WO2014073721A1 - Cold storage module, reefer container provided with plurality of cold storage modules and reefer container vehicle - Google Patents

Cold storage module, reefer container provided with plurality of cold storage modules and reefer container vehicle Download PDF

Info

Publication number
WO2014073721A1
WO2014073721A1 PCT/KR2012/009442 KR2012009442W WO2014073721A1 WO 2014073721 A1 WO2014073721 A1 WO 2014073721A1 KR 2012009442 W KR2012009442 W KR 2012009442W WO 2014073721 A1 WO2014073721 A1 WO 2014073721A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
housing
storage module
heat exchange
cold
Prior art date
Application number
PCT/KR2012/009442
Other languages
French (fr)
Korean (ko)
Inventor
김정열
백종현
박승상
김명준
이수양
정동열
박동호
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to PCT/KR2012/009442 priority Critical patent/WO2014073721A1/en
Priority to KR1020127033125A priority patent/KR20140072764A/en
Publication of WO2014073721A1 publication Critical patent/WO2014073721A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/005Devices using other cold materials; Devices using cold-storage bodies combined with heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00014Combined heating, ventilating, or cooling devices for load cargos on load transporting vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/005Regenerative cooling means, e.g. cold accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/20Refrigerated goods vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/122Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a cold storage module, a refrigeration container equipped with a plurality of cold storage modules, and a refrigeration container vehicle having improved heat conduction characteristics and application expandability in a cold storage system using a latent heat storage coolant as a phase change material.
  • the refrigerator includes an evaporator, a compressor, a condenser, and the like.
  • An evaporator is a type of heat exchanger that absorbs heat from an ambient space or an object to be cooled by evaporating an expanded low temperature low pressure refrigerant passing through an expansion valve.
  • the compressor converts the low pressure refrigerant into a high pressure and delivers it to the condenser, and the condenser cools the refrigerant compressed to high temperature and high pressure by the compressor to liquefy condensation and delivers it back to the evaporator.
  • a refrigerated container vehicle for storing and transporting loads in a fresh state or a public transportation means for transporting passengers is equipped with a freezer of the structure described above.
  • the overall weight of the vehicle is increased and a part of the engine power generated when the vehicle is driven must be used as a power source of the refrigerator, which causes a decrease in vehicle driving performance.
  • a dedicated power source for driving the refrigerator can be installed separately, but the vehicle price increases and the vehicle weight increases further. Therefore, it increases fuel consumption while driving the vehicle and acts as a cause of excessive harmful gas emission. Excessive emissions of harmful gases are expanding to air pollution.
  • an efficient distributed storage method of electric power has been developed for solving the problems caused by installing and driving the refrigerator directly in a vehicle and additionally for the efficient use of surplus power such as midnight electric power.
  • the refrigeration system can be divided into two purposes.
  • the first is to use the night-time electricity, a kind of rationalization of energy use, to power the operation time of the heat source device (mainly the freezer) that is driven to generate cold heat in the refrigeration field. It is aimed at stabilizing national power demand by operating at low time and storing and refrigerating, and at time of high electric power demand, by using cold stored heat source to maintain cooling, refrigeration and freezing.
  • the second purpose is to supply the cooling heat source with uniform temperature to the system requiring cooling, refrigeration and freezing to maintain high quality in the process of processing, storing or transporting the product compared to the existing system, or to uniform the heating part in various systems.
  • Another purpose is to improve the performance or economy of the overall system by means of one cooling.
  • the cold storage technology has a wide range of applications such as aerospace, advanced weapon control, telecommunications, biomedical industry, and special clothing.
  • the core of the cold storage technology is PCM (Phase CHANGE MATERIAL), which changes phase at a certain temperature range, and can store the amount of latent heat as much as the phase change enthalpy accompanying the phase change process.
  • the latent heat material is also referred to as latent heat storage coolant.
  • the latent heat storage coolant is a material which accumulates cold heat in advance and then cools it when necessary.
  • the latent heat storage coolant is manufactured by using an inorganic material such as an inorganic salt or an inorganic hydrate salt and an organic material such as paraffin, polyethylene or alcohol.
  • the inorganic material has a large thermal conductivity and a latent heat quantity and a small volume change compared to the organic material, and thus, an INORGANIC SALT mixture is mainly used as a latent heat storage material.
  • a container filled with latent heat storage coolant is often made of a metallic material in consideration of manufacturing cost and heat transfer efficiency.
  • a container is manufactured by processing methods, such as hollow fiber extrusion molding or injection molding, using the polyethylene system (low density polyethylene, linear low density polyethylene, high density polyethylene) excellent in low temperature characteristics.
  • polyethylene system low density polyethylene, linear low density polyethylene, high density polyethylene
  • the container of the polymer material is easier to manufacture in various forms than the metal container, but the characteristics of the storage and release of thermal energy is not good, and mechanical properties are somewhat weak compared to the metal material.
  • Still another object of the present invention is to provide a cold storage module, a freezing container equipped with a plurality of cold storage modules, and a freezing container vehicle, which provide optimal efficiency for accumulating and cooling cold heat while minimizing structural deformation of the container.
  • a feature of the cold storage module according to the present invention for achieving the above object is a housing having a latent heat storage coolant (PCM) therein, and is disposed through the housing, the low temperature inside to cool the latent heat storage coolant And a mesh metal (MESH METAL) for distributing cold heat energy to the latent heat storage coolant in the housing.
  • PCM latent heat storage coolant
  • METAL mesh metal
  • the housing may be made of carbon fiber or graphite fiber or glass fiber material, and more preferably any one of the carbon fiber, the graphite fiber and the glass fiber is cyclic butylene It may be a composite material combined with terephthalate (CBT).
  • CBT terephthalate
  • the mesh metal may be any one of metal materials including copper and stainless steel.
  • At least one end of the mesh metal may be formed in direct contact with the heat exchange pipe.
  • the mesh metal may be distributed throughout the housing.
  • the heat exchange pipe may include a connection member for fastening with another pipe at an inlet through which the refrigerant flows in and an outlet through which the refrigerant flows out.
  • the heat exchange pipe may be any one of metal materials including copper and aluminum.
  • the housing may have a mounting portion in which an upper surface opposite to a lower surface extends outward, and the mounting portion may include at least one fastening hole for mounting the storage module in a target area.
  • the housing may have a length that corresponds to a direction in which the heat exchange pipe penetrates, which is relatively longer than the width direction.
  • air or an inert gas may be injected into a free space other than a space in which the latent heat storage coolant is filled in the housing.
  • the internal pressure of the housing may be a negative pressure.
  • the latent heat storage coolant may be made of any one of an inorganic composition, an organic composition, and a mixed composition of an inorganic substance and an organic substance.
  • the housing may be formed in the outer wall of the periodic curved structure.
  • a feature of the refrigeration container equipped with a plurality of cold storage modules according to the present invention for achieving the above object is that the plurality of cold storage modules are arranged on the upper side.
  • the arranged plurality of cold storage modules includes first to N cold storage modules, and the heat exchange pipe is connected between neighboring cold storage modules among the first to N cold storage modules, so that the first cold storage module to the Nth cold storage module A heat exchange pipeline through which the refrigerant flows may be formed.
  • the refrigerant inlet is formed on the side of the refrigeration container to allow the refrigerant to flow from the outside and the refrigerant outlet is formed to flow out the refrigerant to the outside
  • the inlet of the heat exchange pipe provided in the first storage module is connected to the refrigerant inlet Is connected
  • the outlet of the heat exchange pipe provided in the N-th storage module may be connected to the refrigerant outlet.
  • the coolant inlet and the coolant outlet may be provided for connection to a refrigerator provided outside the freezing container.
  • the heat exchange pipeline may include a heat exchange pipe provided in each of the first to N storage modules, and may further include a U-shaped tube connecting some of the storage modules to the first to N storage modules.
  • a feature of the refrigeration container vehicle according to the present invention for achieving the above object is that the refrigeration container equipped with a plurality of storage modules.
  • the present invention it is possible to maximize the heat energy transfer characteristics using a mesh metal. Accordingly, the cold heat is rapidly transferred to the latent heat storage coolant to be filled, and the cold heat can be evenly transmitted to the entire latent heat storage coolant.
  • the present invention it is possible to shorten the accumulation time of the cold heat due to the even cold heat transfer characteristics for the entire latent heat storage refrigerant. That is, the provision of the mesh metal shortens the time for the latent heat storage coolant to reach the freezing temperature. This shortens the refrigerating cycle or the freezing cycle, which is advantageous for maintaining the freshness of the load.
  • the housing filled with the latent heat storage coolant is made of a composite material (composite of fiber and CBT) having a certain degree of rigidity
  • the inside of the housing is made to have a negative pressure (-P), thereby
  • -P negative pressure
  • FIG. 1 is a perspective view showing a unit structure of a cold storage module according to an embodiment of the present invention.
  • Figure 2 is a front view of the cold storage module according to an embodiment of the present invention.
  • Figure 3 is a longitudinal sectional view of the cold storage module according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a cold storage module according to an embodiment of the present invention.
  • FIG. 5 is a side cross-sectional view of a cold storage module according to another embodiment of the present invention.
  • Figure 6 is a perspective view of a hemispherical storage cooling module according to another embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a phenomenon according to the phase change of the latent heat storage coolant in the heat storage module.
  • FIG. 8 is a diagram for explaining a phenomenon according to the phase change of the latent heat storage coolant in the heat storage module according to the present invention.
  • FIG. 9 is a cross-sectional view of a refrigeration container equipped with a plurality of cold storage modules according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a refrigeration container equipped with a plurality of cold storage modules according to another embodiment of the present invention.
  • FIG. 11 is a diagram showing a structure in which a plurality of cold storage modules are mounted on a refrigeration container vehicle according to an embodiment of the present invention.
  • the cold storage module is mounted in the freezing container and the vehicle in which the freezing container is mounted are described as an example.
  • the present invention can be applied to a wide range of refrigerated freezers, refrigerators, refrigeration vehicles, freezing containers, mobile refrigeration containers and the like.
  • FIG. 1 is a perspective view showing a unit structure of a cold storage module according to an embodiment of the present invention
  • Figure 2 is a front view of the cold storage module according to an embodiment of the present invention.
  • the heat storage module 100 includes a housing 10 including a latent heat storage material (PCM) 20 therein, and a heat exchange pipe disposed through the housing 10. 30).
  • PCM latent heat storage material
  • the housing 10 corresponds to a sealed container in which the latent heat storage coolant 20 is filled, and may be made of a thermal carbon fiber or graphite fiber material.
  • the housing 10 may be a composite material in which any one of carbon fiber, graphite fiber, and glass fiber is combined with cyclic butylene terephthalate (CBT: CYCLIC BUTYLENE TEREPHTHALATE).
  • the housing 10 may be a composite material in which any one of carbon fiber, graphite fiber, and glass fiber is combined with a nylon material.
  • the housing 10 is manufactured from the composite material which synthesize
  • CBT cyclic butylene terephthalate
  • a cyclic butylene terephthalate (CBT) is synthesized in a fibrous system, and a material of a matrix (MATRIX) structure having some stiffness and softness is used for manufacturing the housing 10.
