WO2014073772A1 - Method for preparing nanoparticles having core-shell structure, and nanoparticles prepared thereby - Google Patents

Method for preparing nanoparticles having core-shell structure, and nanoparticles prepared thereby Download PDF

Info

Publication number
WO2014073772A1
WO2014073772A1 PCT/KR2013/006880 KR2013006880W WO2014073772A1 WO 2014073772 A1 WO2014073772 A1 WO 2014073772A1 KR 2013006880 W KR2013006880 W KR 2013006880W WO 2014073772 A1 WO2014073772 A1 WO 2014073772A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
nanoparticles
metal
shell
particles
Prior art date
Application number
PCT/KR2013/006880
Other languages
French (fr)
Korean (ko)
Inventor
김미영
유의현
임민기
박찬혁
연경열
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Publication of WO2014073772A1 publication Critical patent/WO2014073772A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present invention relates to a method for producing nanoparticles having a core-shell structure and to nanoparticles prepared therefrom.
  • TCEs Transparent Conductive Electrodes
  • ITO Indium Tin Oxide
  • the process temperature is high, it is fragile by external physical stimuli, and is vulnerable to bending deformation.
  • the film is broken when the substrate is bent when coated on a polymer substrate.
  • the price is gradually increasing, and a problem arises in the supply.
  • a flexible transparent electrode and attracting attention as a material that can replace ITO are conductive polymers, carbon nanotubes, graphene, and metal nanowires and nanoparticles.
  • carbon nanotubes or graphene have low conductivity and are difficult to improve permeability.
  • the metal nanowires represented by Ag nanowires are high in price and are expensive in the manufacture of transparent electrodes only with Ag nanowires, and the surface of the transparent electrodes is rough.
  • inkjet printing is difficult and high temperature process is impossible, and the process is limited and conductivity decreases with stretching.
  • the metal nanoparticles are prepared in the form of a conductive ink is used for electrode production by a process such as inkjet.
  • Such metal nanoparticles may include particles of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, chromium, manganese and the like.
  • copper, nickel, iron, cobalt, zinc, chromium, manganese particles have a lower manufacturing cost than noble metal nanoparticles, but has a problem of low oxidation stability.
  • copper (Cu) has excellent conductivity with low price.
  • the conductivity is greatly reduced, so it is difficult to use as a conductive ink.
  • the conductivity may be reduced by the antioxidant used to prevent surface oxidation.
  • silver (Ag) which is mainly used as a nanoparticle of a conductive ink, is very expensive, and as the recent price skyrockets, there is an urgent need for an alternative material that is relatively inexpensive and has high electrical conductivity.
  • Core-shell structured nanoparticles have been proposed to prevent oxidation of the metal particles forming the core portion and to improve the electrical conductivity of the particles.
  • a typical one is a structure in which a shell layer is formed of silver (Ag) on the surface of core nanoparticles of copper (Cu).
  • the shell layer made of silver in the particles having such a structure prevents oxidation of copper in the core portion and improves electrical conductivity of the whole particle.
  • the conventionally used method for producing the core-shell structured nanoparticles is to reduce the precursor of the core particles with a reducing agent in a single phase, i.e., a single solvent, to produce core nanoparticles and form a shell layer for the particles.
  • the material was slowly added and reduced to form a shell layer on the surface thereof.
  • the problem with the method is that it is not easy to control the particle size of the nanoparticles formed when the reduction reaction in a single phase to prepare the core particles and the separation of the formed particles is not easy.
  • a salt solution of dilute silver (Ag) it is not easy to control the rate of addition of the solution. aggregation is often achieved.
  • the thickness of the shell layer formed is not easy to control.
  • the present invention provides a method for preparing nanoparticles having a core-shell structure at room temperature, particle size control, particle separation, and uniform production.
  • the present invention also provides a method of forming a shell layer which can control the thickness of the shell layer and does not cause aggregation of the shell layer forming material.
  • an object of the present invention is to provide nanoparticles that are prevented from oxidation, excellent in electrical conductivity, and advantageously economically.
  • the present invention provides a core-shell structured nanoparticle comprising a shell layer formed from a precursor represented by the following formula on the surface of a metal particle of the core:
  • X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
  • the core metal particles are copper, nickel, iron, cobalt, zinc, chromium or manganese particles.
  • the core metal particles are prepared from metal precursors having a structure represented by the following formula:
  • R is And R may be the same or different.
  • X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23).
  • the core metal particles are made from metal hexanoate.
  • the present invention provides a method for producing a core-shell structured nanoparticle, wherein the shell layer is formed by reducing a precursor represented by the following formula on the surface of the metal particle of the core:
  • X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
  • the metal particles of the core are prepared by reducing the metal hexanoate of the organic phase with a reducing agent of the aqueous phase.
  • the precursor is added dropwise to the metal particles of the core in the form of a solution containing a solvent in the organic phase.
  • the feed rate of the solution ranges from 1 ml / min to 30 ml / min.
  • the solution comprises an amine having an alkyl group of 4 to 18 carbon atoms.
  • the precursor is used in the range of 100 to 200 parts by weight based on the metal particles of the core.
  • the reduction reaction is controlled by distribution equilibrium in the organic phase (non-polar solvent) and the water phase (polar solvent), so that the particle size can be controlled and nanoparticles of the core having a uniform shape can be synthesized.
  • the thickness of the shell layer can be adjusted by controlling the reaction temperature and concentration by using the shell layer forming precursor which can control the redox reaction by high solubility and distribution equilibrium.
  • the core-shell structured nanoparticles prepared by the present invention are prevented from being oxidized by shelling core particles that are susceptible to oxidation and having high electrical conductivity, thereby preventing oxidation and improving electrical conductivity of the particles.
  • the present invention is advantageous in terms of economics compared to the case where the entire particle is provided by such particles by providing the particles containing the expensive metal only in the shell layer.
  • FIG. 1 illustrates a process of preparing core particles and forming a shell layer according to the manufacturing method of the present invention.
  • Figure 2 is a SEM photograph of the copper nanoparticles and Cu @ Ag particles prepared in the example.
  • Figure 3 is a SEM photograph of the particles produced in the comparative example.
  • the present invention is characterized in that it comprises a shell layer formed from a precursor represented by the following formula on the surface of metal particles of the core in order to improve its oxidation stability and improve electrical conductivity when preparing nanoparticles from highly oxidizable metals.
  • Core-shell structured nanoparticles are provided:
  • X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
  • metal precursor having a structure represented by the following formula can be used:
  • R is And R may be the same or different.
  • X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23).
  • the reaction solution is prepared by dissolving metal hexanoate in a solvent and a capping agent.
  • the capping agent participates in the reduction reaction of metal hexanoate and wraps around the formed nanoparticles to stabilize the particles.
  • the capping agent serves to prevent oxidation of the prepared metal nanoparticles. It also serves to control the particle size of the produced particles. Therefore, the capping agent preferably has a suitable chain length.
  • amine is used as an example as a capping agent. It is preferable that the said amine contains a C4-C18 alkyl group.
  • a capping agent may preferably be butyl amine (butylamine), octylamine (octylamine), dodecylamine (dodecylamine), oleyl amine (Oleylamine) and the like. More preferably, oleylamine is used as the capping agent.
  • Oleyl amine is an amine of oleic acid, a fatty acid, and because of its relatively high molecular weight, can be combined with metal nanoparticles to form a layer on the particle surface.
  • the oxidation stability of the metal nanoparticles can be increased by preventing external oxygen from diffusing into the core of the metal nanoparticles.
  • the oleamine amine combined with the metal nanoparticles may facilitate the dispersion of the nanoparticles in a solvent.
  • the metal hexanoate of the organic phase is reduced by a reducing agent of the aqueous phase.
  • the metal hexanoate migrates by distribution equilibrium between the organic phase and the aqueous phase and is reduced by the reducing agent present in the aqueous phase to be distributed and present in the aqueous and organic phases as shown in section 2.
  • a relatively low temperature preferably room temperature to 60 ° C.
  • particle size can be easily adjusted according to the type of capping agent to be used, and nanoparticles having a uniform form can be obtained.
  • the shell layer is formed by reducing the precursor represented by the following formula on the surface of the metal particles of the core thus formed:
  • X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
  • the precursor has high solubility in nonpolar solvents and is in equilibrium with the distribution between nonpolar and polar solvents. This is a means to prevent aggregation which has been a problem when compared to other conventional precursor materials that have been used to form shell layers on metal particle surfaces.
  • the precursor of the present invention administered to the metal particle surface is adsorbed only on the particle surface without forming agglomerates among them to form a shell layer. Accordingly, the present invention can provide a core-shell structure in which a uniform shell layer is formed on the surface.
  • the reaction temperature and the concentration of the precursor may be adjusted to form a shell layer having a desired thickness. Therefore, the core-shell structured particles of the present invention can control the thickness of the shell layer according to the reaction temperature and the precursor concentration. It is preferable to perform reaction temperature in the range of room temperature-40 degreeC, and to use a precursor in the range of 100-200 weight part with respect to the metal particle of a core. At low temperatures, the activity of the surface of the core particles decreases a lot and the reaction does not proceed. On the contrary, when the reaction temperature is higher than the above range, the reaction rate is so fast that aggregation of particles occurs and a uniform shell layer cannot be formed.
  • the precursor when used in an amount less than 100 parts by weight relative to the core particles, the precursor does not react with the surface of the core particles or forms a shell layer with a sufficient thickness to improve conductivity. There is a possibility that the viscosity of the solution rises so that a uniform shell layer is not formed over the entire surface of the core particles, and local aggregation occurs.
  • the core particles synthesized by the distribution equilibrium between the polar and nonpolar solvents are distributed in the polar and nonpolar phases as shown in FIG. 1.
  • the precursor solution on the nonpolar solvent is slowly added dropwise thereto to proceed with the reduction reaction.
  • the input rate of the precursor solution is preferably in the range of 1ml / min to 30ml / min. This is because if the feed rate is less than 1 ml / min, the reaction proceeds too slowly, and if the feed rate proceeds faster than 30 ml / min, the reduction reaction speeds up, which may cause aggregation.
  • the metal particles of the core act as a reducing agent on the precursor in the reaction in which the shell layer is formed. That is, even without a separate reducing agent, the metal particles directly reduce the precursor to form a shell layer on the surface thereof. Therefore, compared with the case of forming the shell layer from the reduction reaction by a separate reducing agent, the shell formation reaction in the present invention has the characteristics that the reaction rate is easily controlled and the bond between the core and the shell layer prepared therefrom is firm.
  • the precursor solution preferably includes an amine having an alkyl group having 4 to 18 carbon atoms.
  • an amine having an alkyl group having 4 to 18 carbon atoms examples, triethylamine, butylamine, octylamine, dodecylamine, oleylamine can be used.
  • the amines control the ionization of the precursor by the reaction equilibrium as follows.
  • the precursor forms a shell layer by redox reaction on the surface of the metal particles as described below in the ionized state, in which the amine acts as an anionic dopant as shown below.
  • the shell layer can be well formed from the precursor.
  • controlling the concentration of amines is one means of controlling the speed of the shell formation reaction and the thickness of the shell layer.
  • the precursor solution is preferably used by including the amine at a concentration of more than 0% by weight and 10% by weight or less.
  • the precursor represented by the above formula by controlling the concentration of the precursor solution, the reaction temperature, the feeding rate and the amount of the amine, it is possible to form a uniform shell layer with a desired thickness for the core particle surface.
  • the solution containing the copper nanoparticles was cooled to room temperature. Then 0.6 g of acetaldehyde (using a reagent of 85% purity) was added to quench the reduction reaction of the reducing agent. Next, the solution containing copper nanoparticles was installed in the thermostat set to 25 degreeC. Here, a solution of 150 parts by weight of silver 2-methylhexanoate and 0.1 parts by weight of triethylamine dissolved in 30 mL of xylene was slowly added dropwise at a rate of 10 ml / min. It was. The shell layer was then formed by standing for 1 hour at room temperature.
  • the copper nanoparticles of the core prepared according to the present invention had an average particle diameter of 100 nm, and it was confirmed that the shape was formed into a uniform spherical shape. In addition, the size of the particles increased as the Ag shell formed thereon.
  • the synthesized Cu @ Ag nanoparticles were prepared with 25 wt% of anhydrous octane ink and spin-coated on a glass substrate at a speed of 2000 rpm for 30 seconds. Heat treatment was performed at 300 ° C. for 15 minutes in an inert atmosphere (H 2 (5%) + Ar (95%)).
  • the film surface was photographed by Scanning Electron Microscope (SEM). 4, it can be seen that a coating film is formed in a state in which Ag is melted on the particles of the core. From this, it can be seen that the particles prepared in Examples form a shell layer on the surface of the core, and when the heat treatment is performed, the shell layer is melted to form a coating film.
  • This Ag coating film formed from the shell layer onto the core particles prevents oxidation of the core particles and exhibits excellent electrical conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present invention relates to nanoparticles having a core-shell structure comprising a shell layer formed using a precursor represented by formula 1, and a preparation method therefor. According to the present invention, core nanoparticles, the size of which can be controlled and which have a uniform shape, can be synthesized by controlling a reduction reaction by means of partition equilibrium in an organic phase (non-polar solvent) and a water phase (polar solvent). Next, the thickness of the shell layer can be controlled by controlling a reaction temperature and concentration by using the shell layer forming precursor which allows the control of an oxidation-reduction reaction by means of high solubility and partition equilibrium.

