonant oscillator structure is a RE mode circular plate.
  • Fig. 4b is a schematic view showing the structure of a pair of resonant oscillators of the micromechanical magnetic field sensor of the present invention in the third embodiment.
  • Component label description is a schematic view showing the structure of a pair of resonant oscillators of the micromechanical magnetic field sensor of the present invention in the third embodiment.
  • the present invention provides a micro-mechanical magnetic field sensor, the micro-mechanical magnetic field sensor comprising: at least: a pair of resonant oscillators and an insulating layer 6 and a metal coil 7 sequentially formed on a surface thereof, wherein
  • the resonant oscillator pair includes: a resonant oscillator structure 1, a main support beam 21, a first anchor point 41, and a drive electrode 5.
  • the resonant oscillator pair further includes a first coupling beam 31 and a second anchor point 42.
  • the resonant oscillator structure 1 is two and both axisymmetric structures, and the axis of symmetry of each of the resonant oscillator structures 1 includes at least a first axis of symmetry and a second axis of symmetry, and the first axis of symmetry is perpendicular to the second symmetry. axis.
  • the material of the resonant oscillator structure 1 is monocrystalline silicon, polycrystalline silicon, amorphous silicon or silicon carbide.
  • the resonant oscillator structure 1 is a rectangular plate, a circular plate or a circular annular plate.
  • the first axis of symmetry is parallel to a long side or a wide side of the rectangular plate.
  • the resonant oscillator structure 1 is a square plate; further, the resonant oscillator structure 1
  • the plate is a square plate, the first axis of symmetry and the second axis of symmetry may also be extension lines of two diagonal lines of the square plate, respectively.
  • the two resonant resonator structures 1 are single crystal silicon square plates, and the first symmetry axis and the second symmetry axis of the square plate resonant oscillator structure 1 are square respectively.
  • An extension of the two diagonal lines of the board, that is, the main support beam 21 is connected to the corner of the square plate resonant oscillator structure 1, and the broken line of each of the resonant oscillator structures 1 in Fig. 2d indicates that each of the resonant oscillator structures 1 is in operation (resonant state).
  • the deformation trend of the outer contour is described in the first embodiment, as shown in FIG. 2d.
  • the main support beam 21 is located on the first axis of symmetry, and the two resonant resonator structures 1 are coupled to each other by respective main support beams 21.
  • the main support beams 21 are two, and each of the single crystal silicon square resonator vibrator structures 1 is coupled to each other through a respective one of the main support beams 21.
  • the resonant oscillator pair further includes a first coupling beam 31 and a second anchor point 42, but is not limited thereto.
  • the resonant oscillator pair may The first coupling beam 31 and the second anchor point 42 are not included (see Figure 2c).
  • One end of the first coupling beam 31 is connected to the main supporting beam 21 connected to each other, wherein the first coupling beam 31 is a straight beam or a curved folding beam.
  • the first coupling beam 31 is a curved folded beam.
  • the second anchor point 42 is connected to the other end of the first coupling beam 31, wherein the second anchor point 42 is formed with a pad (as shown in FIG. 2a, the first anchor point is filled with a cross grid place) And the second anchor point 42 is grounded through the pad.
  • the first anchor point 41 is connected to the free end of the main support beam 21, wherein the first anchor point 41 is formed with a pad (as shown in FIG. 2a, the second anchor point is filled with a cross-grid space)
  • the first anchor point 41 of the two resonant resonator structure 1 is respectively connected to the voltage output terminal V through pads formed thereon.
  • Ut or a first anchor point is connected to the voltage output terminal V.
  • Ut and the other first anchor point is grounded, thereby measuring the induced electromotive force V.
  • Ut to measure the size of the magnetic field to be measured.
  • the first anchor point 41 of the two-resonant oscillator structure 1 is respectively connected to the voltage output terminal ⁇ through the pads formed thereon.
  • the first anchor point 41 of the one resonant resonator structure 1 is connected to the voltage output terminal V.
  • Ut and the first anchor point 41 of the other resonant oscillator structure 1 is grounded as shown in Fig. 2b.
  • the driving electrodes 5 are respectively distributed on opposite sides of each of the resonant oscillator structures 1 and between each of the resonant oscillator nodes 1 A driving gap is formed, the driving electrode 5 is connected to the DC power source V p through the resistor R, and the driving electrode 5 is connected to the AC power source V in through the capacitor C, wherein the AC power source connected to the resonant resonator structure 1 is +V in , the AC power source connected to the other resonant oscillator structure is -V in , wherein + ⁇ and -1 ⁇ 4 11 are opposite in phase, that is, the drive electrodes 5 of the resonant resonator structure 1 are respectively connected to opposite phases
  • the two resonant oscillator structures operate in reverse phase mode.
  • the driving signal is a differential signal
  • two differential driving signals respectively form two opposite phase capacitive coupling signals with the output signal
  • the two capacitive coupling signals are equal in size and opposite in sign, they are The voltage output terminals of the measured induced electromotive force cancel each other out, thereby eliminating the capacitive coupling signal in the output signal, and obtaining a simple magnetic field output signal, thereby realizing the simple magnetic field output signal detection of the micromechanical magnetic field sensor.
  • the driving electrodes 5 are located on opposite sides of each of the square plate resonant oscillator structures 1, and between the driving electrodes 5 and the resonant oscillator structure 1.
  • a driving gap is formed.
  • the driving electrodes 5 are two pairs, and each pair is symmetrically distributed on opposite sides of each of the square plate resonant oscillator structures 1, that is, each pair of the driving electrodes 5 is symmetrically distributed.
  • the driving electrodes may be only a pair and distributed in the opposite direction of each of the square plate resonant oscillator structures 1. side.
  • the resonant oscillator pair further includes a second coupling beam 32, and the second coupling beam 32 is also connected to the first symmetry axis. And connected to the main support beam 21, and the second coupling beam 32 is connected with a third anchor point 43, preferably, as shown in FIG. 2d, the second coupling beam 32 and the first coupling beam 31 Symmetrically distributed on both sides of the first axis of symmetry.
  • the resonant oscillator pair further includes a side support beam 22 and a fourth anchor point 44, wherein the side support beam 22 is located in the a second axis of symmetry, one end of which is connected to the resonant oscillator structure 1 and the other end of which is connected to the fourth anchor point 44 (the fourth anchor point 44 in FIG. 2a is grounded, but is not limited thereto, the ground four anchor points
  • the side support beam 22 may be connected to the corner of the square plate resonant oscillator structure 1, but is not limited thereto.
  • the resonant oscillator pair may also be free of the side. Support beam and fourth anchor point.
  • the four anchor points 44 are grounded through the pads located thereon, but are not limited thereto, and the pads on the fourth anchor point may also be Not grounded.
  • the insulating layer 6 is formed on the upper surface of the resonant oscillator structure 1 and the main support beam 21 of the pair of resonant resonators, and an insulating layer 6 is formed between the first anchor point 41 and the pad formed thereon.
  • the upper surface of the first coupling beam 31 is also formed with an insulating layer 6, and the insulating layer 6 is formed between the second anchor point 42 and the pad formed thereon.
  • the resonant oscillator structure 1, the main support beam 21, the first coupling beam 31, and the first anchor point 41 and the second anchor point 42 are formed in the same plane, and the insulating layer is formed on the upper surface of the plane.
  • the resonant oscillator pair further includes a second coupling beam 32, a third anchor point 43, a side support beam 22, and a fourth anchor point 44, as shown in FIG. 2a, the second coupling There is no insulating layer 6 on the beam 32, the third anchor point 43, and the side support beam 22.
  • the insulating layer 6 is formed between the fourth anchor point 44 and the pad formed thereon, but is not limited thereto.
  • the second coupling beam 32, the third anchor point 43, and the side support beam 22 may also have an insulating layer 6. When the fourth anchor point 44 has no pad, there may be no insulation. Layer 6.
  • the metal coils 7 are respectively formed on the insulating layer 6 on each of the resonant oscillator structures 1 , wherein the metal coils are metal coils whose inner ends are surrounded by the center of the insulating layer 6 .
  • the metal coils 7 on the two resonant resonator structures 1 are in the same direction. Since the metal coils on the resonant resonator structure 1 have the same circumferential direction; and since the two resonant oscillator structures 1 are excited by the differential capacitors and operate in the reverse phase mode, the induction of the metal coils 7 on the two resonant oscillator structures 1 The electromotive forces are connected in series.
  • each of the metal coils 7 is surrounded by a clockwise direction, and the ends of the metal coils 7 are connected to the corresponding first anchor points 41 through the second connecting bridge 82.
  • a main support beam 21 coupled to each other via the first connecting bridge 81 and an insulating layer 6 on the first coupling beam 31 are connected to the pads on the second anchor point 42 through the first connecting bridge 81,
  • the second connecting bridge 82 is located on the insulating layer 6 on the main supporting beam 21 connected to the first anchor point 41; at the same time, each of the first connecting bridge 81 and each of the metal coils located under the same An insulating layer 6 is formed therebetween, wherein the first connecting bridge 81-end is connected to the beginning of the metal coil ⁇ through an insulating layer 6 located therebelow, and the other end of the first connecting bridge 81 is connected to a pad on the second anchor point 42.
  • the first connecting bridge 81 is located on the metal coil 7, the main supporting beam 21 coupled to each other and the insulating layer 6 on the first coupling beam 31; the metal coil 7.
  • the materials of the first connecting bridge 81 and the second connecting bridge 82 are Gold, but not limited to this, the materials of the three can be the same or different, but the three materials are selected from gold, copper or aluminum to ensure a good electrical connection.
  • the manner in which the metal coil is connected to the pads on the first anchor point and the second anchor point is not limited thereto.
  • the beginning of each of the metal coils is connected to the pads on its corresponding first anchor point through the first connecting bridge, and the ends of the metal coils pass through the second connecting bridge.
  • the main support beam and the insulating layer on the first coupling beam are connected to the pad on the second anchor point; at the same time, each of the first connecting bridge and each of the metal coils located under the same is formed An insulating layer, wherein one end of the first connecting bridge is connected to a beginning end of the metal coil through an insulating layer located under the first connecting bridge, and the other end of the first connecting bridge is connected to a pad on the first anchor point.
