WO2014075210A1 - 传输数据的方法、基站和用户设备 - Google Patents

传输数据的方法、基站和用户设备 Download PDF

Info

Publication number
WO2014075210A1
WO2014075210A1 PCT/CN2012/084506 CN2012084506W WO2014075210A1 WO 2014075210 A1 WO2014075210 A1 WO 2014075210A1 CN 2012084506 W CN2012084506 W CN 2012084506W WO 2014075210 A1 WO2014075210 A1 WO 2014075210A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
rlc
rlc pdu
downlink
uplink
Prior art date
Application number
PCT/CN2012/084506
Other languages
English (en)
French (fr)
Inventor
张健
曾清海
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201710812827.6A priority Critical patent/CN107750064B/zh
Priority to PCT/CN2012/084506 priority patent/WO2014075210A1/zh
Priority to EP12888440.0A priority patent/EP2908570B1/en
Priority to CN201710812863.2A priority patent/CN107819546B/zh
Priority to MX2015006001A priority patent/MX344890B/es
Priority to BR112015010763-0A priority patent/BR112015010763B1/pt
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280028139.6A priority patent/CN104041102A/zh
Priority to RU2015122423A priority patent/RU2622110C2/ru
Publication of WO2014075210A1 publication Critical patent/WO2014075210A1/zh
Priority to US14/709,922 priority patent/US10110282B2/en
Priority to ZA2015/03592A priority patent/ZA201503592B/en
Priority to US16/142,525 priority patent/US20190028151A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/30Transmission power control [TPC] using constraints in the total amount of available transmission power
    • H04W52/36Transmission power control [TPC] using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of communications and, in particular, to a method of transmitting data, a base station, and a user equipment. Background technique
  • the 3rd generation partnership project (the 3rd generation partnership)
  • 3GPP 3rd generation partnership
  • LTE-A 3rd Generation Partnership Project Advanced Term Evolution Advanced
  • CA Carrier Aggregation
  • the CA can obtain larger bandwidth by aggregating multiple consecutive or non-contiguous component carriers (CCs), thereby increasing the peak data rate and system throughput, and also solving the problem of carrier spectrum discontinuity.
  • a user equipment (UE) can support multiple CC aggregations in the downlink and uplink, and the CCs can be in the same frequency band or different frequency bands.
  • the CCs aggregated by the UE are provided by the same base station, for example, multiple CCs of the co-site provided by the base station or multiple CCs of the non-co-sites provided by the base station and its remote radio head (RRH), respectively.
  • RRH remote radio head
  • the existing LTE-A technology only supports the CA provided by the same base station, and the CA cannot be performed when the CCs of different base stations have a common coverage area. Therefore, the UEs in the area jointly covered by the CCs of different base stations need to switch during the mobile process. ) To a cell with better radio conditions, the handover process will cause service delay or interruption, reducing peak rate and throughput.
  • the embodiments of the present invention provide a method for transmitting data, a base station, and a user equipment, which can improve the peak rate and throughput of the UE.
  • a first aspect provides a method for transmitting data, including: a first base station generates a downlink radio link control RLC protocol data unit PDU; and the first base station sends a first partial downlink RLC PDU in the downlink RLC PDU to a user equipment UE. And transmitting the downlink RLC PDU to the second base station The second part of the downlink RLC PDU is sent by the second base station to the UE for the second partial downlink RLC PDU.
  • the method further includes: receiving, by the first base station, a first partial uplink RLC PDU in the uplink RLC PDU generated by the UE from the UE, and receiving the uplink from the second base station A second partial uplink RLC PDU in the RLC PDU, wherein the second partial uplink RLC PDU is received by the second base station from the UE.
  • the method further includes: the first base station receiving a first RLC status report from the UE; and the first RLC status report indicating that the first part of the downlink RLC PDU needs to be retransmitted
  • the first base station retransmits the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE; the first base station forwards the first RLC status report to the second base station, the first RLC status
  • the report indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, or the first base station sends a retransmission message generated by the first base station according to the first RLC state 4 to the second base station, and the retransmission is performed.
  • the message indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the method further includes: the first base station receiving a first RLC status report from the second base station, where the first RLC status report is that the second base station receives from the UE The first base station determines, according to the first RLC status report, the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU; the first base station retransmits the RLC that needs to be retransmitted in the first part of the downlink RLC PDU to the UE PDU.
  • the method further includes: the first base station generating, according to the receiving condition of the first partial uplink RLC PDU and the second partial uplink RLC PDU a second RLC status report, and sending the second RLC status report to the UE; the first base station receives an RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, where the uplink retransmission set includes the The RLC PDU that needs to be retransmitted in a part of the uplink RLC PDU and/or the RLC PDU that needs to be retransmitted in the second part of the uplink RLC PDU.
  • the first base station receives, by the UE, the RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, including: The first base station receives the RLC PDU of the uplink retransmission set from the UE; or the first base station receives the RLC PDU of the first uplink retransmission sub-set from the UE, and receives the second uplink retransmission from the second base station An RLC PDU in the set, where the RLC PDU of the second uplink retransmission sub-set is received by the second base station from the UE, the first uplink retransmission sub-collection and the The second uplink retransmission sub-set is obtained by the UE by dividing the uplink retransmission set; or, the first base station receives, from the second base station, the RLC PDU of the uplink retransmission set, and the RLC PDU of the
  • the second aspect provides a method for transmitting data, including: receiving, by a second base station, a second partial downlink RLC PDU in a downlink radio link control RLC protocol data unit PDU generated by the first base station from the first base station; The second base station sends the second partial downlink RLC PDU to the user equipment UE.
  • the method further includes: the second base station receiving, from the UE, a second partial uplink RLC PDU in the uplink RLC PDU generated by the UE; The base station transmits the second partial uplink RLC PDU.
  • the method further includes: the second base station receiving, by the first base station, a first RLC status report, and determining, according to the first RLC status report, the second part of the downlink RLC PDU.
  • the second base station receives the retransmission message from the first base station, and according to the retransmission message And retransmitting, to the UE, the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, where the first retransmission message indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the method further includes: the second base station receiving a first RLC status report from the UE; the second base station forwarding the first RLC status report to the first base station, When the first RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU, the first base station retransmits the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE; in the first RLC status report indication When the second part of the downlink RLC PDU needs to be retransmitted, the second base station retransmits the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU to the UE.
  • the method further includes: the second base station receiving, by the UE, an RLC PDU of an uplink retransmission set, and transmitting the RLC PDU to the first base station Retransmitting the RLC PDU of the uplink, the uplink retransmission set includes the RLC PDU that needs to be retransmitted in the first part of the uplink RLC PDU and/or the RLC PDU that needs to be retransmitted in the second part of the uplink RLC PDU; or the second The base station receives the RLC PDU of the second uplink retransmission sub-set from the UE, and sends the RLC PDU of the second uplink retransmission sub-set to the first base station, where the second uplink re-transmission sub-set is that the UE is heavy on the uplink
  • the collection is divided by the collection.
  • a method for transmitting data including: receiving, by a user equipment, a first part of downlink RLC PDUs in a downlink radio link control RLC protocol data unit PDU generated by the first base station from a first base station, and The second base station receives the second partial downlink RLC PDU in the downlink RLC PDU, where the second partial downlink RLC PDU is received by the second base station from the first base station.
  • the method further includes: the UE generating an uplink RLC PDU; the UE transmitting, by the first base station, the first part of the uplink RLC PDU in the uplink RLC PDU, and to the second base station Sending a second partial uplink RLC PDU in the uplink RLC PDU.
  • the method further includes: the UE generating a first RLC status report according to the receiving status of the first part downlink RLC PDU and the second part downlink RLC PDU, the first RLC The status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU and/or the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU; the UE sends the first to the first base station or the second base station
  • the RLC status report the UE receives, from the first base station, the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU and/or receives the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU from the second base station.
  • the method further includes: the UE receiving a second RLC status report from the first base station; the UE reporting according to the second RLC status, Determining an uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first partial uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU; the UE is to the first base station Sending the RLC PDU of the uplink retransmission set, or sending the RLC PDU of the uplink retransmission set to the second base station, or sending the RLC PDU of the first uplink retransmission subset to the first base station and sending the RLC PDU to the second base station
  • the RLC PDU of the second uplink retransmission sub-set, where the first uplink retransmission sub-set and the second uplink re-transmission sub-set are obtained by
  • a base station including: a generating unit, configured to generate a downlink radio link control RLC protocol data unit PDU, and a sending unit, configured to send, to the user equipment UE, the first part of the downlink RLC PDU in the downlink RLC PDU And transmitting, to the second base station, the second part of the downlink RLC PDU in the downlink RLC PDU, so that the second part of the downlink RLC PDU is sent by the second base station to the UE.
  • a generating unit configured to generate a downlink radio link control RLC protocol data unit PDU
  • a sending unit configured to send, to the user equipment UE, the first part of the downlink RLC PDU in the downlink RLC PDU And transmitting, to the second base station, the second part of the downlink RLC PDU in the downlink RLC PDU, so that the second part of the downlink RLC PDU is sent by the second base station to the UE.
  • the method further includes: a first receiving unit, configured to receive, from the UE, a first part of the uplink RLC PDU in the uplink RLC PDU generated by the UE, And receiving, from the second base station, a second partial uplink RLC PDU in the uplink RLC PDU, where the second partial uplink RLC PDU is received by the second base station from the UE.
  • the second receiving unit is further configured to receive a first RLC status report from the UE, where the sending unit is further configured to When the RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU, retransmit the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE; the sending unit is further used to send the second The base station forwards the first RLC status report, where the first RLC status report indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, or sends the second base station to generate, according to the first RLC status report, the first base station generates Retransmitting the message, the retransmission message indicating the RLC PDU in the second part of the downlink RLC PDU that needs to be retransmitted.
  • the third receiving unit and the first determining unit the third receiving unit is configured to receive, by the second base station, a first RLC status report, where the An RLC status report is received by the second base station from the UE; the first determining unit is configured to determine, according to the first RLC status report, an RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU; the sending unit, The RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU is also retransmitted to the UE.
  • the method further includes a fourth receiving unit, where the generating unit is further configured to use the first partial uplink RLC PDU and the second partial uplink RLC a receiving status of the PDU, generating a second RLC status report, the sending unit is further configured to send the second RLC status report to the UE; the fourth receiving unit is further configured to receive, by the UE, the second RLC status report.
  • the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first part of the uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second part of the uplink RLC PDU.
  • the fourth receiving unit is specifically configured to receive, by the UE, an RLC PDU of the uplink retransmission set; or receive the first Retransmitting the RLC PDU of the sub-set and receiving, from the second base station, the RLC PDU in the second uplink retransmission sub-set, where the RLC PDU of the second uplink re-transmission sub-set is received by the second base station from the UE
  • the first uplink retransmission sub-set and the second uplink retransmission sub-set are obtained by the UE to the uplink retransmission set; or the RLC PDU of the upload retransmission set is received from the second base station, where The RLC PDU of the uplink retransmission set is received by the second base station from the UE.
  • a base station including: a receiving unit, configured to receive, from a first base station, a second partial downlink RLC PDU in a downlink radio link control RLC protocol data unit PDU generated by the first base station; And configured to send the second partial downlink RLC PDU to the user equipment UE.
  • the receiving unit is further configured to receive, by the UE, a second partial uplink RLC PDU in the uplink RLC PDU generated by the UE, where the sending unit is further configured to A base station transmits the second partial uplink RLC PDU.
  • the method further includes a first determining unit, where the receiving unit is further configured to receive a first RLC status report from the first base station, where the first determining unit is configured to use, according to the first An RLC status report determines an RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, and the sending unit is further configured to retransmit the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU to the UE; or, the receiving The unit is further configured to receive a retransmission message from the first base station, where the sending unit is further configured to retransmit the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU according to the retransmission message, where the first weight The message indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the receiving unit is further configured to use the
  • the UE receives the first RLC status report; the sending unit is further configured to forward the first RLC status report to the first base station, when the first RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU, The first base station retransmits the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE; the sending unit is further configured to: when the first RLC status report indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, Retransmitting the RLC PDU that needs to be retransmitted in the second partial downlink RLC PDU to the UE.
  • the receiving unit is further configured to receive an RLC PDU of an uplink retransmission set from the UE, where the sending unit is further used to Sending, by the base station, the RLC PDU of the uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first part of the uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second part of the uplink RLC PDU; or The receiving unit is further configured to receive, by the UE, an RLC PDU of the second uplink retransmission sub-set, where the sending unit is further configured to send, to the first base station, the RLC PDU of the second uplink retransmission sub-set, the second uplink The retransmission sub-collection is obtained by the UE dividing the uplink retransmission set.
  • a user equipment including: a receiving unit, configured to receive, from a first base station, a first part of a downlink radio link control RLC protocol data unit PDU generated by the first base station Dividing a downlink RLC PDU, and receiving, from the second base station, a second partial downlink RLC PDU in the downlink RLC PDU, where the second partial downlink RLC PDU is received by the second base station from the first base station; And configured to reassemble the first partial downlink RLC PDU and the second partial downlink RLC PDU to form a downlink RLC service data unit SDU.
  • a receiving unit configured to receive, from a first base station, a first part of a downlink radio link control RLC protocol data unit PDU generated by the first base station Dividing a downlink RLC PDU, and receiving, from the second base station, a second partial downlink RLC PDU in the downlink RLC PDU, where the second partial downlink RLC PDU is received by the second base station from the first base station;
  • the method further includes: a first sending unit; the first generating unit is further configured to generate an uplink RLC PDU; the first sending unit is configured to send the uplink RLC to the first base station The first part of the PDU uplinks the RLC PDU and sends the second part of the uplink RLC PDU of the uplink RLC PDU to the second base station.
  • the second generating unit and the second sending unit are further configured to use, according to the first partial downlink RLC PDU and the second partial downlink RLC PDU.
  • Receiving a first RLC status report the first RLC status report indicating an RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU;
  • a second sending unit configured to send the first RLC status report to the first base station or the second base station;
  • the receiving unit is further configured to receive, from the first base station, an RLC PDU that needs to be retransmitted in the first partial downlink RLC PDU. And/or receiving, from the second base station, an RLC PDU that needs to be retransmitted in the second partial downlink RLC PDU.
  • the method further includes a determining unit and a third sending unit, where the receiving unit is further configured to receive the second RLC status report from the first base station.
  • the determining unit is configured to determine, according to the second RLC status report, an uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first part of the uplink RLC PDU and/or the second part of the uplink RLC PDU.
  • the RLC PDU that needs to be retransmitted; the third sending unit is configured to send the RLC PDU of the uplink retransmission set to the first base station, or send the RLC PDU of the uplink retransmission set to the second base station, or to the first
  • the base station sends the RLC PDU of the first uplink retransmission sub-set and sends the RLC PDU of the second uplink retransmission sub-set to the second base station, where the first uplink retransmission sub-set and the second uplink re-transmission sub-set are the UE pair
  • the uplink retransmission set is divided.
  • a base station including: a processor, configured to generate a downlink radio link control RLC protocol data unit PDU, and a transmitter, configured to send, to the user equipment UE, the first part of the downlink RLC PDU in the downlink RLC PDU And transmitting, to the second base station, a second part of the downlink RLC PDU in the downlink RLC PDU, so that the second part of the downlink RLC PDU is sent by the second base station to the UE.
  • a processor configured to generate a downlink radio link control RLC protocol data unit PDU
  • a transmitter configured to send, to the user equipment UE, the first part of the downlink RLC PDU in the downlink RLC PDU And transmitting, to the second base station, a second part of the downlink RLC PDU in the downlink RLC PDU, so that the second part of the downlink RLC PDU is sent by the second base station to the UE.
  • the method further includes: a receiver, configured to receive, from the UE, a first partial uplink RLC PDU in the uplink RLC PDU generated by the UE, and receive the second RLC PDU from the second base station A second partial uplink RLC PDU in the uplink RLC PDU, wherein the second partial uplink RLC PDU is received by the second base station from the UE.
  • a receiver is further included, a receiver is configured to receive a first RLC status report from the UE, and a transmitter is further configured to indicate the status in the first RLC status report.
  • the transmitter is further configured to forward the first RLC status to the second base station.
  • the first RLC status report indicates an RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, or sends a retransmission message generated by the base station according to the first RLC status 4 to the second base station, the weight The message indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the method further includes: a receiver, configured to receive a first RLC status report from the second base station, where the first RLC status report is the second base station
  • the processor is further configured to: determine, according to the first RLC status report, the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU; the transmitter is further configured to retransmit the first part of the downlink RLC to the UE The RLC PDU that needs to be retransmitted in the PDU.
  • the processor is further configured to generate, according to the receiving condition of the first partial uplink RLC PDU and the second partial uplink RLC PDU a second RLC status report, the transmitter is further configured to send the second RLC status report to the UE, and the receiver is further configured to receive an RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, where the uplink weight is The transmission set includes RLC PDUs that need to be retransmitted in the first partial uplink RLC PDU and/or RLC PDUs that need to be retransmitted in the second partial uplink RLC PDU.
  • the receiver is specifically configured to receive the RLC PDU of the uplink retransmission set from the UE, or receive the first uplink weight from the UE And transmitting, by the second base station, the RLC PDU in the second uplink retransmission subset, where the RLC PDU of the second uplink retransmission subset is received by the second base station from the UE, where The first uplink retransmission sub-set and the second uplink retransmission sub-set are obtained by the UE to the uplink retransmission set; or the RLC PDU of the upload retransmission set is received from the second base station, the uplink retransmission The aggregated RLC PDU is received by the second base station from the UE.
  • a base station including: a receiver, configured to receive, from a first base station, a second partial downlink RLC PDU in a downlink radio link control RLC protocol data unit PDU generated by the first base station; And transmitting the second part of the downlink RLC PDIL to the user equipment UE.
  • the receiver is further configured to receive, by the UE, the second part of the uplink RLC PDU generated by the UE.
  • An uplink RLC PDU; the transmitter is further configured to send the second partial uplink RLC PDU to the first base station.
  • the method further includes: a processor; the receiver is further configured to receive a first RLC status report from the first base station, where the processor is configured to determine, according to the first RLC status report, the first The RLC PDU that needs to be retransmitted in the two-part downlink RLC PDU, the transmitter is further configured to retransmit the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU to the UE; or, the receiver is further used from the first base station Receiving a retransmission message, the transmitter is further configured to retransmit the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU according to the retransmission message, where the first retransmission message indicates the second part of the downlink RLC PDU The RLC PDU that needs to be retransmitted.
  • the receiver is further configured to receive the first RLC status report from the UE, and the transmitter is further configured to forward the first RLC status report to the first base station, where When the first RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU, the first base station retransmits the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE; When the first RLC status indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU is retransmitted to the UE.
  • the receiver is further configured to receive, by the UE, an RLC PDU of an uplink retransmission set, where the transmitter is further configured to use the first base station Transmitting, by the uplink retransmission set, an RLC PDU, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first partial uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU; or, receiving The device is further configured to receive, by the UE, an RLC PDU of the second uplink retransmission sub-set, and the transmitter is further configured to send, to the first base station, the RLC PDU of the second uplink retransmission sub-set, the second uplink re-transmission sub-collection It is obtained by the UE dividing the uplink retransmission set.
  • a ninth aspect provides a user equipment, including: a receiver, configured to receive, from a first base station, a first part of downlink RLC PDUs in a downlink radio link control RLC protocol data unit PDU generated by the first base station, and Receiving, by the second base station, a second part of the downlink RLC PDU in the downlink RLC PDU, where the second part of the downlink RLC PDU is received by the second base station from the first base station;
  • the processor is configured to reassemble the first partial downlink RLC PDU and the second partial downlink RLC PDU to form a downlink RLC service data unit SDU.
  • a transmitter is further included, a processor is further configured to generate an uplink RLC PDU, and a transmitter is configured to send, to the first base station, the first part of the uplink RLC PDU. An RLC PDU, and transmitting a second partial uplink RLC PDU in the uplink RLC PDU to the second base station.
  • the method further includes: a processor, configured to generate a first RLC state according to the receiving status of the first partial downlink RLC PDU and the second partial downlink RLC PDU Reporting, the first RLC status report indicates an RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU; and a transmitter, configured to send to the first base station Or the second base station sends the first RLC status report; the receiver is further configured to receive, from the first base station, an RLC PDU that needs to be retransmitted in the first partial downlink RLC PDU and/or receive the first from the second base station The RLC PDU that needs to be retransmitted in the two-part downlink RLC PDU.
  • a processor configured to generate a first RLC state according to the receiving status of the first partial downlink RLC PDU and the second partial downlink RLC PDU Reporting, the first RLC status
  • the receiver is further configured to receive a second RLC status report from the first base station
  • the processor is further configured to: a second RLC status report, determining an uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first part of the uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second part of the uplink RLC PDU; And sending, to the first base station, the RLC PDU of the uplink retransmission set, or sending the RLC PDU of the uplink retransmission set to the second base station, or sending the first uplink retransmission subset to the first base station And the RLC PDU of the second uplink retransmission sub-set is sent to the second base station, where the first uplink retransmission sub-set and the second uplink re-transmission sub-set are that the UE divides the uplink
  • the first base station sends the first part of the downlink RLC PDU in the downlink RLC PDU to the UE, and sends the second part of the downlink RLC PDU in the downlink RLC PDU to the second base station, where the second base station sends the second RLC PDU to the UE.
  • the two-part downlink RLC PDU enables the first base station and the second base station to jointly transmit data to the UE, thereby improving the peak rate and throughput of the UE.
  • FIG. 1a is a schematic diagram of an example of a scenario in which an embodiment of the present invention is applicable.
  • Figure lb is a schematic illustration of another example of a scenario in which embodiments of the present invention may be applied.
  • Figure lc is a schematic diagram of another example of a scenario in which embodiments of the present invention may be applied.
  • Figure Id is a schematic illustration of another example of a scenario in which embodiments of the present invention may be applied.
  • 2a is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • 2b is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a data transmission process according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a data offload configuration process according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a data transmission process according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a configuration process of data offloading according to an embodiment of the present invention.
  • 9 is a schematic diagram of an example of a control plane protocol stack in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an example of a user plane protocol stack in accordance with an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of layer 2 in a protocol stack of a macro base station according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of layer 2 in a protocol stack of a micro base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of layer 2 in a protocol stack of a UE according to an embodiment of the present invention.
  • FIG. 14 is a schematic flow chart of a process of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of a downlink data retransmission process according to an embodiment of the present invention.
  • FIG. 16 is a schematic flowchart of a downlink data retransmission process according to an embodiment of the present invention.
  • FIG. 17 is a schematic flowchart of a process of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 18 is a schematic flowchart of an uplink data retransmission process according to an embodiment of the present invention.
  • FIG. 19 is a schematic flowchart of an uplink data retransmission process according to an embodiment of the present invention.
  • FIG. 20 is a schematic flowchart of an uplink data retransmission process according to an embodiment of the present invention.
  • FIG. 21 is a schematic flowchart of a process of RRC connection re-establishment according to an embodiment of the present invention.
  • Figure 22 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • FIG. 23 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • Figure 24 is a schematic block diagram of a UE in accordance with an embodiment of the present invention.
  • Figure 25 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • Figure 26 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • Figure 27 is a schematic block diagram of a UE in accordance with an embodiment of the present invention.
  • FIG. 28 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • 29 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • Figure 30 is a schematic block diagram of a UE in accordance with an embodiment of the present invention.
  • FIG. 31 is a schematic flowchart of a method for cell resource management according to an embodiment of the present invention.
  • FIG. 32 is a schematic flowchart of a method for cell resource management according to an embodiment of the present invention.
  • FIG. 33 is a schematic flowchart of a method for cell resource management according to an embodiment of the present invention.
  • FIG. 34 is a schematic flowchart of a method for cell resource management according to an embodiment of the present invention.
  • FIG. 35 is a schematic flowchart of an uplink power control method according to an embodiment of the present invention.
  • FIG. 36 is a schematic flowchart of an uplink power control method according to an embodiment of the present invention. detailed description
  • FIG. 1a is a schematic diagram of an example of a scenario in which an embodiment of the present invention is applicable.
  • Figure la can be a scenario for the LTE-A system.
  • a macro base station (Mact eNB (eNodeB)) 110a may have CC1 with a frequency of fl
  • a pico eNB 120a may have CC2 with a frequency of f2
  • a coverage area of CC2 may be located in a coverage area of CC1.
  • the UE 130a may be in an area covered by CC2, that is, in a common coverage area of CC 1 and CC2.
  • the macro base station 110a and the micro base station 120a can jointly transmit data with the UE 130a, so that the UE 130a does not need to switch between the macro base station 110a and the micro base station 120a. .
  • CC1 may be used as the primary CC (Primary CC, PCC) and CC2 as the secondary CC when performing aggregation of CC1 and CC2.
  • PCC Primary CC
  • SCC Secondary CC
  • PCC can be used for mobility management, and SCC can provide traffic distribution. Since the macro base station has a wide coverage, it can be used for mobility management as a PCC to reduce the occurrence of handover.
  • CC2 may be used as the PCC and CC1 as the SCC.
  • Figure lb is a schematic illustration of another example of a scenario in which embodiments of the present invention may be applied.
  • Figure lb can be another scenario for the LTE-A system.
  • macro base station 110b may have CC1 with frequency fl
  • micro base station 120b may have CC2 with frequency f2.
  • CC1 and CC2 There is a common coverage area between CC1 and CC2.
  • UE 130b may be located in a common coverage area of CC1 and CC2.
  • the macro base station 110b and the micro base station 110b can also jointly transmit data with the UE 130b, and the UE 130b does not need to be in the macro base station 110b and the micro base station 110b. Switch between.
  • Figure 1c is a schematic illustration of another example of a scenario in which embodiments of the present invention may be applied.
  • Figure lc can be another scenario of the LTE-A system.
  • the micro base station 110c may have CC1 of frequency fl
  • the micro base station 120c may have CC2 of frequency f2.
  • the coverage area of CC2 can be located in the coverage area of CC1.
  • the UE 130c may be in an area covered by CC2, that is, in a common coverage area of CC1 and CC2.
  • the micro base station 110c and the micro base station 110c can also jointly transmit data with the UE 130c, and the UE 130c does not need to be in the micro base station 110c and the micro base station 110c. Switch between.
  • Figure Id is a schematic illustration of another example of a scenario in which embodiments of the present invention may be applied.
  • Figure Id can be another scenario for the LTE-A system.
  • the micro base station 110d may have CC1 of frequency fl, and the micro base station 120d may have CC2 of frequency f2.
  • the UE 130d may be located in a common coverage area of CC1 and CC2.
  • the micro base station 110d and the micro base station 110d can also jointly transmit data with the UE 130d, and the UE 130d does not need to be in the micro base station 110d and the micro base station 110d. Switch between.
  • FIG. 1D describes a scenario of two micro base stations
  • the embodiment of the present invention may also A scenario applied to two macro base stations, that is, a scenario in which a common coverage area exists between two macro base stations.
  • the other processes are similar to those described in FIG. 1D. To avoid repetition, details are not described herein.
  • the embodiment of the present invention may also be applied to two base stations or more than two base stations respectively having multiple CCs, and multiple CCs have a common coverage area.
  • multiple CC frequencies of two base stations are different or have frequency overlap.
  • the two base stations respectively provide two carriers with the frequency of fl and f2, and the fl and f2 carriers of the two base stations have a common coverage area, and the UE can aggregate the fl of the first base station and the f2 of the second base station to perform CA, or aggregate.
  • the f2 of the first base station and the fl of the second base station perform CA.
  • the UE may aggregate the fl of the first base station and the fl of the second base station to perform CA. This situation may also be referred to as coordinated multi-point (CoMP) transmission/reception, the first base station and the second base station. Communicate with the UE by means of cooperative scheduling. This embodiment of the present invention does not limit this.
  • FIG. 2a is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention. The method of Figure 2a is performed by a first base station.
  • the first base station generates a downlink radio link control (RLC) protocol data unit (PDU).
  • RLC radio link control
  • PDU protocol data unit
  • the first base station sends a first part of the downlink RLC PDU in the downlink RLC PDU to the user equipment (UE), and sends the second part of the downlink RLC PDU in the downlink RLC PDU to the second base station, so as to be sent by the second base station to the second base station.
  • the UE sends a second partial downlink RLC PDU.
  • the first base station may serve as a user plane anchor point, and is responsible for offloading downlink data.
  • the first base station may be one of the macro base station 110a and the micro base station 120a in FIG. Can be another one.
  • the first base station may also be one of the macro base station 110a and the micro base station 120a in Figure lb, and the second base station may be another.
  • the first base station may also be one of the micro base station 110c and the micro base station 120c in Fig. 1c, and the second base station may be another one.
  • the first base station may also be one of the micro base station 110d and the micro base station 120d in Fig. Id, and the second base station may be another one.
  • the UE may also be referred to as a Mobile Terminal (MT), a mobile user equipment, etc., such as a mobile telephone (or "cellular" telephone) and a computer having a mobile terminal.
  • MT Mobile Terminal
  • a mobile user equipment such as a mobile telephone (or "cellular" telephone)
  • the first base station can serve as a user plane anchor point, and its Packet Data Convergence Protocol (PDCP) layer receives Internet Protocol (IP) data from the Serving Gateway (SGW) from the application layer.
  • IP Internet Protocol
  • SGW Serving Gateway
  • the packet as a PDCP service data unit (SDU), is processed by the PDCP protocol layer to generate PDCP.
  • the PDU is submitted to the RLC layer as an RLC SDU.
  • the first base station may be configured to separate the first partial downlink RLC PDU and the second partial downlink RLC PDU from the generated downlink RLC PDU after generating the downlink RLC PDU according to the RLC SDU.
  • the first base station may further divide the RLC SDU into a first partial RLC SDU and a second partial RLC SDU, and after generating the downlink RLC PDU, use the RLC PDU corresponding to the first partial RLC SDU in the downlink RLC PDU as the first partial downlink RLC.
  • the PDU, the RLC PDU corresponding to the second partial RLC SDU is used as the second partial downlink RLC PDU.
  • first partial downlink RLC PDU may include one or more RLC PDUs
  • second partial downlink RLC PDU may also include one or more RLC PDUs.
  • the first base station sends the first part of the downlink RLC PDU to the UE, which may be that the first base station performs the protocol layer processing on the first part of the downlink RLC PDU, and then sends the message to the UE.
  • the first base station may access the first part of the downlink RLC PDU through the medium.
  • the Medium Access Control (MAC) layer and the Physical (PHY) layer are processed and sent to the UE.
  • the second base station sends the second part of the downlink RLC PDU to the UE, which may be that the second base station performs the processing of each protocol layer on the second part of the downlink RLC PDU, and then sends the message to the UE.
  • the second base station may perform the second part of the downlink RLC.
  • the PDU is processed and sent to the UE through the MAC layer and the PHY layer.
  • the first base station sends the first part of the downlink RLC PDU in the downlink RLC PDU to the UE, and sends the second part of the downlink RLC PDU in the downlink RLC PDU to the second base station, where the second base station sends the second RLC PDU to the UE.
  • the two-part downlink RLC PDU enables the first base station and the second base station to jointly transmit data to the UE, thereby improving the peak rate and throughput of the UE.
  • the UE does not need to switch between the two base stations, so that service delay or interruption due to handover can also be avoided.
  • the first base station may receive, from the UE, a first partial uplink RLC PDU in the uplink RLC PDU generated by the UE, and receive, from the second base station, a second partial uplink RLC PDU in the uplink RLC PDU, where the first The two-part uplink RLC PDU is received by the second base station from the UE.
  • first partial uplink RLC PDU may include one or more RLC PDUs
  • second partial uplink RLC PDU may also include one or more RLC PDUs.
  • the first base station may receive the first partial uplink RLC PDU from the UE, and receive the second partial uplink RLC PDU sent by the UE to the second base station from the second base station, where the first base station may reassemble the two parts of the uplink RLC PDU.
  • the first base station receives the first part of the uplink RLC PDU from the UE, which may be that the first base station receives the first part of the uplink data packet from the UE, and the first part of the uplink data packet is processed by each protocol layer to obtain the first part of the uplink RLC PDU, for example.
  • the first base station may process the first partial uplink data packet through the PHY layer and the MAC layer to obtain the first partial uplink RLC PDU.
  • the process for the second base station to receive the second part of the uplink RLC PDU from the UE is similar to that of the first base station. To avoid repetition, details are not described herein.
  • the first base station may receive the first RLC status report from the UE.
  • the first base station may retransmit the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE.
  • the first base station may forward the first RLC status report to the second base station, where the first RLC status report may be used to indicate the RLC PDU in the second part of the downlink RLC PDU that needs to be retransmitted, or the first base station may send the first to the second base station.
  • the base station reports the generated retransmission message according to the first RLC status, and the retransmission message may indicate the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the first base station updates the RLC AM transmission window and the corresponding state variable to continue transmitting the new RLC PDU.
  • the UE may generate a first RLC status report according to the received status of the first partial downlink RLC PDU and the second partial downlink RLC PDU.
  • the first base station may determine, according to the first RLC status report, whether there is an RLC PDU that needs to be retransmitted in the first partial downlink RLC PDU and the second partial downlink RLC PDU.
  • the first base station may retransmit the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE.
  • the first base station needs to notify the second base station of the RLC PDIL that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the first base station can forward to the second base station.
  • the first RLC status report or the first base station may generate a retransmission message according to the first RLC status report, and indicate, by using the retransmission message, the RLC PDU in the second part of the downlink RLC PDU that needs to be retransmitted.
  • the RLC status report and the RLC PDU retransmission related content are only applicable to the RLC AM; the process of RLC PDU generation, transmission, and reception applies to both the RLC AM and the RLC unacknowledged mode (Unacknowledged Mode) , UM).
  • the first base station may determine, according to the first RLC status report, a downlink RLC PDU retransmission set, where the downlink RLC PDU retransmission set may include a retransmission in the first partial downlink RLC PDU.
  • the first base station may divide the downlink RLC PDU retransmission set into a first downlink retransmission sub-set and a second downlink retransmission sub-set.
  • the first base station may retransmit the RLC PDIL of the first downlink retransmission subset to the UE.
  • the first base station may generate a second retransmission message and send a second retransmission message to the second base station, where the second retransmission message may indicate the second Downstream retransmission sub-collection.
  • the first base station since the first base station is responsible for the transmission of the first partial downlink RLC PDU, the second base station does not have the part of the RLC PDU. Therefore, the first base station also needs to send these RLC PDUs to the second base station.
  • the first base station can re-divide the RLC PDUs that need to be retransmitted, and determine that one part is responsible for retransmission by the first base station, and the other part is responsible for retransmission by the second base station.
  • This can adapt to the real-time radio resources of the first base station and the second base station and meet the quality of service (QoS) requirements of the service, thereby improving the retransmission efficiency.
  • QoS quality of service
  • the first base station may receive the first RLC status report from the second base station, where the first RLC status report is received by the second base station from the UE.
  • the first base station may determine, according to the first RLC status report, an RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU.
  • the first base station may retransmit the RLC PDIL that needs to be retransmitted in the first part of the downlink RLC PDU to the UE.
  • the first base station updates the RLC AM transmission window and the corresponding state variable to continue transmitting the new RLC PDU.
  • the first base station needs to receive the first RLC status report forwarded by the second base station, when the first RLC status report is sent by the second base station.
  • the UE may send the first RLC status report to the second base station, and the second base station forwards the report to the first base station.
  • the first base station may retransmit the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE according to the first RLC status report.
  • the first base station may generate the second RLC status according to the receiving status of the first partial uplink RLC PDU and the second partial uplink RLC PDU. Reporting and sending a second RLC status report to the UE.
  • the first base station may receive the RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, where the uplink retransmission set may include the RLC PDU and/or the second partial uplink RLC PDU in the first partial uplink RLC PDU that needs to be retransmitted.
  • the RLC PDU that needs to be retransmitted may be generated the second RLC status according to the receiving status of the first partial uplink RLC PDU and the second partial uplink RLC PDU.
  • the first base station may generate a second RLC status report according to the receiving status of the first partial uplink RLC PDU and the second partial uplink RLC PDU, and send the second to the second base station.
  • the RLC status report is such that the second base station forwards the second RLC status report to the UE.
  • the first base station may receive the RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, where the uplink retransmission set may include the RLC PDU and/or the second partial uplink RLC PDU in the first partial uplink RLC PDU that needs to be retransmitted.
  • the RLC PDU that needs to be retransmitted may be generated a second RLC status report according to the receiving status of the first partial uplink RLC PDU and the second partial uplink RLC PDU, and send the second to the second base station.
  • the RLC status report is such that the second base station forwards the second RLC status report to the UE.
  • the first base station may
  • forwarding the second RLC status report to the UE by using the second base station can improve the reliability of the second RLC status report transmission.
  • the first base station may receive the RLC PDU of the uplink retransmission set from the UE.
  • the first base station may receive the RLC PDU of the first uplink retransmission sub-set from the UE, and receive the RLC PDU in the second uplink retransmission sub-set from the second base station, where the second uplink re-transmission sub-set is the second base station.
  • the first uplink retransmission sub-set and the second uplink re-transmission sub-set received by the UE are obtained by the UE dividing the uplink retransmission set.
  • the first base station may receive the RLC PDU of the uplink retransmission set from the second base station, and the RLC PDU of the uplink retransmission set is received by the second base station from the UE.
  • the first base station may generate a second RLC status report according to the receiving status of the first part of the uplink RLC PDU and the second part of the uplink RLC PDU, and send the second RLC status report to the UE.
  • the UE may determine, according to the second RLC status report, the RLC PDU that needs to be retransmitted, that is, determine the uplink retransmission set.
  • the first base station may receive, from the UE, all the uplink RLC PDUs that need to be retransmitted, that is, the RLC PDIL of the uplink retransmission set, or the first base station may receive, from the UE, a part of the uplink RLC PDU that needs to be retransmitted, that is, the first uplink retransmission sub-collection
  • the second base station of the RLC PDIL may receive another part of the uplink RLC PDU that needs to be retransmitted from the UE, and then send the part of the uplink RLC PDU to the first base station, that is, the RLC PDIL of the second uplink retransmission subset or the second base station may
  • the UE receives all the uplink RLC PDUs that need to be retransmitted, that is, the RLC PDUs of the uplink retransmission set, and then sends the RLC PDUs to the first base. Station.
  • the first base station may be located on the first cell of the first base station.
  • the UE sends the first part of the downlink RLC PDU, and sends the second part of the downlink RLC PDU to the second base station, so that the second base station sends the second part of the downlink RLC PDU to the UE on the second cell of the second base station, where the first cell and the first cell The coverage of the second cell overlaps.
  • the first base station has a first cell
  • the second base station has a second cell
  • the UE can be located in an area where the coverage of the first cell and the second cell overlap, so the carrier and the second base station
  • the first base station may send the first partial downlink RLC PDU to the UE by using the first cell.
  • the second base station may send the second partial downlink RLC PDU to the UE through the second cell.
  • the first base station may send a first request message to the second base station, where the first request message may be used to indicate that the second base station configures the second cell for the UE.
  • the first base station may receive a first response message from the second base station, where the first response message carries resource information of the second cell determined by the second base station according to the first request message, such as radio resource configuration common information and radio resource configuration of the second cell. Dedicated information.
  • the first base station may send an RRC connection reconfiguration (RRCConnectionReconfiguration) message to the UE, where the RRC connection reconfiguration message carries the resource information of the second cell.
  • the first base station may be a macro base station.
  • the first base station may determine to increase the cell according to the measurement report of the UE or the measurement result of the Sounding Reference Signal (SRS), and the measurement report of the UE may include the reference signal received power of the current serving cell and the neighboring cell ( Reference Signal Received Power, RSRP) measurement results.
  • the first base station may further determine, according to other measurement results, an increased cell, such as a Channel Quality Indication (CQI) reported by the UE.
  • CQI Channel Quality Indication
  • the first base station may indicate to the second base station that the second cell of the second base station is configured for the UE.
  • the first base station may notify the UE of the resource information of the second cell by using an RRC connection reconfiguration message.
  • the UE may perform RRC connection reconfiguration according to the resource information of the second cell.
  • the first cell of the first base station may have an RRC connection and a Data Radio Bearer (DRB) between the UE and the UE.
  • DRB Data Radio Bearer
  • the first request message may be further used to indicate that the second base station establishes a DRB for the UE.
  • the first base station can be based on the QoS parameters, traffic, throughput, and peak speed of the DRB. Rate information, etc., to determine whether the second base station is required to establish a DRB for the UE.
  • the first base station may carry the DRB configuration information in the first request message, and the second base station may establish the RLC entity and the logical channel (LCH) corresponding to the DRB according to the DRB configuration information.
  • the DRB configuration information may include at least one of the following: an Evolved Radio Access Bearer (E-RAB) identifier, an E-RAB Quality of Service (QoS) parameter, a DRB identifier, and an RLC configuration.
  • E-RAB Evolved Radio Access Bearer
  • QoS E-RAB Quality of Service
  • the DRB configuration information may also include other related information.
  • the E-RAB QoS parameter may be a QoS parameter after the first base station performs the offloading decision.
  • the first base station may divide the Guaranteed Bit Rate (GBR), and the first base station DRB is shunted by 60%, and the second base station is shunted. 40%, the GBR parameter value sent to the second base station is 40% multiplied by the original GBR parameter value.
  • the E-RAB quality of service parameter may also be that the first base station receives the original QoS parameter from the SGW, and the first base station and the second base station negotiate the offloading decision, and then the second base station adjusts the QoS parameter during scheduling.
  • the first base station may carry the Signaling Radio Bearer (SRB) configuration information in the first request message.
  • SRB Signaling Radio Bearer
  • the second base station may establish an SRB corresponding according to the SRB configuration information. RLC entity and LCH.
  • the first base station may receive the second request message from the second base station, where the second request message may be used to indicate that the first base station configures the first cell for the UE.
  • the first base station may determine resource information of the first cell, such as radio resource configuration public information and radio resource configuration specific information of the first cell, according to the second request message.
  • the first base station may send a second response message to the second base station, where the second response message carries resource information of the first cell, so that the second base station notifies the UE of the resource information of the first cell.
  • the first base station may be a micro base station.
  • the first base station may configure the first cell for the UE according to the indication of the second base station.
  • the second cell of the second base station may already have an RRC connection and a DRB with the UE.
  • the first base station may configure the resource of the first cell for the UE according to the second request message, and may notify the second base station of the resource information of the first cell by using the second response message, and notify the UE of the resource information of the first cell by the second base station. So that the UE performs connection reconfiguration according to the resource information of the first cell.
  • the second request message is further used to indicate that the first base station establishes a DRB for the UE.
  • the first base station may establish, according to the second request message, a Packet Data Convergence Protocol (PDCP) entity, an RLC entity, and an LCH corresponding to the DRB.
  • PDCP Packet Data Convergence Protocol
  • the second request message may be further used to indicate that the first base station establishes an SRB for the UE.
  • the first The base station may establish, according to the second request message, a PDCP entity, an RLC entity, and a logical channel corresponding to the SRB.
  • the RLC entity may include a sender and a receiver, and the sender may include at least one of the following functional units: a transmission buffer, a retransmission buffer, a segmentation, and a cascade. (concatenation) unit, RLC PDU header information generating unit (add RLC header), and RLC control unit (RLC control) for automatic retransmission request (ARQ) function, etc.; wherein the RLC control unit may include at least the following A function: ARQ transmission window control and maintenance, ARQ receiving window control and maintenance, generating RLC status report transmission according to the receiving end entity receiving condition, and controlling the transmitting end retransmission according to the received RLC status report.
  • the receiving end may include at least one of the following functional units: a routing unit, a reception buffer, a reordering function, a remove RLC header, an SDU reassembly unit, and the like;
  • the routing unit includes functions of distinguishing between RLC PDUs and RLC status reports; wherein the reordering function is used to reorder the RLC PDUs that the MAC layer fails to deliver to the RLC layer in order, and the MAC layer is out of order because of the hybrid automatic repeat request ( Hybrid Automatic Repeat Request, HARQ)
  • the sender can also support RLC PDU resegmentation.
  • the RLC entity may be a sending entity or a receiving entity, and the sending entity may include at least one of the following functional units: a sending buffer, a segmentation and cascading unit, and an RLC PDU header information generating unit. Wait.
  • the receiving entity may include at least one of the following functional units: receive buffer, reorder function, remove RLC header information, SDU reassembly unit, and the like.
  • the second request message may be further used to indicate that the first base station is responsible for data offloading.
  • the first base station may send a path switch request message to the Mobility Management Entity (MME) according to the second request message, so that the MME requests the SGW to switch the data transmission path to the path of the SGW to the first base station according to the path switch request message.
  • MME Mobility Management Entity
  • the second base station is a macro base station
  • the first base station is a micro base station
  • the macro base station provides wide coverage and mobility management
  • the micro base station provides hotspot coverage and capacity
  • user service data transmission and reception are mainly performed by the micro base station
  • the anchor can be Point migration to the micro base station to improve data transmission efficiency.
  • the second base station may decide which base station to use as the user plane anchor point according to the status of the communication process, or the second base station and the first base station negotiate to determine which base station is used as the user plane anchor point, for example, the second base station.
  • the user plane anchor point can be determined based on the splitting decision or the split ratio. If the split ratio occupied by the first base station is larger, for example, for the GBR, the second base station is offloaded by 30%, and the first base station is offloaded by 70%, the second base station may decide to use the first base station as the user plane anchor point. If the second base station is used as the user plane anchor point, then the anchor point migration, or path switch, is required to migrate the corresponding E-RAB to the interface between the first base station and the SGW.
  • the first base station may send a path switch request message to the MME, and the MME sends a 7 change request message to the SGW, thereby completing the switching of the data transmission path.
  • the shunt efficiency can be improved and the delay can be reduced.
  • the second base station is a macro base station
  • the first base station is a micro base station
  • the radio condition of the UE at the micro base station is good
  • the load of the micro base station is small
  • the micro base station can bear a larger proportion of user service data, and then the The anchor is migrated to the micro base station to improve data transmission efficiency.
  • the data volume of the foregoing first part of the downlink RLC PDU and the second part of the downlink RLC PDU may be statically configured or dynamically adjusted.
  • the data volume of the first partial uplink RLC PDU and the second partial uplink RLC PDU may also be statically configured or dynamically adjusted.
  • the first base station may send a capacity allocation request message to the second base station before requesting data offloading, requesting the second base station to prepare or reserve radio resources for transmitting the second partial downlink RLC PDU or receiving the second partial uplink RLC PDU.
  • the second base station may reserve wireless resources for the second partial downlink RLC PDU or the second partial uplink RLC PDU in response to the capacity allocation request message of the first base station.
  • the second base station may actively send a capacity allocation indication message to the first base station, where the capacity allocation indication message may indicate the capacity of the second base station or the reserved buffer information, so that the first base station sends the corresponding part or the buffered second part of the downlink RLC PDU.
  • the capacity allocation indication message is used to learn the radio resource information that the second base station can allocate to the UE for sending the second partial uplink RLC PDU.
  • the second base station may further send a capacity adjustment indication message to the first base station according to the scheduling capability and/or the buffer change status of the first base station, and notify the first base station of the information of reducing the capacity or increasing the capacity by using the capacity adjustment indication message.
  • FIG. 2b is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention. The method of Figure 2b is performed by the first base station.
  • the first base station receives, from the UE, a first partial uplink RLC PDU in the uplink RLC PDU generated by the UE, and receives, from the second base station, a second partial uplink RLC PDU in the uplink RLC PDU, where the second partial uplink RLC PDU is the second.
  • the base station receives from the UE.
  • the first base station may receive the first part of the uplink RLC PDU. After the second part of the uplink RLC PDU, the first part of the uplink RLC PDU and the second part of the uplink RLC PDU are reassembled.
  • the first base station may generate a second RLC status report according to the receiving status of the first partial uplink RLC PDU and the second partial uplink RLC PDU, and send a second RLC status report to the UE.
  • the first base station may receive an RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, where the uplink retransmission set includes the RLC PDU and/or the second partial uplink RLC PDU in the first partial uplink RLC PDU that needs to be retransmitted.
  • the RLC PDU that needs to be retransmitted may be generated a second RLC status report according to the receiving status of the first partial uplink RLC PDU and the second partial uplink RLC PDU.
  • the first base station may receive the RLC PDIL of the uplink retransmission set from the UE, or the first base station may receive the RLC PDU of the first uplink retransmission subset from the UE, and from the second The base station receives the RLC PDU in the second uplink retransmission sub-set, where the RLC PDU of the second uplink retransmission sub-set is received by the second base station from the UE, and the first uplink retransmission sub-set and the second uplink re-transmission sub-set are It is obtained by the UE dividing the uplink retransmission set.
  • the first base station may receive the RLC PDU of the uplink retransmission set from the second base station, and the RLC PDU of the uplink retransmission set is received by the second base station from the UE.
  • the first base station receives the first partial uplink RLC PDU in the uplink RLC PDU generated by the UE from the UE, and receives the second partial uplink RLC PDU in the uplink RLC PDU from the second base station, so that the first base station and the first base station