Description

코어-쉘 구조의 나노입자 제조 방법 및 그로부터 제조된 나노입자Method for preparing nanoparticles of core-shell structure and nanoparticles prepared therefrom
본 발명은 코어-쉘 구조를 갖는 나노입자의 제조 방법 및 그로부터 제조되는 나노입자에 대한 것이다.The present invention relates to a method for producing nanoparticles having a core-shell structure and to nanoparticles prepared therefrom.
투명 전도성 전극(TCEs; Transparent Conductive Electrodes)의 중요성은 터치 패널, 평판 디스플레이, 다른 광전자 소자등의 응용을 위해 그 중요성이 날로 커져가고 있다. ITO(Indium Tin Oxide)는 유기 태양전지 등의 분야에서 현재 투명 전극으로 가장 폭넓게 사용되는 재료이지만 소성 재료이므로 공정 온도가 높고 외부의 물리적인 자극에 의하여 깨지기 쉬우며 휨 변형 등에 취약하다. 또한 폴리머 기판 위에 코팅했을때 기판을 구부리면 막이 부서지는 단점이 있다. 그리고, 무엇보다 In의 희소성으로 인하여 가격이 점점 증가하고 있으며, 그 공급에 있어 문제점이 대두되고 있는 현실이다. The importance of Transparent Conductive Electrodes (TCEs) is increasing in importance for applications in touch panels, flat panel displays, and other optoelectronic devices. Indium Tin Oxide (ITO) is the most widely used material as a transparent electrode in the field of organic solar cells, but since it is a plastic material, the process temperature is high, it is fragile by external physical stimuli, and is vulnerable to bending deformation. In addition, there is a disadvantage that the film is broken when the substrate is bent when coated on a polymer substrate. And, above all, due to the scarcity of In, the price is gradually increasing, and a problem arises in the supply.
최근 이러한 ITO의 문제점들을 해결하기 위한 방안으로 플렉서블 투명 전극이면서 ITO를 대체 할 수 있는 재료로 주목받고 있는 것에 전도성 고분자, 탄소 나노 튜브, 그래핀, 그리고 금속 나노와이어 및 나노입자가 있다. Recently, as a solution to solve the problems of ITO, a flexible transparent electrode and attracting attention as a material that can replace ITO are conductive polymers, carbon nanotubes, graphene, and metal nanowires and nanoparticles.
그러나 탄소 나노 튜브 또는 그래핀은 전도도가 낮고 투과도 향상이 어렵다. 또한 Ag 나노와이어로 대표되는 금속 나노와이어는 가격이 높아 Ag 나노와이어만으로 투명 전극 제조시 가격이 비싸고 투명 전극 제조시 표면이 거칠어(roughness) TFT 등의 소자 구현을 위한 다음 소재의 적층 인쇄가 매우 어렵다. 그리고 잉크젯 프린팅이 어렵고 고온 공정이 불가능하다는 등 공정이 제한적이며 스트레칭에 따라 전도도가 감소되는 현상을 보인다.However, carbon nanotubes or graphene have low conductivity and are difficult to improve permeability. In addition, the metal nanowires represented by Ag nanowires are high in price and are expensive in the manufacture of transparent electrodes only with Ag nanowires, and the surface of the transparent electrodes is rough. . In addition, inkjet printing is difficult and high temperature process is impossible, and the process is limited and conductivity decreases with stretching.
한편 금속 나노입자는 전도성 잉크의 형태로 제조되어 잉크젯 등의 공정에 의해 전극 제조에 이용된다. 이러한 금속 나노입자는 금, 은, 백금, 구리, 니켈, 철, 코발트, 아연, 크롬, 망간 등의 입자를 포함할 수 있다. 이중에서 구리, 니켈, 철, 코발트, 아연, 크롬, 망간 입자는 귀금속 나노입자에 비하여 제조 비용이 저렴하지만, 산화 안정성이 낮다는 문제점이 있다. On the other hand, the metal nanoparticles are prepared in the form of a conductive ink is used for electrode production by a process such as inkjet. Such metal nanoparticles may include particles of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, chromium, manganese and the like. Among them, copper, nickel, iron, cobalt, zinc, chromium, manganese particles have a lower manufacturing cost than noble metal nanoparticles, but has a problem of low oxidation stability.
특히 구리(Cu)는 저렴한 가격과 함께 우수한 전도성을 지니고 있다. 그러나 나노입자 상태에서는 표면이 쉽게 산화됨에 따라 전도성이 크게 저하되기 때문에 전도성 잉크로서의 사용이 어렵다. 또한 표면 산화를 방지하기 위해서 사용되는 산화방지제에 의해서도 전도성이 떨어질 수 있는 문제가 있다. 또한 현재 전도성 잉크의 나노입자로서 주로 사용되는 은(Ag)은 매우 고가이고 최근 가격이 급등함에 따라 비교적 저가이면서 높은 전기 전도성 확보가 가능한 대체 물질이 절실히 요구되고 있다. In particular, copper (Cu) has excellent conductivity with low price. However, in the nanoparticle state, as the surface is easily oxidized, the conductivity is greatly reduced, so it is difficult to use as a conductive ink. In addition, there is a problem that the conductivity may be reduced by the antioxidant used to prevent surface oxidation. In addition, silver (Ag), which is mainly used as a nanoparticle of a conductive ink, is very expensive, and as the recent price skyrockets, there is an urgent need for an alternative material that is relatively inexpensive and has high electrical conductivity.
코어-쉘 구조의 나노입자는 코어부를 형성하는 금속 입자의 산화를 방지하고 또한 입자의 전기 전도성을 향상시키기 위하여 제안되었다. 대표적인 것이 구리(Cu)의 코어 나노입자 표면에 은(Ag)으로 쉘 층이 형성된 구조이다. 이러한 구조의 입자에서 은으로 이루어진 쉘 층에 의해 코어부의 구리의 산화가 방지되고 또한 입자 전체의 전기 전도성이 향상되는 것이다. Core-shell structured nanoparticles have been proposed to prevent oxidation of the metal particles forming the core portion and to improve the electrical conductivity of the particles. A typical one is a structure in which a shell layer is formed of silver (Ag) on the surface of core nanoparticles of copper (Cu). The shell layer made of silver in the particles having such a structure prevents oxidation of copper in the core portion and improves electrical conductivity of the whole particle.
상기 코어-쉘 구조의 나노입자를 제조하기 위하여 종래에 사용되는 방법은 단일상, 즉 단일 용매 상에서 코어 입자의 전구체를 환원제로 환원시켜 코어 나노입자를 제조하고, 상기 입자에 대하여 쉘 층을 형성하는 물질을 천천히 투입하여 환원 반응시킴으로써 그 표면 상에 쉘 층을 형성하는 것이었다.The conventionally used method for producing the core-shell structured nanoparticles is to reduce the precursor of the core particles with a reducing agent in a single phase, i.e., a single solvent, to produce core nanoparticles and form a shell layer for the particles. The material was slowly added and reduced to form a shell layer on the surface thereof.
상기 방법에서 문제가 되는 것은 코어 입자를 제조하기 위해 단일 상에서 환원 반응시킬 경우 형성되는 나노입자의 입도 조절이 쉽지 않고 형성된 입자의 분리가 용이하지 않다는 점이다. 또한 희석된 은(Ag)의 염 용액을 투하하여 코어-쉘 구조를 합성할 때에는 용액의 투입 속도를 조절하는 것이 쉽지 않아 환원된 은(Ag)이 코어 입자 표면에 형성되지 않고 스스로 응집함으로써 응집물(aggregation)을 이루는 경우가 많다. 또한 형성되는 쉘 층의 두께 조절이 용이하지 않다는 단점이 있다.The problem with the method is that it is not easy to control the particle size of the nanoparticles formed when the reduction reaction in a single phase to prepare the core particles and the separation of the formed particles is not easy. In addition, when synthesizing the core-shell structure by dropping a salt solution of dilute silver (Ag), it is not easy to control the rate of addition of the solution. aggregation is often achieved. In addition, there is a disadvantage that the thickness of the shell layer formed is not easy to control.