  • the outer wall thickness of the housing 10 may be thinly formed.
  • the housing 10 may be manufactured to a thickness of 0.5 ⁇ 1.0mm.
  • the housing 10 is illustrated as having a rectangular shape, in particular, a rectangular structure, but is not limited thereto.
  • FIG. 5 is a cross-sectional view of one side of a cold storage module according to another embodiment of the present invention, the same as the configuration shown in Figs. 2 and 3, but the shape of the outer wall is modified to a structure for increasing the heat dissipation effect.
  • the housing 10 may be formed in a periodic curved structure such that its outer wall is wavy.
  • the heat dissipation area is maximized compared to the outer wall of the flat plate.
  • the housing 10 has a mounting portion 11 in which an upper surface opposite to the lower surface extends outward.
  • the mounting portion 11 includes at least one fastening hole 12 that allows the cold storage module 100 to be mounted in the target region.
  • the target region corresponds to the upper surface of the inside of the refrigerated container, as shown in Figures 9 to 11, may be screwed through the fastening hole (12).
  • the heat exchange pipe 30 passes through two opposite sides of the housing 10.
  • the heat exchange pipe 30 passes through the center of two opposite sides of the housing 10 so that the transfer of cold heat is evenly distributed within the housing 10.
  • the heat exchange pipe 30 penetrates in the longitudinal direction having a relatively long length. That is, the heat exchange pipe 30 penetrates two side surfaces forming the width direction of the housing 10.
  • the housing 10 may have a circular upper planar portion and a hemispherical container filled with latent heat storage coolant under the upper planar portion.
  • 6 is a perspective view of a hemispherical storage module according to another embodiment of the present invention.
  • the implementation of the container filled with the latent heat storage coolant in a hemispherical shape takes into account that the circular structure has the highest heat dissipation area as compared to any structure including a rectangular structure.
  • a latent heat storage coolant 20 which is a material that accumulates cold heat from a refrigerant that is a fluid in the heat exchange pipe 30, and then cools, is filled.
  • the heat exchange pipe 30 may be any one of metal materials including copper and aluminum having high thermal conductivity.
  • a portion of the heat exchange pipe 30 exposed to the outside of the housing 10 may be coated with a material for thermal insulation.
  • the latent heat storage coolant 20 has a freezing temperature of -26 to -29 ° C or lower, and after cooling to a temperature lower than the freezing temperature to accumulate cold heat, cooling is performed at a time when the cooling capacity is lowered and the ambient temperature becomes higher than the freezing temperature. .
  • the latent heat storage coolant 20 is filled not to fill 100% of the internal space of the housing 10. That is, the housing 10 is provided with a free space except the space filled with the latent heat storage coolant (20).
  • the free space may serve as a thermal insulation. That is, when the cold storage module 100 is mounted through the fastening hole 12 provided in the mounting portion 11, the upper surface of the housing 10 is attached to the target area. Therefore, the upper surface of the housing 10 is more affected by heat introduced from the outside than the lower surface or the side surface. Thus, an additional thermal insulation structure is required on the upper surface of the housing 10, and the free space in the housing 10 satisfies such additional thermal insulation structure.
  • the latent heat storage coolant 20 may be made of an inorganic material such as an inorganic salt or an inorganic hydrate salt, an organic material such as paraffin, polyethylene or alcohol, or a mixed composition of an inorganic material and an organic material. However, it is not limited to these.
  • water and urea or other additional additives are used to form an EUTECTIC POINT or CRYOHYDRIC POINT which is a freezing temperature.
  • Urea (UREA) which is used in the mixed composition of inorganic and organic substances, is a very large water-soluble substance, and when dissolved in water, a large amount is dissolved together with an exothermic reaction. Therefore, in the present invention, the latent heat storage coolant 20 in which urea is dissolved in water is basically used in the housing 10. Here, it is preferable that water is distilled water.
  • the latent heat storage coolant 20 to which one substance consisting of additives A X B Y is further added to the composition in which urea is dissolved in water may be filled and used in the housing 10.
  • A corresponds to the metal elements of lithium, sodium, magnesium, potassium, calcium, barium
  • B corresponds to Cl, CO 3 , NO 3 , SO 4 , OH, COOH, X and Y is 1 or 2 to be.
  • Additives A X B Y dissolve in water to give an ionization state of cation and anion state, and have the effect of lowering the freezing point of the solution to which they are added.
  • a composition in which urea is dissolved in water may be used as the latent heat storage material 20 according to the use of the cold storage module 100.
  • a X B Y axis latent naengjae 20 in addition to the above-described element is dissolved in water in applications where a lower phase change temperature required in the present invention compositions.
  • the interior of the housing 10 filled with the latent heat storage coolant 20 is preferably a negative pressure (-P). This is to prevent the expansion phenomenon in the lower surface or the side by the volume change during cooling of the latent heat storage coolant 20 as the material of the housing 10 is made of a composite material having a certain degree of rigidity and ductility.
  • the internal pressure of the housing 10 is formed by applying a negative pressure (-P) to the free space except for the space where the latent heat storage coolant 20 is filled in the housing 10.
  • the filling amount of the latent heat storage coolant 20 is determined as a ratio of minimizing the deformation of the housing 10 according to the volume increase rate during cooling of the latent heat storage coolant 20 so that a free space is provided in the housing 10. .
  • the latent heat storage coolant 20 fills up to 90 to 95% of the internal volume of the housing 10.
  • the heat exchange pipe 30 is a tube through which a low-temperature refrigerant flows to cool the latent heat storage coolant 20 filled in the housing 10, and penetrates the housing 10.
  • a leakage preventing member 31 is provided to prevent leakage of the latent heat storage coolant 20 inside the housing 10.
  • the leakage preventing member 31 is provided at a portion at which the side surface of the heat exchange pipe 30 and the housing 10 are coupled.
  • the heat exchange pipe 30 is provided with an inlet 34 through which a refrigerant flows in and an outlet 35 through which the refrigerant flows out, and a connection member for fastening with another pipe at the inlet 34 and the outlet 35. 32 and 33 are provided, respectively.
  • the connecting members 32 and 33 are required to connect two heat exchange pipes to form the heat exchange pipeline 300 described later.
  • the heat exchange pipeline 300 may be formed by fastening regardless of the directions of the inlet 34 and the outlet 35 provided in the cold storage module 100. This is because the structure of the cold storage module 100 as shown in Figures 1 to 4 is a symmetrical structure.
  • FIG 3 is a longitudinal cross-sectional view of a cold storage module according to an embodiment of the present invention
  • Figure 4 is a perspective view of a cold storage module according to an embodiment of the present invention.
  • the cold storage module 100 of the present invention is provided with a mesh metal (MESH METAL) 40 in the housing 10.
  • METAL mesh metal
  • the mesh metal 40 evenly distributes the cold heat energy to the latent heat storage coolant 20 inside the housing 10.
  • the mesh metal 40 is a medium for uniformly transferring heat energy of the refrigerant flowing in the heat exchange pipe 30 to the latent heat storage coolant 20, and is formed of a metal material having a mesh shape in consideration of the total weight of the heat storage cooling module 100. do.
  • the mesh metal 40 is formed to be in direct contact with at least one end of the heat exchange pipe 30, and is generally distributed inside the housing 10.
  • Mesh metal 40 is made of a metal material.
  • the mesh metal 40 is made of copper or stainless steel having high thermal conductivity.
  • FIG. 7 is a diagram for explaining a phenomenon caused by the phase change of the latent heat storage material in the cold storage module.
  • a low-temperature refrigerant flows through the heat exchange pipe 30.
  • the latent heat storage coolant 20 is first cooled in the periphery.
  • the freezing film A has a heat insulating effect to block heat radiation through the heat exchange pipe 30. Therefore, it becomes a factor which hinders the transmission of cold heat in the housing 10 as a whole.
  • the mesh metal 40 of the present invention is a latent heat storage coolant 20 around the heat exchange pipe 30 Even if the phase change phenomenon of the latent heat storage coolant 20 is transmitted evenly throughout the heat.
  • the frost film A is formed not only in the circumference of the heat exchange pipe 30 but also in the mesh metal 40 to transmit the cold heat so that the latent heat storage coolant is completely frozen in the heat storage module 100.
  • Figure 10 is a cross-sectional view of a refrigerated container equipped with a plurality of cold storage modules according to another embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a structure in which a plurality of refrigeration modules are mounted in a refrigeration container vehicle according to an embodiment of the present invention, and illustrates a vehicle equipped with the refrigeration container shown in FIG. 9.
  • FIGS. 9 and 10 illustrate an example in which a plurality of unit storage modules 100 are arranged on the upper side of the refrigeration container 200.
  • the plurality of cold storage modules 100 are arranged in A column B rows.
  • a plurality of cold storage modules arranged above the freezing container 200, that is, the ceiling will be described as including first to N cold storage modules.
  • the heat dissipation effect can be enhanced than in the case of being disposed on the side or the bottom.
  • FIG. 9 illustrates an example in which eight unit storage modules 100 are arranged in four rows and two rows based on the location of the refrigerator 500.
  • FIG. 10 illustrates eight unit storage modules 100 based on the location of the refrigerator 500. Referring to FIG. This is an example of two rows and four rows.
  • the arrangement structure or the number of mounting of the storage module 100 may be determined according to the ceiling area of the freezing container 200, it is not limited to a specific arrangement structure.
  • one heat exchange pipeline 300 through which a refrigerant flows is formed.
  • the heat exchange pipeline 300 is formed by connecting a heat exchange pipe between neighboring storage modules of the first to N storage modules.
  • the heat exchange pipeline 300 includes heat exchange pipes respectively provided in the first to N storage modules, and further includes a U-shaped tube 310 connecting some of the storage modules to the first to N storage modules.
  • the neighboring cold storage modules are fastened and connected by connecting members 32 and 33, but some cold storage modules may be fastened and connected by a U-shaped tube 310.
  • the heat exchange pipeline 300 has a curved zigzag shape by including at least one U-shaped tube 310 corresponding to the curved portion.
  • the refrigeration container 200 has a coolant inlet 210 formed at a side thereof to allow a coolant to flow from the outside, and a coolant outlet 220 formed to allow the coolant to flow outside.
  • the coolant inlet 210 and the coolant outlet 220 are provided to be connected to the freezer 500 provided outside the freezing container 200.
  • the inlet of the heat exchange pipe provided in the first storage module of the first to N storage modules is connected to the refrigerant inlet 210, the outlet of the heat exchange pipe provided in the N storage module, the last storage module is the refrigerant outlet 220 )
  • the refrigerator 500 is connected to the refrigerant inlet 210 and the refrigerant outlet 220 through a connection pipe, and thus passes through the refrigerant inlet 210, the heat exchange pipes of the first to N storage modules, and the refrigerant outlet 220.
  • the refrigerant is circulated through the heat exchange pipeline 300.
  • the refrigerator 500 is driven with surplus power such as midnight power to circulate cold heat through the heat exchange pipeline described above, thereby meeting efficient energy use.
