WO2014073738A1 - Éolienne dotée d'un arbre incliné - Google Patents

Éolienne dotée d'un arbre incliné Download PDF

Info

Publication number
WO2014073738A1
WO2014073738A1 PCT/KR2012/010414 KR2012010414W WO2014073738A1 WO 2014073738 A1 WO2014073738 A1 WO 2014073738A1 KR 2012010414 W KR2012010414 W KR 2012010414W WO 2014073738 A1 WO2014073738 A1 WO 2014073738A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
module
wind turbine
wings
support
Prior art date
Application number
PCT/KR2012/010414
Other languages
English (en)
Korean (ko)
Inventor
유병수
Original Assignee
Ryu Byung-Sue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryu Byung-Sue filed Critical Ryu Byung-Sue
Publication of WO2014073738A1 publication Critical patent/WO2014073738A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/005Wind motors having a single vane which axis generate a conus or like surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/202Rotors with adjustable area of intercepted fluid
    • F05B2240/2022Rotors with adjustable area of intercepted fluid by means of teetering or coning blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Definitions

  • the present invention relates to a wind turbine for converting wind energy into mechanical energy, and more particularly, a first position of each wing provided in the wing structure extending vertically upward of the fixed structure, and extending at a predetermined angle to the rear of the fixed structure. It has a structure that rotates to rotate the second position to be, and the attitude and angle of each wing is automatically adjusted according to the wind power, and relates to a bent axis wind turbine to more effectively utilize the wind energy.
  • a wind generator is used as a means for generating electricity using the wind energy.
  • the wind generator is composed of a wind turbine for converting wind energy into mechanical energy, and a generator for generating electricity by operating by the mechanical energy converted by the wind turbine.
  • the conventional wind turbine may be divided into a horizontal wind turbine is installed horizontally with respect to the ground shaft, and a vertical wind turbine is installed perpendicular to the ground shaft.
  • FIG. 1 is a view showing the structure of a general horizontal wind power generator.
  • the horizontal wind power generator is the most common type of wind power generator having a structure in which a wing structure 20 having a plurality of wings 21 is mounted on an upper end of a vertically oriented column 10, and has a high power generation efficiency with a simple structure.
  • FIG. 2 is a view showing the structure of a general vertical wind power generator.
  • the vertical wind power generator is a wind power generator having a structure in which a wing structure 20 ⁇ having a cylindrical structure is mounted on a vertical rotating shaft 22, and enables smooth power generation regardless of the direction and wind quality of the wind, and has a low height. Due to this, there is an advantage in that it is easy to maintain and maintain main parts such as a speed increaser and a generator.
  • the present invention has been made in consideration of the above problems, and an object of the present invention is to provide a four-axis wind turbine to effectively utilize the wind energy by having the advantages of both a horizontal wind turbine and a vertical wind turbine. .
  • Another object of the present invention is to provide a bent-type wind turbine capable of preventing the breakage of the wing due to the gust, by allowing the wing to be folded or unfolded according to the wind strength, and capable of smooth driving regardless of the wind quality.
  • Still another object of the present invention is to provide a bent axis wind turbine which enables smooth operation regardless of the direction of the wind by allowing the wing structure to automatically rotate in a direction facing the wind according to the direction of the wind.
  • each wing is composed of a plurality of wing splits, the plurality of wing splits are automatically rotated around the wing axis according to their linear speed to implement the optimum rotation environment for the wing structure It is to provide a bent axis wind turbine.
  • the present invention to achieve the object as described above and to solve the conventional drawbacks includes a fixed structure and a wing structure having a plurality of wings installed on the fixed structure for converting wind energy into mechanical energy.
  • the wind turbine of claim 1 wherein each wing of the wing structure rotates through a first position extending vertically upward of the fixed structure and a second position extending at an angle inclined to the rear of the fixed structure.
  • the wing structure is made of a cylindrical structure, a plurality of wings are hinged to the outer surface is rotated to rotate with the wing;
  • a rotary shaft installed to be movable in a direction parallel to the central axis of the rotary module while penetrating the center of the rotary module, the rotary shaft being connected to each wing through a connection link;
  • one end hinged to the rotary module connected to the rotary shaft via a link link to provide a four-axis wind turbine consisting of a plurality of wings folded or unfolded like an umbrella while rotating around the hinge point by the movement of the rotary shaft do.
  • the present invention by pushing or pulling the rotating shaft in conjunction with the wing structure in accordance with the strength of the wind acting on the wing having a push rod to be folded or unfolded, rotatably supporting the rotating module, It is provided with a rotatable structure to the fixed structure provides a bent axis wind turbine further comprising a support structure for the direction of the wing structure is made in accordance with the direction of the wind acting on the wing structure.
  • the present invention provides a bent axis wind turbine wherein each wing is composed of a plurality of wing splits.
