WO2014073738A1 - Wind turbine with slant shaft - Google Patents

Wind turbine with slant shaft Download PDF

Info

Publication number
WO2014073738A1
WO2014073738A1 PCT/KR2012/010414 KR2012010414W WO2014073738A1 WO 2014073738 A1 WO2014073738 A1 WO 2014073738A1 KR 2012010414 W KR2012010414 W KR 2012010414W WO 2014073738 A1 WO2014073738 A1 WO 2014073738A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
module
wind turbine
wings
support
Prior art date
Application number
PCT/KR2012/010414
Other languages
French (fr)
Korean (ko)
Inventor
유병수
Original Assignee
Ryu Byung-Sue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryu Byung-Sue filed Critical Ryu Byung-Sue
Publication of WO2014073738A1 publication Critical patent/WO2014073738A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/005Wind motors having a single vane which axis generate a conus or like surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/202Rotors with adjustable area of intercepted fluid
    • F05B2240/2022Rotors with adjustable area of intercepted fluid by means of teetering or coning blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Definitions

  • the present invention relates to a wind turbine for converting wind energy into mechanical energy, and more particularly, a first position of each wing provided in the wing structure extending vertically upward of the fixed structure, and extending at a predetermined angle to the rear of the fixed structure. It has a structure that rotates to rotate the second position to be, and the attitude and angle of each wing is automatically adjusted according to the wind power, and relates to a bent axis wind turbine to more effectively utilize the wind energy.
  • a wind generator is used as a means for generating electricity using the wind energy.
  • the wind generator is composed of a wind turbine for converting wind energy into mechanical energy, and a generator for generating electricity by operating by the mechanical energy converted by the wind turbine.
  • the conventional wind turbine may be divided into a horizontal wind turbine is installed horizontally with respect to the ground shaft, and a vertical wind turbine is installed perpendicular to the ground shaft.
  • FIG. 1 is a view showing the structure of a general horizontal wind power generator.
  • the horizontal wind power generator is the most common type of wind power generator having a structure in which a wing structure 20 having a plurality of wings 21 is mounted on an upper end of a vertically oriented column 10, and has a high power generation efficiency with a simple structure.
  • FIG. 2 is a view showing the structure of a general vertical wind power generator.
  • the vertical wind power generator is a wind power generator having a structure in which a wing structure 20 ⁇ having a cylindrical structure is mounted on a vertical rotating shaft 22, and enables smooth power generation regardless of the direction and wind quality of the wind, and has a low height. Due to this, there is an advantage in that it is easy to maintain and maintain main parts such as a speed increaser and a generator.
  • the present invention has been made in consideration of the above problems, and an object of the present invention is to provide a four-axis wind turbine to effectively utilize the wind energy by having the advantages of both a horizontal wind turbine and a vertical wind turbine. .
  • Another object of the present invention is to provide a bent-type wind turbine capable of preventing the breakage of the wing due to the gust, by allowing the wing to be folded or unfolded according to the wind strength, and capable of smooth driving regardless of the wind quality.
  • Still another object of the present invention is to provide a bent axis wind turbine which enables smooth operation regardless of the direction of the wind by allowing the wing structure to automatically rotate in a direction facing the wind according to the direction of the wind.
  • each wing is composed of a plurality of wing splits, the plurality of wing splits are automatically rotated around the wing axis according to their linear speed to implement the optimum rotation environment for the wing structure It is to provide a bent axis wind turbine.
  • the present invention to achieve the object as described above and to solve the conventional drawbacks includes a fixed structure and a wing structure having a plurality of wings installed on the fixed structure for converting wind energy into mechanical energy.
  • the wind turbine of claim 1 wherein each wing of the wing structure rotates through a first position extending vertically upward of the fixed structure and a second position extending at an angle inclined to the rear of the fixed structure.
  • the wing structure is made of a cylindrical structure, a plurality of wings are hinged to the outer surface is rotated to rotate with the wing;
  • a rotary shaft installed to be movable in a direction parallel to the central axis of the rotary module while penetrating the center of the rotary module, the rotary shaft being connected to each wing through a connection link;
  • one end hinged to the rotary module connected to the rotary shaft via a link link to provide a four-axis wind turbine consisting of a plurality of wings folded or unfolded like an umbrella while rotating around the hinge point by the movement of the rotary shaft do.
  • the present invention by pushing or pulling the rotating shaft in conjunction with the wing structure in accordance with the strength of the wind acting on the wing having a push rod to be folded or unfolded, rotatably supporting the rotating module, It is provided with a rotatable structure to the fixed structure provides a bent axis wind turbine further comprising a support structure for the direction of the wing structure is made in accordance with the direction of the wind acting on the wing structure.
  • the present invention provides a bent axis wind turbine wherein each wing is composed of a plurality of wing splits.
  • the present invention provides a bent-type wind turbine each of which has a front surface and a rear surface formed in a predetermined curved shape, the predetermined curved shape is configured to induce a flow rate faster in the front than the rear surface of the wing split body. do.
  • a plurality of wings installed to extend in a radial structure around the rotating module extends while inclined downward toward the rear of the fixing structure and the first position extending vertically upward of the fixing structure. It is a structure that rotates while circulating in a second position, and has a structure similar to the wing structure of the horizontal wind power generator to take advantage of the horizontal wind power generator, and the advantages of the vertical wind power generator due to the low height of the wing structure. There is an effect that can be taken.
  • the plurality of wings provided in the wing structure has the effect of preventing damage to the wind turbine due to the gusts by rotating so that the wing structure is folded like an umbrella when the wind strength is strong.
  • the wing structure is automatically changed in the direction facing the wind, there is an effect capable of smooth driving regardless of the direction of the wind.
  • each wing is composed of a plurality of wing dividers, each wing divider rotates around the wing axis according to its own linear velocity and provides an optimal rotation environment has the effect of increasing the rotational efficiency of the wing structure have.
  • FIG. 1 is a view showing the structure of a general horizontal wind power generator
  • FIG. 2 is a view showing the structure of a typical vertical wind power generator
  • Figure 3 is a side view showing the structure of a bent axis wind turbine according to the present invention.
  • FIG. 4 is a front view showing the structure of a bent axis wind turbine according to the present invention.
  • FIG. 5 is a side view showing the structure of a fixed structure according to the present invention.
  • Figure 6 is a side view showing the structure of a wing structure according to the present invention.
  • FIG. 8 is a side view showing a state in which the wing structure is folded
  • FIG. 9 is a perspective view showing the structure of a wing according to the present invention.
  • FIG. 10 is a plan view showing the structure of a wing according to the present invention.
  • FIG. 11 is a cross-sectional view showing a structure of a wing split body according to the present invention.
  • FIG. 12 is a side view showing the structure of the supporting structure according to the present invention.
  • Figure 13 is a side view showing a state in which the support structure according to the present invention is inclined rearward.
  • rotating module 220 rotating shaft
  • support structure 313 support block
  • FIG 3 is a side view showing the structure of the bent axis wind turbine according to the present invention
  • Figure 4 is a front view showing the structure of the bent axis wind turbine according to the present invention.
  • the bent axis wind turbine according to the present invention is a device for converting wind energy into mechanical energy while the wing structure 200 rotates by wind power, and includes a fixed structure 100 and a wing structure 200.
  • Figure 5 shows a side view showing the structure of the fixed structure according to the present invention.
  • the fixed structure 100 is installed on the ground or offshore structure to support the wing structure 200.
  • the fixed structure 100 is to maintain the wing structure 200 as low as possible, the upper end is formed in a narrow conical structure than the lower end in order to enable a stable support of the wing structure (200).
  • Such a fixed structure 100 may be configured by having a conical structure by connecting a plurality of beams 101 to each other like a known truss.
  • Figure 6 is a side view showing the structure of the wing structure according to the invention
  • Figure 7 'A' part of Figure 6
  • Figure 8 is a side view showing a state in which the wing structure is folded.
  • the wing structure 200 is mounted on the upper end of the fixed structure 100, by converting the wind energy into mechanical energy by rotating by the wind, the rotating module 210 And a rotating shaft 220 and a plurality of wings 230.
  • the rotation module 210 is combined with a plurality of wings 230 to rotate together with the wings 230.
  • the rotary module 210 is formed in a cylindrical shape as a whole, the front end portion 210a is coupled to the support structure to be described later, the rear end portion 210b is coupled to the plurality of wings 230.
  • the rotating shaft 220 is installed so as to have a structure through which the front and rear ends protrude from the rotating module 210 through the center of the rotating module 210.
  • the rotating shaft 220 installed as described above has a structure capable of moving in a direction parallel to the central axis S of the rotating module 210 while being coupled with the rotating module 210.
  • the rotary shaft 220 and the rotary module 210 is coupled via a bearing (B1) for the smooth movement of the rotary shaft 220.
  • the rear end 220b of the rotary shaft 220 protruding from the rotary module 210 is coupled to the wing 230 via the connection link 240.
  • the connecting link 240 is composed of a plurality of each of the wings 230 and the rotating shaft 220 is independently connected, each of the connecting links 240 is hinged to one end of the wing 230, , The other end is installed in a hinged structure to the rotary shaft 220.
  • a plurality of wings 230 rotates around the hinge point (P1) coupled with the rotary module 210 and the umbrella and It will be folded or unfolded together. Therefore, in the strong wind conditions such as gusts by moving the rotating shaft 220 to be folded a plurality of wings 230, it is possible to prevent damage to the wing structure 200 by the strong wind.
  • the movement of the rotating shaft 220 may be configured to move the rotating shaft 220 by using a separate actuator driven according to the strength of the wind detected by the anemometer, in this case, due to the additional use of the anemometer and actuator Since the structure is complicated and the installation cost increases, the rotating shaft 220 automatically moves according to the strength of the wind acting on the wing structure 200, and is preferably configured to fold or unfold the wing 230. .