본 발명은 코어-쉘 구조를 갖는 나노입자의 제조에 있어서 코어의 나노입자를 상온에서, 입도 조절이 용이하며, 입자의 분리가 용이하고, 균일한 형태로 제조할 수 있는 방법을 제공한다. The present invention provides a method for preparing nanoparticles having a core-shell structure at room temperature, particle size control, particle separation, and uniform production.
또한 본 발명은 쉘 층의 두께 조절이 가능하고, 쉘 층 형성 물질의 응집이 일어나지 않는 쉘 층의 형성 방법을 제공한다. The present invention also provides a method of forming a shell layer which can control the thickness of the shell layer and does not cause aggregation of the shell layer forming material.
아울러 본 발명은 산화가 방지되고 전기 전도성이 우수하며 경제적으로도 유리한 나노입자를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide nanoparticles that are prevented from oxidation, excellent in electrical conductivity, and advantageously economically.
본 발명은 코어의 금속 입자 표면에 하기 식으로 표현되는 전구체로부터 형성된 쉘 층을 포함하는 것을 특징으로 하는 코어-쉘 구조의 나노입자를 제공한다:The present invention provides a core-shell structured nanoparticle comprising a shell layer formed from a precursor represented by the following formula on the surface of a metal particle of the core:
[식 1][Equation 1]
Figure PCTKR2013006880-appb-I000001
Figure PCTKR2013006880-appb-I000001
상기 식에서 X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
바람직하게, 상기 코어 금속 입자는 구리, 니켈, 철, 코발트, 아연, 크롬 또는 망간 입자이다.Preferably, the core metal particles are copper, nickel, iron, cobalt, zinc, chromium or manganese particles.
바람직하게, 상기 코어 금속 입자는 하기 식으로 표현되는 구조의 금속 전구체로부터 제조된 것이다:Preferably, the core metal particles are prepared from metal precursors having a structure represented by the following formula:
[식 2][Equation 2]
Figure PCTKR2013006880-appb-I000002
Figure PCTKR2013006880-appb-I000002
상기 식에서 M은 Cu, Ni, Fe, Co, Zn, Cr 또는 Mn이고, m=1~5이고, In the above formula, M is Cu, Ni, Fe, Co, Zn, Cr or Mn, m = 1-5,
R은
Figure PCTKR2013006880-appb-I000003
이며, 복수의 R은 동일 또는 상이할 수 있다.
R is
Figure PCTKR2013006880-appb-I000003
And R may be the same or different.
(여기서, X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.)(Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23).
바람직하게, 상기 코어 금속 입자는 금속 헥사노에이트(metal hexanoate) 로부터 제조된 것이다. Preferably, the core metal particles are made from metal hexanoate.
본 발명은 코어의 금속 입자 표면에서 하기 식으로 표현되는 전구체를 환원시킴으로써 쉘 층을 형성하는 것을 특징으로 하는 코어-쉘 구조의 나노입자 제조방법을 제공한다: The present invention provides a method for producing a core-shell structured nanoparticle, wherein the shell layer is formed by reducing a precursor represented by the following formula on the surface of the metal particle of the core:
[식 1][Equation 1]
Figure PCTKR2013006880-appb-I000004
Figure PCTKR2013006880-appb-I000004
상기 식에서 X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
바람직하게, 상기 코어의 금속 입자는 유기상의 금속 헥사노에이트(metal hexanoate)를 수상의 환원제로 환원시켜 제조한 것이다. Preferably, the metal particles of the core are prepared by reducing the metal hexanoate of the organic phase with a reducing agent of the aqueous phase.
바람직하게, 상기 전구체는 유기상의 용매를 포함하는 용액의 형태로 코어의 금속 입자에 대하여 적하 투입된다.Preferably, the precursor is added dropwise to the metal particles of the core in the form of a solution containing a solvent in the organic phase.
바람직하게, 상기 용액의 투입 속도는 1ml/분 내지 30ml/분의 범위이다. Preferably, the feed rate of the solution ranges from 1 ml / min to 30 ml / min.
바람직하게, 상기 용액은 탄소수 4 내지 18의 알킬기를 갖는 아민을 포함한다. Preferably, the solution comprises an amine having an alkyl group of 4 to 18 carbon atoms.
바람직하게, 상기 전구체는 코어의 금속 입자에 대하여 100 내지 200 중량부의 범위로 사용한다.Preferably, the precursor is used in the range of 100 to 200 parts by weight based on the metal particles of the core.
본 발명에 의하면 유기상(비극성 용매)과 수상(극성 용매)에서 분배 평형에 의해 환원 반응을 조절하여, 입도의 조절이 가능하며 균일한 형상을 갖는 코어의 나노입자를 합성할 수 있다. 다음으로, 이에 대하여 높은 용해도와 분배 평형에 의해 산화 환원 반응의 조절이 가능한 쉘 층 형성 전구체를 사용함으로써 반응 온도 및 농도를 조절하는 것에 의해 쉘 층의 두께를 조절할 수 있다. According to the present invention, the reduction reaction is controlled by distribution equilibrium in the organic phase (non-polar solvent) and the water phase (polar solvent), so that the particle size can be controlled and nanoparticles of the core having a uniform shape can be synthesized. Next, the thickness of the shell layer can be adjusted by controlling the reaction temperature and concentration by using the shell layer forming precursor which can control the redox reaction by high solubility and distribution equilibrium.
또한 본 발명에 의해 제조된 코어-쉘 구조의 나노입자는 산화되기 쉬운 코어 입자를 산화가 잘 되지 않으며 전기 전도도가 높은 입자로 쉘링(shelling)함으로써 산화가 방지되고 및 입자의 전기 전도도가 향상된다. In addition, the core-shell structured nanoparticles prepared by the present invention are prevented from being oxidized by shelling core particles that are susceptible to oxidation and having high electrical conductivity, thereby preventing oxidation and improving electrical conductivity of the particles.
또한 본 발명은 값비싼 금속을 쉘 층에만 포함하는 입자를 제공함으로써 입자 전체가 그러한 입자로 제공되는 경우에 비해 경제적인 면에서 유리한 장점이 있다. In addition, the present invention is advantageous in terms of economics compared to the case where the entire particle is provided by such particles by providing the particles containing the expensive metal only in the shell layer.
도 1은 본 발명의 제조 방법에 따른 코어 입자의 제조 및 쉘 층 형성 과정을 도시한 것이다. 1 illustrates a process of preparing core particles and forming a shell layer according to the manufacturing method of the present invention.
도 2는 실시예에서 제조된 구리 나노입자 및 Cu@Ag 입자의 SEM 사진이다. Figure 2 is a SEM photograph of the copper nanoparticles and Cu @ Ag particles prepared in the example.
도 3은 비교예에서 제조된 입자의 SEM 사진이다. Figure 3 is a SEM photograph of the particles produced in the comparative example.