  • the present invention provides a bent-type wind turbine each of which has a front surface and a rear surface formed in a predetermined curved shape, the predetermined curved shape is configured to induce a flow rate faster in the front than the rear surface of the wing split body. do.
  • a plurality of wings installed to extend in a radial structure around the rotating module extends while inclined downward toward the rear of the fixing structure and the first position extending vertically upward of the fixing structure. It is a structure that rotates while circulating in a second position, and has a structure similar to the wing structure of the horizontal wind power generator to take advantage of the horizontal wind power generator, and the advantages of the vertical wind power generator due to the low height of the wing structure. There is an effect that can be taken.
  • the plurality of wings provided in the wing structure has the effect of preventing damage to the wind turbine due to the gusts by rotating so that the wing structure is folded like an umbrella when the wind strength is strong.
  • the wing structure is automatically changed in the direction facing the wind, there is an effect capable of smooth driving regardless of the direction of the wind.
  • each wing is composed of a plurality of wing dividers, each wing divider rotates around the wing axis according to its own linear velocity and provides an optimal rotation environment has the effect of increasing the rotational efficiency of the wing structure have.
  • FIG. 1 is a view showing the structure of a general horizontal wind power generator
  • FIG. 2 is a view showing the structure of a typical vertical wind power generator
  • Figure 3 is a side view showing the structure of a bent axis wind turbine according to the present invention.
  • FIG. 4 is a front view showing the structure of a bent axis wind turbine according to the present invention.
  • FIG. 5 is a side view showing the structure of a fixed structure according to the present invention.
  • Figure 6 is a side view showing the structure of a wing structure according to the present invention.
  • FIG. 8 is a side view showing a state in which the wing structure is folded
  • FIG. 9 is a perspective view showing the structure of a wing according to the present invention.
  • FIG. 10 is a plan view showing the structure of a wing according to the present invention.
  • FIG. 11 is a cross-sectional view showing a structure of a wing split body according to the present invention.
  • FIG. 12 is a side view showing the structure of the supporting structure according to the present invention.
  • Figure 13 is a side view showing a state in which the support structure according to the present invention is inclined rearward.
  • rotating module 220 rotating shaft
  • support structure 313 support block
  • FIG 3 is a side view showing the structure of the bent axis wind turbine according to the present invention
  • Figure 4 is a front view showing the structure of the bent axis wind turbine according to the present invention.
  • the bent axis wind turbine according to the present invention is a device for converting wind energy into mechanical energy while the wing structure 200 rotates by wind power, and includes a fixed structure 100 and a wing structure 200.
  • Figure 5 shows a side view showing the structure of the fixed structure according to the present invention.
  • the fixed structure 100 is installed on the ground or offshore structure to support the wing structure 200.
  • the fixed structure 100 is to maintain the wing structure 200 as low as possible, the upper end is formed in a narrow conical structure than the lower end in order to enable a stable support of the wing structure (200).
  • Such a fixed structure 100 may be configured by having a conical structure by connecting a plurality of beams 101 to each other like a known truss.
  • Figure 6 is a side view showing the structure of the wing structure according to the invention
  • Figure 7 'A' part of Figure 6
  • Figure 8 is a side view showing a state in which the wing structure is folded.
  • the wing structure 200 is mounted on the upper end of the fixed structure 100, by converting the wind energy into mechanical energy by rotating by the wind, the rotating module 210 And a rotating shaft 220 and a plurality of wings 230.
  • the rotation module 210 is combined with a plurality of wings 230 to rotate together with the wings 230.
  • the rotary module 210 is formed in a cylindrical shape as a whole, the front end portion 210a is coupled to the support structure to be described later, the rear end portion 210b is coupled to the plurality of wings 230.
  • the rotating shaft 220 is installed so as to have a structure through which the front and rear ends protrude from the rotating module 210 through the center of the rotating module 210.
  • the rotating shaft 220 installed as described above has a structure capable of moving in a direction parallel to the central axis S of the rotating module 210 while being coupled with the rotating module 210.
  • the rotary shaft 220 and the rotary module 210 is coupled via a bearing (B1) for the smooth movement of the rotary shaft 220.
  • the rear end 220b of the rotary shaft 220 protruding from the rotary module 210 is coupled to the wing 230 via the connection link 240.
  • the connecting link 240 is composed of a plurality of each of the wings 230 and the rotating shaft 220 is independently connected, each of the connecting links 240 is hinged to one end of the wing 230, , The other end is installed in a hinged structure to the rotary shaft 220.
  • a plurality of wings 230 rotates around the hinge point (P1) coupled with the rotary module 210 and the umbrella and It will be folded or unfolded together. Therefore, in the strong wind conditions such as gusts by moving the rotating shaft 220 to be folded a plurality of wings 230, it is possible to prevent damage to the wing structure 200 by the strong wind.