  • the present invention by supporting the support structure and the wing structure 200 to push or pull the rotating shaft 220, the wing structure 200 is automatically folded or unfolded according to the strength of the wind, the description of such a structure The following will be described in more detail in the process of explaining the structure of the support structure.
  • each wing 230 is installed to maintain a constant distance from each other on the circumference of the rear end portion (210b) of the rotary module 210, each wing 230 has an inner end (230a) to the rotary module (210) It is installed in a hinge-coupled and rotatable structure around the hinge point (P1).
  • each of the wings 230 is rotated in the wing structure 200, while the first position (Po1) vertically upwards of the fixed structure 100, while being inclined downward predetermined angle to the rear of the fixed structure (100). It is configured to rotate while rotating the second position Po2 that extends.
  • the first position Po1 is not limited only to the vertical upper portion of the fixed structure 100, but also includes a position close to the vertical.
  • the rotary module 210 and the rotary shaft 220 positioned at the rotation center of the wing structure 200 are rotated so that each blade 230 rotates while rotating the first position Po1 and the second position Po2. It has a structure inclined with respect to the ground at a predetermined angle ⁇ 1.
  • FIG. 9 is a perspective view showing the structure of the wing according to the present invention
  • FIG. 10 is a plan view showing the structure of the wing according to the present invention
  • Figure 11 is a cross-sectional view showing the structure of the wing splitter according to the present invention.
  • Each wing 230 installed in the above structure is composed of a plurality of wing dividers 231, the plurality of wing dividers 231 are coupled to each other via a wing shaft 232, one wing ( 230).
  • a plurality of wing splitters 231 constituting one wing 230 are formed in different sizes, and the wing splitter 231 having a smaller size toward the outer end portion 230b of the wing 230 is disposed.
  • one wing 230 formed by assembling a plurality of wing split bodies 231 has a fine twisted shape by a predetermined angle ( ⁇ 2) from the inner end to the outer end, similar to the wing 230 of a general windmill.
  • the wing shaft 232 penetrates through the plurality of wing splitters 231 to combine the wing splitter 231 with each other, the center (C2) of the wing shaft 232 is the wing splitter 231 It is provided so as to penetrate the wing split body 231 at a position shifted from the center C1 of the center, and has an eccentric structure.
  • the center C2 of the wing shaft 232 moves the wing split body 231 at a position eccentric from the center C1 of the wing split body 231 to the rear surface 231 b of the wing split body 231. It is installed to penetrate through.
  • each wing split body 231 has the same cross-sectional shape as the wing 230 of the plane, and has a front surface 231a and a rear surface 231b formed in a predetermined curved shape and have a streamlined cross-sectional shape as a whole.
  • the curved surface of 231a is formed to have a larger curvature than the curved surface of the rear surface 231b, and as a result, the flow velocity is formed faster on the front surface 231a than the rear surface 231b of the wing splitter 231.
  • the air flow velocity (V2) of the front surface 231a is greater than the rear surface 231b because the distance to which air flow should flow from the front surface 231a of the wing splitter 231. ) Is faster than the air flow velocity V1 of the rear surface 231b, so that the pressure P2 of the front surface 231a is lower than the pressure P1 of the rear surface 231b.
  • the wing splitter 231 rotates about the wing shaft 232 by the pressure difference between the front surface 231a and the rear surface 231b generated due to the shape of the front surface 231a and the rear surface 231b as described above. Position is adjusted. The amount of rotation of the wing splitter 231 is different depending on the linear velocity according to the position of the wing splitter 231, and the closer to the outer end of the wing 230, the greater the linear speed, and consequently one The plurality of wing splitters 231 provided in the wing 230 is rotated at a greater angle as it is closer to the outer end of the wing 230.
  • the attitude is adjusted by rotating the center of the wing shaft 232 such that each wing division 231 has a posture corresponding to its linear speed, thereby providing an optimal rotation environment of the wing structure 200. .
  • each wing split body 231 is coupled to the wing shaft 232 through the bearing (B2) so that the rotation of the wing split body 231 around the wing shaft 232 can be made smoothly.
  • a triangular support link 250 is installed at the inner end of each wing 230 and connects the support link 250 and the outer end 230b of the wing 230.
  • the wire 260 may be further included.
  • the support link 250 is installed to have a structure integral with the wing splitter 231-1 (shown in FIG. 9) located at the inner end 230a of the wing 230, and the wire 260 Is extended from the support link 250 is installed to be connected to the wing shaft 232 at the outer end 230b of the wing 230, by using the support link 250 and the wire 260 of the wing 230 By supporting the inner and outer ends connected to each other, sagging of the wing 230 which may occur when the wing 230 is moved to the second position Po2 inclined downward backward is prevented.
  • the bent axis wind turbine rotatably supports the rotating module 210
  • the wing structure 200 is capable of changing the direction according to the direction of the wind, in conjunction with the wing structure 200, the rotating shaft A support structure 300 (shown in FIG. 2) is further included to allow the plurality of wings 230 to be folded or unfolded by pushing or pulling 220.
  • Figure 13 is a side view showing a state in which the support structure according to the present invention is inclined backward.
  • the support structure 300 is composed of a direction switching module 310, the tilt control module 320, the rotation support module 330, the spring 340, the push rod 350.
  • the redirection module 310 is composed of a fixed plate 311 of the conical structure installed in a fixed structure on the upper end of the fixed structure 100, and a rotating plate 312 while being coupled to the upper portion of the fixed plate 311
  • the support block 313 having a structure protruding upward is formed at the center of the upper surface of the rotating plate 312.
  • the bearing B3 is installed between the fixed plate 311 and the rotating plate 312 for smooth rotation of the rotating plate 312.
  • the inclination control module 320 is formed of two flat plate parts 321 and 322 are coupled to each other to maintain an angle interval of about 120 degrees, the center portion is coupled to the support block 313 in a rotatable structure.
  • the tilt control module 320 installed as described above is provided with a rotation support module 330 on the flat plate portion 321 located in front of the support block 313, the spring 340 on the flat plate portion 322 located in the rear Combined.
  • the rotation support module 330 is installed in the inclination control module 320, is coupled to the rotation module 210 is configured to support the rotation of the rotation module 210.
  • the bearing (B4) is installed between the rotary support module 330 and the rotary module 210 for smooth rotation of the rotary module 210.
  • the spring 340 is installed to be located between the direction change module 310 and the inclination control module 320 at the rear of the support block 313.
  • the inclination control module 320 is compressed by the inclination control module 320 to rotate to the original position Will accumulate power.
  • the push rod 350 is installed to connect the direction switching module 310 and the rotary shaft 220, and when the tilt control module 320 rotates around the support block 313, it pushes the rotary shaft 220. .
  • the push rod 350 is hinged to the lower end of the direction switching module 310, the upper end is hinged to the fixing ring 221 installed in the front end on the rotating shaft 220.
  • the push rod 350 installed as described above has a movement trajectory of the front end of the rotating shaft and the rotating shaft by the tilt adjusting module 320 when the tilt adjusting module 320 rotates rearward with respect to the support block 313 due to the gust. Due to the difference in the movement trajectory of the end portion of the push rod 350 which is connected to the front end of the rotating rod, the push rod 350 pushes the rotating shaft 220, and thus the rotating shaft 220 moves rearward.
  • the connecting link 240 connecting the rotating shaft 220 and the respective wings 230 in the process of moving the rotating shaft 220 to the rear pulls the wings 230 to fold the wing structure into a shape similar to an umbrella.
  • the wind pressure acting on the wing 230 is reduced to prevent breakage of the wing 230.
  • bent axis wind turbine of the present invention configured as described above operates and describes the process of converting wind energy into mechanical energy.
  • the wing in the first position Po1 and the position adjacent to the plurality of wings 230 receives a wind pressure to generate a rotational force, thereby rotating the wing structure 200.
  • wind energy can be stored.
  • the bent axis wind turbine according to the present invention is easy to install on land as well as offshore structures, and has the advantage of maintaining a stable structure against gusts.
  • each wing 230 is extended to the first position Po1 extending vertically upward of the fixed structure 100, and inclined downward toward the rear of the fixed structure 100 It rotates by rotating the second position (Po2), the rotation module 210 and the rotation shaft 220 for supporting the rotation of the blade 230 is maintained in a posture inclined at a predetermined angle ( ⁇ 1) with a horizontal plane. .
  • the plurality of wing dividers 231 constituting each of the wings 230, the wing shaft 232 by the pressure difference between the front surface (231a) and the rear surface (231b) generated in proportion to the linear velocity according to its position By rotating around the center to maintain the optimum posture in compliance with the wind, thereby minimizing the rotational resistance of the wing (230).
  • the tilt control module 320 is rotated to the rear about the support block 313 by the pressure acting on the wing 230.
  • the spring 340 disposed between the inclination control module 320 and the direction switching module 310 is compressed, the rotating shaft 220 is moved back by the pusher 350.
  • the wing structure 200 takes a posture similar to that of an umbrella. Therefore, it is possible to prevent damage to the wing structure 200 due to the gust by reducing the wind pressure acting on each wing 230.
  • the inclination adjustment module 320 is rotated forward around the support block 313 by the elasticity accumulated in the spring 340, At this time, the rotary shaft 220 is pulled by the pusher 350 to move forward, the wings 230 are unfolded by the movement of the rotary shaft 220.
  • the bent axis wind turbine according to the present invention can effectively respond to the strength of the wind while the wing structure 200 is folded or unfolded according to the strength of the wind, and has the advantage of continuously converting the wind energy into mechanical energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a wind turbine with a slant shaft. The objective of the present invention is to provide a wind turbine with a slant shaft, which has advantages of both a horizontal wind power generator and a vertical wind power generator, thus utilizing wind power energy in a more effective manner. To accomplish said objective, the present invention provides a wind turbine with a slant shaft, comprising a fixing structure and a blade structure which is installed on the fixing structure and which has multiple blades for converting wind power energy into mechanical energy. Each blade of the blade structure rotates and circulates through a first point extended vertically upward from the fixing structure and a second point tilted at a predetermined angle and extended backwardly from the fixing structure.