  • the metal coil may be a layer or a plurality of layers; when the metal coil is a plurality of layers, the metal coils of each layer are connected in series, and the metal coils of each layer have the same winding direction.
  • An insulating layer is further formed between the metal coils of each layer, wherein the metal coils are connected in series by a continuous even-numbered layer and an odd-numbered layer The ends are connected, and the continuous odd-numbered layer and the even-numbered layer are connected to the beginning of the metal coil to ensure that the layers are in the same winding direction, and each of the metal coils connected in series has an insulating layer except for the joint.
  • the first layer of metal coils is clockwise surrounded from the inside to the outside with the center as the beginning, and the second layer of metal coils is connected to the ends of the first layer of metal coils, and the The two-layer metal coil is surrounded by the end from the outside to the clockwise direction.
  • the first layer of the metal coil and the second layer of the metal coil are wound in the same direction, and then the third layer of the metal coil is connected to the center of the second layer of the metal coil.
  • the third layer of metal coils is clockwisely surrounded from the inside to the outside with the center as the starting end.
  • the winding directions of the metal coils of the first layer, the second layer and the third layer are the same.
  • the metal coil may be directly formed on the insulating layer, or a metal coil may be suspended between the metal coil and the insulating layer underneath.
  • the metal support column wherein the support column and the coil are of the same material, and are all selected from the group consisting of gold, copper or aluminum.
  • the number of turns of the metal coil is one turn (unclosed), the metal coil is circular or rectangular; the metal coil may also be multiple turns, and the metal coil is circular spiral or The rectangle is spiral, but it is necessary to ensure that the shape of each of the resonant oscillator structures 1 is consistent with the shape of the metal coil located thereon.
  • the metal coil is a layer of a square spiral metal coil 7 formed directly on the insulating layer 6.
  • the micromechanical magnetic field sensor proposed by the present invention is realized by loading a metal coil on two resonant oscillator structures forming a pair of resonant oscillators.
  • the invention utilizes differential capacitance excitation to drive two resonant oscillator structures into a resonant state.
  • the resonant oscillator vibration will drive the metal coil to move, the metal coil cuts the magnetic induction line, and generates an induced electromotive force at both ends of the metal coil.
  • the magnitude of the measured magnetic field is measured by measuring the induced electromotive force across the metal coil.
  • the present invention also provides a circuit structure of a micro-mechanical magnetic field sensor.
  • the circuit structure includes at least: a phase-locked loop circuit, a differential operational amplifier 92, and a micro-mechanical magnetic field sensor 93.
  • the voltage amplifier 94 and the voltage follower 97, wherein the phase locked loop circuit comprises a voltage controlled oscillator 91, a phase detector 95 and a low pass filter 96.
  • An output of the voltage controlled oscillator 91 for generating an alternating current signal having the same resonant frequency as the micromechanical magnetic field sensor 93 is coupled to an input of the differential operational amplifier 92 and an input of the phase detector 95, respectively.
  • the AC signal outputted by the voltage controlled oscillator 91 is used as a reference signal of the phase detector 95.
  • the DC power input end of the micro-mechanical magnetic field sensor 93 is further connected with a DC voltage V p
  • An output of the micromechanical magnetic field sensor 93 for generating an induced voltage is coupled to an input of the voltage amplifier 94 for connecting an output of the voltage amplifier 94 that amplifies the induced voltage to the phase detector 95.
  • An output of the phase detector 95 for discriminating the phase difference between the measurement signal and the reference signal is coupled to the input of the low pass filter 96.
  • An output of the low-pass filter 96 for filtering an alternating current portion of the output signal of the phase detector 95 is connected to a control end of the voltage controlled oscillator 91 and an input end of the voltage follower 97, wherein The DC signal output by the low pass filter 96 serves as a control voltage signal of the voltage controlled oscillator 91 for ensuring that the entire phase locked loop circuit is in a stable operating state.
  • the output of the voltage follower 97 is connected to an external measuring device (not shown), wherein the magnitude of the DC voltage signal output by the voltage follower 97 characterizes the magnitude of the magnetic field to be measured of the micro-mechanical magnetic field sensor 93.
  • a voltage-controlled oscillator (VCO) 91 in the phase-locked loop circuit generates an AC signal having the same resonant frequency as the micro-mechanical magnetic field sensor 93;
  • Single to Differential) 92 converts the AC signal output from the voltage controlled oscillator 91 into a differential voltage signal, and superimposes the DC voltage V p to excite the micromechanical magnetic field sensor 93 to operate;
  • the induced voltage of the micromachined magnetic field sensor 93 passes the voltage
  • the amplifier (Amplifier) 94 performs amplification; the frequency signal output from the voltage controlled oscillator 91 is used as a reference frequency, and the output of the voltage amplifier 94 is used as a measurement signal, and the phase difference between the measurement signal and the reference signal is discriminated by the phase detector 95;
  • the output signal of the phaser 95 is connected to a low-pass filter 96, and the AC portion of the signal is filtered to obtain a DC signal related to the amplitude of the
  • the signal acts as a control voltage signal of the voltage controlled oscillator 91, thereby ensuring that the entire phase-locked loop circuit is in a stable working state; the DC signal output by the low-pass filter 96 reflecting the amplitude of the magnetic field signal to be tested passes through a voltage follower (Buffer Amplifier). Connected to an external measuring device, the final output DC voltage signal V.
  • the size of ut characterizes the magnitude of the magnetic field to be measured by the micromechanical magnetic field sensor 93.
  • the micro-mechanical magnetic field sensor of the present invention has the following beneficial effects:
  • the present invention uses a coupling beam to couple two resonant oscillator structures to form a resonant oscillator pair, and uses differential capacitive excitation and electromagnetic induction to measure the magnitude of the magnetic field, wherein the two resonant oscillator structures operate in an anti-phase mode, each of the resonant oscillators
  • the metal coils in the structure are wound in the same direction, and the induced electromotive forces generated by the metal coils on the two resonant oscillator structures are connected in series; since the driving signals are differential signals, the two differential driving signals respectively form two opposite phases with the output signals.
  • the capacitively coupled signal and because the two capacitively coupled signals are equal in magnitude and opposite in sign, they cancel each other out at the voltage output of the measured induced electromotive force, thereby eliminating the capacitively coupled signal in the output signal.
  • the simple magnetic field output signal realizes the simple magnetic field output signal detection of the micro-mechanical magnetic field sensor;
  • the invention couples two resonant oscillator structures by using a coupling structure, and the two resonant resonator structures are integrally connected by the coupling structure, thereby ensuring that the entire micro-mechanical magnetic field sensor has a single resonant frequency;
  • the resonant oscillator of the micromechanical magnetic field sensor proposed by the invention operates in an expanding mode, so that each small metal cutting magnetic line on the metal coil generates an induced electromotive force which is superposed in series with each other to enhance the intensity of the output signal;
  • the metal coil of the present invention It can be one or more layers of spiral coils, which is beneficial to further increase the intensity of the output signal and improve the sensitivity of detection;
  • the present invention can also suspend the metal coil over the resonant oscillator through the metal support column, thereby reducing the problem of crosstalk between the resonant oscillator structure and the metal coil at high frequencies;
  • the invention has a simple structure, does not need to pass current on the metal coil, and reduces the power consumption of the device; at the same time, the magnitude of the magnetic field is measured by measuring the induced electromotive force at both ends of the metal coil, so that the temperature is less affected; and since the invention adopts The two resonant oscillator structures further enhance the strength of the output signal and also increase the sensitivity of the output signal.
  • Embodiment 2
  • the second embodiment is basically the same as the technical solution of the first embodiment, and the difference mainly lies in: the resonant vibration described in the first embodiment
  • the substructure is a square plate, and the resonant oscillator pair includes a first coupling beam, a second anchor point, a second coupling beam, and a third anchor point.
  • the resonant oscillator structure is a rectangular plate, and The resonant oscillator pair does not include the first coupling beam, the second anchor point, the second coupling beam and the third anchor point, and the rest of the resonance oscillator pairing (structure, manufacturing method and working principle) is the same as the embodiment. A related description of one will not be repeated here.
  • the second embodiment provides a micro-mechanical magnetic field sensor
  • the micro-mechanical magnetic field sensor includes at least: a pair of resonant oscillators and an insulating layer 6 and a metal coil 7 sequentially formed on a surface thereof, wherein
  • the resonant oscillator pair includes: a rectangular plate resonant oscillator structure 1, a main support beam 21, a first anchor point 41, and a driving electrode 5, but is not limited thereto.
  • each of the resonant oscillator pairs is also The first coupling beam connected to the interconnected main support beam and the second anchor point connected to the other end of the first coupling beam may be further included, and each of the resonant oscillator pairs may further include a connection The second coupling beam on the main support beam on the first axis of symmetry and connected to each other and the third anchor point connecting the second coupling beam.
  • the rectangular plate resonant oscillator structure 1 is silicon carbide, and its first axis of symmetry is parallel to the long side or wide side of the rectangular plate.
  • the first axis of symmetry is parallel to the long side of the rectangular plate, i.e., the main support beam 21 is connected to the wide side of the rectangular plate resonator structure 1.
  • the first anchor point 41 is connected to the free end of the main support beam 21, wherein the first anchor point 41 is formed with a pad (as shown in FIGS. 3a and 3b, the second anchor point is filled with a cross grid
  • the first anchor point 41 of the two-resonant oscillator structure 1 is connected to the voltage output terminal V through pads formed thereon, respectively.
  • Ut (as shown in Figure 3a) or a first anchor connected to the voltage output V.