  • the movement of the rotating shaft 220 may be configured to move the rotating shaft 220 by using a separate actuator driven according to the strength of the wind detected by the anemometer, in this case, due to the additional use of the anemometer and actuator Since the structure is complicated and the installation cost increases, the rotating shaft 220 automatically moves according to the strength of the wind acting on the wing structure 200, and is preferably configured to fold or unfold the wing 230. .
  • the present invention by supporting the support structure and the wing structure 200 to push or pull the rotating shaft 220, the wing structure 200 is automatically folded or unfolded according to the strength of the wind, the description of such a structure The following will be described in more detail in the process of explaining the structure of the support structure.
  • each wing 230 is installed to maintain a constant distance from each other on the circumference of the rear end portion (210b) of the rotary module 210, each wing 230 has an inner end (230a) to the rotary module (210) It is installed in a hinge-coupled and rotatable structure around the hinge point (P1).
  • each of the wings 230 is rotated in the wing structure 200, while the first position (Po1) vertically upwards of the fixed structure 100, while being inclined downward predetermined angle to the rear of the fixed structure (100). It is configured to rotate while rotating the second position Po2 that extends.
  • the first position Po1 is not limited only to the vertical upper portion of the fixed structure 100, but also includes a position close to the vertical.
  • the rotary module 210 and the rotary shaft 220 positioned at the rotation center of the wing structure 200 are rotated so that each blade 230 rotates while rotating the first position Po1 and the second position Po2. It has a structure inclined with respect to the ground at a predetermined angle ⁇ 1.
  • FIG. 9 is a perspective view showing the structure of the wing according to the present invention
  • FIG. 10 is a plan view showing the structure of the wing according to the present invention
  • Figure 11 is a cross-sectional view showing the structure of the wing splitter according to the present invention.
  • Each wing 230 installed in the above structure is composed of a plurality of wing dividers 231, the plurality of wing dividers 231 are coupled to each other via a wing shaft 232, one wing ( 230).
  • a plurality of wing splitters 231 constituting one wing 230 are formed in different sizes, and the wing splitter 231 having a smaller size toward the outer end portion 230b of the wing 230 is disposed.
  • one wing 230 formed by assembling a plurality of wing split bodies 231 has a fine twisted shape by a predetermined angle ( ⁇ 2) from the inner end to the outer end, similar to the wing 230 of a general windmill.
  • the wing shaft 232 penetrates through the plurality of wing splitters 231 to combine the wing splitter 231 with each other, the center (C2) of the wing shaft 232 is the wing splitter 231 It is provided so as to penetrate the wing split body 231 at a position shifted from the center C1 of the center, and has an eccentric structure.
  • the center C2 of the wing shaft 232 moves the wing split body 231 at a position eccentric from the center C1 of the wing split body 231 to the rear surface 231 b of the wing split body 231. It is installed to penetrate through.
  • each wing split body 231 has the same cross-sectional shape as the wing 230 of the plane, and has a front surface 231a and a rear surface 231b formed in a predetermined curved shape and have a streamlined cross-sectional shape as a whole.
  • the curved surface of 231a is formed to have a larger curvature than the curved surface of the rear surface 231b, and as a result, the flow velocity is formed faster on the front surface 231a than the rear surface 231b of the wing splitter 231.
  • the air flow velocity (V2) of the front surface 231a is greater than the rear surface 231b because the distance to which air flow should flow from the front surface 231a of the wing splitter 231. ) Is faster than the air flow velocity V1 of the rear surface 231b, so that the pressure P2 of the front surface 231a is lower than the pressure P1 of the rear surface 231b.
  • the wing splitter 231 rotates about the wing shaft 232 by the pressure difference between the front surface 231a and the rear surface 231b generated due to the shape of the front surface 231a and the rear surface 231b as described above. Position is adjusted. The amount of rotation of the wing splitter 231 is different depending on the linear velocity according to the position of the wing splitter 231, and the closer to the outer end of the wing 230, the greater the linear speed, and consequently one The plurality of wing splitters 231 provided in the wing 230 is rotated at a greater angle as it is closer to the outer end of the wing 230.
  • the attitude is adjusted by rotating the center of the wing shaft 232 such that each wing division 231 has a posture corresponding to its linear speed, thereby providing an optimal rotation environment of the wing structure 200. .
  • each wing split body 231 is coupled to the wing shaft 232 through the bearing (B2) so that the rotation of the wing split body 231 around the wing shaft 232 can be made smoothly.
  • a triangular support link 250 is installed at the inner end of each wing 230 and connects the support link 250 and the outer end 230b of the wing 230.
  • the wire 260 may be further included.
  • the support link 250 is installed to have a structure integral with the wing splitter 231-1 (shown in FIG. 9) located at the inner end 230a of the wing 230, and the wire 260 Is extended from the support link 250 is installed to be connected to the wing shaft 232 at the outer end 230b of the wing 230, by using the support link 250 and the wire 260 of the wing 230 By supporting the inner and outer ends connected to each other, sagging of the wing 230 which may occur when the wing 230 is moved to the second position Po2 inclined downward backward is prevented.
  • the bent axis wind turbine rotatably supports the rotating module 210