  • the present invention it is possible to maximize the heat energy transfer characteristics using a mesh metal. Accordingly, it is possible to quickly transfer the cold heat to the latent heat storage coolant to be filled evenly to the entire latent heat storage coolant, thereby reducing the accumulation time of the cold heat. That is, the provision of the mesh metal shortens the time for the latent heat storage coolant to reach the freezing temperature. This shortens the refrigerating cycle or the freezing cycle, which is advantageous for maintaining the freshness of the load.
  • the present invention as described above can be widely applied to the case where the cold storage module is mounted on the refrigeration container and the vehicle on which the freezing container is mounted, as well as the cold storage freezer, refrigerator, freezing vehicle, freezing container, mobile refrigeration container, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transportation (AREA)
  • Geometry (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The present invention relates to: a cold storage module for improving the thermal conductive characteristics, application scalability or the like of phase change materials; a reefer container provided with a plurality of cold storage modules; and a reefer container vehicle. The cold storage module comprises: a housing including the phase change materials (PCM) therein; a heat exchange pipe arranged to penetrate the housing and through which a refrigerant of low temperature flows for cooling the phase change materials; and mesh metal distributing cold energy to the phase change materials in the housing. The reefer container is provided with a plurality of the cold storage modules on the upper portion thereof and is loaded on the reefer container vehicle.

Description

축냉모듈, 다수 축냉모듈을 장착한 냉동 컨테이너, 그리고 냉동 컨테이너 차량Refrigeration container with refrigeration module, multiple refrigeration module, and refrigeration container vehicle
본 발명은 상변화 물질인 잠열축냉재를 이용하는 축냉 시스템에서 열전도 특성과 응용 확장성 등을 향상시킨 축냉모듈, 축냉모듈을 다수 개 장착한 냉동 컨테이너, 그리고 냉동 컨테이너 차량에 관한 것이다.The present invention relates to a cold storage module, a refrigeration container equipped with a plurality of cold storage modules, and a refrigeration container vehicle having improved heat conduction characteristics and application expandability in a cold storage system using a latent heat storage coolant as a phase change material.
냉동기는 증발기, 압축기, 응축기 등을 구비한다. 증발기는 팽창밸브를 통과하면서 팽창된 저온 저압의 냉매를 증발시켜 주위 공간이나 피냉각 물체에서 열을 흡수하는 일종의 열교환기이다.The refrigerator includes an evaporator, a compressor, a condenser, and the like. An evaporator is a type of heat exchanger that absorbs heat from an ambient space or an object to be cooled by evaporating an expanded low temperature low pressure refrigerant passing through an expansion valve.
압축기는 저압의 냉매를 고압으로 변환시켜 응축기로 전달하며, 응축기는 압축기에 의해 고온 고압으로 압축된 냉매를 냉각하여 응축 액화시켜 다시 증발기로 전달한다.The compressor converts the low pressure refrigerant into a high pressure and delivers it to the condenser, and the condenser cools the refrigerant compressed to high temperature and high pressure by the compressor to liquefy condensation and delivers it back to the evaporator.
일반적으로 적재물을 신선한 상태로 보관 이송하는 냉동 컨테이너 차량이나 승객을 운송하는 대중교통 수단은 전술된 구조의 냉동기가 장착된다.Generally, a refrigerated container vehicle for storing and transporting loads in a fresh state or a public transportation means for transporting passengers is equipped with a freezer of the structure described above.
이와 같이 차량에 냉동기가 설치됨에 따라, 차량의 전체적인 중량이 증가함은 물론 차량 주행 시에는 발생되는 엔진 동력의 일부를 냉동기의 동력원으로 이용해야 하기 때문에 차량 주행 성능을 저하시키는 원인이 된다.As the refrigerator is installed in the vehicle as described above, the overall weight of the vehicle is increased and a part of the engine power generated when the vehicle is driven must be used as a power source of the refrigerator, which causes a decrease in vehicle driving performance.
차량의 수행 성능만을 감안한다면, 냉동기 구동을 위한 전용의 동력원을 별도로 설치해면 되지만 차량 가격도 증가하고 차량 중량은 더욱더 증가하게 된다. 그러므로 차량 주행 시 연비 손실을 증가시키며 과도한 유해가스 배출의 원인으로 작용한다. 과도한 유해가스 배출은 대기오염 문제까지 확대되고 있다.Considering the performance of the vehicle alone, a dedicated power source for driving the refrigerator can be installed separately, but the vehicle price increases and the vehicle weight increases further. Therefore, it increases fuel consumption while driving the vehicle and acts as a cause of excessive harmful gas emission. Excessive emissions of harmful gases are expanding to air pollution.
또한, 냉동기의 구조적 특성상 여러 부분들로 이루어짐에 따라 잦은 고장 발생 요인을 가지고 있는데, 냉동기의 고장으로 인해 신선도를 유지해야 하는 적재물이 손상되거나 쾌적한 여행을 원하는 승객에게 많은 불편을 주는 경우가 자주 발생한다. In addition, due to the structural characteristics of the freezer has a number of factors that cause frequent failures, due to the failure of the freezer often damage the load to maintain freshness or give a lot of inconvenience to passengers who want a pleasant trip .
그로 인해, 운송 손실, 물류비용의 증가, 그리고 대중교통 수단의 서비스 저하의 문제 등이 많았다.As a result, there were many problems such as transportation loss, increase of logistics cost, and deterioration of service of public transportation.
이와 같이 냉동기를 차량에 직접 설치하여 구동시킴에 따라 발생하던 문제를 해결하고 또한 부가적으로 심야 전력과 같은 잉여 전력의 효율적인 이용을 목적으로 전력의 효율적 분산 저장 방안이 개발되어 왔다.As such, an efficient distributed storage method of electric power has been developed for solving the problems caused by installing and driving the refrigerator directly in a vehicle and additionally for the efficient use of surplus power such as midnight electric power.
열매체가 되는 물질의 융해, 응고 등의 상변화에 수반하는 흡열 반응을 이용한 잠열축냉재 및 이를 이용하는 축냉모듈이나 축냉시스템의 개발도 그 중 하나이다.The development of latent heat storage coolant using endothermic reaction accompanied by phase change of melting, coagulation, etc., which is a heat medium, and the development of a cold storage module or a cooling system using the same are one of them.
축냉시스템은 그 사용목적을 크게 두 가지로 나눌 수 있는데, 첫 번째는 에너지 이용 합리화 방안의 일종인 심야전기를 이용하여 축냉 분야로 냉열 생성을 위해 구동되는 열원기기(주로 냉동기)의 운전시간을 전력수요가 낮은 시간대에 맞추어 운전하여 축냉하고, 전력수요가 많은 시간대에는 축냉된 냉열원을 사용하여 냉각, 냉장 및 냉동을 유지시킴으로써 국가적인 전력수요 수급안정을 꾀하는데 그 목적이 있다.The refrigeration system can be divided into two purposes. The first is to use the night-time electricity, a kind of rationalization of energy use, to power the operation time of the heat source device (mainly the freezer) that is driven to generate cold heat in the refrigeration field. It is aimed at stabilizing national power demand by operating at low time and storing and refrigerating, and at time of high electric power demand, by using cold stored heat source to maintain cooling, refrigeration and freezing.
두 번째 사용목적은 냉각, 냉장 및 냉동이 필요한 시스템에 균일한 온도의 냉열원을 공급하여 기존 시스템에 비하여 제품의 가공, 보관 또는 운송과정에서 고품질을 유지시키거나, 각종 시스템에 존재하는 발열부의 균일한 냉각에 의한 전체 시스템의 성능 또는 경제성 개선에 또다른 목적이 있다. The second purpose is to supply the cooling heat source with uniform temperature to the system requiring cooling, refrigeration and freezing to maintain high quality in the process of processing, storing or transporting the product compared to the existing system, or to uniform the heating part in various systems. Another purpose is to improve the performance or economy of the overall system by means of one cooling.
그 밖에도 축냉기술은 우주항공, 첨단무기제어, 전자통신, 생물의료산업, 특수의복 등 적용 범위는 상당히 광범위하다.In addition, the cold storage technology has a wide range of applications such as aerospace, advanced weapon control, telecommunications, biomedical industry, and special clothing.
축냉기술의 원천적인 핵심은 특정한 온도대에서 상변화하는 잠열재(PCM: PHASE CHANGE MATERIAL)이며, 상변화 과정에서 수반되는 상변화 엔탈피 만큼의 잠열량을 축열할 수 있다. 여기서, 잠열재는 잠열축냉재로도 명칭한다.The core of the cold storage technology is PCM (Phase CHANGE MATERIAL), which changes phase at a certain temperature range, and can store the amount of latent heat as much as the phase change enthalpy accompanying the phase change process. The latent heat material is also referred to as latent heat storage coolant.
잠열축냉재는 미리 냉열을 축적하고 있다가 필요 시에 방냉하는 물질로, 무기염이나 무기수화염 등의 무기물계와 파라핀이나 폴리에틸렌이나 알코올 등의 유기물계를 이용하여 제조된다.The latent heat storage coolant is a material which accumulates cold heat in advance and then cools it when necessary. The latent heat storage coolant is manufactured by using an inorganic material such as an inorganic salt or an inorganic hydrate salt and an organic material such as paraffin, polyethylene or alcohol.
무기물계는 유기물계에 비해 열전도율과 잠열량이 크며, 체적 변화가 작은 이점을 가지고 있어서, 잠열축냉재로는 무기염계(INORGANIC SALT) 혼합물이 주로 사용되고 있다.The inorganic material has a large thermal conductivity and a latent heat quantity and a small volume change compared to the organic material, and thus, an INORGANIC SALT mixture is mainly used as a latent heat storage material.
축냉모듈은 제조 단가나 열전달 효율을 고려하여 잠열축냉재가 충진되는 용기를 금속 소재로 제조하는 경우가 많다. In the case of the cold storage module, a container filled with latent heat storage coolant is often made of a metallic material in consideration of manufacturing cost and heat transfer efficiency.
이와 같이, 금속 소재를 이용하는 경우에는 금속 이온의 활성에 의해 잠열축냉재가 금속과 반응하여 용기가 부식하는 문제가 있다. As described above, in the case of using a metal material, there is a problem that the latent heat storage coolant reacts with the metal due to the activity of the metal ions and the container corrodes.
특히, 부식이 급속히 진행되는 경우에는 용기가 심각한 변형을 일으키거나 파손되는 경우까지 발생한다. In particular, when corrosion progresses rapidly, it may occur until the container is severely deformed or broken.
이를 개선하기 위해, 금속 용기 내에 부식을 방지물질을 코팅하는 방식을 적용하고는 있으나 제조공정이 복잡해지고 제조 단가 상승의 부담을 안게 된다. In order to improve this, a method of coating a corrosion preventing material in a metal container is applied, but the manufacturing process is complicated and the manufacturing cost increases.
잠열축냉재가 충진되는 용기를 고분자 소재로 제조하는 기술도 개발되었다. The technology for manufacturing a container filled with latent heat accumulators using a polymer material has also been developed.