  • Ut and another first anchor point is grounded (as shown in Figure 3b) to thereby measure the induced electromotive force V.
  • Ut to measure the size of the magnetic field to be measured.
  • a first anchor point 41 of the two-resonant oscillator structure 1 is connected to the voltage output terminal V.
  • Ut and another first anchor point 41 is grounded.
  • the driving electrodes 5 are respectively disposed on opposite sides of each of the rectangular plate resonator structure 1 and the driving motor 5 and the resonant oscillator structure 1 are formed with a driving gap.
  • the driving electrodes 5 are two and symmetrically distributed on both sides of the first symmetry axis of each of the rectangular plate resonant oscillator structures 1, that is, the driving electrodes 5 are symmetrically distributed on the long sides of the rectangular plate resonant oscillator structures 1 side.
  • the rectangular plate resonant oscillator structure may also preferably be a square plate.
  • the insulating layer 6 is formed on the upper surface of the resonant oscillator structure 1 and the main support beam 21 of the pair of resonant resonators, and an insulating layer 6 is formed between the first anchor point 41 and the pad formed thereon.
  • the resonant oscillator structure 1, the main support beam 21 and the first anchor point 41 are formed in the same plane, and the insulating layer is formed on the upper surface of the plane.
  • the second coupling beam 32 and the third anchor point 43 may be formed on the second coupling beam 32 and the third anchor point 43.
  • the insulating layer 6 may also have no insulating layer 6.
  • the metal coil 7 please refer to the first embodiment, except that the metal coil 7 has a rectangular spiral shape, and each of the metal coils 7 is counterclockwise, as shown in FIG. 3a.
  • the circuit structure of the micro-mechanical magnetic field sensor of the second embodiment is basically the same as that of the first embodiment, except that the voltage amplifier 94 in the first embodiment is a differential voltage amplifier having two input terminals; and the voltage amplifier 94 of the second embodiment.
  • a conventional voltage amplifier having an input terminal (refer to FIG. 3d); in addition, the structure of the micro-mechanical magnetic field sensor of the second embodiment is different from that of the first embodiment.
  • the micro-mechanical magnetic field sensor of the present invention has the following beneficial effects:
  • the present invention uses a coupling beam to couple two resonant oscillator structures to form a resonant oscillator pair, and uses differential capacitive excitation and electromagnetic induction to measure the magnitude of the magnetic field, wherein the two resonant oscillator structures operate in an anti-phase mode, each of the resonant oscillators
  • the metal coils in the structure are wound in the same direction, and the induced electromotive forces generated by the metal coils on the two resonant oscillator structures are connected in series; since the driving signals are differential signals, the two differential driving signals respectively form two opposite phases with the output signals.
  • the capacitively coupled signal and because the two capacitively coupled signals are equal in magnitude and opposite in sign, they cancel each other out at the voltage output of the measured induced electromotive force, thereby eliminating the capacitively coupled signal in the output signal.
  • the simple magnetic field output signal realizes the simple magnetic field output signal detection of the micro-mechanical magnetic field sensor;
  • the invention couples two resonant oscillator structures by using a coupling structure, and the two resonant resonator structures are integrally connected by the coupling structure, thereby ensuring that the entire micro-mechanical magnetic field sensor has a single resonant frequency;
  • the resonant oscillator of the micromechanical magnetic field sensor proposed by the invention operates in an expanding mode, so that each small metal cutting magnetic line on the metal coil generates an induced electromotive force which is superposed in series with each other to enhance the intensity of the output signal;
  • the metal coil of the present invention It can be one or more layers of spiral coils, which is beneficial to further increase the intensity of the output signal and improve the sensitivity of detection;
  • the present invention can also suspend the metal coil over the resonant oscillator through the metal support column, thereby reducing the problem of crosstalk between the resonant oscillator structure and the metal coil at high frequencies;
  • the invention has a simple structure, does not need to pass current on the metal coil, and reduces the power consumption of the device; at the same time, the magnitude of the magnetic field is measured by measuring the induced electromotive force at both ends of the metal coil, so that the temperature is less affected; and since the invention adopts The two resonant oscillator structures further enhance the strength of the output signal and also increase the sensitivity of the output signal.
  • Embodiment 3
  • the third embodiment is basically the same as the technical solution of the first embodiment, and the difference is mainly as follows:
  • the resonant oscillator structure in the first embodiment is a square plate; in the third embodiment, the resonant oscillator structure is a circular plate, and the resonant oscillator
  • the third embodiment provides a micro-mechanical magnetic field sensor.
  • the micro-mechanical magnetic field sensor includes at least: a pair of resonant oscillators and an insulating layer 6 and a metal coil 7 sequentially formed on a surface thereof, wherein
  • the resonant oscillator pair includes: a circular plate resonant oscillator structure 1, a main support beam 21, a first coupling beam 31, a first anchor point 41, a second anchor point 42, and a driving electrode 5, wherein the first axis of symmetry An extension of the diameter of the circular plate.
  • the resonant oscillator structure 1 is not limited to a circular plate, and the resonant oscillator structure 1 may also be a circular plate or a circular ring plate, wherein the first symmetry axis is a circular plate or a circle. An extension of the major or minor axis of the circle in the ring plate.
  • the annular plate is a preferred embodiment of the annular plate, and the first axis of symmetry is an extension of the diameter of the annular plate.
  • the resonant oscillator pair further includes a second coupling beam 32 connected to the main support beam 21 and a third anchor point 43 connected to the second coupling beam 32, wherein
  • the main support beam 21 is a main support beam that is located on the first axis of symmetry and is connected to each other, but is not limited thereto.
  • the pair of resonant beams may not have the second coupling beam and A third anchor point connected to the second coupling beam.
  • the driving electrodes 5 are respectively disposed on opposite sides of each of the square plate resonant oscillator structures 1, and the driving motor 5 and the resonant oscillator structure 1 are formed with a driving gap.
  • the driving electrodes are two arc-shaped driving electrodes matched with the circular plate, and are symmetrically distributed on opposite sides of each of the circular plate resonant oscillator structures 1.
  • the insulating layer 6 is formed on the resonant oscillator structure 1 of the resonant oscillator pair, the main support beam 21, and the upper surface of the first coupling beam 31, and between the first anchor point 41 and the pad formed thereon An insulating layer 6 is formed, and an insulating layer 6 is formed between the second anchor 42 and a pad formed thereon.
  • the resonant oscillator structure 1, the main support beam 21, the first coupling beam 31, the first anchor point 41 and the second anchor point 42 are formed in the same plane, and the insulating layer is formed on the upper surface of the plane. on.
  • the resonant oscillator pair further includes a second coupling beam 32 connected to the main support beam 21 and a third anchor point 43 connected to the second coupling beam 32, as shown in FIG. 4a.
  • the second coupling beam 32 and the third anchor point 43 are not provided with the insulating layer 6, but are not limited thereto.
  • the second coupling beam 32 and the third anchor point 43 are also There may be an insulating layer 6.
  • the metal coil 7 has a circular spiral shape, and each of the metal coils 7 is counterclockwise, as shown in Fig. 4a.
  • the circuit structure (not shown) of the micro-mechanical magnetic field sensor of the third embodiment is described in the first embodiment, except that the structure of the micro-mechanical magnetic field sensor of the third embodiment is different from that of the first embodiment. .
  • micro-mechanical magnetic field sensor of the present invention has the following beneficial effects as compared with the conventional micro-mechanical magnetic field sensor:
  • the present invention uses a coupling beam to couple two resonant oscillator structures to form a resonant oscillator pair, and uses differential capacitive excitation and electromagnetic induction to measure the magnitude of the magnetic field, wherein the two resonant oscillator structures operate in an anti-phase mode, each of the resonant oscillators
  • the metal coils in the structure are wound in the same direction, and the induced electromotive forces generated by the metal coils on the two resonant oscillator structures are connected in series; since the driving signals are differential signals, the two differential driving signals respectively form two opposite phases with the output signals.
  • the capacitively coupled signal and because the two capacitively coupled signals are equal in magnitude and opposite in sign, they cancel each other out at the voltage output of the measured induced electromotive force, thereby eliminating the capacitively coupled signal in the output signal.
  • the simple magnetic field output signal realizes the simple magnetic field output signal detection of the micro-mechanical magnetic field sensor;
  • the invention couples two resonant oscillator structures by using a coupling structure, and the two resonant resonator structures are integrally connected by the coupling structure, thereby ensuring that the entire micro-mechanical magnetic field sensor has a single resonant frequency;
  • the resonant oscillator of the micromechanical magnetic field sensor proposed by the invention operates in an expanding mode, so that each small metal cutting magnetic line on the metal coil generates an induced electromotive force which is superposed in series with each other to enhance the intensity of the output signal;
  • the metal coil of the present invention It can be one or more layers of spiral coils, which is beneficial to further increase the intensity of the output signal and improve the sensitivity of detection;
  • the present invention can also suspend the metal coil over the resonant oscillator through the metal support column, thereby reducing the problem of crosstalk between the resonant oscillator structure and the metal coil at high frequencies;
  • the invention has a simple structure, does not need to pass current on the metal coil, and reduces the power consumption of the device; at the same time, the magnitude of the magnetic field is measured by measuring the induced electromotive force at both ends of the metal coil, so that the temperature is less affected; and since the invention adopts The two resonant oscillator structures further enhance the strength of the output signal and also increase the sensitivity of the output signal.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种微机械磁场传感器(93)及其应用,所述微机械磁场传感器(93)至少包括:谐振振子对和依次形成于其表面上的绝缘层(6)及金属线圈(7)。利用差分电容激励和电磁感应来测量磁场大小,其中,构成谐振振子对的两个谐振振子结构(1)工作在反相位模式,各该谐振振子结构(1)上的金属感应线圈(7)环绕方向相同,两个谐振振子结构(1)上的金属感应线圈(7)产生的感应电动势相互串联;由于驱动信号是差分信号,消除输出信号中的容性耦合信号,以获得单纯的磁场输出信号;同时,利用耦合结构将两个谐振振子结构(1)耦合起来使两个谐振振子结构(1)连接为一体运动;进一步,该微机械磁场传感器(93)结构简单,受温度影响小,输出信号大,灵敏度高,检测的准确度高,适合高工作频率。