  • the wing structure 200 is capable of changing the direction according to the direction of the wind, in conjunction with the wing structure 200, the rotating shaft A support structure 300 (shown in FIG. 2) is further included to allow the plurality of wings 230 to be folded or unfolded by pushing or pulling 220.
  • Figure 13 is a side view showing a state in which the support structure according to the present invention is inclined backward.
  • the support structure 300 is composed of a direction switching module 310, the tilt control module 320, the rotation support module 330, the spring 340, the push rod 350.
  • the redirection module 310 is composed of a fixed plate 311 of the conical structure installed in a fixed structure on the upper end of the fixed structure 100, and a rotating plate 312 while being coupled to the upper portion of the fixed plate 311
  • the support block 313 having a structure protruding upward is formed at the center of the upper surface of the rotating plate 312.
  • the bearing B3 is installed between the fixed plate 311 and the rotating plate 312 for smooth rotation of the rotating plate 312.
  • the inclination control module 320 is formed of two flat plate parts 321 and 322 are coupled to each other to maintain an angle interval of about 120 degrees, the center portion is coupled to the support block 313 in a rotatable structure.
  • the tilt control module 320 installed as described above is provided with a rotation support module 330 on the flat plate portion 321 located in front of the support block 313, the spring 340 on the flat plate portion 322 located in the rear Combined.
  • the rotation support module 330 is installed in the inclination control module 320, is coupled to the rotation module 210 is configured to support the rotation of the rotation module 210.
  • the bearing (B4) is installed between the rotary support module 330 and the rotary module 210 for smooth rotation of the rotary module 210.
  • the spring 340 is installed to be located between the direction change module 310 and the inclination control module 320 at the rear of the support block 313.
  • the inclination control module 320 is compressed by the inclination control module 320 to rotate to the original position Will accumulate power.
  • the push rod 350 is installed to connect the direction switching module 310 and the rotary shaft 220, and when the tilt control module 320 rotates around the support block 313, it pushes the rotary shaft 220. .
  • the push rod 350 is hinged to the lower end of the direction switching module 310, the upper end is hinged to the fixing ring 221 installed in the front end on the rotating shaft 220.
  • the push rod 350 installed as described above has a movement trajectory of the front end of the rotating shaft and the rotating shaft by the tilt adjusting module 320 when the tilt adjusting module 320 rotates rearward with respect to the support block 313 due to the gust. Due to the difference in the movement trajectory of the end portion of the push rod 350 which is connected to the front end of the rotating rod, the push rod 350 pushes the rotating shaft 220, and thus the rotating shaft 220 moves rearward.
  • the connecting link 240 connecting the rotating shaft 220 and the respective wings 230 in the process of moving the rotating shaft 220 to the rear pulls the wings 230 to fold the wing structure into a shape similar to an umbrella.
  • the wind pressure acting on the wing 230 is reduced to prevent breakage of the wing 230.
  • bent axis wind turbine of the present invention configured as described above operates and describes the process of converting wind energy into mechanical energy.
  • the wing in the first position Po1 and the position adjacent to the plurality of wings 230 receives a wind pressure to generate a rotational force, thereby rotating the wing structure 200.
  • wind energy can be stored.
  • the bent axis wind turbine according to the present invention is easy to install on land as well as offshore structures, and has the advantage of maintaining a stable structure against gusts.
  • each wing 230 is extended to the first position Po1 extending vertically upward of the fixed structure 100, and inclined downward toward the rear of the fixed structure 100 It rotates by rotating the second position (Po2), the rotation module 210 and the rotation shaft 220 for supporting the rotation of the blade 230 is maintained in a posture inclined at a predetermined angle ( ⁇ 1) with a horizontal plane. .
  • the plurality of wing dividers 231 constituting each of the wings 230, the wing shaft 232 by the pressure difference between the front surface (231a) and the rear surface (231b) generated in proportion to the linear velocity according to its position By rotating around the center to maintain the optimum posture in compliance with the wind, thereby minimizing the rotational resistance of the wing (230).
  • the tilt control module 320 is rotated to the rear about the support block 313 by the pressure acting on the wing 230.
  • the spring 340 disposed between the inclination control module 320 and the direction switching module 310 is compressed, the rotating shaft 220 is moved back by the pusher 350.
  • the wing structure 200 takes a posture similar to that of an umbrella. Therefore, it is possible to prevent damage to the wing structure 200 due to the gust by reducing the wind pressure acting on each wing 230.
  • the inclination adjustment module 320 is rotated forward around the support block 313 by the elasticity accumulated in the spring 340, At this time, the rotary shaft 220 is pulled by the pusher 350 to move forward, the wings 230 are unfolded by the movement of the rotary shaft 220.
  • the bent axis wind turbine according to the present invention can effectively respond to the strength of the wind while the wing structure 200 is folded or unfolded according to the strength of the wind, and has the advantage of continuously converting the wind energy into mechanical energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