Description

사축형 윈드 터빈Bent Wind Turbine
본 발명은 풍력 에너지를 기계적 에너지로 전환하는 윈드 터빈에 관한 것으로, 특히 날개구조체에 구비된 각각 날개가 고정구조물의 수직 상방으로 연장되는 제1 위치와, 고정구조물의 후방으로 소정 각도 기울어진 채 연장되는 제2 위치를 순환하며 회전하는 구조를 가지며, 바람의 세기에 따라 각 날개의 자세 및 각도가 자동으로 조절되면서 풍력 에너지를 보다 효과적으로 활용할 수 있도록 한 사축형 윈드 터빈에 관한 것이다.The present invention relates to a wind turbine for converting wind energy into mechanical energy, and more particularly, a first position of each wing provided in the wing structure extending vertically upward of the fixed structure, and extending at a predetermined angle to the rear of the fixed structure. It has a structure that rotates to rotate the second position to be, and the attitude and angle of each wing is automatically adjusted according to the wind power, and relates to a bent axis wind turbine to more effectively utilize the wind energy.
기존의 화석에너지 자원은 점차 고갈 되어갈 뿐만 아니라 지구환경을 오염시키기 때문에 오래전부터 인류는 고갈되지 않고 환경을 오염시키지 않는 청정대체에너지 이용 장치 개발을 위하여 많은 노력을 기울여 왔다. 이러한 청정대체에너지는 태양에너지(solar energy), 풍력에너지(wind energy), 조류에너지(current energy), 조력에너지(tidal energy), 지열에너지(geo-thermal energy), 생화학에너지(bio-thermal energy) 등이 있다.Existing fossil energy resources are not only gradually exhausted, but also pollute the global environment. For a long time, mankind has been trying to develop a clean alternative energy utilization device that is not exhausted and does not pollute the environment. Such clean alternative energy includes solar energy, wind energy, current energy, tidal energy, geo-thermal energy and bio-thermal energy. Etc.
한편, 상기 풍력에너지를 이용하여 전기를 발생하기 위한 수단으로써 풍력발전기가 사용되고 있다.On the other hand, a wind generator is used as a means for generating electricity using the wind energy.
상기 풍력발전기는 풍력 에너지를 기계적 에너지로 전환하기 위한 윈드 터빈과, 상기 윈드 터빈에 의해 전환된 기계적 에너지에 의해 가동하며 전기를 생산하는 발전기로 구성되어 있다.The wind generator is composed of a wind turbine for converting wind energy into mechanical energy, and a generator for generating electricity by operating by the mechanical energy converted by the wind turbine.
한편, 종래의 윈드 터빈은, 회전축이 지면에 대해 수평으로 설치된 수평형 풍력발전기와, 회전축이 지면에 대해 수직으로 설치되어 있는 수직형 풍력발전기로 구분될 수 있다.On the other hand, the conventional wind turbine may be divided into a horizontal wind turbine is installed horizontally with respect to the ground shaft, and a vertical wind turbine is installed perpendicular to the ground shaft.
도 1은 일반적인 수평형 풍력발전기의 구조를 보인 도면이다.1 is a view showing the structure of a general horizontal wind power generator.
상기 수평형 풍력발전기는 수직하게 세워진 기둥(10)의 상단부에는 다수개의 날개(21)를 갖는 날개구조체(20)가 장착된 구조를 갖는 가장 일반적인 형태의 풍력발전기로써, 단순한 구조로 높은 발전효율을 구현할 수 있는 장점이 있으나, 바람의 방향이 자주 바뀌거나 돌풍과 같이 난기류의 바람에는 원활한 전기 발전이 어려우며, 주요 부품들이 높은 곳에 설치되므로 유지 보수가 어렵고, 태풍 등의 강한 바람에 발전을 멈추어야 하는 취약한 단점을 갖고 있다.The horizontal wind power generator is the most common type of wind power generator having a structure in which a wing structure 20 having a plurality of wings 21 is mounted on an upper end of a vertically oriented column 10, and has a high power generation efficiency with a simple structure. Although there are advantages that can be realized, it is difficult to smoothly generate electricity in turbulent winds such as wind direction changes or gusts, and it is difficult to maintain because major components are installed in high places. It has a disadvantage.
도 2는 일반적인 수직형 풍력발전기의 구조를 보인 도면이다.2 is a view showing the structure of a general vertical wind power generator.
상기 수직형 풍력발전기는 수직한 회전축(22)에 원통형의 구조를 갖는 날개구조체(20`)가 장착된 구조를 갖는 풍력발전기로써, 바람의 방향과 풍질에 관계없이 원활한 발전이 가능하고, 낮은 높이로 인하여 증속기 및 발전기 등의 주요 부품에 대한 유지 보수가 용이한 장점을 갖고 있으나, 수평형 풍력발전기에 비하여 구조가 복잡하고 효율이 낮은 단점을 갖고 있다.The vertical wind power generator is a wind power generator having a structure in which a wing structure 20` having a cylindrical structure is mounted on a vertical rotating shaft 22, and enables smooth power generation regardless of the direction and wind quality of the wind, and has a low height. Due to this, there is an advantage in that it is easy to maintain and maintain main parts such as a speed increaser and a generator.
본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 본 발명의 목적은 수평형 풍력발전기와 수직형 풍력발전기의 장점을 모두 구비하여 풍력 에너지를 보다 효과적으로 활용할 수 있도록 하는 사축형 윈드 터빈을 제공함에 있다.The present invention has been made in consideration of the above problems, and an object of the present invention is to provide a four-axis wind turbine to effectively utilize the wind energy by having the advantages of both a horizontal wind turbine and a vertical wind turbine. .
본 발명의 다른 목적은, 바람의 세기에 따라 날개가 접혀지거나 펼쳐지도록 함으로써, 돌풍에 의한 날개의 파손을 방지할 수 있으며, 풍질에 상관없이 원활한 구동이 가능한 사축형 윈드 터빈을 제공함에 있다.Another object of the present invention is to provide a bent-type wind turbine capable of preventing the breakage of the wing due to the gust, by allowing the wing to be folded or unfolded according to the wind strength, and capable of smooth driving regardless of the wind quality.
본 발명의 또 다른 목적은, 바람의 방향에 따라 날개구조체가 바람과 마주하는 방향으로 자동으로 회전하도록 함으로써 바람의 방향에 관계없이 원활한 작동이 가능하도록 한 사축형 윈드 터빈을 제공함에 있다.Still another object of the present invention is to provide a bent axis wind turbine which enables smooth operation regardless of the direction of the wind by allowing the wing structure to automatically rotate in a direction facing the wind according to the direction of the wind.
본 발명의 또 다른 목적은, 각각의 날개는 다수개의 날개분할체로 구성되며, 다수개의 날개분할체는 자신의 선속도에 따라 날개축을 중심으로 자동으로 회전하여 날개구조체에 대한 최적의 회전환경을 구현할 수 있도록 한 사축형 윈드 터빈을 제공함에 있다.Another object of the present invention, each wing is composed of a plurality of wing splits, the plurality of wing splits are automatically rotated around the wing axis according to their linear speed to implement the optimum rotation environment for the wing structure It is to provide a bent axis wind turbine.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 고정구조물과, 상기 고정구조물에 설치되며 풍력에너지를 기계적 에너지로 전환시키기 위한 다수개의 날개를 갖는 날개구조체를 포함하는 윈드 터빈에 있어서, 상기 날개구조체의 각 날개는 고정구조물의 수직 상방으로 연장된 제1 위치와, 고정구조물의 후방으로 소정 각도 기울어진 채 연장되는 제2 위치를 순환하며 회전하는 사축형 윈드 터빈을 제공한다.The present invention to achieve the object as described above and to solve the conventional drawbacks includes a fixed structure and a wing structure having a plurality of wings installed on the fixed structure for converting wind energy into mechanical energy. The wind turbine of claim 1, wherein each wing of the wing structure rotates through a first position extending vertically upward of the fixed structure and a second position extending at an angle inclined to the rear of the fixed structure. To provide.
또한 본 발명은, 상기 날개구조체가, 원통형의 구조로 이루어지며, 외면에 다수개의 날개가 힌지 결합되어 날개와 함께 회전하는 회전모듈; 상기 회전모듈의 중심을 관통한 채로 회전모듈의 중심축과 평행한 방향으로 이동가능하게 설치되며, 연결링크를 매개로 각각의 날개와 연결된 회전축; 및 상기 회전모듈에 일단이 힌지결합되며, 연결링크를 매개로 회전축과 연결되어 회전축의 이동에 의하여 힌지점을 중심으로 회전하면서 우산과 같이 접혀지거나 펼쳐지는 다수개의 날개로 구성된 사축형 윈드 터빈을 제공한다.In another aspect, the present invention, the wing structure is made of a cylindrical structure, a plurality of wings are hinged to the outer surface is rotated to rotate with the wing; A rotary shaft installed to be movable in a direction parallel to the central axis of the rotary module while penetrating the center of the rotary module, the rotary shaft being connected to each wing through a connection link; And one end hinged to the rotary module, connected to the rotary shaft via a link link to provide a four-axis wind turbine consisting of a plurality of wings folded or unfolded like an umbrella while rotating around the hinge point by the movement of the rotary shaft do.
또한 본 발명은, 상기 날개에 작용하는 바람의 세기에 따라 날개구조체와 연동하여 회전축을 밀거나 당김으로써 다수개의 날개가 접혀지거나 펼쳐지도록 하는 밀대를 구비하고, 상기 회전모듈을 회전가능하게 지지하며, 상기 고정구조물에 회전 가능한 구조로 설치되어 날개구조체에 작용하는 바람의 방향에 따라 날개구조체의 방향 전환이 이루어지도록 하는 지지구조물을 더 포함하는 사축형 윈드 터빈을 제공한다.In another aspect, the present invention, by pushing or pulling the rotating shaft in conjunction with the wing structure in accordance with the strength of the wind acting on the wing having a push rod to be folded or unfolded, rotatably supporting the rotating module, It is provided with a rotatable structure to the fixed structure provides a bent axis wind turbine further comprising a support structure for the direction of the wing structure is made in accordance with the direction of the wind acting on the wing structure.
또한 본 발명은, 상기 각각의 날개가 다수개의 날개분할체로 구성된 사축형 윈드 터빈을 제공한다.In another aspect, the present invention provides a bent axis wind turbine wherein each wing is composed of a plurality of wing splits.
또한 본 발명은, 상기 각각의 날개분할체가 소정 곡면 형상으로 형성된 전면과 배면을 갖되, 상기 소정 곡면 형상은 날개분할체의 배면 보다 전면에서 유속이 빠르도록 유도하는 형상으로 구성된 사축형 윈드 터빈을 제공한다.In another aspect, the present invention provides a bent-type wind turbine each of which has a front surface and a rear surface formed in a predetermined curved shape, the predetermined curved shape is configured to induce a flow rate faster in the front than the rear surface of the wing split body. do.
상기와 같은 특징을 갖는 본 발명에 의하면, 회전모듈을 중심으로 하여 방사형의 구조로 연장되게 설치된 다수개의 날개가 고정구조물의 수직 상방으로 연장된 제1 위치와 고정구조물의 후방으로 하향 경사진 채로 연장되는 제2 위치를 순환하며 회전하는 구조로써, 수평형 풍력발전기의 날개구조체와 유사한 구조를 구비하여 수평형 풍력발전기의 장점을 취할 수 있으며, 날개구조체의 낮은 높이로 인하여 수직형 풍력발전기의 장점도 취할 수 있는 효과가 있다.According to the present invention having the above characteristics, a plurality of wings installed to extend in a radial structure around the rotating module extends while inclined downward toward the rear of the fixing structure and the first position extending vertically upward of the fixing structure. It is a structure that rotates while circulating in a second position, and has a structure similar to the wing structure of the horizontal wind power generator to take advantage of the horizontal wind power generator, and the advantages of the vertical wind power generator due to the low height of the wing structure. There is an effect that can be taken.