즉, 저온 특성이 우수한 폴리에틸렌계(저밀도폴리에틸렌, 선형저밀도폴리에틸렌, 고밀도폴리에틸렌)를 이용하여 중공사출성형 또는 사출성형 등의 가공 방법으로 용기가 제조되고 있다. That is, a container is manufactured by processing methods, such as hollow fiber extrusion molding or injection molding, using the polyethylene system (low density polyethylene, linear low density polyethylene, high density polyethylene) excellent in low temperature characteristics.
이러한 고분자 소재의 용기는 금속 소재 용기에 비하여 다양한 형태의 제조가 용이하나 열에너지의 저장 및 방출에 있어서의 특성이 좋지 못하며, 기계적 물성이 금속 소재에 비하여 다소 취약하다는 단점이 있다.The container of the polymer material is easier to manufacture in various forms than the metal container, but the characteristics of the storage and release of thermal energy is not good, and mechanical properties are somewhat weak compared to the metal material.
결국, 잠열축냉재를 용기에 충진하는 구조의 축냉모듈은 제조 단가 및 열에너지 전달 특성 등을 고려한 최적의 용기 개발이 급선무이다. As a result, it is urgent to develop an optimal container considering the manufacturing cost and heat energy transfer characteristics of the heat storage module having the latent heat storage material filled in the container.
더나아가, 축냉모듈의 용기 내에 충진되는 잠열축냉재를 이용하여 냉열을 축적하는 과정에서 냉열을 잠열축냉재에 빠르게 전달하는 기술이나 잠열축냉재 전체에 동시적으로 전달하는 기술이 요구되고 있다.Furthermore, in the process of accumulating the cold heat by using the latent heat storage coolant filled in the container of the cold storage module, there is a demand for a technology for rapidly transferring the cold heat to the latent heat storage coolant or the technology for simultaneously transferring the entire heat storage coolant.
본 발명의 목적은 상기한 점을 감안하여 안출한 것으로, 충진되는 잠열축냉재에 냉열을 빠르게 전달하면서도 잠열축냉재 전체에 대해 고르게 냉열을 전달하여 열에너지 전달 특성을 최적화한 축냉모듈, 다수 축냉모듈을 장착한 냉동 컨테이너, 그리고 냉동 컨테이너 차량을 제공하는 데 있다.It is an object of the present invention to devise in view of the above, it is a cold storage module, a plurality of cold storage modules to optimize the heat energy transfer characteristics by transferring the cold heat evenly to the entire latent heat storage coolant while rapidly transferring the cold heat to the latent heat storage coolant is filled. To provide a refrigerated container and a refrigerated container vehicle.
본 발명의 또다른 목적은, 냉열의 축적과 방냉에 최적 효율을 제공하면서도 용기의 구조적 변형을 최소화하는 축냉모듈, 다수 축냉모듈을 장착한 냉동 컨테이너, 그리고 냉동 컨테이너 차량을 제공하는 데 있다.Still another object of the present invention is to provide a cold storage module, a freezing container equipped with a plurality of cold storage modules, and a freezing container vehicle, which provide optimal efficiency for accumulating and cooling cold heat while minimizing structural deformation of the container.
상기한 목적을 달성하기 위한 본 발명에 따른 축냉모듈의 특징은, 내부에 잠열축냉재(PCM)를 포함하는 하우징과, 상기 하우징을 관통하여 배치되며, 상기 잠열축냉재의 냉각을 위해 내부에 저온의 냉매가 흐르는 열교환 파이프와, 상기 하우징 내부에서 상기 잠열축냉재에 냉열 에너지를 분배하는 메쉬 메탈(MESH METAL)을 포함하는 것이다.A feature of the cold storage module according to the present invention for achieving the above object is a housing having a latent heat storage coolant (PCM) therein, and is disposed through the housing, the low temperature inside to cool the latent heat storage coolant And a mesh metal (MESH METAL) for distributing cold heat energy to the latent heat storage coolant in the housing.
바람직하게, 상기 하우징은 탄소 섬유계 또는 그라파이트 섬유계 또는 유리 섬유계 재질로 제조될 수 있으며, 보다 바람직하게는 상기 탄소 섬유계와 상기 그라파이트 섬유계와 상기 유리 섬유계 중 어느 하나가 싸이클릭 부틸렌 테레프탈레이트(CBT)와 결합한 복합 재질일 수 있다.Preferably, the housing may be made of carbon fiber or graphite fiber or glass fiber material, and more preferably any one of the carbon fiber, the graphite fiber and the glass fiber is cyclic butylene It may be a composite material combined with terephthalate (CBT).
바람직하게, 상기 메쉬 메탈은 구리와 스테인레스 스틸을 포함하는 금속재질 중 어느 하나일 수 있다.Preferably, the mesh metal may be any one of metal materials including copper and stainless steel.
바람직하게, 상기 메쉬 메탈의 적어도 일단이 상기 열교환 파이프에 직접 접촉되게 형성될 수 있다.Preferably, at least one end of the mesh metal may be formed in direct contact with the heat exchange pipe.
바람직하게, 상기 메쉬 메탈은 상기 하우징의 내부에 전체적으로 분포될 수 있다.Preferably, the mesh metal may be distributed throughout the housing.
바람직하게, 상기 열교환 파이프는 상기 냉매가 유입되는 유입구와 상기 냉매가 유출되는 유출구에 타 파이프와의 체결을 위한 연결부재를 각각 구비할 수 있다.Preferably, the heat exchange pipe may include a connection member for fastening with another pipe at an inlet through which the refrigerant flows in and an outlet through which the refrigerant flows out.
바람직하게, 상기 열교환 파이프는 구리와 알루미늄을 포함하는 금속재질 중 어느 하나일 수 있다.Preferably, the heat exchange pipe may be any one of metal materials including copper and aluminum.
바람직하게, 상기 하우징은 하부 면에 대향하는 상부 면이 외측으로 연장되는 장착부를 구비할 수 있으며, 상기 장착부는 상기 축냉모듈을 대상 영역에 장착 가능하도록 해주는 적어도 하나의 체결 홀을 구비할 수 있다.Preferably, the housing may have a mounting portion in which an upper surface opposite to a lower surface extends outward, and the mounting portion may include at least one fastening hole for mounting the storage module in a target area.
바람직하게, 상기 하우징은 상기 열교환 파이프가 관통하는 방향에 해당하는 길이방향이 폭방향에 비해 상대적으로 긴 길이를 가질 수 있다.Preferably, the housing may have a length that corresponds to a direction in which the heat exchange pipe penetrates, which is relatively longer than the width direction.
바람직하게, 상기 하우징의 내부에서 상기 잠열축냉재가 충진되는 공간을 제외한 여유 공간에 공기 또는 불활성기체를 주입할 수 있다.Preferably, air or an inert gas may be injected into a free space other than a space in which the latent heat storage coolant is filled in the housing.
바람직하게, 상기 하우징의 내부 압력이 마이너스 압력일 수 있다.Preferably, the internal pressure of the housing may be a negative pressure.
바람직하게, 상기 잠열축냉재는 무기물계 조성물, 유기물계 조성물, 그리고 무기물계와 유기물계의 혼합 조성물 중 어느 하나로 제조될 수 있다.Preferably, the latent heat storage coolant may be made of any one of an inorganic composition, an organic composition, and a mixed composition of an inorganic substance and an organic substance.
바람직하게, 상기 하우징은 외벽이 주기적 만곡 구조로 형성될 수 있다.Preferably, the housing may be formed in the outer wall of the periodic curved structure.
상기한 목적을 달성하기 위한 본 발명에 따른 다수 축냉모듈을 장착한 냉동 컨테이너의 특징은, 축냉모듈이 다수 개 배열되어 상부측에 장착되는 것이다.A feature of the refrigeration container equipped with a plurality of cold storage modules according to the present invention for achieving the above object is that the plurality of cold storage modules are arranged on the upper side.
바람직하게, 상기 배열된 다수 개 축냉모듈이 제1 내지 N 축냉모듈을 포함하고, 상기 제1 내지 N 축냉모듈 중 이웃하는 축냉모듈 간에 상기 열교환 파이프가 연결되어 제1 축냉모듈에서 제N 축냉모듈까지 상기 냉매가 흐르는 열교환 파이프라인이 형성될 수 있다. 여기서, 상기 냉동 컨테이너의 측부에 외부로부터 냉매가 유입되게 형성되는 냉매유입구와 외부로 냉매를 유출하게 형성되는 냉매유출구가 구비되고, 상기 제1 축냉모듈에 구비되는 열교환 파이프의 유입구가 상기 냉매유입구에 연결되고, 상기 제N 축냉모듈에 구비되는 열교환 파이프의 유출구가 상기 냉매유출구에 연결될 수 있다. 또한, 상기 냉매유입구와 상기 냉매유출구는 상기 냉동 컨테이너의 외부에 마련되는 냉동기와의 연결을 위해 구비될 수 있다.Preferably, the arranged plurality of cold storage modules includes first to N cold storage modules, and the heat exchange pipe is connected between neighboring cold storage modules among the first to N cold storage modules, so that the first cold storage module to the Nth cold storage module A heat exchange pipeline through which the refrigerant flows may be formed. Here, the refrigerant inlet is formed on the side of the refrigeration container to allow the refrigerant to flow from the outside and the refrigerant outlet is formed to flow out the refrigerant to the outside, the inlet of the heat exchange pipe provided in the first storage module is connected to the refrigerant inlet Is connected, the outlet of the heat exchange pipe provided in the N-th storage module may be connected to the refrigerant outlet. In addition, the coolant inlet and the coolant outlet may be provided for connection to a refrigerator provided outside the freezing container.
바람직하게, 상기 열교환 파이프라인은 상기 제1 내지 N 축냉모듈에 각각 구비되는 열교환 파이프를 포함하고, 상기 제1 내지 N 축냉모듈 중 일부 축냉모듈을 연결시키는 U자관을 더 포함할 수 있다.Preferably, the heat exchange pipeline may include a heat exchange pipe provided in each of the first to N storage modules, and may further include a U-shaped tube connecting some of the storage modules to the first to N storage modules.
상기한 목적을 달성하기 위한 본 발명에 따른 냉동 컨테이너 차량의 특징은, 다수 축냉모듈이 장착된 냉동 컨테이너가 탑재되는 것이다.A feature of the refrigeration container vehicle according to the present invention for achieving the above object is that the refrigeration container equipped with a plurality of storage modules.
본 발명에 따르면, 메쉬 메탈을 이용하여 열에너지 전달 특성을 최대화할 수 있다. 그에 따라 충진되는 잠열축냉재에 냉열을 빠르게 전달하면서도 잠열축냉재 전체에 대해 고르게 냉열을 전달할 수 있다. According to the present invention, it is possible to maximize the heat energy transfer characteristics using a mesh metal. Accordingly, the cold heat is rapidly transferred to the latent heat storage coolant to be filled, and the cold heat can be evenly transmitted to the entire latent heat storage coolant.
본 발명에서는 잠열축냉제 전체에 대한 고른 냉열 전달 특성으로 인해 냉열의 축적 시간을 단축시킬 수 있다. 즉, 메쉬 메탈을 구비함으로써 잠열축냉재가 결빙 온도에 이르는 시간이 짧아진다. 그로 인해 냉장 사이클 또는 냉동 사이클이 단축되어 적재물의 신선도 유지에 유리하다.In the present invention, it is possible to shorten the accumulation time of the cold heat due to the even cold heat transfer characteristics for the entire latent heat storage refrigerant. That is, the provision of the mesh metal shortens the time for the latent heat storage coolant to reach the freezing temperature. This shortens the refrigerating cycle or the freezing cycle, which is advantageous for maintaining the freshness of the load.