Description

微机械磁场传感器及其应用
技术领域
本发明属于微机械磁场传感器设计与检测技术领域, 涉及一种磁场传感器, 特别是涉及 一种工作在扩张模态下微机械磁场传感器及其电路结构。 背景技术
通过感应地球磁场辨识方向或为舰船导航, 特别是在航海、 航天、 自动化控制、 军事以 及消费电子领域, 磁场传感器的应用越来越广泛。 磁场传感技术向着小型化、 低功耗、 高灵 敏度、 高分辨率以及和电子设备兼容的方向发展。 根据工作原理磁场传感器可以分为: 超导 量子干涉磁场传感器、 霍尔磁场传感器、 磁通门磁力计、 巨磁阻磁场传感器以及感应线圈磁 场传感器。
超导量子干涉磁场传感器在所有磁场传感器中灵敏度最高, 但其结构复杂、 体积庞大、 价格昂贵且需要工作在低温环境下; 霍尔磁场传感器功耗低、 尺寸小, 可以测量静态或者动 态磁场, 但其灵敏度低, 噪声水平及静态偏移较大; 磁通门磁力计用来测量静态或者缓慢变 化的磁场, 分辨率高、 功耗小, 但体积较大、 频率响应较低; 巨磁阻磁场传感器灵敏度高, 但是不能测量大的磁场; 感应线圈磁场传感器是基于法拉第电磁感应定律来探测变化的磁 场, 它的功耗低, 结构简单 (A. L. Herrera-May, L. A. Aguilera-Corts, P. J. Garca-Ramrez and E. Manjarrez, "Resonant magnetic field sensors based on MEMS technology", Sensors, vol. 9, no. 10, pp.7785-7813, 2009. ) 。
利用 MEMS (Micro Electro Mechanical system, 微电子机械系统) 技术制作的感应线圈 磁场传感器结构简单, 易于加工, 与 CMOS IC (Complementary Metal Oxide Semiconductor Integrated Circuit, 互补金属氧化物半导体集成电路) 工艺相兼容。 MEMS 磁场传感器具有 体积小、 重量轻、 功耗低、 成本低、 可靠性高、 性能优异及功能强大等传统传感器无法比拟 的优点。 MEMS 技术的发展, 使芯片上的微结构加工成为可能, 同时降低了微机电系统的 成本, 而且还可以完成许多大尺寸机电系统所不能完成的任务, 这样促进了磁场传感器的发 展。
目前, MEMS 结构的磁场传感器主要工作原理是: 通有电流的感应线圈受到磁场作用 的洛伦兹力后, 引起支撑线圈的结构发生弯曲或者扭转, 通过电容检测或者压阻检测、 光学 检测等方法测量出支撑线圈结构的扭转变形量或者弯曲变形量, 就可以检测出磁场信号的大 小。 这些器件一般是将感应线圈制作在悬臂梁、 U型梁或者可以弯曲或扭转的平板上。 器件 工作时, 将器件放置在磁场中, 并在感应线圈上通入电流。 感应线圈就会受到洛伦兹力, 洛 伦兹力会引起悬臂梁、 U型梁或者平板的弯曲或者扭转。 通过测量悬臂梁、 U型梁或者平板 弯曲量或者扭转量的大小, 就可以检测出磁场的大小。 但是, 由于这些器件工作都需要给感 应线圈通入电流, 因而他们的功耗比较大; 另外这些器件一般工作在弯曲模态或者扭转模 态, 因而它们工作的谐振频率较低。
进一步, 为了降低功耗和结构复杂度, MEMS 结构的磁场传感器, 还可以采用工作在 扩张模态 (为体模态的一种情况) 下的谐振振子结构上加载金属线圈来实现。 所述谐振振子 可以是方形板、 圆环板或者圆形板结构。 图 la至图 lc是工作在体模态的几种谐振振子结构 的模态示意图, 其中, 虚线表示谐振振子结构在工作 (谐振状态) 时外部轮廓的形变趋势, 图 la为工作在 Square Extensional (SE)模态的方形板谐振振子结构, 图 lb为工作在 Radial Extensional (RE)模态的圆形板谐振振子结构, 图 lc为工作在 Radial Extensional (RE)模态的 圆环板谐振振子结构。 但是该磁场传感器中的微机械磁场传感器是静电驱动的器件, 由于 输入信号与输出端口之间存在寄生电容, 因此测量的输出信号中包含有由容性耦合引起的容 性耦合信号。 现有技术中, 一般通过减小输入信号与输出端口之间寄生电容, 从而减小容性 耦合的影响。 然而, 这种方法只能减小容性耦合信号, 并不能完全消除它, 换言之, 在输出 信号中仍然存在容性耦合信号, 无法得到单纯的磁场输出信号。 发明内容
鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种微机械磁场传感器, 用于解 决现有技术中微机械磁场传感器的输出信号无法消除容性耦合信号影响的问题。
为实现上述目的及其他相关目的, 本发明提供一种微机械磁场传感器, 所述微机械磁场 传感器至少包括: 谐振振子对和依次形成于其表面上的绝缘层及金属线圈; 其中,
所述谐振振子对包括:
两个具有轴对称结构的谐振振子结构, 各该谐振振子结构的对称轴至少包括第一 对称轴和第二对称轴, 且所述的第一对称轴垂直于第二对称轴;
主支撑梁, 位于所述第一对称轴上, 两个谐振振子结构通过各自的主支撑梁相互 耦合连接;
第一锚点, 与所述主支撑梁的自由端相连接, 其中, 二谐振振子结构的第一锚点 通过形成在其上的焊盘分别连接输出端或一个第一锚点接输出端且另一个第一锚点接 地; 驱动电极, 分别分布于各该谐振振子结构的相对侧, 且与各该谐振振子结构之间 形成有驱动间隙, 所述驱动电极通过电阻连接至直流电源, 且所述驱动电极通过电容 连接至交流电源, 其中, 各该谐振振子结构的驱动电极分别连接至相位相反幅值相等 的交流电源;
所述绝缘层形成于所述谐振振子对的谐振振子结构及主支撑梁的上表面, 同时, 所述第 一锚点与形成于其上的焊盘之间形成有绝缘层;
所述金属线圈分别形成于各该谐振振子结构上的绝缘层上, 所述金属线圈为藉由其对应 的所述绝缘层中心为始端由内向外环绕的金属线圈, 其中, 二谐振振子结构上的金属线圈为 同向环绕; 各该金属线圈的始端通过第一连接桥连接于其对应的第一锚点上的焊盘、 且各该 金属线圈的末端通过第二连接桥相互连接于耦合连接的主支撑梁上的第一绝缘层上, 或者各 该金属线圈的末端通过第二连接桥连接于其对应的第一锚点上的焊盘、 且各该金属线圈的始 端通过第一连接桥相互连接于耦合连接的主支撑梁上的第一绝缘层上; 各该第一连接桥与位 于其下的各该金属线圈之间形成有绝缘层。
可选的, 所述谐振振子对还包括一端连接于相互耦合连接的所述主支撑梁上的第一耦合 梁、 及连接于所述第一耦合梁另一端的第二锚点, 其中, 所述第二锚点通过形成在其上的焊 盘接地, 所述第一耦合梁上表面、 及所述第二锚点与形成于其上的焊盘之间形成有绝缘层。
可选的, 各该金属线圈的末端通过第二连接桥经过相互耦合连接的主支撑梁及第一耦合 梁上的第一绝缘层连接于所述第二锚点上的焊盘; 或者各该金属线圈的始端通过第一连接桥 经过相互耦合连接的主支撑梁及第一耦合梁上的第一绝缘层连接于所述第二锚点上的焊盘。
可选的, 所述谐振振子结构为矩形板、 圆形板或圆环形板。
可选的, 所述第一耦合梁为直拉梁或弯曲折叠梁。
可选的, 所述谐振振子对还包括第二耦合梁, 所述第二耦合梁也连接于所述位于第一对 称轴上且相互连接的主支撑梁上, 且所述第二耦合梁连接有第三锚点; 其中, 所述第二耦合 梁与所述第一耦合梁分别分布于所述第一对称轴两侧。
可选的, 所述第二耦合梁为直拉梁或弯曲折叠梁。
可选的, 所述谐振振子结构为矩形板时, 所述第一对称轴平行于矩形板的长边或宽边。 可选的, 所述谐振振子结构为正方形板时, 所述第一对称轴和第二对称轴分别为正方形 板两对角线的延长线。
可选的, 所述谐振振子对还包括位于所述第二对称轴上且一端连接于所述谐振振子结构 的旁支撑梁、 以及连接于所述旁支撑梁另一端的第四锚点。 可选的, 所述金属线圈为多层, 各层所述金属线圈相互串联, 且各层所述金属线圈具有 相同的绕向, 各层金属线圈之间形成有绝缘层。
可选的, 所述金属线圈串联的方式为连续的第偶数层和第奇数层所述金属线圈的末端相 连、 以及连续的第奇数层和第偶数层所述金属线圈的始端相连, 且各该相互串联的金属线圈 之间除了相连处外具有绝缘层。
可选的, 所述金属线圈与位于其下的绝缘层之间形成有支撑所述金属线圈悬空于所述绝 缘层之上的金属支撑柱。
可选的, 所述金属线圈为一圈, 所述金属线圈为圆形或矩形。
可选的, 所述金属线圈为多圈, 所述金属线圈为圆形螺旋状或矩形螺旋状。 本发明还提供一种微机械磁场传感器的电路结构, 所述电路结构至少包括: 锁相环电 路、 差分运算放大器、 所述的微机械磁场传感器、 电压放大器及电压跟随器, 其中, 所述锁 相环电路包括压控振荡器、 鉴相器和低通滤波器;
用于产生与所述微机械磁场传感器谐振频率相同的交流信号的所述压控振荡器的输出 端, 分别连接所述差分运算放大器的输入端及所述鉴相器的一个输入端, 其中, 所述压控振 荡器输出的交流信号作为所述鉴相器的基准信号;
用于将所述压控振荡器输出的交流信号转化为差分电压信号的所述差分运算放大器的输 出端, 连接所述微机械磁场传感器的交流电源输入端, 所述微机械磁场传感器的直流电源输 入端还连接有一直流电压;
用于产生感生电压的所述微机械磁场传感器的输出端连接所述电压放大器的输入端; 用于将所述感生电压放大的所述电压放大器的输出端连接所述鉴相器的另一个输入端, 其中, 所述电压放大器输出的经放大的感生电压信号作为测量信号;
用于鉴别所述测量信号与基准信号之间相位差的所述鉴相器的输出端连接所述低通滤波 器的输入端;
用于滤除所述鉴相器输出信号中交流部分的所述低通滤波器的输出端连接所述压控振荡 器的控制端及所述电压跟随器的输入端, 其中, 所述低通滤波器输出的直流信号作为所述压 控振荡器的控制电压信号, 用于保证整个锁相环电路处于稳定工作状态;
所述电压跟随器的输出端连接外部测量设备, 其中, 所述电压跟随器输出的直流电压信 号的大小表征所述微机械磁场传感器待测磁场的大小。
可选的, 当二谐振振子结构的第一锚点通过形成在其上的焊盘分别连接输出端时, 所述 电压放大器为具有两个输入端的差分电压放大器; 当二谐振振子结构的一个第一锚点接输出 端且另一个第一锚点接地时, 所述电压放大器为具有一个输入端的常规电压放大器。 如上所述, 本发明的微机械磁场传感器, 具有以下有益效果:
1 ) 本发明采用耦合梁将两个谐振振子结构耦合起来形成谐振振子对, 利用差分电容激 励和电磁感应来测量磁场大小, 其中, 两个谐振振子结构工作在反相位模式, 各该谐振振子 结构上的金属线圈环绕方向相同, 两个谐振振子结构上的金属线圈产生的感应电动势相互串 联; 由于驱动信号是差分信号, 则两个差分驱动信号分别与输出信号之间形成两个反相位的 容性耦合信号, 又由于这两个容性耦合信号大小相等, 符号相反, 因此它们在测得感应电动 势的电压输出端会相互抵消, 从而消除了输出信号中的容性耦合信号, 以获得单纯的磁场输 出信号, 实现了微机械磁场传感器的单纯的磁场输出信号检测;
2) 本发明利用耦合结构将两个谐振振子结构耦合起来, 由于耦合结构使两个谐振振子 结构连接为一体运动, 从而保证了整个微机械磁场传感器具有单一的谐振频率;
3 ) 本发明提出的微机械磁场传感器的谐振振子工作在扩张模态, 因而金属线圈上每小 段金属切割磁感线产生感应电动势会相互串联叠加, 增强了输出信号的强度; 本发明的金属 线圈可以为一层或多层的螺旋状线圈, 有利于进一步增大输出信号的强度, 提高检测的灵敏 度;
4) 本发明还可以通过金属支撑柱使金属线圈悬于所述谐振振子之上, 从而减小在高频 情况下谐振振子结构与金属线圈之间信号相互串扰的问题;
5 ) 本发明结构简单, 不需要在金属线圈上通入电流, 降低了器件的功耗; 同时通过测 量金属线圈两端的感应电动势来测量磁场大小, 因此受温度影响小; 而且由于本发明采用了 两个谐振振子结构, 进一步增强了输出信号的强度, 也提高了输出信号的灵敏度。 附图说明
图 la至图 lc显示为现有技术中的工作在体模态的几种谐振振子结构的模态示意图, 其 中, 图 la 为工作在 Square Extensional (SE)模态的方形板谐振振子结构, 图 lb 为工作在 Radial Extensional (RE)模态的圆形板谐振振子结构, 图 lc为工作在 Radial Extensional (RE) 模态的圆环板谐振振子结构。
图 2a显示为本发明的微机械磁场传感器在实施例一中的测试电路示意图, 其中, 所述 谐振振子结构为 SE模态正方形板。
图 2b 显示为本发明的微机械磁场传感器的一种的测试电路示意图, 其中, 所述谐振振 子结构为 SE模态正方形板。
图 2c显示为本发明的微机械磁场传感器谐振振子对的一种相关结构示意图。
图 2d 显示为本发明的微机械磁场传感器在实施例一中其谐振振子对的相关结构示意 图。
图 2e显示为本发明的微机械磁场传感器的电路结构在实施例一中示意图。
图 3a显示为本发明的微机械磁场传感器在实施例二中的测试电路示意图, 其中, 所述 谐振振子结构为 Width Extensional (WE)模态矩形板。
图 3b 显示为本发明的微机械磁场传感器的一种测试电路示意图, 其中, 所述谐振振子 结构为 WE模态矩形板。
图 3c 显示为本发明的微机械磁场传感器在实施例二中其谐振振子对的相关结构示意 图。
图 3d显示为本发明的微机械磁场传感器的电路结构在实施例二中示意图。
图 4a显示为本发明的微机械磁场传感器在实施例三中的测试电路示意图其中, 所述谐 振振子结构为 RE模态圆形板。
图 4b 显示为本发明的微机械磁场传感器在实施例三中其谐振振子对的相关结构示意 图。 元件标号说明
1 谐振振子结构
21 主支撑梁
22 旁支撑梁
31 第一耦合梁
32 第二耦合梁
41 第一锚点
42 第二锚点
43 第三锚点
44 第四锚点
5 驱动电极
6 绝缘层
7 金属线圈 81 第一连接桥
82 第二连接桥
Vp 直流电源
Vin 交流电源
V。ut 电压输出端
R 电阻
C 电容
91 压控振荡器
92 差分运算放大器
93 微机械磁场传感器
94 电压放大器
95 鉴相器
96 低通滤波器
97 电压跟随器 具体实施方式
以下由特定的具体实施例说明本发明的实施方式, 熟悉此技术的人士可由本说明书所揭 露的内容轻易地了解本发明的其他优点及功效。
请参阅图 2a至图 4b。 须知, 本说明书所附图式所绘示的结构、 比例、 大小等, 均仅用 以配合说明书所揭示的内容, 以供熟悉此技术的人士了解与阅读, 并非用以限定本发明可实 施的限定条件, 故不具技术上的实质意义, 任何结构的修饰、 比例关系的改变或大小的调 整, 在不影响本发明所能产生的功效及所能达成的目的下, 均应仍落在本发明所揭示的技术 内容得能涵盖的范围内。 同时, 本说明书中所引用的如"上"、 "下"、 "左"、 "右"、 "中间 "及 "一"等的用语, 亦仅为便于叙述的明了, 而非用以限定本发明可实施的范围, 其相对关系的 改变或调整, 在无实质变更技术内容下, 当亦视为本发明可实施的范畴。 实施例一
如图 2a至 2d所示, 本发明提供一种微机械磁场传感器, 所述微机械磁场传感器至少包 括: 谐振振子对和依次形成于其表面上的绝缘层 6及金属线圈 7, 其中, 所述谐振振子对包 括: 谐振振子结构 1、 主支撑梁 21、 第一锚点 41 和驱动电极 5。 在本实施例一中, 所述谐 振振子对还包括第一耦合梁 31及第二锚点 42。 所述谐振振子结构 1为两个且均为轴对称结构, 各该谐振振子结构 1的对称轴至少包括 第一对称轴和第二对称轴, 且所述的第一对称轴垂直于第二对称轴。 所述谐振振子结构 1的 材料为单晶硅、 多晶硅、 非晶硅或碳化硅。
需要说明的是, 所述谐振振子结构 1 为矩形板、 圆形板或圆环形板。 当所述谐振振子结 构 1为矩形板时, 所述第一对称轴平行于矩形板的长边或宽边, 优选地, 所述谐振振子结构 1为正方形板; 进一步, 所述谐振振子结构 1为正方形板时, 所述第一对称轴和第二对称轴 还可以分别为所述正方形板两条对角线的延长线
具体地, 在本实施例一中, 如图 2d所示, 两个所述谐振振子结构 1 为单晶硅正方形 板, 正方形板谐振振子结构 1 的第一对称轴和第二对称轴分别为正方形板两对角线的延长 线, 即主支撑梁 21连接于正方形板谐振振子结构 1的角部, 图 2d中各该谐振振子结构 1的 虚线表示各该谐振振子结构 1在工作 (谐振状态) 时外部轮廓的形变趋势。
所述主支撑梁 21位于所述第一对称轴上, 且两个所述谐振振子结构 1通过各自的主支 撑梁 21相互耦合连接。 具体地, 在本实施例一中, 所述主支撑梁 21为两个, 各该单晶硅正 方形板谐振振子结构 1通过各自的一个主支撑梁 21相互耦合连接。
需要说明的是, 本实施例一中, 所述谐振振子对还包括第一耦合梁 31和第二锚点 42, 但并不局限与此, 在另一实施例中, 所述谐振振子对可以不包括所述第一耦合梁 31 和第二 锚点 42 (请参阅图 2c) 。 其中, 所述第一耦合梁 31的一端连接于相互连接的所述主支撑梁 21上, 其中, 所述第一耦合梁 31为直拉梁或弯曲折叠梁。 具体地, 在本实施例一中, 如图 2d所示, 所述第一耦合梁 31为弯曲折叠梁。
所述第二锚点 42连接于所述第一耦合梁 31 的另一端, 其中, 所述第二锚点 42形成有 焊盘 (如图 2a中第一锚点上填充有交叉网格处所示), 且所述第二锚点 42通过所述的焊盘 接地。
所述第一锚点 41与所述主支撑梁 21 的自由端相连接, 其中, 所述第一锚点 41形成有 焊盘 (如图 2a中第二锚点上填充有交叉网格处所示), 二谐振振子结构 1 的第一锚点 41通 过形成在其上的焊盘分别连接电压输出端 V。ut或一个第一锚点接电压输出端 V。ut且另一个第 一锚点接地, 从而通过测得该感应电动势 V。ut来测量待测磁场大小。 具体地, 在本实施例一 中, 如图 2a所示, 所述二谐振振子结构 1的第一锚点 41通过形成在其上的焊盘分别连接电 压输出端¥。^, 但并不局限于此, 在另一实施例中, 所述一个谐振振子结构 1的第一锚点 41 接电压输出端 V。ut且另一个谐振振子结构 1的第一锚点 41接地, 如图 2b所示。
所述驱动电极 5分别分布于各该谐振振子结构 1的相对侧, 且与各该谐振振子结 1之间 形成有驱动间隙, 所述驱动电极 5通过电阻 R连接至直流电源 Vp, 且所述驱动电极 5通过 电容 C连接至交流电源 Vin, 其中, 与一谐振振子结构 1相连接的交流电源为 +Vin, 与另一 谐振振子结构相连接的交流电源为 -Vin, 其中, +¥ 和-¼11相位相反幅值相等, 即各该谐振 振子结构 1的驱动电极 5分别连接至相位相反幅值相等的交流电源, 以使两个谐振振子结构 为差分驱动方式 (请参阅图 2a), 则两个谐振振子结构 1工作在反相位模式。 同时, 由于驱 动信号是差分信号, 则两个差分驱动信号分别与输出信号之间形成两个反相位的容性耦合信 号, 又由于这两个容性耦合信号大小相等, 符号相反, 因此它们在测得感应电动势的电压输 出端会相互抵消, 从而消除了输出信号中的容性耦合信号, 以获得单纯的磁场输出信号, 实 现了微机械磁场传感器的单纯的磁场输出信号检测。
优选地, 在本实施例一中, 如图 2a所示, 所述驱动电极 5为两个位于各该正方形板谐 振振子结构 1的相对侧, 并且所述驱动电极 5与谐振振子结构 1之间形成有驱动间隙, 如图 2d所示, 所述驱动电极 5为两对, 且每对分别对称分布于各该正方形板谐振振子结构 1 的 相对侧, 即每对所述驱动电极 5分别对称分布于各该正方形板谐振振子结构 1的边相对侧, 但并不局限于此, 在另一实施例中所述驱动电极可以只为一对, 且分布于各该正方形板谐振 振子结构 1的相对侧。
需要说明的是, 如图 2d所示, 在在本实施例一中, 所述谐振振子对还包括第二耦合梁 32, 所述第二耦合梁 32也连接于所述位于第一对称轴上且相互连接的主支撑梁 21上, 且所 述第二耦合梁 32连接有第三锚点 43, 优选地, 如图 2d所示, 所述第二耦合梁 32与所述第 一耦合梁 31对称分布于所述第一对称轴两侧。
需要进一步说明的是, 在本实施例一中, 如图 2a及 2d所示, 所述谐振振子对还包括旁 支撑梁 22和第四锚点 44, 其中, 所述旁支撑梁 22位于所述第二对称轴上, 且其一端连接 于谐振振子结构 1, 其另一端连接于第四锚点 44 (图 2a中第四锚点 44接地, 但并不局限与 此, 所述地四锚点也可以不接地), 即所述旁支撑梁 22连接于正方形板谐振振子结构 1的角 部, 但不局限于此, 在另一实施例中, 所述谐振振子对也可以不含所述旁支撑梁和第四锚 点。 进一步, 如图 2d所示, 在本实施例一中, 所示地四锚点 44通过位于其上的焊盘接地, 但并不局限于此, 所示第四锚点上的焊盘也可以不接地。