도 4는 실시예에서 제조된 Cu@Ag 입자를 포함하는 잉크로부터 형성된 도막의 SEM 사진이다. 4 is a SEM photograph of a coating film formed from an ink including Cu @ Ag particles prepared in the Examples.
본 발명은 산화성이 강한 금속으로부터 나노입자를 제조할 때에 그것의 산화 안정성을 개선하고 전기 전도성을 향상시키기 위해 코어의 금속 입자 표면에 하기 식으로 표현되는 전구체로부터 형성된 쉘 층을 포함하는 것을 특징으로 하는 코어-쉘 구조의 나노입자를 제공한다:The present invention is characterized in that it comprises a shell layer formed from a precursor represented by the following formula on the surface of metal particles of the core in order to improve its oxidation stability and improve electrical conductivity when preparing nanoparticles from highly oxidizable metals. Core-shell structured nanoparticles are provided:
[식 1][Equation 1]
Figure PCTKR2013006880-appb-I000005
Figure PCTKR2013006880-appb-I000005
상기 식에서 X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
상기 코어 입자를 이루는 금속으로는 특히 산화 안정성이 낮은 구리, 니켈, 철, 코발트, 아연, 크롬, 망간을 사용할 수 있다. 이들로부터 코어의 금속 입자를 제조하기 위해서 하기 식으로 표현되는 구조의 금속 전구체를 사용할 수 있다:As the metal forming the core particles, copper, nickel, iron, cobalt, zinc, chromium, and manganese having low oxidation stability may be used. In order to produce the metal particles of the core from them, a metal precursor having a structure represented by the following formula can be used:
[식 2][Equation 2]
Figure PCTKR2013006880-appb-I000006
Figure PCTKR2013006880-appb-I000006
상기 식에서 M은 Cu, Ni, Fe, Co, Zn, Cr 또는 Mn이고, m=1~5이고, In the above formula, M is Cu, Ni, Fe, Co, Zn, Cr or Mn, m = 1-5,
R은
Figure PCTKR2013006880-appb-I000007
이며, 복수의 R은 동일 또는 상이할 수 있다.
R is
Figure PCTKR2013006880-appb-I000007
And R may be the same or different.
(여기서, X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.)(Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23).
이것은 비극성 용매에 대해 고 용해성이라는 특징을 갖는 물질이다. 따라서 코어 금속 입자를 제조하기 위한 반응액의 제조가 용이하다.It is a material that is characterized by high solubility in nonpolar solvents. Therefore, the preparation of the reaction solution for producing the core metal particles is easy.
본 발명의 일 실시예에서는 금속 헥사노에이트를 용매 및 캡핑화제에 용해시켜 반응액을 제조한다. 상기 캡핑화제는 금속 헥사노에이트의 환원 반응에 관여하며 형성된 나노입자 주위를 감싸 입자를 안정화시킨다. 또한 캡핑화제는 제조된 금속 나노입자의 산화를 막는 역할을 한다. 또한 제조된 입자의 입도를 조절하는 역할을 한다. 그러므로 캡핑화제는 적당한 체인 길이를 갖는 것이 바람직하다. In one embodiment of the present invention, the reaction solution is prepared by dissolving metal hexanoate in a solvent and a capping agent. The capping agent participates in the reduction reaction of metal hexanoate and wraps around the formed nanoparticles to stabilize the particles. In addition, the capping agent serves to prevent oxidation of the prepared metal nanoparticles. It also serves to control the particle size of the produced particles. Therefore, the capping agent preferably has a suitable chain length.
본 발명에서는 캡핑화제로 일 실시예로서 아민을 사용한다. 상기 아민은 탄소수 4 내지 18의 알킬기를 포함하는 것이 바람직하다. 본 발명에서는 바람직하게 캡핑화제로 부틸 아민(butylamine), 옥틸 아민(octylamine), 도데실 아민(dodecylamine), 올레일 아민(Oleylamine) 등을 사용할 수 있다. 더욱 바람직하게는 캡핑화제로 올레일 아민(Oleylamine)을 사용한다. 올레일 아민은 지방산(fatty acid)인 올레산(oleic acid)의 아민이며, 상대적으로 분자량이 크기 때문에 금속 나노입자와 결합하여 입자 표면에 층을 형성할 수 있다. 그 결과, 외부의 산소가 금속 나노입자의 코어로 확산되는 것을 방지함으로써 금속 나노입자의 산화 안정성을 증가시킬 수 있다. 또한, 상기 금속 나노입자와 결합한 올레인 아민은 용매 내에서 나노입자의 분산을 용이하게 할 수 있다. In the present invention, amine is used as an example as a capping agent. It is preferable that the said amine contains a C4-C18 alkyl group. In the present invention, a capping agent may preferably be butyl amine (butylamine), octylamine (octylamine), dodecylamine (dodecylamine), oleyl amine (Oleylamine) and the like. More preferably, oleylamine is used as the capping agent. Oleyl amine is an amine of oleic acid, a fatty acid, and because of its relatively high molecular weight, can be combined with metal nanoparticles to form a layer on the particle surface. As a result, the oxidation stability of the metal nanoparticles can be increased by preventing external oxygen from diffusing into the core of the metal nanoparticles. In addition, the oleamine amine combined with the metal nanoparticles may facilitate the dispersion of the nanoparticles in a solvent.
금속 헥사노에이트로부터 금속 나노입자를 제조하는 과정에서는 일 실시예로서 도 1의 섹션 ①에 도시된 바와 같이 유기상의 금속 헥사노에이트(metal hexanoate)를 수상의 환원제로 환원시키는 반응에 의한다. 금속 헥사노에이트는 유기상 및 수상 사이에서 분배 평형에 의해 이동하며 수상에 존재하는 환원제에 의해 환원되어 섹션 ②에 도시된 바와 같이 수상 및 유기상에 분배 및 존재하게 된다. 상기 과정에 의하면 급속한 반응으로부터 형성된 입자들의 뭉침(aggregation) 현상을 막을 수 있다. 또한 반응 중 발생할 수 있는 금속의 산화를 막을 수 있다. 그러므로 상기 과정에서는 비교적 낮은 온도(바람직하게 실온 내지 60℃)에서, 사용하는 캡핑화제의 종류에 따라 입도 조절이 용이하며 균일한 형태의 나노입자를 얻을 수 있다.In the process of preparing the metal nanoparticles from the metal hexanoate, as an example, as shown in section 1 of FIG. 1, the metal hexanoate of the organic phase is reduced by a reducing agent of the aqueous phase. The metal hexanoate migrates by distribution equilibrium between the organic phase and the aqueous phase and is reduced by the reducing agent present in the aqueous phase to be distributed and present in the aqueous and organic phases as shown in section ②. According to the above procedure, it is possible to prevent the aggregation of particles formed from the rapid reaction. It can also prevent the oxidation of metals that can occur during the reaction. Therefore, in the above process, at a relatively low temperature (preferably room temperature to 60 ° C.), particle size can be easily adjusted according to the type of capping agent to be used, and nanoparticles having a uniform form can be obtained.
이렇게 형성된 코어의 금속 입자 표면에서 하기 식으로 표현되는 전구체를 환원시킴으로써 쉘 층을 형성한다:The shell layer is formed by reducing the precursor represented by the following formula on the surface of the metal particles of the core thus formed:
[식 1][Equation 1]
Figure PCTKR2013006880-appb-I000008
Figure PCTKR2013006880-appb-I000008
상기 식에서 X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