  • the second base station can jointly transmit data with the UE, thereby being able to increase the peak rate and throughput of the UE.
  • the UE does not need to switch between the two base stations, so that service delay or interruption due to handover can also be avoided.
  • FIG. 3 is a schematic flowchart of a method of transmitting data according to an embodiment of the present invention. The method of Figure 3 is performed by a second base station.
  • the second base station receives, from the first base station, a second partial downlink RLC PDU in the downlink RLC PDU generated by the first base station.
  • the second base station sends a second partial downlink RLC PDU to the UE.
  • the first base station may be a user plane anchor and is responsible for the offloading of data.
  • the first base station may send the first partial downlink RLC PDU in the downlink RLC PDU to the UE, and send the second partial downlink RLC PDIL to the second base station.
  • the second base station sends the second partial downlink RLC PDIL to the UE.
  • the first base station may be a figure.
  • One of the macro base station 110a and the micro base station 120a in la, the second base station may be another one.
  • the first base station may also be one of the macro base station 110a and the micro base station 120a in FIG.
  • the second base station can be another one.
  • the second part of the downlink RLC PDU in the downlink RLC PDU generated by the first base station is sent by the second base station to the UE, which can improve the peak rate and throughput of the UE.
  • the second base station may receive, from the UE, a second partial uplink RLC PDU in the uplink RLC PDU generated by the UE.
  • the second base station can transmit a second partial uplink RLC PDU to the first base station.
  • the second base station receives the second partial uplink RLC PDU from the UE, which may be that the second base station receives the second partial uplink data packet from the UE, and the second partial uplink data packet is processed by each protocol layer to obtain the second partial uplink RLC PDU.
  • the second base station may process the second partial uplink data packet through the PHY layer and the MAC layer to obtain the second partial uplink RLC PDU.
  • the second base station may receive the first RLC status report from the first base station, and determine, according to the first RLC status report, the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU. And retransmitting the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU to the UE.
  • the second base station may receive the retransmission message from the first base station, and retransmit the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU according to the retransmission message, where the retransmission message indicates the second part of the downlink RLC PDU.
  • the RLC PDU that needs to be retransmitted may be received from the first base station, and determine, according to the first RLC status report, the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU. And retransmitting the RLC PDU that needs to be retransmitted in the
  • the second base station may retransmit the second part of the downlink RLC PDU to the UE according to the first RLC status report forwarded by the first base station or the retransmission message generated by the first base station according to the first RLC status report. Retransmitted RLC PDU.
  • the second base station may receive the second retransmission message from the first base station, and the second retransmission message may indicate the second downlink retransmission sub-set.
  • the second base station may retransmit the RLC PDU of the second downlink retransmission sub-set to the UE according to the second retransmission message.
  • the first base station may determine, according to the first RLC status report, a downlink RLC PDU retransmission set, where the downlink RLC PDU retransmission set may include an RLC PDU and/or a retransmission in the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU.
  • the first base station may divide the downlink RLC PDU retransmission set into a first downlink retransmission sub-set and a second downlink retransmission sub-set.
  • the first base station may retransmit the RLC PDU of the first downlink retransmission sub-set to the UE, notify the second base station of the RLC PDU that the second base station needs to retransmit, by using the second retransmission message. If the one or more RLC PDUs in the second downlink retransmission sub-set belong to the original first partial downlink RLC PDU, since the first base station is responsible for the transmission of the first partial downlink RLC PDU, the second base station does not have the part of the RLC PDU. , then, the second base station still needs These RLC PDUs are to be received from the first base station.
  • the real-time radio resources of the first base station and the second base station can be adapted and the quality of service (QoS) requirements of the service can be met, thereby improving the retransmission efficiency.
  • QoS quality of service
  • the second base station may receive the first RLC status report from the UE.
  • the second base station may forward the first RLC status report to the first base station, where the first base station retransmits the first part of the downlink RLC PDU to the UE when the first RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU.
  • the RLC PDU that needs to be retransmitted may be received.
  • the second base station may retransmit the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU to the UE.
  • the second base station may forward the first RLC status report to the first base station, and may enable the first base station to determine, according to the first RLC status report, that the first base station has a retransmission RLC PDU in the first part of the downlink RLC PDU, the first base station is heavy to the UE.
  • the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU is transmitted.
  • the second base station may receive the RLC PDU of the uplink retransmission set from the UE, and send the RLC PDU of the uplink retransmission set to the first base station, where the uplink retransmission set may include The RLC PDU that needs to be retransmitted in the first part of the uplink RLC PDU and/or the RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU.
  • the second base station may receive the RLC PDU of the second uplink retransmission sub-set from the UE, and send the RLC PDU of the second uplink retransmission sub-set to the first base station, where the second uplink retransmission sub-set is the UE-to-uplink retransmission
  • the collection is divided.
  • the UE may retransmit all the uplink RLC PDUs that need to be retransmitted to the second base station, and the second base station sends the uplink RLC PDUs that need to be retransmitted to the first base station.
  • the UE may also divide the uplink RLC PDU that needs to be retransmitted into two parts, one part is retransmitted to the first base station, and the other part is retransmitted to the second base station, and the second base station sends the received part of the RLC PDU to the first base station. .
  • the second base station may send the second partial downlink RLC PDU to the UE on the second cell of the second base station.
  • the second base station may receive the first request message from the first base station, where the first request message may be used to indicate that the second base station configures the second cell for the UE.
  • the second base station may determine resource information of the second cell according to the first request message.
  • the second base station may send the first base station A response message, the first response message carries resource information of the second cell, so that the first base station notifies the UE of the resource information of the second cell.
  • the first request message may be further used to indicate that the second base station establishes a DRB for the UE.
  • the second base station may establish an RLC entity and a logical channel corresponding to the DRB according to the first request message.
  • the PDCP entity may not be established.
  • the second base station may establish a PDCP entity. Since the function of the PDCP entity is not required, the PDCP entity may be closed after the establishment.
  • the RLC entity may include a transmitting end and a receiving end, and the transmitting end may include at least one of the following functional units: a sending buffer, a retransmission buffer, and optionally, a segmentation unit, an RLC PDU header information generating unit, The RLC PDU re-segmentation function and the RLC header information may be generated by the re-segmentation; the transmission buffer is used to receive the RLC PDU sent by the first base station; and the retransmission buffer is used to save the RLC PDU that needs to be retransmitted, for example After the RLC PDU of the send buffer is sent to the UE for the first time, it is moved into the retransmission buffer.
  • the RLC control unit controls RLC PDU retransmission of the second base station according to the RLC status report from the first base station; and controls RLC PDU retransmission of the second base station according to the RLC status report from the UE, and Forwarding the complete RLC status report control to the second base station; the RLC control unit does not generate the RLC status report itself, and does not need to maintain the ARQ transmission window and the reception window.
  • the transmitting end may also include only a sending buffer, which is used to receive the RLC PDU sent by the first base station, and forwarded to the UE; the second base station does not need to support RLC PDU retransmission, or the first base station uses the RLC PDU that needs to be retransmitted as a new one.
  • the RLC PDU is resent to the transmit buffer of the second base station for forwarding to the UE through the second base station.
  • the receiving end may include at least one of the following functional units: a receiving buffer; optionally, including a reordering function; optionally, including a routing function; optionally, including an SDU reassembly unit, but set to a closed state.
  • the RLC entity may be a sending entity or a receiving entity, and the sending entity may include at least one of the following functional units: a sending buffer, optionally, a fragmenting unit, an RLC PDU header information generating unit, and may only support RLC The PDU re-segmentation function and the RLC header information are generated by re-segmentation.
  • the receiving entity may comprise at least one of the following functional units: a receive buffer, optionally including a reordering function; optionally, an SDU reassembly unit, but set to an off state.
  • the second base station may send a second request message to the first base station, where the second request message may be used to indicate that the first base station configures the first cell of the first base station for the UE.
  • the base station receives the second response message from the first base station, where the second response message carries the resource information of the first cell determined by the first base station according to the second request message.
  • the second base station sends an RRC connection reconfiguration message to the UE, where the RRC connection reconfiguration message carries the resource information of the first cell.
  • the second request message is further used to indicate that the first base station establishes a DRB for the UE.
  • FIG. 4 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • the method of Figure 4 is performed by the UE, e.g., UE 130a in Figure la or 130b in Figure lb.
  • the UE receives a first partial downlink RLC PDU in the RLC PDU generated by the first base station from the first base station, and receives a second partial downlink RLC PDU in the downlink RLC PDU from the second base station, where the second partial downlink RLC PDU is the first
  • the second base station receives from the first base station.
  • the UE receives the first part of the downlink RLC PDU in the downlink RLC PDU from the first base station, and receives the second part of the downlink RLC PDU obtained by the second base station from the first base station from the second base station, so that the UE can
  • the two base stations transmit data together, thereby increasing the peak rate and throughput of the UE.
  • the UEs in the coverage area common to the two base stations do not need to switch between the two base stations, so that service delay or interruption due to handover can also be avoided.
  • the UE may reassemble the first partial downlink RLC PDU and the second partial downlink RLC PDU to form a downlink RLC SDU.
  • the UE may generate an uplink RLC PDU.
  • the UE may send the first partial uplink RLC PDU in the uplink RLC PDU to the first base station, and send the second partial uplink RLC PDU in the uplink RLC PDU to the second base station.
  • the PDCP layer of the UE may receive an IP data packet from the application layer as a PDCP SDU, and after processing by the PDCP protocol layer, generate a PDCP PDU and submit it to the RLC layer as an RLC SDU, and generate an uplink RLC PDU by the RLC SDU.
  • the UE may send a part of the RLC PDU to the first base station, and send another part of the RLC PDU to the second base station, and the second base station sends the part of the RLC PDU to the first base station, so as to improve the peak rate and throughput of the UE.
  • the UE sends the first part of the uplink RLC PDU to the first base station, which may be that the UE performs the protocol layer processing on the first part of the uplink RLC PDU, and then sends the first RLC PDU to the first base station.
  • the UE may perform the first part of the uplink RLC PDU through the MAC layer. And processing with the PHY layer and transmitting to the first base station.
  • the process in which the UE sends the second partial uplink RLC PDU to the second base station is similar, in order to avoid Repeat, no longer repeat here.
  • the UE generates a first RLC status report according to the receiving status of the first partial downlink RLC PDU and the second partial downlink RLC PDU, where the first RLC status report indicates that the first part of the downlink RLC PDU needs to be retransmitted. Retransmitted RLC PDUs in the RLC PDU and/or the second partial downlink RLC PDU.
  • the UE may send a first RLC status report to the first base station or the second base station.
  • the UE may receive, from the first base station, the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU and/or receive the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU from the second base station.
  • the UE may generate a first RLC status report according to the reception status of the first partial downlink RLC PDU and the second partial downlink RLC PDU.
  • the UE may send the first RLC status report to the first base station, or may send the first RLC status report to the second base station. If there is an RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU, the UE may receive, from the first base station, the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU.
  • the UE may receive the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU from the second base station.
  • the UE may also divide the first RLC status report into two segments according to the uplink resource condition, and send two first RLC status reports from the first base station and the second base station, and the second base station forwards to the first base station that it receives the first RLC status report. A section of the first RLC status report.
  • the UE for the RLC AM, the UE generates a first RLC status report according to the receiving status of the first partial downlink RLC PDU and the second partial downlink RLC PDU, and sends a first RLC status report to the first base station. .
  • the UE may receive the RLC PDU of the first downlink retransmission sub-set from the first base station, and receive the RLC PDU of the second downlink retransmission sub-set from the second base station, where the first downlink retransmission sub-set and the second downlink weight
  • the downlink RLC PDU retransmission set may be determined by the first base station according to the first RLC status report, and the downlink RLC PDU retransmission set may include the first part of the downlink RLC.
  • the RLC PDU that needs to be retransmitted in the PDU and/or the RLC PDU that needs to be retransmitted in the second partial downlink RLC PDU is received from the second base station.
  • the UE may receive the second RLC status report from the first base station.
  • the UE may determine, according to the second RLC status report, an uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first partial uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU.
  • the UE sends the uplink weight to the first base station.
  • the UE may determine the uplink that needs to be retransmitted according to the second RLC status report.
  • the UE may decide how to retransmit the RLC PDU to be retransmitted according to the uplink grant.
  • the UE may retransmit all RLC PDUs that need to be retransmitted to the first base station, or retransmit all RLC PDUs that need to be retransmitted to the second base station.
  • the UE may divide the RLC PDU that needs to be retransmitted into two parts, that is, the first uplink retransmission sub-set and the second uplink retransmission sub-set, and retransmit the two sub-set RLC PDUs to the first base station and the second base station, respectively.
  • the UE may report, according to the second RLC status report, that the first base station confirms that the RLC PDU is successfully received in the second RLC status report, the UE updates the RLC AM transmission window and the corresponding state variable to continue to send the new RLC. PDU.
  • the UE receives the first partial downlink RLC PDU from the first cell of the first base station, and receives the second partial downlink RLC PDU from the second cell of the second base station, where the first cell and the second cell
  • the cells are located on different carriers.
  • the UE may perform data transmission by using the first cell on the carrier of the first base station and the second cell on the carrier of the second base station.
  • the UE may receive an RRC connection reconfiguration message from the first base station, where the RRC connection reconfiguration message carries resource information of the second cell determined by the second base station.
  • the UE may also receive an RRC connection reconfiguration message from the second base station, where the RRC connection reconfiguration message carries the resource information of the second cell determined by the second base station.
  • the UE may receive an RRC connection reconfiguration message from the second base station, where the RRC connection reconfiguration message carries resource information of the first cell determined by the first base station.
  • the UE may also receive an RRC connection reconfiguration message from the first base station, where the RRC connection reconfiguration message carries resource information of the first cell determined by the first base station.
  • FIG. 5 is a schematic diagram of a data transmission process according to an embodiment of the present invention.
  • the first base station may be the macro base station 110a in FIG. 1a or the macro base station 110b in FIG. 1b.
  • the second base station may be the micro base station 120a in FIG. 1a or the micro base station 120b in FIG.
  • the UE may be the UE 130a in FIG. 1a or the UE 130b in FIG.
  • the macro base station acts as a user plane anchor.
  • the macro base station can receive the downlink data sent by the packet data network (PGW) from the SGW through the S1-U interface, and offload the downlink data, part of which is sent to the UE through the Uu interface, and another part is sent by the micro base station to the UE.
  • the macro base station can also receive the uplink data from the UE through the Uu interface, and receive the uplink data sent by the UE to the micro base station from the micro base station, process the two pieces of uplink data, send the data to the SGW through the S1-U interface, and send the data to the PGW.
  • FIG. 6 is a schematic flowchart of a data offload configuration process according to an embodiment of the present invention.
  • the UE has established an RRC connection with the macro base station, and the cell of the current macro base station serves the UE. While the data transmission between the macro base station and the UE is performed, the macro base station can complete the data distribution configuration process with the micro base station. This process will be described in detail below.
  • the UE sends a measurement report to the macro base station.
  • the UE may generate a measurement report based on a Cell Specific Reference Signal (CRS) or a Channel State Information Reference Signal (CSI-RS).
  • the measurement report may include RSRP measurements of the cells and neighbors of the macro base station.
  • the macro base station determines, according to the measurement report, to increase a cell of the micro base station and/or establish a DRB. Adding a second cell may refer to a cell in which the UE aggregates the micro base station.
  • the establishment of the DRB may be performed by the micro base station to establish a DRB for the UE.
  • the macro base station may further determine to add a small cell of the micro base station according to the measurement result of the SRS by the macro base station, and may also determine to increase the cell of the micro base station according to other measurement results, such as CQI reported by the UE.
  • the macro base station may determine to establish a DRB according to information such as QoS parameters, traffic volume, throughput, and peak rate of the DRB.
  • the macro base station determines that the process of adding the cell of the base station and determining the establishment of the DRB are performed in a non-sequential manner, or may be performed simultaneously. For example, the macro base station may determine to add the second cell and/or establish the DRB at the same time, or may first determine to increase the cell of the micro base station, and then determine to establish the DRB, or first determine to establish the DRB, and then determine to increase the cell of the base station. This embodiment of the invention does not Limited.
  • the macro base station sends a first request message to the base station.
  • the first request message may instruct the base station to configure a cell of the base station for the UE.
  • the first request message may also instruct the base station to establish a DRB for the UE.
  • the macro base station may instruct the micro base station to configure the cell of the base station and establish the DRB in the first request message, or may send the first request message to the base station twice, respectively, instructing the micro base station to configure the cell of the micro base station and establish the DRB. .
  • the macro base station may carry the configuration information of the DRB in the first request message.
  • the DRB configuration information may include at least one of the following: an Evolved Radio Access Bearer (E-RAB) identifier, an E-RAB QoS parameter, a DRB identifier, RLC configuration information, and logical channel configuration information.
  • E-RAB Evolved Radio Access Bearer
  • the DRB configuration information may also include other related information.
  • the E-RAB QoS parameter may be a QoS parameter after the macro base station performs the offloading decision.
  • the micro base station may divide the Guaranteed Bit Rate (GBR), the macro base station DRB is shunted by 60%, and the micro base station is shunted by 40%.
  • the GBR parameter value sent to the micro base station is 40% multiplied by the original GBR parameter value.
  • the micro base station configures a cell of the micro base station according to the first request message, and establishes a DRB for the UE.
  • the micro base station can perform admission control according to the first request message, configure resources of the cell of the micro base station, and determine resource information of the cell of the micro base station.
  • the micro base station may establish an RLC entity and a logical channel corresponding to the DRB according to the configuration information of the DRB carried in the first request message, and set the DRB parameter, the RLC parameter, the logical channel parameter, and QoS parameters, etc.
  • the QoS parameter can be configured according to the split ratio carried in the first request message.
  • the micro base station may not establish a PDCP entity.
  • the micro base station can establish a PDCP entity and shut down the PDCP entity.
  • the configuration of the micro base station's cell and the establishment of the DRB by the micro base station are two processes, and the execution is not sequential. However, in order to implement the subsequent data offloading process, both processes need to be completed.
  • the micro base station sends a first response message to the macro base station.
  • the first response message may carry resource information of a cell of the micro base station.
  • the macro base station sends an RRC connection reconfiguration message to the UE.
  • the RRC connection reconfiguration message may carry resource information of a cell of the micro base station.
  • the DRB configuration of the UE can use the previous DRB configuration. If the DRB needs to be reconfigured for the UE, the macro base station may carry the configuration information of the DRB in the RRC connection reconfiguration message.
  • the UE performs connection reconfiguration according to the RRC connection reconfiguration message.
  • the UE may configure the cell-related radio resource of the base station according to the resource information of the cell of the micro base station carried in the RRC connection reconfiguration message.
  • the UE may perform DRB reconfiguration according to the configuration information of the DRB.
  • the UE sends an RRC connection reconfiguration complete message to the macro base station.
  • the UE After the reconfiguration succeeds, the UE notifies the macro base station that the reconfiguration is complete.
  • the macro base station sends a configuration complete message to the base station.
  • the macro base station notifies the micro base station that the UE completes the connection reconfiguration by configuring the completion message.
  • the UE performs a random access procedure with the micro base station to complete uplink synchronization with the micro base station. It should be noted that step 610 can also be performed between step 607 and step 608. If the UE completes the uplink synchronization with the micro base station after the step 608, the UE may also send the RRC connection reconfiguration complete message to the micro base station, and the micro base station forwards the RRC connection reconfiguration to the macro base station. Message. The UE may notify the macro base station after the random access of the micro base station is successful, so that the macro base station starts to offload data to the micro base station.
  • the macro base station can acquire downlink data from the SGW and generate downlink RLC PDUs according to the downlink data.
  • the macro base station may send the first part of the downlink RLC PDU in the downlink RLC PDU to the UE, and send the second part of the downlink RLC PDU in the downlink RLC PDU to the micro base station.
  • the micro base station can send the second part of the downlink RLC PDIL to the UE.
  • the UE may generate an uplink RLC PDU, send a first partial uplink RLC PDU in the uplink RLC PDU to the macro base station, and send a second partial uplink RLC in the uplink RLC PDU to the micro base station.
  • the PDIL micro base station sends the second part to the macro base station.
  • the uplink RLC PDIL is retransmitted by the macro base station to the two parts of the uplink RLC PDU and other processing, and then sent to the SGW.
  • the macro base station is used as the user plane anchor point, so that the macro base station and the micro base station can jointly transmit data with the UE, thereby improving the peak rate and throughput of the UE.
  • the UE does not need to switch between the macro base station and the micro base station, and can also avoid service delay or interruption due to switching.
  • the macro base station is used as the user plane anchor point.
  • the micro base station can also be used as the user plane anchor point. Description will be made below with reference to Figs. 7 and 8.
  • FIG. 7 is a schematic diagram of a data transmission process according to an embodiment of the present invention.
  • the first base station is a micro base station
  • the second base station is a macro base station as an example.
  • the first base station may be the micro base station 120a in Figure la or the micro base station 120b in Figure lb
  • the second base station may be the macro base station 110a in Figure la or the macro base station 110b in Figure lb
  • the UE may be UE 130a in Figure la or UE 130b in Figure lb.
  • the micro base station acts as a user plane anchor.
  • the micro base station can receive the downlink data sent by the PGW from the SGW through the S1-U interface, and offload the downlink data, part of which is sent to the UE through the Uu interface, and another part is sent by the macro base station to the UE.
  • the micro base station can also receive the uplink data from the UE through the Uu interface, and receive the uplink data sent by the UE to the macro base station from the macro base station, process the two pieces of uplink data, send the data to the SGW through the S1-U interface, and send the data to the PGW.
  • FIG. 8 is a schematic flowchart of a configuration process of data offloading according to an embodiment of the present invention.
  • the UE has established an RRC connection with the macro base station, and the cell of the current macro base station serves the UE. While the macro base station and the UE can perform data transmission, the macro base station can complete the data offload configuration process with the micro base station. This process will be described in detail below.
  • Step 801 is similar to step 601 in FIG. 6. To avoid repetition, details are not described herein again. 802.
  • the macro base station determines, according to the measurement report, the cell of the micro base station to be added and/or establishes a DRB, and determines an anchor point migration.
  • the macro base station determines that the process of adding the cell of the micro base station and establishing the DRB is similar to the step 602 in FIG. 6. To avoid repetition, details are not described herein again.
  • the macro base station may determine the micro base station as an anchor point according to the traffic distribution policy or the split ratio based on the related information such as the measurement report. For example, if the proportion of the splitting of the micro base station is larger, for example, for the GBR, the macro base station is offloaded by 30%, and the base station is split by 70%, then the macro base station can determine the anchor point migration, and the micro base station acts as the user plane anchor point, that is, the path is performed. Switch to migrate the corresponding E-RAB to the micro base Station and SGW's Sl-U interface.
  • the split ratios of the DRBs can be kept as consistent as possible.
  • the split ratio can be a large split ratio of the micro base station and a split ratio of the macro base station. small.
  • the macro base station sends a second request message to the base station.
  • the second request message may instruct the base station to configure a cell of the base station for the UE.
  • the second request message may also instruct the base station to establish a DRB for the UE.
  • the second request message may also indicate that the base station is the user plane anchor.
  • step 803 is similar to step 603 in FIG. 6. To avoid repetition, it will not be described here.
  • the micro base station configures a cell of the micro base station according to the second request message, and establishes a DRB for the UE, and prepares a fault point migration.
  • the process of configuring the cell of the micro base station for the UE by the micro base station is similar to the step 604 in FIG. 6. To avoid repetition, details are not described herein again.
  • the micro base station may establish a PDCP entity, an RLC entity, and a logical channel corresponding to the DRB according to the configuration information of the DRB carried in the second request message, and set the DRB parameter, the PDCP parameter, and the RLC. Parameters, logical channel parameters, and QoS parameters.
  • the QoS parameter may be configured according to the split ratio carried in the second request message.
  • step 804 the micro base station needs to be quasi-point migration.
  • the micro base station sends a second response message to the macro base station.
  • the second response message may carry resource information of a cell of the micro base station.
  • the second response message may also indicate that the micro base station is migrating.
  • the macro base station sends an RRC connection reconfiguration message to the UE.
  • the RRC connection reconfiguration message may carry resource information of a cell of the micro base station.
  • the DRB configuration of the UE can use the previous DRB configuration. If the DRB needs to be reconfigured for the UE, the macro base station may carry the configuration information of the DRB in the RRC connection reconfiguration message.
  • the UE performs RRC connection reconfiguration according to the RRC connection reconfiguration message.
  • the UE may configure the cell-related radio resource of the base station according to the resource information of the cell of the micro base station carried in the RRC connection reconfiguration message. If the configuration information of the DRB is also carried in the RRC connection reconfiguration message, the UE may further perform DRB reconfiguration according to the configuration information of the DRB.
  • the UE sends an RRC connection reconfiguration complete message to the macro base station.
  • the UE After the reconfiguration succeeds, the UE notifies the macro base station that the reconfiguration is complete.
  • the macro base station sends a configuration complete message to the base station.
  • the macro base station notifies the micro base station that the UE completes the connection reconfiguration by configuring the completion message.
  • the base station sends a path switch request message to ⁇ .
  • the Path Switch Request message may indicate that the data transmission path is switched to the micro base station.
  • the bearer change request message may request the SGW to switch the data transmission path.
  • the SGW switches the path according to the bearer change request message.
  • the SGW sends a change response message to the ⁇ .
  • the MME sends a path switch response message to the base station.
  • the UE performs a random access procedure with the micro base station to complete uplink synchronization with the micro base station.
  • step 815 can be performed in parallel with the path switching process of steps 810 through 814.
  • the macro base station may continue the data transmission process with the UE to complete the transmission of the already buffered data in the Radio Bearer (RB) (including the SRB and the DRB).
  • RB Radio Bearer
  • the data is transmitted between the micro base station and the UE, and the data is transmitted by the macro base station and the UE. Data is transmitted between the micro base station and the SGW.
  • the micro base station can acquire downlink data from the SGW and generate downlink RLC PDUs according to the downlink data.
  • the micro base station may send the first part of the downlink RLC PDU in the downlink RLC PDU to the UE, and send the second part of the downlink RLC PDU in the downlink RLC PDU to the macro base station.
  • the macro base station may send the second part of the downlink RLC PDIL to the UE.
  • the UE may generate an uplink RLC PDU, send a first partial uplink RLC PDU in the uplink RLC PDU to the micro base station, and send a second partial uplink RLC PDIL in the uplink RLC PDU to the macro base station.
  • the macro base station sends the second part to the micro base station.
  • the uplink RLC PDIL is reassembled by the micro base station for the two parts of the RLC PDU and is subsequently processed and sent to the SGW.
  • the macro base station is used as the user plane anchor point, so that the macro base station and the micro base station can jointly transmit data with the UE, thereby improving the peak rate and throughput of the UE.
  • the UE does not need to switch between the macro base station and the micro base station, and can also avoid service delay or interruption due to switching.
  • FIG. 9 is a schematic diagram of an example of a control plane protocol stack in accordance with an embodiment of the present invention.
  • control plane protocol stack of Fig. 9 can be applied to the examples of Figs. 5 to 8 described above.
  • the UE and the macro base station have established an RRC connection, the control plane function is provided by the macro base station, and the control plane message transmission is between the macro base station and the UE, and the data of the signaling radio bearer (SRB) No splitting is done.
  • the control plane related signaling transmission between the macro base station and the micro base station can be performed through an X2 interface or a direct connection between the macro base station and the micro base station. It should be understood that although the SRB splitless flow is taken as an example in FIG. 9, in the embodiment of the present invention, the data of the SRB may also be split.
  • the connection between the RRC, PDCP, RLC, MAC, and PHY layers of the macro base station and the UE indicates a logical connection of the peer protocol layer on the radio interface between the macro base station and the UE, indicating that the sender is in each
  • the data sent by the protocol layer is processed by the peer-to-peer protocol layer at the receiving end to form data of the same format and content as the transmitting end.
  • the control plane data transmission process may be as follows: on the transmitting end side, the RRC message is processed by the PDCP, RLC, MAC, and PHY protocol layers, and then sent to the receiving end through the wireless interface, and the receiving end passes the wireless interface.
  • the received control plane data is first processed by the PHY layer and then submitted to the MAC, RLC, PDCP, and RRC layers for processing.
  • the transmitting end is a macro base station, and then the receiving end is a UE.
  • the transmitting end is a UE, and then the receiving end is a macro base station.
  • control plane data There may be no transmission of control plane data between the micro base station and the UE.
  • the macro base station provides a control plane function as an example for explanation.
  • the macro base station and the micro base station may jointly provide a control plane function, for example, when the UE in the common coverage area of the macro base station and the micro base station has an RRC connection with the macro base station and the micro base station at an initial time,
  • the control plane function can be provided jointly by the macro base station and the micro base station.
  • FIG. 10 is a schematic diagram of an example of a user plane protocol stack in accordance with an embodiment of the present invention.
  • the macro base station is a user plane anchor point, and the macro base station needs to be offloaded by two DRBs.
  • the user plane protocol stack of the macro base station is described as follows:
  • the DRB to be offloaded is DRB1 and DRB2, the PDCP entity PDCP1 corresponding to DRB1, the RLC entity RLC1, and the logical channel LCH1 are established; the PDCP2, RLC2, and LCH2 corresponding to DRB2 are established; the logical channel is located between the RLC layer and the MAC layer. , LCH1 and LCH2 are not shown in FIG. It is assumed that the carrier participating in the aggregation in the macro base station is CC1, the corresponding cell is the primary cell (PCell), the PCell is configured with one MAC layer MAC1 and one PHY layer PHY1, and one HARQ entity HARQ1 is set at the MAC layer.
  • the carrier participating in the aggregation in the macro base station is CC1
  • the corresponding cell is the primary cell (PCell)
  • the PCell is configured with one MAC layer MAC1 and one PHY layer PHY1, and one HARQ entity HARQ1 is set at the MAC layer.
  • the LCH1 corresponding to the DRB1 and the LCH2 corresponding to the DRB2 are mapped to the downlink shared transport channel (Downlink Share Channel, DL-SCH) DL-SCH1 or the uplink shared transport channel (UL-SCH) UL-SCH1 through the MAC layer.
  • the channel is located between the MAC layer and the PHY layer, and DL-SCH1 and UL-SCH1 are not shown in FIG.
  • the connection between the PDCP, the RLC, the MAC, and the PHY of the macro base station and the UE indicates the logical connection of the peer protocol layer on the radio interface between the macro base station and the UE, indicating that the data sent by the sender at each protocol layer is at the receiving end.
  • the peer-to-peer protocol layer is processed to form data of the same format and content as the sender.
  • the DRB1 of the macro base station corresponds to the DRB1 of the UE.
  • PDCP1 and RLC1 in the macro base station correspond to PDCP1 and RLC1 of the UE;
  • PDCP2 and RLC2 in the macro base station correspond to PDCP2 and RLC2 of the UE.
  • connection between the macro base station and the micro base station at the RLC layer indicates that data splitting is performed at the RLC layer, and RLC1 and RLC2 of the macro base station correspond to RLC1 and RLC2 of the micro base station, respectively.
  • the user plane data transmission process can be as follows:
  • the Internet Protocol (IP) data packet from the SGW is sent to the UE through the radio interface after the macro base station processes the PDCP, RLC, MAC, and PHY protocol layers.
  • the UE can process the data received through the wireless interface first through the PHY layer and then to the MAC, RLC, and PDCP layers for processing.
  • the UE For uplink data, the UE passes IP packets from the application layer through PDCP, RLC, and MAC.
  • the PHY protocol layers are processed and sent to the macro base station via the radio interface.
  • the macro base station first processes the data received through the radio interface through the PHY layer, and then delivers it to the MAC, RLC and PDCP layers in turn.
  • the DRB to be offloaded is DRB1 and DRB2, which are used to offload data of DRB1 and DRB2 of the macro base station, respectively, and the offloading is performed at the RLC layer.
  • RLC layer of the micro base station Provides a send buffer and a retransmission buffer, and can support RLC PDU re-segmentation.
  • DRB1 sets the corresponding RLC entity RLC1 and logical channel LCH1;
  • DRB2 sets the corresponding RLC2 and LCH2; the logical channel is located between the RLC layer and the MAC layer, and LCH1 and LCH2 are not shown in FIG.
  • the carrier participating in the aggregation in the base station is CC2, the corresponding cell is a secondary cell (Secondary Cell, SCell), the SCell is configured with one MAC layer MAC2 and one PHY layer PHY2, and one HARQ entity HARQ2 is set at the MAC layer.
  • the logical channel of DRB1 and the logical channel of DRB2 are mapped to the transport channel DL-SCH2 or UL-SCH2 through the MAC layer, the transport channel is located between the MAC layer and the PHY layer, and DL-SCH2 and UL-SCH2 are not shown in FIG. .
  • the connection between the micro base station and the RLC, MAC, and PHY of the UE indicates a logical connection of the peer protocol layer on the radio interface between the micro base station and the UE, indicating that the data sent by the sender at each protocol layer is peered at the receiving end.
  • the protocol layer is processed to form data of the same format and content as the sender.
  • the DRB1 of the micro base station corresponds to the DRB1 of the UE, and correspondingly, the RLC1 of the micro base station corresponds to the RLC1 of the UE; the RLC2 of the micro base station corresponds to the RLC2 of the UE.
  • connection between the macro base station and the micro base station at the RLC layer indicates that data splitting is performed at the RLC layer, and RLC1 and RLC2 of the macro base station correspond to RLC1 and RLC2 of the micro base station, respectively.
  • the user plane data transmission process can be as follows:
  • the micro base station may store the RLC PDUs from the macro base station in the transmission buffer of the corresponding RLC entity for scheduling, and after being processed by the RLC, MAC, and PHY protocol layers, and sent to the UE through the radio interface. If the complete RLC PDU cannot be transmitted due to radio resource limitation when the RLC PDU is first transmitted, the RLC PDU may be segmented; it should be noted that the segmentation in this case is handled in the re-segmentation manner of the RLC PDU according to the existing protocol. Instead of segmenting the RLC SDUs according to existing protocols. The UE can process the data received through the wireless interface first through the PHY layer and then to the MAC, RLC, and PDCP layers for processing.
  • the UE may process the IP data packets from the application layer through the PDCP, RLC, MAC, and PHY protocol layers and then send them to the micro base station through the radio interface.
  • the data received by the micro base station through the wireless interface is first processed by the PHY layer, and then delivered to the MAC and the RLC in turn, and the RLC PDUs formed by the RLC layer are sent to the RLC entity corresponding to the macro base station through the X2 interface.
  • the DRB is the DRB 1 and the DRB2, and the PDCP1, the RLC entity RLC1, and the logical channel LCH1 corresponding to the DRB1 are established; the PDCP2, the RLC2, and the LCH2 corresponding to the DRB2 are established; the logical channel is located between the RLC layer and the MAC layer, LCH1 And LCH2 is not in Figure 10 show.
  • the UE may configure one MAC layer, including a multiplexing/demultiplexing entity, which is not shown in FIG.
  • two HARQ entities are configured, which respectively correspond to the PCell of the macro base station and the SCell of the micro base station aggregated by the UE.
  • the PCell is configured with a PHY layer PHY1
  • the SCell is configured with a PHY layer PHY2 corresponding to the HARQ1 and HARQ2 of the MAC layer, respectively.
  • the logical channel of DRB1 and the logical channel of DRB2 are mapped to the transport channel DL-SCH1 or UL-SCH1, or DL-SCH2 or UL-SCH2 through the MAC layer, and the transport channel is located between the MAC layer and the PHY layer, DL-SCH1, UL -SCH1, DL-SCH2, and UL-SCH2 are not shown in FIG.
  • the communication method between the UE and the macro base station and the micro base station is similar to that described above on the macro base station and the micro base station side. To avoid repetition, details are not described herein again.
  • layer 2 may include a PDCP layer, an RLC layer, and a MAC layer.
  • FIG. 11 is a schematic structural diagram of layer 2 in a protocol stack of a macro base station according to an embodiment of the present invention.
  • the main functions of the PDCP layer can include header compression (Robust Header).
  • Security functions such as Compression, ROHC and security can include integrity protection and cyphering.
  • the main functions of the RLC layer can include segmentation, re-segmentation, and automatic retransmission request (ARQ).
  • ARQ automatic retransmission request
  • the main functions of the MAC layer may include scheduling/priority processing, multiplexing/demultiplexing, and HARQ.
  • the SAP between the PDCP layer and the upper application layer is provided by the SAP between the Service Access Point (SAP), the PDCP layer and the RLC layer.
  • the SAP between the RLC layer and the MAC layer provides the LCH.
  • the SAP between the MAC layer and the physical layer provides a Transport Channel, which may include DL-SCH and UL-SCH.
  • the macro base station can provide a PCell for the UE, and its MAC layer can be configured with one HARQ entity.
  • FIG. 12 is a schematic structural diagram of layer 2 in a protocol stack of a micro base station according to an embodiment of the present invention. In Fig. 12, the DRB shunting from the RLC layer is taken as an example. The PDCP entity and corresponding functions are not set at the micro base station.
  • the RLC layer of the micro base station can be equivalent to the extension of the RLC layer of the macro base station, and provides some functions of the RLC layer, and does not need to provide all RLC functions.
  • the micro base station receives the RLC PDU sent by the RLC layer of the macro base station through the X2 interface or the direct connection, and is stored in the transmission buffer of the RLC layer of the micro base station.
  • the micro base station can also receive the RLC of the macro base station
  • the layer reports the RLC status sent through the X2 interface or the direct connection, and retransmits the RLC PDU that needs to be retransmitted to the UE according to the RLC status report.
  • the micro base station can receive the RLC PDU sent by the UE, store it in the receiving buffer of the RLC layer of the micro base station, and forward it to the macro base station.
  • the function of the MAC layer is similar to that of the MAC layer of the macro base station in FIG. 11. To avoid repetition, details are not described herein again.
  • the micro base station may provide a SCell for the UE, and its MAC layer sets one HARQ entity.
  • FIG. 13 is a schematic structural diagram of layer 2 in a protocol stack of a UE according to an embodiment of the present invention.
  • the functions of the PDCP, the RLC, and the MAC layer of the UE are similar to those of the corresponding protocol layer of the macro base station in FIG. 11. To avoid repetition, details are not described herein again.
  • the MAC layer of the UE may be configured with two HARQ entities, which respectively correspond to CC1 provided by the macro base station and CC2 provided by the micro base station.
  • the HARQ entity on CC1 can be mapped to DL-SCH and UL-SCH on CC1
  • the HARQ entity on CC2 can be mapped to DL-SCH and UL-SCH on CC2.
  • the logical channels LCH1 and LCH2 of the UE may be mapped to DL-SCH and UL-SCH on CC1, or DL-SCH and UL-SCH on CC1.
  • two HARQ entities may be set in the MAC layer in the layer 2 structure of the macro base station, respectively.
  • the structures of the PDCP and RLC layers are the same as those of the PDCP and RLC layers in FIG.
  • the MAC layer in the layer 2 structure of the micro base station may be configured with two HARQ entities corresponding to two CCs provided by the base station, and the structure of the RLC layer is the same as that of the RLC layer in FIG.
  • the MAC layer may be configured with four HARQ entities corresponding to two CCs provided by the macro base station and two CCs provided by the micro base station.
  • FIG. 14 is a schematic flow chart of a process of a method of transmitting data according to an embodiment of the present invention.
  • Fig. 14 the data transmission process in the downstream direction in step 611 of Fig. 6 will be described in detail.
  • the macro base station generates a downlink PDCP PDU and submits it to the RLC layer.
  • the macro base station uses the downlink IP data packet from the SGW as a PDCP SDU, and performs PDCP layer header compression, encryption, and addition of a PDCP sequence number (SN) to generate a PDCP PDU, and the PDCP PDU is delivered to the RLC layer as an RLC SDU.
  • the macro base station delivers the PDCP PDU in PDCP1 to RLC1 and the PDCP PDU in PDCP2 to RLC2. 1402.
  • the macro base station determines a first part of the downlink RLC PDU that is sent by the macro base station and a second part of the downlink RLC PDU that is sent by the micro base station.
  • the macro base station can determine the amount of data to be offloaded according to the DRB offload policy and the QoS parameter configuration determined or negotiated in advance, that is, which downlink RLC SDUs are offloaded to the macro base station and which downlink RLC SDUs are offloaded to the micro base station.
  • the MAC layer of the macro base station can determine the amount of data that can be scheduled by a certain Transmission Time Interval (TTI) according to the QoS requirement and the radio resource condition of the macro base station, indicating that the RLC layer is to be generated.
  • TTI Transmission Time Interval
  • the MAC layer may indicate the total size of one or more downlink RLC PDUs to be generated by the RLC layer; the RLC layer may segment, cascade, and downlink the RLC SDU according to the downlink RLC PDU size indicated by the MAC layer After the header information processing such as the RLC SN is added, the RLC1 and the RLC2 in the first part of the downlink RLC PDIL macro base station are generated to generate different downlink RLC PDUs. In some cases, one or more different downlink RLC PDUs may be generated in RLC1 and RLC2, or one or more different downlink RLC PDUs may be generated only by RLC1 or RLC2.
  • the MAC layer of the macro base station may determine the amount of data that a certain port can be offloaded to the micro base station according to the offload decision and the QoS requirement, thereby indicating the size of the downlink RLC PDU to be generated by the RLC layer;
  • the layer may indicate the total size of one or more downlink RLC PDUs to be generated by the RLC layer; the RLC layer may perform segmentation, cascading, and adding RLC SN and other header information processing on the downlink RLC SDU according to the downlink RLC PDU size indicated by the MAC layer. Then, the second part of the downlink RLC PDIL is generated.
  • RLC1 and RLC2 may respectively generate one or more different RLC PDUs to be offloaded to the micro base station, or may generate one or more different ones only by RLC1 or RLC2.
  • the macro base station sends the first part of the downlink RLC PDIL to the UE.
  • the RLC layer of the macro base station may deliver the generated first partial downlink RLC PDU to the MAC layer of the macro base station as a MAC SDU, and perform multiplexing processing with the MAC SDU of the logical channel and/or other logical channels to generate a MAC PDU.
  • the transport block (TB) the first part of the RLC PDUs in RLC1 and RLC2 can be multiplexed in the same TB.
  • the macro base station sends the second part of the downlink RLC PDIL to the micro base station.
  • the macro base station can connect the second part through the X2 interface between the macro base station and the micro base station or directly
  • the downlink RLC PDU is sent to the micro base station.
  • the micro base station prepares to deliver the second part of the downlink RLC PDU.
  • the micro base station After receiving the second part of the downlink RLC PDU of the RLC1 of the macro base station, the micro base station can store it in the transmission buffer of the micro base station RLC1. After receiving the second partial downlink RLC PDU of the RLC2 of the macro base station, the micro base station can store it in the transmission buffer of the micro base station RLC2.
  • the MAC layer of the micro base station determines the amount of data that can be scheduled according to the offload decision and QoS requirements, and indicates the size of the downlink RLC PDU to be generated by the RLC layer.
  • the MAC layer may indicate to the RLC layer the total size of one or more downstream RLC PDUs.
  • the MAC layer may indicate the original downlink RLC PDU size to the RLC layer, meaning that one or more original downlink RLC PDUs stored in the RLC transmission buffer are directly handed over to the MAC layer as a MAC SDU without any processing.
  • the MAC layer may indicate to the RLC layer that the total downlink RLC PDU size is smaller than the original downlink RLC PDU size, which means that the downlink RLC PDU segment is generated after the original downlink RLC PDU is re-segmented, and the segment is delivered to the MAC layer, and the RLC layer does not have another Add force port RLC SN.
  • the RLC layer of the micro base station does not need to support the RLC PDU cascading function. It should be noted that, in a certain TTI, one or more different original downlink RLC PDUs or downlink RLC PDU fragments may be respectively delivered to the MAC layer in both RLC1 and RLC2, and only the last downlink RLC PDU may be a downlink RLC PDU fragment. The downlink RLC PDU may also be delivered to the MAC layer only by RLC1 or RLC2.
  • the micro base station can improve the priority of the UE in the inter-base station CA scenario to ensure the radio resources required for the offloading data, so that sufficient downlink resources can be allocated to transmit the original second partial downlink RLC PDIL to the micro base station or, if Due to the radio interface resource limitation, the radio resource allocated to the UE cannot accommodate the original second partial downlink RLC PDU, and the original second partial downlink RLC PDU needs to be re-segmented at the RLC layer of the micro base station.
  • the micro base station sends a second part of the downlink RLC PDIL to the UE.
  • the RLC layer of the base station may forward the original second partial downlink RLC PDU or the downlink RLC PDU segment re-segmented to the second partial downlink RLC PDU to the MAC layer of the micro base station as the MAC SDU, and the logical channel and/or After the MAC SDUs of other logical channels are multiplexed, a MAC PDU or a TB is generated, where the downlink RLC PDUs in RLC1 and RLC2 can be multiplexed in the same TB.
  • the TB is delivered to the PHY layer of the micro base station, it is sent by the PHY layer to the UE on the PDSCH on the SCell.
  • the micro base station can transmit the downlink RLC PDU in ascending order of the RLC SN. For RLC AM, the micro base station does not need to maintain the RLC AM transmission window.
  • the UE receives the first part of the downlink RLC PDU and the second part of the downlink RLC PDU, and reassembles the first part of the downlink RLC PDU and the second part of the downlink RLC PDU to form a downlink RLC SDU.
  • the UE After receiving the physical layer data on the PDSCH of the PCell and the PDSCH of the SCell, the UE delivers the corresponding TB to the HARQ1 and HARQ2 corresponding to the MAC layer after the PHY1 and PHY2 are processed successfully, and the MAC layer demultiplexes the TB and then the MAC SDU. That is, the RLC PDU is delivered to the corresponding RLC entities RLCl and RLC2.
  • the RLC layer of the UE may be distinguished from the PCell and the SCell, and may be divided into RLC1 and RLC2 according to the DRB.
  • the HARQ entity and the PHY layer of the MAC layer may be distinguished according to different serving cells, and are transparent to the RLC layer of the UE.
  • the RLC layer of the UE may receive the RLC PDU delivered by the MAC layer, and the RLC1 and the RLC2 may perform the corresponding RLC PDU receiving process according to the RLC mode being the RLC UM or the RLC AM (each RLC entity is one of the two RLC modes).
  • the successfully received RLC PDUs are sorted in ascending order by RLC SN to form an RLC SDU, which is delivered to the PDCP layer.
  • step 1403 may be performed in parallel with step 1404 to step 1406, or step 1404 may be performed first, followed by step 1403.
  • FIG. 15 is a schematic flowchart of a downlink data retransmission process according to an embodiment of the present invention.
  • the UE receives the first part of the downlink RLC PDU and the second part of the downlink RLC PDU, and generates a first RLC status report according to the receiving status of the first part of the downlink RLC PDU and the second part of the downlink RLC PDU.
  • the UE may generate a first RLC status report corresponding to the RLC1 according to the receiving status of the first part downlink RLC PDU and the second part downlink RLC PDU of the RLC1, and may perform the first part downlink RLC PDU and the second part downlink RLC according to the first part of the RLC2. PDU reception status, raw The first RLC status report corresponding to RLC2.
  • the UE sends a first RLC status report to the macro base station.
  • the UE may separately send a first RLC status report corresponding to RLC1 and a first RLC status report corresponding to RLC2 to the macro base station.
  • the first RLC status report indicates that the first part of the downlink RLC PDU needs to be retransmitted.
  • the macro base station retransmits the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE.
  • the macro base station updates the RLC AM transmission window and the corresponding state variable to continue transmitting the new RLC PDU.
  • RLC1 and RLC2 of the macro base station may respectively determine, according to the corresponding first RLC status report, which RLC PDUs in the first part of the downlink RLC PDU need to be retransmitted, and in the second part of the downlink RLC PDU. Which RLC PDUs need to be retransmitted by the micro base station.
  • the RLC1 and the RLC2 of the macro base station may retransmit the RLC PDUs that need to be retransmitted in the corresponding first part of the downlink RLC PDUs to the UE respectively.
  • the macro base station sends a first RLC status report or a retransmission message to the micro base station.
  • the macro base station may send a first RLC status report to the micro base station through an X2 interface or a direct connection.
  • the macro base station may also generate a retransmission message according to the first RLC status report, and the retransmission message may indicate the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the micro base station retransmits the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU according to the first RLC status report or the retransmission message.
  • RLC1 and RLC2 of the micro base station may respectively determine which RLC PDUs in the corresponding second partial downlink RLC PDUs need to be retransmitted according to the corresponding first RLC status report.
  • the RLC1 and the RLC2 of the micro base station may respectively retransmit the RLC PDUs that need to be retransmitted in the corresponding second partial downlink RLC PDUs to the UE.
  • the micro base station may notify the macro base station to perform retransmission.
  • the micro base station may send the second part of the downlink RLC PDU to be retransmitted to the macro base station, or the macro base station reserves a backup in the retransmission buffer for each RLC PDU in the second part of the downlink RLC PDU that is offloaded to the micro base station.
  • the micro base station directly notifies the RLC PDU SN of the second part of the downlink RLC PDU of the macro base station that needs to be retransmitted.
  • the macro base station receives the first RLC status report of the UE, and the macro base station may perform retransmission for the case that the macro base station determines that the micro base station retransmission is required and the number of retransmissions of the micro base station has reached a predetermined number of times but the maximum number of retransmissions has not been reached yet. .
  • the macro base station may notify the micro base station to transmit the relevant RLC PDU that needs to be retransmitted to the macro base station, or the macro base station buffers each RLC PDU in the second part of the downlink RLC PDU that is offloaded to the micro base station.
  • a backup is reserved in the area; if the macro base station decides to perform the retransmission, the status of the corresponding RLC PDU to be retransmitted is changed to the acknowledgement status (Acknowledge, in the first RLC status report sent to the micro base station).
  • ACK acknowledgement status
  • step 1503 may be performed in parallel with steps 1504 through 1505, or step 1504 and step 1505 may be performed first, followed by step 1503.
  • the UE may send a first RLC status report to the macro base station.
  • the UE may also send a first RLC status report to the micro base station. Description will be made below with reference to Fig. 16.
  • FIG. 16 is a schematic flowchart of a downlink data retransmission process according to an embodiment of the present invention.
  • the UE generates a first RLC status report according to the receiving status of the first part of the downlink RLC PDU and the second part of the downlink RLC PDU.
  • the UE may downlink the RLC PDU and the second part according to the first part of RLC1.
  • the RLC PDU receives the first RLC status report corresponding to the RLC1, and generates a first RLC status report corresponding to the RLC2 according to the first part of the RLC2 downlink RLC PDU and the second part of the downlink RLC PDU.
  • the UE sends a first RLC status report to the micro base station.
  • the UE may send a first RLC status report to the micro base station.
  • the micro base station retransmits the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU to the UE.
  • the RLC1 and the RLC2 of the micro base station may respectively determine which RLC PDUs in the corresponding second partial downlink RLC PDUs need to be retransmitted according to the corresponding first RLC status report.
  • the RLC1 and the RLC2 of the micro base station can retransmit the corresponding corresponding numbers to the UE respectively.
  • the micro base station sends a first RLC status report to the macro base station.
  • the macro base station retransmits, to the UE, the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU according to the first RLC status report.
  • the macro base station retransmits the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU to the UE.
  • the first base station may be caused to update the RLC AM transmission window and the corresponding state variable to continue to transmit the new RLC PDU.
  • the RLC1 and RLC2 of the macro base station may be respectively according to the corresponding first
  • the RLC status report determines which RLC PDUs in the corresponding first part of the downlink RLC PDU need to be retransmitted.
  • the RLC1 and the RLC2 of the macro base station may retransmit the RLC PDUs that need to be retransmitted in the corresponding first part of the downlink RLC PDUs to the UE respectively.
  • For the RLC PDUs that need to be retransmitted in the second part of the downlink RLC PDU if the number of retransmissions of the micro base station reaches the predetermined number of times but has not reached the maximum number of retransmissions, it can be processed as described in FIG. In order to avoid repetition, it will not be repeated here.