所述绝缘层 6 形成于所述谐振振子对的谐振振子结构 1 及主支撑梁 21 的上表面, 同 时, 所述第一锚点 41 与形成于其上的焊盘之间形成有绝缘层 6, 具体地, 在本实施例一 中, 所述第一耦合梁 31上表面也形成有绝缘层 6, 所述第二锚点 42与形成于其上的焊盘之 间形成有绝缘层 6。 优选的, 所述谐振振子结构 1、 主支撑梁 21、 第一耦合梁 31、 第一锚点 41及第二锚点 42形成于同一平面内, 则所述绝缘层形成于该平面的上表面上。 进一步, 在 本实施例一中, 所述谐振振子对还包括第二耦合梁 32、 第三锚点 43、 旁支撑梁 22和第四锚 点 44, 如图 2a所示, 所述第二耦合梁 32、 第三锚点 43和旁支撑梁 22上均没有绝缘层 6, 所述第四锚点 44 与形成在其上的焊盘之间形成有绝缘层 6, 但并不局限与此, 在另一实施 例中, 所述第二耦合梁 32、 第三锚点 43、 旁支撑梁 22上也可以有绝缘层 6, 所述第四锚点 44上无焊盘时, 也可以没有绝缘层 6。
所述金属线圈 7分别形成于各该谐振振子结构 1上的绝缘层 6上, 所述金属线圈 Ί为藉 由其对应的所述绝缘层 6中心为始端由内向外环绕的金属线圈, 其中, 二谐振振子结构 1上 的金属线圈 7为同向环绕。 由于各该谐振振子结构 1上的金属线圈环绕方向相同; 又由于两 个谐振振子结构 1被差分电容激励, 工作在反相位模式, 则两个谐振振子结构 1上的金属线 圈 7产生的感应电动势相互串联。
在本实施例一中, 如图 2a所示, 各该金属线圈 7均为顺时针环绕, 各该金属线圈 7的 末端通过第二连接桥 82连接于其对应的第一锚点 41上的焊盘、 且各该金属线圈 Ί的始端通 过第一连接桥 81经相互耦合连接的主支撑梁 21及第一耦合梁 31上的绝缘层 6连接于所述 第二锚点 42上的焊盘, 此时, 所述第二连接桥 82位于与第一锚点 41相连接的主支撑梁 21 上的绝缘层 6上; 同时, 各该第一连接桥 81与位于其下的各该金属线圈 Ί之间形成有绝缘 层 6, 其中, 所述第一连接桥 81—端穿过位于其下的绝缘层 6连接至所述金属线圈 Ί的始 端, 所述第一连接桥 81 的另一端连接至第二锚点 42上的焊盘, 此时, 所述第一连接桥 81 位于金属线圈 7、 相互耦合连接的主支撑梁 21及第一耦合梁 31上的绝缘层 6上; 所述金属 线圈 7、 第一连接桥 81及第二连接桥 82的材质为金, 但并不局限与此, 三者的材料可以相 同也可以互不相同, 但三者为保证良好的电学连接则三者的材料选自金、 铜或铝。
需要说明的是, 所述金属线圈连接至第一锚点及第二锚点上的焊盘的方式并不局限于 此。 在另一实施例中 (未图示), 各该金属线圈的始端通过第一连接桥连接于其对应的第一 锚点上的焊盘、 且各该金属线圈的末端通过第二连接桥经相互耦合连接的主支撑梁及第一耦 合梁上的绝缘层连接于所述第二锚点上的焊盘; 同时, 各该第一连接桥与位于其下的各该金 属线圈之间形成有绝缘层, 其中, 所述第一连接桥一端穿过位于其下的绝缘层连接至所述金 属线圈的始端, 所述第一连接桥的另一端连接至第一锚点上的焊盘。
需要指出的是, 所述金属线圈可以为一层也可以为多层; 当所述金属线圈为多层时, 各 层所述金属线圈相互串联, 且各层所述金属线圈具有相同的绕向, 各层金属线圈之间还形成 有绝缘层, 其中, 所述金属线圈串联的方式为连续的第偶数层和第奇数层所述金属线圈的末 端相连、 以及连续的第奇数层和第偶数层所述金属线圈的始端相连, 以保证各层为相同绕 向, 且各该相互串联的金属线圈之间除了相连处外具有绝缘层。 以三层金属线圈均为顺时针 环绕为例进行说明: 第一层金属线圈以中心为始端由内向外顺时针环绕, 第二层金属线圈与 第一层金属线圈的末端相连, 且所述第二层金属线圈以末端由外向内顺时针环绕, 此时, 第 一层金属线圈与第二层金属线圈的绕向相同, 而后, 第三层金属线圈与第二层金属线圈的中 心始端相连, 且第三层金属线圈以中心为始端由内向外顺时针环绕, 此时, 第一层、 第二层 及第三层的金属线圈的绕向均相同。
需要进一步指出的是, 所述金属线圈可以直接形成于所述绝缘层上, 也可以所述金属线 圈与位于其下的绝缘层之间还形成有支撑所述金属线圈悬空于所述绝缘层之上的金属支撑 柱, 其中, 所述支撑柱与线圈为同材料, 均选自金、 铜或铝。 当通过金属支撑柱使金属线圈 悬于所述谐振振子之上时, 可减小在高频情况下所述谐振振子结构与金属线圈之间信号相互 串扰的问题。
需要说明的是, 所述金属线圈的圈数为一圈 (未封闭), 所述金属线圈为圆形或矩形; 所述金属线圈还可为多圈, 所述金属线圈为圆形螺旋状或矩形螺旋状, 但需要保证位于各该 谐振振子结构 1的形状与位于其上的金属线圈的形状保持一致。
具体地, 如图 2a所示, 在本实施例一中, 所述金属线圈为一层、 直接形成于所述绝缘 层 6上的正方形螺旋状金属线圈 7。
为使本领域技术人员进一步理解本发明的微机械磁场传感器的实施方式, 以下将详细说 明本发明的微机械磁场传感器的具体工作步骤及工作原理。 本发明的工作原理如下:
本发明提出的微机械磁场传感器在形成谐振振子对的两个谐振振子结构上加载金属线圈 来实现。 本发明利用差分电容激励驱动两个谐振振子结构进入谐振状态, 当传感器位于被测 磁场中时, 谐振振子振动会带动金属线圈运动, 金属线圈切割磁感线, 在金属线圈两端产生 感应电动势, 通过测量金属线圈两端的感应电动势来测量被测磁场的大小。
本发明的工作步骤为:
a) 将所述微机械磁场传感器置于被测磁场中;
b) 在微机械磁场传感器的驱动电极 5上同时施加由直流电源 Vp和交流电源 Vin提供 的相叠加的驱动信号, 其中, 与一谐振振子结构 1相连接的交流电源为 +Vin, 与 另一谐振振子结构 1相连接的交流电源为 -vin, 其中, + vin和 - vin相位相反幅值 相等, 以使两个谐振振子结构为差分驱动方式;
c) 当施加的交流信号的频率等于微机械磁场传感器自身的谐振频率时, 微机械磁场 传感器就处于谐振工作状态, 谐振振子振动带动位于其上的金属线圈运动, 金属 线圈切割磁感线, 此时, 测量金属线圈两端产生的感应电动势从而得出被测磁场 的大小。 本法明还提供一种微机械磁场传感器的电路结构, 在本实施例一中, 如图 2e 所示, 所 述电路结构至少包括: 锁相环电路、 差分运算放大器 92、 微机械磁场传感器 93、 电压放大 器 94及电压跟随器 97, 其中, 所述锁相环电路包括压控振荡器 91、 鉴相器 95和低通滤波 器 96
用于产生与所述微机械磁场传感器 93谐振频率相同的交流信号的所述压控振荡器 91的 输出端, 分别连接所述差分运算放大器 92的输入端及所述鉴相器 95的一个输入端, 其中, 所述压控振荡器 91输出的交流信号作为所述鉴相器 95的基准信号。
用于将所述压控振荡器 91 输出的交流信号转化为差分电压信号的所述差分运算放大器 92的输出端, 连接所述微机械磁场传感器 93的交流电源输入端 (+¼11和-¼ , 所述微机械 磁场传感器 93的直流电源输入端还连接有一直流电压 Vp
用于产生感生电压的所述微机械磁场传感器 93的输出端连接所述电压放大器 94的输入 用于将所述感生电压放大的所述电压放大器 94的输出端连接所述鉴相器 95的另一个输 入端, 其中, 所述电压放大器 94输出的经放大的感生电压信号作为测量信号。
用于鉴别所述测量信号与基准信号之间相位差的所述鉴相器 95 的输出端连接所述低通 滤波器 96的输入端。
用于滤除所述鉴相器 95输出信号中交流部分的所述低通滤波器 96的输出端连接所述压 控振荡器 91 的控制端及所述电压跟随器 97的输入端, 其中, 所述低通滤波器 96输出的直 流信号作为所述压控振荡器 91 的控制电压信号, 用于保证整个锁相环电路处于稳定工作状 态。
所述电压跟随器 97 的输出端连接外部测量设备 (未图示), 其中, 所述电压跟随器 97 输出的直流电压信号的大小表征所述微机械磁场传感器 93待测磁场的大小。
所述微机械磁场传感器的电路结构的具体工作原理如下: 通过锁相环电路中的压控振荡 器 (VCO)91 产生一个与微机械磁场传感器 93谐振频率相同的交流信号; 利用差分运算放大 器 (Single to Differential) 92将压控振荡器 91输出的交流信号转化为差分电压信号, 并与直流 电压 Vp叠加后激励微机械磁场传感器 93工作; 微机械磁场传感器 93的感生电压通过电压 放大器 (Amplifier)94进行放大; 将压控振荡器 91 输出的频率信号作为基准频率, 电压放大 器 94的输出作为测量信号, 利用鉴相器 95鉴别测量信号与基准信号之间的相位差; 将鉴相 器 95的输出信号接入低通滤波器 (Low-pass Filter) 96, 滤除该信号中的交流部分, 得到与 待测磁场信号幅度相关的直流信号; 将低通滤波器 96输出的直流信号作为压控振荡器 91的 控制电压信号, 从而保证整个锁相环电路处于稳定工作状态; 低通滤波器 96 输出的反映待 测磁场信号幅度大小的直流信号通过电压跟随器 (Buffer Amplifier) 97与外部测量设备进行连 接, 该最终输出的直流电压信号 V。ut的大小即表征所述微机械磁场传感器 93待测磁场的大 小。 与传统的微机械磁场传感器相比, 本发明的微机械磁场传感器具有以下有益效果:
1 ) 本发明采用耦合梁将两个谐振振子结构耦合起来形成谐振振子对, 利用差分电容激 励和电磁感应来测量磁场大小, 其中, 两个谐振振子结构工作在反相位模式, 各该谐振振子 结构上的金属线圈环绕方向相同, 两个谐振振子结构上的金属线圈产生的感应电动势相互串 联; 由于驱动信号是差分信号, 则两个差分驱动信号分别与输出信号之间形成两个反相位的 容性耦合信号, 又由于这两个容性耦合信号大小相等, 符号相反, 因此它们在测得感应电动 势的电压输出端会相互抵消, 从而消除了输出信号中的容性耦合信号, 以获得单纯的磁场输 出信号, 实现了微机械磁场传感器的单纯的磁场输出信号检测;
2) 本发明利用耦合结构将两个谐振振子结构耦合起来, 由于耦合结构使两个谐振振子 结构连接为一体运动, 从而保证了整个微机械磁场传感器具有单一的谐振频率;
3 ) 本发明提出的微机械磁场传感器的谐振振子工作在扩张模态, 因而金属线圈上每小 段金属切割磁感线产生感应电动势会相互串联叠加, 增强了输出信号的强度; 本发明的金属 线圈可以为一层或多层的螺旋状线圈, 有利于进一步增大输出信号的强度, 提高检测的灵敏 度;
4) 本发明还可以通过金属支撑柱使金属线圈悬于所述谐振振子之上, 从而减小在高频 情况下谐振振子结构与金属线圈之间信号相互串扰的问题;