La présente invention concerne une éolienne avec un arbre incliné. L'objectif de la présente invention est de réaliser une éolienne avec un arbre incliné, qui présente à la fois les avantages d'un générateur électrique éolien horizontal et d'un générateur électrique éolien vertical, en utilisant ainsi l'énergie éolienne d'une manière plus efficace. Pour accomplir ledit objectif, la présente invention réalise une éolienne avec un arbre incliné, comprenant une structure de fixation et une structure de pales qui est installée sur la structure de fixation et qui a plusieurs pales pour convertir l'énergie éolienne en énergie mécanique. Chaque pale de la structure de pales tourne et circule à travers un premier point s'étendant verticalement vers le haut à partir de la structure de fixation et un second point incliné selon un angle prédéfini et s'étendant vers l'arrière à partir de la structure de fixation.
PCT/KR2012/010414 2012-11-12 2012-12-04 Éolienne dotée d'un arbre incliné WO2014073738A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0127111 2012-11-12
KR1020120127111A KR101268466B1 (ko) 2012-11-12 2012-11-12 사축형 윈드 터빈

Publications (1)

Publication Number Publication Date
WO2014073738A1 true WO2014073738A1 (fr) 2014-05-15

Family

ID=48865941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010414 WO2014073738A1 (fr) 2012-11-12 2012-12-04 Éolienne dotée d'un arbre incliné

Country Status (2)