  • the UE may send a first RLC status report corresponding to the RLC1 to the macro base station, and send a first RLC status report corresponding to the RLC2 to the micro base station; or the UE may separately send the RLC1 corresponding to the micro base station.
  • the first RLC status report sends a first RLC status report corresponding to the RLC2 to the macro base station.
  • step 1603 can be performed in parallel with step 1604 to step 1605, or step 1604 and step 1605 can be performed first, followed by step 1603.
  • FIG. 17 is a schematic flow chart of a process of a method of transmitting data according to an embodiment of the present invention.
  • Fig. 17 the data transmission process in the uplink direction in step 611 of Fig. 6 will be described in detail.
  • the UE sends a Buffer Status Report (BSR) to the macro base station.
  • BSR Buffer Status Report
  • the UE may send a BSR to the macro base station.
  • the UE may also go to the micro when the micro base station has available uplink resources.
  • the base station sends a BSR.
  • the UE can send at most one BSR (regular BSR) or periodic BSR (cyclic BSR) type BSR. If the macro base station and the micro base station all allocate uplink grants to the UE, the UE can only send one regular BSR or periodic BSR to the macro base station or the micro base station, but cannot simultaneously transmit to the macro base station and the micro base station.
  • BSR regular BSR
  • cyclic BSR periodic BSR
  • the BSR reflects the amount of data available for all logical channels in each logical channel group (LCG) of the UE after a MAC PDU is generated. Usually, there are at most 4 logical channel groups. There are two ways to determine the buffer size level in each LCG in the BSR, including the BSR and the extended BSR, where the BSR or extended BSR can be configured by RRC.
  • the BSR format can be classified into long BSR (long BSR), short BSR (short BSR) or truncated.
  • Long BSR can contain the buffer data volume of 4 LCGs, and the buffer size corresponding to each logical channel group contains the total amount of data available in all logical channels in the logical channel group, including The amount of data to be transmitted of the RLC layer and the PDCP layer.
  • the type of the BSR or the extended BSR can be classified into a regular BSR, a periodic BSR, and a padding BSR.
  • the regular BSR is triggered.
  • the periodic BSR timer expires, The periodic BSR is triggered.
  • the uplink resource allocated by the UE has a padding bit after accommodating the MAC SDU, the padding bit may be carried in the padding bit.
  • the regular BSR and the periodic BSR have higher priority than the padding BSR.
  • the macro base station allocates an uplink resource to the UE according to the BSR.
  • the macro base station can determine the amount of data to be offloaded according to the DRB offload policy and the QoS parameter configuration determined or negotiated in advance.
  • the uplink resource is allocated to the UE according to the amount of data, the radio condition, or the QoS parameter that is offloaded to the base station.
  • the macro base station sends a first uplink grant (UL grant) information to the UE, where the first uplink grant information indicates an uplink resource allocated by the macro base station to the UE.
  • UL grant uplink grant
  • the macro base station After allocating the uplink resource to the UE, the macro base station sends the first uplink grant information to the UE by using a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the macro base station sends a BSR to the micro base station.
  • the macro base station can forward the BSR to the micro base station through the X2 interface or the direct connection.
  • the macro base station may modify the buffer data amount of the corresponding logical channel group in the BSR according to the amount of data to be shunted to the micro base station, and send the modified BSR to the micro base station.
  • the macro base station may indicate, in the foregoing X2 interface message, whether the sent BSR is an original BSR or a modified BSR. Or pre-negotiate whether to send the original BSR or the modified BSR.
  • the micro base station allocates an uplink resource to the UE according to the BSR.
  • the amount of data to be shunted by the micro base station may be determined according to the pre-determined or negotiated DRB offload policy and the QoS parameter configuration, and the buffer data of the corresponding logical channel group in the original BSR may be modified. the amount.
  • the BSR received by the micro base station is a modified BSR
  • the amount of buffer data of the corresponding logical channel group can be directly used, and the uplink resource is allocated to the UE according to the buffer data amount, the radio condition, and the QoS parameter.
  • the micro base station sends the second uplink grant information to the UE, where the second uplink grant information indicates the uplink resource allocated by the micro base station to the UE. .
  • the micro base station may send the second uplink grant information to the UE through the PDCCH.
  • the UE determines, according to the first uplink grant information and the second uplink grant information, an amount of data to be sent for each logical channel.
  • the UE may determine, according to the logical channel priority processing procedure, the amount of data to be sent of each logical channel on the uplink grant of the PCell and/or the SCell according to the first uplink grant information and the second uplink grant information.
  • the uplink RLC PDU size is indicated by the MAC to RLC1 and/or RLC2.
  • the MAC layer may indicate the total size of one or more upstream RLC PDUs that the RLC layer is to generate.
  • the UE generates an uplink RLC PDIL
  • the RLC layer of the UE may process the uplink RLC PDU according to the uplink RLC PDU size indicated by the MAC layer, and process the uplink RLC PDU by segmenting, cascading, and adding RLC SN.
  • RLCl and RLC2 respectively generate different uplink RLC PDUs.
  • one or more different uplink RLC PDUs may be generated in RLC1 and RLC2, or an uplink RLC PDU may be generated only by RLC1 or RLC2.
  • the UE sends a first part of the uplink RLC PDU in the uplink RLC PDU to the macro base station on the PCell.
  • the RLCl and RLC2 of the UE may forward the uplink RLC PDU generated according to the MAC indication to the MAC as the uplink MAC SDIL.
  • an uplink MAC PDU or a TB is generated.
  • the RLC PDUs in RLCl and RLC2 can be multiplexed in the same TB.
  • the TB generated by the MAC for HARQ1 is delivered to PHY1, and the physical uplink shared channel of PHY1 at PCell (Physical uplink shared Channel, PUSCH) is sent to the macro base station.
  • PCell Physical uplink shared Channel
  • the UE sends a second part of the uplink RLC PDU in the uplink RLC PDU to the micro base station on the Scell.
  • the MAC of the UE is delivered to the PHY2 for the HARB2 generated TB, and is sent by the PHY2 to the micro base station on the PUSCH of the SCell.
  • the micro base station sends a second part of the uplink RLC PDIL to the macro base station.
  • the micro base station will receive the data received on the PUSCH of the SCell, and after processing by PHY2 and MAC2, deliver the MAC SDU, that is, the RLC PDU, to RLCl and RLC2, and store them in the receiving buffers corresponding to RLCl and RLC2.
  • the micro base station does not need to maintain the RLC AM receive window and perform re-ordering functions.
  • the micro base station can transmit the second partial uplink RLC PDU to the macro base station through X2 or a direct connection.
  • the macro base station receives the RLC PDUs from the micro base station and stores them in the receive buffers corresponding to RLCl, RLC2.
  • the macro base station receives the first part of the uplink RLC PDU and the second part of the uplink RLC PDU, and reassembles the first part of the uplink RLC PDU and the second part of the uplink RLC PDU.
  • the macro base station can process the data received from the UE on the PUSCH of the PCell, and after processing the PHY1 and the MAC1, the MAC SDU, that is, the first part of the uplink RLC PDU, is delivered to the RLC1 and the RLC2, and is stored in the receiving buffers corresponding to the RLC1 and the RLC2.
  • the macro base station may also receive the second partial uplink RLC PDU received from the micro base station and store it in the receive buffers corresponding to RLC1 and RLC2.
  • the macro base station may reassemble the first part of the uplink RLC PDU and the second part of the uplink RLC PDU according to the integrated reception condition in the RLC1 and RLC2 receive buffers, and submit the same to the PDCP layer in ascending order according to the RLC SN.
  • RLC1 and RLC2 may perform a corresponding RLC PDU receiving process according to the RLC mode being RLC UM or RLC AM (each RLC entity is one of two RLC modes), and deliver the successfully received uplink RLC PDUs to the PDCP layer in ascending order of RLC SN. .
  • the base station can forward the received BSR to the macro base station.
  • the time information may be time stamp information or system frame number (SFN) and sub-frame (frame) information of the PCell or SCell.
  • the method for the UE to send the BSR may be: when both the PCell provided by a cryptographic macro base station and the SCell provided by the micro base station are allocated with uplink resources, the UE simultaneously sends a regular BSR or a periodic BSR on the PCell and the SCell, and A flag indicating whether forwarding is required in the BSR, and the flag is set to not need to be forwarded. It is required that the BSRs sent simultaneously on PCell and SCell have the same buffer size level value for the same LCG.
  • the UE can only send one regularity in the uplink resources of all CCs of the macro base station.
  • a BSR or a periodic BSR can only send one regular BSR or periodic BSR in the uplink resources of all CCs of the micro base station.
  • FIG. 18 is a schematic flowchart of an uplink data retransmission process according to an embodiment of the present invention.
  • Fig. 18 the retransmission process of the uplink RLC PDU for RLC AM in Fig. 17 will be described in detail.
  • the macro base station receives the first part of the uplink RLC PDU and the second part of the uplink RLC PDU, and generates a second RLC status report according to the receiving status of the first part of the uplink RLC PDU and the second part of the uplink RLC PDU.
  • the macro base station sends a second RLC status report to the UE.
  • the UE determines an uplink retransmission set according to the second RLC status report.
  • the uplink retransmission set includes RLC PDUs that need to be retransmitted in the first part of the uplink RLC PDU and/or RLC PDUs that need to be retransmitted in the second part of the uplink RLC PDU.
  • the UE may update the RLC AM transmission window and the corresponding state variable to continue to send the new RLC PDIL when the macro base station indicates that the successfully received RLC PDU is received in the second RLC status report according to the second RLC status report.
  • the UE may divide the uplink retransmission set into a first uplink retransmission sub-set and a second uplink re-transmission sub-set according to the first uplink grant information of the PCell and/or the second uplink grant information on the SCell, and determine to the macro base station. Retransmitting the first uplink retransmission sub-set and retransmitting the second uplink retransmission sub-set to the micro base station.
  • the UE retransmits the RLC PDU of the first uplink retransmission sub-set to the macro base station.
  • FIG. 19 is a schematic flowchart of an uplink data retransmission process according to an embodiment of the present invention. In Fig. 19, the retransmission process of the uplink RLC PDU for RLC AM in Fig. 17 will be described in detail.
  • Steps 1901 to 1903 in Fig. 19 are similar to steps 1801 to 1803 in Fig. 18. To avoid repetition, details are not described herein.
  • the UE sends an RLC PDIL of the uplink retransmission set to the macro base station.
  • the UE may determine to retransmit all uplink RLC PDUs that need to be retransmitted to the macro base station according to the first uplink grant information of the PCell and/or the second uplink grant information on the SCell.
  • FIG. 20 is a schematic flowchart of an uplink data retransmission process according to an embodiment of the present invention.
  • Fig. 20 the retransmission process of the uplink RLC PDU for RLC AM in Fig. 17 will be described in detail.
  • Steps 2001 to 2003 in Fig. 20 are similar to steps 1801 to 1803 in Fig. 18. To avoid repetition, details are not described herein.
  • the UE sends an RLC PDU of the uplink retransmission set to the micro base station.
  • the UE may determine to retransmit all uplink RLC PDUs that need to be retransmitted to the micro base station according to the first uplink grant information of the PCell and/or the second uplink grant information on the SCell.
  • the micro base station sends an RLC PDIL of the uplink retransmission set to the macro base station.
  • the micro base station can send the uplink RLC PDU that needs to be retransmitted to the macro base station through the X2 interface or the direct connection.
  • FIG. 21 is a schematic flowchart of a process of RRC connection re-establishment according to an embodiment of the present invention.
  • the first base station may be one of a macro base station and a base station
  • the second base station may be another base station.
  • the UE sends an RRC connection re-establishment request message to the macro base station.
  • RLF Radio Link Failure
  • the UE can perform cell selection. If the PCell radio condition is good, the PCell is still selected. . Then, the UE sends an RRC connection re-establishment request message to the macro base station, and initializes an RRC connection re-establishment procedure, including suspend all RBs except SRB0, resets the MAC, uses the default physical channel configuration, and uses the default MAC layer master. Configuration (MAC main configuration), etc. Different from the prior art, when the RRC connection is re-established, the SCell provided by the micro base station may not be released.
  • the macro base station sends a re-establishment notification message to the base station.
  • the re-establishment notification message may include a DRB related parameter, and may indicate that the micro base station hangs Divided DRB.
  • the micro base station suspends the diverted DRB according to the re-establishment notification message, and reconfigures the DRB related parameters.
  • the Acer station sends an RRC Connection Reestablishment (RRCConnectionReestablishment) message to the UE.
  • RRCConnectionReestablishment RRC Connection Reestablishment
  • the UE re-establishes a message according to the RRC connection, re-establishes the PDCP entity and the RLC entity of the SRB1, performs a radio resource configuration process, and restores the SRB1.
  • the UE sends an RRC Connection Reestablishment Complete (RRCConnectionReestablishmentComplete) message to the Acer station.
  • RRCConnectionReestablishmentComplete RRC Connection Reestablishment Complete
  • the macro base station sends an RRC connection re-establishment complete message to the micro base station.
  • step 2102 may be performed in parallel with steps 2103 through 2104, or step 2103 and step 2104 may be performed first, followed by step 2102.
  • FIG 22 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • the base station 2200 of Fig. 22 is the first base station described above.
  • the base station 2200 includes a generating unit 2201 and a transmitting unit 2202.
  • the generating unit 2201 generates an RLC PDUo sending unit 2202, and sends a first partial downlink RLC PDU in the downlink RLC PDU to the UE, and sends a second partial downlink RLC PDU in the downlink RLC PDU to the second base station, so that the second base station sends the second RLC PDU to the UE. Two parts of the downlink RLC PDU.
  • the first part of the downlink RLC in the downlink RLC PDU is sent to the UE.
  • the base station 2200 may further include a first receiving unit 2203.
  • the first receiving unit 2203 may receive, from the UE, a first partial uplink RLC PDU in the uplink RLC PDU generated by the UE, and receive a second partial uplink RLC PDU in the uplink RLC PDU from the second base station, where the second partial uplink RLC PDU is the first
  • the second base station receives from the UE.
  • the base station 2200 may further include a second receiving unit 2204.
  • the second receiving unit 2204 can receive the first RLC status report from the UE.
  • the sending unit 2202 can When the first RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU, the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU is retransmitted to the UE.
  • the sending unit 2202 may further forward the first RLC status report to the second base station, where the first RLC status indicator indicates that the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU or sends the first base station to the second base station according to the first RLC status report.
  • the generated retransmission message indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the base station 2200 may further include a third receiving unit 2205 and a first determining unit 2206.
  • the third receiving unit 2205 may receive a first RLC status report from the second base station, where the first RLC status report is received by the second base station from the UE.
  • the first determining unit 2206 may determine, according to the first RLC status, an RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU;
  • the sending unit 2202 may also retransmit the RLC PDU in the first part of the downlink RLC PDU that needs to be retransmitted to the UE.
  • the base station 2200 may further include a fourth receiving unit 2207.
  • the generating unit 2201 may further generate a second RLC status report according to the receiving status of the first partial uplink RLC PDU and the second partial uplink RLC PDU.
  • the sending unit 2202 can also send a second RLC status report to the UE.
  • the fourth receiving unit 2207 may receive the RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, where the uplink retransmission set includes the RLC PDU and/or the second partial uplink RLC PDU that need to be retransmitted in the first partial uplink RLC PDU.
  • the RLC PDU that needs to be retransmitted may be received.
  • the fourth receiving unit 2207 may receive the RLC PDU of the uplink retransmission set from the UE; or receive the RLC PDU of the first uplink retransmission subset from the UE, and receive the second from the second base station.
  • the RLC PDU in the uplink retransmission sub-set where the RLC PDU of the second uplink retransmission sub-set is received by the second base station from the UE, and the first uplink retransmission sub-set and the second uplink re-transmission sub-set are uplinked by the UE Retransmitting the set of the retransmission; or receiving the RLC PDU of the retransmission set from the second base station, where the RLC PDU of the uplink retransmission set is received by the second base station from the UE.
  • the sending unit 2202 may send the first partial downlink RLC PDU to the UE on the first cell of the base station 2200, and send the second partial downlink RLC PDU to the second base station, so that the second base station is in the second base station. Sending the second part of the downlink to the UE on the second cell of the second base station The RLC PDU, where the coverage of the first cell and the second cell overlap.
  • the base station 2200 may further include a fifth receiving unit 2208, where the sending unit 2202 may further send a first request message to the second base station, where the first request message is used to indicate that the second base station is configured for the UE. Two cells.
  • the fifth receiving unit 2208 may receive a first response message from the second base station, where the first response message carries resource information of the second cell determined by the second base station according to the first request message.
  • the sending unit 2202 may further send a radio resource control RRC connection reconfiguration message to the UE, where the RRC connection reconfiguration message carries the resource information of the second cell.
  • the first request message may be further used to indicate that the second base station establishes a DRB for the UE.
  • the base station 2200 may further include a sixth receiving unit 2209 and a second determining unit 2210.
  • the sixth receiving unit 2209 may receive a second request message from the second base station, where the second request message is used to instruct the base station 2200 to configure the first cell for the UE.
  • the second determining unit 2210 may determine resource information of the first cell according to the second request message.
  • the sending unit 2201 may further send a second response message to the second base station, where the second response message carries the resource information of the first cell, so that the second base station notifies the UE of the resource information of the first cell.
  • the base station 2200 may further include an establishing unit 2211.
  • the second request message may also be used to indicate that the base station establishes a DRB for the UE, and the establishing unit 2211 may establish a PDCP entity, an RLC entity, and a logical channel corresponding to the DRB according to the second request message.
  • the second request message may also be used to indicate that the base station 2200 is responsible for data offloading.
  • the sending unit 2202 may further send a path switch request message to the MME according to the second request message, so that the MME requests the serving gateway to switch the data transmission path to the path of the serving gateway to the base station 2200 according to the path switch request message.
  • the first receiving unit to the sixth receiving unit may be the same receiving unit or the same receiving unit.
  • the actions of the first to sixth receiving units can be performed by one receiver.
  • the base station 2300 is the above-described second base station.
  • the base station 2300 includes a receiving unit 2310 and a transmitting unit 2320.
  • the receiving unit 2310 receives, from the first base station, the second one of the downlink RLC PDUs generated by the first base station. Partial downlink RLC PDU.
  • the sending unit 2320 transmits a second partial downlink RLC PDU to the UE. In the embodiment of the present invention, by transmitting the second partial downlink RLC PDU in the downlink RLC PDU generated by the first base station to the UE, the peak rate and throughput of the UE can be improved.
  • the receiving unit 2310 may further receive, from the UE, a second partial uplink RLC PDU in the uplink RLC PDU generated by the UE.
  • the transmitting unit 2320 may also send a second partial uplink RLC PDU to the first base station.
  • the base station 2300 may further include a first determining unit 2330.
  • the receiving unit 2310 may receive a first RLC status report from the first base station, where the first determining unit
  • the 2330 may determine, according to the first RLC status report, the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, and the sending unit 2320 may further retransmit the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the receiving unit 2310 may further receive a retransmission message from the first base station, and the sending unit 2320 may further retransmit the RLC PDU in the second part of the downlink RLC PDU that needs to be retransmitted according to the retransmission message, where the first retransmission message indicates The second part of the RLC PDU that needs to be retransmitted in the downlink RLC PDU.
  • the receiving unit 2310 may further receive a first RLC status report from the UE.
  • the sending unit 2320 may further forward the first RLC status report to the first base station, where the first base station may retransmit the first part of the downlink to the UE when the first RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU. RLC PDUs that need to be retransmitted in the RLC PDU.
  • the sending unit 2320 may also retransmit the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU to the UE when the first RLC status report indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the receiving unit 2310 may further receive an RLC PDU of an uplink retransmission set from the UE, and the sending unit 2320 may further send an RLC PDU of the uplink retransmission set to the first base station, where the uplink retransmission set includes The RLC PDU that needs to be retransmitted in a part of the uplink RLC PDU and/or the RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU.
  • the receiving unit 2310 may further receive the RLC PDU of the second uplink retransmission sub-set from the UE, and the sending unit 2320 may further send the RLC PDU of the second uplink retransmission sub-set to the first base station, where the second uplink re-transmission sub-set is The UE divides the uplink retransmission set.
  • the sending unit 2320 may send the second partial downlink RLC PDU to the UE on the second cell of the base station 2300.
  • the base station 2300 may further include a second determining unit 2340.
  • the receiving unit 2340 may further receive a first request message from the first base station, where the first request message is used to indicate that the base station configures the second cell for the UE.
  • the second determining unit 2340 may determine resource information of the second cell according to the first request message.
  • the sending unit 2320 may further send a first response message to the first base station, where the first response message carries the resource information of the second cell, so that the first base station notifies the UE of the resource information of the second cell.
  • the base station 2300 may further include an establishing unit 2350.
  • the first request message may also be used to instruct the base station 2300 to establish a DRB for the UE.
  • the establishing unit 2350 may establish an RLC entity and a logical channel corresponding to the DRB according to the first request message.
  • the sending unit 2320 may further send a second request message to the first base station, where the second request message is used to indicate that the first base station configures the first cell of the first base station for the UE.
  • the receiving unit 2310 may further receive a second response message from the first base station, where the second response message carries resource information of the first cell determined by the first base station according to the second request message.
  • the sending unit 2320 may further send a radio resource control RRC connection reconfiguration message to the UE, where the RRC connection reconfiguration message carries the resource information of the first cell.
  • the second request message is further used to indicate that the first base station establishes a mess for the UE.
  • FIG. 24 is a schematic block diagram of a UE in accordance with an embodiment of the present invention.
  • UE 2400 includes a receiving unit
  • the receiving unit 2410 receives, from the first base station, the first partial downlink RLC PDU in the downlink RLC PDU generated by the first base station, and receives the second partial downlink RLC PDU in the downlink RLC PDU from the second base station, where the second partial downlink RLC PDU is The second base station receives from the first base station.
  • the first generating unit 2420 reassembles the first partial downlink RLC PDU and the second partial downlink RLC PDU to form a downlink RLC SDU.
  • the UE receives the first part of the downlink RLC PDU in the downlink RLC PDU from the first base station, and receives the second part of the downlink RLC PDU obtained by the second base station from the first base station from the second base station, so that the UE can
  • the two base stations transmit data together, thereby increasing the peak rate and throughput of the UE.
  • the UE 2400 may further include a first sending unit 2430.
  • the first generating unit 2420 can generate an uplink RLC PDU.
  • the first sending unit 2440 may send the first partial uplink RLC PDU in the uplink RLC PDU to the first base station, and send the second partial uplink RLC PDU in the uplink RLC PDU to the second base station.
  • the UE 2400 may further include a second generating unit 2440 and a second sending unit 2450.
  • the second generating unit 2440 may generate a first RLC status report according to the receiving status of the first partial downlink RLC PDU and the second partial downlink RLC PDU, where the first RLC status report indicates that the RLC PDU and the RLC PDU that need to be retransmitted in the first part of the downlink RLC PDU are Or the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the second sending unit 2450 may send the first RLC status report to the first base station or the second base station.
  • the receiving unit 2410 may further receive, from the first base station, the RLC PDU that needs to be retransmitted in the first partial downlink RLC PDU and/or receive the RLC PDU that needs to be retransmitted in the second partial downlink RLC PDU from the second base station.
  • the UE 2400 may further include a determining unit 2460 and a third sending unit 2470.
  • the receiving unit 2410 can also receive a second RLC status report from the first base station.
  • the determining unit 2460 may determine, according to the second RLC status report, an uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first partial uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU. .
  • the third sending unit 2470 may send the RLC PDU of the uplink retransmission set to the first base station, or send the RLC PDU of the uplink retransmission set to the second base station, or send the RLC PDU of the first uplink retransmission subset to the first base station. And transmitting, by the second base station, the RLC PDU of the second uplink retransmission sub-set, where the first uplink retransmission sub-set and the second uplink re-transmission sub-set are obtained by the UE dividing the uplink retransmission set.
  • the receiving unit 2410 may receive the first partial downlink RLC PDU from the first cell of the first base station, and receive the second partial downlink RLC PDU from the second cell of the second base station, where the first cell There is overlap with the coverage of the second cell.
  • the receiving unit 2410 may further receive the wireless from the first base station.
  • the resource control RRC connection reconfiguration message, and the RRC connection reconfiguration message carries the resource information of the second cell determined by the second base station.
  • the receiving unit 2410 may further receive an RRC connection reconfiguration message from the second base station, where the RRC connection reconfiguration message carries resource information of the first cell determined by the first base station.
  • the foregoing first sending unit to the third sending unit may be the same sending unit or the same sending unit.
  • the actions of the first to third transmitting units can be performed by one transmitter.
  • FIG. 25 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • the base station 2500 of Fig. 25 is the first base station.
  • Base station 2500 includes a processor 2510 and a transmitter 2520.
  • the processor 2510 generates an RLC PDU.
  • the transmitter 2520 sends the first partial downlink RLC PDU in the downlink RLC PDU to the UE, and sends the second partial downlink RLC PDU in the downlink RLC PDU to the second base station, so that the second base station sends the second partial downlink RLC PDU to the UE.
  • the first part of the downlink RLC PDU in the downlink RLC PDU is sent to the UE, and the second part of the downlink RLC PDU in the downlink RLC PDU is sent to the second base station, and the second base station sends the second part of the downlink to the UE.
  • the RLC PDU enables two base stations to jointly transmit data to the UE, thereby improving the peak rate and throughput of the UE.
  • the base station 2500 may further include a receiver 2530.
  • the receiver 2530 may receive, from the UE, a first partial uplink RLC PDU in the uplink RLC PDU generated by the UE, and receive a second partial uplink RLC PDU in the uplink RLC PDU from the second base station, where the second partial uplink RLC PDU is the second base station Received from the UE.
  • the receiver 2530 may receive the first RLC status report from the UE.
  • the transmitter 2520 may retransmit the RLC PDU in the first part of the downlink RLC PDU that needs to be retransmitted to the UE when the first RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU.
  • the transmitter 2520 may further forward the first RLC status report to the second base station, where the first RLC status report indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, or sends the first base station according to the first RLC status to the second base station.
  • the retransmission message generated by the report is reported, and the retransmission message indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the receiver 2530 may receive a first RLC status report from the second base station, where the first RLC status report is received by the second base station from the UE.
  • the processor 2510 may determine, according to the first RLC status report, an RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU.
  • the transmitter 2520 may also retransmit the first part of the downlink RLC PDU to the UE that needs to be retransmitted.
  • the processor 2510 may further generate a second RLC status report according to the receiving status of the first partial uplink RLC PDU and the second partial uplink RLC PDU.
  • the transmitter 2520 can also send a second RLC status report to the UE.
  • the receiver 2530 may receive the RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, where the uplink retransmission set includes the RLC PDU to be retransmitted in the first partial uplink RLC PDU and/or the second part of the uplink RLC PDU. Retransmitted RLC PDU.
  • the receiver 2530 may receive the RLC PDU of the uplink retransmission set from the UE, or receive the RLC PDU of the first uplink retransmission sub-set from the UE, and receive the second uplink weight from the second base station. And the RLC PDU in the second set of the retransmission sub-set is received by the second base station from the UE, and the first uplink retransmission sub-set and the second uplink re-transmission sub-set are retransmitted by the UE. The RLC PDU of the uplink retransmission set is received by the second base station, and the RLC PDU of the uplink retransmission set is received by the second base station from the UE.
  • the transmitter 2520 may send the first partial downlink RLC PDU to the UE on the first cell of the base station 2500, and send the second partial downlink RLC PDU to the second base station, so that the second base station is in the second base station.
  • a second part of the downlink RLC PDU is sent to the UE on the second cell of the second base station, where the coverage of the first cell and the second cell overlap.
  • the transmitter 2520 may further send a first request message to the second base station, where the first request message is used to indicate that the second base station configures the second cell for the UE.
  • the receiver 2530 may receive a first response message from the second base station, where the first response message carries resource information of the second cell determined by the second base station according to the first request message.
  • the transmitter 2520 may further send a radio resource control RRC connection reconfiguration message to the UE, where the RRC connection reconfiguration message carries resource information of the second cell.
  • the first request message may be further used to indicate that the second base station establishes a DRB for the UE.
  • the receiver 2530 may receive the second request from the second base station.
  • the second request message is used to instruct the base station 2500 to configure the first cell for the UE.
  • the processor 2510 may determine resource information of the first cell according to the second request message.
  • the transmitter 2520 may further send a second response message to the second base station, where the second response message carries the resource information of the first cell, so that the second base station notifies the UE of the resource information of the first cell.
  • the second request message may be further used to indicate that the base station establishes a DRB for the UE.
  • the processor 2510 may establish, according to the second request message, a PDCP entity corresponding to the DRB,
  • the second request message may also be used to indicate that the base station 2200 is responsible for data offloading.
  • the transmitter 2520 may further send a path switch request message to the MME according to the second request message, so that the MME requests the serving gateway to switch the data transmission path to the path of the service gateway to the base station 2500 according to the path switch request message.
  • Base station 2600 is the second base station described above.
  • Base station 2600 includes a receiver 2610 and a transmitter 2620.
  • the receiver 2610 receives, from the first base station, a second partial downlink RLC PDU of the downlink RLC PDUs generated by the first base station.
  • Transmitter 2620 sends a second portion of the downlink RLC PDU to the UE.
  • the peak rate and throughput of the UE can be improved.
  • the receiver 2610 may further receive, from the UE, a second partial uplink RLC PDU in the uplink RLC PDU generated by the UE.
  • Transmitter 2620 can also transmit a second portion of the uplink RLC PDU to the first base station.
  • the base station 2600 may further include a processor 2630.
  • the receiver 2610 may receive the first RLC status report from the first base station, and the processor 2630 may determine, according to the first RLC status report, the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU, and the transmitter 2620 may also retransmit to the UE.
  • the receiver 2610 may further receive a retransmission message from the first base station, and the transmitter 2620 may further retransmit the RLC PDU in the second part of the downlink RLC PDU that needs to be retransmitted according to the retransmission message, where the first retransmission message indicates The second part of the RLC PDU that needs to be retransmitted in the downlink RLC PDU.
  • the receiver 2610 may further receive a first RLC status report from the UE.
  • the transmitter 2620 may further forward the first RLC status report to the first base station, where the first base station retransmits the first part of the downlink RLC to the UE when the first RLC status report indicates the RLC PDU that needs to be retransmitted in the first part of the downlink RLC PDU.
  • the RLC PDU that needs to be retransmitted in the PDU may also retransmit the RLC PDU in the second partial downlink RLC PDU that needs to be retransmitted to the UE when the first RLC status report indicates the RLC PDU that needs to be retransmitted in the second part of the downlink RLC PDU.
  • the receiver 2610 may further receive an RLC PDU of an uplink retransmission set from the UE, and the transmitter 2620 may further send an RLC PDU of the uplink retransmission set to the first base station, where the uplink retransmission set includes The RLC PDU that needs to be retransmitted in a part of the uplink RLC PDU and/or the RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU.
  • the receiver 2610 may further receive the RLC PDU of the second uplink retransmission sub-set from the UE, and the transmitter 2620 may further send the RLC PDU of the second uplink retransmission sub-set to the first base station, where the second uplink re-transmission sub-set is The UE divides the uplink retransmission set.
  • the transmitter 2620 may send the second partial downlink RLC PDU to the UE on the second cell of the base station 2600.
  • the receiver 2610 may further receive a first request message from the first base station, where the first request message may be used to indicate that the base station configures the second cell for the UE.
  • the processor 2630 may determine resource information of the second cell according to the first request message.
  • the transmitter 2620 may further send a first response message to the first base station, where the first response message carries resource information of the second cell, so that the first base station notifies the UE of the resource information of the second cell.
  • the first request message is further used to instruct the base station 2600 to establish a DRB for the UE.
  • the processor 2630 can establish an RLC entity and a logical channel corresponding to the DRB according to the first request message.
  • the transmitter 2620 may further send a second request message to the first base station, where the second request message is used to indicate that the first base station configures the first cell of the first base station for the UE.
  • the receiver 2610 may further receive a second response message from the first base station, where the second response message carries resource information of the first cell determined by the first base station according to the second request message.
  • the transmitter 2620 may further send a radio resource control RRC connection reconfiguration message to the UE, where the RRC connection reconfiguration message carries resource information of the first cell.
  • the second request message is further used to indicate that the first base station is built for the UE. D chaos
  • FIG. 27 is a schematic block diagram of a UE in accordance with an embodiment of the present invention.
  • the UE 2700 includes a receiver 2710 and a processor 2720.
  • the receiver 2710 receives, from the first base station, a first partial downlink RLC PDU in the downlink RLC PDU generated by the first base station, and receives a second partial downlink RLC PDU in the downlink RLC PDU from the second base station, where the second partial downlink RLC PDU is The second base station receives from the first base station.
  • the processor 2720 reassembles the first partial downlink RLC PDU and the second partial downlink RLC PDU to form a downlink RLC SDU.
  • the UE receives the first partial downlink RLC PDU in the downlink RLC PDU from the first base station, and receives the second partial downlink RLC PDU obtained by the second base station from the first base station from the second base station, so that the UE can
  • the two base stations transmit data together, thereby increasing the peak rate and throughput of the UE.
  • the UE 2400 may further include a transmitter 2730. processor
  • the 2720 can generate an uplink RLC PDU.
  • the transmitter 2730 may send the first partial uplink RLC PDU in the uplink RLC PDU to the first base station, and send the second partial uplink RLC PDU in the uplink RLC PDU to the second base station.
  • the processor 2720 may generate a first RLC status report according to the receiving status of the first partial downlink RLC PDU and the second partial downlink RLC PDU, where the first RLC status report indicates the first part of the downlink RLC PDU.
  • Transmitter 2730 can send a first RLC status report to the first base station or the second base station.
  • the receiver 2710 may also receive, from the first base station, RLC PDUs that need to be retransmitted in the first partial downlink RLC PDU and/or receive RLC PDUs that need to be retransmitted in the second partial downlink RLC PDU from the second base station.
  • the receiver 2710 may also receive a second RLC status report from the first base station.
  • the processor 2720 may determine, according to the second RLC status report, an uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first partial uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU. .
  • the transmitter 2730 may send the RLC PDU of the uplink retransmission set to the first base station, or send the RLC PDU of the uplink retransmission set to the second base station, or send the RLC PDU of the first uplink retransmission subset to the first base station and
  • the second base station sends the RLC PDU of the second uplink retransmission sub-set, where the first uplink retransmission sub-set and the second uplink re-transmission sub-set are obtained by the UE dividing the uplink retransmission set.
  • the receiver 2710 may receive the first partial downlink RLC PDU from the first cell of the first base station, and receive the second partial downlink RLC PDU from the second cell of the second base station, where the first cell There is overlap with the coverage of the second cell.
  • the receiver 2710 may further receive a radio resource control RRC connection reconfiguration message from the first base station, where the RRC connection reconfiguration message carries resource information of the second cell determined by the second base station.
  • the receiver 2710 may further receive an RRC connection reconfiguration message from the second base station, where the RRC connection reconfiguration message carries the resource information of the first cell determined by the first base station.
  • the UE receives the first part of the downlink RLC PDU in the downlink RLC PDU from the first base station, and receives the second part of the downlink RLC PDU obtained by the second base station from the first base station from the second base station, which can improve the UE. Peak rate and throughput.
  • the base station 2800 of Figure 28 can be the first base station described above.
  • the base station 2800 includes a receiving unit 2810 and a recombining unit 2820.
  • the receiving unit 2810 receives, from the UE, the first part of the uplink RLC PDU generated by the UE.
  • Reassembly unit 2820 reassembles the first portion of the uplink RLC PDU and the second portion of the RLC PDU.
  • the first part of the uplink RLC PDU in the uplink RLC PDU generated by the UE is received from the UE, and the second part of the uplink RLC PDU is received from the second base station.
  • the RLC PDU enables two base stations to jointly transmit data with the UE, thereby improving the peak rate and throughput of the UE.
  • the base station may further include a generating unit 2830 and a sending unit.
  • the generating unit 2830 may be configured according to the first part uplink RLC PDU and the second part uplink RLC
  • the receiving status of the PDU generates a second RLC status report.
  • the sending unit 2840 can send a second RLC status report to the UE.
  • the receiving unit 2810 may receive the RLC PDU of the uplink retransmission set determined by the UE according to the second RLC status report, where the uplink retransmission set includes the RLC PDU and/or the second partial uplink RLC PDU in the first partial uplink RLC PDU that needs to be retransmitted.
  • the RLC PDU that needs to be retransmitted The RLC PDU that needs to be retransmitted.
  • the receiving unit 2810 may receive the RLC PDIL of the uplink retransmission set from the UE, or the receiving unit 2810 may receive the RLC PDU of the first uplink retransmission subset from the UE, and from the second The base station receives the RLC PDU in the second uplink retransmission sub-set, where the RLC PDU of the second uplink retransmission sub-set is received by the second base station from the UE, and the first uplink retransmission sub-set and the second uplink re-transmission sub-set are It is obtained by the UE dividing the uplink retransmission set.
  • the receiving unit 2810 may receive an RLC PDU that uploads a retransmission set from the second base station, where the RLC PDU of the uplink retransmission set is received by the second base station from the UE.
  • the base station 2900 of Figure 29 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • the base station 2900 of Figure 29 can be the second base station described above.
  • the base station 2900 includes a receiving unit 2910 and a transmitting unit 2920.
  • the receiving unit 2910 receives, from the UE, the second part of the uplink RLC PDU generated by the UE.
  • the transmitting unit 2920 transmits a second partial uplink RLC PDU to the first base station.
  • the peak rate and throughput of the UE can be improved.
  • the receiving unit 2910 may further receive an RLC PDU of the uplink retransmission set from the UE.
  • the sending unit 2920 may further send, to the first base station, an RLC PDU of an uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first partial uplink RLC PDU and/or a second part of the uplink RLC PDU that needs to be retransmitted RLC PDU.
  • the receiving unit 2910 may receive the RLC PDU of the second uplink retransmission sub-set from the UE, and send the RLC PDU of the second uplink retransmission sub-set to the first base station, where the second uplink re-transmission sub-set is the uplink of the UE Retransmission of the set of partitions.
  • FIG. 30 is a schematic block diagram of a UE in accordance with an embodiment of the present invention.
  • the UE 3000 includes a generating unit 3010 and a transmitting unit 3020.
  • the generating unit 3010 generates an uplink RLC PDU.
  • the sending unit 3020 sends the first part of the uplink RLC PDU in the uplink RLC PDU to the first base station, and sends the second part of the uplink RLC PDU in the uplink RLC PDU to the second base station, so that the second base station sends the second part of the uplink to the first base station.
  • RLC PDU the UE sends the first part of the uplink RLC PDU in the uplink RLC PDU to the first base station, and sends the second part of the uplink RLC PDU to the second base station, and the second base station sends the second part of the uplink to the first base station.
  • the RLC PDU enables the UE to transmit data together with the two base stations, thereby improving the peak rate and throughput of the UE.
  • the UE 3000 may further include a receiving unit 3030 and a determining unit 3040.
  • the receiving unit 3030 can receive a second RLC status report from the first base station.
  • the determining unit 3040 may determine, according to the second RLC status report, an uplink retransmission set, where the uplink retransmission set includes an RLC PDU that needs to be retransmitted in the first partial uplink RLC PDU and/or an RLC PDU that needs to be retransmitted in the second partial uplink RLC PDU. .
  • the sending unit 3020 may further send the RLC PDU of the uplink retransmission set to the first base station, or send the RLC PDU of the uplink retransmission set to the second base station, or send the RLC PDU of the first uplink retransmission sub-set to the first base station and
  • the second base station sends the RLC PDU of the second uplink retransmission sub-set, where the first uplink retransmission sub-set and the second uplink re-transmission sub-set are obtained by the UE dividing the uplink retransmission set.
  • the UE can transmit data to each base station on the cell aggregated by each base station.
  • the UE traffic is reduced or the radio conditions of the cells in which the cells are aggregated are deteriorated, the UE also needs to monitor the channels of the cells, which may cause waste of the UE power.
  • Embodiments of the present invention provide a method for cell resource management.
  • FIG. 31 is a schematic flowchart of a method for cell resource management according to an embodiment of the present invention. The method of Figure 31 is performed by a base station.
  • the first base station determines an activation time or a deactivation time of the second cell of the second base station, where the first base station is a primary base station, and the second base station is a secondary base station.
  • the first base station is the primary base station, and the second base station is the secondary base station, and then the second cell of the second base station is the SCell.
  • the first base station may be a macro base station, and the second base station may be a micro base station.
  • the indication signaling may be activation signaling.
  • the indication signaling indicates the deactivation time of the second cell, the indication signaling may be deactivation signaling.
  • the activation signaling and the deactivation signaling may be a MAC CE (Control Element).
  • the first base station separately informs the second base station and the UE of an activation time or a deactivation time of the second cell.
  • the first base station sends an indication signaling to the second base station and the UE respectively, where the indication signaling may be used to indicate an activation time or a deactivation time of the second cell.
  • the first base station may send indication signaling to the second base station, to The second base station sends indication signaling to the UE, and the indication signaling may be used to indicate an activation time or a deactivation time of the second cell.
  • the second base station may send, to the first base station, the unacknowledged RLC PDU or the untransmitted RLC PDU in the RLC transmission buffer of the second cell, and the RLC PDU in the RLC receiving buffer. Or notifying the first base station of the SN of the RLC PDU.
  • the activation time or the deactivation time of the second cell of the second base station is determined by the first base station, and the activation time or the deactivation time of the second cell is notified to the UE, so that the UE can activate or deactivate the second The cell can thus save the power of the UE.
  • the first base station can ensure that the activation time of the activation or deactivation is consistent between the second base station and the UE by notifying the second base station and the UE of the activation time or the deactivation time of the second cell, respectively.
  • the delay of transmitting the indication signaling by the first base station and the second base station on the X2 interface can be solved.
  • FIG. 32 is a schematic flowchart of a method for cell resource management according to an embodiment of the present invention. The method of Figure 32 is performed by the UE.
  • the UE receives the indication signaling from the first base station or the second base station, where the indication signaling may be used to indicate an activation time or a deactivation time of the second cell of the second base station, where the first base station is the primary base station, and the second base station is The secondary base station, the activation time or the deactivation time of the second cell is determined by the first base station.
  • the UE performs an activation operation on the second cell when the activation time arrives, or the UE performs a deactivation operation on the second cell when the deactivation time arrives.
  • the UE receives the indication signaling from the first base station, so that the UE can activate or deactivate the second cell according to the indication signaling, so that the power of the UE can be saved.
  • FIG. 33 is a schematic flowchart of a method for cell resource management according to an embodiment of the present invention. The method of Figure 33 is performed by a base station.
  • the second base station determines an activation time or a deactivation time of the second cell of the second base station.
  • the second base station notifies the first base station and the UE of the activation time or the deactivation time of the second cell, where the first base station is the primary base station, and the second base station is the secondary base station.
  • the first base station is the primary base station, and the second base station is the secondary base station, and then the second cell of the second base station is the SCell.
  • the first base station may be a macro base station, and the second base station may be a micro base station.
  • the second base station sends indication signaling to the first base station and the UE respectively, where the indication signaling may be used to indicate an activation time or a deactivation time of the second cell.
  • the second base station may send the indication signaling to the first base station, so that the first base station sends the indication signaling to the UE, where the indication signaling may be used to indicate the activation time or deactivation of the second cell. time.
  • the second base station may send an unacknowledged RLC PDU or an untransmitted RLC PDU in the RLC of the second cell, and an RLC in the RLC receiving buffer.
  • the PDU is sent to the first base station, or the first base station is notified of the SN of the RLC PDU.
  • the second base station determines the activation time or the deactivation time of the second cell of the second base station, and notifies the UE of the activation time or the deactivation time of the second cell, so that the UE can activate or deactivate the second
  • the cell can thus save the power of the UE.
  • FIG. 34 is a schematic flowchart of a method for cell resource management according to an embodiment of the present invention. The method of Figure 34 is performed by the UE.
  • the UE receives the indication signaling from the second base station or the first base station, where the indication signaling may be used to indicate an activation time or a deactivation time of the second cell of the second base station, where the first base station is the primary base station, and the second base station is The secondary base station, wherein the activation time or the deactivation time of the second cell is determined by the second base station.
  • the UE performs an activation operation on the second cell when the activation time arrives, or the UE performs a deactivation operation on the second cell when the deactivation time arrives.
  • the UE receives the indication signaling from the first base station, so that the UE can activate or deactivate the second cell according to the indication signaling, so that the power of the UE can be saved.
  • the UE may further maintain a deactivation timer of the second cell corresponding to the second base station, when the deactivation timer expires, the UE deactivates the second cell of the second base station, and A base station and a second base station send indication signaling, and the indication signaling may be used to indicate that the second cell has been deactivated.
  • the first base station may be a primary base station
  • the second base station may be a secondary base station.
  • the second base station may send, by the second base station, an unacknowledged RLC PDU or an untransmitted RLC PDU in the RLC transmission buffer of the second cell, and an RLC PDU in the RLC receiving buffer.
  • a base station or notifying the first base station of the SN of the RLC PDU.
  • the first base station is a macro base station and the second base station is a micro base station.
  • the macro base station is the primary base station
  • the micro base station is the secondary base station.
  • the micro base station provides two carriers CC1 and CC2, and the corresponding serving cells are SCelll and SCell2 respectively, and the signaling signals for SCelll and SCell2 can pass through the Acer.
  • the PCell on the station and the activated SCelll or SCell2 are sent to the UE.
  • PUCCH is configured on SCelll
  • SCelll can be deactivated only after SCell2 is deactivated.
  • SCelll should also be activated first. In this case, SCelll and SCell2 can also be activated or deactivated simultaneously.
  • the RLC PDUs that are offloaded to the RLC1 and RLC2 of the micro base station can all be mapped to SCelll for transmission or reception.
  • the unacknowledged RLC PDU in the transmission buffers of the RLC1 and RLC2 of the micro base station needs to be transmitted back to the macro base station, or the SN indicating the RLC PDU corresponding to the macro base station (need to be An original RLC PDU is reserved in the transmit buffer or retransmission buffer of the macro base station.
  • the RLC PDUs in the RLC1 and RLC2 transmission buffers of the micro base station need to be sent back to the macro base station, or the SN of the RLC PDU corresponding to the macro base station (requires a transmission buffer or retransmission buffer in the macro base station). A copy of the original RLC PDU is kept in the zone).
  • the RLC PDUs in the RLC1 and RLC2 receive buffers need to be sent to the macro base station.
  • the RLC PDUs in the RLC1 and RLC2 of the macro base station are no longer sent to the micro base station.
  • the first RLC status report of the UE received by the macro base station is also no longer sent to the micro base station.
  • the UE may report, by using a Power Headroom Reporting (PHR), the minimum transmit power of the nominal UE on the serving cell of each active state and the estimated transmit power on the UL-SCH.
  • PHR Power Headroom Reporting
  • the difference information may also report difference information between the nominal maximum transmit power of the UE and the estimated transmit power of the UL-SCH and the Physical Uplink Control Channel (PUCCH) on the primary serving cell (PCell).
  • PHR Power Headroom Reporting
  • the inter-base station CA if the cells aggregated by the two base stations are configured with the PUCCH, and the UE is configured to transmit the PUSCH and the PUCCH on the aggregated cell, there is no corresponding mechanism to implement the uplink of the two base stations. Power Control.
  • FIG. 35 is a schematic flowchart of an uplink power control method according to an embodiment of the present invention. The method of Figure 35 is performed by the UE.
  • the UE generates an extended PHR, where the extended PHR includes a first type of power headroom (PH) information and a second type of PH information of the first cell of the first base station, and a first type of the second cell of the second base station.
  • PH information and second type PH information are included in the case of a CA between base stations.
  • the first base station may be the primary base station and the second base station may be the secondary base station.
  • the first cell may be a PCell
  • the second cell may be an SCell.
  • the first base station may also be a secondary base station, and the second base station may be a primary base station.
  • the first cell may be an SCell
  • the second cell may be a Pcell. This embodiment of the present invention does not limit this.
  • the PH can include Type 1 (Type 1 ) PH and Type 2 (Type 2) PH.
  • Type 1 PH may be equal to the maximum transmit power P CMAX configured by the UE on each active state serving cell, and C minus its PUSCH transmit power, which may be expressed as equation (1):
  • Type 1 PH PCMAX
  • Type 2 PH can be equal to the maximum transmit power P CMAX configured on the serving cell, C minus its PUCCH transmit power and PUSCH transmit power, which can be expressed as equation (2) :
  • Type 2 PH PCMAX, C - PUCCH Transmit Power - PUSCH Transmit Power (2)
  • the first type PH information may include type 1 PH
  • the second type PH information may include type 2 PH.
  • the first type of PH information of the first cell may further include the maximum transmit power of the first cell.
  • the first type of PH information of the second cell may further include the maximum transmit power of the second cell.
  • the condition that the UE triggers the PHR may include the PHR triggered by the downlink path loss exceeding the preset threshold, the PHR triggered by the periodic PHR timer timeout, and the UE triggered by the power management parameter (P-MPRc) changing beyond the preset threshold. PHR and so on.
  • the UE sends an extended PHR to the first base station, so that the first base station sends the extended PHR to the second base station, and the first base station and the second base station perform uplink power control according to the extended PHR.
  • the UE may send the extended PHR to the first base station according to the uplink resource of the first cell.
  • the first base station may send the extended PHR to the second base station through the X2 interface. After the first base station and the second base station receive the extended PHR, the first base station and the second base station may perform uplink power control according to the extended PHR.
  • the PHR timer (offPHR-Timer) may be started or restarted, and the UE may not transmit the extended PHR again when the PHR timer is disabled.
  • the length of the PHR timer is generally far greater than the delay of the X2 interface. Therefore, the first base station or the second base station does not continuously receive the extended PHR sent by the UE and the PHR forwarded by another base station in a short time. It is difficult for the second base station to determine which extended PHR is the latest ambiguity problem.
  • the extended PHR is generated by the UE, and the extended PHR includes the PH information of the first cell of the first base station and the PH information of the second cell of the second base station, so the UE sends the extended PHR to the first base station, After the base station sends the extended PHR to the second base station, the first base station and the second base station can perform uplink power control according to the extended PHR.
  • FIG. 36 is a schematic flowchart of an uplink power control method according to an embodiment of the present invention.
  • the method of 36 is performed by a base station.
  • the first base station receives an extended PHR, where the extended PHR includes the first type PH information and the second type PH information of the first cell of the first base station, and the first type PH information and the second cell of the second cell of the second base station. Two types of PH information.
  • the first base station may be the primary base station and the second base station may be the secondary base station.
  • the first cell may be a PCell, and the second cell may be a SCell.
  • the first base station may also be a secondary base station, and the second base station may be a primary base station.
  • the first cell may be a SCell, and the second cell may be a Pcell. This embodiment of the present invention does not limit this.
  • the first type PH information may include a type 1 PH
  • the second type PH information may include a type 2 PH.
  • the first base station performs uplink power control according to the extended PHR, and sends an extended PHR to the second base station, so that the second base station performs uplink power control according to the extended PHR.
  • the first base station receives the extended PHR from the UE, and sends the extended PHR to the second base station, where the extended PHR includes the PH information of the first cell of the first base station and the PH of the second cell of the second base station.
  • the information enables both the first base station and the second base station to perform uplink power control according to the extended PHR.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be Ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了传输数据的方法、基站和用户设备。该方法包括:第一基站生成下行无线链路控制RLC协议数据单元PDU;第一基站向用户设备UE发送下行RLC PDU中的第一部分下行RLC PDU,并向第二基站发送下行RLC PDU中的第二部分下行RLC PDU,以便由第二基站向UE发送第二部分下行RLC PDU。本发明实施例中,通过第一基站向UE发送下行RLC PDU中的第一部分下行RLC PDU,并向第二基站发送下行RLC PDU中的第二部分下行RLC PDU,由第二基站向UE发送第二部分下行RLC PDU,使得第一基站和第二基站能够共同向UE发送数据,从而能够提高UE的峰值速率和吞吐量。