5 ) 本发明结构简单, 不需要在金属线圈上通入电流, 降低了器件的功耗; 同时通过测 量金属线圈两端的感应电动势来测量磁场大小, 因此受温度影响小; 而且由于本发明采用了 两个谐振振子结构, 进一步增强了输出信号的强度, 也提高了输出信号的灵敏度。 实施例二
实施例二与实施例一的技术方案基本相同, 不同之处主要在于: 实施例一中所述谐振振 子结构为正方形板, 且所述谐振振子对包括第一耦合梁、 第二锚点、 第二耦合梁及第三锚 点; 本实施例二中, 所述谐振振子结构为矩形板, 且所述谐振振子对不包括第一耦合梁、 第 二锚点、 第二耦合梁及第三锚点, 所述谐振振子对中 (结构、 制作方法及工作原理) 的其余 相同之处请参阅实施例一的相关描述, 在此不再一一赘述。
如图 3a和 3c所示, 本实施例二提供一种微机械磁场传感器, 所述微机械磁场传感器至 少包括: 谐振振子对和依次形成于其表面上的绝缘层 6及金属线圈 7, 其中, 所述谐振振子 对包括: 矩形板谐振振子结构 1、 主支撑梁 21、 第一锚点 41 和驱动电极 5, 但并不局限于 此, 在另一实施例中, 各该谐振振子对中也可以包括一端连接于相互连接的所述主支撑梁上 的第一耦合梁、 连接于所述第一耦合梁的另一端的第二锚点, 进一步, 各该谐振振子对中还 可以包括连接于所述位于第一对称轴上且相互连接的主支撑梁上第二耦合梁及连接所述第二 耦合梁的第三锚点。
所述矩形板谐振振子结构 1为碳化硅, 其第一对称轴平行于矩形板的长边或宽边。 在本 实施例二中, 如图 3c所示, 所述第一对称轴平行于矩形板的长边, 即主支撑梁 21连接于矩 形板谐振振子结构 1的宽边。
所述第一锚点 41与所述主支撑梁 21 的自由端相连接, 其中, 所述第一锚点 41形成有 焊盘 (如图 3a及 3b中第二锚点上填充有交叉网格处所示), 二谐振振子结构 1 的第一锚点 41通过形成在其上的焊盘分别连接电压输出端 V。ut (如图 3a所示) 或一个第一锚点接电压 输出端 V。ut且另一个第一锚点接地 (如图 3b所示) 从而通过测得该感应电动势 V。ut来测量 待测磁场大小。 具体地, 在本实施例二中, 如图 3b所示, 所述二谐振振子结构 1 的一个第 一锚点 41接电压输出端 V。ut且另一个第一锚点 41接地。
所述驱动电极 5分别分布于各该矩形板谐振振子结构 1的相对侧, 并且所述驱动电机 5 与谐振振子结构 1形成有驱动间隙, 在本实施例二中, 如图 3b所示, 所述驱动电极 5为两 个, 且对称分布于各该矩形板谐振振子结构 1的第一对称轴的两侧, 即所述驱动电极 5对称 分布于各该矩形板谐振振子结构 1的长边相对侧。 需要说明的是, 在另一实施例中, 所述矩 形板谐振振子结构还可优选为正方形板。
所述绝缘层 6 形成于所述谐振振子对的谐振振子结构 1 及主支撑梁 21 的上表面, 同 时, 所述第一锚点 41 与形成于其上的焊盘之间形成有绝缘层 6。 优选的, 所述谐振振子结 构 1、 主支撑梁 21及第一锚点 41形成于同一平面内, 则所述绝缘层形成于该平面的上表面 上。 进一步, 在另一实施例中, 当各该谐振振子对中包括所述第二耦合梁 32和第三锚点 43 时, 则所述第二耦合梁 32和第三锚点 43上可以形成有绝缘层 6, 也可以没有绝缘层 6。 所述金属线圈 7的相关描述请参阅实施例一, 不同之处在于, 所述金属线圈 7的形状为 矩形螺旋状, 各该金属线圈 7均为逆时针环绕, 如图 3a所示。
本实施例二的微机械磁场传感器的电路结构与实施例一基本相同, 区别仅在于: 实施例 一中的电压放大器 94为具有两个输入端的差分电压放大器; 而本实施例二的电压放大器 94 具有一个输入端的常规电压放大器 (请参阅图 3d); 另外, 本实施例二与实施例一的微机械 磁场传感器的结构不相同, 其余相同之处请参阅实施例一中的相关描述。
与传统的微机械磁场传感器相比, 本发明的微机械磁场传感器具有以下有益效果:
1 ) 本发明采用耦合梁将两个谐振振子结构耦合起来形成谐振振子对, 利用差分电容激 励和电磁感应来测量磁场大小, 其中, 两个谐振振子结构工作在反相位模式, 各该谐振振子 结构上的金属线圈环绕方向相同, 两个谐振振子结构上的金属线圈产生的感应电动势相互串 联; 由于驱动信号是差分信号, 则两个差分驱动信号分别与输出信号之间形成两个反相位的 容性耦合信号, 又由于这两个容性耦合信号大小相等, 符号相反, 因此它们在测得感应电动 势的电压输出端会相互抵消, 从而消除了输出信号中的容性耦合信号, 以获得单纯的磁场输 出信号, 实现了微机械磁场传感器的单纯的磁场输出信号检测;
2) 本发明利用耦合结构将两个谐振振子结构耦合起来, 由于耦合结构使两个谐振振子 结构连接为一体运动, 从而保证了整个微机械磁场传感器具有单一的谐振频率;
3 ) 本发明提出的微机械磁场传感器的谐振振子工作在扩张模态, 因而金属线圈上每小 段金属切割磁感线产生感应电动势会相互串联叠加, 增强了输出信号的强度; 本发明的金属 线圈可以为一层或多层的螺旋状线圈, 有利于进一步增大输出信号的强度, 提高检测的灵敏 度;
4) 本发明还可以通过金属支撑柱使金属线圈悬于所述谐振振子之上, 从而减小在高频 情况下谐振振子结构与金属线圈之间信号相互串扰的问题;
5 ) 本发明结构简单, 不需要在金属线圈上通入电流, 降低了器件的功耗; 同时通过测 量金属线圈两端的感应电动势来测量磁场大小, 因此受温度影响小; 而且由于本发明采用了 两个谐振振子结构, 进一步增强了输出信号的强度, 也提高了输出信号的灵敏度。 实施例三
实施例三与实施例一的技术方案基本相同, 不同之处主要在于: 实施例一中所述谐振振 子结构为正方形板; 本实施例三中, 所述谐振振子结构为圆形板, 谐振振子对中 (结构、 制 作方法及工作原理) 其余的相同之处请参阅实施例一的相关描述, 在此不再一一赘述。 如图 4a和 4b所示, 本实施例三提供一种微机械磁场传感器, 所述微机械磁场传感器至 少包括: 谐振振子对和依次形成于其表面上的绝缘层 6及金属线圈 7, 其中, 所述谐振振子 对包括: 圆形板谐振振子结构 1、 主支撑梁 21、 第一耦合梁 31、 第一锚点 41、 第二锚点 42 和驱动电极 5, 其中, 所述第一对称轴为圆形板的直径延长线。
需要说明的是, 所述谐振振子结构 1并不局限于圆形板, 所述谐振振子结构 1还可为圆 形板或圆环板, 其中, 所述第一对称轴为圆形板或圆环板中圆的长轴或短轴的延长线, 进一 步, 圆环板为圆环板的优选情况, 所述第一对称轴为圆环板的直径延长线。
需要进一步说明的是, 如图 4b所示, 所述谐振振子对还包括连接于主支撑梁 21上的第 二耦合梁 32和连接于所述第二耦合梁 32的第三锚点 43, 其中, 所述主支撑梁 21为位于第 一对称轴上且相互连接的主支撑梁, 但并不局限于此, 在另一实施例中, 各该谐振振子对中 也可以没有第二耦合梁和连接于第二耦合梁的第三锚点。
所述驱动电极 5分别分布于各该正方形板谐振振子结构 1的相对侧, 并且所述驱动电机 5与谐振振子结构 1 形成有驱动间隙, 在本实施例三中, 如图 4b所示, 所述驱动电极为两 个与所述圆形板匹配的圆弧形驱动电极, 对称分布于各该圆形板谐振振子结构 1的相对侧。
所述绝缘层 6形成于所述谐振振子对的谐振振子结构 1、 主支撑梁 21及第一耦合梁 31 上表面, 同时, 所述第一锚点 41 与形成于其上的焊盘之间形成有绝缘层 6, 所述第二锚点 42与形成于其上的焊盘之间形成有绝缘层 6。 优选的, 所述谐振振子结构 1、 主支撑梁 21、 第一耦合梁 31、 第一锚点 41及第二锚点 42形成于同一平面内, 则所述绝缘层形成于该平 面的上表面上。 进一步, 在本实施例二中, 所述谐振振子对还包括连接于主支撑梁 21 上的 第二耦合梁 32和连接于所述第二耦合梁 32的第三锚点 43, 如图 4a所示, 所述第二耦合梁 32和第三锚点 43上没有绝缘层 6, 但并不局限与此, 在另一实施例中, 所述第二耦合梁 32 和第三锚点 43上也可以有绝缘层 6。
所述金属线圈 7的相关描述请参阅实施例一, 不同之处在于, 所述金属线圈 7的形状为 圆形螺旋状, 各该金属线圈 7均为逆时针环绕, 如图 4a所示。
本实施例三的微机械磁场传感器的电路结构 (未图示) 请参阅实施例一中的相关描述, 不同之处仅在于, 本实施例三与实施例一的微机械磁场传感器的结构不相同。
综上所述, 与传统的微机械磁场传感器相比, 本发明的微机械磁场传感器具有以下有益 效果:
1 ) 本发明采用耦合梁将两个谐振振子结构耦合起来形成谐振振子对, 利用差分电容激 励和电磁感应来测量磁场大小, 其中, 两个谐振振子结构工作在反相位模式, 各该谐振振子 结构上的金属线圈环绕方向相同, 两个谐振振子结构上的金属线圈产生的感应电动势相互串 联; 由于驱动信号是差分信号, 则两个差分驱动信号分别与输出信号之间形成两个反相位的 容性耦合信号, 又由于这两个容性耦合信号大小相等, 符号相反, 因此它们在测得感应电动 势的电压输出端会相互抵消, 从而消除了输出信号中的容性耦合信号, 以获得单纯的磁场输 出信号, 实现了微机械磁场传感器的单纯的磁场输出信号检测;
2) 本发明利用耦合结构将两个谐振振子结构耦合起来, 由于耦合结构使两个谐振振子 结构连接为一体运动, 从而保证了整个微机械磁场传感器具有单一的谐振频率;
3 ) 本发明提出的微机械磁场传感器的谐振振子工作在扩张模态, 因而金属线圈上每小 段金属切割磁感线产生感应电动势会相互串联叠加, 增强了输出信号的强度; 本发明的金属 线圈可以为一层或多层的螺旋状线圈, 有利于进一步增大输出信号的强度, 提高检测的灵敏 度;
4) 本发明还可以通过金属支撑柱使金属线圈悬于所述谐振振子之上, 从而减小在高频 情况下谐振振子结构与金属线圈之间信号相互串扰的问题;
5 ) 本发明结构简单, 不需要在金属线圈上通入电流, 降低了器件的功耗; 同时通过测 量金属线圈两端的感应电动势来测量磁场大小, 因此受温度影响小; 而且由于本发明采用了 两个谐振振子结构, 进一步增强了输出信号的强度, 也提高了输出信号的灵敏度。
所以, 本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰或改变。 因此, 举凡 所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等 效修饰或改变, 仍应由本发明的权利要求所涵盖。