또한, 본 발명에서는 잠열축냉재가 충진되는 하우징이 어느 정도 강성을 가지면서도 연성을 가지는 복합 소재(섬유계와 CBT의 합성물)로 제조되면서 하우징의 내부가 마이너스 압력(-P)이 되도록 함으로써, 하우징의 구조적 변형을 최소화하여 축냉모듈의 변형이나 파손에 강할 뿐만 아니라 금속재질의 하우징이 가지는 부식의 우려도 없다는 효과가 있다.In addition, in the present invention, while the housing filled with the latent heat storage coolant is made of a composite material (composite of fiber and CBT) having a certain degree of rigidity, the inside of the housing is made to have a negative pressure (-P), thereby By minimizing the structural deformation of the structure, it is not only resistant to deformation or breakage of the cold storage module, but also has no effect of corrosion of the metal housing.
또한, 본 발명에서는 심야 전력과 같은 잉여 전력으로 구동되는 냉동기를 외부에 마련하여 연동시킬 수 있으므로, 효율적인 에너지 이용에 유리하다.In addition, in the present invention, since a refrigerator driven by surplus power such as a late-night electric power can be provided externally and interlocked, it is advantageous for efficient energy use.
도 1은 본 발명의 일 실시 예에 따른 축냉모듈의 단위 구조를 나타낸 사시도.1 is a perspective view showing a unit structure of a cold storage module according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 축냉모듈의 정면도.Figure 2 is a front view of the cold storage module according to an embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따른 축냉모듈의 종단면도.Figure 3 is a longitudinal sectional view of the cold storage module according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 축냉모듈의 투시도.4 is a perspective view of a cold storage module according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시 예에 따른 축냉모듈의 일측 단면도.5 is a side cross-sectional view of a cold storage module according to another embodiment of the present invention.
도 6은 본 발명의 다른 실시 예에 따른 반구형 축냉모듈의 사시도.Figure 6 is a perspective view of a hemispherical storage cooling module according to another embodiment of the present invention.
도 7은 축냉모듈 내에서 잠열축냉재의 상변화에 따른 현상을 설명하기 위한 다이어그램.7 is a diagram for explaining a phenomenon according to the phase change of the latent heat storage coolant in the heat storage module.
도 8은 본 발명에 따른 축냉모듈 내에서 잠열축냉재의 상변화에 따른 현상을 설명하기 위한 다이어그램.8 is a diagram for explaining a phenomenon according to the phase change of the latent heat storage coolant in the heat storage module according to the present invention.
도 9는 본 발명의 일 실시 예에 따른 다수 축냉모듈이 장착된 냉동 컨테이너의 횡단면도.9 is a cross-sectional view of a refrigeration container equipped with a plurality of cold storage modules according to an embodiment of the present invention.
도 10은 본 발명의 다른 실시 예에 따른 다수 축냉모듈이 장착된 냉동 컨테이너의 횡단면도.10 is a cross-sectional view of a refrigeration container equipped with a plurality of cold storage modules according to another embodiment of the present invention.
도 11는 본 발명의 일 실시 예에 따른 냉동 컨테이너 차량에 다수 축냉모듈이 장착된 구조를 나타낸 다이어그램.11 is a diagram showing a structure in which a plurality of cold storage modules are mounted on a refrigeration container vehicle according to an embodiment of the present invention.
본 발명의 다른 목적, 특징 및 이점들은 첨부한 도면을 참조한 실시 예들의 상세한 설명을 통해 명백해질 것이다.Other objects, features and advantages of the present invention will become apparent from the detailed description of the embodiments with reference to the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예의 구성과 그 작용을 설명하며, 도면에 도시되고 또 이것에 의해서 설명되는 본 발명의 구성과 작용은 적어도 하나의 실시 예로서 설명되는 것이며, 이것에 의해서 상기한 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지는 않는다.Hereinafter, with reference to the accompanying drawings illustrating the configuration and operation of the embodiment of the present invention, the configuration and operation of the present invention shown in the drawings and described by it will be described by at least one embodiment, By the technical spirit of the present invention described above and its core configuration and operation is not limited.
이하, 첨부한 도면을 참조하여 본 발명에 따른 축냉모듈, 다수 축냉모듈을 장착한 냉동 컨테이너, 그리고 냉동 컨테이너 차량의 바람직한 실시 예를 자세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the cold storage module, a refrigeration container equipped with a plurality of cold storage modules, and a refrigerated container vehicle according to the present invention.
본 발명의 설명에서는 축냉모듈이 냉동 컨테이너에 장착된 경우와, 그 냉동 컨테이너가 탑재된 차량을 일 예로 설명된다. 그러나, 본 발명은 축냉식 냉동고, 냉장고, 냉동 차량, 냉동 컨테이너, 이동식 냉동 컨테이너 등에 폭넓게 적용될 수 있다. In the description of the present invention, the case in which the cold storage module is mounted in the freezing container and the vehicle in which the freezing container is mounted are described as an example. However, the present invention can be applied to a wide range of refrigerated freezers, refrigerators, refrigeration vehicles, freezing containers, mobile refrigeration containers and the like.
도 1은 본 발명의 일 실시 예에 따른 축냉모듈의 단위 구조를 나타낸 사시도이고, 도 2는 본 발명의 일 실시 예에 따른 축냉모듈의 정면도이다.1 is a perspective view showing a unit structure of a cold storage module according to an embodiment of the present invention, Figure 2 is a front view of the cold storage module according to an embodiment of the present invention.
도 1 및 2를 참조하면, 축냉모듈(100)은 내부에 잠열축냉재(PCM: PHASE CHANGE MATERIAL)(20)를 포함하는 하우징(10)과, 하우징(10)을 관통하여 배치되는 열교환 파이프(30)를 포함하여 구성된다.1 and 2, the heat storage module 100 includes a housing 10 including a latent heat storage material (PCM) 20 therein, and a heat exchange pipe disposed through the housing 10. 30).
하우징(10)은 잠열축냉재(20)가 충진되는 밀폐 용기에 해당하는 것으로, 열 탄소 섬유계 또는 그라파이트 섬유계 재질로 제조될 수 있다.The housing 10 corresponds to a sealed container in which the latent heat storage coolant 20 is filled, and may be made of a thermal carbon fiber or graphite fiber material.
특히, 하우징(10)은 탄소 섬유계와 그라파이트 섬유계와 유리 섬유계 중 어느 하나가 싸이클릭 부틸렌 테레프탈레이트(CBT: CYCLIC BUTYLENE TEREPHTHALATE)와 결합한 복합 재질일 수 있다. 또는, 하우징(10)은 탄소 섬유계와 그라파이트 섬유계와 유리 섬유계 중 어느 하나가 나일론 소재와 결합한 복합 재질일 수 있다.In particular, the housing 10 may be a composite material in which any one of carbon fiber, graphite fiber, and glass fiber is combined with cyclic butylene terephthalate (CBT: CYCLIC BUTYLENE TEREPHTHALATE). Alternatively, the housing 10 may be a composite material in which any one of carbon fiber, graphite fiber, and glass fiber is combined with a nylon material.
보다 바람직하게는, 유리 섬유계에 싸이클릭 부틸렌 테레프탈레이트(CBT)를 합성한 복합 소재로 하우징(10)이 제조된다. More preferably, the housing 10 is manufactured from the composite material which synthesize | combined cyclic butylene terephthalate (CBT) in glass fiber system.
이와 같이, 섬유계에 싸이클릭 부틸렌 테레프탈레이트(CBT)를 합성하여 어느 정도 강성을 가지면서도 연성을 가지는 매트릭스(MATRIX) 구조의 재질을 하우징(10)의 제조에 사용한다. 상기한 복합 재질로 제조됨에 따라 하우징(10)의 외벽 두께를 얇게 형성할 수 있다. 일 예로, 하우징(10)은 0.5 ~ 1.0㎜의 두께로 제조될 수 있다. In this way, a cyclic butylene terephthalate (CBT) is synthesized in a fibrous system, and a material of a matrix (MATRIX) structure having some stiffness and softness is used for manufacturing the housing 10. As the composite material is manufactured, the outer wall thickness of the housing 10 may be thinly formed. For example, the housing 10 may be manufactured to a thickness of 0.5 ~ 1.0mm.
본 발명에서는 하우징(10)이 사각 형태 특히, 직사각형 구조를 갖는 것으로 예시하나, 그들만으로 한정되지는 않는다.In the present invention, the housing 10 is illustrated as having a rectangular shape, in particular, a rectangular structure, but is not limited thereto.
도 5는 본 발명의 다른 실시 예에 따른 축냉모듈의 일측 단면도로써, 도 2와 3에 도시된 구성과 동일하면서 외벽의 형상이 방열 효과를 높이기 위한 구조로 변형된 예이다. 5 is a cross-sectional view of one side of a cold storage module according to another embodiment of the present invention, the same as the configuration shown in Figs. 2 and 3, but the shape of the outer wall is modified to a structure for increasing the heat dissipation effect.
도 5에 도시된 바와 같이, 하우징(10)은 그 외벽이 물결무늬와 같이 주기적 만곡 구조로 형성될 수 있다. 하우징(10)의 외벽을 주기적 만곡 구조로 형성함으로써 평면 주고의 외벽에 비해 방열 면적을 최대화한다.As shown in FIG. 5, the housing 10 may be formed in a periodic curved structure such that its outer wall is wavy. By forming the outer wall of the housing 10 in a periodic curved structure, the heat dissipation area is maximized compared to the outer wall of the flat plate.
하우징(10)은 하부 면에 대향하는 상부 면이 외측으로 연장되는 장착부(11)를 구비한다.The housing 10 has a mounting portion 11 in which an upper surface opposite to the lower surface extends outward.
장착부(11)는 축냉모듈(100)을 대상 영역에 장착 가능하도록 해주는 적어도 하나의 체결 홀(12)을 구비한다. 여기서, 대상 영역은 도 9 내지 11에 도시된 바와 같이, 냉동 컨테이너의 내부 중 상부 면에 해당하며, 체결 홀(12)을 통해 나사 체결될 수 있다. The mounting portion 11 includes at least one fastening hole 12 that allows the cold storage module 100 to be mounted in the target region. Here, the target region corresponds to the upper surface of the inside of the refrigerated container, as shown in Figures 9 to 11, may be screwed through the fastening hole (12).
하우징(10)이 직사각형 구조임에 따라 열교환 파이프(30)는 하우징(10)의 대향하는 두 측면을 관통한다. As the housing 10 has a rectangular structure, the heat exchange pipe 30 passes through two opposite sides of the housing 10.
가장 바람직하게, 냉열의 전달이 하우징(10) 내부에서 고루 분포되도록, 열교환 파이프(30)는 하우징(10)의 대향하는 두 측면의 중앙을 관통한다. Most preferably, the heat exchange pipe 30 passes through the center of two opposite sides of the housing 10 so that the transfer of cold heat is evenly distributed within the housing 10.