Description

传输数据的方法、 基站和用户设备 技术领域
本发明涉及通信领域, 并且具体地, 涉及传输数据的方法、 基站和用户 设备。 背景技术
随着移动通信与宽带无线接入技术的各自的发展, 两者的业务互相渗 透, 为了满足移动通信宽带化的需求并应对宽带通信移动化的挑战, 第三代 合作伙伴计划 ( the 3rd generation partnership project, 3GPP)工作组对通信系 统提出了更高的性能要求, 例如, 对峰值速率以及系统带宽等提出了更高的 要求。为了满足这些要求, 3GPP高级长期演进( long term evolution advanced, LTE-A ) 引入了载波聚合 ( Carrier Aggregation , CA )。
CA通过对多个连续或者非连续的分量载波( component carrier, CC )的 聚合可以获取更大的带宽, 从而提高峰值数据速率和系统吞吐量, 同时也解 决了运营商频谱不连续的问题。 用户设备(User Equipment, UE )在下行和 上行分别可以支持多个 CC聚合, CC可以位于同一个频带 (band )或者不 同频带。 UE所聚合的 CC由同一个基站提供, 例如基站提供的共站址的多 个 CC或者由基站和其远端射频头( Remote Radio Head, RRH )分别提供的 非共站址的多个 CC。
现有 LTE-A技术仅支持相同基站提供的 CA, 在不同基站的 CC存在共 同覆盖区域时无法进行 CA, 因此, 处于不同基站的 CC共同覆盖的区域的 UE, 需要在移动过程中切换(handover )到无线条件较好的小区 (cell ), 切 换过程会导致业务时延或中断, 降低峰值速率和吞吐量。 发明内容
本发明实施例提供传输数据的方法、 基站和用户设备, 能够提高 UE的 峰值速率和吞吐量。
第一方面, 提供了一种传输数据的方法, 包括: 第一基站生成下行无线 链路控制 RLC协议数据单元 PDU; 该第一基站向用户设备 UE发送该下行 RLC PDU中的第一部分下行 RLC PDU,并向第二基站发送该下行 RLC PDU 中的第二部分下行 RLC PDU,以便由该第二基站向该 UE发送该第二部分下 行 RLC PDU。
结合第一方面, 在第一种可能的实现方式中, 还包括: 该第一基站从该 UE接收该 UE生成的上行 RLC PDU中的第一部分上行 RLC PDU , 并从该 第二基站接收该上行 RLC PDU中的第二部分上行 RLC PDU,其中该第二部 分上行 RLC PDU是该第二基站从该 UE接收的。
结合第一方面, 在第二种可能的实现方式中, 还包括: 该第一基站从该 UE接收第一 RLC状态报告; 在该第一 RLC状态报告指示该第一部分下行 RLC PDU中需要重传的 RLC PDU时, 该第一基站向该 UE重传该第一部分 下行 RLC PDU中需要重传的 RLC PDU;该第一基站向该第二基站转发该第 一 RLC状态报告, 该第一 RLC状态报告指示该第二部分下行 RLC PDU中 需要重传的 RLC PDU, 或者该第一基站向该第二基站发送该第一基站根据 该第一 RLC状态 4艮告生成的重传消息,该重传消息指示该第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合第一方面, 在第三种可能的实现方式中, 还包括: 该第一基站从该 第二基站接收第一 RLC状态报告, 其中该第一 RLC状态报告是该第二基站 从该 UE接收的; 该第一基站根据该第一 RLC状态报告,确定该第一部分下 行 RLC PDU中需要重传的 RLC PDU; 该第一基站向该 UE重传该第一部分 下行 RLC PDU中需要重传的 RLC PDU。
结合第一方面的第一种可能的实现方式, 在第四种可能的实现方式中, 还包括: 该第一基站根据该第一部分上行 RLC PDU和该第二部分上行 RLC PDU的接收状况, 生成第二 RLC状态报告, 并向该 UE发送该第二 RLC状 态报告;该第一基站接收该 UE根据该第二 RLC状态报告确定的上行重传集 合的 RLC PDU,该上行重传集合包括该第一部分上行 RLC PDU中需要重传 的 RLC PDU和 /或该第二部分上行 RLC PDU中需要重传的 RLC PDU。
结合第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 该第一基站接收该 UE根据该第二 RLC 状态报告确定的上行重传集合的 RLC PDU, 包括: 该第一基站从该 UE接收该上行重传集合的 RLC PDU; 或者,该第一基站从该 UE接收第一上行重传子集合的 RLC PDU,并从该第 二基站接收第二上行重传子集合中的 RLC PDU, 其中该第二上行重传子集 合的 RLC PDU是该第二基站从该 UE接收的, 该第一上行重传子集合与该 第二上行重传子集合是由该 UE对该上行重传集合划分得到的; 或者, 该第 一基站从该第二基站接收该上传重传集合的 RLC PDU, 该上行重传集合的 RLC PDU是该第二基站从该 UE接收的。
第二方面, 提供了一种传输数据的方法, 包括: 第二基站从第一基站接 收该第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第二部 分下行 RLC PDU; 该第二基站向用户设备 UE发送该第二部分下行 RLC PDU。
结合第二方面, 在第一种可能的实现方式中, 还包括: 该第二基站从该 UE接收该 UE生成的上行 RLC PDU中的第二部分上行 RLC PDU; 该第二 基站向该第一基站发送该第二部分上行 RLC PDU。
结合第二方面, 在第二种可能的实现方式中, 还包括: 该第二基站从该 第一基站接收第一 RLC状态报告, 根据该第一 RLC状态报告确定该第二部 分下行 RLC PDU中需要重传的 RLC PDU, 并向该 UE重传该第二部分下行 RLC PDU中需要重传的 RLC PDU; 或者, 该第二基站从该第一基站接收重 传消息, 并根据该重传消息向该 UE重传该第二部分下行 RLC PDU中需要 重传的 RLC PDU,其中该第一重传消息指示该第二部分下行 RLC PDU中需 要重传的 RLC PDU。
结合第二方面, 在第三种可能的实现方式中, 还包括: 该第二基站从该 UE接收第一 RLC状态报告; 该第二基站向该第一基站转发该第一 RLC状 态报告,用以在第一 RLC状态报告指示第一部分下行 RLC PDU中需要重传 的 RLC PDU时,第一基站向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU; 在该第一 RLC状态报告指示该第二部分下行 RLC PDU中需要 重传的 RLC PDU时,该第二基站向该 UE重传该第二部分下行 RLC PDU中 需要重传的 RLC PDU。
结合第二方面的第一种可能的实现方式, 在第四种可能的实现方式中, 还包括: 该第二基站从该 UE接收上行重传集合的 RLC PDU,并向该第一基 站发送该上行重传集合的 RLC PDU, 该上行重传集合包括该第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或该第二部分上行 RLC PDU中需要重 传的 RLC PDU;或者,该第二基站从该 UE接收第二上行重传子集合的 RLC PDU, 并向该第一基站发送该第二上行重传子集合的 RLC PDU, 该第二上 行重传子集合是该 UE对该上行重传集合划分得到的。 第三方面, 提供了一种传输数据的方法, 包括: 用户设备 UE从第一基 站接收该第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第 一部分下行 RLC PDU,并从第二基站接收该下行 RLC PDU中的第二部分下 行 RLC PDU,其中该第二部分下行 RLC PDU是该第二基站从该第一基站接 收的。
结合第三方面, 在第一种可能的实现方式中, 还包括: 该 UE生成上行 RLC PDU; 该 UE向第一基站发送该上行 RLC PDU中的第一部分上行 RLC PDU , 并向该第二基站发送该上行 RLC PDU中的第二部分上行 RLC PDU。
结合第三方面, 在第二种可能的实现方式中, 还包括: 该 UE根据该第 一部分下行 RLC PDU和该第二部分下行 RLC PDU的接收状况, 生成第一 RLC状态报告, 该第一 RLC状态报告指示该第一部分下行 RLC PDU中需 要重传的 RLC PDU 和 /或该第二部分下行 RLC PDU 中需要重传的 RLC PDU; 该 UE向该第一基站或该第二基站发送该第一 RLC状态报告; 该 UE 从该第一基站接收该第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或 从该第二基站接收该第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合第三方面的第一种可能的实现方式, 在第四种可能的实现方式中, 还包括: 该 UE从该第一基站接收第二 RLC状态报告; 该 UE根据该第二 RLC 状态报告, 确定上行重传集合, 该上行重传集合包括该第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或该第二部分上行 RLC PDU中需要重 传的 RLC PDU; 该 UE向该第一基站发送该上行重传集合的 RLC PDU, 或 者向该第二基站发送该上行重传集合的 RLC PDU, 或者向该第一基站发送 第一上行重传子集合的 RLC PDU并向该第二基站发送第二上行重传子集合 的 RLC PDU,其中第一上行重传子集合和第二上行重传子集合是该 UE对该 上行重传集合进行划分得到的。
第四方面, 提供了一种基站, 包括: 生成单元, 用于生成下行无线链路 控制 RLC协议数据单元 PDU; 发送单元, 用于向用户设备 UE发送该下行 RLC PDU中的第一部分下行 RLC PDU,并向第二基站发送该下行 RLC PDU 中的第二部分下行 RLC PDU,以便由该第二基站向该 UE发送该第二部分下 行 RLC PDU。
结合第四方面, 在第一种可能的实现方式中, 还包括: 第一接收单元, 用于从该 UE接收该 UE生成的上行 RLC PDU中的第一部分上行 RLC PDU , 并从该第二基站接收该上行 RLC PDU中的第二部分上行 RLC PDU,其中该 第二部分上行 RLC PDU是该第二基站从该 UE接收的。
结合第四方面, 在第二种可能的实现方式中, 还包括第二接收单元, 该 第二接收单元, 用于从该 UE接收第一 RLC状态报告; 该发送单元, 还用于 在该第一 RLC状态报告指示该第一部分下行 RLC PDU中需要重传的 RLC PDU时, 向该 UE重传该第一部分下行 RLC PDU中需要重传的 RLC PDU; 该发送单元, 还用于向该第二基站转发该第一 RLC状态报告, 第一 RLC状 态报告指示该第二部分下行 RLC PDU中需要重传的 RLC PDU,或者向该第 二基站发送该第一基站根据该第一 RLC状态报告生成的重传消息, 该重传 消息指示该第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合第四方面, 在第三种可能的实现方式中, 还包括第三接收单元和第 一确定单元, 该第三接收单元, 用于从该第二基站接收第一 RLC状态报告, 其中该第一 RLC状态报告是该第二基站从该 UE接收的; 该第一确定单元, 用于根据该第一 RLC状态报告,确定该第一部分下行 RLC PDU中需要重传 的 RLC PDU; 该发送单元, 还用于向该 UE重传该第一部分下行 RLC PDU 中需要重传的 RLC PDU。
结合第四方面的第一种可能的实现方式, 在第四种可能的实现方式中, 还包括第四接收单元, 该生成单元还用于根据该第一部分上行 RLC PDU和 该第二部分上行 RLC PDU的接收状况, 生成第二 RLC状态报告, 该发送单 元还用于向该 UE发送该第二 RLC状态报告; 该第四接收单元,还用于接收 该 UE根据该第二 RLC状态报告确定的上行重传集合的 RLC PDU, 该上行 重传集合包括该第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或该第 二部分上行 RLC PDU中需要重传的 RLC PDU。
结合第四方面的第四种可能的实现方式, 在第五种可能的实现方式中, 该第四接收单元具体用于从该 UE接收该上行重传集合的 RLC PDU;或者从 该 UE接收第一上行重传子集合的 RLC PDU ,并从该第二基站接收第二上行 重传子集合中的 RLC PDU,其中该第二上行重传子集合的 RLC PDU是该第 二基站从该 UE接收的, 该第一上行重传子集合与该第二上行重传子集合是 由该 UE对该上行重传集合划分得到的; 或者从该第二基站接收该上传重传 集合的 RLC PDU, 该上行重传集合的 RLC PDU是该第二基站从该 UE接收 的。 第五方面, 提供了一种基站, 包括: 接收单元, 用于从第一基站接收该 第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第二部分下 行 RLC PDU;发送单元,用于向用户设备 UE发送该第二部分下行 RLC PDU。
结合第五方面, 在第一种可能的实现方式中, 该接收单元还用于从该 UE接收该 UE生成的上行 RLC PDU中的第二部分上行 RLC PDU; 该发送 单元还用于向该第一基站发送该第二部分上行 RLC PDU。
结合第五方面, 在第二种可能的实现方式中, 还包括第一确定单元, 该 接收单元还用于从该第一基站接收第一 RLC状态报告, 该第一确定单元用 于根据该第一 RLC状态报告确定该第二部分下行 RLC PDU中需要重传的 RLC PDU, 该发送单元还用于向该 UE重传该第二部分下行 RLC PDU中需 要重传的 RLC PDU; 或者, 该接收单元还用于从该第一基站接收重传消息, 该发送单元还用于根据该重传消息向该 UE重传该第二部分下行 RLC PDU 中需要重传的 RLC PDU, 其中该第一重传消息指示该第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合第五方面, 在第三种可能的实现方式中, 该接收单元还用于从该
UE接收第一 RLC状态报告; 该发送单元还用于向该第一基站转发该第一 RLC状态报告, 用以在第一 RLC状态报告指示第一部分下行 RLC PDU中 需要重传的 RLC PDU时,第一基站向 UE重传第一部分下行 RLC PDU中需 要重传的 RLC PDU; 该发送单元还用于在该第一 RLC状态报告指示该第二 部分下行 RLC PDU中需要重传的 RLC PDU时,向该 UE重传该第二部分下 行 RLC PDU中需要重传的 RLC PDU。
结合第五方面的第一种可能的实现方式, 在第四种可能的实现方式中, 该接收单元还用于从该 UE接收上行重传集合的 RLC PDU,该发送单元还用 于向该第一基站发送该上行重传集合的 RLC PDU, 该上行重传集合包括该 第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或该第二部分上行 RLC PDU中需要重传的 RLC PDU; 或者, 该接收单元还用于从该 UE接收第二 上行重传子集合的 RLC PDU, 该发送单元还用于向该第一基站发送该第二 上行重传子集合的 RLC PDU,该第二上行重传子集合是该 UE对该上行重传 集合划分得到的。
第六方面, 提供了一种用户设备, 包括: 接收单元, 用于从第一基站接 收该第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第一部 分下行 RLC PDU , 并从第二基站接收该下行 RLC PDU中的第二部分下行 RLC PDU , 其中该第二部分下行 RLC PDU是该第二基站从该第一基站接收 的;第一生成单元,用于对该第一部分下行 RLC PDU和该第二部分下行 RLC PDU进行重组以组成下行 RLC服务数据单元 SDU。
结合第六方面, 在第一种可能的实现方式中, 还包括第一发送单元; 该 第一生成单元还用于生成上行 RLC PDU; 该第一发送单元用于向第一基站 发送该上行 RLC PDU中的第一部分上行 RLC PDU,并向该第二基站发送该 上行 RLC PDU中的第二部分上行 RLC PDU。
结合第六方面, 在第二种可能的实现方式中, 还包括第二生成单元和第 二发送单元, 该第二生成单元, 用于根据该第一部分下行 RLC PDU和该第 二部分下行 RLC PDU的接收状况, 生成第一 RLC状态报告, 该第一 RLC 状态报告指示该第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或该第 二部分下行 RLC PDU中需要重传的 RLC PDU; 该第二发送单元, 用于向该 第一基站或该第二基站发送该第一 RLC状态报告; 该接收单元还用于从该 第一基站接收该第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或从该 第二基站接收该第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合第六方面的第一种可能的实现方式, 在第三种可能的实现方式中, 还包括确定单元和第三发送单元, 该接收单元还用于从该第一基站接收第二 RLC状态报告; 该确定单元用于根据该第二 RLC状态报告, 确定上行重传 集合, 该上行重传集合包括该第一部分上行 RLC PDU 中需要重传的 RLC PDU和 /或该第二部分上行 RLC PDU中需要重传的 RLC PDU; 该第三发送 单元用于向该第一基站发送该上行重传集合的 RLC PDU, 或者向该第二基 站发送该上行重传集合的 RLC PDU, 或者向该第一基站发送第一上行重传 子集合的 RLC PDU并向该第二基站发送第二上行重传子集合的 RLC PDU, 其中第一上行重传子集合和第二上行重传子集合是该 UE对该上行重传集合 进行划分得到的。
第七方面, 提供了一种基站, 包括: 处理器, 用于生成下行无线链路控 制 RLC协议数据单元 PDU; 发射器, 用于向用户设备 UE发送该下行 RLC PDU中的第一部分下行 RLC PDU, 并向第二基站发送该下行 RLC PDU中 的第二部分下行 RLC PDU ,以便由该第二基站向该 UE发送该第二部分下行 RLC PDU。 结合第七方面, 在第一种可能的实现方式中, 还包括: 接收器, 用于从 该 UE接收该 UE生成的上行 RLC PDU中的第一部分上行 RLC PDU , 并从 该第二基站接收该上行 RLC PDU中的第二部分上行 RLC PDU,其中该第二 部分上行 RLC PDU是该第二基站从该 UE接收的。
结合第七方面, 在第二种可能的实现方式中, 还包括接收器; 接收器, 用于从该 UE接收第一 RLC状态报告; 发射器, 还用于在该第一 RLC状态 报告指示该第一部分下行 RLC PDU中需要重传的 RLC PDU时,向该 UE重 传该第一部分下行 RLC PDU中需要重传的 RLC PDU; 发射器, 还用于向该 第二基站转发该第一 RLC状态报告, 该第一 RLC状态报告指示该第二部分 下行 RLC PDU中需要重传的 RLC PDU,或者向该第二基站发送该基站根据 该第一 RLC状态 4艮告生成的重传消息,该重传消息指示该第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合第七方面, 在第三种可能的实现方式中, 还包括接收器; 接收器, 用于从该第二基站接收第一 RLC状态报告, 其中该第一 RLC状态报告是该 第二基站从该 UE接收的; 处理器, 还用于根据该第一 RLC状态报告, 确定 该第一部分下行 RLC PDU中需要重传的 RLC PDU; 发射器, 还用于向该 UE重传该第一部分下行 RLC PDU中需要重传的 RLC PDU。
结合第七方面的第一种可能的实现方式, 在第四种可能的实现方式中, 处理器,还用于根据该第一部分上行 RLC PDU和该第二部分上行 RLC PDU 的接收状况, 生成第二 RLC状态报告, 发射器还用于向该 UE发送该第二 RLC状态报告; 接收器, 还用于接收该 UE根据该第二 RLC状态报告确定 的上行重传集合的 RLC PDU, 该上行重传集合包括该第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或该第二部分上行 RLC PDU中需要重传的 RLC PDU。
结合第七方面的第四种可能的实现方式, 在第五种可能的实现方式中, 接收器具体用于从该 UE接收该上行重传集合的 RLC PDU;或者从该 UE接 收第一上行重传子集合的 RLC PDU, 并从该第二基站接收第二上行重传子 集合中的 RLC PDU,其中该第二上行重传子集合的 RLC PDU是该第二基站 从该 UE接收的, 该第一上行重传子集合与该第二上行重传子集合是由该 UE对该上行重传集合划分得到的; 或者从该第二基站接收该上传重传集合 的 RLC PDU, 该上行重传集合的 RLC PDU是该第二基站从该 UE接收的。 第八方面, 提供了一种基站, 包括: 接收器, 用于从第一基站接收该第 一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第二部分下行 RLC PDU; 发射器, 用于向用户设备 UE发送该第二部分下行 RLC PDIL 结合第八方面, 在第一种可能的实现方式中, 接收器还用于从该 UE接 收该 UE生成的上行 RLC PDU中的第二部分上行 RLC PDU; 发射器还用于 向该第一基站发送该第二部分上行 RLC PDU。
结合第八方面, 在第二种可能的实现方式中, 还包括处理器; 接收器还 用于从该第一基站接收第一 RLC状态报告, 处理器用于根据该第一 RLC状 态报告确定该第二部分下行 RLC PDU中需要重传的 RLC PDU,发射器还用 于向该 UE重传该第二部分下行 RLC PDU中需要重传的 RLC PDU; 或者, 接收器还用于从该第一基站接收重传消息,发射器还用于根据该重传消息向 该 UE重传该第二部分下行 RLC PDU中需要重传的 RLC PDU, 其中该第一 重传消息指示该第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合第八方面, 在第三种可能的实现方式中, 接收器还用于从该 UE接 收第一 RLC状态报告; 发射器还用于向该第一基站转发该第一 RLC状态报 告,用以在该第一 RLC状态报告指示该第一部分下行 RLC PDU中需要重传 的 RLC PDU时,该第一基站向该 UE重传该第一部分下行 RLC PDU中需要 重传的 RLC PDU; 发射器还用于在该第一 RLC状态 告指示该第二部分下 行 RLC PDU中需要重传的 RLC PDU时,向该 UE重传该第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合第八方面的第一种可能的实现方式, 在第四种可能的实现方式中, 接收器还用于从该 UE接收上行重传集合的 RLC PDU,发射器还用于向该第 一基站发送该上行重传集合的 RLC PDU, 该上行重传集合包括该第一部分 上行 RLC PDU中需要重传的 RLC PDU和 /或该第二部分上行 RLC PDU中 需要重传的 RLC PDU;或者,接收器还用于从该 UE接收第二上行重传子集 合的 RLC PDU, 发射器还用于向该第一基站发送该第二上行重传子集合的 RLC PDU, 该第二上行重传子集合是该 UE对该上行重传集合划分得到的。
第九方面, 提供了一种用户设备, 包括: 接收器, 用于从第一基站接收 该第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第一部分 下行 RLC PDU,并从第二基站接收该下行 RLC PDU中的第二部分下行 RLC PDU, 其中该第二部分下行 RLC PDU是该第二基站从该第一基站接收的; 处理器, 用于对该第一部分下行 RLC PDU和该第二部分下行 RLC PDU进 行重组以组成下行 RLC服务数据单元 SDU。
结合第九方面, 在第一种可能的实现方式中, 还包括发射器; 处理器, 还用于生成上行 RLC PDU; 发射器, 用于向第一基站发送该上行 RLC PDU 中的第一部分上行 RLC PDU,并向该第二基站发送该上行 RLC PDU中的第 二部分上行 RLC PDU。
结合第九方面, 在第二种可能的实现方式中, 还包括发射器; 处理器, 还用于根据该第一部分下行 RLC PDU和该第二部分下行 RLC PDU的接收 状况, 生成第一 RLC状态报告, 该第一 RLC状态报告指示该第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或该第二部分下行 RLC PDU中需要重 传的 RLC PDU; 发射器, 用于向该第一基站或该第二基站发送该第一 RLC 状态报告; 该接收器, 还用于从该第一基站接收该第一部分下行 RLC PDU 中需要重传的 RLC PDU和 /或从该第二基站接收该第二部分下行 RLC PDU 中需要重传的 RLC PDU。
结合第九方面的第一种可能的实现方式, 在第三种可能的实现方式中, 该接收器, 还用于从该第一基站接收第二 RLC状态报告; 处理器, 还用于 根据该第二 RLC状态报告, 确定上行重传集合, 该上行重传集合包括该第 一部分上行 RLC PDU中需要重传的 RLC PDU和 /或该第二部分上行 RLC PDU中需要重传的 RLC PDU; 发射器, 还用于向该第一基站发送该上行重 传集合的 RLC PDU, 或者向该第二基站发送该上行重传集合的 RLC PDU, 或者向该第一基站发送第一上行重传子集合的 RLC PDU并向该第二基站发 送第二上行重传子集合的 RLC PDU, 其中该第一上行重传子集合和该第二 上行重传子集合是该 UE对该上行重传集合进行划分得到的。
本发明实施例中, 通过第一基站向 UE发送下行 RLC PDU中的第一部 分下行 RLC PDU,并向第二基站发送下行 RLC PDU中的第二部分下行 RLC PDU, 由第二基站向 UE发送第二部分下行 RLC PDU,使得第一基站和第二 基站能够共同向 UE发送数据, 从而能够提高 UE的峰值速率和吞吐量。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1 a是可应用本发明实施例的场景的一个例子的示意图。
图 lb是可应用本发明实施例的场景的另一例子的示意图。
图 lc是可应用本发明实施例的场景的另一例子的示意图。
图 Id是可应用本发明实施例的场景的另一例子的示意图。
图 2a是根据本发明实施例的传输数据的方法的示意性流程图。
图 2b是根据本发明实施例的传输数据的方法的示意性流程图。
图 3是根据本发明实施例的传输数据的方法的示意性流程图。
图 4是根据本发明实施例的传输数据的方法的示意性流程图。
图 5是根据本发明实施例的数据传输过程的示意图。
图 6是根据本发明实施例的数据分流配置过程的示意性流程图。
图 7是根据本发明实施例的数据传输过程的示意图。
图 8是根据本发明实施例的数据分流的配置过程的示意性流程图。 图 9是根据本发明实施例的控制面协议栈的一个例子的示意图。
图 10是根据本发明实施例的用户面协议栈的一个例子的示意图。
图 11是根据本发明实施例的宏基站的协议栈中层 2的结构示意图。 图 12是根据本发明实施例的微基站的协议栈中层 2的结构示意图。 图 13是根据本发明实施例的 UE的协议栈中层 2的结构示意图。
图 14是根据本发明实施例的传输数据的方法的过程的示意性流程图。 图 15是根据本发明实施例的下行数据重传过程的示意性流程图。
图 16是根据本发明实施例的下行数据重传过程的示意性流程图。
图 17是根据本发明实施例的传输数据的方法的过程的示意性流程图。 图 18是根据本发明实施例的上行数据重传过程的示意性流程图。
图 19是根据本发明实施例的上行数据重传过程的示意性流程图。
图 20是根据本发明实施例的上行数据重传过程的示意性流程图。
图 21是根据本发明实施例的 RRC连接重建立的过程的示意性流程图。 图 22是根据本发明实施例的基站的示意框图。
图 23是根据本发明实施例的基站的示意框图。
图 24是根据本发明实施例的 UE的示意框图。
图 25是根据本发明实施例的基站的示意框图。 图 26是根据本发明实施例的基站的示意框图。
图 27是根据本发明实施例的 UE的示意框图。
图 28是根据本发明实施例的基站的示意框图。
图 29是根据本发明实施例的基站的示意框图。
图 30是根据本发明实施例的 UE的示意框图。
图 31是根据本发明实施例的小区资源管理的方法的示意性流程图。 图 32是根据本发明实施例的小区资源管理的方法的示意性流程图。 图 33是根据本发明实施例的小区资源管理的方法的示意性流程图。 图 34是根据本发明实施例的小区资源管理的方法的示意性流程图。 图 35是根据本发明实施例的上行功率控制方法的示意性流程图。
图 36是根据本发明实施例的的上行功率控制方法的示意性流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
下面将结合例子详细描述可应用本发明实施例的场景。 应注意, 这些例 子只是为了帮助本领域技术人员更好地理解本发明实施例, 而非限制本发明 实施例的范围。
图 1 a是可应用本发明实施例的场景的一个例子的示意图。
图 la可以为 LTE-A系统的一个场景。 在图 la中, 宏基站( Macro eNB ( eNodeB ) ) 110a可以具有频率为 fl的 CC1 , 微基站( pico eNB ) 120a可 以具有频率为 f2的 CC2, CC2的覆盖区域可以位于 CC1的覆盖区域内。 UE 130a可以处于 CC2所覆盖的区域,也就是处于 CC 1与 CC2的共同覆盖区域。 那么, 根据本发明实施例, 在对 CC1和 CC2进行 CA后, 宏基站 110a和微 基站 120a可以共同与 UE 130a进行数据的传输, 使得 UE 130a无需在宏基 站 110a和微基站 120a之间进行切换。
例如, 如果 UE 130a 当前与宏基站 110a 具有无线资源控制 (Radio Resource Control, RRC )连接, 在进行 CC1和 CC2的聚合时, 可以将 CC1 作为主 CC ( Primary CC, PCC ), 将 CC2作为辅 CC ( Secondary CC, SCC )。 PCC可以用于移动性管理, SCC可以提供业务分流。由于宏基站覆盖范围广, 其作为 PCC时用于移动性管理可以减少切换情况的发生。 如果 UE 130a当 前与微基站 120a具有 RRC连接,在进行 CC1和 CC2的聚合时,可以将 CC2 作为 PCC, CC1作为 SCC。
图 lb是可应用本发明实施例的场景的另一例子的示意图。
图 lb可以是 LTE-A系统的另一场景。 在图 lb中, 宏基站 110b可以具 有频率为 fl的 CC1 , 微基站 120b可以具有频率为 f2的 CC2。 CC1与 CC2 之间存在共同的覆盖区域。 UE 130b可以位于 CC1和 CC2的共同覆盖区域。 同图 la, 根据本发明实施例, 在对 CC1和 CC2进行 CA后, 宏基站 110b 和微基站 110b也可以共同与 UE 130b进行数据的传输, 而 UE 130b无需在 宏基站 110b和微基站 110b之间进行切换。
图 1 c是可应用本发明实施例的场景的另一例子的示意图。
图 lc可以是 LTE-A系统的另一场景。 在图 lc中, 微基站 110c可以具 有频率为 fl的 CC1 , 微基站 120c可以具有频率为 f2的 CC2。 CC2的覆盖 区域可以位于 CC1的覆盖区域内。 UE 130c可以处于 CC2所覆盖的区域, 也就是处于 CC1与 CC2的共同覆盖区域。 同图 la, 根据本发明实施例, 在 对 CC1和 CC2进行 CA后,微基站 110c和微基站 110c也可以共同与 UE 130c 进行数据的传输, 而 UE 130c无需在微基站 110c和微基站 110c之间进行切 换。
应注意, 虽然上述图 lc描述的是两个微基站的场景, 但是本发明实施 例还可以应用于两个宏基站的场景, 即一个宏基站的覆盖区域可以位于另一 宏基站的覆盖区域内的场景, 其它过程与图 lc 中描述的过程类似, 为了避 免重复, 此处不再赘述。
图 Id是可应用本发明实施例的场景的另一例子的示意图。
图 Id可以是 LTE-A系统的另一场景。 在图 Id中, 微基站 110d可以具 有频率为 fl的 CC1 , 微基站 120d可以具有频率为 f2的 CC2。 CC1与 CC2 之间存在共同的覆盖区域。 UE 130d可以位于 CC1和 CC2的共同覆盖区域。 同图 la, 根据本发明实施例, 在对 CC1和 CC2进行 CA后, 微基站 110d 和微基站 110d也可以共同与 UE 130d进行数据的传输, 而 UE 130d无需在 微基站 110d和微基站 110d之间进行切换。
应注意, 虽然图 Id描述的是两个微基站的场景, 但本发明实施例还可 以应用于两个宏基站的场景, 即两个宏基站之间存在共同的覆盖区域的场 景。 其它过程与图 Id中描述的过程类似, 为了避免重复, 此处不再赘述。
应注意, 虽然图 la至图 Id中描述了两个 CC, 但本发明实施例也可以 应用于两个基站或多于两个基站分别具有多个 CC, 多个 CC之间具有共同 覆盖区域的场景, 两个基站的多个 CC频率不同或者有频率重叠。 例如两个 基站均分别提供两个频率为 fl和 f2的载波, 两个基站的 fl和 f2载波均存 在共同覆盖区域, UE可以聚合第一基站的 fl和第二基站的 f2进行 CA, 或 者聚合第一基站的 f2和第二基站的 fl进行 CA。 UE可以聚合第一基站的 fl 和第二基站的 fl进行 CA, 这种情况也可以称为协作多点( coordinated multi point, CoMP )发送 /接收 ( transmission/reception ), 第一基站和第二基站通 过协作调度的方式和 UE进行通信。 本发明实施例对此不作限定。
图 2a是根据本发明实施例的传输数据的方法的示意性流程图。 图 2a的 方法由第一基站执行。
210a, 第一基站生成下行无线链路控制 ( Radio Link Control, RLC )协 议数据单元( Protocol Data Unit, PDU )。
220a, 第一基站向用户设备 ( User Equipment, UE )发送下行 RLC PDU 中的第一部分下行 RLC PDU,并向第二基站发送下行 RLC PDU中的第二部 分下行 RLC PDU, 以便由第二基站向 UE发送第二部分下行 RLC PDU。
本发明实施例中, 第一基站可以作为用户面锚点 (anchor point ), 负责 下行数据的分流,例如第一基站可以是图 la中的宏基站 110a和微基站 120a 中的一个, 第二基站可以是另外一个。 第一基站还可以是图 lb 中的宏基站 110a和微基站 120a中的一个, 第二基站可以是另外一个。 第一基站还可以 是图 lc中的微基站 110c和微基站 120c中的一个,第二基站可以是另外一个。 第一基站还可以是图 Id中的微基站 110d和微基站 120d中的一个, 第二基 站可以是另外一个。 UE也可以称之为移动终端(Mobile Terminal, MT )、 移 动用户设备等, 如移动电话(或称为"蜂窝"电话)和具有移动终端的计算机 等。
应注意, 第一基站可以作为用户面锚点, 其分组数据汇聚协议(Packet Data Convergence Protocol, PDCP )层从应用层接收来自服务网关( Serving Gateway , SGW )的因特网协议( Internet Protocol , IP )数据包, 作为 PDCP 服务数据单元( Service Data Unit, SDU ),经过 PDCP协议层处理后生成 PDCP PDU递交给 RLC层作为 RLC SDU。应理解,第一基站可以是根据 RLC SDU 生成下行 RLC PDU之后,从生成的下行 RLC PDU中分出第一部分下行 RLC PDU和第二部分下行 RLC PDU。 此外, 第一基站还可以先将 RLC SDU分 为第一部分 RLC SDU和第二部分 RLC SDU, 在生成下行 RLC PDU后, 将 下行 RLC PDU中对应于第一部分 RLC SDU的 RLC PDU作为第一部分下行 RLC PDU , 对应于第二部分 RLC SDU的 RLC PDU作为第二部分下行 RLC PDU。
应理解, 上述第一部分下行 RLC PDU可以包括一个或多个 RLC PDU, 上述第二部分下行 RLC PDU也可以包括一个或多个 RLC PDU。
第一基站向 UE发送第一部分下行 RLC PDU,可以是指第一基站对第一 部分下行 RLC PDU进行各协议层处理后发送给 UE,例如,第一基站可以对 第一部分下行 RLC PDU经过媒体接入控制( Medium Access Control, MAC ) 层和物理 (Physical, PHY )层进行处理后发送给 UE。 同理, 第二基站向 UE发送第二部分下行 RLC PDU, 可以是指第二基站对第二部分下行 RLC PDU 进行各协议层处理后发送给 UE, 例如第二基站可以对第二部分下行 RLC PDU经过 MAC层和 PHY层进行处理发送给 UE。
本发明实施例中, 通过第一基站向 UE发送下行 RLC PDU中的第一部 分下行 RLC PDU,并向第二基站发送下行 RLC PDU中的第二部分下行 RLC PDU, 由第二基站向 UE发送第二部分下行 RLC PDU,使得第一基站和第二 基站能够共同向 UE发送数据, 从而能够提高 UE的峰值速率和吞吐量。
这样, UE也无需在两个基站之间进行切换, 从而也能够避免由于切换 造成的业务时延或中断。
可选地,作为一个实施例,第一基站可以从 UE接收 UE生成的上行 RLC PDU中的第一部分上行 RLC PDU, 并从第二基站接收上行 RLC PDU中的 第二部分上行 RLC PDU, 其中第二部分上行 RLC PDU是第二基站从 UE接 收的。
应理解, 上述第一部分上行 RLC PDU可以包括一个或多个 RLC PDU, 上述第二部分上行 RLC PDU也可以包括一个或多个 RLC PDU。
对于上行方向,第一基站可以从 UE接收第一部分上行 RLC PDU,并从 第二基站接收由 UE发送给第二基站的第二部分上行 RLC PDU,第一基站可 以对两部分上行 RLC PDU进行重组生成 RLC SDU,按序投递给 PDCP层作 为 PDCP PDU, 以及后续的处理后发送给 SGW。
应注意,第一基站从 UE接收第一部分上行 RLC PDU,可以是指第一基 站从 UE接收第一部分上行数据包, 对第一部分上行数据包经过各协议层处 理后得到第一部分上行 RLC PDU, 例如, 第一基站可以对第一部分上行数 据包经过 PHY层和 MAC层处理后得到第一部分上行 RLC PDU。 对于第二 基站从 UE接收第二部分上行 RLC PDU的过程与第一基站的情况类似, 为 了避免重复, 此处不再赘述。
可选地, 作为另一实施例, 对于 RLC确认模式( Acknowledged Mode , AM ), 第一基站可以从 UE接收第一 RLC状态报告。 在第一 RLC状态报告 指示第一部分下行 RLC PDU中需要重传的 RLC PDU时, 第一基站可以向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。 第一基站可以向 第二基站转发第一 RLC状态报告, 第一 RLC状态报告可以用于指示第二部 分下行 RLC PDU中需要重传的 RLC PDU,或者第一基站可以向第二基站发 送第一基站根据第一 RLC状态报告生成的重传消息, 重传消息可以指示第 二部分下行 RLC PDU中需要重传的 RLC PDU。
在第一 RLC状态报告中指示 UE确认接收成功的 RLC PDU时, 第一基 站更新 RLC AM发送窗口和对应的状态变量, 以继续发送新的 RLC PDU。
UE可以根据第一部分下行 RLC PDU和第二部分下行 RLC PDU的接收 状况, 生成第一 RLC状态报告。
第一基站可以根据第一 RLC状态报告,确定第一部分下行 RLC PDU和 第二部分下行 RLC PDU中是否存在需要重传的 RLC PDU。在第一部分下行 RLC PDU中存在需要重传的 RLC PDU时, 第一基站可以向 UE重传第一部 分下行 RLC PDU中需要重传的 RLC PDU。 在第二部分下行 RLC PDU中存 在需要重传的 RLC PDU 时, 第一基站需要向第二基站通知第二部分下行 RLC PDU中需要重传的 RLC PDIL 例如, 第一基站可以向第二基站转发第 一 RLC状态报告,或者第一基站可以根据第一 RLC状态报告生成重传消息, 通过重传消息向第二基站指示第二部分下行 RLC PDU 中需要重传的 RLC PDU。
应理解, 本发明的各实施例中, RLC状态报告和 RLC PDU重传相关 内容仅适用于 RLC AM; 关于 RLC PDU生成、 发送和接收的过程同时适用 于 RLC AM和 RLC非确认模式( Unacknowledged Mode, UM )。 可选地, 作为另一实施例, 对于 RLC AM, 第一基站可以根据第一 RLC 状态报告确定下行 RLC PDU重传集合, 该下行 RLC PDU重传集合可以包 括第一部分下行 RLC PDU中需要重传的 RLC PDU中需要重传的 RLC PDU 和 /或第二部分下行 RLC PDU中需要重传的 RLC PDU。 第一基站可以将该 下行 RLC PDU 重传集合划分为第一下行重传子集合和第二下行重传子集 合。第一基站可以向 UE重传第一下行重传子集合的 RLC PDIL第一基站可 以生成第二重传消息并向第二基站发送第二重传消息, 第二重传消息可以指 示第二下行重传子集合。 如果第二下行重传子集合中的一个或多个 RLC PDU是属于原来的第一部分下行 RLC PDU, 由于原来是第一基站负责第一 部分下行 RLC PDU的传输, 第二基站并没有这部分 RLC PDU, 因此, 第一 基站还需要将这些 RLC PDU也发送给第二基站。
也就是, 第一基站可以对需要重传的 RLC PDU重新进行划分, 确定一 部分由第一基站负责重传, 另一部分由第二基站负责重传。 这样可以适应第 一基站和第二基站的实时无线资源情况以及满足业务的服务质量( quality of service, QoS )需求, 从而能够提高重传效率。
可选地, 作为另一实施例, 对于 RLC AM, 第一基站可以从第二基站接 收第一 RLC状态报告, 其中第一 RLC状态报告是第二基站从 UE接收的。 第一基站可以根据第一 RLC状态报告,确定第一部分下行 RLC PDU中需要 重传的 RLC PDU。 第一基站可以向 UE重传第一部分下行 RLC PDU中需要 重传的 RLC PDIL
在第一 RLC状态报告中指示 UE确认接收成功的 RLC PDU时, 第一基 站更新 RLC AM发送窗口和对应的状态变量, 以继续发送新的 RLC PDU。 由于 UE根据上行资源情况发送第一 RLC状态报告, 当第一 RLC状态报告 通过第二基站发送时, 第一基站需要接收第二基站转发的第一 RLC状态报 告。
对于 RLC AM, UE在生成第一 RLC状态报告后, 可以向第二基站发送 该第一 RLC状态报告, 由第二基站转发给第一基站。 第一基站可以根据该 第一 RLC状态报告向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 对于 RLC AM, 第一基站可以根据第一部分 上行 RLC PDU和第二部分上行 RLC PDU的接收状况, 生成第二 RLC状态 报告, 并向 UE发送第二 RLC状态报告。 第一基站可以接收 UE根据第二 RLC状态报告确定的上行重传集合的 RLC PDU, 上行重传集合可以包括第 一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部分上行 RLC PDU 中需要重传的 RLC PDU。
可选地, 作为另一实施例, 对于 RLC AM, 第一基站可以根据第一部分 上行 RLC PDU和第二部分上行 RLC PDU的接收状况, 生成第二 RLC状态 报告,并向第二基站发送第二 RLC状态报告, 以便由第二基站向 UE转发第 二 RLC状态报告。 第一基站可以接收 UE根据第二 RLC状态报告确定的上 行重传集合的 RLC PDU,上行重传集合可以包括第一部分上行 RLC PDU中 需要重传的 RLC PDU 和 /或第二部分上行 RLC PDU 中需要重传的 RLC PDU。
当第一基站负荷较重或无线条件不好而第二基站负荷较轻或无线条件 较好时, 通过第二基站向 UE转发第二 RLC状态报告可以提高第二 RLC状 态报告发送的可靠性。
可选地, 作为另一实施例, 对于 RLC AM, 第一基站可以从 UE接收上 行重传集合的 RLC PDU。或者第一基站可以从 UE接收第一上行重传子集合 的 RLC PDU, 并从第二基站接收第二上行重传子集合中的 RLC PDU, 其中 第二上行重传子集合是第二基站从 UE接收的, 第一上行重传子集合与第二 上行重传子集合是由 UE对上行重传集合划分得到的。 或者第一基站可以从 第二基站接收上传重传集合的 RLC PDU,上行重传集合的 RLC PDU是第二 基站从所述 UE接收的。
对于 RLC AM , 第一基站可以根据第一部分上行 RLC PDU和第二部分 上行 RLC PDU的接收状况, 生成第二 RLC状态报告, 并向 UE发送该第二 RLC状态报告。 UE可以根据第二 RLC状态报告确定需要重传的 RLC PDU, 即确定上述上行重传集合。
第一基站可以从 UE接收全部需要重传的上行 RLC PDU,即上行重传集 合的 RLC PDIL或者,第一基站可以从 UE接收一部分需要重传的上行 RLC PDU, 即第一上行重传子集合的 RLC PDIL第二基站可以从 UE接收另一部 分需要重传的上行 RLC PDU, 再向第一基站发送这部分上行 RLC PDU, 即 第二上行重传子集合的 RLC PDIL或者,第二基站可以从 UE接收全部需要 重传的上行 RLC PDU, 即上行重传集合的 RLC PDU, 然后再发送给第一基 站。
可选地, 作为另一实施例, 第一基站可以在第一基站的第一小区上向
UE发送第一部分下行 RLC PDU, 并向第二基站发送第二部分下行 RLC PDU, 以便由第二基站在第二基站的第二小区上向 UE发送第二部分下行 RLC PDU, 其中第一小区与第二小区的覆盖范围有重叠。
第一基站的载波上有第一小区, 第二基站的载波上有第二小区, UE可 以位于第一小区与第二小区的覆盖范围重叠的区域, 因此在对第一基站的载 波和第二基站的载波进行 CA后, 第一基站可以通过第一小区向 UE发送第 一部分下行 RLC PDU。第二基站可以通过第二小区向 UE发送第二部分下行 RLC PDU。
可选地,作为另一实施例,第一基站可以向第二基站发送第一请求消息, 第一请求消息可以用于指示第二基站为 UE配置第二小区。 第一基站可以从 第二基站接收第一响应消息, 第一响应消息携带第二基站根据第一请求消息 确定的第二小区的资源信息,如第二小区的无线资源配置公共信息和无线资 源配置专用信息。 第一基站可以向 UE 发送 RRC 连接重配置 ( RRCConnectionReconfiguration ) 消息, RRC 连接重配置消息携带第二小 区的资源信息。 其中, 上述第一基站可以为宏基站。
例如, 第一基站可以根据 UE 的测量报告或者上行探测参考信号 ( Sounding Reference Signal, SRS ) 的测量结果确定增加小区, UE的测量 报告可以包括当前服务小区和邻区的参考信号接收功率 ( Reference Signal Received Power, RSRP )测量结果。 第一基站还可以根据其它测量结果确定 增加小区, 比如 UE上报的信道质量指示(Channel Quality Indication, CQI )。 这样第一基站在确定需要为 UE增加小区进行数据分流后, 可以向第二基站 指示为 UE配置第二基站的第二小区。 在第一基站从第二基站接收到第二小 区的资源信息后, 可以通过 RRC连接重配置消息向 UE通知第二小区的资 源信息。 这样, UE可以根据该第二小区的资源信息进行 RRC连接重配置。 这种情况下, 第一基站的第一小区可以与 UE之间可以已经存在 RRC连接 和数据无线 7 载(Data Radio Bearer, DRB )。
可选地, 作为另一实施例, 第一请求消息还可以用于指示第二基站为 UE建立 DRB。
例如, 第一基站可以根据 DRB的 QoS参数、 业务量、 吞吐量和峰值速 率等信息, 确定是否需要第二基站为 UE建立 DRB。 这样, 第一基站可以在 第一请求消息中携带 DRB配置信息,第二基站可以根据 DRB配置信息建立 DRB对应的 RLC实体和逻辑信道( Logical Channel, LCH )。 例如, DRB配 置信息可以包括以下中的至少一种: 演进无线接入承载 (Evolved Radio Access Bearer, E-RAB )标识, E-RAB服务质量( Quality of Service, QoS ) 参数, DRB标识, RLC配置信息, 逻辑信道配置信息。 此外, DRB配置信 息还可以包括其它相关信息。 E-RAB服务质量参数可以是第一基站进行分流 决策后的 QoS参数,例如第一基站可以将保证比特速率( Guaranteed Bit Rate, GBR )进行分割, 第一基站 DRB分流 60% , 第二基站分流 40% , 则向第二 基站发送的 GBR参数值为 40%乘以原来的 GBR参数值。 E-RAB服务质量 参数也可以是第一基站接收到来自 SGW的原始 QoS参数, 第一基站和第二 基站协商分流决策后由第二基站在调度时调整 QoS参数。类似地,第一基站 可以在第一请求消息中携带信令无线承载( Signaling Radio Bearer , SRB )配 置信息, 当第一基站为用户面锚点时, 第二基站可以根据 SRB 配置信息建 立 SRB对应的 RLC实体和 LCH。
可选地,作为另一实施例,第一基站可以从第二基站接收第二请求消息, 第二请求消息可以用于指示第一基站为 UE配置第一小区。 第一基站可以根 据第二请求消息, 确定第一小区的资源信息, 如第一小区的无线资源配置公 共信息和无线资源配置专用信息。 第一基站可以向第二基站发送第二响应消 息, 第二响应消息携带第一小区的资源信息, 以便第二基站向 UE通知第一 小区的资源信息。 其中, 上述第一基站可以为微基站。
具体地, 第一基站可以根据第二基站的指示, 为 UE配置第一小区。 这 种情况下,第二基站的第二小区可以与 UE之间已经存在 RRC连接和 DRB。 第一基站根据第二请求消息可以为 UE配置第一小区的资源, 并可以通过第 二响应消息向第二基站通知第一小区的资源信息, 由第二基站向 UE通知第 一小区的资源信息, 以便 UE根据第一小区的资源信息进行连接重配置。
可选地, 作为另一实施例, 第二请求消息还可以用于指示第一基站为 UE建立 DRB。 当第一基站为用户面锚点时, 第一基站可以根据第二请求消 息建立 DRB对应的分组数据汇聚协议 ( Packet Data Convergence Protocol, PDCP ) 实体、 RLC实体和 LCH。
类似地, 第二请求消息还可以用于指示第一基站为 UE建立 SRB。 第一 基站可以根据第二请求消息建立 SRB对应的 PDCP实体、 RLC实体和逻辑 信道。
对于 RLC AM, RLC实体可以包括发送端和接收端,发送端可以包括以 下至少一种功能单元: 发送緩沖区 ( transmission buffer )、 重传緩沖区 ( retransmission buffer )、 分段 ( segmentation )和级连 ( concatenation )单元、 RLC PDU头信息生成单元( add RLC header )和用于自动重传请求( Automatic Retransmission Request, ARQ )功能的 RLC控制单元( RLC control )等; 其 中 RLC控制单元的可以包括以下至少一种功能: ARQ发送窗口控制和维护、 ARQ接收窗口控制和维护、 根据接收端实体接收情况生成 RLC状态报告发 送、 根据接收到的 RLC状态报告控制发送端重传。 接收端可以包括以下至 少一种功能单元: 路由 (routing )单元、 接收緩沖区 ( reception buffer )、 重 排序 (reordering )功能、 去除 RLC头信息 ( remove RLC header )、 SDU重 组( reassembly )单元等; 其中路由单元包括区分 RLC PDU和 RLC状态报 告等功能; 其中重排序功能用于对 MAC层未能按序递交给 RLC层的 RLC PDU进行重排序, MAC层乱序是因为混合自动重传请求( Hybrid Automatic Repeat Request, HARQ )重传导致的接收端未能按顺序成功接收传输块 TB。 发送端还可以支持 RLC PDU重分段( resegmentation )。
对于 RLC 非确认模式( Unacknowledged Mode, UM ), RLC实体可以 为发送实体或接收实体, 发送实体可以包括以下至少一种功能单元: 发送緩 沖区、 分段和级连单元以及 RLC PDU头信息生成单元等。 接收实体可以包 括以下至少一种功能单元: 接收緩沖区、 重排序功能、 去除 RLC头信息、 SDU重组单元等。
可选地, 作为另一实施例, 第二请求消息还可以用于指示由第一基站负 责数据分流。 第一基站可以根据第二请求消息向移动管理实体 (Mobility Management Entity, MME )发送路径切换请求消息, 以便 MME根据路径切 换请求消息向 SGW请求将数据传输路径切换为 SGW至第一基站的路径。