상기 전구체는 비극성의 용매에 대하여 높은 용해도를 가지며 비극성 및 극성 용매 사이에서 분배 평형을 이룬다. 이것은 금속 입자 표면에 쉘 층을 형성하기 위해 사용되어 오던 기존의 다른 전구체 물질과 비교할 때 문제가 되었던 응집 현상(aggregation)을 방지할 수 있는 수단이 된다. 즉 상기 전구체에 대해서는 비극성 및 극성 용매 사이에서의 분배 평형을 조절하는 것에 의해 응집 현상이 일어나지 않도록 산화환원 반응의 속도를 조절하는 것이 가능하다. 따라서 금속 입자 표면에 대해 투여된 본 발명의 전구체는 그들끼리 응집되지 않고 입자 표면에만 흡착되어 쉘 층을 이루게 된다. 이에 따라 본 발명은 표면에 균일한 쉘 층이 형성된 코어-쉘 구조를 제공할 수 있다. The precursor has high solubility in nonpolar solvents and is in equilibrium with the distribution between nonpolar and polar solvents. This is a means to prevent aggregation which has been a problem when compared to other conventional precursor materials that have been used to form shell layers on metal particle surfaces. In other words, by controlling the distribution equilibrium between the non-polar and polar solvents for the precursor, it is possible to control the rate of the redox reaction so that aggregation does not occur. Therefore, the precursor of the present invention administered to the metal particle surface is adsorbed only on the particle surface without forming agglomerates among them to form a shell layer. Accordingly, the present invention can provide a core-shell structure in which a uniform shell layer is formed on the surface.
또한 쉘 층 형성 시 반응 온도 및 전구체의 농도를 조절하면 목적으로 하는 두께를 갖는 쉘 층을 형성할 수 있다. 그러므로 본 발명의 코어-쉘 구조의 입자는 반응 온도 및 전구체 농도에 따라 쉘 층의 두께를 조절하는 것이 가능하다. 반응 온도는 실온 내지 40 ℃의 범위에서 실시하고 전구체는 코어의 금속 입자에 대하여 100 내지 200 중량부의 범위로 사용하는 것이 바람직하다. 저온에서는 코어 입자 표면의 활성도가 많이 저하되어 반응이 진행되지 않는다. 반대로 상기 범위보다 반응 온도가 높으면 반응 속도가 너무 빨라져 입자의 응집 현상이 일어나며 균일한 쉘 층을 형성할 수 없다. 또한 전구체를 코어 입자 대비 100 중량부 미만으로 사용하면 전구체는 자유 분자로 존재하여 코어 입자 표면과 반응하지 않거나 전도성 향상을 위한 충분한 두께로 쉘 층이 형성되지 않고, 200 중량부를 초과하여 다량 사용하면 전구체 용액의 점도가 상승하여 코어 입자 표면 전체에 대하여 균일한 쉘 층이 형성되지 않고 국부적으로 응집 현상이 일어날 가능성이 있다.In addition, when the shell layer is formed, the reaction temperature and the concentration of the precursor may be adjusted to form a shell layer having a desired thickness. Therefore, the core-shell structured particles of the present invention can control the thickness of the shell layer according to the reaction temperature and the precursor concentration. It is preferable to perform reaction temperature in the range of room temperature-40 degreeC, and to use a precursor in the range of 100-200 weight part with respect to the metal particle of a core. At low temperatures, the activity of the surface of the core particles decreases a lot and the reaction does not proceed. On the contrary, when the reaction temperature is higher than the above range, the reaction rate is so fast that aggregation of particles occurs and a uniform shell layer cannot be formed. In addition, when the precursor is used in an amount less than 100 parts by weight relative to the core particles, the precursor does not react with the surface of the core particles or forms a shell layer with a sufficient thickness to improve conductivity. There is a possibility that the viscosity of the solution rises so that a uniform shell layer is not formed over the entire surface of the core particles, and local aggregation occurs.
쉘 층 형성 과정을 보면 일 실시예로서 도 1에서와 같이 극성 및 비극성 용매 사이의 분배 평형에 의해 합성된 코어 입자는 극성과 비극성 상에 분포되어 있다. 여기에 비극성 용매 상의 전구체 용액을 천천히 적하 투입하여 환원 반응을 진행시킨다. 이때 전구체 용액의 투입 속도는 1ml/분 내지 30ml/분의 범위로 하는 것이 바람직하다. 투입 속도를 1ml/분 미만으로 하면 반응이 너무 느리게 진행되고 투입 속도를 30ml/분을 초과하여 빨리 진행하면 환원 반응의 속도가 빨라져 응집 현상이 일어날 가능성이 있기 때문이다. Referring to the shell layer formation process, as an example, the core particles synthesized by the distribution equilibrium between the polar and nonpolar solvents are distributed in the polar and nonpolar phases as shown in FIG. 1. The precursor solution on the nonpolar solvent is slowly added dropwise thereto to proceed with the reduction reaction. At this time, the input rate of the precursor solution is preferably in the range of 1ml / min to 30ml / min. This is because if the feed rate is less than 1 ml / min, the reaction proceeds too slowly, and if the feed rate proceeds faster than 30 ml / min, the reduction reaction speeds up, which may cause aggregation.
한편, 쉘 층이 형성되는 반응에서 코어의 금속 입자는 전구체에 대해 환원제로서 작용한다. 즉 별도의 환원제가 없더라도 금속 입자가 전구체를 직접 환원시켜 그 표면에 쉘 층을 형성한다. 그러므로 별도의 환원제에 의한 환원 반응으로부터 쉘 층을 형성하는 경우에 비해 본 발명에서의 쉘 형성 반응은 반응 속도의 조절이 용이하고 그로부터 제조되는 코어와 쉘 층 간의 결합이 견고해지는 특성을 갖는다. On the other hand, the metal particles of the core act as a reducing agent on the precursor in the reaction in which the shell layer is formed. That is, even without a separate reducing agent, the metal particles directly reduce the precursor to form a shell layer on the surface thereof. Therefore, compared with the case of forming the shell layer from the reduction reaction by a separate reducing agent, the shell formation reaction in the present invention has the characteristics that the reaction rate is easily controlled and the bond between the core and the shell layer prepared therefrom is firm.
상기 전구체 용액에는 바람직하게 탄소수 4 내지 18의 알킬기를 갖는 아민이 포함된다. 예로서 트리에틸아민, 부틸아민, 옥틸아민, 도데실아민, 올레일아민을 사용할 수 있다. The precursor solution preferably includes an amine having an alkyl group having 4 to 18 carbon atoms. As examples, triethylamine, butylamine, octylamine, dodecylamine, oleylamine can be used.
아민은 하기와 같은 반응 평형에 의해 전구체의 이온화를 조절한다.The amines control the ionization of the precursor by the reaction equilibrium as follows.
Figure PCTKR2013006880-appb-I000009
Figure PCTKR2013006880-appb-I000009
또한 전구체는 이온화된 상태에서 하기와 같은 금속 입자 표면에서의 산화환원 반응에 의해 쉘 층을 형성하게 되는데 이때 아민은 일 실시예로서 하기 도시된 바와 같이 음이온 도펀트(Dopant)로서 작용하게 된다. 따라서 전구체로부터 쉘 층이 잘 형성될 수 있도록 한다. In addition, the precursor forms a shell layer by redox reaction on the surface of the metal particles as described below in the ionized state, in which the amine acts as an anionic dopant as shown below. Thus, the shell layer can be well formed from the precursor.
Figure PCTKR2013006880-appb-I000010
Figure PCTKR2013006880-appb-I000010