또한, 날개구조체에 구비된 다수개의 날개는 바람의 세기가 강한 경우, 회전하여 날개구조체가 우산과 같이 접혀지도록 함으로써 돌풍에 의한 윈드 터빈의 손상을 방지할 수 있는 효과가 있다.In addition, the plurality of wings provided in the wing structure has the effect of preventing damage to the wind turbine due to the gusts by rotating so that the wing structure is folded like an umbrella when the wind strength is strong.
또한, 날개구조체는 바람과 마주하는 방향으로 자동으로 방향 전환이 이루어짐으로써, 바람의 방향에 상관없이 원활한 구동이 가능한 효과가 있다.In addition, the wing structure is automatically changed in the direction facing the wind, there is an effect capable of smooth driving regardless of the direction of the wind.
또한, 각각의 날개는 다수개의 날개분할체로 구성되며, 각각의 날개분할체는 자신의 선속도에 따라 날개축을 중심으로 회전하며 최적의 회전환경을 제공함으로서 날개구조체의 회전 효율을 높일 수 있는 효과가 있다.In addition, each wing is composed of a plurality of wing dividers, each wing divider rotates around the wing axis according to its own linear velocity and provides an optimal rotation environment has the effect of increasing the rotational efficiency of the wing structure have.
도 1 은 일반적인 수평형 풍력발전기의 구조를 보인 도면,1 is a view showing the structure of a general horizontal wind power generator,
도 2 는 일반적인 수직형 풍력발전기의 구조를 보인 도면,2 is a view showing the structure of a typical vertical wind power generator,
도 3 은 본 발명에 따른 사축형 윈드 터빈의 구조를 보인 측면도,Figure 3 is a side view showing the structure of a bent axis wind turbine according to the present invention,
도 4 는 본 발명에 따른 사축형 윈드 터빈의 구조를 보인 정면도,4 is a front view showing the structure of a bent axis wind turbine according to the present invention;
도 5 는 본 발명에 따른 고정구조물의 구조를 보인 측면도,5 is a side view showing the structure of a fixed structure according to the present invention;
도 6 은 본 발명에 따른 날개구조체의 구조를 보인 측면도,Figure 6 is a side view showing the structure of a wing structure according to the present invention,
도 7 은 도 6의 'A`부 상세도,7 is a detailed view of the portion 'A` of FIG.
도 8 은 날개구조체가 접혀진 상태를 보인 측면도,8 is a side view showing a state in which the wing structure is folded,
도 9 는 본 발명에 따른 날개의 구조를 보인 사시도,9 is a perspective view showing the structure of a wing according to the present invention,
도 10 은 본 발명에 따른 날개의 구조를 보인 평면도,10 is a plan view showing the structure of a wing according to the present invention;
도 11 은 본 발명에 따른 날개분할체의 구조를 보인 단면도,11 is a cross-sectional view showing a structure of a wing split body according to the present invention;
도 12 는 본 발명에 따른 지지구조물의 구조를 보인 측면도,12 is a side view showing the structure of the supporting structure according to the present invention;
도 13 은 본 발명에 따른 지지구조물이 후방으로 기울어진 상태를 보인 측면도.Figure 13 is a side view showing a state in which the support structure according to the present invention is inclined rearward.
(부호의 설명)(Explanation of the sign)
100: 고정구조물 200: 날개구조체100: fixed structure 200: wing structure
210: 회전모듈 220: 회전축210: rotating module 220: rotating shaft
230: 날개 231: 날개분할체230: wings 231: wing splits
232: 날개축 240: 연결링크232: wing shaft 240: connection link
250: 지지링크 260: 와이어250: support link 260: wire
300: 지지구조물 313: 지지블록300: support structure 313: support block
310: 방향전환모듈 320: 경사조절모듈310: direction change module 320: tilt control module
330: 회전지지모듈 340: 스프링330: rotation support module 340: spring
350: 밀대350: push
이하, 본 발명의 바람직한 실시예를 첨부된 도면과 연계하여 상세히 설명하면 다음과 같다. 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 3은 본 발명에 따른 사축형 윈드 터빈의 구조를 보인 측면도를, 도 4는 본 발명에 따른 사축형 윈드 터빈의 구조를 보인 정면도를 도시하고 있다.3 is a side view showing the structure of the bent axis wind turbine according to the present invention, Figure 4 is a front view showing the structure of the bent axis wind turbine according to the present invention.
본 발명에 따른 사축형 윈드 터빈은 풍력에 의하여 날개구조체(200)가 회전하면서 풍력 에너지를 기계적 에너지로 전환하는 장치로, 고정구조물(100)과, 날개구조체(200)로 구성되어 있다.The bent axis wind turbine according to the present invention is a device for converting wind energy into mechanical energy while the wing structure 200 rotates by wind power, and includes a fixed structure 100 and a wing structure 200.
도 5는 본 발명에 따른 고정구조물의 구조를 보인 측면도를 도시하고 있다.Figure 5 shows a side view showing the structure of the fixed structure according to the present invention.
상기 고정구조물(100)은 지면 또는 해상구조물에 설치되어 날개구조체(200)를 지지하는 것이다.The fixed structure 100 is installed on the ground or offshore structure to support the wing structure 200.
이러한 고정구조물(100)은 날개구조체(200)를 가능한 낮은 높이로 유지시키며, 날개구조체(200)의 안정적인 지지가 가능하도록 하기 위하여 상단부가 하단부에 비하여 좁은 원추형의 구조로 형성되어 있다.The fixed structure 100 is to maintain the wing structure 200 as low as possible, the upper end is formed in a narrow conical structure than the lower end in order to enable a stable support of the wing structure (200).
이와 같은 고정구조물(100)은 공지의 트러스와 같이 다수개의 빔(101)을 서로 연결하여 원추형의 구조를 갖도록 함으로써 구성될 수 있다.Such a fixed structure 100 may be configured by having a conical structure by connecting a plurality of beams 101 to each other like a known truss.
도 6은 본 발명에 따른 날개구조체의 구조를 보인 측면도를, 도 7은 도 6의 'A`부 상세도를, 도 8은 날개구조체가 접혀진 상태를 보인 측면도를 도시하고 있다.Figure 6 is a side view showing the structure of the wing structure according to the invention, Figure 7 'A' part of Figure 6, Figure 8 is a side view showing a state in which the wing structure is folded.
도 3, 4, 6, 7을 참조하면, 상기 날개구조체(200)는 고정구조물(100)의 상단부에 탑재되며, 풍력에 의해 회전함으로써 풍력 에너지를 기계적 에너지로 전환시키는 것으로, 회전모듈(210)과 회전축(220) 및 다수개의 날개(230)로 구성된다.3, 4, 6, and 7, the wing structure 200 is mounted on the upper end of the fixed structure 100, by converting the wind energy into mechanical energy by rotating by the wind, the rotating module 210 And a rotating shaft 220 and a plurality of wings 230.
상기 회전모듈(210)은 다수개의 날개(230)와 결합되어 날개(230)와 함께 회전하는 것이다. 이러한 회전모듈(210)은 전체적으로 원통형의 구조로 형성되어 있으며, 전단부(210a)는 후술될 지지구조물과 결합되고, 후단부(210b)는 다수개의 날개(230)와 결합된다.The rotation module 210 is combined with a plurality of wings 230 to rotate together with the wings 230. The rotary module 210 is formed in a cylindrical shape as a whole, the front end portion 210a is coupled to the support structure to be described later, the rear end portion 210b is coupled to the plurality of wings 230.
상기 회전축(220)은 회전모듈(210)의 중심을 관통하여 전후 양단이 회전모듈(210)로부터 돌출된 구조를 갖도록 설치된다. 이와 같이 설치된 회전축(220)은 회전모듈(210)과 결합된 채로 회전모듈(210)의 중심축(S)과 평행한 방향으로 이동이 가능한 구조를 갖는다.The rotating shaft 220 is installed so as to have a structure through which the front and rear ends protrude from the rotating module 210 through the center of the rotating module 210. The rotating shaft 220 installed as described above has a structure capable of moving in a direction parallel to the central axis S of the rotating module 210 while being coupled with the rotating module 210.
한편, 회전축(220)의 원활한 이동을 위하여 회전축(220)과 회전모듈(210)은 베어링(B1)을 매개로 결합되어 있다.On the other hand, the rotary shaft 220 and the rotary module 210 is coupled via a bearing (B1) for the smooth movement of the rotary shaft 220.
또한, 상기 회전모듈(210)로부터 돌출된 회전축(220)의 후단(220b)은 연결링크(240)를 매개로 날개(230)와 결합된다.In addition, the rear end 220b of the rotary shaft 220 protruding from the rotary module 210 is coupled to the wing 230 via the connection link 240.
이때, 상기 연결링크(240)는 다수개로 구성되어 각각의 날개(230)와 회전축(220)을 독립적으로 연결하게 되며, 각각의 연결링크(240)는 일측 끝단이 날개(230)에 힌지결합되고, 타측 끝단이 회전축(220)에 힌지결합된 구조로 설치되어 있다.At this time, the connecting link 240 is composed of a plurality of each of the wings 230 and the rotating shaft 220 is independently connected, each of the connecting links 240 is hinged to one end of the wing 230, , The other end is installed in a hinged structure to the rotary shaft 220.
상기와 같은 날개구조체(200)의 구조에 의하면, 회전축(220)의 전후 방향 이동에 의하여 다수개의 날개(230)가 회전모듈(210)과 결합된 힌지점(P1)을 중심으로 회전하여 우산과 같이 접혀지거나 펼쳐지게 된다. 따라서 돌풍과 같은 강한 바람의 조건에서는 다수개의 날개(230)가 접혀지도록 회전축(220)을 이동시킴으로써, 강한 바람에 의한 날개구조체(200)의 손상을 방지할 수 있게 된다.According to the structure of the wing structure 200 as described above, by the front and rear direction movement of the rotary shaft 220 a plurality of wings 230 rotates around the hinge point (P1) coupled with the rotary module 210 and the umbrella and It will be folded or unfolded together. Therefore, in the strong wind conditions such as gusts by moving the rotating shaft 220 to be folded a plurality of wings 230, it is possible to prevent damage to the wing structure 200 by the strong wind.
한편, 상기 회전축(220)의 이동은 풍속계에서 감지되는 바람의 세기에 따라 구동하는 별도의 엑추에이터를 이용하여 회전축(220)이 이동하도록 구성할 수도 있으나, 이러한 경우, 풍속계 및 엑추에이터의 추가적인 사용으로 인하여 구조가 복잡해지고, 설비 비용이 증가하는 단점이 있으므로, 날개구조체(200)에 작용하는 바람의 세기에 따라 회전축(220)이 자동으로 이동하며 날개(230)를 접거나 펼치도록 구성되는 것이 바람직하다.On the other hand, the movement of the rotating shaft 220 may be configured to move the rotating shaft 220 by using a separate actuator driven according to the strength of the wind detected by the anemometer, in this case, due to the additional use of the anemometer and actuator Since the structure is complicated and the installation cost increases, the rotating shaft 220 automatically moves according to the strength of the wind acting on the wing structure 200, and is preferably configured to fold or unfold the wing 230. .
이에 본 발명은 지지구조물과 날개구조체(200)가 연동하여 회전축(220)을 밀거나 당기도록 함으로써, 바람의 세기에 따라 날개구조체(200)가 자동으로 접히거나 펼쳐지도록 하였으며, 이러한 구조에 대한 설명은 이후 지지구조물에 대한 구조를 설명하는 과정에서 보다 구체적으로 설명하도록 한다.Accordingly, the present invention, by supporting the support structure and the wing structure 200 to push or pull the rotating shaft 220, the wing structure 200 is automatically folded or unfolded according to the strength of the wind, the description of such a structure The following will be described in more detail in the process of explaining the structure of the support structure.