例如, 第二基站为宏基站, 第一基站为微基站, 宏基站提供广覆盖和移 动性管理, 微基站提供热点覆盖和容量, 用户业务数据发送和接收主要通过 微基站进行, 则可以把锚点迁移到微基站, 提高数据传输效率。
第二基站可以根据通信过程的状况决策由哪个基站作为用户面锚点, 或 者第二基站和第一基站协商决定由哪个基站作为用户面锚点, 例如第二基站 可以根据分流决策或分流比例, 确定用户面锚点。 如果第一基站所占的分流 比例更大, 比如, 对于 GBR, 第二基站分流 30%, 第一基站分流 70%, 那 么第二基站可以决定由第一基站作为用户面锚点。如果之前第二基站作为用 户面锚点, 那么此时需要进行锚点迁移, 或称为路径切换(Path Switch ), 将对应的 E-RAB迁移到第一基站与 SGW的接口。第一基站可以向 MME发 送路径切换请求消息, 由 MME向 SGW发送 7?载更改请求消息, 从而完成 数据传输路径的切换。 这样, 通过锚点迁移, 能够提高分流效率, 降低迟延。
例如, 第二基站为宏基站, 第一基站为微基站, UE在微基站的无线条 件较好,且微基站的负荷较小,可以由微基站承担更大比例的用户业务数据, 则可以把锚点迁移到微基站, 提高数据传输效率。
应注意, 对于下行方向, 上述第一部分下行 RLC PDU和第二部分下行 RLC PDU的数据量可以是静态配置的, 也可以是动态调整的。 而对于上行 方向, 上述第一部分上行 RLC PDU和第二部分上行 RLC PDU的数据量也 可以是静态配置的或者动态调整的。
例如, 第一基站可以在进行数据分流前, 向第二基站发送容量分配请求 消息, 请求第二基站为发送第二部分下行 RLC PDU 或接收第二部分上行 RLC PDU准备或预留无线资源。 第二基站可以响应第一基站的容量分配请 求消息, 为第二部分下行 RLC PDU或第二部分上行 RLC PDU预留无线资 源。 或者, 第二基站可以主动向第一基站发送容量分配指示消息, 容量分配 指示消息可以指示第二基站的容量或预留緩存信息, 以便第一基站发送对应 容量或緩存的第二部分下行 RLC PDU, 或者通过该容量分配指示消息获知 第二基站可以分配给 UE用于发送第二部分上行 RLC PDU的无线资源信息。
此外,第二基站还可以根据自己的调度能力和 /或緩沖区变化情况向第一 基站发送容量调整指示消息,通过容量调整指示消息向第一基站通知降低容 量或增加容量的信息。
图 2b是根据本发明实施例的传输数据的方法的示意性流程图。 图 2b的 方法由第一基站执行。
210b, 第一基站从 UE接收 UE生成的上行 RLC PDU中的第一部分上 行 RLC PDU, 并从第二基站接收上行 RLC PDU 中的第二部分上行 RLC PDU, 其中第二部分上行 RLC PDU是第二基站从 UE接收的。
可选地,作为一个实施例,第一基站可以在接收第一部分上行 RLC PDU 和第二部分上行 RLC PDU之后, 对第一部分上行 RLC PDU和第二部分上 行 RLC PDU进行重组。
可选地, 作为另一实施例, 第一基站可以根据第一部分上行 RLC PDU 和第二部分上行 RLC PDU的接收状况, 生成第二 RLC状态报告, 并向 UE 发送第二 RLC状态报告。 第一基站可以接收 UE根据第二 RLC状态报告确 定的上行重传集合的 RLC PDU, 该上行重传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 第一基站可以从 UE接收所述上行重传集合 的 RLC PDIL 或者, 第一基站可以从 UE接收第一上行重传子集合的 RLC PDU, 并从第二基站接收第二上行重传子集合中的 RLC PDU, 其中第二上 行重传子集合的 RLC PDU是第二基站从 UE接收的, 第一上行重传子集合 与第二上行重传子集合是由 UE对上行重传集合划分得到的。 或者, 第一基 站可以从第二基站接收上传重传集合的 RLC PDU, 上行重传集合的 RLC PDU是第二基站从 UE接收的。
本发明实施例中, 通过第一基站从 UE接收 UE生成的上行 RLC PDU 中的第一部分上行 RLC PDU ,并从第二基站接收上行 RLC PDU中的第二部 分上行 RLC PDU,使得第一基站和第二基站能够共同与 UE传输数据,从而 能够提高 UE的峰值速率和吞吐量。
这样, UE也无需在两个基站之间进行切换, 从而也能够避免由于切换 造成的业务时延或中断。
图 3是根据本发明实施例的传输数据的方法的示意性流程图。 图 3的方 法由第二基站执行。
310,第二基站从第一基站接收所述第一基站生成的下行 RLC PDU中的 第二部分下行 RLC PDU。
320, 第二基站向 UE发送第二部分下行 RLC PDU。
第一基站可以是用户面锚点, 负责数据的分流。 第一基站可以向 UE发 送下行 RLC PDU中的第一部分下行 RLC PDU,向第二基站发送第二部分下 行 RLC PDIL 由第二基站向 UE发送第二部分下行 RLC PDIL 例如, 第一 基站可以是图 la中的宏基站 110a和微基站 120a中的一个,第二基站可以是 另外一个。 第一基站还可以是图 lb中的宏基站 110a和微基站 120a中的一 个, 第二基站可以是另外一个。
本发明实施例中, 通过第二基站向 UE 发送第一基站生成的下行 RLCPDU中的第二部分下行 RLC PDU,能够提高 UE的峰值速率和吞吐量。
可选地,作为另一实施例,第二基站可以从 UE接收 UE生成的上行 RLC PDU中的第二部分上行 RLC PDU。 第二基站可以向第一基站发送第二部分 上行 RLC PDU。
第二基站从 UE接收第二部分上行 RLC PDU, 可以是指第二基站从 UE 接收第二部分上行数据包,对第二部分上行数据包经过各协议层处理后得到 第二部分上行 RLC PDU, 例如, 第二基站可以对第二部分上行数据包经过 PHY层和 MAC层处理后得到第二部分上行 RLC PDU。
可选地, 作为另一实施例, 对于 RLC AM, 第二基站可以从第一基站接 收第一 RLC状态报告,根据第一 RLC状态报告确定第二部分下行 RLC PDU 中需要重传的 RLC PDU, 并向 UE重传第二部分下行 RLC PDU中需要重传 的 RLC PDU。 或者, 第二基站可以从第一基站接收重传消息, 并根据重传 消息向 UE重传第二部分下行 RLC PDU中需要重传的 RLC PDU, 其中重传 消息指示第二部分下行 RLC PDU中需要重传的 RLC PDU。
具体地, 对于 RLC AM, 第二基站可以根据第一基站转发的第一 RLC 状态报告或者第一基站根据第一 RLC状态报告生成的重传消息,向 UE重传 第二部分下行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 对于 RLC AM, 第二基站可以从第一基站接 收第二重传消息, 第二重传消息可以指示第二下行重传子集合。 第二基站可 以根据第二重传消息向 UE重传第二下行重传子集合的 RLC PDU。
第一基站可以根据第一 RLC状态报告确定下行 RLC PDU重传集合,该 下行 RLC PDU重传集合可以包括第一部分下行 RLC PDU 中需要重传的 RLC PDU中需要重传的 RLC PDU和 /或第二部分下行 RLC PDU中需要重传 的 RLC PDU。第一基站可以将该下行 RLC PDU重传集合划分为第一下行重 传子集合和第二下行重传子集合。 第一基站可以向 UE重传第一下行重传子 集合的 RLC PDU, 通过第二重传消息并向第二基站通知第二基站需要负责 重传的 RLC PDU。如果第二下行重传子集合中的一个或多个 RLC PDU是属 于原来的第一部分下行 RLC PDU, 由于原来是第一基站负责第一部分下行 RLC PDU的传输, 第二基站并没有这部分 RLC PDU, 那么, 第二基站还需 要从第一基站接收这些 RLC PDU。
这样可以适应第一基站和第二基站的实时无线资源情况以及满足业务 的服务质量(quality of service, QoS )需求, 从而能够提高重传效率。
可选地, 作为另一实施例, 对于 RLC AM, 第二基站可以从 UE接收第 一 RLC状态报告。 第二基站可以向第一基站转发第一 RLC状态报告, 用以 在第一 RLC状态报告指示第一部分下行 RLC PDU中需要重传的 RLC PDU 时, 第一基站向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。 在第一 RLC状态报告指示第二部分下行 RLC PDU中需要重传的 RLC PDU 时, 第二基站可以向 UE重传第二部分下行 RLC PDU 中需要重传的 RLC PDU。
此外, 第二基站可以向第一基站转发第一 RLC状态报告, 可以使第一 基站根据第一 RLC状态报告确定第一部分下行 RLC PDU中存在需要重传的 RLC PDU时, 第一基站向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 对于 RLC AM, 第二基站可以从 UE接收上 行重传集合的 RLC PDU, 并向第一基站发送上行重传集合的 RLC PDU, 上 行重传集可以合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或 第二部分上行 RLC PDU中需要重传的 RLC PDU。 或者, 第二基站可以从 UE接收第二上行重传子集合的 RLC PDU, 并向第一基站发送第二上行重传 子集合的 RLC PDU, 第二上行重传子集合是 UE对上行重传集合划分得到 的。
对于 RLC AM,在上行方向, UE可以将需要重传的上行 RLC PDU全部 重传给第二基站, 由第二基站向第一基站发送这些需要重传的上行 RLC PDU。 UE也可以将需要重传的上行 RLC PDU划分为两部分,一部分重传给 第一基站, 另一部分重传给第二基站, 由第二基站将接收到的这部分 RLC PDU发送给第一基站。
可选地, 作为另一实施例, 第二基站可以在第二基站的第二小区上向 UE发送第二部分下行 RLC PDU。
可选地,作为另一实施例,第二基站可以从第一基站接收第一请求消息, 第一请求消息可以用于指示第二基站为 UE配置第二小区。 第二基站可以根 据第一请求消息确定第二小区的资源信息。 第二基站可以向第一基站发送第 一响应消息, 第一响应消息携带第二小区的资源信息, 以便第一基站向 UE 通知第二小区的资源信息。
可选地, 作为另一实施例, 第一请求消息还可以用于指示第二基站为 UE建立 DRB。 第二基站可以根据第一请求消息建立 DRB对应的 RLC实体 和逻辑信道。
由于第二基站不作为用户面锚点, 因此可以不建立 PDCP实体。 或者, 第二基站可以建立 PDCP实体, 由于不需要 PDCP实体的功能, 因此可以在 建立后将 PDCP实体关闭。
对于 RLC AM, RLC实体可以包括发送端和接收端,发送端可以包括以 下至少一种功能单元: 发送緩沖区、 重传緩沖区; 可选地, 包括分段单元、 RLC PDU头信息生成单元,可以仅支持 RLC PDU重分段功能以及因重分段 生成 RLC头信息; 其中发送緩沖区用于接收第一基站发送的 RLC PDU; 重 传緩沖区用于保存潜在需要重传的 RLC PDU, 例如发送緩沖区的 RLC PDU 第一次发送给 UE后, 便移入重传緩沖区。 可选地, 包括 RLC控制单元, RLC控制单元根据来自第一基站的 RLC状态报告, 控制第二基站的 RLC PDU重传; 根据来自 UE的 RLC状态报告控制第二基站的 RLC PDU重传, 并转发完整的 RLC状态报告控制给第二基站; RLC控制单元自己不产生 RLC状态报告, 不需要维护 ARQ发送窗口和接收窗口。 发送端也可以仅包 含发送緩沖区, 用于接收第一基站发送的 RLC PDU, 并转发给 UE; 第二基 站不需要支持 RLC PDU重传, 或者第一基站把需要重传的 RLC PDU作为 新的 RLC PDU重新发送给第二基站的发送緩沖区, 以通过第二基站转发给 UE。 接收端可以包括以下至少一种功能单元: 接收緩沖区; 可选地, 包括 重排序功能; 可选地, 包括路由功能; 可选地, 包括 SDU重组单元, 但设 置为关闭状态。
对于 RLC UM, RLC实体可以为发送实体或接收实体,发送实体可以包 括以下至少一种功能单元:发送緩沖区,可选地,还包括分段单元、 RLC PDU 头信息生成单元, 可以仅支持 RLC PDU重分段功能以及因重分段生成 RLC 头信息。 接收实体可以包括以下至少一种功能单元: 接收緩沖区, 可选地, 包括重排序功能; 可选地, 包括 SDU重组单元, 但设置为关闭状态。
可选地,作为另一实施例,第二基站可以向第一基站发送第二请求消息, 第二请求消息可以用于指示第一基站为 UE配置第一基站的第一小区。 第二 基站从第一基站接收第二响应消息, 第二响应消息携带第一基站根据第二请 求消息确定的所述第一小区的资源信息。 第二基站向 UE发送 RRC连接重 配置消息, RRC连接重配置消息携带第一小区的资源信息。
可选地, 作为另一实施例, 第二请求消息还可以用于指示第一基站为 UE建立 DRB。
图 4是根据本发明实施例的传输数据的方法的示意性流程图。 图 4的方 法由 UE执行, 例如可以是图 la中的 UE 130a或图 lb中的 130b。
410, UE从第一基站接收第一基站生成的 RLC PDU中的第一部分下行 RLC PDU, 并从第二基站接收下行 RLC PDU中的第二部分下行 RLC PDU, 其中第二部分下行 RLC PDU是第二基站从第一基站接收的。
本发明实施例中, 通过 UE从第一基站接收下行 RLC PDU中的第一部 分下行 RLC PDU, 并从第二基站接收第二基站从第一基站获取的第二部分 下行 RLC PDU, 使得 UE能够和两个基站共同传输数据, 从而能够提高 UE 的峰值速率和吞吐量。
这样, 处于两个基站共同的覆盖区域的 UE就无需在两个基站之间进行 切换, 从而也能够避免由于切换造成的业务时延或中断。
可选地,作为一个实施例, UE可以对第一部分下行 RLC PDU和第二部 分下行 RLC PDU进行重组以组成下行 RLC SDU。
可选地, 作为另一实施例, UE可以生成上行 RLC PDU。 UE可以向第 一基站发送上行 RLC PDU中的第一部分上行 RLC PDU,并向第二基站发送 上行 RLC PDU中的第二部分上行 RLC PDU。
UE的 PDCP层可以从应用层接收 IP数据包, 作为 PDCP SDU, 经过 PDCP协议层处理后生成 PDCP PDU递交给 RLC层作为 RLC SDU,将 RLC SDU生成上行 RLC PDU。
对于上行方向, UE可以向第一基站发送一部分 RLC PDU, 向第二基站 发送另一部分 RLC PDU, 由第二基站向第一基站发送这部分 RLC PDU, 从 而能够提高 UE的峰值速率和吞吐量。
应注意, UE向第一基站发送第一部分上行 RLC PDU, 可以是指 UE 对第一部分上行 RLC PDU进行各协议层处理后发送给第一基站, 例如, UE 可以对第一部分上行 RLC PDU经过 MAC层和 PHY层进行处理后发送给第 一基站。 UE向第二基站发送第二部分上行 RLC PDU的过程类似, 为了避免 重复, 此处不再赘述。
可选地,作为另一实施例, UE根据第一部分下行 RLC PDU和第二部分 下行 RLC PDU的接收状况, 生成第一 RLC状态报告, 第一 RLC状态报告 指示第一部分下行 RLC PDU 中需要重传的 RLC PDU和 /或第二部分下行 RLC PDU中需要重传的 RLC PDU。 UE可以向第一基站或第二基站发送第 一 RLC状态报告。 UE可以从第一基站接收第一部分下行 RLC PDU中需要 重传的 RLC PDU和 /或从第二基站接收第二部分下行 RLC PDU中需要重传 的 RLC PDU。
对于 RLC AM, UE可以根据第一部分下行 RLC PDU和第二部分下行 RLC PDU的接收状况, 生成第一 RLC状态报告。 UE可以向第一基站发送 该第一 RLC状态报告, 也可以向第二基站发送该第一 RLC状态报告。 如果 第一部分下行 RLC PDU中存在需要重传的 RLC PDU, UE可以从第一基站 接收第一部分下行 RLC PDU中需要重传的 RLC PDU。 如果第二部分下行 RLC PDU中存在需要重传的 RLC PDU, UE可以从第二基站接收第二部分 下行 RLC PDU中需要重传的 RLC PDU。
应注意, UE也可以根据上行资源情况把第一 RLC状态报告分成两段, 同时从第一基站和第二基站发送两段第一 RLC状态报告, 第二基站向第一 基站转发其中自己接收到的一段第一 RLC状态报告。
可选地, 作为另一实施例, 对于 RLC AM, UE根据第一部分下行 RLC PDU和第二部分下行 RLC PDU的接收状况, 生成第一 RLC状态报告, 并 向第一基站发送第一 RLC状态报告。 UE可以从第一基站接收第一下行重传 子集合的 RLC PDU, 并从第二基站接收第二下行重传子集合的 RLC PDU, 其中第一下行重传子集合和第二下行重传子集合是第一基站对下行 RLC PDU重传集合划分得到的, 下行 RLC PDU重传集合可以是第一基站根据第 一 RLC状态报告确定的, 下行 RLC PDU重传集合可以包括第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或从第二基站接收第二部分下行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 对于 RLC AM, UE可以从第一基站接收第 二 RLC状态报告。 UE可以根据第二 RLC状态报告, 确定上行重传集合, 上行重传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第 二部分上行 RLC PDU中需要重传的 RLC PDU。 UE向第一基站发送上行重 传集合的 RLC PDU, 或者向第二基站发送所述上行重传集合的 RLC PDU, 或者向第一基站发送第一上行重传子集合的 RLC PDU并向第二基站发送第 二上行重传子集合的 RLC PDU, 其中第一上行重传子集合和第二上行重传 子集合是 UE对上行重传集合进行划分得到的。
对于 RLC AM, UE可以根据第二 RLC状态报告, 确定需要重传的上行
RLC PDU, 也就是上行重传集合。 UE可以根据上行授权, 决定如何重传需 要重传的 RLC PDU。 UE可以向第一基站重传全部需要重传的 RLC PDU, 也可以向第二基站重传全部需要重传的 RLC PDU。或者 UE可以将需要重传 的 RLC PDU分为两部分, 即第一上行重传子集合和第二上行重传子集合, 分别向第一基站和第二基站重传两个子集合的 RLC PDU。
对于 RLC AM, UE可以根据第二 RLC状态报告, 在第二 RLC状态报 告中指示第一基站确认接收成功的 RLC PDU时, UE更新 RLC AM发送窗 口和对应的状态变量, 以继续发送新的 RLC PDU。
可选地, 作为另一实施例, UE从第一基站的第一小区接收第一部分下 行 RLC PDU, 并从第二基站的第二小区接收第二部分下行 RLC PDU, 其中 第一小区和第二小区分别位于不同的载波上。
在第一基站的载波和第二基站的载波进行 CA后, UE可以通过第一基 站的载波上的第一小区和第二基站的载波上的第二小区进行数据的传输。
可选地, 作为另一实施例, UE可以从第一基站接收 RRC连接重配置消 息, RRC连接重配置消息携带第二基站确定的第二小区的资源信息。
应理解, UE也可以从第二基站接收 RRC连接重配置消息, RRC连接 重配置消息携带第二基站确定的第二小区的资源信息。
可选地, 作为另一实施例, UE可以从第二基站接收 RRC连接重配置消 息, RRC连接重配置消息携带第一基站确定的第一小区的资源信息。
应理解, UE也可以从第一基站接收 RRC连接重配置消息, RRC连接 重配置消息携带第一基站确定的第一小区的资源信息。
下面将结合具体的例子详细描述本发明实施例, 应注意, 这些例子只是 为了帮助本领域技术人员更好地理解本发明实施例, 而非限制本发明实施例 的范围。
图 5是根据本发明实施例的数据传输过程的示意图。
在图 5中, 将以第一基站为宏基站, 第二基站为微基站为例进行说明。 例如第一基站可以是图 la中的宏基站 110a或图 lb中的宏基站 110b, 第二 基站可以是图 la中的微基站 120a或图 lb中的微基站 120b。 UE可以是图 la中的 UE 130a, 也可以是图 lb中的 UE 130b。
在图 5中,由宏基站作为用户面锚点。宏基站可以通过 S1-U接口从 SGW 接收分组数据网络( Packet Data Gateway, PGW ) 下发的下行数据, 并对下 行数据进行分流, 一部分通过 Uu接口发送给 UE, 另一部分由微基站发送 给 UE。 宏基站还可以通过 Uu接口从 UE接收上行数据, 从微基站接收 UE 发送给微基站的上行数据, 将两部分上行数据处理后通过 S1-U接口发送给 SGW, 由 SGW发送给 PGW。
下面将结合图 6详细描述图 5的数据分流的配置过程。
图 6是根据本发明实施例的数据分流配置过程的示意性流程图。
假设 UE已经和宏基站建立了 RRC连接,当前宏基站的小区为 UE服务。 在宏基站与 UE之间进行数据传输的同时, 宏基站可以与微基站完成数据分 流的配置过程。 下面将详细描述该过程。
601 , UE向宏基站发送测量报告。
例如, UE可以基于小区参考信号(Cell Specific Reference Signal, CRS ) 或信道状态信息参考信号 ( Channel State Information Reference Signal , CSI-RS )生成测量报告。 该测量报告可以包括宏基站的小区和邻区的 RSRP 测量结果。
602, 宏基站根据测量报告, 确定增加微基站的小区和 /或建立 DRB。 增加第二小区可以指为 UE聚合微基站的小区。 建立 DRB可以是指由 微基站为 UE建立 DRB。
此外,宏基站还可以根据宏基站对 SRS的测量结果确定增加微基站的小 区, 也可以根据其它测量结果, 例如 UE上报的 CQI等, 确定增加微基站的 小区。
此外, 宏基站还可以根据 DRB的 QoS参数、 业务量、 吞吐量和峰值速 率等信息, 确定建立 DRB。
应注意, 宏基站确定增加 基站的小区以及确定建立 DRB这两个过程 执行没有先后顺序, 也可以是同时进行。 例如, 宏基站可以同时确定增加第 二小区和 /或建立 DRB,也可以先确定增加微基站的小区,后确定建立 DRB, 或者先确定建立 DRB , 后确定增加 基站的小区。 本发明实施例对此不作 限定。
603, 宏基站向 基站发送第一请求消息。
第一请求消息可以指示 基站为 UE配置 基站的小区。 第一请求消息 还可以指示 基站为 UE建立 DRB。
与上述步骤 602相应,宏基站可以在第一请求消息同时指示微基站配置 基站的小区和建立 DRB , 也可以向 基站发送两次第一请求消息, 分别 指示微基站配置微基站的小区和建立 DRB。
在第一请求消息指示微基站为 UE建立 DRB时, 宏基站可以在第一请 求消息中携带 DRB的配置信息。 例如, DRB配置信息可以包括以下中的至 少一种: 演进无线接入承载(Evolved Radio Access Bearer, E-RAB )标识, E-RAB QoS参数, DRB标识, RLC配置信息, 逻辑信道配置信息。 此外, DRB配置信息还可以包括其它相关信息。 E-RAB服务质量参数可以是宏基 站进行分流决策后的 QoS参数,例如微基站可以将保证比特速率( Guaranteed Bit Rate, GBR )进行分割, 宏基站 DRB分流 60%, 微基站分流 40%, 则向 微基站发送的 GBR参数值为 40%乘以原来的 GBR参数值。
604,微基站根据第一请求消息配置微基站的小区以及为 UE建立 DRB。 微基站可以根据第一请求消息进行接纳控制, 配置微基站的小区的资 源, 从而确定微基站的小区的资源信息。
如果第一请求消息指示为 UE建立 DRB,那么微基站可以根据第一请求 消息中携带的 DRB的配置信息, 建立 DRB对应的 RLC实体和逻辑信道, 并设置 DRB参数、 RLC参数、 逻辑信道参数和 QoS参数等。 其中, QoS参 数可以按照第一请求消息中携带的分流比例进行配置。
应注意, 微基站可以不建立 PDCP实体。 或者, 微基站可以建立 PDCP 实体, 将 PDCP实体关闭。
还应注意, 微基站配置微基站的小区和建立 DRB是两个过程, 执行没 有先后顺序。 但是, 为了实现后续的数据分流过程, 这两个过程是都需要完 成的。
605, 微基站向宏基站发送第一响应消息。
第一响应消息可以携带微基站的小区的资源信息。
606, 宏基站向 UE发送 RRC连接重配置消息。
RRC连接重配置消息可以携带微基站的小区的资源信息。 一般情况下, UE的 DRB配置可以使用之前的 DRB配置。 如果需要对 UE对 DRB进行重配置,那么宏基站可以在 RRC连接重配置消息中携带 DRB 的配置信息。
607, UE根据 RRC连接重配置消息进行连接重配置。
UE可以根据 RRC连接重配置消息中携带的微基站的小区的资源信息, 配置 基站的小区相关的无线资源。
如果 RRC连接重配置消息中还携带 DRB的配置信息, 那么 UE还可以 根据 DRB的配置信息进行 DRB重配置。
608, UE向宏基站发送 RRC连接重配置完成消息。
UE在重配置成功后, 向宏基站通知重配置完成。
609, 宏基站向 基站发送配置完成消息。
宏基站通过配置完成消息, 向微基站通知 UE完成连接重配置。
610, UE与微基站进行随机接入过程, 完成与微基站的上行同步。 应注意, 步骤 610也可以在步骤 607与步骤 608之间执行。 如果在步骤 608之后 UE就完成了和微基站的上行同步, 那么在步骤 608中, UE也可以 将 RRC连接重配置完成消息发送给微基站, 由微基站向宏基站转发该 RRC 连接重配置完成消息。 UE在微基站随机接入成功后可以通知宏基站, 以便 宏基站开始向微基站分流数据。
611 , 宏基站与 UE之间进行数据的传输, 并通过微基站与 UE进行数据 的传输。
对于下行方向, 宏基站可以从 SGW获取下行数据, 根据下行数据生成 下行 RLC PDU。
宏基站可以向 UE发送下行 RLC PDU中的第一部分下行 RLC PDU, 并 向微基站发送下行 RLC PDU中的第二部分下行 RLC PDU。 微基站可以向 UE发送第二部分下行 RLC PDIL
对于上行方向, UE可以生成上行 RLC PDU, 向宏基站发送上行 RLC PDU中的第一部分上行 RLC PDU , 向微基站发送上行 RLC PDU中的第二 部分上行 RLC PDIL 微基站向宏基站发送第二部分上行 RLC PDIL 由宏基 站对两部分上行 RLC PDU进行重组以及其它处理后, 发送给 SGW。
应理解, 上述各过程的序号的大小并不意味着执行顺序的先后, 各过程 的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。
本发明实施例中, 通过宏基站作为用户面锚点, 使得宏基站和微基站能 够共同与 UE传输数据, 从而能够提高 UE的峰值速率和吞吐量。
此外, UE也无需在宏基站和微基站之间进行切换, 也能够避免由于切 换造成的业务时延或中断。
在上述图 5和图 6中, 由宏基站作为用户面锚点, 本发明实施例中, 还 可以由微基站作为用户面锚点。 下面将结合图 7和图 8进行描述。
图 7是根据本发明实施例的数据传输过程的示意图。
在图 7中, 以第一基站为微基站, 第二基站为宏基站为例进行说明。 例 如, 第一基站可以是图 la中的微基站 120a或图 lb中的微基站 120b, 第二 基站可以是图 la中的宏基站 110a或图 lb中的宏基站 110b。 UE可以是图 la中的 UE 130a或图 lb中的 UE 130b。
在图 7中,由微基站作为用户面锚点。微基站可以通过 S1-U接口从 SGW 接收 PGW下发的下行数据, 并对下行数据进行分流, 一部分通过 Uu接口 发送给 UE, 另一部分由宏基站发送给 UE。 微基站还可以通过 Uu接口从 UE接收上行数据, 从宏基站接收 UE发送给宏基站的上行数据, 将两部分 上行数据处理后通过 S1-U接口发送给 SGW, 由 SGW发送给 PGW。
下面将结合图 8详细描述图 7的数据分流的配置过程。
图 8是根据本发明实施例的数据分流的配置过程的示意性流程图。
假设 UE已经和宏基站建立了 RRC连接,当前宏基站的小区为 UE服务。 在宏基站与 UE之间可以进行数据传输的同时, 宏基站可以与微基站完成数 据分流的配置过程。 下面将详细描述该过程。
步骤 801与图 6中的步骤 601类似, 为了避免重复, 此处不再赘述。 802, 宏基站根据测量报告, 确定增加微基站的小区和 /或建立 DRB, 并 确定锚点迁移。
宏基站确定增加微基站的小区和建立 DRB的过程与图 6中的步骤 602 类似, 为了避免重复, 此处不再赘述。
宏基站可以基于测量报告等相关信息, 根据分流策略或分流比例, 确定 微基站作为锚点。 例如, 如果微基站所占分流比例更大, 例如对于 GBR, 宏基站分流 30%, 基站分流 70%, 那么宏基站可以确定进行锚点迁移, 由 微基站作为用户面锚点, 也就是进行路径切换, 将对应 E-RAB迁移到微基 站与 SGW的 Sl-U接口。
此外, 对于对多个 DRB分流的情况, 在分流策略中可以尽量保持这些 DRB的分流比例一致, 例如对于两个 DRB分流的情况, 在分流策略中可以 均是微基站分流比例大和宏基站分流比例小。
803, 宏基站向 基站发送第二请求消息。
第二请求消息可以指示 基站为 UE配置 基站的小区。 第二请求消息 还可以指示 基站为 UE建立 DRB。
此外, 第二请求消息还可以指示由 基站作为用户面锚点。
步骤 803的过程与图 6中的步骤 603类似, 为了避免重复, 此处不再赘 述。
804,微基站根据第二请求消息,配置微基站的小区以及为 UE建立 DRB, 并准备错点迁移。
微基站为 UE配置微基站的小区的过程与图 6中的步骤 604类似, 为了 避免重复, 此处不再赘述。
如果第二请求消息指示为 UE建立 DRB,那么微基站可以根据第二请求 消息中携带的 DRB的配置信息, 建立 DRB对应的 PDCP实体、 RLC实体 和逻辑信道, 并设置 DRB参数、 PDCP参数、 RLC参数、 逻辑信道参数和 QoS参数等。 其中, QoS参数可以按照第二请求消息中携带的分流比例进行 配置。
与步骤 604不同的是, 步骤 804中, 微基站需要准 苗点迁移。
805, 微基站向宏基站发送第二响应消息。
第二响应消息可以携带微基站的小区的资源信息。 第二响应消息还可以 指示微基站准^ 苗点迁移。
806, 宏基站向 UE发送 RRC连接重配置消息。
RRC连接重配置消息可以携带微基站的小区的资源信息。
一般情况下, UE的 DRB配置可以使用之前的 DRB配置。 如果需要对 UE对 DRB进行重配置,那么宏基站可以在 RRC连接重配置消息中携带 DRB 的配置信息。
807, UE根据 RRC连接重配置消息进行 RRC连接重配置。
UE可以根据 RRC连接重配置消息中携带的微基站的小区的资源信息, 配置 基站的小区相关的无线资源。 如果 RRC连接重配置消息中还携带 DRB的配置信息, 那么 UE还可以 根据 DRB的配置信息进行 DRB重配置。
808, UE向宏基站发送 RRC连接重配置完成消息。
UE在重配置成功后, 向宏基站通知重配置完成。
809, 宏基站向 基站发送配置完成消息。
宏基站通过配置完成消息, 向微基站通知 UE完成连接重配置。
810, ί基站向 ΜΜΕ发送路径切换请求消息。
路径切换请求消息可以指示将数据传输路径切换至微基站。
811 , ΜΜΕ向 SGW发送承载更改请求消息。
承载更改请求消息可以向 SGW请求切换数据传输路径。
812, SGW根据承载更改请求消息切换路径。
813, SGW向 ΜΜΕ发送 载更改响应消息。
814, MME向 基站发送路径切换响应消息。
815, UE与微基站进行随机接入过程, 完成与微基站的上行同步。
应注意, 步骤 815可以与步骤 810至步骤 814的路径切换过程可以并行 进行。
在步骤 815之前, 宏基站可以与 UE的数据传输过程继续进行, 完成无 线承载( Radio Bearer, RB ) (包括 SRB和 DRB )中已经緩存的数据的传输。
816,微基站与 UE之间进行数据的传输, 并通过宏基站与 UE进行数据 的传输。 微基站与 SGW之间进行数据的传输。
对于下行方向, 微基站可以从 SGW获取下行数据, 根据下行数据生成 下行 RLC PDU。
微基站可以向 UE发送下行 RLC PDU中的第一部分下行 RLC PDU , 并 向宏基站发送下行 RLC PDU中的第二部分下行 RLC PDU。 宏基站可以向 UE发送第二部分下行 RLC PDIL
对于上行方向, UE可以生成上行 RLC PDU, 向微基站发送上行 RLC PDU中的第一部分上行 RLC PDU , 向宏基站发送上行 RLC PDU中的第二 部分上行 RLC PDIL 宏基站向微基站发送第二部分上行 RLC PDIL 由微基 站对两部分 RLC PDU进行重组以及后续处理后发送给 SGW。
应理解, 上述各过程的序号的大小并不意味着执行顺序的先后, 各过程 的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。
本发明实施例中, 通过宏基站作为用户面锚点, 使得宏基站和微基站能 够共同与 UE传输数据, 从而能够提高 UE的峰值速率和吞吐量。
此外, UE也无需在宏基站和微基站之间进行切换, 也能够避免由于切 换造成的业务时延或中断。
图 9是根据本发明实施例的控制面协议栈的一个例子的示意图。
图 9的控制面协议栈的例子可以适用于上述图 5至图 8的例子。 H殳初 始时, UE与宏基站已经建立了 RRC连接, 控制面功能由宏基站提供, 控制 面消息传输均在宏基站与 UE之间, 对于信令无线承载 (Signaling Radio Bearer, SRB ) 的数据不进行分流。 宏基站与微基站之间控制面相关的信令 传输可以通过宏基站与微基站之间的 X2接口或者直接连接进行。 应理解, 虽然图 9中以 SRB不分流为例进行说明的, 但本发明实施例中, SRB的数 据也可以进行分流。
如图 9所示, 宏基站和 UE的 RRC、 PDCP、 RLC、 MAC, PHY层之间 的连线表示宏基站和 UE之间的无线接口上对等协议层的逻辑连接, 表示发 送端在各协议层所发送的数据在接收端对等协议层经过处理后组成与发送 端相同格式和内容的数据。
对于宏基站和 UE的通信,控制面数据传输过程可以如下:在发送端侧, RRC消息经过 PDCP、 RLC、 MAC, PHY各协议层处理后, 通过无线接口 发送给接收端, 接收端通过无线接口接收到的控制面数据首先经过 PHY层 处理, 再依次递交给 MAC、 RLC、 PDCP和 RRC层进行处理。 应理解, 此 处发送端为宏基站, 那么接收端就是 UE。 发送端为 UE, 那么接收端就是宏 基站。
微基站与 UE之间可以没有控制面数据的传输。
应注意,虽然图 9的例子中,以宏基站提供控制面功能为例进行说明的。 但本发明实施例中, 也可以由宏基站和微基站共同提供控制面功能, 例如处 于宏基站和微基站共同覆盖区域的 UE在初始时与宏基站、微基站均有 RRC 连接的情况下, 可以由宏基站和微基站共同提供控制面功能。
图 10是根据本发明实施例的用户面协议栈的一个例子的示意图。
在图 10中, 假设宏基站为用户面锚点, 宏基站由 2个 DRB需要进行分 流。 1 )宏基站的用户面协议栈描述如下:
在宏基站侧,待分流的 DRB为 DRB1和 DRB2,建立 DRB1对应的 PDCP 实体 PDCP1、 RLC实体 RLC1、逻辑信道 LCH1;建立 DRB2对应的 PDCP2、 RLC2、 LCH2; 逻辑信道位于 RLC层和 MAC层之间, LCH1和 LCH2未在 图 10中示出。 假设宏基站中参与聚合的载波为 CC1 , 对应的小区为主小区 ( Primary Cell, PCell ), PCell设置一个 MAC层 MAC1和一个 PHY层 PHY1 , 在 MAC层设置一个 HARQ实体 HARQ1。 DRB1对应的 LCH1和 DRB2对 应的 LCH2 均通过 MAC 层映射到下行共享传输信道(Downlink Share Channel, DL-SCH ) DL-SCH1或上行共享传输信道( Uplink Shared Channel, UL-SCH ) UL-SCH1 , 传输信道位于 MAC层和 PHY层之间, DL-SCH1和 UL-SCH1未在图 10中示出。
宏基站和 UE的 PDCP、 RLC, MAC, PHY之间的连线表示宏基站和 UE之间的无线接口上对等协议层的逻辑连接, 表示发送端在各协议层所发 送的数据在接收端对等协议层经过处理后组成与发送端相同格式和内容的 数据。其中宏基站的 DRB1对应于 UE的 DRB1 ,相应的,宏基站中的 PDCP1 和 RLC1对应于 UE的 PDCP1和 RLC1; 宏基站中的 PDCP2和 RLC2对应 于 UE的 PDCP2和 RLC2。
宏基站和微基站之间在 RLC层的连线表示数据分流在 RLC层进行, 宏 基站的 RLC1和 RLC2分别对应于微基站的 RLC1和 RLC2。
对于宏基站和 UE的通信, 用户面数据传输过程可以如下:
对于下行数据, 来自 SGW的网络协议(Internet Protocol, IP )数据包 在宏基站经过 PDCP、 RLC, MAC, PHY各协议层处理后经过无线接口发送 给 UE。 UE可以将通过无线接口接收到的数据首先经过 PHY层处理, 再依 次递交给 MAC、 RLC和 PDCP层处理。
对于上行数据, UE把来自应用层的 IP数据包经过 PDCP、 RLC, MAC,
PHY各协议层处理后经过无线接口发送给宏基站。宏基站将通过无线接口接 收到的数据首先经过 PHY层处理,再依次递交给 MAC, RLC和 PDCP层处 理。
2 ) 基站的用户面协议栈描述如下:
在微基站侧, 相应的, 待分流的 DRB为 DRB1和 DRB2, 分别用于分 流宏基站的 DRB1和 DRB2的数据, 分流在 RLC层进行。 微基站的 RLC层 提供发送緩沖区和重传緩沖区, 并可以支持 RLC PDU重分段功能。 DRB1 设置对应的 RLC实体 RLC1和逻辑信道 LCH1; DRB2设置对应的 RLC2和 LCH2; 逻辑信道位于 RLC层和 MAC层之间, LCH1和 LCH2未在图 10中 示出。 基站中参与聚合的载波为 CC2, 对应的小区为辅小区 (Secondary Cell, SCell ), SCell设置一个 MAC层 MAC2和一个 PHY层 PHY2,在 MAC 层设置一个 HARQ实体 HARQ2。 DRB1的逻辑信道和 DRB2的逻辑信道均 通过 MAC层映射到传输信道 DL-SCH2或 UL-SCH2, 传输信道位于 MAC 层和 PHY层之间, DL-SCH2和 UL-SCH2未在图 10中示出。
微基站和 UE的 RLC、 MAC以及 PHY之间的连线表示微基站和 UE之 间的无线接口上对等协议层的逻辑连接,表示发送端在各协议层所发送的数 据在接收端对等协议层经过处理后组成与发送端相同格式和内容的数据。其 中微基站的 DRB1对应于 UE的 DRB1 ,相应的,微基站的 RLC1对应于 UE 的 RLC1; 微基站的 RLC2对应于 UE的 RLC2。
宏基站和微基站之间在 RLC层的连线表示数据分流在 RLC层进行, 宏 基站的 RLC1和 RLC2分别对应于微基站的 RLC1和 RLC2。
对于微基站和 UE的通信, 用户面数据传输过程可以如下:
对于下行数据, 微基站可以将来自宏基站的 RLC PDU存储在对应 RLC 实体的发送緩沖区等待调度, 经过 RLC、 MAC和 PHY各协议层处理后经过 无线接口发送给 UE。如果在 RLC PDU首次发送时由于无线资源限制不能发 送完整的 RLC PDU, 可以对 RLC PDU进行分段处理; 应注意这种情况下的 分段是按照现有协议对 RLC PDU的重分段方式处理, 而不是按现有协议对 RLC SDU分段的方式处理。 UE可以将通过无线接口接收到的数据首先经过 PHY层处理, 再递交给 MAC、 RLC和 PDCP层进行处理。
对于上行数据, UE可以把来自应用层的 IP数据包经过 PDCP、 RLC, MAC和 PHY各协议层处理后经过无线接口发送给微基站。微基站通过无线 接口接收到的数据首先经过 PHY层处理, 再依次递交给 MAC和 RLC, 在 RLC层组成 RLC PDU经过 X2接口发送给宏基站对应的 RLC实体。
3 ) UE的用户面协议栈描述如下:
在 UE侧, DRB为 DRB 1和 DRB2 ,建立 DRB 1对应的 PDCP实体 PDCP1、 RLC实体 RLC1和逻辑信道 LCH1; 建立 DRB2对应的 PDCP2、 RLC2和 LCH2; 逻辑信道位于 RLC层和 MAC层之间, LCH1和 LCH2未在图 10中 示出。 UE 可以配置一个 MAC 层, 包含一个复用 /解复用实体 ( multiplexing/demultiplexing ), 该实体未在图 10中示出。 在复用 /解复用实 体之后, 配置两个 HARQ实体 HARQ1和 HARQ2, 分别对应于 UE所聚合 的宏基站的 PCell和微基站的 SCell。 PCell配置一个 PHY层 PHY1 , SCell 配置一个 PHY层 PHY2, 分别与 MAC层的 HARQ1和 HARQ2所对应。
DRB1的逻辑信道和 DRB2的逻辑信道均通过 MAC层映射到传输信道 DL-SCH1或 UL-SCH1 , 或 DL-SCH2或 UL-SCH2, 传输信道位于 MAC层 和 PHY层之间, DL-SCH1、 UL-SCH1、 DL-SCH2和 UL-SCH2未在图 10 中示出。
UE和宏基站、微基站的通信方法与上述宏基站和微基站侧的描述类似, 为了避免重复, 此处不再赘述。
在上述图 9的控制面协议栈和图 10的用户面协议栈中, 层 2 ( Layer2 ) 可以包括 PDCP层、 RLC层和 MAC层。
图 11是根据本发明实施例的宏基站的协议栈中层 2的结构示意图。 如图 11 所示, PDCP 层主要功能可以包括头压缩 (Robust Header
Compression, ROHC )和安全( security )等, 安全功能可以包括完整性保护 ( integrity protection )和力口密 ( cyphering )。
RLC 层主要功能可以包括分段、 重分段和自动重传请求 (Automatic Retransmission Request, ARQ )等。
MAC层主要功能可以包括调度 /优先级处理、 复用 /解复用和 HARQ等。 在 PDCP 层和上层应用层之间的服务接入点 (Service Access Point, SAP ), PDCP层和 RLC层之间的 SAP提供 RB。 RLC层和 MAC层之间的 SAP提供 LCH。 MAC 层和物理层之间的 SAP提供传输信道(Transport Channel ) , 传输信道可以包括 DL-SCH和 UL-SCH。
宏基站可以为 UE提供 PCell, 其 MAC层可以设置 1个 HARQ实体。 图 12是根据本发明实施例的微基站的协议栈中层 2的结构示意图。 在图 12中, 以从 RLC层对 DRB分流为例说明。在微基站不设置 PDCP 实体和对应的功能。 微基站的 RLC层可以相当于宏基站 RLC层的延伸, 提 供 RLC层部分功能, 不需要提供全部 RLC功能。
微基站接收宏基站的 RLC层通过 X2接口或直接连接发送的 RLC PDU, 存储在微基站的 RLC层的发送緩沖区中。 微基站还可以接收宏基站的 RLC 层通过 X2接口或直接连接发送的 RLC状态报告, 并根据 RLC状态报告将 需要重传的 RLC PDU重传给 UE。 微基站可以接收 UE发送的 RLC PDU, 存储在微基站的 RLC层的接收緩沖区, 并转发给宏基站。
MAC层的功能与图 11中的宏基站 MAC层的功能类似,为了避免重复, 此处不再赘述。
微基站可以为 UE提供 SCell, 其 MAC层设置 1个 HARQ实体。
图 13是根据本发明实施例的 UE的协议栈中层 2的结构示意图。
在图 13中, UE的 PDCP、 RLC和 MAC层的功能与图 11中的宏基站的 对应协议层功能类似, 为了避免重复, 此处不再赘述。
UE的 MAC层可以配置 2个 HARQ实体,分别对应于宏基站提供的 CC1 和微基站提供的 CC2。 相应地, CC1上的 HARQ实体可以映射到 CC1上的 DL-SCH和 UL-SCH, CC2上的 HARQ实体可以映射到 CC2上的 DL-SCH 和 UL-SCH。 UE的逻辑信道 LCH1和 LCH2可以映射到 CC1上的 DL-SCH 和 UL-SCH, 或者 CC1上的 DL-SCH和 UL-SCH。
应注意, 如果宏基站和 /或微基站分别提供更多的 CC, 例如宏基站和微 基站分别提供两个 CC, 则可以在宏基站的层 2结构中的 MAC层设置两个 HARQ实体, 分别对应于宏基站所提供的两个 CC, PDCP和 RLC层的结构 与图 11中的 PDCP和 RLC层的结构相同。 微基站的层 2结构中的 MAC层 可以设置两个 HARQ实体, 分别对应于 基站所提供的两个 CC, RLC层的 结构与图 12中的 RLC层的结构相同。
而 UE的层 2结构中 MAC层可以设置四个 HARQ实体, 分别对应于宏 基站所提供的两个 CC和微基站所提供的两个 CC。
下面将结合上述图 10的用户面协议栈详细描述本发明实施例的下行方 向的数据传输过程。 图 14是根据本发明实施例的传输数据的方法的过程的 示意性流程图。 在图 14中, 将详细描述图 6的步骤 611中下行方向的数据 传输过程。
1401 , 宏基站生成下行 PDCP PDU, 并递交给 RLC层。
宏基站将来自 SGW的下行 IP数据包作为 PDCP SDU,经过 PDCP层头 压缩、 加密以及增加 PDCP序列号 (Sequence Number, SN )等处理后生成 PDCP PDU, PDCP PDU递交给 RLC层作为在 RLC SDU。 宏基站将 PDCP1 中 PDCP PDU递交给 RLC1 , 将 PDCP2中的 PDCP PDU递交给 RLC2。 1402, 宏基站确定由宏基站负责下发的第一部分下行 RLC PDU和由微 基站负责下发的第二部分下行 RLC PDU。
宏基站可以根据事先确定或协商的 DRB分流策略和 QoS参数配置, 确 定待分流数据量,即哪些下行 RLC SDU分流到宏基站和哪些下行 RLC SDU 分流到微基站。
对于由宏基站负责的下行 RLC SDU, 宏基站的 MAC层可以根据 QoS 需求和宏基站无线资源情况确定某个传输时间间隔 ( Transmission Time Interval, TTI )可以调度的数据量, 指示 RLC层将要生成的下行 RLC PDU 大小; MAC层可以指示 RLC层将要生成的一个或多个下行 RLC PDU的总 尺寸; RLC层可以根据 MAC层所指示的下行 RLC PDU大小, 对下行 RLC SDU进行分段、 级联和增加 RLC SN等头信息处理后, 生成第一部分下行 RLC PDIL宏基站中的 RLC1和 RLC2可以分别生成不同的下行 RLC PDU。 在某个 ΤΉ, 在 RLC1和 RLC2均可以分别生成一个或多个不同的下行 RLC PDU, 也可以仅由 RLC1或 RLC2生成一个或多个不同的下行 RLC PDU。
对于将要分流到微基站的下行 RLC SDU,宏基站的 MAC层可以根据分 流决策和 QoS需求, 确定某个 ΤΉ可以分流到微基站的数据量, 从而指示 RLC层将要生成的下行 RLC PDU大小; MAC层可以指示 RLC层将要生成 的一个或多个下行 RLC PDU的总尺寸; RLC层可以根据 MAC层指示的下 行 RLC PDU大小, 对下行 RLC SDU进行分段、 级联和增加 RLC SN等头 信息处理后, 生成第二部分下行 RLC PDIL 在某个 TTI, RLC1和 RLC2均 可以分别生成一个或多个不同的待分流到微基站的 RLC PDU, 也可以仅由 RLC1或 RLC2生成一个或多个不同的待分流到微基站的下行 RLC PDU。
1403, 宏基站向 UE发送第一部分下行 RLC PDIL
宏基站的 RLC层可以将生成的第一部分下行 RLC PDU递交给宏基站的 MAC层作为 MAC SDU, 与本逻辑信道和 /或其它逻辑信道的 MAC SDU进 行复用 (multiplexing )处理后, 生成 MAC PDU或称为传输块(Transport Block, TB ) , RLC1和 RLC2中的第一部分下行 RLC PDU可以复用在同一 个 TB中。 TB被递交给宏基站的 PHY层后, 由 PHY层在 PCell上的物理下 行共享信道 ( Physical downlink shared channel, PDSCH )上发送给 UE。
1404, 宏基站向微基站发送第二部分下行 RLC PDIL
宏基站可以通过宏基站和微基站之间的 X2接口或直接连接将第二部分 下行 RLC PDU给微基站。
1405, 微基站准备下发第二部分下行 RLC PDU。
微基站接收到宏基站的 RLC1的第二部分下行 RLC PDU后, 可以将其 存储在微基站 RLC1的发送緩沖区。 微基站接收到宏基站的 RLC2的第二部 分下行 RLC PDU后, 可以将其存储在微基站 RLC2的发送緩沖区。
微基站的 MAC层根据分流决策和 QoS需求,确定某个 ΤΉ可以调度的 数据量, 指示 RLC层将要生成的下行 RLC PDU大小。
MAC层可以向 RLC层指示一个或多个下行 RLC PDU的总尺寸。 MAC 层可以向 RLC层指示原始的下行 RLC PDU尺寸, 意味着将存储在 RLC发 送緩沖区的一个或多个原始下行 RLC PDU 不做任何处理而直接递交给 MAC层作为 MAC SDU。或者 MAC层可以向 RLC层指示小于原始下行 RLC PDU尺寸的总下行 RLC PDU尺寸, 意味着对原始下行 RLC PDU重分段后 生成下行 RLC PDU 片段(Segment )递交给 MAC层, 在 RLC层不另外添 力口 RLC SN。
微基站的 RLC层不需要支持 RLC PDU级联功能。应注意,在某个 TTI, 在 RLC1和 RLC2均可以分别把一个或多个不同的原始下行 RLC PDU或下 行 RLC PDU片段递交给 MAC层,仅有最后一个下行 RLC PDU可以为下行 RLC PDU片段, 也可以仅由 RLC1或 RLC2将下行 RLC PDU递交给 MAC 层。
微基站可以提高处于基站间 CA场景下的 UE的优先级, 以保证分流数 据所需的无线资源,从而能够分配足够的下行资源发送分流到微基站的原始 的第二部分下行 RLC PDIL 或者, 如果由于无线接口资源限制, 分配给 UE 的无线资源无法容纳原始的第二部分下行 RLC PDU, 则在微基站的 RLC层 需要对原始的第二部分下行 RLC PDU进行重分段处理。
1406, 微基站向 UE发送第二部分下行 RLC PDIL
基站的 RLC层可以将原始的第二部分下行 RLC PDU或对第二部分下 行 RLC PDU进行重分段后的下行 RLC PDU片段递交给微基站的 MAC层作 为 MAC SDU,与本逻辑信道和 /或其它逻辑信道的 MAC SDU进行复用处理 后, 生成 MAC PDU或称为 TB , 其中 RLC1和 RLC2中的下行 RLC PDU可 以复用在同一个 TB中。 TB被递交给微基站的 PHY层后,由 PHY层在 SCell 上的 PDSCH上发送给 UE。 微基站可以按 RLC SN升序发送下行 RLC PDU。 对于 RLC AM, 微基 站不需要维护 RLC AM发送窗口。
1407 , UE接收第一部分下行 RLC PDU和第二部分下行 RLC PDU, 对 第一部分下行 RLC PDU和第二部分下行 RLC PDU进行重组, 以组成下行 RLC SDU。
UE接收 PCell的 PDSCH和 SCell的 PDSCH上的物理层数据后, 分别 在 PHY1和 PHY2处理成功后将对应的 TB递交给 MAC层对应的 HARQ1 和 HARQ2, MAC层把 TB分别解复用后将 MAC SDU即 RLC PDU递交给 对应的 RLC实体 RLCl和 RLC2。 UE的 RLC层可以不按照 PCell和 SCell 区分, 只按照 DRB区分为 RLC1、 RLC2, MAC层的 HARQ实体和 PHY层 可以按照不同的服务小区进行区分, 对于 UE的 RLC层而言是透明的。
UE的 RLC层可以在接收 MAC层递交的 RLC PDU后, RLC1和 RLC2 可以根据 RLC模式是 RLC UM或 RLC AM(每个 RLC实体为其中两种 RLC 模式之一)执行对应的 RLC PDU接收过程,将接收成功的 RLC PDU按 RLC SN升序, 组成 RLC SDU, 递交给 PDCP层。
应理解, 上述各过程的序号的大小并不意味着执行顺序的先后, 各过程 的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。 例如, 步骤 1403可以与步骤 1404至步骤 1406并行地执行, 或者可以先执行步骤 1404, 后执行步骤 1403。
在第一部分下行 RLC PDU和第二部分下行 RLC PDU的传输过程中, 由于通信状况, 可能会出现需要重传的情况, 下面将结合图 15和图 16详细 描述数据重传的过程。
图 15是根据本发明实施例的下行数据重传过程的示意性流程图。
在图 15中, 将详细描述图 14中对于 RLC AM, 下行 RLC PDU的重传 过程。