특히, 열교환 파이프(30)가 상대적으로 긴 길이를 갖는 길이방향으로 관통한다. 즉, 열교환 파이프(30)는 하우징(10)의 폭방향을 이루는 두 측면을 관통한다.In particular, the heat exchange pipe 30 penetrates in the longitudinal direction having a relatively long length. That is, the heat exchange pipe 30 penetrates two side surfaces forming the width direction of the housing 10.
다른 예로써, 하우징(10)은 원형의 상부 평면부와 그 상부 평면부의 하부에 잠열축냉재가 충진되는 반구 형상의 용기를 구비하는 형태일 수도 있다. 도 6은 본 발명의 다른 실시 예에 따른 반구형 축냉모듈의 사시도이다.As another example, the housing 10 may have a circular upper planar portion and a hemispherical container filled with latent heat storage coolant under the upper planar portion. 6 is a perspective view of a hemispherical storage module according to another embodiment of the present invention.
도 6에 도시된 바와 같이, 잠열축냉재가 충진되는 용기를 반구 형상으로 구현하는 것은 원형 구조가 사각 구조를 포함하는 어떠한 구조에 비해 가장 높은 방열 면적을 갖는다는 점을 고려한 것이다. As shown in FIG. 6, the implementation of the container filled with the latent heat storage coolant in a hemispherical shape takes into account that the circular structure has the highest heat dissipation area as compared to any structure including a rectangular structure.
하우징(10)의 내부에는 열교환 파이프(30) 내의 유체인 냉매로부터 냉열을 축적하고 있다가 필요 시에 방냉하는 물질인 잠열축냉재(20)가 충진된다.Inside the housing 10, a latent heat storage coolant 20, which is a material that accumulates cold heat from a refrigerant that is a fluid in the heat exchange pipe 30, and then cools, is filled.
열교환 파이프(30)는 열전도도가 높은 구리와 알루미늄을 포함하는 금속재질 중 어느 하나일 수 있다.The heat exchange pipe 30 may be any one of metal materials including copper and aluminum having high thermal conductivity.
열교환 파이프(30) 중에서 하우징(10)의 외부에 노출되는 부위에는 단열을 위한 물질로 코팅될 수 있다.A portion of the heat exchange pipe 30 exposed to the outside of the housing 10 may be coated with a material for thermal insulation.
잠열축냉재(20)는 -26 ~ -29℃ 이하의 결빙 온도를 가지며, 그 결빙 온도 이하로 축냉되어 냉열을 축적한 후에, 냉각 능력이 저하되어 주변 온도가 결빙 온도 이상이 되는 시점에서 방냉한다. The latent heat storage coolant 20 has a freezing temperature of -26 to -29 ° C or lower, and after cooling to a temperature lower than the freezing temperature to accumulate cold heat, cooling is performed at a time when the cooling capacity is lowered and the ambient temperature becomes higher than the freezing temperature. .
잠열축냉재(20)는 하우징(10)의 내부 공간을 100% 채우지 않게 충진된다. 즉, 하우징(10)에 잠열축냉재(20)가 충진된 공간을 제외한 여유 공간이 구비되도록 한다. The latent heat storage coolant 20 is filled not to fill 100% of the internal space of the housing 10. That is, the housing 10 is provided with a free space except the space filled with the latent heat storage coolant (20).
그리고, 그 여유 공간에는 공기 또는 불활성기체가 주입될 수 있다. 여기서, 여유 공간은 단열 역할을 할 수 있다. 즉, 장착부(11)에 구비되는 체결 홀(12)을 통해 축냉모듈(100)이 장착되는 경우에는, 하우징(10)의 상부면이 대상 영역에 부착된다. 그로 인해 하우징(10)의 상부면은 하부면이나 측면에 비해 외부에서 유입되는 열에 영향을 더 받게 된다. 따라서, 하우징(10)의 상부면에 부가적인 단열 구조가 요구되며, 하우징(10) 내의 여유 공간이 그러한 부가적인 단열 구조를 만족시킨다.In addition, air or an inert gas may be injected into the free space. Here, the free space may serve as a thermal insulation. That is, when the cold storage module 100 is mounted through the fastening hole 12 provided in the mounting portion 11, the upper surface of the housing 10 is attached to the target area. Therefore, the upper surface of the housing 10 is more affected by heat introduced from the outside than the lower surface or the side surface. Thus, an additional thermal insulation structure is required on the upper surface of the housing 10, and the free space in the housing 10 satisfies such additional thermal insulation structure.
잠열축냉재(20)는 무기염이나 무기수화염 등의 무기물계, 파라핀이나 폴리에틸렌이나 알코올 등의 유기물계, 또는 무기물계와 유기물계의 혼합 조성물로 제조될 수 있다. 그러나 이들로 한정하지는 않는다.The latent heat storage coolant 20 may be made of an inorganic material such as an inorganic salt or an inorganic hydrate salt, an organic material such as paraffin, polyethylene or alcohol, or a mixed composition of an inorganic material and an organic material. However, it is not limited to these.
무기물계와 유기물계의 혼합 조성물의 예로는, 물과 요소 또는 그 밖의 추가적인 첨가제를 이용하여 결빙 온도인 공융점(EUTECTIC POINT) 또는 공정점(CRYOHYDRIC POINT)을 형성시킨다.As an example of the mixed composition of the inorganic and organic compounds, water and urea or other additional additives are used to form an EUTECTIC POINT or CRYOHYDRIC POINT which is a freezing temperature.
무기물계와 유기물계의 혼합 조성물에 사용되는 요소(UREA)는 매우 큰 수용성 물질이며, 물에 용해시키면 발열반응과 함께 많은 양이 용해된다. 따라서, 본 발명에서는 기본적으로 물에 요소를 용해시킨 잠열축냉재(20)를 하우징(10)에 충진하여 사용한다. 여기서, 물은 증류수인 것이 바람직하다.Urea (UREA), which is used in the mixed composition of inorganic and organic substances, is a very large water-soluble substance, and when dissolved in water, a large amount is dissolved together with an exothermic reaction. Therefore, in the present invention, the latent heat storage coolant 20 in which urea is dissolved in water is basically used in the housing 10. Here, it is preferable that water is distilled water.
또한 본 발명에서는 물에 요소를 용해한 조성물에 첨가물질 AXBY로 이루어지는 1개의 물질을 더 첨가한 잠열축냉재(20)를 하우징(10) 내부에 충진하여 사용할 수도 있다.In addition, in the present invention, the latent heat storage coolant 20 to which one substance consisting of additives A X B Y is further added to the composition in which urea is dissolved in water may be filled and used in the housing 10.
상기에서, A는 리튬, 나트륨, 마그네슘, 칼륨, 칼슘, 바륨의 금속 원소에 해당하고, B는 Cl, CO3, NO3, SO4, OH, COOH에 해당하며, X와 Y는 1 또는 2이다.In the above, A corresponds to the metal elements of lithium, sodium, magnesium, potassium, calcium, barium, B corresponds to Cl, CO 3 , NO 3 , SO 4 , OH, COOH, X and Y is 1 or 2 to be.
첨가물질 AXBY는 물 속에 용해되어 양이온과 음이온 상태의 이온화 상태를 띄며, 이들이 첨가된 용액의 결빙점을 하강시키는 효과를 나타낸다.Additives A X B Y dissolve in water to give an ionization state of cation and anion state, and have the effect of lowering the freezing point of the solution to which they are added.
본 발명에서는 축냉모듈(100)의 용도에 따라 물에 요소를 용해시킨 조성물을 잠열축냉재(20)로 사용할 수 있다. In the present invention, a composition in which urea is dissolved in water may be used as the latent heat storage material 20 according to the use of the cold storage module 100.
또한 본 발명에서는 보다 낮은 상변화 온도가 요구되는 용도에서는 물에 요소를 용해시킨 조성물에 전술된 첨가물질 AXBY를 추가하여 잠열축냉재(20)로 사용할 수도 있다.May also be used as the additive material A X B Y axis latent naengjae 20 in addition to the above-described element is dissolved in water in applications where a lower phase change temperature required in the present invention compositions.
잠열축냉재(20)가 충진된 하우징(10)의 내부는 마이너스 압력(-P)인 것이 바람직하다. 이는 하우징(10)의 소재가 어느 정도 강성을 가지면서도 연성을 가지는 복합 소재로 제조됨에 따라 잠열축냉재(20)의 냉각 시 부피 변화에 의해 하부면이나 측면에서의 팽창 현상을 방지하기 위한 것이다. The interior of the housing 10 filled with the latent heat storage coolant 20 is preferably a negative pressure (-P). This is to prevent the expansion phenomenon in the lower surface or the side by the volume change during cooling of the latent heat storage coolant 20 as the material of the housing 10 is made of a composite material having a certain degree of rigidity and ductility.
하우징(10) 내부에서 잠열축냉재(20)가 충진되는 공간을 제외한 여유 공간에 마이너스 압력(-P)을 가하여 하우징(10)의 내부 압력이 형성된다.The internal pressure of the housing 10 is formed by applying a negative pressure (-P) to the free space except for the space where the latent heat storage coolant 20 is filled in the housing 10.
한편, 본 발명에서는 하우징(10) 내부에 여유 공간이 구비되도록 잠열축냉재(20)의 충진량을 잠열축냉재(20)의 냉각 시 부피증가율에 따른 하우징(10)의 변형을 최소화하는 비율로 정한다. 일 예로, 잠열축냉재(20)는 하우징(10)의 내부 용적의 90~95%까지 충진시킨다.Meanwhile, in the present invention, the filling amount of the latent heat storage coolant 20 is determined as a ratio of minimizing the deformation of the housing 10 according to the volume increase rate during cooling of the latent heat storage coolant 20 so that a free space is provided in the housing 10. . For example, the latent heat storage coolant 20 fills up to 90 to 95% of the internal volume of the housing 10.
열교환 파이프(30)는 하우징(10) 내부에 충진된 잠열축냉재(20)의 냉각을 위해 내부에 저온의 냉매가 흐르는 관으로, 하우징(10)을 관통한다.The heat exchange pipe 30 is a tube through which a low-temperature refrigerant flows to cool the latent heat storage coolant 20 filled in the housing 10, and penetrates the housing 10.
열교환 파이프(30)가 하우징(10)을 관통함에 따라 하우징(10) 내부의 잠열축냉재(20)가 누액되는 것을 방지하기 위해 누액방지부재(31)가 구비된다. As the heat exchange pipe 30 penetrates the housing 10, a leakage preventing member 31 is provided to prevent leakage of the latent heat storage coolant 20 inside the housing 10.
누액방지부재(31)는 열교환 파이프(30)와 하우징(10)의 측면이 결합되는 부위에 구비된다. The leakage preventing member 31 is provided at a portion at which the side surface of the heat exchange pipe 30 and the housing 10 are coupled.