상기 다수개의 날개(230)는 회전모듈(210)의 후단부(210b) 원주 상에 상호 일정한 간격을 유지하도록 설치되며, 각각의 날개(230)는 내측 단부(230a)가 회전모듈(210)에 힌지 결합되어 힌지점(P1)을 중심으로 회전이 가능한 구조로 설치되어 있다.The plurality of wings 230 are installed to maintain a constant distance from each other on the circumference of the rear end portion (210b) of the rotary module 210, each wing 230 has an inner end (230a) to the rotary module (210) It is installed in a hinge-coupled and rotatable structure around the hinge point (P1).
이때, 각각의 날개(230)는 날개구조체(200)의 회전시, 고정구조물(100)의 수직 상방으로 세워진 제1 위치(Po1)와, 고정구조물(100)의 후방으로 소정 각도 하향 경사진 채로 연장되는 제2 위치(Po2)를 순환하면서 회전하도록 구성된다. 여기서 상기 제1 위치(Po1)는 고정구조물(100)의 수직 상방에만 한정되지 않으며, 수직에 근접한 위치도 포함한다.At this time, each of the wings 230 is rotated in the wing structure 200, while the first position (Po1) vertically upwards of the fixed structure 100, while being inclined downward predetermined angle to the rear of the fixed structure (100). It is configured to rotate while rotating the second position Po2 that extends. Here, the first position Po1 is not limited only to the vertical upper portion of the fixed structure 100, but also includes a position close to the vertical.
이와 같이 각각의 날개(230)가 제1 위치(Po1)와 제2 위치(Po2)를 순환하면서 회전하도록 하기 위하여 날개구조체(200)의 회전 중심에 위치한 회전모듈(210)과 회전축(220)은 지면에 대하여 소정의 각도(θ1)로 기울어진 구조를 갖게 된다.As described above, the rotary module 210 and the rotary shaft 220 positioned at the rotation center of the wing structure 200 are rotated so that each blade 230 rotates while rotating the first position Po1 and the second position Po2. It has a structure inclined with respect to the ground at a predetermined angle θ1.
도 9는 본 발명에 따른 날개의 구조를 보인 사시도를, 도 10은 본 발명에 따른 날개의 구조를 보인 평면도를, 도 11은 본 발명에 따른 날개분할체의 구조를 보인 단면도를 도시하고 있다.9 is a perspective view showing the structure of the wing according to the present invention, FIG. 10 is a plan view showing the structure of the wing according to the present invention, Figure 11 is a cross-sectional view showing the structure of the wing splitter according to the present invention.
상기와 같은 구조로 설치되는 각각의 날개(230)는 다수개의 날개분할체(231)로 구성되며, 다수개의 날개분할체(231)는 날개축(232)을 매개로 서로 결합되어 하나의 날개(230)를 구성하게 된다.Each wing 230 installed in the above structure is composed of a plurality of wing dividers 231, the plurality of wing dividers 231 are coupled to each other via a wing shaft 232, one wing ( 230).
이처럼 하나의 날개(230)를 구성하는 다수개의 날개분할체(231)는 서로 다른 크기로 형성되고, 날개(230)의 외측 단부(230b)로 갈수록 크기가 작은 날개분할체(231)가 배치되며, 다수개의 날개분할체(231)가 조립되어 형성되는 하나의 날개(230)는 일반적인 풍차의 날개(230)와 마찬가지로 내측 단부로부터 외측 단부로 갈수록 소정 각도(θ2) 만큼 미세하게 꼬인 형상으로 이루어진다.As described above, a plurality of wing splitters 231 constituting one wing 230 are formed in different sizes, and the wing splitter 231 having a smaller size toward the outer end portion 230b of the wing 230 is disposed. In addition, one wing 230 formed by assembling a plurality of wing split bodies 231 has a fine twisted shape by a predetermined angle (θ2) from the inner end to the outer end, similar to the wing 230 of a general windmill.
한편, 상기 날개축(232)은 다수개의 날개분할체(231)를 관통하여 날개분할체(231)를 서로 결합시킴에 있어서, 날개축(232)의 중심(C2)가 날개분할체(231)의 중심(C1)으로부터 어긋난 위치에서 날개분할체(231)를 관통하도록 설치되어 편심된 구조를 갖고 있다.On the other hand, the wing shaft 232 penetrates through the plurality of wing splitters 231 to combine the wing splitter 231 with each other, the center (C2) of the wing shaft 232 is the wing splitter 231 It is provided so as to penetrate the wing split body 231 at a position shifted from the center C1 of the center, and has an eccentric structure.
보다 구체적으로, 날개축(232)의 중심(C2)은 날개분할체(231)의 중심(C1)으로부터 날개분할체(231)의 배면(231b)으로 편심된 위치에서 날개분할체(231)를 관통하도록 설치된다.More specifically, the center C2 of the wing shaft 232 moves the wing split body 231 at a position eccentric from the center C1 of the wing split body 231 to the rear surface 231 b of the wing split body 231. It is installed to penetrate through.
또한, 상기 각각의 날개분할체(231)는 비행기의 날개(230)와 같은 단면 형상으로써, 소정 곡면 형상으로 형성된 전면(231a)과 배면(231b)을 구비하여 전체적으로 유선형의 단면 형상을 갖되, 전면(231a)의 곡면이 배면(231b)의 곡면 보다 더 큰 곡률을 가지도록 형성되어 결과적으로, 날개분할체(231)의 배면(231b) 보다 전면(231a)에서 유속이 빠르게 형성된다.In addition, each wing split body 231 has the same cross-sectional shape as the wing 230 of the plane, and has a front surface 231a and a rear surface 231b formed in a predetermined curved shape and have a streamlined cross-sectional shape as a whole. The curved surface of 231a is formed to have a larger curvature than the curved surface of the rear surface 231b, and as a result, the flow velocity is formed faster on the front surface 231a than the rear surface 231b of the wing splitter 231.
즉, 베르누이 원리(P1ㅧ V1=P2ㅧ V2)에 따라, 날개분할체(231)의 전면(231a)에서 기류가 흘러가야할 거리가 배면(231b) 보다 크기 때문에 전면(231a)의 기류 속도(V2)가 배면(231b)의 기류 속도(V1) 보다 빠르고, 이에 따라 전면(231a)의 압력(P2)은 배면(231b)의 압력(P1) 보다 낮아지게 된다.That is, according to the Bernoulli principle (P1 ㅧ V1 = P2 ㅧ V2), the air flow velocity (V2) of the front surface 231a is greater than the rear surface 231b because the distance to which air flow should flow from the front surface 231a of the wing splitter 231. ) Is faster than the air flow velocity V1 of the rear surface 231b, so that the pressure P2 of the front surface 231a is lower than the pressure P1 of the rear surface 231b.
따라서, 날개분할체(231)는 상기와 같은 전면(231a)과 배면(231b)의 형상으로 인해 발생되는 전면(231a)과 배면(231b)의 압력차에 의하여 날개축(232)을 중심으로 회전하여 자세가 조정된다. 이러한 날개분할체(231)의 회전량은 날개분할체(231)의 위치에 따른 선속도에 따라 차이가 있으며, 날개(230)의 외측 단부에 가까울수록 선속도가 커지게 되므로, 결과적으로 하나의 날개(230)에 구비된 다수개의 날개분할체(231)는 날개(230)의 외측 단부에 가까울수록 보다 큰 각도로 회전하게 된다.Accordingly, the wing splitter 231 rotates about the wing shaft 232 by the pressure difference between the front surface 231a and the rear surface 231b generated due to the shape of the front surface 231a and the rear surface 231b as described above. Position is adjusted. The amount of rotation of the wing splitter 231 is different depending on the linear velocity according to the position of the wing splitter 231, and the closer to the outer end of the wing 230, the greater the linear speed, and consequently one The plurality of wing splitters 231 provided in the wing 230 is rotated at a greater angle as it is closer to the outer end of the wing 230.
이처럼 각각의 날개분할체(231)가 자신의 선속도에 상응하는 자세를 갖도록 날개축(232)을 중심을 회전하여 자세가 조정됨으로써, 날개구조체(200)의 최적 회전환경을 제공할 수 있게 된다.As described above, the attitude is adjusted by rotating the center of the wing shaft 232 such that each wing division 231 has a posture corresponding to its linear speed, thereby providing an optimal rotation environment of the wing structure 200. .
한편, 날개축(232)을 중심으로 한 날개분할체(231)의 회전이 원활히 이루어질 수 있도록 각각의 날개분할체(231)는 베어링(B2)을 매개로 날개축(232)과 결합된다.On the other hand, each wing split body 231 is coupled to the wing shaft 232 through the bearing (B2) so that the rotation of the wing split body 231 around the wing shaft 232 can be made smoothly.
다시 도 6 및 도 7을 참조하면, 각 날개(230)의 내측 단부에는 삼각형 구조의 지지링크(250)가 설치되고, 상기 지지링크(250)와 날개(230)의 외측 단부(230b)를 연결하는 와이어(260)가 더 포함될 수 있다.6 and 7 again, a triangular support link 250 is installed at the inner end of each wing 230 and connects the support link 250 and the outer end 230b of the wing 230. The wire 260 may be further included.
이때, 상기 지지링크(250)는 날개(230)의 내측 단부(230a)에 위치하는 날개분할체(231-1:도 9에 도시됨)와 일체형의 구조를 갖도록 설치되고, 상기 와이어(260)는 지지링크(250)로부터 연장되어 날개(230)의 외측 단부(230b)에서 날개축(232)과 연결되도록 설치되며, 이러한 지지링크(250)와 와이어(260)를 이용하여 날개(230)의 내외측 단부를 서로 연결하여 지지하여 줌으로써, 날개(230)가 후방으로 하향 경사진 제2 위치(Po2)로 이동한 경우에 발생될 수 있는 날개(230)의 처짐을 방지하게 된다.In this case, the support link 250 is installed to have a structure integral with the wing splitter 231-1 (shown in FIG. 9) located at the inner end 230a of the wing 230, and the wire 260 Is extended from the support link 250 is installed to be connected to the wing shaft 232 at the outer end 230b of the wing 230, by using the support link 250 and the wire 260 of the wing 230 By supporting the inner and outer ends connected to each other, sagging of the wing 230 which may occur when the wing 230 is moved to the second position Po2 inclined downward backward is prevented.
한편, 본 발명에 따른 사축형 윈드 터빈에는 회전모듈(210)을 회전가능하게 지지하고, 날개구조체(200)가 바람의 방향에 따라 방향 전환이 가능하게 하며, 날개구조체(200)와 연동하여 회전축(220)을 밀거나 당김으로써 다수개의 날개(230)가 접혀지거나 펼쳐지도록 하는 지지구조물(300: 도 2에 도시됨)이 더 포함된다.On the other hand, the bent axis wind turbine according to the present invention rotatably supports the rotating module 210, the wing structure 200 is capable of changing the direction according to the direction of the wind, in conjunction with the wing structure 200, the rotating shaft A support structure 300 (shown in FIG. 2) is further included to allow the plurality of wings 230 to be folded or unfolded by pushing or pulling 220.
도 12는 본 발명에 따른 지지구조물의 구조를 보인 측면도를, 도 13은 본 발명에 따른 지지구조물이 후방으로 기울어진 상태를 보인 측면도를 도시하고 있다.12 is a side view showing the structure of the support structure according to the present invention, Figure 13 is a side view showing a state in which the support structure according to the present invention is inclined backward.
상기 지지구조물(300)은 방향전환모듈(310)과, 경사조절모듈(320)과, 회전지지모듈(330)과, 스프링(340)과, 밀대(350)로 구성된다.The support structure 300 is composed of a direction switching module 310, the tilt control module 320, the rotation support module 330, the spring 340, the push rod 350.
상기 방향전환모듈(310)은 고정구조물(100)의 상단부에 고정된 구조로 설치된 원추형 구조의 고정판(311)과, 상기 고정판(311)의 상부에 결합된 채로 회전하는 회전판(312)으로 구성되며, 상기 회전판(312)의 상면 중앙부에는 상방향으로 돌출된 구조를 갖는 지지블록(313)이 형성되어 있다.The redirection module 310 is composed of a fixed plate 311 of the conical structure installed in a fixed structure on the upper end of the fixed structure 100, and a rotating plate 312 while being coupled to the upper portion of the fixed plate 311 The support block 313 having a structure protruding upward is formed at the center of the upper surface of the rotating plate 312.