Country Link
KR (1) KR101268466B1 (fr)
WO (1) WO2014073738A1 (fr)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045144A1 (fr) 2016-09-02 2018-03-08 Gilead Sciences, Inc. Composés modulateurs du recepteur de type toll
WO2018045150A1 (fr) 2016-09-02 2018-03-08 Gilead Sciences, Inc. Dérivés de 4,6-diamino-pyrido [3,2-d] pyrimidine en tant que modulateurs du récepteur de type toll
WO2018144390A1 (fr) 2017-01-31 2018-08-09 Gilead Sciences, Inc. Formes cristallines de ténofovir alafénamide
WO2018195321A1 (fr) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Inhibiteurs pd-1/pd-l1
WO2019160882A1 (fr) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Inhibiteurs pd -1/pd-l1
WO2019165374A1 (fr) 2018-02-26 2019-08-29 Gilead Sciences, Inc. Composés de pyrrolizine substitués en tant qu'inhibiteurs de réplication du virus de l'hépatite b
WO2019195181A1 (fr) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Anticorps et leurs fragments qui se lient à la protéine x du virus de l'hépatite b
WO2019193543A1 (fr) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides 3'3'-cycliques
WO2019193533A1 (fr) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides 2'2'-cycliques
WO2019193542A1 (fr) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides 2'3'-cycliques
WO2019200247A1 (fr) 2018-04-12 2019-10-17 Precision Biosciences, Inc. Méganucléases modifiées optimisées ayant une spécificité pour une séquence de reconnaissance dans un génome du virus de l'hépatite b
WO2019204609A1 (fr) 2018-04-19 2019-10-24 Gilead Sciences, Inc. Inhibiteurs pd-1/pd-l1
WO2019211799A1 (fr) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Analogue de dinucléotide 2'3'-cyclique comprenant un nucléotide modifié par cyclopentanyle
WO2020014643A1 (fr) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Inhibiteurs de pd-1/pd-l1
WO2020028097A1 (fr) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Formes solides d'acide (r)-11-(méthoxyméthyl)-12-(3-méthoxypropoxy)-3,3-diméthyl-8-0 x0-2,3,8,13b-tétrahydro-1h-pyrido[2,1-a] pyrrolo[1,2-c]phtalazine-7-carboxylique
WO2020086556A1 (fr) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Inhibiteurs de pd-1/pd-l1
WO2020092621A1 (fr) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Composés de 6-azabenzimidazole substitués en tant qu'inhibiteurs de hpk1
WO2020092528A1 (fr) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Composés 6-azabenzimidazole substitués ayant une activité inhibitrice de hpk1
WO2020178768A1 (fr) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Analogue du dinucléotide 3'3'-cyclique comprenant un nucléotide modifié par cyclopentanyle utilisé en tant que modulateur de sting
WO2020178769A1 (fr) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides cycliques en 2'3' et leurs promédicaments
WO2020178770A1 (fr) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides 3'3'-cycliques et leurs promédicaments
WO2020214652A1 (fr) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Formes solides d'un modulateur de récepteur de type toll
WO2020214663A1 (fr) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Formes solides d'un modulateur de récepteur de type toll
WO2020237025A1 (fr) 2019-05-23 2020-11-26 Gilead Sciences, Inc. Exo-méthylène-oxindoles substitués qui sont des inhibiteurs de hpk1/map4k1
WO2020263830A1 (fr) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Protéines de fusion flt3l-fc et procédés d'utilisation
WO2021011891A1 (fr) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Formulations à action prolongée de ténofovir alafénamide
WO2021034804A1 (fr) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Formulations pharmaceutiques de ténofovir alafénamide
US10966999B2 (en) 2017-12-20 2021-04-06 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2021067181A1 (fr) 2019-09-30 2021-04-08 Gilead Sciences, Inc. Vaccins contre le virus de l'hépatite b et méthodes de traitement du vhb
WO2021113765A1 (fr) 2019-12-06 2021-06-10 Precision Biosciences, Inc. Méganucléases modifiées optimisées ayant une spécificité pour une séquence de reconnaissance dans un génome du virus de l'hépatite b
WO2021188959A1 (fr) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Promédicaments de nucléosides de 4'-c-substitué-2-halo-2'-désoxyadénosine et leurs procédés de fabrication et d'utilisation
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2022031894A1 (fr) 2020-08-07 2022-02-10 Gilead Sciences, Inc. Promédicaments d'analogues nucléotidiques de phosphonamide et leur utilisation pharmaceutique
WO2022087149A2 (fr) 2020-10-22 2022-04-28 Gilead Sciences, Inc. Protéines de fusion d'interleukine-2-fc et méthodes d'utilisation
WO2022241134A1 (fr) 2021-05-13 2022-11-17 Gilead Sciences, Inc. Combinaison d'un composé de modulation de tlr8 et agent thérapeutique anti-arnsi de vhb
WO2022271659A1 (fr) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Composés modulant les diacylglycérol kinases
WO2022271677A1 (fr) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Composés de modulation de la diacylglycérol kinase
WO2022271684A1 (fr) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Composés modulant les diacylglycérol kinases
WO2022271650A1 (fr) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Composés de modulation de la diacylglycérol kinase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064156A1 (fr) * 2003-12-22 2005-07-14 Airbus Eolienne avec pales segmentees
KR20110063475A (ko) * 2008-08-22 2011-06-10 내츄럴 파워 컨셉 인코포레이티드 폴딩 블레이드 터빈
KR101059442B1 (ko) * 2009-02-12 2011-08-25 주식회사 필엔지 풍력발전장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064156A1 (fr) * 2003-12-22 2005-07-14 Airbus Eolienne avec pales segmentees
KR20110063475A (ko) * 2008-08-22 2011-06-10 내츄럴 파워 컨셉 인코포레이티드 폴딩 블레이드 터빈
KR101059442B1 (ko) * 2009-02-12 2011-08-25 주식회사 필엔지 풍력발전장치