1501 , UE接收第一部分下行 RLC PDU和第二部分下行 RLC PDU, 根 据第一部分下行 RLC PDU和第二部分下行 RLC PDU的接收状况, 生成第 一 RLC状态报告。
应注意, UE可以根据 RLC1的第一部分下行 RLC PDU和第二部分下行 RLC PDU的接收状况, 生成 RLC1对应的第一 RLC状态报告, 并可以根据 RLC2的第一部分下行 RLC PDU和第二部分下行 RLC PDU的接收状况,生 成 RLC2对应的第一 RLC状态报告。
1502, UE向宏基站发送第一 RLC状态报告。
UE可以分别向宏基站发送 RLC1对应的第一 RLC状态报告和 RLC2对 应的第一 RLC状态报告。
1503,在第一 RLC状态报告指示第一部分下行 RLC PDU中需要重传的
RLC PDU时,宏基站向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。 在第一 RLC状态报告中指示 UE确认接收成功的 RLC PDU时, 宏基 站更新 RLC AM发送窗口和对应的状态变量, 以继续发送新的 RLC PDU。
结合图 10以及图 14,宏基站的 RLC1、 RLC2可以分别根据对应的第一 RLC状态报告判断第一部分下行 RLC PDU中的哪些 RLC PDU需要进行重 传( retransmission ), 以及第二部分下行 RLC PDU中的哪些 RLC PDU需要 微基站进行重传。
宏基站的 RLC1和 RLC2可以分别向 UE重传各自对应的第一部分下行 RLC PDU中需要重传的 RLC PDU。
1504,在第一 RLC状态 告指示第二部分下行 RLC PDU中需要重传的
RLC PDU时, 宏基站向微基站发送第一 RLC状态报告或者重传消息。
宏基站可以通过 X2接口或直接连接向微基站发送第一 RLC状态报告。 宏基站也可以根据第一 RLC状态报告, 生成重传消息, 重传消息可以 指示第二部分下行 RLC PDU中需要重传的 RLC PDU。
1505,微基站根据第一 RLC状态报告或者重传消息,向 UE重传第二部 分下行 RLC PDU中需要重传的 RLC PDU。
结合图 10和图 14, 微基站的 RLC1、 RLC2可以分别根据对应的第一 RLC状态报告判断各自对应的第二部分下行 RLC PDU中的哪些 RLC PDU 需要进行重传。 微基站的 RLC1和 RLC2可以分别向 UE重传各自对应的第 二部分下行 RLC PDU中需要重传的 RLC PDU。
对于第二部分下行 RLC PDU中需要重传的 RLC PDU,如果微基站重传 的次数到达预定次数但尚未到达最大重传次数, 则微基站可以通知宏基站进 行重传。 微基站可以把待重传的第二部分下行 RLC PDU发送给宏基站, 或 者宏基站对于分流到微基站的第二部分下行 RLC PDU中每个 RLC PDU都 在重传緩沖区中保留一个备份, 微基站直接通知宏基站第二部分下行 RLC PDU中需要重传的 RLC PDU SN即可。 或者,宏基站接收到 UE的第一 RLC状态报告,宏基站对于判断需要微 基站重传且已经在微基站重传次数到达预定次数但尚未到达最大重传次数 的情况, 宏基站可以进行重传。 这种情况, 宏基站可以通知微基站把相关的 需要重传的 RLC PDU回传给宏基站, 或者宏基站对于分流到微基站的第二 部分下行 RLC PDU中每个 RLC PDU都在重传緩沖区中保留一个备份; 宏 基站决定自己进行重传的情况下, 在发送给微基站的第一 RLC状态报告中 将对应的需要重传的 RLC PDU 的状态 ^ίι爹改为确认状态 (Acknowledge, ACK )。
应理解, 上述各过程的序号的大小并不意味着执行顺序的先后, 各过程 的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。 例如, 步骤 1503可以与步骤 1504至步骤 1505并行地执行, 或者可以先执行步骤 1504和步骤 1505, 后执行步骤 1503。
在图 15中, UE可以向宏基站发送第一 RLC状态报告。 此外, UE还可 以向微基站发送第一 RLC状态报告。 下面将结合图 16进行描述。
图 16是根据本发明实施例的下行数据重传过程的示意性流程图。
在图 16中, 将详细描述图 14中对于 RLC AM, 下行 RLC PDU的重传 过程。
1601 , UE根据第一部分下行 RLC PDU和第二部分下行 RLC PDU的接 收状况, 生成第一 RLC状态报告。
应注意, UE可以根据 RLC1的第一部分下行 RLC PDU和第二部分下行
RLC PDU的接收状况, 生成 RLC1对应的第一 RLC状态报告, 并可以根据 RLC2的第一部分下行 RLC PDU和第二部分下行 RLC PDU的接收状况,生 成 RLC2对应的第一 RLC状态报告。
1602, UE向微基站发送第一 RLC状态报告。
如果 SCell有上行资源, UE可以向微基站发送第一 RLC状态报告。
1603,在第一 RLC状态报告指示第二部分下行 RLC PDU中需要重传的 RLC PDU时,微基站向 UE重传第二部分下行 RLC PDU中需要重传的 RLC PDU。
结合图 10和图 14, 微基站的 RLC1、 RLC2可以分别根据对应的第一 RLC状态报告判断各自对应的第二部分下行 RLC PDU中的哪些 RLC PDU 需要进行重传。 微基站的 RLC1和 RLC2可以分别向 UE重传各自对应的第 二部分下行 RLC PDU中需要重传的 RLC PDU。
1604, 微基站向宏基站发送第一 RLC状态报告。
1605, 宏基站根据第一 RLC状态报告, 向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。
在第一 RLC状态报告指示第一部分下行 RLC PDU中需要重传的 RLC
PDU时,宏基站向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。
在第一 RLC状态报告中指示 UE确认接收成功的 RLC PDU时, 可以使 第一基站更新 RLC AM发送窗口和对应的状态变量, 以继续发送新的 RLC PDU。
结合图 10和图 14, 宏基站的 RLC1、 RLC2可以分别根据对应的第一
RLC状态报告判断各自对应的第一部分下行 RLC PDU中的哪些 RLC PDU 需要进行重传。 宏基站的 RLC1和 RLC2可以分别向 UE重传各自对应的第 一部分下行 RLC PDU中需要重传的 RLC PDU。对于第二部分下行 RLC PDU 中需要重传的 RLC PDU, 如果微基站重传的次数到达预定次数但尚未到达 最大重传次数, 可以按照图 15 中描述的方法进行处理。 为了避免重复, 此 处不再赘述。
结合图 15和图 16,应理解, UE可以分别向宏基站发送 RLC1对应的第 一 RLC状态报告, 向微基站发送 RLC2对应的第一 RLC状态报告; 或者 UE可以分别向微基站发送 RLC1对应的第一 RLC状态报告, 向宏基站发送 RLC2对应的第一 RLC状态报告。
应理解, 上述各过程的序号的大小并不意味着执行顺序的先后, 各过程 的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。 例如, 步骤 1603可以与步骤 1604至步骤 1605并行地执行, 或者可以先执行步骤 1604和步骤 1605, 后执行步骤 1603。
下面将结合上述图 10的用户面协议栈详细描述本发明实施例的上行方 向的数据传输过程。 图 17是根据本发明实施例的传输数据的方法的过程的 示意性流程图。 在图 17中, 将详细描述图 6的步骤 611中上行方向的数据 传输过程。
1701 , UE向宏基站发送緩沖区状态报告 ( Buffer Status Report, BSR )。 在宏基站有可用上行资源时, UE可以向宏基站发送 BSR。
应注意, 在步骤 1701中, UE还可以在微基站有可用上行资源时, 向微 基站发送 BSR。
在某个 ΤΉ, UE至多可以发送一个常规 BSR ( regular BSR )或周期性 BSR ( periodic BSR )类型的 BSR。 如果宏基站和微基站在某个 ΤΉ均为 UE 分配了上行授权, 则 UE只能发送一个常规 BSR或周期性 BSR给宏基站或 者微基站, 而不能同时发送给宏基站和微基站。
BSR反映了某个 ΤΉ生成 MAC PDU之后 UE的各逻辑信道组 ( Logical Channel Group, LCG )中所有逻辑信道的可用数据量, 通常最多有 4个逻辑 信道组。 BSR中每个 LCG中的緩沖区大小级别( buffer size level )的确定有 两种方式, 包括 BSR和扩展 BSR,其中 BSR或扩展 BSR可以由 RRC配置。
BSR格式可以分为长 BSR ( long BSR ), 短 BSR ( short BSR )或截短
BSR ( truncated BSR )„ 长 BSR可以包含 4个 LCG的緩沖区数据量, 每个逻 辑信道组对应的緩沖区尺寸(buffer size )包含该逻辑信道组中所有逻辑信道 中的可用数据总量, 包含 RLC层和 PDCP层的待发送数据量。
BSR或扩展 BSR的类型可以分为常规 BSR、 周期性 BSR和填充 BSR ( padding BSR )„ 例如, 当高优先级逻辑信道有上行数据到达时, 触发常规 BSR。 当周期性 BSR定时器超时时, 触发周期性 BSR。 当 UE所分配的上行 资源在容纳 MAC SDU后还有填充位( padding bit ) , 则可以在填充位中携带 填充 BSR。 常规 BSR和周期性 BSR的优先级高于填充 BSR。
1702, 宏基站根据 BSR为 UE分配上行资源。
宏基站可以根据事先确定或协商的 DRB分流策略和 QoS参数配置, 决 定待分流数据量。根据分流到本基站的数据量、无线条件或者 QoS参数等为 UE分配上行资源。
1703, 宏基站向 UE发送第一上行授权(UL grant )信息, 第一上行授 权信息指示宏基站为 UE分配的上行资源。
宏基站在为 UE 分配上行资源后, 通过物理下行控制信道(Physical downlink control channel, PDCCH ) 向 UE发送第一上行授权信息。
1704, 宏基站向微基站发送 BSR。
宏基站可以通过 X2接口或直接连接向微基站转发 BSR。
此外, 宏基站也可以根据需分流到微基站的数据量修改 BSR 中相应逻 辑信道组的緩沖区数据量, 并把修改后的 BSR发送给微基站。 宏基站可以 在上述 X2接口消息中指示所发送的 BSR是原始 BSR还是修改后的 BSR, 或者预先协商好发送原始 BSR还是修改后的 BSR。
1705, 微基站根据 BSR为 UE分配上行资源。
如果微基站所接收到的 BSR为原始 BSR, 则可以根据预先确定或协商 的 DRB分流策略和 QoS参数配置, 确定微基站所应分流的数据量, 修改原 始 BSR中相应逻辑信道组的緩沖区数据量。
如果微基站所接收到的 BSR为修改后的 BSR, 则可以直接使用其中相 应逻辑信道组的緩沖区数据量, 并根据该緩沖区数据量、 无线条件和 QoS 参数等为 UE分配上行资源。
1706, 微基站向 UE发送第二上行授权信息, 第二上行授权信息指示微 基站为 UE分配的上行资源。。
微基站可以通过 PDCCH向 UE发送第二上行授权信息。
1707, UE根据第一上行授权信息和第二上行授权信息, 确定每个逻辑 信道待发送数据量。
UE可以按照逻辑信道优先级处理过程, 根据第一上行授权信息和第二 上行授权信息确定每个逻辑信道在 PCell和 /或 SCell的上行授权上待发送数 据量。 由 MAC向 RLC1和 /或 RLC2指示上行 RLC PDU尺寸。 MAC层可以 指示 RLC层将要生成的一个或多个上行 RLC PDU的总尺寸。
1708, UE生成上行 RLC PDIL
UE的 RLC层可以根据 MAC层指示的上行 RLC PDU大小,对上行 RLC SDU进行分段、级联和增加 RLC SN等头信息处理后, 生成上行 RLC PDU。 RLCl和 RLC2分别生成不同的上行 RLC PDU。在某个 TTI,在 RLC1和 RLC2 均可以分别生成一个或多个不同的上行 RLC PDU, 也可以仅由 RLC1 或 RLC2生成上行 RLC PDU。
1709, UE在 PCell上向宏基站发送上行 RLC PDU中的第一部分上行 RLC PDU。
UE的 RLCl和 RLC2可以将根据 MAC指示生成的上行 RLC PDU递交 给 MAC, 将其作为上行 MAC SDIL
在 MAC对所述上行 MAC SDU和本逻辑信道和 /或其它逻辑信道的上行 MAC SDU进行复用处理后,生成上行 MAC PDU或称为 TB。 RLCl和 RLC2 中的 RLC PDU可以复用在同一个 TB中。 MAC针对 HARQ1生成的 TB递 交给 PHY1 , 由 PHY1在 PCell的物理上行共享信道 ( Physical uplink shared channel, PUSCH )上发送给宏基站。
1710, UE在 Scell上向微基站发送上行 RLC PDU中的第二部分上行 RLC PDU。
UE的 MAC针对 HARQ2生成的 TB递交给 PHY2, 由 PHY2在 SCell 的 PUSCH上发送给微基站。
1711 , 微基站向宏基站发送第二部分上行 RLC PDIL
微基站将在 SCell的 PUSCH上接收到的数据, 经过 PHY2、 MAC2处理 后将 MAC SDU即 RLC PDU递交给 RLCl和 RLC2 ,并存储在 RLCl和 RLC2 对应的接收緩沖区。对于 RLC AM,微基站不需要维护 RLC AM接收窗口以 及执行重排序 (re-ordering ) 功能。
微基站可以通过 X2或直接连接向宏基站发送第二部分上行 RLC PDU。 宏基站接收来自微基站的 RLC PDU并存储在对应 RLCl、 RLC2的接收 緩沖区。
1712, 宏基站接收第一部分上行 RLC PDU和第二部分上行 RLC PDU, 对第一部分上行 RLC PDU和第二部分上行 RLC PDU进行重组。
宏基站可以将 PCell的 PUSCH上从 UE接收到的数据, 经过 PHY1、 MAC1 处理后将 MAC SDU 即第一部分上行 RLC PDU递交给 RLC1 和 RLC2, 并存储在 RLC1和 RLC2对应的接收緩沖区。
宏基站还可以将从微基站接收的第二部分上行 RLC PDU, 并存储在 RLC1和 RLC2对应的接收緩沖区。
宏基站可以根据 RLC1、 RLC2接收緩沖区中的综合接收情况, 重组第 一部分上行 RLC PDU和第二部分上行 RLC PDU,并按 RLC SN升序提交给 PDCP层。 RLC1和 RLC2可以根据 RLC模式是 RLC UM或 RLC AM (每个 RLC实体为其中两种 RLC模式之一)执行对应的 RLC PDU接收过程, 将 接收成功的上行 RLC PDU按 RLC SN升序递交给 PDCP层。
应注意, 在上述过程中, 如果 UE向 基站发送 BSR, 那么 基站可以 将接收到的 BSR转发给宏基站。
进一步地,由于宏基站或微基站均可以接收到 UE发送的 BSR和另一基 站发送的 BSR, 考虑到 X2接口的延迟, 如果宏基站或微基站在较短时间内 连续或同时接收到多个不同方向上发送的 BSR,则宏基站和微基站可能较难 判断哪一个 BSR是最新的。 为解决该问题, 在 UE发送的 BSR中可以加上 时间信息, 例如可以为时间戳 ( time stamp )信息或者 PCell或 SCell的系统 †贞号 ( System Frame Number, SFN )和子†贞号 ( subframe )信息。
此外, UE发送 BSR的方法也可以是:在某个 ΤΉ当宏基站提供的 PCell 和微基站提供的 SCell均分配有上行资源时, UE在 PCell和 SCell上同时发 送常规 BSR或周期性 BSR, 并在 BSR中指示是否需要转发的标志, 置该标 志为不需要转发。要求在 PCell和 SCell上所同时发送的 BSR对于相同 LCG 的緩沖区大小级别值相同。 在宏基站和微基站分别提供多个 CC的情况且在 某个 ΤΉ宏基站和微基站的多个 CC分配有上行资源时, 则 UE在宏基站的 所有 CC的上行资源中只能发送一个常规 BSR或周期性 BSR, 在微基站的 所有 CC的上行资源中只能发送一个常规 BSR或周期性 BSR。
在第一部分上行 RLC PDU和第二部分上行 RLC PDU的传输过程中, 由于通信状况, 可能会出现需要重传的情况, 下面将结合图 18和图 19详细 描述数据重传的过程。
图 18是根据本发明实施例的上行数据重传过程的示意性流程图。 在图 18中, 将详细描述图 17中对于 RLC AM, 上行 RLC PDU的重传过程。
1801 , 宏基站接收第一部分上行 RLC PDU和第二部分上行 RLC PDU, 根据第一部分上行 RLC PDU和第二部分上行 RLC PDU的接收状况, 生成 第二 RLC状态报告。
1802, 宏基站向 UE发送第二 RLC状态报告。
1803, UE根据第二 RLC状态报告, 确定上行重传集合。 上行重传集合 包括第一部分上行 RLC PDU 中需要重传的 RLC PDU和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。
UE可以根据第二 RLC状态报告, 在第二 RLC状态报告中指示宏基站 确认接收成功的 RLC PDU时, UE更新 RLC AM发送窗口和对应的状态变 量, 以继续发送新的 RLC PDIL
UE可以根据 PCell的第一上行授权信息和 /或 SCell上的第二上行授权 信息, 将上行重传集合划分为第一上行重传子集合和第二上行重传子集合, 并确定向宏基站重传第一上行重传子集合, 向微基站重传第二上行重传子集 合。
1804, UE向宏基站重传第一上行重传子集合的 RLC PDU。
1805, UE向微基站重传第二上行重传子集合的 RLC PDU。 图 19是根据本发明实施例的上行数据重传过程的示意性流程图。 在图 19中, 将详细描述图 17中对于 RLC AM, 上行 RLC PDU的重传过程。
图 19中的步骤 1901至步骤 1903与图 18中的步骤 1801至步骤 1803类 似, 为了避免重复, 此处不再赘述。
1904, UE向宏基站发送上行重传集合的 RLC PDIL
UE可以根据 PCell的第一上行授权信息和 /或 SCell上的第二上行授权 信息, 确定向宏基站重传全部需要重传的上行 RLC PDU。
图 20是根据本发明实施例的上行数据重传过程的示意性流程图。 在图 20中, 将详细描述图 17中对于 RLC AM, 上行 RLC PDU的重传过程。
图 20中的步骤 2001至步骤 2003与图 18中的步骤 1801至步骤 1803类 似, 为了避免重复, 此处不再赘述。
2004, UE向微基站发送上行重传集合的 RLC PDU。
UE可以根据 PCell的第一上行授权信息和 /或 SCell上的第二上行授权 信息, 确定向微基站重传全部需要重传的上行 RLC PDU。
2005, 微基站向宏基站发送上行重传集合的 RLC PDIL
微基站可以通过 X2接口或直接连接向宏基站发送需要重传的上行 RLC PDU。
图 21是根据本发明实施例的 RRC连接重建立的过程的示意性流程图。 在图 21 中, 第一基站可以为宏基站和 基站中的一个, 第二基站可以 为另一基站。
2101 , UE向宏基站发送 RRC连接重建立请求消息。
Failure, RLF )或 PCell上随机接入过程失败或 RRC连接重配置失败或完整 性检查失败或切换失败等情况下, UE可以进行小区选择, 在 PCell无线条 件较好的情况下, 仍然选择到 PCell。 那么, UE向宏基站发送 RRC连接重 建立请求消息,并初始化 RRC连接重建立过程,包括挂起( suspend )除 SRB0 之外的所有 RB、 复位 MAC、 使用默认物理信道配置、 使用默认 MAC层主 配置( MAC main configuration )等。 不同于现有技术, 在 RRC连接重建立 时, 可以不释放微基站提供的 SCell。
2102, 宏基站向 基站发送重建立通知消息。
该重建立通知消息可以包括 DRB相关参数, 并可以指示微基站挂起所 分流的 DRB。
2103, 微基站根据重建立通知消息, 挂起所分流的 DRB, 重配置 DRB 相关参数。
2104 , 宏 基 站 向 UE 发 送 RRC 连 接 重 建 立 ( RRCConnectionReestablishment ) 消息。
2105, UE根据 RRC连接重建立消息, 重建 SRB1的 PDCP实体和 RLC 实体、 执行无线资源配置过程以及恢复 SRB1等。
2106 , UE 向 宏 基 站 发 送 RRC 连 接 重 建 立 完 成 ( RRCConnectionReestablishmentComplete ) 消息。
2107, 宏基站向微基站发送 RRC连接重建立完成消息。
应理解, 上述各过程的序号的大小并不意味着执行顺序的先后, 各过程 的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。 例如, 步骤 2102可以与步骤 2103至步骤 2104并行地执行, 或者可以先执行步骤 2103和步骤 2104, 后执行步骤 2102。
图 22是根据本发明实施例的基站的示意框图。 图 22的基站 2200为上 述第一基站。 基站 2200包括生成单元 2201和发送单元 2202。
生成单元 2201生成 RLC PDUo发送单元 2202向 UE发送下行 RLC PDU 中的第一部分下行 RLC PDU,并向第二基站发送下行 RLC PDU中的第二部 分下行 RLC PDU, 以便由第二基站向 UE发送第二部分下行 RLC PDU。
本发明实施例中,通过向 UE发送下行 RLC PDU中的第一部分下行 RLC
PDU, 并向第二基站发送下行 RLC PDU中的第二部分下行 RLC PDU , 由第 二基站向 UE发送第二部分下行 RLC PDU,使得两个基站能够共同向 UE发 送数据, 从而能够提高 UE的峰值速率和吞吐量。
基站 2200的其它操作和功能可以参照上面图 2a至图 21的方法实施例 中涉及第一基站的过程, 为了避免重复, 此处不再赘述。
可选地, 作为另一实施例, 基站 2200还可以包括第一接收单元 2203。 第一接收单元 2203可以从 UE接收 UE生成的上行 RLC PDU中的第一 部分上行 RLC PDU, 并从第二基站接收上行 RLC PDU中的第二部分上行 RLC PDU , 其中第二部分上行 RLC PDU是第二基站从 UE接收的。
可选地, 作为另一实施例, 基站 2200还可以包括第二接收单元 2204。 第二接收单元 2204可以从 UE接收第一 RLC状态报告。发送单元 2202可以 在第一 RLC状态报告指示第一部分下行 RLC PDU中需要重传的 RLC PDU 时, 向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。
发送单元 2202还可以向第二基站转发第一 RLC状态报告, 第一 RLC 状态 告指示第二部分下行 RLC PDU中需要重传的 RLC PDU或者向第二 基站发送第一基站根据第一 RLC状态报告生成的重传消息, 重传消息指示 第二部分下行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 基站 2200还可以包括第三接收单元 2205和 第一确定单元 2206。
第三接收单元 2205可以从第二基站接收第一 RLC状态报告, 其中第一 RLC状态报告是第二基站从 UE接收的。
第一确定单元 2206可以根据第一 RLC状态 告, 确定第一部分下行 RLC PDU中需要重传的 RLC PDU;
发送单元 2202还可以向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 基站 2200还可以包括第四接收单元 2207。 生成单元 2201还可以根据第一部分上行 RLC PDU和第二部分上行 RLC PDU的接收状况, 生成第二 RLC状态报告。 发送单元 2202还可以向 UE发 送第二 RLC状态报告。
第四接收单元 2207可以接收 UE根据第二 RLC状态报告确定的上行重 传集合的 RLC PDU,上行重传集合包括第一部分上行 RLC PDU中需要重传 的 RLC PDU和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 第四接收单元 2207可以从 UE接收上行重 传集合的 RLC PDU; 或者从 UE接收第一上行重传子集合的 RLC PDU, 并 从第二基站接收第二上行重传子集合中的 RLC PDU, 其中第二上行重传子 集合的 RLC PDU是第二基站从 UE接收的, 第一上行重传子集合与第二上 行重传子集合是由 UE对上行重传集合划分得到的; 或者从第二基站接收上 传重传集合的 RLC PDU, 上行重传集合的 RLC PDU是第二基站从 UE接收 的。
可选地, 作为另一实施例, 发送单元 2202可以在基站 2200的第一小区 上向 UE发送第一部分下行 RLC PDU,并向第二基站发送第二部分下行 RLC PDU, 以便由第二基站在第二基站的第二小区上向 UE发送第二部分下行 RLC PDU, 其中第一小区与第二小区的覆盖范围有重叠。
可选地, 作为另一实施例, 基站 2200还可以包括第五接收单元 2208, 发送单元 2202还可以向第二基站发送第一请求消息, 第一请求消息用 于指示第二基站为 UE配置第二小区。
第五接收单元 2208可以从第二基站接收第一响应消息, 第一响应消息 携带第二基站根据第一请求消息确定的第二小区的资源信息。
发送单元 2202还可以向 UE发送无线资源控制 RRC连接重配置消息, RRC连接重配置消息携带第二小区的资源信息。
可选地, 作为另一实施例, 第一请求消息还可以用于指示第二基站为 UE建立 DRB。
可选地, 作为另一实施例, 基站 2200还可以包括第六接收单元 2209和 第二确定单元 2210。
第六接收单元 2209可以从第二基站接收第二请求消息, 第二请求消息 用于指示基站 2200为 UE配置第一小区。
第二确定单元 2210可以根据第二请求消息,确定第一小区的资源信息。 发送单元 2201还可以向第二基站发送第二响应消息, 第二响应消息携 带第一小区的资源信息, 以便第二基站向 UE通知第一小区的资源信息。
可选地, 作为另一实施例, 基站 2200还可以包括建立单元 2211。
第二请求消息还可以用于指示基站为 UE建立 DRB, 建立单元 2211可 以根据第二请求消息建立 DRB对应的 PDCP实体、 RLC实体和逻辑信道。
可选地, 作为另一实施例, 第二请求消息还可以用于指示由基站 2200 负责数据分流。
发送单元 2202还可以根据第二请求消息向 MME发送路径切换请求消 息, 以便 MME根据路径切换请求消息向服务网关请求将数据传输路径切换 为服务网关至基站 2200的路径。
可选的, 上述第一接收单元至第六接收单元可以为同一个接收单元或相 同的接收单元。 例如, 第一接收单元至第六接收单元的动作可通过一个接收 机完成。
图 23是根据本发明实施例的基站的示意框图。基站 2300为上述第二基 站。 基站 2300包括接收单元 2310和发送单元 2320。
接收单元 2310从第一基站接收第一基站生成的下行 RLC PDU中的第二 部分下行 RLC PDU。 发送单元 2320向 UE发送第二部分下行 RLC PDU。 本发明实施例中,通过向 UE发送第一基站生成的下行 RLCPDU中的第 二部分下行 RLC PDU, 能够提高 UE的峰值速率和吞吐量。
基站 2300的其它功能和操作可以参照上面图 2a至图 21的方法实施例 中涉及第二基站的过程, 为了避免重复, 此处不再赘述。
可选地,作为另一实施例,接收单元 2310还可以从 UE接收 UE生成的 上行 RLC PDU中的第二部分上行 RLC PDU。 发送单元 2320还可以向第一 基站发送第二部分上行 RLC PDU。
可选地, 作为另一实施例, 基站 2300还可以包括第一确定单元 2330。 接收单元 2310可以从第一基站接收第一 RLC状态报告, 第一确定单元
2330可以根据第一 RLC状态报告确定第二部分下行 RLC PDU中需要重传 的 RLC PDU, 发送单元 2320还可以向 UE重传第二部分下行 RLC PDU中 需要重传的 RLC PDU。
或者, 接收单元 2310还可以从第一基站接收重传消息, 发送单元 2320 还可以根据重传消息向 UE重传第二部分下行 RLC PDU中需要重传的 RLC PDU, 其中第一重传消息指示第二部分下行 RLC PDU 中需要重传的 RLC PDU。
可选地, 作为另一实施例, 接收单元 2310还可以从 UE接收第一 RLC 状态报告。 发送单元 2320还可以向第一基站转发第一 RLC状态报告, 用以 在第一 RLC状态报告指示第一部分下行 RLC PDU中需要重传的 RLC PDU 时, 第一基站可以向 UE重传第一部分下行 RLC PDU 中需要重传的 RLC PDU。 发送单元 2320还可以在第一 RLC状态报告指示第二部分下行 RLC PDU中需要重传的 RLC PDU时, 向 UE重传第二部分下行 RLC PDU中需 要重传的 RLC PDU。
可选地, 作为另一实施例, 接收单元 2310还可以从 UE接收上行重传 集合的 RLC PDU, 发送单元 2320还可以向第一基站发送上行重传集合的 RLC PDU, 上行重传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。
或者, 接收单元 2310还可以从 UE接收第二上行重传子集合的 RLC PDU, 发送单元 2320还可以向第一基站发送第二上行重传子集合的 RLC PDU, 第二上行重传子集合是 UE对上行重传集合划分得到的。 可选地, 作为另一实施例, 发送单元 2320可以在基站 2300的第二小区 上向 UE发送第二部分下行 RLC PDU。
可选地, 作为另一实施例, 基站 2300还可以包括第二确定单元 2340。 接收单元 2340还可以从第一基站接收第一请求消息, 第一请求消息用于指 示基站为 UE配置第二小区。
第二确定单元 2340可以根据第一请求消息确定第二小区的资源信息。 发送单元 2320还可以向第一基站发送第一响应消息, 第一响应消息携 带第二小区的资源信息, 以便第一基站向 UE通知第二小区的资源信息。
可选地, 作为另一实施例, 基站 2300还可以包括建立单元 2350。
第一请求消息还可以用于指示基站 2300为 UE建立 DRB。建立单元 2350 可以根据第一请求消息建立 DRB对应的 RLC实体和逻辑信道。
可选地, 作为另一实施例, 发送单元 2320还可以向第一基站发送第二 请求消息,第二请求消息用于指示第一基站为 UE配置第一基站的第一小区。 接收单元 2310还可以从第一基站接收第二响应消息, 第二响应消息携带第 一基站根据第二请求消息确定的第一小区的资源信息。 发送单元 2320还可 以向 UE发送无线资源控制 RRC连接重配置消息, RRC连接重配置消息携 带第一小区的资源信息。
可选地, 作为另一实施例, 第二请求消息还用于指示第一基站为 UE建 立 D亂
图 24是根据本发明实施例的 UE的示意框图。 UE 2400包括接收单元
2410和第一生成单元 2420。
接收单元 2410从第一基站接收第一基站生成的下行 RLC PDU中的第一 部分下行 RLC PDU, 并从第二基站接收下行 RLC PDU中的第二部分下行 RLC PDU, 其中第二部分下行 RLC PDU是第二基站从第一基站接收的。 第 一生成单元 2420对第一部分下行 RLC PDU和第二部分下行 RLC PDU进行 重组以组成下行 RLC SDU。
本发明实施例中, 通过 UE从第一基站接收下行 RLC PDU中的第一部 分下行 RLC PDU, 并从第二基站接收第二基站从第一基站获取的第二部分 下行 RLC PDU, 使得 UE能够和两个基站共同传输数据, 从而能够提高 UE 的峰值速率和吞吐量。
UE 2400的其它功能和操作可以参照上面图 2a至图 21的方法实施例中 涉及 UE的过程, 为了避免重复, 此处不再赘述。
可选地, 作为另一实施例, UE 2400还可以包括第一发送单元 2430。 第 一生成单元 2420可以生成上行 RLC PDU。 第一发送单元 2440可以向第一 基站发送上行 RLC PDU中的第一部分上行 RLC PDU,并向第二基站发送上 行 RLC PDU中的第二部分上行 RLC PDU。
可选地, 作为另一实施例, UE 2400还可以包括第二生成单元 2440和 第二发送单元 2450。
第二生成单元 2440可以根据第一部分下行 RLC PDU和第二部分下行 RLC PDU的接收状况, 生成第一 RLC状态报告, 第一 RLC状态报告指示 第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或第二部分下行 RLC PDU中需要重传的 RLC PDU。
第二发送单元 2450可以向第一基站或第二基站发送第一 RLC状态才艮 告。
接收单元 2410还可以从第一基站接收第一部分下行 RLC PDU中需要重 传的 RLC PDU和 /或从第二基站接收第二部分下行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, UE 2400还可以包括确定单元 2460和第三 发送单元 2470。
接收单元 2410还可以从第一基站接收第二 RLC状态报告。
确定单元 2460可以根据第二 RLC状态报告, 确定上行重传集合, 上行 重传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部 分上行 RLC PDU中需要重传的 RLC PDU。
第三发送单元 2470可以向第一基站发送上行重传集合的 RLC PDU, 或 者向第二基站发送上行重传集合的 RLC PDU, 或者向第一基站发送第一上 行重传子集合的 RLC PDU并向第二基站发送第二上行重传子集合的 RLC PDU, 其中第一上行重传子集合和第二上行重传子集合是 UE对上行重传集 合进行划分得到的。
可选地, 作为另一实施例, 接收单元 2410可以从第一基站的第一小区 接收第一部分下行 RLC PDU, 并从第二基站的第二小区接收第二部分下行 RLC PDU, 其中第一小区和第二小区的覆盖范围有重叠。
可选地, 作为另一实施例, 接收单元 2410还可以从第一基站接收无线 资源控制 RRC连接重配置消息, RRC连接重配置消息携带第二基站确定的 第二小区的资源信息。
可选地, 作为另一实施例, 接收单元 2410还可以从第二基站接收 RRC 连接重配置消息, RRC连接重配置消息携带第一基站确定的第一小区的资源 信息。
可选的, 上述第一发送单元至第三发送单元可以为同一个发送单元或相 同的发送单元。 例如, 第一发送单元至第三发送单元的动作可通过一个发射 机完成。
图 25是根据本发明实施例的基站的示意框图。 图 25的基站 2500为上 述第一基站。 基站 2500包括处理器 2510和发射器 2520。
处理器 2510生成 RLC PDU。发射器 2520向 UE发送下行 RLC PDU中 的第一部分下行 RLC PDU,并向第二基站发送下行 RLC PDU中的第二部分 下行 RLC PDU, 以便由第二基站向 UE发送第二部分下行 RLC PDU。
本发明实施例中,通过向 UE发送下行 RLC PDU中的第一部分下行 RLC PDU, 并向第二基站发送下行 RLC PDU中的第二部分下行 RLC PDU, 由第 二基站向 UE发送第二部分下行 RLC PDU,使得两个基站能够共同向 UE发 送数据, 从而能够提高 UE的峰值速率和吞吐量。
基站 2500的其它操作和功能可以参照上面图 2a至图 21的方法实施例 中涉及第一基站的过程, 为了避免重复, 此处不再赘述。
可选地, 作为另一实施例, 基站 2500还可以包括接收器 2530。
接收器 2530可以从 UE接收 UE生成的上行 RLC PDU中的第一部分上 行 RLC PDU, 并从第二基站接收上行 RLC PDU 中的第二部分上行 RLC PDU, 其中第二部分上行 RLC PDU是第二基站从 UE接收的。
可选地, 作为另一实施例, 接收器 2530可以从 UE接收第一 RLC状态 报告。 发射器 2520可以在第一 RLC状态报告指示第一部分下行 RLC PDU 中需要重传的 RLC PDU时,向 UE重传第一部分下行 RLC PDU中需要重传 的 RLC PDU。
发射器 2520还可以向第二基站转发第一 RLC状态报告, 第一 RLC状 态报告指示第二部分下行 RLC PDU中需要重传的 RLC PDU,或者向第二基 站发送第一基站根据第一 RLC状态报告生成的重传消息, 重传消息指示第 二部分下行 RLC PDU中需要重传的 RLC PDU。 可选地, 作为另一实施例, 接收器 2530可以从第二基站接收第一 RLC 状态报告, 其中第一 RLC状态报告是第二基站从 UE接收的。
处理器 2510可以根据第一 RLC状态报告,确定第一部分下行 RLC PDU 中需要重传的 RLC PDU;
发射器 2520还可以向 UE重传第一部分下行 RLC PDU中需要重传的
RLC PDU。
可选地, 作为另一实施例, 处理器 2510还可以根据第一部分上行 RLC PDU和第二部分上行 RLC PDU的接收状况, 生成第二 RLC状态报告。 发 射器 2520还可以向 UE发送第二 RLC状态报告。
接收器 2530可以接收 UE根据第二 RLC状态报告确定的上行重传集合 的 RLC PDU,上行重传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 接收器 2530可以从 UE接收上行重传集合 的 RLC PDU; 或者从 UE接收第一上行重传子集合的 RLC PDU, 并从第二 基站接收第二上行重传子集合中的 RLC PDU, 其中第二上行重传子集合的 RLC PDU是第二基站从 UE接收的 ,第一上行重传子集合与第二上行重传子 集合是由 UE对上行重传集合划分得到的; 或者从第二基站接收上传重传集 合的 RLC PDU, 上行重传集合的 RLC PDU是第二基站从 UE接收的。
可选地, 作为另一实施例, 发射器 2520可以在基站 2500的第一小区上 向 UE发送第一部分下行 RLC PDU, 并向第二基站发送第二部分下行 RLC PDU, 以便由第二基站在第二基站的第二小区上向 UE发送第二部分下行 RLC PDU, 其中第一小区与第二小区的覆盖范围有重叠。
可选地, 作为另一实施例, 发射器 2520还可以向第二基站发送第一请 求消息, 第一请求消息用于指示第二基站为 UE配置第二小区。
接收器 2530可以从第二基站接收第一响应消息, 第一响应消息携带第 二基站根据第一请求消息确定的第二小区的资源信息。
发射器 2520还可以向 UE发送无线资源控制 RRC连接重配置消息, RRC 连接重配置消息携带第二小区的资源信息。
可选地, 作为另一实施例, 第一请求消息还可以用于指示第二基站为 UE建立 DRB。
可选地, 作为另一实施例, 接收器 2530可以从第二基站接收第二请求 消息, 第二请求消息用于指示基站 2500为 UE配置第一小区。
处理器 2510可以根据第二请求消息, 确定第一小区的资源信息。
发射器 2520还可以向第二基站发送第二响应消息, 第二响应消息携带 第一小区的资源信息, 以便第二基站向 UE通知第一小区的资源信息。
可选地, 作为另一实施例, 第二请求消息还可以用于指示基站为 UE建 立 DRB。 处理器 2510可以根据第二请求消息建立 DRB对应的 PDCP实体、
RLC实体和逻辑信道。
可选地, 作为另一实施例, 第二请求消息还可以用于指示由基站 2200 负责数据分流。
发射器 2520还可以根据第二请求消息向 MME发送路径切换请求消息, 以便 MME根据路径切换请求消息向服务网关请求将数据传输路径切换为服 务网关至基站 2500的路径。
图 26是根据本发明实施例的基站的示意框图。基站 2600为上述第二基 站。 基站 2600包括接收器 2610和发射器 2620。
接收器 2610从第一基站接收第一基站生成的下行 RLC PDU中的第二部 分下行 RLC PDU。 发射器 2620向 UE发送第二部分下行 RLC PDU。
本发明实施例中,通过向 UE发送第一基站生成的下行 RLCPDU中的第 二部分下行 RLC PDU, 能够提高 UE的峰值速率和吞吐量。
基站 2600的其它功能和操作可以参照上面图 2a至图 21的方法实施例 中涉及第二基站的过程, 为了避免重复, 此处不再赘述。
可选地,作为另一实施例,接收器 2610还可以从 UE接收 UE生成的上 行 RLC PDU中的第二部分上行 RLC PDU。 发射器 2620还可以向第一基站 发送第二部分上行 RLC PDU。
可选地, 作为另一实施例, 基站 2600还可以包括处理器 2630。 接收器 2610可以从第一基站接收第一 RLC状态报告, 处理器 2630可以根据第一 RLC状态报告确定第二部分下行 RLC PDU中需要重传的 RLC PDU, 发射 器 2620还可以向 UE重传第二部分下行 RLC PDU中需要重传的 RLC PDU。
或者, 接收器 2610还可以从第一基站接收重传消息, 发射器 2620还可 以根据重传消息向 UE 重传第二部分下行 RLC PDU 中需要重传的 RLC PDU, 其中第一重传消息指示第二部分下行 RLC PDU 中需要重传的 RLC PDU。 可选地, 作为另一实施例, 接收器 2610还可以从 UE接收第一 RLC状 态报告。 发射器 2620还可以向第一基站转发第一 RLC状态报告, 用以在第 一 RLC状态报告指示第一部分下行 RLC PDU中需要重传的 RLC PDU时, 第一基站向 UE重传第一部分下行 RLC PDU中需要重传的 RLC PDU。发射 器 2620还可以在第一 RLC状态报告指示第二部分下行 RLC PDU中需要重 传的 RLC PDU时, 向 UE重传第二部分下行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 接收器 2610还可以从 UE接收上行重传集 合的 RLC PDU, 发射器 2620还可以向第一基站发送上行重传集合的 RLC PDU, 上行重传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU 和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。
或者,接收器 2610还可以从 UE接收第二上行重传子集合的 RLC PDU, 发射器 2620还可以向第一基站发送第二上行重传子集合的 RLC PDU, 第二 上行重传子集合是 UE对上行重传集合划分得到的。
可选地, 作为另一实施例, 发射器 2620可以在基站 2600的第二小区上 向 UE发送第二部分下行 RLC PDU。
可选地, 作为另一实施例, 接收器 2610还可以从第一基站接收第一请 求消息, 第一请求消息可以用于指示基站为 UE配置第二小区。
处理器 2630可以根据第一请求消息确定第二小区的资源信息。
发射器 2620还可以向第一基站发送第一响应消息, 第一响应消息携带 第二小区的资源信息, 以便第一基站向 UE通知第二小区的资源信息。
可选地, 作为另一实施例, 第一请求消息还可以用于指示基站 2600为 UE建立 DRB。 处理器 2630可以根据第一请求消息建立 DRB对应的 RLC 实体和逻辑信道。
可选地, 作为另一实施例, 发射器 2620还可以向第一基站发送第二请 求消息, 第二请求消息用于指示第一基站为 UE配置第一基站的第一小区。 接收器 2610还可以从第一基站接收第二响应消息, 第二响应消息携带第一 基站根据第二请求消息确定的第一小区的资源信息。 发射器 2620还可以向 UE发送无线资源控制 RRC连接重配置消息, RRC连接重配置消息携带第 一小区的资源信息。
可选地, 作为另一实施例, 第二请求消息还用于指示第一基站为 UE建 立 D亂
图 27是根据本发明实施例的 UE的示意框图。 UE 2700包括接收器 2710 和处理器 2720。
接收器 2710从第一基站接收第一基站生成的下行 RLC PDU中的第一部 分下行 RLC PDU,并从第二基站接收下行 RLC PDU中的第二部分下行 RLC PDU, 其中第二部分下行 RLC PDU是第二基站从第一基站接收的。 处理器 2720对第一部分下行 RLC PDU和第二部分下行 RLC PDU进行重组以组成 下行 RLC SDU。
本发明实施例中, 通过 UE从第一基站接收下行 RLC PDU中的第一部 分下行 RLC PDU, 并从第二基站接收第二基站从第一基站获取的第二部分 下行 RLC PDU, 使得 UE能够与两个基站共同传输数据, 从而能够提高 UE 的峰值速率和吞吐量。
UE 2700的其它功能和操作可以参照上面图 2a至图 21的方法实施例中 涉及 UE的过程, 为了避免重复, 此处不再赘述。
可选地, 作为另一实施例, UE 2400还可以包括发射器 2730。 处理器
2720可以生成上行 RLC PDU。 发射器 2730可以向第一基站发送上行 RLC PDU中的第一部分上行 RLC PDU , 并向第二基站发送上行 RLC PDU中的 第二部分上行 RLC PDU。
可选地,作为另一实施例,处理器 2720可以根据第一部分下行 RLC PDU 和第二部分下行 RLC PDU的接收状况,生成第一 RLC状态报告,第一 RLC 状态报告指示第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或第二部 分下行 RLC PDU中需要重传的 RLC PDU。
发射器 2730可以向第一基站或第二基站发送第一 RLC状态报告。
接收器 2710还可以从第一基站接收第一部分下行 RLC PDU中需要重传 的 RLC PDU和 /或从第二基站接收第二部分下行 RLC PDU 中需要重传的 RLC PDU。
可选地,作为另一实施例,接收器 2710还可以从第一基站接收第二 RLC 状态报告。
处理器 2720可以根据第二 RLC状态报告, 确定上行重传集合, 上行重 传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部分 上行 RLC PDU中需要重传的 RLC PDU。 发射器 2730可以向第一基站发送上行重传集合的 RLC PDU, 或者向第 二基站发送上行重传集合的 RLC PDU, 或者向第一基站发送第一上行重传 子集合的 RLC PDU并向第二基站发送第二上行重传子集合的 RLC PDU,其 中第一上行重传子集合和第二上行重传子集合是 UE对上行重传集合进行划 分得到的。
可选地, 作为另一实施例, 接收器 2710可以从第一基站的第一小区接 收第一部分下行 RLC PDU, 并从第二基站的第二小区接收第二部分下行 RLC PDU, 其中第一小区和第二小区的覆盖范围有重叠。
可选地, 作为另一实施例, 接收器 2710还可以从第一基站接收无线资 源控制 RRC连接重配置消息, RRC连接重配置消息携带第二基站确定的第 二小区的资源信息。
可选地, 作为另一实施例, 接收器 2710还可以从第二基站接收 RRC连 接重配置消息, RRC连接重配置消息携带第一基站确定的第一小区的资源信 息。
本发明实施例中, 通过 UE从第一基站接收下行 RLC PDU中的第一部 分下行 RLC PDU, 并从第二基站接收第二基站从第一基站获取的第二部分 下行 RLC PDU, 能够提高 UE的峰值速率和吞吐量。
图 28是根据本发明实施例的基站的示意框图。 图 28的基站 2800可以 为上述第一基站。 基站 2800包括接收单元 2810和重组单元 2820。
接收单元 2810从 UE接收 UE生成的上行 RLC PDU中的第一部分上行
RLC PDU , 并从第二基站接收上行 RLC PDU中的第二部分上行 RLC PDU , 其中第二部分上行 RLC PDU是第二基站从 UE接收的。重组单元 2820对第 一部分上行 RLC PDU和第二部分 RLC PDU进行重组。
本发明实施例中, 通过从 UE接收 UE生成的上行 RLC PDU中的第一 部分上行 RLC PDU, 并从第二基站接收上行 RLC PDU中的第二部分上行
RLC PDU, 使得两个基站能够共同与 UE传输数据, 从而能够提高 UE的峰 值速率和吞吐量。
基站 2800的其它功能和操作可参照上面图 2b的方法实施例的过程, 为 了避免重复, 此处不再赘述。
可选地, 作为一个实施例, 基站还可以包括生成单元 2830和发送单元
2840。生成单元 2830可以根据第一部分上行 RLC PDU和第二部分上行 RLC PDU的接收状况, 生成第二 RLC状态报告。 发送单元 2840可以向 UE发送 第二 RLC状态报告。接收单元 2810可以接收 UE根据第二 RLC状态报告确 定的上行重传集合的 RLC PDU, 该上行重传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。
可选地, 作为另一实施例, 接收单元 2810可以从 UE接收所述上行重 传集合的 RLC PDIL 或者, 接收单元 2810可以从 UE接收第一上行重传子 集合的 RLC PDU, 并从第二基站接收第二上行重传子集合中的 RLC PDU, 其中第二上行重传子集合的 RLC PDU是第二基站从 UE接收的, 第一上行 重传子集合与第二上行重传子集合是由 UE对上行重传集合划分得到的。 或 者, 接收单元 2810可以从第二基站接收上传重传集合的 RLC PDU, 上行重 传集合的 RLC PDU是第二基站从 UE接收的。
图 29是根据本发明实施例的基站的示意框图。 图 29的基站 2900可以 为上述第二基站。 基站 2900包括接收单元 2910和发送单元 2920。
接收单元 2910从 UE接收 UE生成的上行 RLC PDU中的第二部分上行
RLC PDU。 发送单元 2920向第一基站发送第二部分上行 RLC PDU。
本发明实施例中,通过向第一基站发送 UE生成的上行 RLCPDU中的第 二部分上行 RLC PDU, 能够提高 UE的峰值速率和吞吐量。
可选地, 作为一个实施例, 接收单元 2910还可以从所述 UE接收上行 重传集合的 RLC PDU。 发送单元 2920还可以向所述第一基站发送上行重传 集合的 RLC PDU,上行重传集合包括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。 或者, 接 收单元 2910可以从 UE接收第二上行重传子集合的 RLC PDU, 并向第一基 站发送第二上行重传子集合的 RLC PDU,第二上行重传子集合是 UE对所述 上行重传集合划分得到的。
图 30是根据本发明实施例的 UE的示意框图。 UE 3000包括生成单元 3010和发送单元 3020。
生成单元 3010生成上行 RLC PDU。 发送单元 3020向第一基站发送上 行 RLC PDU中的第一部分上行 RLC PDU,并向第二基站发送上行 RLC PDU 中的第二部分上行 RLC PDU, 以便第二基站向第一基站发送第二部分上行 RLC PDU。 本发明实施例中, 通过 UE向第一基站发送上行 RLC PDU中的第一部 分上行 RLC PDU, 并向第二基站发送第二部分上行 RLC PDU, 由第二基站 向第一基站发送第二部分上行 RLC PDU,使得 UE能够与两个基站共同传输 数据, 从而能够提高 UE的峰值速率和吞吐量。
可选地, 作为一个实施例, UE 3000还可以包括接收单元 3030和确定 单元 3040。接收单元 3030可以从第一基站接收第二 RLC状态报告。确定单 元 3040可以根据第二 RLC状态报告, 确定上行重传集合, 上行重传集合包 括第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或第二部分上行 RLC PDU中需要重传的 RLC PDU。发送单元 3020还可以向第一基站发送上行重 传集合的 RLC PDU, 或者向第二基站发送上行重传集合的 RLC PDU, 或者 向第一基站发送第一上行重传子集合的 RLC PDU并向第二基站发送第二上 行重传子集合的 RLC PDU, 其中第一上行重传子集合和第二上行重传子集 合是 UE对上行重传集合进行划分得到的。
在基站间 CA的情况下, UE可以在各基站所聚合的小区上与各基站传 输数据。 当 UE业务量降低或其中聚合的小区的无线条件变差时, UE还需 要监听这些小区的信道, 会造成 UE电量的浪费。 本发明实施例提供了小区 资源管理的方法。
图 31是根据本发明实施例的小区资源管理的方法的示意性流程图。 图 31的方法由基站执行。
3110, 第一基站确定第二基站的第二小区的激活时间或者去激活时间, 其中第一基站为主基站, 第二基站为辅基站。
第一基站为主基站, 第二基站为辅基站, 那么第二基站的第二小区为 SCell。 例如, 第一基站可以是宏基站, 第二基站可以是微基站。
在指示信令指示第二小区的激活时间时, 指示信令可以是激活信令。 在 指示信令指示第二小区的去激活时间时,指示信令可以是去激活信令。例如, 激活信令和去激活信令可以是 MAC CE ( Control Element, 控制信元)。
3120, 第一基站向第二基站和 UE分别通知第二小区的激活时间或者去 激活时间。
可选地, 作为另一实施例, 第一基站向第二基站和 UE分别发送指示信 令, 指示信令可以用于指示第二小区的激活时间或者去激活时间。
可选地, 作为另一实施例, 第一基站可以向第二基站发送指示信令, 以 便第二基站向 UE发送指示信令, 指示信令可以用于指示第二小区的激活时 间或者去激活时间。