한편, 상기 회전판(312)의 원활한 회전을 위하여 고정판(311)과 회전판(312)의 사이에 베어링(B3)이 설치된다.On the other hand, the bearing B3 is installed between the fixed plate 311 and the rotating plate 312 for smooth rotation of the rotating plate 312.
상기 경사조절모듈(320)은 두 개의 평판부(321,322)가 약 120도의 각도 간격을 유지하도록 서로 결합된 것으로 형성되며, 중앙부가 지지블록(313)에 회전 가능한 구조로 결합된다.The inclination control module 320 is formed of two flat plate parts 321 and 322 are coupled to each other to maintain an angle interval of about 120 degrees, the center portion is coupled to the support block 313 in a rotatable structure.
이처럼 설치된 경사조절모듈(320)은 지지블록(313)을 기준으로 전방에 위치한 평판부(321)에 회전지지모듈(330)이 설치되고, 후방에 위치한 평판부(322)에 스프링(340)이 결합된다.The tilt control module 320 installed as described above is provided with a rotation support module 330 on the flat plate portion 321 located in front of the support block 313, the spring 340 on the flat plate portion 322 located in the rear Combined.
상기 회전지지모듈(330)은 경사조절모듈(320)에 설치되며, 회전모듈(210)과 결합되어 회전모듈(210)의 회전을 지지하도록 구성된다.The rotation support module 330 is installed in the inclination control module 320, is coupled to the rotation module 210 is configured to support the rotation of the rotation module 210.
물론, 회전모듈(210)의 원활한 회전을 위하여 회전지지모듈(330)과 회전모듈(210)의 사이에는 베어링(B4)이 설치된다.Of course, the bearing (B4) is installed between the rotary support module 330 and the rotary module 210 for smooth rotation of the rotary module 210.
상기 스프링(340)은 지지블록(313)의 후방에서 방향전환모듈(310)과 경사조절모듈(320)의 사이에 위치하도록 설치된다. 이러한 스프링(340)은 돌풍에 의하여 경사조절모듈(320)이 지지블록(313)을 중심으로 회전하는 경우, 경사조절모듈(320)에 의하여 압축되면서 경사조절모듈(320)을 원위치로 회전시키기 위한 힘을 축적하게 된다.The spring 340 is installed to be located between the direction change module 310 and the inclination control module 320 at the rear of the support block 313. When the spring 340 is rotated about the support block 313 by the inclination control module 320 by the gust, the inclination control module 320 is compressed by the inclination control module 320 to rotate to the original position Will accumulate power.
상기 밀대(350)는 방향전환모듈(310)과 회전축(220)을 연결하도록 설치되어 경사조절모듈(320)이 지지블록(313)을 중심으로 회전할 때, 회전축(220)을 밀어 이동시키는 것이다.The push rod 350 is installed to connect the direction switching module 310 and the rotary shaft 220, and when the tilt control module 320 rotates around the support block 313, it pushes the rotary shaft 220. .
이러한 밀대(350)는 하단부가 방향전환모듈(310)에 힌지결합되고, 상단부는 회전축(220)에 전단부에 설치된 고정링(221)과 힌지결합되어 있다.The push rod 350 is hinged to the lower end of the direction switching module 310, the upper end is hinged to the fixing ring 221 installed in the front end on the rotating shaft 220.
이와 같은 구조로 설치된 밀대(350)는 돌풍에 의하여 경사조절모듈(320)이 지지블록(313)을 중심으로 후방으로 회전하는 경우, 경사조절모듈(320)에 의한 회전축 전단부의 이동 궤적과, 회전축의 전단부와 연결되어 회전하는 밀대(350)의 끝단부 이동 궤적의 차이로 인하여 밀대(350)가 회전축(220)을 밀어주게 되며, 이에 따라 회전축(220)이 후방으로 이동하게 된다.The push rod 350 installed as described above has a movement trajectory of the front end of the rotating shaft and the rotating shaft by the tilt adjusting module 320 when the tilt adjusting module 320 rotates rearward with respect to the support block 313 due to the gust. Due to the difference in the movement trajectory of the end portion of the push rod 350 which is connected to the front end of the rotating rod, the push rod 350 pushes the rotating shaft 220, and thus the rotating shaft 220 moves rearward.
이처럼 회전축(220)이 후방으로 이동하는 과정에서 회전축(220)과 각각의 날개(230)를 연결하는 연결링크(240)는 날개(230)를 잡아당겨 날개구조체를 흡사 우산과 같은 형상으로 접어주게 되며, 이로써 날개(230)에 작용하는 풍압을 감소시켜 날개(230)의 파손을 방지하게 된다.As such, the connecting link 240 connecting the rotating shaft 220 and the respective wings 230 in the process of moving the rotating shaft 220 to the rear pulls the wings 230 to fold the wing structure into a shape similar to an umbrella. As a result, the wind pressure acting on the wing 230 is reduced to prevent breakage of the wing 230.
상기와 같이 구성된 본 발명의 사축형 윈드 터빈이 작동하며 풍력 에너지를 기계적 에너지로 전환하는 과정을 설명하도록 한다.The bent axis wind turbine of the present invention configured as described above operates and describes the process of converting wind energy into mechanical energy.
본 발명에 따른 사축형 윈드 터빈은 다수개의 날개(230) 중 제1 위치(Po1) 및 이에 근접한 위치에 있는 날개가 풍압을 받아 회전력을 발생시킴으로써, 날개구조체(200)의 회전이 이루어지게 된다.In the bent axis wind turbine according to the present invention, the wing in the first position Po1 and the position adjacent to the plurality of wings 230 receives a wind pressure to generate a rotational force, thereby rotating the wing structure 200.
한편, 날개구조체(200)에 구비된 회전축(220) 또는 회전모듈(210)을 발전기와 연결하여 날개구조체(200)의 회전으로 인해 발생되는 기계적 에너지를 발전기로 전달하게 되면, 풍력 발전기의 구성이 가능하게 된다.On the other hand, by connecting the rotary shaft 220 or the rotary module 210 provided in the wing structure 200 with the generator to transfer the mechanical energy generated by the rotation of the wing structure 200 to the generator, the configuration of the wind generator It becomes possible.
또한, 상기 회전축(220) 또는 회전모듈(210)의 회전력을 이용하여 공기압축기를 구동시키고, 상기 공기압축기에 의해 압축되는 공기를 별도의 탱크에 저장하게 되면, 풍력 에너지의 저장이 가능하게 된다.In addition, when the air compressor is driven by using the rotational force of the rotary shaft 220 or the rotary module 210, and the air compressed by the air compressor is stored in a separate tank, wind energy can be stored.
본 발명에 따른 사축형 윈드 터빈은 날개구조체(200)와 고정구조물(100)의 낮은 높이로 인하여 육상은 물론이고 해상 구조물에도 설치가 용이하며, 돌풍에도 안정적인 구조를 유지할 수 있는 이점이 있다.Due to the low height of the wing structure 200 and the fixed structure 100, the bent axis wind turbine according to the present invention is easy to install on land as well as offshore structures, and has the advantage of maintaining a stable structure against gusts.
한편, 날개구조체(200)의 회전시 각각의 날개(230)는 고정구조물(100)의 수직 상방으로 연장되는 제1 위치(Po1)와, 고정구조물(100)의 후방으로 하향 경사진 채로 연장되는 제2 위치(Po2)를 순환하여 회전하게 되고, 이러한 날개(230)의 회전을 지지하는 회전모듈(210) 및 회전축(220)은 수평면과 소정의 각도(θ1)로 기울어진 자세를 유지하게 된다.On the other hand, during the rotation of the wing structure 200, each wing 230 is extended to the first position Po1 extending vertically upward of the fixed structure 100, and inclined downward toward the rear of the fixed structure 100 It rotates by rotating the second position (Po2), the rotation module 210 and the rotation shaft 220 for supporting the rotation of the blade 230 is maintained in a posture inclined at a predetermined angle (θ1) with a horizontal plane. .
한편, 상기 각 날개(230)를 구성하는 다수개의 날개분할체(231)는 자신의 위치에 따른 선속도에 비례하여 발생되는 전면(231a)과 배면(231b)의 압력차에 의해 날개축(232)을 중심으로 회전하여 바람에 순응하는 최적의 자세를 유지하게 되며, 이로써 날개(230)의 회전저항을 최소화할 수 있게 된다.On the other hand, the plurality of wing dividers 231 constituting each of the wings 230, the wing shaft 232 by the pressure difference between the front surface (231a) and the rear surface (231b) generated in proportion to the linear velocity according to its position By rotating around the center to maintain the optimum posture in compliance with the wind, thereby minimizing the rotational resistance of the wing (230).
한편, 바람의 방향이 바뀌게 되면, 날개에 작용되는 풍압에 의하여 방향전환모듈(310)의 회전판(312)이 회전함으로써, 날개구조체(200)의 방향 전환이 이루어지게 되며, 이에 따라 바람의 방향이 불규칙하게 바뀌는 지역이나 지형에서도 원활한 작동이 가능하게 된다.On the other hand, if the direction of the wind is changed, by rotating the rotating plate 312 of the direction switching module 310 by the wind pressure acting on the blade, the direction of the wing structure 200 is made, accordingly the direction of the wind Smooth operation is possible even in irregularly changing areas or terrain.
한편, 돌풍과 같은 강한 바람에 의하여 날개(230)에 큰 압력이 작용하는 경우, 날개(230)에 작용하는 압력에 의하여 경사조절모듈(320)이 지지블록(313)을 중심으로 후방으로 회전하게 되며, 이때 경사조절모듈(320)과 방향전환모듈(310)의 사이에 배치된 스프링(340)은 압축되고, 회전축(220)은 밀대(350)에 의해 후방으로 이동하게 된다.On the other hand, when a large pressure is applied to the wing 230 by a strong wind, such as a gust, the tilt control module 320 is rotated to the rear about the support block 313 by the pressure acting on the wing 230. At this time, the spring 340 disposed between the inclination control module 320 and the direction switching module 310 is compressed, the rotating shaft 220 is moved back by the pusher 350.
이와 같은 회전축(220)의 이동에 의하여 다수개의 날개(230)가 회전하며 접혀짐으로써, 날개구조체(200)는 흡사 우산이 접혀진 것과 같은 자세를 취하게 된다. 따라서 각각의 날개(230)에 작용하는 풍압을 감소시켜 돌풍에 의한 날개구조체(200)의 손상을 방지할 수 있게 된다.As the plurality of wings 230 are rotated and folded by the movement of the rotary shaft 220, the wing structure 200 takes a posture similar to that of an umbrella. Therefore, it is possible to prevent damage to the wing structure 200 due to the gust by reducing the wind pressure acting on each wing 230.
한편, 돌풍이 잦아들어 날개(230)에 작용하는 풍압이 감소하게 되면, 스프링(340)에 축적된 탄성에 의하여 경사조절모듈(320)이 지지블록(313)을 중심으로 전방으로 회전하게 되고, 이때 회전축(220)이 밀대(350)에 의해 당겨져 전방으로 이동하며, 이러한 회전축(220)의 이동에 의하여 날개(230)가 다시 펼쳐지게 된다.On the other hand, when the wind pressure is reduced and the wind pressure acting on the wing 230 is reduced, the inclination adjustment module 320 is rotated forward around the support block 313 by the elasticity accumulated in the spring 340, At this time, the rotary shaft 220 is pulled by the pusher 350 to move forward, the wings 230 are unfolded by the movement of the rotary shaft 220.
이처럼 본 발명에 따른 사축형 윈드 터빈은 바람의 세기에 따라 날개구조체(200)가 접혀지거나 펼쳐지면서 바람의 세기에 효과적으로 대응할 수 있으며, 지속적으로 풍력 에너지를 기계적 에너지로 전환할 수 있는 이점이 있다.As described above, the bent axis wind turbine according to the present invention can effectively respond to the strength of the wind while the wing structure 200 is folded or unfolded according to the strength of the wind, and has the advantage of continuously converting the wind energy into mechanical energy.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