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045150A1 (fr) 2016-09-02 2018-03-08 Gilead Sciences, Inc. Dérivés de 4,6-diamino-pyrido [3,2-d] pyrimidine en tant que modulateurs du récepteur de type toll
WO2018045144A1 (fr) 2016-09-02 2018-03-08 Gilead Sciences, Inc. Composés modulateurs du recepteur de type toll
WO2018144390A1 (fr) 2017-01-31 2018-08-09 Gilead Sciences, Inc. Formes cristallines de ténofovir alafénamide
WO2018195321A1 (fr) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Inhibiteurs pd-1/pd-l1
EP4026835A2 (fr) 2017-04-20 2022-07-13 Gilead Sciences, Inc. Inhibiteurs de pd-1/pd-l1
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
US10966999B2 (en) 2017-12-20 2021-04-06 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2019160882A1 (fr) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Inhibiteurs pd -1/pd-l1
EP4227302A1 (fr) 2018-02-13 2023-08-16 Gilead Sciences, Inc. Inhibiteurs de pd-1/pd-l1
WO2019165374A1 (fr) 2018-02-26 2019-08-29 Gilead Sciences, Inc. Composés de pyrrolizine substitués en tant qu'inhibiteurs de réplication du virus de l'hépatite b
WO2019195181A1 (fr) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Anticorps et leurs fragments qui se lient à la protéine x du virus de l'hépatite b
US11149052B2 (en) 2018-04-06 2021-10-19 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′-cyclic dinucleotides
WO2019193542A1 (fr) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides 2'3'-cycliques
US11292812B2 (en) 2018-04-06 2022-04-05 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotides
WO2019193533A1 (fr) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides 2'2'-cycliques
WO2019193543A1 (fr) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides 3'3'-cycliques
WO2019200247A1 (fr) 2018-04-12 2019-10-17 Precision Biosciences, Inc. Méganucléases modifiées optimisées ayant une spécificité pour une séquence de reconnaissance dans un génome du virus de l'hépatite b
WO2019204609A1 (fr) 2018-04-19 2019-10-24 Gilead Sciences, Inc. Inhibiteurs pd-1/pd-l1
WO2019211799A1 (fr) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Analogue de dinucléotide 2'3'-cyclique comprenant un nucléotide modifié par cyclopentanyle
WO2020014643A1 (fr) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Inhibiteurs de pd-1/pd-l1
EP4234030A2 (fr) 2018-07-13 2023-08-30 Gilead Sciences, Inc. Inhibiteurs de pd-1/pd-l1
WO2020028097A1 (fr) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Formes solides d'acide (r)-11-(méthoxyméthyl)-12-(3-méthoxypropoxy)-3,3-diméthyl-8-0 x0-2,3,8,13b-tétrahydro-1h-pyrido[2,1-a] pyrrolo[1,2-c]phtalazine-7-carboxylique
WO2020086556A1 (fr) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Inhibiteurs de pd-1/pd-l1
EP4371987A1 (fr) 2018-10-31 2024-05-22 Gilead Sciences, Inc. Composés de 6-azabenzimidazole substitués utilisés en tant qu'inhibiteurs de hpk1
WO2020092528A1 (fr) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Composés 6-azabenzimidazole substitués ayant une activité inhibitrice de hpk1
WO2020092621A1 (fr) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Composés de 6-azabenzimidazole substitués en tant qu'inhibiteurs de hpk1
US11766447B2 (en) 2019-03-07 2023-09-26 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020178770A1 (fr) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides 3'3'-cycliques et leurs promédicaments
WO2020178769A1 (fr) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Dinucléotides cycliques en 2'3' et leurs promédicaments
WO2020178768A1 (fr) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. Analogue du dinucléotide 3'3'-cyclique comprenant un nucléotide modifié par cyclopentanyle utilisé en tant que modulateur de sting
WO2020214663A1 (fr) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Formes solides d'un modulateur de récepteur de type toll
WO2020214652A1 (fr) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Formes solides d'un modulateur de récepteur de type toll
WO2020237025A1 (fr) 2019-05-23 2020-11-26 Gilead Sciences, Inc. Exo-méthylène-oxindoles substitués qui sont des inhibiteurs de hpk1/map4k1
WO2020263830A1 (fr) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Protéines de fusion flt3l-fc et procédés d'utilisation
WO2021011891A1 (fr) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Formulations à action prolongée de ténofovir alafénamide
WO2021034804A1 (fr) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Formulations pharmaceutiques de ténofovir alafénamide
WO2021067181A1 (fr) 2019-09-30 2021-04-08 Gilead Sciences, Inc. Vaccins contre le virus de l'hépatite b et méthodes de traitement du vhb
WO2021113765A1 (fr) 2019-12-06 2021-06-10 Precision Biosciences, Inc. Méganucléases modifiées optimisées ayant une spécificité pour une séquence de reconnaissance dans un génome du virus de l'hépatite b
WO2021188959A1 (fr) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Promédicaments de nucléosides de 4'-c-substitué-2-halo-2'-désoxyadénosine et leurs procédés de fabrication et d'utilisation
WO2022031894A1 (fr) 2020-08-07 2022-02-10 Gilead Sciences, Inc. Promédicaments d'analogues nucléotidiques de phosphonamide et leur utilisation pharmaceutique
WO2022087149A2 (fr) 2020-10-22 2022-04-28 Gilead Sciences, Inc. Protéines de fusion d'interleukine-2-fc et méthodes d'utilisation
WO2022241134A1 (fr) 2021-05-13 2022-11-17 Gilead Sciences, Inc. Combinaison d'un composé de modulation de tlr8 et agent thérapeutique anti-arnsi de vhb
WO2022271650A1 (fr) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Composés de modulation de la diacylglycérol kinase
WO2022271684A1 (fr) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Composés modulant les diacylglycérol kinases
WO2022271677A1 (fr) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Composés de modulation de la diacylglycérol kinase
WO2022271659A1 (fr) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Composés modulant les diacylglycérol kinases