그러므로 아민의 농도를 조절하는 것은 쉘 형성 반응의 속도 및 쉘 층의 두께를 조절하는 일 수단이 된다. 본 발명에서는 바람직하게 전구체 용액에 0중량% 초과 및 10중량% 이하의 농도로 아민을 포함시켜 사용한다. Therefore, controlling the concentration of amines is one means of controlling the speed of the shell formation reaction and the thickness of the shell layer. In the present invention, the precursor solution is preferably used by including the amine at a concentration of more than 0% by weight and 10% by weight or less.
본 발명에서는 상기 식으로 표현되는 전구체를 사용하고, 전구체 용액의 농도, 반응 온도, 투입 속도 및 아민의 양을 조절하는 것으로 코어 입자 표면에 대해 바람직한 두께로 균일한 쉘 층을 형성할 수 있다. In the present invention, by using the precursor represented by the above formula, by controlling the concentration of the precursor solution, the reaction temperature, the feeding rate and the amount of the amine, it is possible to form a uniform shell layer with a desired thickness for the core particle surface.
이하 실시예에 의해 발명을 상세히 설명한다. 그러나 이것은 발명의 이해를 돕기 위한 것이므로 본 발명이 이에 한정되는 것으로 이해되어서는 안된다.The invention is described in detail by the following examples. However, this is to aid the understanding of the invention and should not be construed as limiting the invention.
실시예Example
(1) 구리 나노입자의 제조 (1) Preparation of Copper Nanoparticles
100ml 환저플라스크에 구리 2-에틸헥사노에이트(Cu(II) 2-ethylhexanoate) 1.1 g, 부틸아민(butylamine) 0.7 g 및 자일렌(xylene) 30 mL 을 넣고 용해시켰다. 상기 용액을 60 ℃ 까지 승온시킨 다음 에탄올(ethanol) 12 mL 와 물 18ml 의 혼합용액에 환원제로서 하이드라진(hydrazine) 0.2 g (80% 순도의 시약을 사용함)을 용해시킨 용액을 한번에 빠르게 투입하였다. 투입이 끝난 후 반응 용액을 60 ℃의 온도를 유지하면서 4 시간 방치해 두는 것으로 구리(Cu) 나노입자가 형성되도록 하였다. 1.1 g of copper 2-ethylhexanoate (Cu (II) 2-ethylhexanoate), 0.7 g of butylamine, and 30 mL of xylene were added and dissolved in a 100 ml round bottom flask. The solution was heated to 60 ° C., and then a solution containing 0.2 g of hydrazine (using 80% purity reagent) as a reducing agent was rapidly added to a mixture of 12 mL of ethanol and 18 mL of water at a time. After the addition, the reaction solution was allowed to stand for 4 hours while maintaining a temperature of 60 ℃ to form copper (Cu) nanoparticles.
(2) 쉘 층의 형성(2) the formation of the shell layer
상기 구리 나노입자를 포함하는 용액을 상온으로 냉각시켰다. 그런 다음 아세트알데히드(acetaldehyde) 0.6g (85% 순도의 시약을 사용함)을 투입하여 환원제의 환원 반응을 중지(quenching) 시켰다. 다음으로 구리 나노입자를 포함하는 용액을 25℃로 설정된 항온조 내에 설치하였다. 여기에 자일렌 30 mL 에 상기 나노입자 대비 150 중량부의 은 2-메틸헥사노에이트(Ag 2-methylhexanoate)과 0.1 중량부의 트리에틸아민(triethylamine) 을 용해시킨 용액을 10ml/분의 속도로 천천히 적가하였다. 그런 다음 실온에서 1 시간 방치하여 두는 것으로 쉘 층이 형성되게 하였다. The solution containing the copper nanoparticles was cooled to room temperature. Then 0.6 g of acetaldehyde (using a reagent of 85% purity) was added to quench the reduction reaction of the reducing agent. Next, the solution containing copper nanoparticles was installed in the thermostat set to 25 degreeC. Here, a solution of 150 parts by weight of silver 2-methylhexanoate and 0.1 parts by weight of triethylamine dissolved in 30 mL of xylene was slowly added dropwise at a rate of 10 ml / min. It was. The shell layer was then formed by standing for 1 hour at room temperature.
비교예Comparative example
상기 실시예에서 (2) 쉘 층 형성 반응을 위하여 은 2-메틸 헵타노에이트 대신 질산화은(AgNO3) 0.6 g을 사용하였다. 그러나 질산화은은 잘 용해되지 않았고 그 상태로 구리 나노입자를 포함하는 용액에 투입시켰다. 질산화은이 물층으로 떨어지는 것이 관찰되었다.In the above example, (2) 0.6 g of silver nitrate (AgNO 3 ) was used instead of silver 2-methyl heptanoate for the shell layer formation reaction. However, silver nitrate did not dissolve well and was added to the solution containing copper nanoparticles as it was. It was observed that silver nitrate fell into the water layer.
평가예Evaluation example
1. 입자의 확인1. Identification of Particles
상기 실시예 및 비교예에서 각각 제조된 구리 나노입자 및 Cu@Ag 입자의 확인을 위하여 주사전자현미경(Scanning Electron Microscope, SEM) 촬영을 하였다. 결과를 도 2 및 3에 나타내었다. Scanning Electron Microscope (SEM) photographing was performed to confirm the copper nanoparticles and Cu @ Ag particles prepared in Examples and Comparative Examples, respectively. The results are shown in FIGS. 2 and 3.
도 2에서 본 발명에 따라 제조된 코어의 구리 나노입자는 평균 입경 100 nm이고, 그 형태가 균일한 구형으로 형성된 것이 확인되었다. 또한 그 위에 Ag 쉘이 형성됨에 따라 입자의 크기가 커졌다. In FIG. 2, the copper nanoparticles of the core prepared according to the present invention had an average particle diameter of 100 nm, and it was confirmed that the shape was formed into a uniform spherical shape. In addition, the size of the particles increased as the Ag shell formed thereon.
반면 도 3에서와 같이 비교예에서 제조된 입자 표면에는 쉘 층 형성 과정에서 생성된 aggregation이 발견되었다. On the other hand, the aggregation produced during the shell layer formation was found on the particle surface prepared in the comparative example as shown in FIG. 3.
2. 필름 형성 및 관찰2. Film formation and observation
합성된 Cu@Ag 나노입자에 대해 무수 옥탄(Anhydrous octane) 25 중량%의 잉크로 제조한 후 유리 기판 위에 2000 rpm의 속도로 30 초간 스핀코팅 하였다. 비활성 분위기(H2(5%)+ Ar(95%))에서 300 ℃에서 15 분간 열처리하였다. The synthesized Cu @ Ag nanoparticles were prepared with 25 wt% of anhydrous octane ink and spin-coated on a glass substrate at a speed of 2000 rpm for 30 seconds. Heat treatment was performed at 300 ° C. for 15 minutes in an inert atmosphere (H 2 (5%) + Ar (95%)).
필름 표면을 주사전자현미경(Scanning Electron Microscope, SEM) 촬영하였다. 도 4를 보면 코어의 입자 위로 Ag가 융해되어 있는 상태로 도막이 형성되어 있음을 확인할 수 있다. 이로부터 실시예에서 제조된 입자는 코어 표면에 쉘 층이 잘 형성되었고 이것에 열 처리를 하였을 때 쉘 층 성분이 융해됨으로써 도막을 이루게 된다는 것을 알 수 있다. 이렇게 쉘 층으로부터 코어 입자 위로 형성된 Ag 도막은 코어 입자의 산화를 막고 우수한 전기 전도성을 나타낸다.The film surface was photographed by Scanning Electron Microscope (SEM). 4, it can be seen that a coating film is formed in a state in which Ag is melted on the particles of the core. From this, it can be seen that the particles prepared in Examples form a shell layer on the surface of the core, and when the heat treatment is performed, the shell layer is melted to form a coating film. This Ag coating film formed from the shell layer onto the core particles prevents oxidation of the core particles and exhibits excellent electrical conductivity.