Claims (6)

  1. 고정구조물(100)과, 상기 고정구조물(100)에 설치되며 풍력에너지를 기계적 에너지로 전환시키기 위한 다수개의 날개(230)를 갖는 날개구조체(200)를 포함하는 윈드 터빈에 있어서,In the wind turbine comprising a fixed structure 100 and the wing structure 200 is installed on the fixed structure 100 and having a plurality of wings 230 for converting the wind energy into mechanical energy,
    상기 날개구조체(200)의 각 날개(230)는 고정구조물(100)의 수직 상방으로 연장된 제1 위치(Po1)와, 고정구조물(100)의 후방으로 소정 각도 기울어진 채 연장되는 제2 위치(Po2)를 순환하며 회전하는 것을 특징으로 하는 사축형 윈드 터빈.Each wing 230 of the wing structure 200 has a first position Po1 extending upwardly above the fixed structure 100 and a second position extending at an angle inclined to the rear of the fixed structure 100. Slope type wind turbine, characterized in that for rotating the (Po2).
  2. 청구항 1에 있어서, 상기 날개구조체(200)는,The method according to claim 1, The wing structure 200,
    원통형의 구조로 이루어지며, 외면에 다수개의 날개(230)가 힌지 결합되어 날개(230)와 함께 회전하는 회전모듈(210);It is made of a cylindrical structure, the plurality of wings 230 is hinged to the outer surface is rotated module 210 to rotate with the wings 230;
    상기 회전모듈(210)의 중심을 관통한 채로 회전모듈(210)의 중심축(S)과 평행한 방향으로 이동가능하게 설치되며, 연결링크(240)를 매개로 각각의 날개(230)와 연결된 회전축(220); 및It is installed to be movable in a direction parallel to the central axis (S) of the rotary module 210 while penetrating the center of the rotary module 210, it is connected to each wing 230 via a connecting link 240 Rotating shaft 220; And
    상기 회전모듈(210)에 일단이 힌지결합되며, 연결링크(240)를 매개로 회전축(220)과 연결되어 회전축(220)의 이동에 의하여 힌지점(P1)을 중심으로 회전하면서 우산과 같이 접혀지거나 펼쳐지는 다수개의 날개(230)로 구성된 것을 특징으로 하는 사축형 윈드 터빈.One end is hinged to the rotating module 210, is connected to the rotary shaft 220 via the link link 240 is rotated around the hinge point (P1) by the movement of the rotary shaft 220 is folded like an umbrella Slope-type wind turbine, characterized in that consisting of a plurality of wings 230 to be built or spread.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 날개(230)에 작용하는 바람의 세기에 따라 날개구조체(200)와 연동하여 회전축(220)을 밀거나 당김으로써 다수개의 날개(230)가 접혀지거나 펼쳐지도록 하는 밀대(350)를 구비하고, 상기 회전모듈(210)을 회전가능하게 지지하며, 상기 고정구조물(100)에 회전 가능한 구조로 설치되어 날개구조체(200)에 작용하는 바람의 방향에 따라 날개구조체(200)의 방향 전환이 이루어지도록 하는 지지구조물(300)을 더 포함하는 것을 특징으로 하는 사축형 윈드 터빈.In accordance with the strength of the wind acting on the wing 230 is provided with a push rod 350 to fold or unfold a plurality of wings 230 by pushing or pulling the rotary shaft 220 in conjunction with the wing structure 200, The rotatable module 210 is rotatably supported and installed in the fixed structure 100 to be rotatable so that the direction of the wing structure 200 is changed according to the direction of the wind acting on the wing structure 200. A four-axis wind turbine further comprises a support structure (300).
  4. 청구항 3에 있어서, 상기 지지구조물(300)은,The method of claim 3, wherein the support structure 300,
    상기 고정구조물(100)의 상단부에 회전 가능한 구조로 결합되며, 중앙부에 상방향으로 돌출된 지지블록(313)이 구비된 방향전환모듈(310);A redirection module 310 coupled to the upper end of the fixed structure 100 and having a support block 313 protruding upward in a central portion thereof;
    상기 지지블록(313)에 중앙부가 회전 가능한 구조로 결합된 경사조절모듈(320);A tilt control module 320 coupled to the support block 313 in a central rotatable structure;
    상기 회전모듈(210)을 회전 가능하게 지지하도록 상기 경사조절모듈(320)에 설치된 회전지지모듈(330);A rotation support module 330 installed on the inclination control module 320 to rotatably support the rotation module 210;
    상기 지지블록(313)의 후방 위치에서 방향전환모듈(310)과 경사조절모듈(320)의 사이에 위치하도록 설치되어 경사조절모듈(320)을 탄력적으로 지지하는 스프링(340); 및A spring 340 installed to be positioned between the direction change module 310 and the tilt control module 320 at a rear position of the support block 313 to elastically support the tilt control module 320; And
    상기 방향전환모듈(310)에 하단부가 회전 가능한 구조로 결합되고, 상단부가 회전축(220)에 결합된 밀대(350)로 구성된 것을 특징으로 하는 사축형 윈드 터빈.A four-axis wind turbine, characterized in that consisting of a push rod 350 is coupled to the direction change module 310, the lower end is rotatable, the upper end is coupled to the rotating shaft 220.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 각각의 날개(230)는 다수개의 날개분할체(231)로 구성된 것을 특징으로 하는 사축형 윈드 터빈.Each of the wings 230 is a four-axis wind turbine, characterized in that consisting of a plurality of blade split body (231).
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 다수개의 날개분할체(231)를 관통하여 날개분할체(231)를 지지하는 날개축(232)의 중심(C2)은 날개분할체(231)의 중심(C1)으로부터 이격된 위치에 형성되어 날개축(232)은 날개분할체(231)에 대해 편심된 구조를 갖는 것을 특징으로 하는 사축형 윈드 터빈.The center C2 of the wing shaft 232 penetrating the plurality of wing splitters 231 to support the wing splitter 231 is formed at a position spaced apart from the center C1 of the wing splitter 231. The wing shaft 232 is a four-axis wind turbine, characterized in that having a structure eccentric with respect to the blade split body (231).
PCT/KR2012/010414 2012-11-12 2012-12-04 Wind turbine with slant shaft WO2014073738A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120127111A KR101268466B1 (en) 2012-11-12 2012-11-12 Slanted windmill
KR10-2012-0127111 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073738A1 true WO2014073738A1 (en) 2014-05-15