Also Published As

Publication number Publication date
KR101268466B1 (ko) 2013-06-04

Similar Documents

Publication Publication Date Title
WO2014073738A1 (fr) Éolienne dotée d'un arbre incliné
US6857846B2 (en) Stackable vertical axis windmill
US8464990B2 (en) Pole mounted rotation platform and wind power generator
EP2154449A2 (fr) Dispositif solaire et/ou éolien avec système de poursuite
WO2010131891A2 (fr) Générateur éolien vertical
EP2488748A2 (fr) Éolienne
ITMI20090415U1 (it) Apparecchiatura di generazione di energia fotovoltaica inseguente automaticamente il sole.
KR100779036B1 (ko) 추적식 태양광 발전 시스템
WO2014081219A1 (fr) Appareil formant pale de rotor du type basculante pour production d'énergie éolienne du type verticale
US20150233354A1 (en) Split collar mountable wind turbine
CN110552844A (zh) 发电装置
WO2010134690A2 (fr) Ensemble rotatif pour éolienne à axe vertical
WO2022169118A1 (fr) Système de production d'énergie hybride à énergie éolienne et lumière solaire
WO2018079863A1 (fr) Dispositif de réglage de pas de pale pour générateur d'énergie éolienne
WO2014051277A1 (fr) Turbine éolienne à petite échelle ayant des aubes horizontales variables et procédé de commande de sortie de celle-ci
WO2014193085A1 (fr) Appareil de commande d'angle de pale de générateur d'énergie éolienne et générateur d'énergie éolienne ayant celui-ci
CN102062043B (zh) 旋叶同步式双轮风力发电技术
AU2008222708B2 (en) Hubless windmill
WO2010062018A1 (fr) Turbine à axe vertical
KR101049452B1 (ko) 풍력발전시스템
WO2012138129A2 (fr) Éolienne verticale ayant des pales mobiles
WO2011030977A1 (fr) Ensemble birotor excentrique pour la génération d’énergie éolienne
WO2013069854A1 (fr) Système de génération d'énergie par fluide
US20040184909A1 (en) Multi-rotor blade stackable vertical axis windmill
WO2011122895A2 (fr) Appareil de génération d'énergie utilisant un fluide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887919

Country of ref document: EP

Kind code of ref document: A1