Claims (9)

  1. 코어의 금속 입자 표면에 하기 식으로 표현되는 전구체로부터 형성된 쉘 층을 포함하는 것을 특징으로 하는 코어-쉘 구조의 나노입자:A core-shell structured nanoparticle comprising a shell layer formed from a precursor represented by the following formula on the surface of a metal particle of a core:
    [식 1][Equation 1]
    Figure PCTKR2013006880-appb-I000011
    Figure PCTKR2013006880-appb-I000011
    상기 식에서 X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
  2. 제 1 항에서,In claim 1,
    상기 코어 금속 입자는 구리, 니켈, 철, 코발트, 아연, 크롬 또는 망간 입자인 것을 특징으로 하는 코어-쉘 구조의 나노입자.The core metal particle is a core-shell structured nanoparticles, characterized in that the copper, nickel, iron, cobalt, zinc, chromium or manganese particles.
  3. 제 1항에 있어서,The method of claim 1,
    상기 코어 금속 입자는 하기 식으로 표현되는 전구체로부터 형성되는 것을 특징으로 하는 코어-쉘 구조의 나노입자:The core metal particles are core-shell nanoparticles, characterized in that formed from a precursor represented by the following formula:
    [식 2][Equation 2]
    Figure PCTKR2013006880-appb-I000012
    Figure PCTKR2013006880-appb-I000012
    상기 식에서 M은 Cu, Ni, Fe, Co, Zn, Cr 또는 Mn이고, m=1~5이고, In the above formula, M is Cu, Ni, Fe, Co, Zn, Cr or Mn, m = 1-5,
    R은
    Figure PCTKR2013006880-appb-I000013
    이며, 복수의 R은 동일 또는 상이할 수 있다.
    R is
    Figure PCTKR2013006880-appb-I000013
    And R may be the same or different.
    (여기서, X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.)(Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23).
  4. 제 1 항에서,In claim 1,
    상기 코어 금속 입자는 금속 헥사노에이트(metal hexanoate)로부터 제조된 것을 특징으로 하는 코어-쉘 구조의 나노입자.The core metal particles are core-shell structured nanoparticles, characterized in that prepared from metal hexanoate.
  5. 코어의 금속 입자 표면에서 하기 식으로 표현되는 전구체를 환원시킴으로써 쉘 층을 형성하는 것을 특징으로 하는 코어-쉘 구조의 나노입자 제조방법: A method for producing a core-shell structured nanoparticle, characterized in that to form a shell layer by reducing the precursor represented by the following formula on the surface of the metal particle of the core:
    [식 1][Equation 1]
    Figure PCTKR2013006880-appb-I000014
    Figure PCTKR2013006880-appb-I000014
    상기 식에서 X는 수소, 탄소수 1 내지 6의 알킬기, 또는 할로겐이며, n은 0 내지 23의 정수이다.Wherein X is hydrogen, an alkyl group having 1 to 6 carbon atoms, or halogen, and n is an integer of 0 to 23.
  6. 제 5 항에서,In claim 5,
    상기 코어의 금속 입자는 유기상의 금속 헥사노에이트(metal hexanoate)를 수상의 환원제로 환원시켜 제조한 것을 특징으로 하는 코어-쉘 구조의 나노입자 제조방법.The metal particles of the core is a core-shell structure of the nanoparticles manufacturing method characterized in that the metal hexanoate (metal hexanoate) of the organic phase is prepared by reducing the reducing agent of the aqueous phase.
  7. 제 5 항에서,In claim 5,
    상기 전구체는 유기상의 용매를 포함하는 용액의 형태로 코어의 금속 입자에 대하여 적하 투입하는 것을 특징으로 하는 코어-쉘 구조의 나노입자 제조방법.The precursor is dropwise added to the metal particles of the core in the form of a solution containing a solvent of the organic phase core-shell structure nanoparticles manufacturing method.
  8. 제 7 항에서,In claim 7,
    상기 용액은 탄소수 4 내지 18의 알킬기를 갖는 아민을 포함하는 것을 특징으로 하는 코어-쉘 구조의 나노입자 제조방법.The solution comprises a core-shell structure nanoparticles manufacturing method comprising an amine having an alkyl group having 4 to 18 carbon atoms.
  9. 제 5 항에서,In claim 5,
    상기 전구체는 코어의 금속 입자에 대하여 100 내지 200 중량부의 범위로 사용하는 것을 특징으로 하는 코어-쉘 구조의 나노입자 제조방법.The precursor is a core-shell structure nanoparticles manufacturing method, characterized in that used in the range of 100 to 200 parts by weight based on the metal particles of the core.
PCT/KR2013/006880 2012-11-07 2013-07-31 Method for preparing nanoparticles having core-shell structure, and nanoparticles prepared thereby WO2014073772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0125316 2012-11-07
KR1020120125316A KR20140058893A (en) 2012-11-07 2012-11-07 Method of preparing nano particles having core-shell structure and nano particles prepared from the same