Family

ID=48865941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010414 WO2014073738A1 (en) 2012-11-12 2012-12-04 Wind turbine with slant shaft

Country Status (2)

Country Link
KR (1) KR101268466B1 (en)
WO (1) WO2014073738A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045144A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. Toll like receptor modulator compounds
WO2018045150A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. 4,6-diamino-pyrido[3,2-d]pyrimidine derivaties as toll like receptor modulators
WO2018144390A1 (en) 2017-01-31 2018-08-09 Gilead Sciences, Inc. Crystalline forms of tenofovir alafenamide
WO2018195321A1 (en) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019165374A1 (en) 2018-02-26 2019-08-29 Gilead Sciences, Inc. Substituted pyrrolizine compounds as hbv replication inhibitors
WO2019193543A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides
WO2019193542A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides
WO2019195181A1 (en) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis b virus protein x
WO2019193533A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'2'-cyclic dinucleotides
WO2019200247A1 (en) 2018-04-12 2019-10-17 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2019204609A1 (en) 2018-04-19 2019-10-24 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
WO2020014643A1 (en) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
WO2020086556A1 (en) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020092621A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
WO2020092528A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity
WO2020178769A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides and prodrugs thereof
WO2020178770A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides and prodrugs thereof
WO2020178768A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020214663A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020214652A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020237025A1 (en) 2019-05-23 2020-11-26 Gilead Sciences, Inc. Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors
WO2020263830A1 (en) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
WO2021011891A1 (en) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Long-acting formulations of tenofovir alafenamide
WO2021034804A1 (en) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
US10966999B2 (en) 2017-12-20 2021-04-06 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2021067181A1 (en) 2019-09-30 2021-04-08 Gilead Sciences, Inc. Hbv vaccines and methods treating hbv
WO2021113765A1 (en) 2019-12-06 2021-06-10 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2022031894A1 (en) 2020-08-07 2022-02-10 Gilead Sciences, Inc. Prodrugs of phosphonamide nucleotide analogues and their pharmaceutical use
WO2022087149A2 (en) 2020-10-22 2022-04-28 Gilead Sciences, Inc. Interleukin-2-fc fusion proteins and methods of use
WO2022241134A1 (en) 2021-05-13 2022-11-17 Gilead Sciences, Inc. COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271684A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064156A1 (en) * 2003-12-22 2005-07-14 Airbus Wind turbine comprising segmented blades
KR20110063475A (en) * 2008-08-22 2011-06-10 내츄럴 파워 컨셉 인코포레이티드 Folding blade turbine
KR101059442B1 (en) * 2009-02-12 2011-08-25 주식회사 필엔지 Wind power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064156A1 (en) * 2003-12-22 2005-07-14 Airbus Wind turbine comprising segmented blades
KR20110063475A (en) * 2008-08-22 2011-06-10 내츄럴 파워 컨셉 인코포레이티드 Folding blade turbine
KR101059442B1 (en) * 2009-02-12 2011-08-25 주식회사 필엔지 Wind power generator

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045150A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. 4,6-diamino-pyrido[3,2-d]pyrimidine derivaties as toll like receptor modulators
WO2018045144A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. Toll like receptor modulator compounds
WO2018144390A1 (en) 2017-01-31 2018-08-09 Gilead Sciences, Inc. Crystalline forms of tenofovir alafenamide
WO2018195321A1 (en) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
EP4026835A2 (en) 2017-04-20 2022-07-13 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
US10966999B2 (en) 2017-12-20 2021-04-06 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
EP4227302A1 (en) 2018-02-13 2023-08-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019165374A1 (en) 2018-02-26 2019-08-29 Gilead Sciences, Inc. Substituted pyrrolizine compounds as hbv replication inhibitors
WO2019195181A1 (en) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis b virus protein x
US11149052B2 (en) 2018-04-06 2021-10-19 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′-cyclic dinucleotides
WO2019193533A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'2'-cyclic dinucleotides
US11292812B2 (en) 2018-04-06 2022-04-05 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotides
WO2019193542A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides
WO2019193543A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides
WO2019200247A1 (en) 2018-04-12 2019-10-17 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2019204609A1 (en) 2018-04-19 2019-10-24 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
WO2020014643A1 (en) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
EP4234030A2 (en) 2018-07-13 2023-08-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
WO2020086556A1 (en) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020092528A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity
WO2020092621A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
US11766447B2 (en) 2019-03-07 2023-09-26 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020178768A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020178770A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides and prodrugs thereof
WO2020178769A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides and prodrugs thereof
WO2020214652A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020214663A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020237025A1 (en) 2019-05-23 2020-11-26 Gilead Sciences, Inc. Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors
WO2020263830A1 (en) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
WO2021011891A1 (en) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Long-acting formulations of tenofovir alafenamide
WO2021034804A1 (en) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
WO2021067181A1 (en) 2019-09-30 2021-04-08 Gilead Sciences, Inc. Hbv vaccines and methods treating hbv
WO2021113765A1 (en) 2019-12-06 2021-06-10 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
WO2022031894A1 (en) 2020-08-07 2022-02-10 Gilead Sciences, Inc. Prodrugs of phosphonamide nucleotide analogues and their pharmaceutical use
WO2022087149A2 (en) 2020-10-22 2022-04-28 Gilead Sciences, Inc. Interleukin-2-fc fusion proteins and methods of use
WO2022241134A1 (en) 2021-05-13 2022-11-17 Gilead Sciences, Inc. COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271684A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds

Also Published As

Publication number Publication date
KR101268466B1 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
WO2014073738A1 (en) Wind turbine with slant shaft
US6857846B2 (en) Stackable vertical axis windmill
US8464990B2 (en) Pole mounted rotation platform and wind power generator
WO2011081401A2 (en) Wind turbine
WO2010131891A2 (en) Vertical wind power generator
ITMI20090415U1 (en) PHOTOVOLTAIC ENERGY GENERATION EQUIPMENT FOLLOWING THE SUN AUTOMATICALLY.
KR100779036B1 (en) Solar thermal electric power generation system
ITPR20080047A1 (en) SOLAR AND / OR WINDING TRACKER SYSTEM.
WO2014081219A1 (en) Tilt-type rotor blade apparatus for vertical type wind power generation
WO2012060570A2 (en) Vertical-axis wind turbine of a type with wind-direction-adjustable blades, and a swing-motion device for the same
US20150233354A1 (en) Split collar mountable wind turbine
CN110552844A (en) Power generation device
WO2010134690A2 (en) Rotating assembly for vertical-axis wind turbine
WO2022169118A1 (en) Solar light and wind power hybrid power generation system
WO2014051277A1 (en) Small-scale wind turbine having variable horizontal wings and method for controlling output thereof
WO2014193085A1 (en) Blade angle control apparatus of wind power generator and wind power generator having same
CN102062043B (en) Rotary vane synchronized double-wheel wind power generation technology
AU2008222708B2 (en) Hubless windmill
WO2010062018A1 (en) Vertical axis turbine
KR101049452B1 (en) Wind power system
WO2012138129A2 (en) Vertical wind-power generating apparatus having movable blades
WO2011030977A1 (en) Eccentric dual rotor assembly for wind power generation
KR20120105645A (en) Wind power generator with folding blades
WO2013069854A1 (en) Fluid power generation system
WO2021060705A1 (en) Wind power generation device for streetlamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887919

Country of ref document: EP

Kind code of ref document: A1