Claims

权利要求书 、 一种微机械磁场传感器, 其特征在于, 所述微机械磁场传感器至少包括: 谐振振子对和 依次形成于其表面上的绝缘层及金属线圈; 其中,
所述谐振振子对包括:
两个具有轴对称结构的谐振振子结构, 各该谐振振子结构的对称轴至少包括第 一对称轴和第二对称轴, 且所述的第一对称轴垂直于第二对称轴;
主支撑梁, 位于所述第一对称轴上, 两个谐振振子结构通过各自的主支撑梁相 互耦合连接;
第一锚点, 与所述主支撑梁的自由端相连接, 其中, 二谐振振子结构的第一锚 点通过形成在其上的焊盘分别连接输出端或一个第一锚点接输出端且另一个第一锚 点接地;
驱动电极, 分别分布于各该谐振振子结构的相对侧, 且与各该谐振振子结构之 间形成有驱动间隙, 所述驱动电极通过电阻连接至直流电源, 且所述驱动电极通过 电容连接至交流电源, 其中, 各该谐振振子结构的驱动电极分别连接至相位相反幅 值相等的交流电源;
所述绝缘层形成于所述谐振振子对的谐振振子结构及主支撑梁的上表面, 同时, 所 述第一锚点与形成于其上的焊盘之间形成有绝缘层;
所述金属线圈分别形成于各该谐振振子结构上的绝缘层上, 所述金属线圈为藉由其 对应的所述绝缘层中心为始端由内向外环绕的金属线圈, 其中, 二谐振振子结构上的金 属线圈为同向环绕; 各该金属线圈的始端通过第一连接桥连接于其对应的第一锚点上的 焊盘、 且各该金属线圈的末端通过第二连接桥相互连接于耦合连接的主支撑梁上的第一 绝缘层上, 或者各该金属线圈的末端通过第二连接桥连接于其对应的第一锚点上的焊 盘、 且各该金属线圈的始端通过第一连接桥相互连接于耦合连接的主支撑梁上的第一绝 缘层上; 各该第一连接桥与位于其下的各该金属线圈之间形成有绝缘层。 、 根据权利要求 1 所述的微机械磁场传感器, 其特征在于: 所述谐振振子对还包括一端连 接于相互耦合连接的所述主支撑梁上的第一耦合梁、 及连接于所述第一耦合梁另一端的 第二锚点, 其中, 所述第二锚点通过形成在其上的焊盘接地, 所述第一耦合梁上表面、 及所述第二锚点与形成于其上的焊盘之间形成有绝缘层。 、 根据权利要求 2所述的微机械磁场传感器, 其特征在于: 各该金属线圈的末端通过第二 连接桥经过相互耦合连接的主支撑梁及第一耦合梁上的第一绝缘层连接于所述第二锚点 上的焊盘; 或者各该金属线圈的始端通过第一连接桥经过相互耦合连接的主支撑梁及第 一耦合梁上的第一绝缘层连接于所述第二锚点上的焊盘。 、 根据权利要求 1 所述的微机械磁场传感器, 其特征在于: 所述谐振振子结构为矩形板、 圆形板或圆环形板。 、 根据权利要求 1 所述的微机械磁场传感器, 其特征在于: 所述第一耦合梁为直拉梁或弯 曲折叠梁。 、 根据权利要求 1 所述的微机械磁场传感器, 其特征在于: 所述谐振振子对还包括第二耦 合梁, 所述第二耦合梁也连接于所述位于第一对称轴上且相互连接的主支撑梁上, 且所 述第二耦合梁连接有第三锚点; 其中, 所述第二耦合梁与所述第一耦合梁分别分布于所 述第一对称轴两侧。 、 根据权利要求 6所述的微机械磁场传感器, 其特征在于: 所述第二耦合梁为直拉梁或弯 曲折叠梁。 、 根据权利要求 4 所述的微机械磁场传感器, 其特征在于: 所述谐振振子结构为矩形板 时, 所述第一对称轴平行于矩形板的长边或宽边。 、 根据权利要求 4所述的微机械磁场传感器, 其特征在于: 所述谐振振子结构为正方形板 时, 所述第一对称轴和第二对称轴分别为正方形板两对角线的延长线。 0、 根据权利要求 9 所述的微机械磁场传感器, 其特征在于: 所述谐振振子对还包括位 于所述第二对称轴上且一端连接于所述谐振振子结构的旁支撑梁、 以及连接于所述旁支 撑梁另一端的第四锚点。 1、 根据权利要求 1 所述的微机械磁场传感器, 其特征在于: 所述金属线圈为多层, 各 层所述金属线圈相互串联, 且各层所述金属线圈具有相同的绕向, 各层金属线圈之间形 成有绝缘层。 、 根据权利要求 11所述的微机械磁场传感器, 其特征在于: 所述金属线圈串联的方式 为连续的第偶数层和第奇数层所述金属线圈的末端相连、 以及连续的第奇数层和第偶数 层所述金属线圈的始端相连, 且各该相互串联的金属线圈之间除了相连处外具有绝缘 层。 、 根据权利要求 1 所述的微机械磁场传感器, 其特征在于: 所述金属线圈与位于其下 的绝缘层之间形成有支撑所述金属线圈悬空于所述绝缘层之上的金属支撑柱。 、 根据权利要求 1 所述的微机械磁场传感器, 其特征在于: 所述金属线圈为一圈, 所 述金属线圈为圆形或矩形。 、 根据权利要求 1 所述的微机械磁场传感器, 其特征在于: 所述金属线圈为多圈, 所 述金属线圈为圆形螺旋状或矩形螺旋状。 种微机械磁场传感器的电路结构, 其特征在于, 所述电路结构至少包括: 锁相环 电路、 差分运算放大器、 如权利要求 1 至 15 任意一项所述的微机械磁场传感器、 电压 放大器及电压跟随器, 其中, 所述锁相环电路包括压控振荡器、 鉴相器和低通滤波器; 用于产生与所述微机械磁场传感器谐振频率相同的交流信号的所述压控振荡器的输 出端, 分别连接所述差分运算放大器的输入端及所述鉴相器的一个输入端, 其中, 所述 压控振荡器输出的交流信号作为所述鉴相器的基准信号;
用于将所述压控振荡器输出的交流信号转化为差分电压信号的所述差分运算放大器 的输出端, 连接所述微机械磁场传感器的交流电源输入端, 所述微机械磁场传感器的直 流电源输入端还连接有一直流电压;
用于产生感生电压的所述微机械磁场传感器的输出端连接所述电压放大器的输入 用于将所述感生电压放大的所述电压放大器的输出端连接所述鉴相器的另一个输入 端, 其中, 所述电压放大器输出的经放大的感生电压信号作为测量信号;
用于鉴别所述测量信号与基准信号之间相位差的所述鉴相器的输出端连接所述低通 滤波器的输入端;
用于滤除所述鉴相器输出信号中交流部分的所述低通滤波器的输出端连接所述压控 振荡器的控制端及所述电压跟随器的输入端, 其中, 所述低通滤波器输出的直流信号作 为所述压控振荡器的控制电压信号, 用于保证整个锁相环电路处于稳定工作状态;
所述电压跟随器的输出端连接外部测量设备, 其中, 所述电压跟随器输出的直流电 压信号的大小表征所述微机械磁场传感器待测磁场的大小。 、 根据权利要求 16所述的微机械磁场传感器的电路结构, 其特征在于: 当二谐振振子 结构的第一锚点通过形成在其上的焊盘分别连接输出端时, 所述电压放大器为具有两个 输入端的差分电压放大器; 当二谐振振子结构的一个第一锚点接输出端且另一个第一锚 点接地时, 所述电压放大器为具有一个输入端的常规电压放大器。
PCT/CN2013/071256 2012-11-19 2013-02-01 微机械磁场传感器及其应用 WO2014075402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210470215.0 2012-11-19
CN201210470215.0A CN102928793B (zh) 2012-11-19 2012-11-19 微机械磁场传感器及其应用

Publications (1)

Publication Number Publication Date
WO2014075402A1 true WO2014075402A1 (zh) 2014-05-22

Family

ID=47643637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071256 WO2014075402A1 (zh) 2012-11-19 2013-02-01 微机械磁场传感器及其应用

Country Status (2)

Country Link
CN (1) CN102928793B (zh)
WO (1) WO2014075402A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594128B2 (en) 2013-03-27 2017-03-14 King Abulaziz City For Science And Technology Two axes MEMS resonant magnetometer
TWI610879B (zh) * 2015-10-16 2018-01-11 碩英股份有限公司 具有防止訊號衰減功能之微機電裝置及其製造方法與防止訊號衰減的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914750B (zh) * 2012-11-19 2015-05-06 中国科学院上海微系统与信息技术研究所 微机械磁场传感器及其应用
CN105988090B (zh) * 2015-01-30 2018-09-25 中国科学院上海微系统与信息技术研究所 微机械磁场传感器及其应用
CN111381200B (zh) * 2020-02-19 2022-08-16 南京理工大学 利用180°反相调制非线性磁电效应差分输出的磁传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886669A (zh) * 2003-09-23 2006-12-27 秦内蒂克有限公司 共振磁强计设备
US20070170916A1 (en) * 2006-01-26 2007-07-26 Commissariat A L'energie Atomique Pulsed excitation and sampled detection fluxgate type magnetometer
CN101223691A (zh) * 2005-05-19 2008-07-16 罗伯特·博世有限公司 微机电谐振器结构及其设计、操作和使用方法
CN101294824A (zh) * 2007-04-25 2008-10-29 中国科学院电子学研究所 一种基于微电子机械技术的电磁微扭摆谐振式传感器
CN101408595A (zh) * 2008-11-28 2009-04-15 清华大学 一种扭摆式微型磁敏感器
CN102645565A (zh) * 2012-04-28 2012-08-22 中国科学院上海微系统与信息技术研究所 一种微机械磁场传感器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947846B1 (de) * 1998-03-30 2005-11-02 Sentron Ag Magnetfeldsensor
DE69925573T2 (de) * 1999-05-12 2006-04-27 Asulab S.A. Magnetischer F?hler hergestellt auf einem halbleitenden Substrat
US7907035B2 (en) * 2007-12-18 2011-03-15 Robert Bosch Gmbh MEMS resonator array structure and method of operating and using same
EP2416495B1 (en) * 2010-08-05 2014-05-07 Nxp B.V. MEMS Oscillator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886669A (zh) * 2003-09-23 2006-12-27 秦内蒂克有限公司 共振磁强计设备
CN101223691A (zh) * 2005-05-19 2008-07-16 罗伯特·博世有限公司 微机电谐振器结构及其设计、操作和使用方法
US20070170916A1 (en) * 2006-01-26 2007-07-26 Commissariat A L'energie Atomique Pulsed excitation and sampled detection fluxgate type magnetometer
CN101294824A (zh) * 2007-04-25 2008-10-29 中国科学院电子学研究所 一种基于微电子机械技术的电磁微扭摆谐振式传感器
CN101408595A (zh) * 2008-11-28 2009-04-15 清华大学 一种扭摆式微型磁敏感器
CN102645565A (zh) * 2012-04-28 2012-08-22 中国科学院上海微系统与信息技术研究所 一种微机械磁场传感器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594128B2 (en) 2013-03-27 2017-03-14 King Abulaziz City For Science And Technology Two axes MEMS resonant magnetometer
TWI610879B (zh) * 2015-10-16 2018-01-11 碩英股份有限公司 具有防止訊號衰減功能之微機電裝置及其製造方法與防止訊號衰減的方法

Also Published As

Publication number Publication date
CN102928793B (zh) 2015-03-25
CN102928793A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
WO2014075407A1 (zh) 微机械磁场传感器及其应用
CN102914749B (zh) 微机械磁场传感器及其应用
US7284429B2 (en) Micromachined double tuning-fork gyrometer with detection in the plane of the machined wafer
WO2014075402A1 (zh) 微机械磁场传感器及其应用
EP2972417B1 (en) Magnetometer using magnetic materials on accelerometer
WO2013159584A1 (zh) 一种微机械磁场传感器及其制备方法
CN105988090B (zh) 微机械磁场传感器及其应用
US10254355B2 (en) Magnetic sensor including a Lorentz force transducer driven at a frequency different from the resonance frequency, and method for driving a Lorentz force transducer
US20120176128A1 (en) Micromachined resonant magnetic field sensors
US10705158B2 (en) MEMS triaxial magnetic sensor with improved configuration
US20120176129A1 (en) Micromachined resonant magnetic field sensors
Sharma et al. Parametric amplification/damping in MEMS gyroscopes
JP2015072277A (ja) 磁気感度が低減されたmemsジャイロスコープ
Li et al. A micro-machined differential resonance accelerometer based on silicon on quartz method
CN103278148B (zh) 磁致伸缩固体振子双轴微陀螺
JPH07120266A (ja) 振動ジャイロセンサー
Wu et al. Design, fabrication and characterization of a resonant magnetic field sensor based on mechanically coupled dual-microresonator
Lim et al. A few deg/hr resolvable low noise lateral microgyroscope
US9664750B2 (en) In-plane sensing Lorentz force magnetometer
Chang et al. Development of multi-axes CMOS-MEMS resonant magnetic sensor using Lorentz and electromagnetic forces
Liu et al. An x-axis micromachined gyroscope with doubly decoupled oscillation modes
Sung et al. Mems above cmos process for single proof-mass 3-axis lorentz-force resonant magnetic sensor
Ren et al. A MEMS torsional resonant magnetometer for the attitude determination in space
Ghosh et al. Lorentz force magnetic sensors based on piezoelectric aluminum nitride on silicon micromechanical resonators
Wu et al. A micromachined square extensional mode resonant magnetometer with directly voltage output

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854914

Country of ref document: EP

Kind code of ref document: A1