应注意, 在去激活时间到达前, 第二基站可以将第二小区的 RLC发送 緩沖区中未确认的 RLC PDU或未发送的 RLC PDU、 RLC接收緩沖区中的 RLC PDU发送给第一基站, 或者向第一基站通知上述 RLC PDU的 SN。
本发明实施例中,通过第一基站确定第二基站的第二小区的激活时间或 者去激活时间, 并向 UE通知第二小区的激活时间或者去激活时间, 使得 UE能够激活或去激活第二小区, 从而能够节省 UE的电量。
此外, 本发明实施例通过第一基站通过向第二基站和 UE分别通知第二 小区的激活时间或者去激活时间, 能够在第二基站和 UE之间保证激活或者 去激活的生效时间一致, 也能够解决第一基站与第二基站在 X2接口发送指 示信令的延迟。
图 32是根据本发明实施例的小区资源管理的方法的示意性流程图。 图 32的方法由 UE执行。
3210, UE从第一基站或者第二基站接收指示信令, 指示信令可以用于 指示第二基站的第二小区的激活时间或者去激活时间, 其中第一基站为主基 站, 第二基站为辅基站, 第二小区的激活时间或者去激活时间是由第一基站 确定的。
3220, UE在激活时间到达时对第二小区执行激活操作, 或者 UE在去 激活时间到达时对第二小区执行去激活操作。
本发明实施例中, 通过 UE从第一基站接收指示信令, 使得 UE能够根 据指示信令激活或去激活第二小区, 从而能够节省 UE的电量。
图 33是根据本发明实施例的小区资源管理的方法的示意性流程图。 图 33的方法由基站执行。
3310, 第二基站确定第二基站的第二小区的激活时间或者去激活时间。
3320 , 第二基站向第一基站和 UE分别通知第二小区的激活时间或者去 激活时间, 其中第一基站为主基站, 第二基站为辅基站。
第一基站为主基站, 第二基站为辅基站, 那么第二基站的第二小区为 SCell。 例如, 第一基站可以是宏基站, 第二基站可以是微基站。
可选地, 作为另一实施例, 第二基站向第一基站和 UE分别发送指示信 令, 指示信令可以用于指示第二小区的激活时间或者去激活时间。 可选地, 作为另一实施例, 第二基站可以向第一基站发送指示信令, 以 便第一基站向 UE发送指示信令, 指示信令可以用于指示第二小区的激活时 间或者去激活时间。
可选地, 作为另一实施例, 在去激活时间到达前, 第二基站可以将第二 小区的 RLC发送緩沖区中未确认的 RLC PDU或未发送的 RLC PDU、 RLC 接收緩沖区中的 RLC PDU发送给第一基站, 或者向第一基站通知上述 RLC PDU的 SN。
本发明实施例中,通过第二基站确定第二基站的第二小区的激活时间或 者去激活时间, 并向 UE通知第二小区的激活时间或者去激活时间, 使得 UE能够激活或去激活第二小区, 从而能够节省 UE的电量。
图 34是根据本发明实施例的小区资源管理的方法的示意性流程图。 图 34的方法由 UE执行。
3410, UE从第二基站或第一基站接收指示信令, 指示信令可以用于指 示第二基站的第二小区的激活时间或者去激活时间, 其中第一基站为主基 站, 第二基站为辅基站, 其中第二小区的激活时间或者去激活时间是由第二 基站确定的。
3420, UE在激活时间到达时对第二小区执行激活操作, 或者 UE在去 激活时间到达时对第二小区执行去激活操作。
本发明实施例中, 通过 UE从第一基站接收指示信令, 使得 UE能够根 据指示信令激活或去激活第二小区, 从而能够节省 UE的电量。
此外, 在另一实施例中, UE还可以维护对应于第二基站的第二小区的 去激活定时器, 在去激活定时器超时时, UE去激活第二基站的第二小区, 并向第一基站和第二基站发送指示信令,指示信令可以用于指示第二小区已 被去激活。 第一基站可以为主基站, 第二基站为辅基站。 第二基站可以在接 收到该指示信令后, 第二基站可以将第二小区的 RLC发送緩沖区中未确认 的 RLC PDU或未发送的 RLC PDU、 RLC接收緩沖区中的 RLC PDU发送给 第一基站, 或者向第一基站通知上述 RLC PDU的 SN。
下面将结合具体例子详细描述小区资源管理的方法。
例如, 假设第一基站为宏基站, 第二基站为微基站。 其中宏基站为主基 站, 微基站为辅基站。 假设微基站提供了两个载波 CC1、 CC2, 分别对应的 服务小区为 SCelll、 SCell2, 则对于 SCelll、 SCell2指示信令可以通过宏基 站上的 PCell和处于激活状态的 SCelll或 SCell2上发送给 UE。 假设 SCelll 上配置了 PUCCH, 则只有在 SCell2被去激活以后才能去激活 SCelll; 激活 时, 也应该先激活 SCelll。 这种情况下, SCelll和 SCell2也可以被同时激活 或去激活。
SCell2被去激活以后, 分流到微基站的 RLC1、 RLC2中的 RLC PDU可 以全部映射到 SCelll上发送或接收。
下面结合图 10所示的协议栈进行描述。微基站的 SCelll被去激活以后, 对于 RLC AM, 微基站的 RLC1和 RLC2的发送緩沖区中未被确认的 RLC PDU需要回传给宏基站, 或者指示宏基站对应的 RLC PDU的 SN (需要在 宏基站的发送緩沖区或重传緩沖区中保留一份原始的 RLC PDU )。对于 RLC UM, 微基站的 RLC1、 RLC2的发送緩沖区中尚未发送的 RLC PDU需要回 传给宏基站,或者指示宏基站对应的 RLC PDU的 SN (需要在宏基站的发送 緩沖区或重传緩沖区中保留一份原始的 RLC PDU )。 对于 RLC AM和 RLC UM, RLC1、 RLC2接收緩沖区中的 RLC PDU需要发送给宏基站。
微基站的 SCelll被去激活以后, 宏基站的 RLC1、 RLC2中的 RLC PDU 不再发送给微基站。宏基站接收到的 UE的第一 RLC状态报告也不再发送给 微基站。
在现有技术中, UE可以通过功率余量报告 ( Power Headroom Reporting, PHR ) 向服务基站报告每个激活状态的服务小区上标称 (nominal ) UE最大 发射功率与 UL-SCH 上估计发射功率的差异信息, 也可以报告主服务小区 ( PCell )上标称 UE最大发射功率与 UL-SCH和物理上行控制信道( Physical Uplink Control Channel, PUCCH )估计发射功率的差异信息。 这样, 服务基 站可以根据 PHR进行上行功率控制。 而对于基站间 CA的情况, 如果两个 基站所聚合的小区都配置了 PUCCH, UE被配置为在聚合的小区上均可以发 送 PUSCH和 PUCCH, 则目前还没有相应的机制实现两个基站的上行功率 控制。
图 35是根据本发明实施例的上行功率控制方法的示意性流程图。 图 35 的方法由 UE执行。
3510, UE生成扩展 PHR,扩展 PHR包括第一基站的第一小区的第一类 型功率余量(Power Headroom, PH )信息和第二类型 PH信息, 以及第二基 站的第二小区的第一类型 PH信息和第二类型 PH信息。 应注意, 在基站间的 CA的情况下, 第一基站可以是主基站, 第二基站 可以是辅基站。 那么, 第一小区可以是 PCell, 第二小区可以是 SCell。 此外, 第一基站还可以是辅基站, 第二基站可以是主基站。 那么, 第一小区可以是 SCell, 第二小区可以是 Pcell。 本发明实施例对此不作限定。
PH可以包括类型 1 ( Type 1 ) PH和类型 2 ( Type 2 ) PH。 类型 1 PH可 以等于 UE在各激活状态服务小区上配置的最大发射功率 PCMAX,C减去其 PUSCH发射功率, 可以表示为等式(1 ):
类型 1 PH= PCMAX,C - PUSCH发射功率 ( 1 ) 类型 2 PH 可以等于服务小区上配置的最大发射功率 PCMAX,C减去其 PUCCH发射功率和 PUSCH发射功率, 可以表示为等式(2 ):
类型 2 PH= PCMAX,C - PUCCH发射功率 - PUSCH发射功率 ( 2 ) 本发明实施例中, 第一类型 PH信息可以包括类型 1 PH, 第二类型 PH 信息可以包括类型 2 PH。
应注意, 当第一小区有上行资源时, 第一小区的第一类型 PH信息还可 以包括第一小区的最大发射功率。 当第二小区有上行资源时, 第二小区的第 一类型 PH信息还可以包括第二小区的最大发射功率。
UE触发 PHR 的条件可以包括因下行路损变化超过预设门限所触发的 PHR、周期性 PHR定时器超时所触发的 PHR、 UE因功率管理参数( P-MPRc ) 变化超过预设门限所触发的 PHR等。
3520, UE向第一基站发送扩展 PHR, 以便第一基站向第二基站发送该 扩展 PHR, 以及第一基站和第二基站根据扩展 PHR进行上行功率控制。
在生成扩展 PHR后, UE可以根据第一小区的上行资源, 向第一基站发 送扩展 PHR。
第一基站可以通过 X2接口向第二基站发送扩展 PHR, 在第一基站和第 二基站接收到扩展 PHR之后, 第一基站和第二基站可以根据扩展 PHR进行 上行功率控制。
应注意, UE发送扩展 PHR后, 可以启动或重启动禁止 PHR 定时器 ( prohibitPHR-Timer ),禁止 PHR定时器运行时 UE不能再次发送扩展 PHR。 禁止 PHR定时器的长度一般远大于 X2接口延迟,因此第一基站或第二基站 不会在较短时间内连续接收到 UE发送的扩展 PHR和另一基站转发的 PHR, 不存在第一基站或第二基站难以判断哪个扩展 PHR是最新的等模糊性问题。 本发明实施例中, 通过 UE生成扩展 PHR, 由于扩展 PHR包括第一基 站的第一小区的 PH信息和第二基站的第二小区的 PH信息, 因此 UE向第 一基站发送扩展 PHR, 由第一基站向第二基站发送扩展 PHR后, 从而使得 第一基站和第二基站能够根据扩展 PHR进行上行功率控制。
图 36是根据本发明实施例的的上行功率控制方法的示意性流程图。 图
36的方法由基站执行。
3610, 第一基站从 UE接收扩展 PHR, 扩展 PHR包括第一基站的第一 小区的第一类型 PH信息和第二类型 PH信息, 以及第二基站的第二小区的 第一类型 PH信息和第二类型 PH信息。
应注意, 在基站间的 CA的情况下, 第一基站可以是主基站, 第二基站 可以是辅基站。 那么, 第一小区可以是 PCell, 第二小区可以是 SCell。 此外, 第一基站还可以是辅基站, 第二基站可以是主基站。 那么, 第一小区可以是 SCell, 第二小区可以是 Pcell。 本发明实施例对此不作限定。
本发明实施例中, 第一类型 PH信息可以包括类型 1 PH, 第二类型 PH 信息可以包括类型 2 PH。
3620, 第一基站根据扩展 PHR进行上行功率控制, 并向第二基站发送 扩展 PHR, 以便第二基站根据扩展 PHR进行上行功率控制。
本发明实施例中, 通过第一基站从 UE接收扩展 PHR, 并向第二基站发 送该扩展 PHR, 由于扩展 PHR包括第一基站的第一小区的 PH信息和第二 基站的第二小区的 PH信息,使得第一基站和第二基站均能够根据扩展 PHR 进行上行功率控制。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM , Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1. 一种传输数据的方法, 其特征在于, 包括:
第一基站生成下行无线链路控制 RLC协议数据单元 PDU;
所述第一基站向用户设备 UE发送所述下行 RLC PDU中的第一部分下 行 RLC PDU,并向第二基站发送所述下行 RLC PDU中的第二部分下行 RLC PDU, 以便由所述第二基站向所述 UE发送所述第二部分下行 RLC PDU。
2. 根据权利要求 1所述的方法, 其特征在于, 还包括:
所述第一基站从所述 UE接收所述 UE生成的上行 RLC PDU中的第一 部分上行 RLC PDU,并从所述第二基站接收所述上行 RLC PDU中的第二部 分上行 RLC PDU,其中所述第二部分上行 RLC PDU是所述第二基站从所述 UE接收的。
3. 根据权利要求 1所述的方法, 其特征在于, 还包括:
所述第一基站从所述 UE接收第一 RLC状态报告;
在所述第一 RLC状态报告指示所述第一部分下行 RLC PDU中需要重传 的 RLC PDU时, 所述第一基站向所述 UE重传所述第一部分下行 RLC PDU 中需要重传的 RLC PDU;
所述第一基站向所述第二基站转发所述第一 RLC状态报告, 所述第一 RLC 状态报告用于指示所述第二部分下行 RLC PDU 中需要重传的 RLC PDU, 或者所述第一基站向所述第二基站发送所述第一基站根据所述第一 RLC状态 告生成的重传消息, 所述重传消息指示所述第二部分下行 RLC PDU中需要重传的 RLC PDU。
4. 根据权利要求 1所述的方法, 其特征在于, 还包括:
所述第一基站从所述第二基站接收第一 RLC状态报告, 其中所述第一 RLC状态报告是所述第二基站从所述 UE接收的;
所述第一基站根据所述第一 RLC状态报告,确定所述第一部分下行 RLC
PDU中需要重传的 RLC PDU;
所述第一基站向所述 UE重传所述第一部分下行 RLC PDU中需要重传 的 RLC PDU。
5. 根据权利要求 2所述的方法, 其特征在于, 还包括:
所述第一基站根据所述第一部分上行 RLC PDU 和所述第二部分上行
RLC PDU的接收状况, 生成第二 RLC状态报告, 并向所述 UE发送所述第 二 RLC状态报告;
所述第一基站接收所述 UE根据所述第二 RLC状态报告确定的上行重传 集合的 RLC PDU,所述上行重传集合包括所述第一部分上行 RLC PDU中需 要重传的 RLC PDU和 /或所述第二部分上行 RLC PDU中需要重传的 RLC PDU。
6. 根据权利要求 5所述的方法, 其特征在于, 所述第一基站接收所述 UE根据所述第二 RLC状态报告确定的上行重传集合的 RLC PDU, 包括: 所述第一基站从所述 UE接收所述上行重传集合的 RLC PDU; 或者, 所述第一基站从所述 UE接收第一上行重传子集合的 RLC PDU,并从所 述第二基站接收第二上行重传子集合中的 RLC PDU, 其中所述第二上行重 传子集合的 RLC PDU是所述第二基站从所述 UE接收的, 所述第一上行重 传子集合与所述第二上行重传子集合是由所述 UE对所述上行重传集合划分 得到的; 或者,
所述第一基站从所述第二基站接收所述上传重传集合的 RLC PDU, 所 述上行重传集合的 RLC PDU是所述第二基站从所述 UE接收的。
7. 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 所述第一 基站向 UE发送所述下行 RLC PDU中的第一部分下行 RLC PDU, 并向第二 基站发送所述下行 RLC PDU中的第二部分下行 RLC PDU,以便由所述第二 基站向所述 UE发送所述第二部分下行 RLC PDU, 包括:
所述第一基站在所述第一基站的第一小区上向所述 UE发送所述第一部 分下行 RLC PDU, 并向所述第二基站发送所述第二部分下行 RLC PDU, 以 便由所述第二基站在所述第二基站的第二小区上向所述 UE发送所述第二部 分下行 RLC PDU, 其中所述第一小区与所述第二小区的覆盖范围有重叠。
8. 根据权利要求 7所述的方法, 其特征在于, 还包括:
所述第一基站向所述第二基站发送第一请求消息, 所述第一请求消息用 于指示所述第二基站为所述 UE配置所述第二小区;
所述第一基站从所述第二基站接收第一响应消息, 所述第一响应消息携 带所述第二基站根据所述第一请求消息确定的所述第二小区的资源信息; 所述第一基站向所述 UE发送无线资源控制 RRC连接重配置消息, 所 述 RRC连接重配置消息携带所述第二小区的资源信息。
9. 根据权利要求 8所述的方法, 其特征在于, 所述第一请求消息还用 于指示所述第二基站为所述 UE建立数据无线承载 DRB。
10. 根据权利要求 7所述的方法, 其特征在于, 还包括:
所述第一基站从所述第二基站接收第二请求消息, 所述第二请求消息用 于指示所述第一基站为所述 UE配置所述第一小区;
所述第一基站根据所述第二请求消息, 确定所述第一小区的资源信息; 所述第一基站向所述第二基站发送所述第二响应消息, 所述第二响应消 息携带所述第一小区的资源信息, 以便所述第二基站向所述 UE通知所述第 一小区的资源信息。
11. 根据权利要求 10所述的方法, 其特征在于, 所述第二请求消息还 用于指示所述第一基站为所述 UE建立 DRB;
所述方法还包括:
所述第一基站根据所述第二请求消息为所述 UE建立 DRB对应的 PDCP 实体、 RLC实体和逻辑信道。
12. 根据权利要求 10所述的方法, 其特征在于, 所述第二请求消息还 用于指示由所述第一基站负责数据分流;
所述方法还包括:
所述第一基站根据所述第二请求消息向移动管理实体 MME发送路径切 换请求消息, 以便所述 MME根据所述路径切换请求消息向服务网关请求将 数据传输路径切换为所述服务网关至所述第一基站的路径。
13. 一种传输数据的方法, 其特征在于, 包括:
第二基站从第一基站接收所述第一基站生成的下行无线链路控制 RLC 协议数据单元 PDU中的第二部分下行 RLC PDU;
所述第二基站向用户设备 UE发送所述第二部分下行 RLC PDU。
14. 根据权利要求 13所述的方法, 其特征在于, 还包括:
所述第二基站从所述 UE接收所述 UE生成的上行 RLC PDU中的第二 部分上行 RLC PDU;
所述第二基站向所述第一基站发送所述第二部分上行 RLC PDU。
15. 根据权利要求 13所述的方法, 其特征在于, 还包括:
所述第二基站从所述第一基站接收第一 RLC状态报告, 根据所述第一 RLC状态报告确定所述第二部分下行 RLC PDU中需要重传的 RLC PDU, 并向所述 UE重传所述第二部分下行 RLC PDU中需要重传的 RLC PDU; 或 者,
所述第二基站从所述第一基站接收重传消息, 并根据所述重传消息向所 述 UE重传所述第二部分下行 RLC PDU中需要重传的 RLC PDU, 其中所述 第一重传消息指示所述第二部分下行 RLC PDU中需要重传的 RLC PDU。
16. 根据权利要求 13所述的方法, 其特征在于, 还包括:
所述第二基站从所述 UE接收第一 RLC状态报告;
所述第二基站向所述第一基站转发所述第一 RLC状态报告, 用以在所 述第一 RLC状态报告指示所述第一部分下行 RLC PDU中需要重传的 RLC PDU时, 所述第一基站向所述 UE重传所述第一部分下行 RLC PDU中需要 重传的 RLC PDU;
在所述第一 RLC状态报告指示所述第二部分下行 RLC PDU中需要重传 的 RLC PDU时, 所述第二基站向所述 UE重传所述第二部分下行 RLC PDU 中需要重传的 RLC PDU。
17. 根据权利要求 14所述的方法, 其特征在于, 还包括:
所述第二基站从所述 UE接收上行重传集合的 RLC PDU,并向所述第一 基站发送所述上行重传集合的 RLC PDU, 所述上行重传集合包括所述第一 部分上行 RLC PDU中需要重传的 RLC PDU和 /或所述第二部分上行 RLC PDU中需要重传的 RLC PDU; 或者,
所述第二基站从所述 UE接收第二上行重传子集合的 RLC PDU,并向所 述第一基站发送所述第二上行重传子集合的 RLC PDU, 所述第二上行重传 子集合是所述 UE对所述上行重传集合划分得到的。
18. 根据权利要求 13至 17中任一项所述的方法, 其特征在于, 所述第 二基站向 UE发送所述第二部分下行 RLC PDU, 包括:
所述第二基站在所述第二基站的第二小区上向所述 UE发送所述第二部 分下行 RLC PDU。
19. 根据权利要求 18所述的方法, 其特征在于, 还包括:
所述第二基站从所述第一基站接收第一请求消息, 所述第一请求消息用 于指示所述第二基站为所述 UE配置所述第二小区;
所述第二基站根据所述第一请求消息确定所述第二小区的资源信息; 所述第二基站向所述第一基站发送第一响应消息, 所述第一响应消息携 带所述第二小区的资源信息, 以便所述第一基站向所述 UE通知所述第二小 区的资源信息。
20. 根据权利要求 19所述的方法, 其特征在于, 所述第一请求消息还 用于指示所述第二基站为所述 UE建立数据无线承载 DRB;
所述方法还包括:
所述第二基站根据所述第一请求消息建立 DRB对应的 RLC实体和逻辑 信道。
21. 根据权利要求 13至 18中任一项所述的方法,其特征在于,还包括: 所述第二基站向所述第一基站发送第二请求消息, 所述第二请求消息用 于指示所述第一基站为所述 UE配置所述第一基站的第一小区;
所述第二基站从所述第一基站接收第二响应消息, 所述第二响应消息携 带所述第一基站根据所述第二请求消息确定的所述第一小区的资源信息; 所述第二基站向所述 UE发送无线资源控制 RRC连接重配置消息, 所 述 RRC连接重配置消息携带所述第一小区的资源信息。
22. 根据权利要求 21所述的方法, 其特征在于, 所述第二请求消息还 用于指示所述第一基站为所述 UE建立 DRB。
23. 一种传输数据的方法, 其特征在于, 包括:
用户设备 UE从第一基站接收所述第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第一部分下行 RLC PDU,并从第二基站接收所 述下行 RLC PDU中的第二部分下行 RLC PDU,其中所述第二部分下行 RLC PDU是所述第二基站从所述第一基站接收的。
24. 根据权利要求 23所述的方法, 其特征在于, 还包括:
所述 UE生成上行 RLC PDU;
所述 UE向第一基站发送所述上行 RLC PDU 中的第一部分上行 RLC PDU, 并向所述第二基站发送所述上行 RLC PDU 中的第二部分上行 RLC PDU。
25. 根据权利要求 23所述的方法, 其特征在于, 还包括:
所述 UE根据所述第一部分下行 RLC PDU和所述第二部分下行 RLC PDU的接收状况, 生成第一 RLC状态报告, 所述第一 RLC状态报告指示所 述第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或所述第二部分下行 RLC PDU中需要重传的 RLC PDU;
所述 UE向所述第一基站或所述第二基站发送所述第一 RLC状态报告; 所述 UE从所述第一基站接收所述第一部分下行 RLC PDU中需要重传 的 RLC PDU和 /或从所述第二基站接收所述第二部分下行 RLC PDU中需要 重传的 RLC PDU。
26. 根据权利要求 24所述的方法, 其特征在于, 还包括:
所述 UE从所述第一基站接收第二 RLC状态报告;
所述 UE根据所述第二 RLC状态报告,确定上行重传集合,所述上行重 传集合包括所述第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或所述 第二部分上行 RLC PDU中需要重传的 RLC PDU;
所述 UE向所述第一基站发送所述上行重传集合的 RLC PDU,或者向所 述第二基站发送所述上行重传集合的 RLC PDU, 或者向所述第一基站发送 第一上行重传子集合的 RLC PDU并向所述第二基站发送第二上行重传子集 合的 RLC PDU, 其中所述第一上行重传子集合和所述第二上行重传子集合 是所述 UE对所述上行重传集合进行划分得到的。
27. 根据权利要求 23 至 26 中任一项所述的方法, 其特征在于, 所述 UE从第一基站接收所述第一基站生成的下行 RLC PDU中的第一部分下行
RLC PDU, 并从第二基站接收所述下行 RLC PDU中的第二部分下行 RLC PDU, 包括:
所述 UE从所述第一基站的第一小区接收所述第一部分下行 RLC PDU, 并从所述第二基站的第二小区接收所述第二部分下行 RLC PDU, 其中所述 第一小区和所述第二小区分别位于不同的载波上。
28. 根据权利要求 27所述的方法, 其特征在于, 还包括:
所述 UE从所述第一基站接收无线资源控制 RRC连接重配置消息, 所 述 RRC连接重配置消息携带所述第二基站确定的所述第二小区的资源信息。
29. 根据权利要求 27所述的方法, 其特征在于, 还包括:
所述 UE从所述第二基站接收 RRC连接重配置消息, 所述 RRC连接重 配置消息携带所述第一基站确定的所述第一小区的资源信息。
30. 根据权利要求 23至 29中任一项所述的方法,其特征在于,还包括: 所述 UE对所述第一部分下行 RLC PDU和所述第二部分下行 RLC PDU 进行重组以组成下行 RLC服务数据单元 SDU。
31. 一种基站, 其特征在于, 包括:
生成单元, 用于生成下行无线链路控制 RLC协议数据单元 PDU; 发送单元, 用于向用户设备 UE发送所述下行 RLC PDU中的第一部分 下行 RLC PDU, 并向第二基站发送所述下行 RLC PDU中的第二部分下行 RLC PDU, 以便由所述第二基站向所述 UE发送所述第二部分下行 RLC PDU。
32. 根据权利要求 31所述的基站, 其特征在于, 还包括:
第一接收单元, 用于从所述 UE接收所述 UE生成的上行 RLC PDU中 的第一部分上行 RLC PDU,并从所述第二基站接收所述上行 RLC PDU中的 第二部分上行 RLC PDU,其中所述第二部分上行 RLC PDU是所述第二基站 从所述 UE接收的。
33. 根据权利要求 31所述的基站, 其特征在于, 还包括第二接收单元, 所述第二接收单元, 用于从所述 UE接收第一 RLC状态报告; 所述发送单元, 还用于在所述第一 RLC状态 告指示所述第一部分下 行 RLC PDU中需要重传的 RLC PDU时,向所述 UE重传所述第一部分下行 RLC PDU中需要重传的 RLC PDU;
所述发送单元, 还用于向所述第二基站转发所述第一 RLC状态报告, 所述第一 RLC状态报告指示所述第二部分下行 RLC PDU中需要重传的 RLC PDU, 或者向所述第二基站发送所述基站根据所述第一 RLC状态报告生成 的重传消息, 所述重传消息指示所述第二部分下行 RLC PDU中需要重传的 RLC PDU。
34. 根据权利要求 31所述的基站, 其特征在于, 还包括第三接收单元 和第一确定单元,
所述第三接收单元, 用于从所述第二基站接收第一 RLC状态报告, 其 中所述第一 RLC状态报告是所述第二基站从所述 UE接收的;
所述第一确定单元, 用于根据所述第一 RLC状态报告, 确定所述第一 部分下行 RLC PDU中需要重传的 RLC PDU;
所述发送单元, 还用于向所述 UE重传所述第一部分下行 RLC PDU中 需要重传的 RLC PDU。
35. 根据权利要求 32所述的基站, 其特征在于, 还包括第四接收单元, 所述生成单元还用于根据所述第一部分上行 RLC PDU和所述第二部分 上行 RLC PDU的接收状况, 生成第二 RLC状态报告, 所述发送单元还用于 向所述 UE发送所述第二 RLC状态报告; 所述第四接收单元,用于接收所述 UE根据所述第二 RLC状态报告确定 的上行重传集合的 RLC PDU, 所述上行重传集合包括所述第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或所述第二部分上行 RLC PDU中需要 重传的 RLC PDU。
36. 根据权利要求 35所述的基站, 其特征在于, 所述第四接收单元具 体用于从所述 UE接收所述上行重传集合的 RLC PDU;或者从所述 UE接收 第一上行重传子集合的 RLC PDU, 并从所述第二基站接收第二上行重传子 集合中的 RLC PDU,其中所述第二上行重传子集合的 RLC PDU是所述第二 基站从所述 UE接收的, 所述第一上行重传子集合与所述第二上行重传子集 合是由所述 UE对所述上行重传集合划分得到的; 或者从所述第二基站接收 所述上传重传集合的 RLC PDU,所述上行重传集合的 RLC PDU是所述第二 基站从所述 UE接收的。
37. 根据权利要求 31所述的基站, 其特征在于, 所述发送单元具体用 于在所述基站的第一小区上向所述 UE发送所述第一部分下行 RLC PDU,并 向所述第二基站发送所述第二部分下行 RLC PDU, 以便由所述第二基站在 所述第二基站的第二小区上向所述 UE发送所述第二部分下行 RLC PDU,其 中所述第一小区与所述第二小区的覆盖范围有重叠。
38. 根据权利要求 37所述的基站, 其特征在于, 还包括第五接收单元, 所述发送单元, 还用于向所述第二基站发送第一请求消息, 所述第一请 求消息用于指示所述第二基站为所述 UE配置所述第二小区;
所述第五接收单元, 用于从所述第二基站接收第一响应消息, 所述第一 响应消息携带所述第二基站根据所述第一请求消息确定的所述第二小区的 资源信息;
所述发送单元, 还用于向所述 UE发送无线资源控制 RRC连接重配置 消息, 所述 RRC连接重配置消息携带所述第二小区的资源信息。
39. 根据权利要求 38所述的基站, 其特征在于, 所述第一请求消息还 用于指示所述第二基站为所述 UE建立数据无线承载 DRB。
40. 根据权利要求 37所述的基站, 其特征在于, 还包括第六接收单元 和第二确定单元,
所述第六接收单元, 用于从所述第二基站接收第二请求消息, 所述第二 请求消息用于指示所述基站为所述 UE配置所述第一小区; 所述第二确定单元, 用于根据所述第二请求消息, 确定所述第一小区的 资源信息;
所述发送单元还用于向所述第二基站发送所述第二响应消息, 所述第二 响应消息携带所述第一小区的资源信息, 以便所述第二基站向所述 UE通知 所述第一小区的资源信息。
41. 根据权利要求 40所述的基站, 其特征在于, 还包括建立单元; 所述第二请求消息还用于指示所述基站为所述 UE建立 DRB;
所述建立单元, 用于根据所述第二请求消息建立 DRB对应的 PDCP实 体、 RLC实体和逻辑信道。
42. 根据权利要求 40所述的基站, 其特征在于, 所述第二请求消息还 用于指示由所述基站负责数据分流;
所述发送单元还用于根据所述第二请求消息向移动管理实体 MME发送 路径切换请求消息, 以便所述 MME根据所述路径切换请求消息向服务网关 请求将数据传输路径切换为所述服务网关至所述基站的路径。
43. 一种基站, 其特征在于, 包括:
接收单元, 用于从第一基站接收所述第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第二部分下行 RLC PDU;
发送单元, 用于向用户设备 UE发送所述第二部分下行 RLC PDU。
44. 根据权利要求 43所述的基站, 其特征在于, 所述接收单元还用于 从所述 UE接收所述 UE生成的上行 RLC PDU中的第二部分上行 RLC PDU; 所述发送单元还用于向所述第一基站发送所述第二部分上行 RLC PDU。
45. 根据权利要求 43所述的基站, 其特征在于, 还包括第一确定单元, 所述接收单元还用于从所述第一基站接收第一 RLC状态报告, 所述第 一确定单元用于根据所述第一 RLC 状态报告确定所述第二部分下行 RLC
PDU中需要重传的 RLC PDU, 所述发送单元还用于向所述 UE重传所述第 二部分下行 RLC PDU中需要重传的 RLC PDU; 或者,
所述接收单元还用于从所述第一基站接收重传消息,所述发送单元还用 于根据所述重传消息向所述 UE重传所述第二部分下行 RLC PDU中需要重 传的 RLC PDU,其中所述第一重传消息指示所述第二部分下行 RLC PDU中 需要重传的 RLC PDU。
46. 根据权利要求 43所述的基站, 其特征在于,
所述接收单元还用于从所述 UE接收第一 RLC状态报告;
所述发送单元还用于向所述第一基站转发所述第一 RLC状态报告, 用 以在所述第一 RLC状态报告指示所述第一部分下行 RLC PDU中需要重传的 RLC PDU时, 所述第一基站向所述 UE重传所述第一部分下行 RLC PDU中 需要重传的 RLC PDU;
所述发送单元还用于在所述第一 RLC状态 告指示所述第二部分下行 RLC PDU中需要重传的 RLC PDU时, 向所述 UE重传所述第二部分下行 RLC PDU中需要重传的 RLC PDU。
47. 根据权利要求 44所述的基站, 其特征在于,
所述接收单元还用于从所述 UE接收上行重传集合的 RLC PDU,所述发 送单元还用于向所述第一基站发送所述上行重传集合的 RLC PDU, 所述上 行重传集合包括所述第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或 所述第二部分上行 RLC PDU中需要重传的 RLC PDU; 或者,
所述接收单元还用于从所述 UE接收第二上行重传子集合的 RLC PDU, 所述发送单元还用于向所述第一基站发送所述第二上行重传子集合的 RLC PDU,所述第二上行重传子集合是所述 UE对所述上行重传集合划分得到的。
48. 根据权利要求 43所述的基站, 其特征在于, 所述发送单元具体用 于在所述基站的第二小区上向所述 UE发送所述第二部分下行 RLC PDU。
49. 根据权利要求 48所述的基站, 其特征在于, 还包括第二确定单元, 所述接收单元还用于从所述第一基站接收第一请求消息, 所述第一请求 消息用于指示所述基站为所述 UE配置所述第二小区;
所述第二确定单元用于根据所述第一请求消息确定所述第二小区的资 源信息;
所述发送单元还用于向所述第一基站发送第一响应消息, 所述第一响应 消息携带所述第二小区的资源信息, 以便所述第一基站向所述 UE通知所述 第二小区的资源信息。
50. 根据权利要求 49所述的基站, 其特征在于, 还包括建立单元; 所述第一请求消息还用于指示所述基站为所述 UE 建立数据无线承载 DRB;
所述建立单元用于根据所述第一请求消息建立 DRB对应的 RLC实体和 逻辑信道。
51. 根据权利要求 43至 48中任一项所述的基站, 其特征在于, 所述发送单元还用于向所述第一基站发送第二请求消息, 所述第二请求 消息用于指示所述第一基站为所述 UE配置所述第一基站的第一小区;
所述接收单元还用于从所述第一基站接收第二响应消息, 所述第二响应 消息携带所述第一基站根据所述第二请求消息确定的所述第一小区的资源 信息;
所述发送单元还用于向所述 UE发送无线资源控制 RRC连接重配置消 息, 所述 RRC连接重配置消息携带所述第一小区的资源信息。
52. 根据权利要求 51所述的基站, 其特征在于, 所述第二请求消息还 用于指示所述第一基站为所述 UE建立 DRB。
53. 一种用户设备, 其特征在于, 包括:
接收单元, 用于从第一基站接收所述第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第一部分下行 RLC PDU,并从第二基站接收所 述下行 RLC PDU中的第二部分下行 RLC PDU,其中所述第二部分下行 RLC PDU是所述第二基站从所述第一基站接收的;
第一生成单元, 用于对所述第一部分下行 RLC PDU和所述第二部分下 行 RLC PDU进行重组以组成下行 RLC服务数据单元 SDU。
54. 根据权利要求 53所述的用户设备, 其特征在于, 还包括第一发送 单元;
所述第一生成单元, 还用于生成上行 RLC PDU;
所述第一发送单元, 用于向第一基站发送所述上行 RLC PDU中的第一 部分上行 RLC PDU,并向所述第二基站发送所述上行 RLC PDU中的第二部 分上行 RLC PDU。
55. 根据权利要求 53所述的用户设备, 其特征在于, 还包括第二生成 单元和第二发送单元,
所述第二生成单元, 用于根据所述第一部分下行 RLC PDU和所述第二 部分下行 RLC PDU的接收状况, 生成第一 RLC状态报告, 所述第一 RLC 状态报告指示所述第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或所 述第二部分下行 RLC PDU中需要重传的 RLC PDU;
所述第二发送单元, 用于向所述第一基站或所述第二基站发送所述第一 RLC状态报告;
所述接收单元还用于从所述第一基站接收所述第一部分下行 RLC PDU 中需要重传的 RLC PDU和 /或从所述第二基站接收所述第二部分下行 RLC PDU中需要重传的 RLC PDU。
56. 根据权利要求 54所述的用户设备, 其特征在于, 还包括确定单元 和第三发送单元,
所述接收单元还用于从所述第一基站接收第二 RLC状态报告; 所述确定单元用于根据所述第二 RLC状态报告, 确定上行重传集合, 所述上行重传集合包括所述第一部分上行 RLC PDU中需要重传的 RLC PDU 和 /或所述第二部分上行 RLC PDU中需要重传的 RLC PDU;
所述第三发送单元用于向所述第一基站发送所述上行重传集合的 RLC PDU, 或者向所述第二基站发送所述上行重传集合的 RLC PDU, 或者向所 述第一基站发送第一上行重传子集合的 RLC PDU并向所述第二基站发送第 二上行重传子集合的 RLC PDU, 其中所述第一上行重传子集合和所述第二 上行重传子集合是所述 UE对所述上行重传集合进行划分得到的。
57. 根据权利要求 53所述的用户设备, 其特征在于, 所述接收单元具 体用于从所述第一基站的第一小区接收所述第一部分下行 RLC PDU, 并从 所述第二基站的第二小区接收所述第二部分下行 RLC PDU, 其中所述第一 小区和所述第二小区的覆盖范围有重叠。
58. 根据权利要求 57所述的用户设备, 其特征在于, 所述接收单元还 用于从所述第一基站接收无线资源控制 RRC连接重配置消息, 所述 RRC连 接重配置消息携带所述第二基站确定的所述第二小区的资源信息。
59. 根据权利要求 57所述的用户设备, 其特征在于,
所述接收单元还用于从所述第二基站接收 RRC连接重配置消息, 所述 RRC连接重配置消息携带所述第一基站确定的所述第一小区的资源信息。
60. 一种基站, 其特征在于, 包括:
处理器, 用于生成下行无线链路控制 RLC协议数据单元 PDU;
发射器, 用于向用户设备 UE发送所述下行 RLC PDU中的第一部分下 行 RLC PDU,并向第二基站发送所述下行 RLC PDU中的第二部分下行 RLC PDU, 以便由所述第二基站向所述 UE发送所述第二部分下行 RLC PDIL
61. 根据权利要求 60所述的基站, 其特征在于, 还包括: 接收器, 用于从所述 UE接收所述 UE生成的上行 RLC PDU中的第一 部分上行 RLC PDU,并从所述第二基站接收所述上行 RLC PDU中的第二部 分上行 RLC PDU,其中所述第二部分上行 RLC PDU是所述第二基站从所述 UE接收的。
62. 根据权利要求 60所述的基站, 其特征在于, 还包括接收器, 所述接收器, 用于从所述 UE接收第一 RLC状态报告;
所述发射器, 还用于在所述第一 RLC状态报告指示所述第一部分下行 RLC PDU中需要重传的 RLC PDU时, 向所述 UE重传所述第一部分下行 RLC PDU中需要重传的 RLC PDU;
所述发射器, 还用于向所述第二基站转发所述第一 RLC状态报告, 所 述第一 RLC状态报告指示所述第二部分下行 RLC PDU中需要重传的 RLC PDU, 或者向所述第二基站发送所述基站根据所述第一 RLC状态报告生成 的重传消息, 所述重传消息指示所述第二部分下行 RLC PDU中需要重传的 RLC PDU。
63. 根据权利要求 60所述的基站, 其特征在于, 还包括接收器, 所述接收器, 用于从所述第二基站接收第一 RLC状态报告, 其中所述 第一 RLC状态报告是所述第二基站从所述 UE接收的;
所述处理器, 还用于根据所述第一 RLC状态报告, 确定所述第一部分 下行 RLC PDU中需要重传的 RLC PDU;
所述发射器, 还用于向所述 UE重传所述第一部分下行 RLC PDU中需 要重传的 RLC PDU。
64. 根据权利要求 61所述的基站, 其特征在于,
所述处理器, 还用于根据所述第一部分上行 RLC PDU和所述第二部分 上行 RLC PDU的接收状况, 生成第二 RLC状态报告, 所述发射器还用于向 所述 UE发送所述第二 RLC状态报告;
所述接收器,还用于接收所述 UE根据所述第二 RLC状态报告确定的上 行重传集合的 RLC PDU, 所述上行重传集合包括所述第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或所述第二部分上行 RLC PDU中需要重传 的 RLC PDU。
65. 根据权利要求 64所述的基站, 其特征在于, 所述接收器具体用于 从所述 UE接收所述上行重传集合的 RLC PDU;或者从所述 UE接收第一上 行重传子集合的 RLC PDU, 并从所述第二基站接收第二上行重传子集合中 的 RLC PDU,其中所述第二上行重传子集合的 RLC PDU是所述第二基站从 所述 UE接收的, 所述第一上行重传子集合与所述第二上行重传子集合是由 所述 UE对所述上行重传集合划分得到的; 或者从所述第二基站接收所述上 传重传集合的 RLC PDU,所述上行重传集合的 RLC PDU是所述第二基站从 所述 UE接收的。
66. 根据权利要求 60所述的基站, 其特征在于, 所述发射器具体用于 在所述基站的第一小区上向所述 UE发送所述第一部分下行 RLC PDU,并向 所述第二基站发送所述第二部分下行 RLC PDU, 以便由所述第二基站在所 述第二基站的第二小区上向所述 UE发送所述第二部分下行 RLC PDU,其中 所述第一小区与所述第二小区的覆盖范围有重叠。
67. 根据权利要求 66所述的基站, 其特征在于, 还包括接收器, 所述发射器, 还用于向所述第二基站发送第一请求消息, 所述第一请求 消息用于指示所述第二基站为所述 UE配置所述第二小区;
所述接收器, 用于从所述第二基站接收第一响应消息, 所述第一响应消 息携带所述第二基站根据所述第一请求消息确定的所述第二小区的资源信 息;
所述发射器, 还用于向所述 UE发送无线资源控制 RRC连接重配置消 息, 所述 RRC连接重配置消息携带所述第二小区的资源信息。
68. 根据权利要求 67所述的基站, 其特征在于, 所述第一请求消息还 用于指示所述第二基站为所述 UE建立数据无线承载 DRB。
69. 根据权利要求 66所述的基站, 其特征在于, 还包括接收器, 所述接收器, 用于从所述第二基站接收第二请求消息, 所述第二请求消 息用于指示所述基站为所述 UE配置所述第一小区;
所述处理器, 还用于根据所述第二请求消息, 确定所述第一小区的资源 信息;
所述发射器, 还用于向所述第二基站发送所述第二响应消息, 所述第二 响应消息携带所述第一小区的资源信息, 以便所述第二基站向所述 UE通知 所述第一小区的资源信息。
70. 根据权利要求 69所述的基站, 其特征在于,
所述第二请求消息还用于指示所述基站为所述 UE建立 DRB; 所述处理器, 还用于根据所述第二请求消息建立 DRB对应的 PDCP实 体、 RLC实体和逻辑信道。
71. 根据权利要求 69所述的基站, 其特征在于, 所述第二请求消息还 用于指示由所述基站负责数据分流;
所述发射器还用于根据所述第二请求消息向移动管理实体 MME发送路 径切换请求消息, 以便所述 MME根据所述路径切换请求消息向服务网关请 求将数据传输路径切换为所述服务网关至所述基站的路径。
72. 一种基站, 其特征在于, 包括:
接收器, 用于从第一基站接收所述第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第二部分下行 RLC PDU;
发射器, 用于向用户设备 UE发送所述第二部分下行 RLC PDU。
73. 根据权利要求 72所述的基站, 其特征在于, 所述接收器还用于从 所述 UE接收所述 UE生成的上行 RLC PDU中的第二部分上行 RLC PDU; 所述发射器还用于向所述第一基站发送所述第二部分上行 RLC PDU。
74. 根据权利要求 72所述的基站, 其特征在于, 还包括处理器, 所述接收器还用于从所述第一基站接收第一 RLC状态报告, 所述处理 器用于根据所述第一 RLC状态报告确定所述第二部分下行 RLC PDU中需要 重传的 RLC PDU,所述发射器还用于向所述 UE重传所述第二部分下行 RLC PDU中需要重传的 RLC PDU; 或者,
所述接收器还用于从所述第一基站接收重传消息, 所述发射器还用于根 据所述重传消息向所述 UE重传所述第二部分下行 RLC PDU中需要重传的 RLC PDU, 其中所述第一重传消息指示所述第二部分下行 RLC PDU中需要 重传的 RLC PDU。
75. 根据权利要求 72所述的基站, 其特征在于,
所述接收器还用于从所述 UE接收第一 RLC状态报告;
所述发射器还用于向所述第一基站转发所述第一 RLC状态报告, 用以 在所述第一 RLC状态报告指示所述第一部分下行 RLC PDU中需要重传的 RLC PDU时, 所述第一基站向所述 UE重传所述第一部分下行 RLC PDU中 需要重传的 RLC PDU;
所述发射器还用于在所述第一 RLC 状态报告指示所述第二部分下行
RLC PDU中需要重传的 RLC PDU时, 向所述 UE重传所述第二部分下行 RLC PDU中需要重传的 RLC PDU。
76. 根据权利要求 73所述的基站, 其特征在于,
所述接收器还用于从所述 UE接收上行重传集合的 RLC PDU,所述发射 器还用于向所述第一基站发送所述上行重传集合的 RLC PDU, 所述上行重 传集合包括所述第一部分上行 RLC PDU中需要重传的 RLC PDU和 /或所述 第二部分上行 RLC PDU中需要重传的 RLC PDU; 或者,
所述接收器还用于从所述 UE接收第二上行重传子集合的 RLC PDU,所 述发射器还用于向所述第一基站发送所述第二上行重传子集合的 RLC PDU,所述第二上行重传子集合是所述 UE对所述上行重传集合划分得到的。
77. 根据权利要求 72所述的基站, 其特征在于, 所述发射器具体用于 在所述基站的第二小区上向所述 UE发送所述第二部分下行 RLC PDU。
78. 根据权利要求 77所述的基站, 其特征在于, 还包括处理器, 所述接收器, 还用于从所述第一基站接收第一请求消息, 所述第一请求 消息用于指示所述基站为所述 UE配置所述第二小区;
所述处理器, 用于根据所述第一请求消息确定所述第二小区的资源信 息;
所述发射器, 还用于向所述第一基站发送第一响应消息, 所述第一响应 消息携带所述第二小区的资源信息, 以便所述第一基站向所述 UE通知所述 第二小区的资源信息。
79. 根据权利要求 78所述的基站, 其特征在于, 所述第一请求消息还 用于指示所述基站为所述 UE建立数据无线承载 DRB;
所述处理器还用于根据所述第一请求消息建立 DRB对应的 RLC实体和 逻辑信道。
80. 根据权利要求 72至 77中任一项所述的基站, 其特征在于, 所述发射器, 还用于向所述第一基站发送第二请求消息, 所述第二请求 消息用于指示所述第一基站为所述 UE配置所述第一基站的第一小区;
所述接收器, 还用于从所述第一基站接收第二响应消息, 所述第二响应 消息携带所述第一基站根据所述第二请求消息确定的所述第一小区的资源 信息;
所述发射器, 还用于向所述 UE发送无线资源控制 RRC连接重配置消 息, 所述 RRC连接重配置消息携带所述第一小区的资源信息。
81. 根据权利要求 80所述的基站, 其特征在于, 所述第二请求消息还 用于指示所述第一基站为所述 UE建立 DRB。
82. 一种用户设备, 其特征在于, 包括:
接收器, 用于从第一基站接收所述第一基站生成的下行无线链路控制 RLC协议数据单元 PDU中的第一部分下行 RLC PDU,并从第二基站接收所 述下行 RLC PDU中的第二部分下行 RLC PDU,其中所述第二部分下行 RLC PDU是所述第二基站从所述第一基站接收的;
处理器, 用于对所述第一部分下行 RLC PDU和所述第二部分下行 RLC PDU进行重组以组成下行 RLC服务数据单元 SDU。
83. 根据权利要求 82所述的用户设备, 其特征在于, 还包括发射器; 所述处理器, 还用于生成上行 RLC PDU;
所述发射器, 用于向第一基站发送所述上行 RLC PDU中的第一部分上 行 RLC PDU,并向所述第二基站发送所述上行 RLC PDU中的第二部分上行 RLC PDU。
84. 根据权利要求 82所述的用户设备, 其特征在于, 还包括发射器, 所述处理器, 还用于根据所述第一部分下行 RLC PDU和所述第二部分 下行 RLC PDU的接收状况, 生成第一 RLC状态报告, 所述第一 RLC状态 报告指示所述第一部分下行 RLC PDU中需要重传的 RLC PDU和 /或所述第 二部分下行 RLC PDU中需要重传的 RLC PDU;
所述发射器, 用于向所述第一基站或所述第二基站发送所述第一 RLC 状态报告;
所述接收器, 还用于从所述第一基站接收所述第一部分下行 RLC PDU 中需要重传的 RLC PDU和 /或从所述第二基站接收所述第二部分下行 RLC PDU中需要重传的 RLC PDU。
85. 根据权利要求 83所述的用户设备, 其特征在于, 所述接收器, 还 用于从所述第一基站接收第二 RLC状态报告;
所述处理器, 还用于根据所述第二 RLC状态报告, 确定上行重传集合, 所述上行重传集合包括所述第一部分上行 RLC PDU中需要重传的 RLC PDU 和 /或所述第二部分上行 RLC PDU中需要重传的 RLC PDU;
所述发射器, 还用于向所述第一基站发送所述上行重传集合的 RLC
PDU, 或者向所述第二基站发送所述上行重传集合的 RLC PDU, 或者向所 述第一基站发送第一上行重传子集合的 RLC PDU并向所述第二基站发送第 二上行重传子集合的 RLC PDU, 其中所述第一上行重传子集合和所述第二 上行重传子集合是所述 UE对所述上行重传集合进行划分得到的。
86. 根据权利要求 82所述的用户设备, 其特征在于, 所述接收器具体 用于从所述第一基站的第一小区接收所述第一部分下行 RLC PDU, 并从所 述第二基站的第二小区接收所述第二部分下行 RLC PDU, 其中所述第一小 区和所述第二小区的覆盖范围有重叠。
87. 根据权利要求 86所述的用户设备, 其特征在于, 所述接收器还用 于从所述第一基站接收无线资源控制 RRC连接重配置消息, 所述 RRC连接 重配置消息携带所述第二基站确定的所述第二小区的资源信息。
88. 根据权利要求 86所述的用户设备, 其特征在于,
所述接收器还用于从所述第二基站接收 RRC 连接重配置消息, 所述 RRC连接重配置消息携带所述第一基站确定的所述第一小区的资源信息。
PCT/CN2012/084506 2012-11-13 2012-11-13 传输数据的方法、基站和用户设备 WO2014075210A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PCT/CN2012/084506 WO2014075210A1 (zh) 2012-11-13 2012-11-13 传输数据的方法、基站和用户设备
EP12888440.0A EP2908570B1 (en) 2012-11-13 2012-11-13 Method and base station for transmitting data
CN201710812863.2A CN107819546B (zh) 2012-11-13 2012-11-13 传输数据的方法、基站和用户设备
MX2015006001A MX344890B (es) 2012-11-13 2012-11-13 Metodo, estacion base y equipo de usuario de transmision de datos.
BR112015010763-0A BR112015010763B1 (pt) 2012-11-13 2012-11-13 Método e aparelho de transmissão de dados
CN201710812827.6A CN107750064B (zh) 2012-11-13 2012-11-13 传输数据的方法、基站和用户设备
CN201280028139.6A CN104041102A (zh) 2012-11-13 2012-11-13 传输数据的方法、基站和用户设备
RU2015122423A RU2622110C2 (ru) 2012-11-13 2012-11-13 Способ передачи данных, базовая станция и пользовательское оборудование
US14/709,922 US10110282B2 (en) 2012-11-13 2015-05-12 Data transmission method, base station, and user equipment
ZA2015/03592A ZA201503592B (en) 2012-11-13 2015-05-21 Data transmission method , base station , and user equipment.
US16/142,525 US20190028151A1 (en) 2012-11-13 2018-09-26 Data transmission method, base station, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/084506 WO2014075210A1 (zh) 2012-11-13 2012-11-13 传输数据的方法、基站和用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/709,922 Continuation US10110282B2 (en) 2012-11-13 2015-05-12 Data transmission method, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2014075210A1 true WO2014075210A1 (zh) 2014-05-22