Publications (1)

Publication Number Publication Date
WO2014073772A1 true WO2014073772A1 (en) 2014-05-15

Family

ID=50684833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006880 WO2014073772A1 (en) 2012-11-07 2013-07-31 Method for preparing nanoparticles having core-shell structure, and nanoparticles prepared thereby

Country Status (3)

Country Link
KR (1) KR20140058893A (en)
TW (1) TW201422339A (en)
WO (1) WO2014073772A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101898647B1 (en) 2017-05-11 2018-09-14 서울과학기술대학교 산학협력단 Bonding material of a Cu foil coated with Ag and bonding method using the Cu foil with coated Ag
CN113600826A (en) * 2021-07-27 2021-11-05 厦门大学 Preparation method of small-size Cu @ Ag core-shell nanoparticles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070058072A (en) * 2005-12-01 2007-06-07 삼성전자주식회사 Preparation method of multi-shell nanocrystals
KR20070088086A (en) * 2006-02-24 2007-08-29 삼성전기주식회사 Core-shell structure metall nanoparticles and its manufacturing method
KR100759715B1 (en) * 2006-09-26 2007-10-04 고려대학교 산학협력단 Method of manufacturing uniform bifunctional nanoparticles
KR20080107578A (en) * 2007-06-07 2008-12-11 삼성전자주식회사 Core/shell nanocrystals and method for preparing the same
KR20120116169A (en) * 2011-04-12 2012-10-22 한국원자력연구원 Method for manufacturing metal nanoparticle of core-shell structure having excellent oxidation stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070058072A (en) * 2005-12-01 2007-06-07 삼성전자주식회사 Preparation method of multi-shell nanocrystals
KR20070088086A (en) * 2006-02-24 2007-08-29 삼성전기주식회사 Core-shell structure metall nanoparticles and its manufacturing method
KR100759715B1 (en) * 2006-09-26 2007-10-04 고려대학교 산학협력단 Method of manufacturing uniform bifunctional nanoparticles
KR20080107578A (en) * 2007-06-07 2008-12-11 삼성전자주식회사 Core/shell nanocrystals and method for preparing the same
KR20120116169A (en) * 2011-04-12 2012-10-22 한국원자력연구원 Method for manufacturing metal nanoparticle of core-shell structure having excellent oxidation stability

Also Published As

Publication number Publication date
TW201422339A (en) 2014-06-16
KR20140058893A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
WO2014092501A1 (en) Method for manufacturing silver nanowires using copolymer capping agents
US8865251B2 (en) Metal nanobelt and method of manufacturing the same, and conductive ink composition and conductive film comprising the same
WO2014092220A1 (en) Method for manufacturing silver nanowires using ionic liquid
WO2014073771A1 (en) Method for manufacturing nanowire having core-shell structure
WO2010090480A2 (en) Method for preparing carbon particles / copper composite materials
KR20090019781A (en) Nanoparticles, methods of making, and applications using same
WO2015009090A1 (en) Core-shell nanoparticles for transparent electrically-conductive thin film formation, and production method for transparent electrically-conductive thin film using same
WO2017043837A1 (en) Method for preparing silver powder using silver grains
KR20140058892A (en) Transparent composite electrode using nanowire having core-shell structure and method for preparing the same
WO2014073772A1 (en) Method for preparing nanoparticles having core-shell structure, and nanoparticles prepared thereby
KR101441580B1 (en) Preparing method of silver nanowire
WO2016159609A1 (en) Composition for forming copper nanowire network by using light sintering, method for manufacturing copper nanowire network, and transparent electrode comprising same
WO2014034996A1 (en) Conductive ion ink composition, method for preparing same, and method for forming highly conductive pattern or film using same
WO2014069698A1 (en) Oxidation resistant copper nanoparticles and method for producing same
JP5072228B2 (en) Method for producing metal coating
WO2012177093A2 (en) Method of fabricating nano wire and nano wire complex
CN104988475A (en) Copper-nickel alloy nanowire flexible electrode and preparation method thereof
KR20140104935A (en) Preparing method of silver nanowire
CN111842925A (en) Preparation method of silver nanowire and silver nanowire prepared by same
TW201315685A (en) Fine silver particles, conductive paste containing fine silver particles, conductive film and electronic device
WO2015129998A1 (en) Silica nanotube encapsulating alloy particles within wall of tube, and manufacturing method therefor
WO2014092297A1 (en) Metal nanoparticles having improved oxidative stability and method for manufacturing same
US20180022952A1 (en) Conductive ink
KR101581664B1 (en) Transparent conducting films having metal nanowire coated with metal oxide and manufacturing method of the same
CN112530625B (en) Chitin whisker-based conductive material and preparation method thereof, and aqueous conductive ink and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853751

Country of ref document: EP

Kind code of ref document: A1