열교환 파이프(30)는 냉매가 유입되는 유입구(34)와 냉매가 유출되는 유출구(35)가 구비되며, 유입구(34)와 유출구(35)에는 타 파이프와의 체결을 위한 연결부재(COUPLING MEMBER)(32,33)가 각각 구비된다.The heat exchange pipe 30 is provided with an inlet 34 through which a refrigerant flows in and an outlet 35 through which the refrigerant flows out, and a connection member for fastening with another pipe at the inlet 34 and the outlet 35. 32 and 33 are provided, respectively.
연결부재(32,33)는 두 개의 열교환 파이프를 연결하여 이후에 설명되는 열교환 파이프라인(300)을 형성하는데 요구되는 구성이다. The connecting members 32 and 33 are required to connect two heat exchange pipes to form the heat exchange pipeline 300 described later.
한편, 본 발명에서는 축냉모듈(100)에 구비되는 유입구(34)와 유출구(35)의 방향에 상관없이 체결하여 열교환 파이프라인(300)을 형성할 수 있다. 이는 도 1 내지 4에 도시된 바와 같이 축냉모듈(100)의 구조가 대칭 구조이기 때문이다.Meanwhile, in the present invention, the heat exchange pipeline 300 may be formed by fastening regardless of the directions of the inlet 34 and the outlet 35 provided in the cold storage module 100. This is because the structure of the cold storage module 100 as shown in Figures 1 to 4 is a symmetrical structure.
도 3은 본 발명의 일 실시 예에 따른 축냉모듈의 종단면도이고, 도 4는 본 발명의 일 실시 예에 따른 축냉모듈의 투시도이다.3 is a longitudinal cross-sectional view of a cold storage module according to an embodiment of the present invention, Figure 4 is a perspective view of a cold storage module according to an embodiment of the present invention.
도 3 및 4를 참조하면, 본 발명의 축냉모듈(100)은 하우징(10)의 내부에 메쉬 메탈(MESH METAL)(40)을 구비한다.3 and 4, the cold storage module 100 of the present invention is provided with a mesh metal (MESH METAL) 40 in the housing 10.
메쉬 메탈(40)은 하우징(10)의 내부에서 잠열축냉재(20)에 냉열 에너지를 고루 분배한다.The mesh metal 40 evenly distributes the cold heat energy to the latent heat storage coolant 20 inside the housing 10.
메쉬 메탈(40)은 열교환 파이프(30) 내에 흐르는 냉매의 열에너지가 잠열축냉재(20) 전체에 고르게 전달되도록 하는 매개이며, 축냉모듈(100)의 총 중량을 고려하여 메쉬 형상의 금속재질로 형성한다.The mesh metal 40 is a medium for uniformly transferring heat energy of the refrigerant flowing in the heat exchange pipe 30 to the latent heat storage coolant 20, and is formed of a metal material having a mesh shape in consideration of the total weight of the heat storage cooling module 100. do.
메쉬 메탈(40)은 열교환 파이프(30)에 적어도 일단이 직접 접촉되게 형성되면서, 하우징(10)의 내부에 전체적으로 분포된다.The mesh metal 40 is formed to be in direct contact with at least one end of the heat exchange pipe 30, and is generally distributed inside the housing 10.
메쉬 메탈(40)은 금속재질로 제조된다. 메쉬 메탈(40)은 열전도도가 높은 구리 또는 스테인레스 스틸로 제조된다. Mesh metal 40 is made of a metal material. The mesh metal 40 is made of copper or stainless steel having high thermal conductivity.
도 7은 축냉모듈 내에서 잠열축냉재의 상변화에 따른 현상을 설명하기 위한 다이어그램으로, 축냉모듈(100)에 메쉬 메탈(40)이 구비되지 않은 경우에는, 저온의 냉매가 흐르는 열교환 파이프(30)의 주변에서 우선적으로 잠열축냉재(20)가 냉각되는 현상이 발생한다. 7 is a diagram for explaining a phenomenon caused by the phase change of the latent heat storage material in the cold storage module. When the mesh metal 40 is not provided in the cold storage module 100, a low-temperature refrigerant flows through the heat exchange pipe 30. The latent heat storage coolant 20 is first cooled in the periphery.
그로 인해, 열교환 파이프(30)의 둘레에서 잠열축냉재(20)가 먼저 결빙됨에 따라 그 열교환 파이프(30)의 둘레에 결빙막(A)이 형성된다. Therefore, as the latent heat storage coolant 20 is first frozen around the heat exchange pipe 30, an ice film A is formed around the heat exchange pipe 30.
결빙막(A)은 열교환 파이프(30)를 통한 방열을 차단하는 단열 작용을 한다. 그로 인해, 하우징(10) 내의 전체적으로 냉열이 전달되는 것을 방해하는 요인이 된다. The freezing film A has a heat insulating effect to block heat radiation through the heat exchange pipe 30. Therefore, it becomes a factor which hinders the transmission of cold heat in the housing 10 as a whole.
도 8은 본 발명에 따른 축냉모듈 내에서 잠열축냉재의 상변화에 따른 현상을 설명하기 위한 다이어그램으로, 본 발명의 메쉬 메탈(40)은 열교환 파이프(30)의 주변에서 잠열축냉재(20)의 상변화 현상이 생기더라도 잠열축냉재(20) 전체에 고르게 냉열을 전달한다.8 is a diagram for explaining a phenomenon according to the phase change of the latent heat storage coolant in the heat storage module according to the present invention, the mesh metal 40 of the present invention is a latent heat storage coolant 20 around the heat exchange pipe 30 Even if the phase change phenomenon of the latent heat storage coolant 20 is transmitted evenly throughout the heat.
그에 따라, 열교환 파이프(30)의 둘레는 물론 메쉬 메탈(40)에도 결빙막(A)이 형성되어 축냉모듈(100) 내에서 잠열축냉재가 전체적으로 고르게 결빙되도록 냉열을 전달한다.Accordingly, the frost film A is formed not only in the circumference of the heat exchange pipe 30 but also in the mesh metal 40 to transmit the cold heat so that the latent heat storage coolant is completely frozen in the heat storage module 100.
도 9는 본 발명의 일 실시 예에 따른 다수 축냉모듈이 장착된 냉동 컨테이너의 횡단면도이고, 도 10은 본 발명의 다른 실시 예에 따른 다수 축냉모듈이 장착된 냉동 컨테이너의 횡단면도이다. 9 is a cross-sectional view of a refrigeration container equipped with a plurality of cold storage modules according to an embodiment of the present invention, Figure 10 is a cross-sectional view of a refrigerated container equipped with a plurality of cold storage modules according to another embodiment of the present invention.
또한 도 11은 본 발명의 일 실시 예에 따른 냉동 컨테이너 차량에 다수 축냉모듈이 장착된 구조를 나타낸 다이어그램으로, 도 9에 도시된 냉동 컨테이너를 탑재한 차량을 도시한 것이다.11 is a diagram illustrating a structure in which a plurality of refrigeration modules are mounted in a refrigeration container vehicle according to an embodiment of the present invention, and illustrates a vehicle equipped with the refrigeration container shown in FIG. 9.
도 9와 10은 단위 축냉모듈(100)이 다수 개 배열되어 냉동 컨테이너(200)의 상부측에 장착되는 예를 도시한 것이다.9 and 10 illustrate an example in which a plurality of unit storage modules 100 are arranged on the upper side of the refrigeration container 200.
다수 개의 축냉모듈(100)은 A열 B행으로 배열된다. 이하에서는 냉동 컨테이너(200)의 상부 즉, 천정에 배열된 다수 개 축냉모듈이 제1 내지 N 축냉모듈을 포함하는 것으로 설명한다.The plurality of cold storage modules 100 are arranged in A column B rows. Hereinafter, a plurality of cold storage modules arranged above the freezing container 200, that is, the ceiling will be described as including first to N cold storage modules.
본 발명에서와 같이 다수 개의 축냉모듈(100)을 냉동 컨테이너(200)의 상부에 배치함으로써 측부이나 하부에 배치되는 경우보다 방열 효과를 높일 수 있다.As in the present invention, by arranging the plurality of cold storage modules 100 in the upper portion of the refrigeration container 200, the heat dissipation effect can be enhanced than in the case of being disposed on the side or the bottom.
도 9는 냉동기(500)의 위치를 기준으로 단위 축냉모듈(100) 8개가 4열 2행으로 배열되는 예이며, 도 10은 냉동기(500)의 위치를 기준으로 단위 축냉모듈(100) 8개가 2열 4행으로 배열되는 예이다.FIG. 9 illustrates an example in which eight unit storage modules 100 are arranged in four rows and two rows based on the location of the refrigerator 500. FIG. 10 illustrates eight unit storage modules 100 based on the location of the refrigerator 500. Referring to FIG. This is an example of two rows and four rows.
축냉모듈(100)의 배열 구조나 장착 개수는 냉동 컨테이너(200)의 천정 면적에 따라 정해질 수 있으며, 특정 배열 구조로 한정되지는 않는다. The arrangement structure or the number of mounting of the storage module 100 may be determined according to the ceiling area of the freezing container 200, it is not limited to a specific arrangement structure.
냉동 컨테이너(200)에서 제1 내지 N 축냉모듈이 서로 연결됨으로써 냉매가 흐르는 하나의 열교환 파이프라인(300)이 형성된다.As the first to N storage modules are connected to each other in the refrigerating container 200, one heat exchange pipeline 300 through which a refrigerant flows is formed.
열교환 파이프라인(300)은 제1 내지 N 축냉모듈 중 이웃하는 축냉모듈 간에 열교환 파이프가 연결되어 형성된다. 열교환 파이프라인(300)은 제1 내지 N 축냉모듈에 각각 구비되는 열교환 파이프를 포함하고, 제1 내지 N 축냉모듈 중 일부 축냉모듈을 연결시키는 U자관(310)을 더 포함한다.The heat exchange pipeline 300 is formed by connecting a heat exchange pipe between neighboring storage modules of the first to N storage modules. The heat exchange pipeline 300 includes heat exchange pipes respectively provided in the first to N storage modules, and further includes a U-shaped tube 310 connecting some of the storage modules to the first to N storage modules.
열교환 파이프라인(300)에서 이웃하는 축냉모듈 간에는 연결부재(32,33)에 의해 체결 연결되지만 일부 축냉모듈 간에는 U자관(310)에 의해 체결 연결될 수 있다.In the heat exchange pipeline 300, the neighboring cold storage modules are fastened and connected by connecting members 32 and 33, but some cold storage modules may be fastened and connected by a U-shaped tube 310.
다수 개의 축냉모듈이 배열되고 상호 체결됨에 따라, 열교환 파이프라인(300)은 만곡부에 해당하는 U자관(310)을 적어도 하나 포함하여 만곡형 지그재그 형태를 갖는다.As the plurality of cold storage modules are arranged and fastened to each other, the heat exchange pipeline 300 has a curved zigzag shape by including at least one U-shaped tube 310 corresponding to the curved portion.