Family

ID=50730449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084506 WO2014075210A1 (zh) 2012-11-13 2012-11-13 传输数据的方法、基站和用户设备

Country Status (8)

Country Link
US (2) US10110282B2 (zh)
EP (1) EP2908570B1 (zh)
CN (3) CN104041102A (zh)
BR (1) BR112015010763B1 (zh)
MX (1) MX344890B (zh)
RU (1) RU2622110C2 (zh)
WO (1) WO2014075210A1 (zh)
ZA (1) ZA201503592B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160183103A1 (en) * 2013-08-09 2016-06-23 Nokia Solutions And Networks Oy Use of packet status report from secondary base station to master base station in wireless network
CN106165514A (zh) * 2015-02-09 2016-11-23 华为技术有限公司 一种rlc数据包重传方法及基站
EP3301966A4 (en) * 2015-06-30 2018-04-18 Huawei Technologies Co., Ltd. Radio access network device, data processing method and ip packet processing method
WO2018127243A1 (zh) * 2017-01-06 2018-07-12 电信科学技术研究院 网络实体切换的方法、终端及网络实体设备
TWI661697B (zh) * 2017-08-31 2019-06-01 宏達國際電子股份有限公司 處理封包路由的裝置
US10342060B2 (en) 2014-06-09 2019-07-02 Nokia Solutions And Networks Oy Inter-eNB Carrier Aggregation
CN110572246A (zh) * 2016-01-20 2019-12-13 华为技术有限公司 一种数据发送方法、数据接收方法和装置
US10616817B2 (en) 2015-06-30 2020-04-07 Huawei Technologies Co., Ltd. Terminal, base station, cell access method, and data transmission method for reconfiguring a wireless connection to communicate with a secondary cell
RU2736417C1 (ru) * 2017-05-24 2020-11-17 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ передачи по протоколу управления радиолинией и относящиеся к нему продукты

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023530B2 (ja) * 2012-09-25 2016-11-09 株式会社Nttドコモ 移動通信方法
CN103338518B (zh) * 2012-12-31 2016-12-28 上海华为技术有限公司 一种发送rrc信令的方法、基站和系统
US9860933B2 (en) * 2013-01-15 2018-01-02 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
EP3550901B1 (en) 2013-04-01 2020-11-18 Samsung Electronics Co., Ltd. Scell addition method in mobile communication system
KR102264025B1 (ko) * 2013-05-15 2021-06-11 엘지전자 주식회사 무선 통신 시스템에서 상향링크 자원들을 할당하기 위한 방법 및 이를 위한 장치
CN105230103B (zh) * 2013-05-17 2019-07-12 寰发股份有限公司 上报bsr的方法以及用户设备
CN104581824A (zh) * 2013-10-17 2015-04-29 中兴通讯股份有限公司 一种数据包分流传输的方法及系统
KR102292194B1 (ko) 2013-10-23 2021-08-23 엘지전자 주식회사 무선 링크 문제의 보고 방법 및 이를 위한 장치
US9572171B2 (en) * 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
US10028212B2 (en) * 2013-11-22 2018-07-17 Qualcomm Incorporated Techniques for provisioning configuration information based on cell characteristics
JP6259083B2 (ja) 2013-12-20 2018-01-10 エルジー エレクトロニクス インコーポレイティド パワーヘッドルームの報告方法及びそのための装置
US9900844B2 (en) * 2014-01-13 2018-02-20 Samsung Electronics Co., Ltd. Uplink transmissions for dual connectivity
EP3133860B1 (en) * 2014-04-18 2018-08-22 NTT DoCoMo, Inc. User device and uplink-transmission-power-information transmission method
US9755726B2 (en) * 2014-04-21 2017-09-05 Alcatel Lucent Method and apparatus for improved multi-carrier communication
WO2015180181A1 (zh) * 2014-05-30 2015-12-03 华为技术有限公司 数据传输方法及基站
WO2016140273A1 (ja) * 2015-03-03 2016-09-09 京セラ株式会社 基地局、無線端末及びネットワーク装置
US9705803B1 (en) * 2015-06-10 2017-07-11 Sprint Communications Company L.P. Negotiated radio link properties among wireless access nodes
US10064098B2 (en) * 2015-12-07 2018-08-28 Google Llc Dual connectivity and carrier aggregation at an IP layer
WO2017119377A1 (ja) * 2016-01-08 2017-07-13 株式会社Nttドコモ 無線通信装置及び無線通信方法
CN117460072A (zh) 2016-03-30 2024-01-26 交互数字专利控股公司 5g灵活的rat系统中的独立的l2处理和控制架构
CN107682894B (zh) * 2016-08-01 2022-11-29 中兴通讯股份有限公司 用户面数据处理方法、装置及系统
US10028155B2 (en) * 2016-09-29 2018-07-17 Nokia Solutions And Networks Oy Buffer management for wireless networks
US10925107B2 (en) * 2016-10-14 2021-02-16 Nokia Technologies Oy Fast activation of multi-connectivity utilizing uplink signals
JPWO2018097073A1 (ja) * 2016-11-24 2019-10-17 日本電気株式会社 情報通知装置、情報通知方法およびプログラム
US10341225B2 (en) * 2016-12-30 2019-07-02 Hughes Network Systems, Llc Bonding of satellite terminals
CN111541513B (zh) * 2017-01-05 2024-04-09 华为技术有限公司 数据的传输方法和装置
CN108282825B (zh) * 2017-01-05 2019-12-20 电信科学技术研究院 一种信息处理方法及装置
CA3056572A1 (en) * 2017-03-22 2018-09-27 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method, and integrated circuit
CN109151896B (zh) * 2017-06-16 2023-10-10 华为技术有限公司 传输速率控制方法和装置
CN111183674B (zh) * 2017-06-20 2023-06-16 苹果公司 用于流控制触发和反馈的设备和方法
CN109429368B (zh) * 2017-06-23 2022-03-01 中兴通讯股份有限公司 消息发送方法、系统、装置、网元、存储介质及处理器
KR102554092B1 (ko) * 2017-07-21 2023-07-12 삼성전자 주식회사 이동 통신 시스템에서 데이터 전송 방법 및 장치
CN109547176B9 (zh) 2017-08-11 2022-07-01 华为技术有限公司 一种通信方法和装置
WO2019029824A1 (en) * 2017-08-11 2019-02-14 Huawei Technologies Co., Ltd. APPARATUS FOR ESTABLISHING A V2X ORIENTED LOCAL E2E PATH AND QOS CONTROL
MX2020002997A (es) * 2017-09-28 2020-07-22 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo terminal de comunicacion inalambrica.
TWI710261B (zh) * 2017-10-02 2020-11-11 新加坡商 聯發科技(新加坡)私人有限公司 資料恢復方法及其使用者設備
JP7095977B2 (ja) * 2017-11-15 2022-07-05 シャープ株式会社 端末装置、基地局装置、および方法
KR102468926B1 (ko) * 2018-01-05 2022-11-18 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 무선 베어러의 식별자 할당 방법, 네트워크 노드 및 컴퓨터 저장 매체
CN108496337B (zh) * 2018-03-28 2021-08-17 北京小米移动软件有限公司 信息上报方法及装置、用户设备和计算机可读存储介质
CN110557757B (zh) * 2018-06-04 2022-08-30 中国电信股份有限公司 建立承载的方法、网关设备和计算机可读存储介质
US11601841B2 (en) * 2018-08-01 2023-03-07 Nec Corporation Radio station, radio communication method, non-transitory computer readable medium, and radio communication system
US11606715B2 (en) * 2018-08-02 2023-03-14 Lg Electronics Inc. Method of transmitting buffer status report, and device therefor
EP3881440A1 (en) 2018-12-28 2021-09-22 Google LLC User-equipment-coordination set for a wireless network
CN113243125B (zh) * 2019-01-02 2024-05-07 谷歌有限责任公司 用于移动性管理的多活动协调集聚合的方法和装置
CN111278063B (zh) * 2019-01-04 2022-04-05 维沃移动通信有限公司 数据分流传输方法、网络主节点mn、网络辅节点sn和存储介质
US12177821B2 (en) 2019-01-28 2024-12-24 Google Llc Dynamic carrier subband operation for active coordination sets
CN111565391B (zh) * 2019-02-14 2022-04-05 华为技术有限公司 一种通信方法及装置
KR20200114994A (ko) * 2019-03-28 2020-10-07 삼성전자주식회사 차세대 이동 통신 시스템에서 데이터 송수신 중단이 없는 핸드오버 방법 및 장치
WO2020199221A1 (zh) * 2019-04-04 2020-10-08 Oppo广东移动通信有限公司 一种资源配置方法、网络设备、终端设备
CN112087393A (zh) * 2019-06-13 2020-12-15 大唐移动通信设备有限公司 一种数据分流方法和装置
CN112788680B (zh) * 2019-11-07 2022-07-29 华为技术有限公司 一种数据传输的方法及相关设备
CN119316886A (zh) * 2019-12-23 2025-01-14 中兴通讯股份有限公司 一种无线通信方法、装置及计算机可读存储介质
US11265111B2 (en) * 2020-01-10 2022-03-01 Lenovo (Singapore) Pte Ltd Consecutive data packet feedback
CN117812746A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种协议数据单元集合传输方法及装置
US20240365294A1 (en) * 2023-04-28 2024-10-31 Nokia Solutions And Networks Oy Method for distribution unit components cooperation in terms of significant reduction of downlink user throughput

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201008168A (en) * 2008-08-11 2010-02-16 Interdigital Patent Holdings Method and apparatus for using a relay to provide physical and hybrid automatic repeat request functionalities
CN101965741A (zh) * 2008-01-02 2011-02-02 交互数字技术公司 用于协作无线通信的方法和设备
WO2011020233A1 (zh) * 2009-08-17 2011-02-24 上海贝尔股份有限公司 多跳中继通信系统中对下行数据传输控制的方法和装置
CN102098725A (zh) * 2009-12-15 2011-06-15 中兴通讯股份有限公司 一种服务网关与中继终端间传输数据的系统及方法
US20120147805A1 (en) * 2009-03-19 2012-06-14 Hak Seong Kim Method and apparatus for multicell cooperative communication

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431070B (en) * 2005-10-06 2008-02-13 Samsung Electronics Co Ltd Mobile communications
EP2076069A1 (en) * 2007-12-27 2009-07-01 Thomson Telecom Belgium Method and system for performing service admission control
KR101716493B1 (ko) * 2009-11-06 2017-03-14 삼성전자주식회사 이동 통신 시스템에서 전력 헤드룸을 보고하는 방법 및 장치와 그 시스템
EP4009733A1 (en) * 2010-02-12 2022-06-08 InterDigital Technology Corporation Data split between multiple sites
JP2013520108A (ja) * 2010-02-12 2013-05-30 インターデイジタル パテント ホールディングス インコーポレイテッド ダウンリンク協調コンポーネントキャリアを介してセルエッジユーザパフォーマンスを向上させるため、および無線リンク障害条件をシグナリングするための方法および装置
US8615241B2 (en) * 2010-04-09 2013-12-24 Qualcomm Incorporated Methods and apparatus for facilitating robust forward handover in long term evolution (LTE) communication systems
JP2012005089A (ja) * 2010-06-21 2012-01-05 Ntt Docomo Inc 移動通信方法、無線基地局及び移動局
CN102612088B (zh) * 2011-01-18 2016-01-27 华为技术有限公司 异构网络中基于载波汇聚技术的通信方法与系统、基站
WO2012101688A1 (ja) * 2011-01-27 2012-08-02 日本電気株式会社 基地局、移動局、通信制御システム、及び通信制御方法
CN102647265B (zh) * 2011-02-18 2017-08-04 华为技术有限公司 一种建立演进分组系统承载的方法及基站
EP2678964B1 (en) * 2011-02-23 2014-12-31 Telefonaktiebolaget LM Ericsson (PUBL) Communication of data using independent downlink and uplink connections
CN102655682B (zh) * 2011-03-03 2016-12-07 华为技术有限公司 一种采用载波汇聚方式传输数据的方法、系统及装置
KR20140009429A (ko) * 2011-03-29 2014-01-22 호도가야 가가쿠 고교 가부시키가이샤 정전기 전하 영상 현상용 토너
ES2622391T3 (es) * 2011-04-01 2017-07-06 Intel Corporation Agregación de portadoras oportunista utilizando portadoras de extensión de corto alcance
EP2509373A1 (en) * 2011-04-01 2012-10-10 Panasonic Corporation Efficient extended power headroom reporting for semi-persistent scheduling
CN102740444B (zh) * 2011-04-04 2016-03-23 上海贝尔股份有限公司 在蜂窝通信系统中初始化从小区的方法、用户设备和基站
WO2012136256A1 (en) * 2011-04-07 2012-10-11 Nokia Siemens Networks Oy Functional split for a multi-node carrier aggregation transmission scheme
EP2803159B1 (en) * 2012-01-11 2018-08-15 Nokia Solutions and Networks Oy Secondary cell preparation for inter-site carrier aggregation
EP2813023A1 (en) * 2012-02-10 2014-12-17 Nokia Solutions and Networks Oy Inter-site carrier aggregation
CN104584633B (zh) * 2012-08-23 2018-12-18 交互数字专利控股公司 在无线系统中采用多个调度器进行操作
CN104823481B (zh) * 2012-10-08 2019-07-05 安华高科技股份有限公司 用于管理双重连接建立的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965741A (zh) * 2008-01-02 2011-02-02 交互数字技术公司 用于协作无线通信的方法和设备
TW201008168A (en) * 2008-08-11 2010-02-16 Interdigital Patent Holdings Method and apparatus for using a relay to provide physical and hybrid automatic repeat request functionalities
US20120147805A1 (en) * 2009-03-19 2012-06-14 Hak Seong Kim Method and apparatus for multicell cooperative communication
WO2011020233A1 (zh) * 2009-08-17 2011-02-24 上海贝尔股份有限公司 多跳中继通信系统中对下行数据传输控制的方法和装置
CN102098725A (zh) * 2009-12-15 2011-06-15 中兴通讯股份有限公司 一种服务网关与中继终端间传输数据的系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on DL coordinated multipoint transmission", 3GPP DRAFT TSG-RAN1 #54, R1-083115, August 2008 (2008-08-01), Jeju, Korea, pages 4 *
See also references of EP2908570A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160183103A1 (en) * 2013-08-09 2016-06-23 Nokia Solutions And Networks Oy Use of packet status report from secondary base station to master base station in wireless network
US10694400B2 (en) * 2013-08-09 2020-06-23 Nokia Solutions And Networks Oy Use of packet status report from secondary base station to master base station in wireless network
EP2955959B1 (en) * 2014-06-09 2019-08-07 Nokia Solutions and Networks Oy Inter-enb carrier aggregation
US10342060B2 (en) 2014-06-09 2019-07-02 Nokia Solutions And Networks Oy Inter-eNB Carrier Aggregation
CN106165514B (zh) * 2015-02-09 2020-07-03 诸暨市元畅信息技术咨询服务部 一种rlc数据包重传方法及基站
EP3247162A4 (en) * 2015-02-09 2018-03-07 Huawei Technologies Co., Ltd. Method for retransmitting rlc data packet and base station
US10419167B2 (en) 2015-02-09 2019-09-17 Huawei Technologies Co., Ltd. RLC data packet retransmission method and eNodeB
CN106165514A (zh) * 2015-02-09 2016-11-23 华为技术有限公司 一种rlc数据包重传方法及基站
US11134427B2 (en) 2015-06-30 2021-09-28 Huawei Technologies Co., Ltd. Terminal, base station, cell access method, and data transmission method for reconfiguring a wireless connection to communicate with a secondary cell
CN111050343B (zh) * 2015-06-30 2022-07-22 华为技术有限公司 无线接入网设备、数据处理方法和ip报文处理方法
EP3301966A4 (en) * 2015-06-30 2018-04-18 Huawei Technologies Co., Ltd. Radio access network device, data processing method and ip packet processing method
US10616817B2 (en) 2015-06-30 2020-04-07 Huawei Technologies Co., Ltd. Terminal, base station, cell access method, and data transmission method for reconfiguring a wireless connection to communicate with a secondary cell
US10506644B2 (en) 2015-06-30 2019-12-10 Huawei Technologies Co., Ltd. Radio access network device, data processing method, and IP packet processing method
CN111050343A (zh) * 2015-06-30 2020-04-21 华为技术有限公司 无线接入网设备、数据处理方法和ip报文处理方法
CN110572246B (zh) * 2016-01-20 2020-10-16 华为技术有限公司 一种数据发送方法、数据接收方法和装置
CN110572246A (zh) * 2016-01-20 2019-12-13 华为技术有限公司 一种数据发送方法、数据接收方法和装置
US11695515B2 (en) 2016-01-20 2023-07-04 Huawei Technologies Co., Ltd. Data transmission method, user equipment, and base station
CN108282830B (zh) * 2017-01-06 2019-09-17 电信科学技术研究院 一种网络实体切换的方法、终端及网络实体设备
CN108282830A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种网络实体切换的方法、终端及网络实体设备
WO2018127243A1 (zh) * 2017-01-06 2018-07-12 电信科学技术研究院 网络实体切换的方法、终端及网络实体设备
RU2736417C1 (ru) * 2017-05-24 2020-11-17 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ передачи по протоколу управления радиолинией и относящиеся к нему продукты
US11184947B2 (en) 2017-05-24 2021-11-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Radio link control transmission method and related products
US10595357B2 (en) 2017-08-31 2020-03-17 Htc Corporation Device and method of handling packet routing
TWI661697B (zh) * 2017-08-31 2019-06-01 宏達國際電子股份有限公司 處理封包路由的裝置

Also Published As

Publication number Publication date
EP2908570A1 (en) 2015-08-19
CN107819546A (zh) 2018-03-20
CN107750064B (zh) 2020-08-14
EP2908570B1 (en) 2019-06-19
RU2622110C2 (ru) 2017-06-13
BR112015010763B1 (pt) 2022-04-26
RU2015122423A (ru) 2017-01-10
CN107819546B (zh) 2023-07-11
MX344890B (es) 2017-01-10
US20150244429A1 (en) 2015-08-27
ZA201503592B (en) 2020-02-26
EP2908570A4 (en) 2016-04-06
BR112015010763A2 (pt) 2017-07-11
CN107750064A (zh) 2018-03-02
MX2015006001A (es) 2015-10-29
US20190028151A1 (en) 2019-01-24
US10110282B2 (en) 2018-10-23
CN104041102A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
CN107819546B (zh) 传输数据的方法、基站和用户设备
US12108413B2 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
JP7267962B2 (ja) 複数のサイト間のデータ分割
KR102169961B1 (ko) 무선 링크 제어 재송신 실패 보고 방법 및 이를 위한 장치
JP6425800B2 (ja) ユーザ端末、通信方法及びプロセッサ
KR102184046B1 (ko) 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
JP7337253B2 (ja) 無線通信ネットワークにおけるユーザ機器、ターゲットアクセスノード、および方法
JP6436436B2 (ja) スモールセル配備時の効率的な破棄メカニズム
KR20180090658A (ko) 이동통신 시스템에서 다중 연결을 사용한 핸드오버 시 보안 키를 처리하는 방법 및 장치
JP2022551852A (ja) 無線通信システムにおいてハンドオーバー手続きを実行する方法及びその装置
CN112399489B (zh) 小区切换方法以及用户设备
CN113396607A (zh) 用于在无线通信系统中执行切换的方法和设备
WO2014059663A1 (zh) 切换方法和设备
CN110691425A (zh) 在移动通信系统中的终端、基站及其方法
RU2671845C1 (ru) Способ передачи данных, базовая станция и пользовательское оборудование

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012888440

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/006001

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015010763

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201503539

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015122423

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015010763

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150512