냉동 컨테이너(200)는 그의 측부에 외부로부터 냉매가 유입되게 형성되는 냉매유입구(210)와 외부로 냉매를 유출하게 형성되는 냉매유출구(220)가 구비된다. 여기서, 냉매유입구(210)와 냉매유출구(220)는 냉동 컨테이너(200)의 외부에 마련되는 냉동기(500)에 연결되기 위해 구비된다. 특히, 제1 내지 N 축냉모듈 중 제1 축냉모듈에 구비되는 열교환 파이프의 유입구는 냉매유입구(210)에 연결되고, 마지막 축냉모듈인 제N 축냉모듈에 구비되는 열교환 파이프의 유출구는 냉매유출구(220)에 연결된다.The refrigeration container 200 has a coolant inlet 210 formed at a side thereof to allow a coolant to flow from the outside, and a coolant outlet 220 formed to allow the coolant to flow outside. Here, the coolant inlet 210 and the coolant outlet 220 are provided to be connected to the freezer 500 provided outside the freezing container 200. In particular, the inlet of the heat exchange pipe provided in the first storage module of the first to N storage modules is connected to the refrigerant inlet 210, the outlet of the heat exchange pipe provided in the N storage module, the last storage module is the refrigerant outlet 220 )
냉동기(500)는 연결관을 통해 냉매유입구(210)와 냉매유출구(220)에 연결되며, 그에 따라 냉매유입구(210), 제1 내지 N 축냉모듈의 열교환 파이프, 그리고 냉매유출구(220)를 거치는 열교환 파이프라인(300)을 통해 냉매를 순환시킨다.The refrigerator 500 is connected to the refrigerant inlet 210 and the refrigerant outlet 220 through a connection pipe, and thus passes through the refrigerant inlet 210, the heat exchange pipes of the first to N storage modules, and the refrigerant outlet 220. The refrigerant is circulated through the heat exchange pipeline 300.
냉동기(500)는 심야 전력과 같은 잉여 전력으로 구동되어 전술된 열교환 파이프라인을 통해 냉열을 순환시키므로 효율적인 에너지 이용에 부합된다.The refrigerator 500 is driven with surplus power such as midnight power to circulate cold heat through the heat exchange pipeline described above, thereby meeting efficient energy use.
도 11에 도시된 바와 같이, 다수 축냉모듈을 장착한 냉동 컨테이너(200)를 차량에 탑재함으로써, 냉동 컨테이너 차량의 연비 손실을 줄일 수 있다. 또한 외부에 별도로 마련되는 냉동기(500)를 심야시간 대에 작동시켜 축냉이 진행되므로 축냉을 위한 차량 운전이 요구되지 않고 유해가스 배출도 없다.As shown in Figure 11, by mounting the refrigeration container 200 equipped with a plurality of refrigeration module in the vehicle, it is possible to reduce the fuel economy loss of the refrigerated container vehicle. In addition, since the refrigeration is carried out by operating the refrigerator 500 separately provided at the outside of the night time zone, vehicle driving for the refrigeration is not required and no harmful gas is discharged.
본 발명에 따르면, 메쉬 메탈을 이용하여 열에너지 전달 특성을 최대화할 수 있다. 그에 따라 충진되는 잠열축냉재에 냉열을 빠르게 전달하면서도 잠열축냉재 전체에 대해 고르게 냉열을 전달할 수 있으므로, 냉열의 축적 시간을 단축시킬 수 있다. 즉, 메쉬 메탈을 구비함으로써 잠열축냉재가 결빙 온도에 이르는 시간이 짧아진다. 그로 인해 냉장 사이클 또는 냉동 사이클이 단축되어 적재물의 신선도 유지에 유리하다.According to the present invention, it is possible to maximize the heat energy transfer characteristics using a mesh metal. Accordingly, it is possible to quickly transfer the cold heat to the latent heat storage coolant to be filled evenly to the entire latent heat storage coolant, thereby reducing the accumulation time of the cold heat. That is, the provision of the mesh metal shortens the time for the latent heat storage coolant to reach the freezing temperature. This shortens the refrigerating cycle or the freezing cycle, which is advantageous for maintaining the freshness of the load.
지금까지 본 발명의 바람직한 실시 예에 대해 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성을 벗어나지 않는 범위 내에서 변형된 형태로 구현할 수 있을 것이다. While the preferred embodiments of the present invention have been described so far, those skilled in the art may implement the present invention in a modified form without departing from the essential characteristics of the present invention.
그러므로 여기서 설명한 본 발명의 실시 예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 상술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments of the present invention described herein are to be considered in descriptive sense only and not for purposes of limitation, and the scope of the present invention is shown in the appended claims rather than the foregoing description, and all differences within the scope are equivalent to the present invention. Should be interpreted as being included in.
상기와 같은 본 발명은 축냉모듈이 냉동 컨테이너에 장착된 경우와 그 냉동 컨테이너가 탑재된 차량은 물론 축냉식 냉동고, 냉장고, 냉동 차량, 냉동 컨테이너, 이동식 냉동 컨테이너 등에 폭넓게 적용될 수 있다.The present invention as described above can be widely applied to the case where the cold storage module is mounted on the refrigeration container and the vehicle on which the freezing container is mounted, as well as the cold storage freezer, refrigerator, freezing vehicle, freezing container, mobile refrigeration container, and the like.

Claims (21)

  1. 내부에 잠열축냉재를 포함하는 하우징;A housing including a latent heat storage material therein;
    상기 하우징을 관통하여 배치되며, 상기 잠열축냉재의 냉각을 위해 내부에 저온의 냉매가 흐르는 열교환 파이프; 그리고A heat exchange pipe disposed through the housing and having a low temperature refrigerant flowing therein for cooling the latent heat storage material; And
    상기 하우징 내부에서 상기 잠열축냉재에 냉열 에너지를 분배하는 메쉬 메탈;A mesh metal distributing cold heat energy to the latent heat storage coolant in the housing;
    을 포함하는 것을 특징으로 하는 축냉모듈.Accumulation module, characterized in that it comprises a.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 하우징은,The housing,
    탄소 섬유계 또는 그라파이트 섬유계 또는 유리 섬유계 재질로 제조되는 것을 특징으로 하는 축냉모듈.A cold storage module, characterized in that made of carbon fiber or graphite fiber or glass fiber material.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 하우징은,The housing,
    상기 탄소 섬유계와 상기 그라파이트 섬유계와 상기 유리 섬유계 중 어느 하나가 싸이클릭 부틸렌 테레프탈레이트(CBT)와 결합한 복합 재질인 것을 특징으로 하는 축냉모듈.Any one of the carbon fiber, the graphite fiber and the glass fiber is a cold storage module, characterized in that the composite material combined with cyclic butylene terephthalate (CBT).
  4. 제 1 항에 있어서, The method of claim 1,
    상기 메쉬 메탈은,The mesh metal is,
    구리와 스테인레스 스틸을 포함하는 금속재질 중 어느 하나인 것을 특징으로 하는 축냉모듈.The cold storage module, characterized in that any one of a metal material including copper and stainless steel.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 메쉬 메탈의 적어도 일단이 상기 열교환 파이프에 직접 접촉되게 형성되는 것을 특징으로 하는 축냉모듈.At least one end of the mesh metal is a cold storage module, characterized in that formed in direct contact with the heat exchange pipe.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 메쉬 메탈은,The mesh metal is,
    상기 하우징의 내부에 전체적으로 분포되는 것을 특징으로 하는 축냉모듈.Accumulation module, characterized in that distributed throughout the interior of the housing.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 열교환 파이프는,The heat exchange pipe,
    상기 냉매가 유입되는 유입구와 상기 냉매가 유출되는 유출구에 타 파이프와의 체결을 위한 연결부재를 각각 구비하는 것을 특징으로 하는 축냉모듈.And a connection member for fastening with another pipe at an inlet of the refrigerant and an outlet of the refrigerant.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 열교환 파이프는,The heat exchange pipe,
    구리와 알루미늄을 포함하는 금속재질 중 어느 하나인 것을 특징으로 하는 축냉모듈.A cold storage module, characterized in that any one of a metallic material containing copper and aluminum.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 하우징은,The housing,
    하부 면에 대향하는 상부 면이 외측으로 연장되는 장착부를 구비하는 것을 특징으로 하는 축냉모듈.A refrigeration module, characterized in that it has a mounting portion that the upper surface opposite to the lower surface extending outward.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 장착부는,The mounting portion,
    상기 축냉모듈을 대상 영역에 장착 가능하도록 해주는 적어도 하나의 체결 홀을 구비하는 것을 특징으로 하는 축냉모듈.And at least one fastening hole for allowing the storage module to be mounted in a target region.
  11. 제 1 항에 있어서, The method of claim 1,
    상기 하우징은,The housing,
    상기 열교환 파이프가 관통하는 방향에 해당하는 길이방향이 폭방향에 비해 상대적으로 긴 길이를 갖는 것을 특징으로 하는 축냉모듈.And a longitudinal direction corresponding to a direction through which the heat exchange pipe passes, has a relatively longer length than a width direction.
  12. 제 1 항에 있어서, The method of claim 1,
    상기 하우징의 내부에서 상기 잠열축냉재가 충진되는 공간을 제외한 여유 공간에 공기 또는 불활성기체를 주입하는 것을 특징으로 하는 축냉모듈.An air storage module according to claim 1, wherein air or an inert gas is injected into a free space except a space where the latent heat storage material is filled in the housing.
  13. 제 1 항에 있어서, The method of claim 1,
    상기 하우징의 내부 압력이 마이너스 압력인 것을 특징으로 하는 축냉모듈.And the internal pressure of the housing is a negative pressure.
  14. 제 1 항에 있어서, The method of claim 1,
    상기 잠열축냉재는,The latent heat storage coolant,
    무기물계 조성물, 유기물계 조성물, 그리고 무기물계와 유기물계의 혼합 조성물 중 어느 하나로 제조되는 것을 특징으로 하는 축냉모듈.A cold storage module, characterized in that it is made of any one of an inorganic composition, an organic composition, and a mixed composition of the inorganic and organic compounds.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 하우징은,The housing,
    외벽이 주기적 만곡 구조로 형성되는 것을 특징으로 축냉모듈.Cooling module, characterized in that the outer wall is formed of a periodic curved structure.
  16. 제 1 내지 15 항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 15,
    상기 축냉모듈이 다수 개 배열되어 상부측에 장착되는 것을 특징으로 하는 다수 축냉모듈을 장착한 냉동 컨테이너.The refrigeration container with a plurality of cold storage modules, characterized in that the plurality of cold storage modules are arranged on the upper side.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 배열된 다수 개 축냉모듈이 제1 내지 N 축냉모듈을 포함하고,The arranged plurality of cold storage modules include the first to N storage cooling modules,
    상기 제1 내지 N 축냉모듈 중 이웃하는 축냉모듈 간에 상기 열교환 파이프가 연결되어 제1 축냉모듈에서 제N 축냉모듈까지 상기 냉매가 흐르는 열교환 파이프라인이 형성되는 것을 특징으로 하는 다수 축냉모듈을 장착한 냉동 컨테이너.The heat exchange pipes are connected between neighboring cold storage modules among the first to N cold storage modules to form a heat exchange pipeline through which the refrigerant flows from the first cold storage module to the Nth cold storage module. container.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 냉동 컨테이너의 측부에 외부로부터 냉매가 유입되게 형성되는 냉매유입구와 외부로 냉매를 유출하게 형성되는 냉매유출구가 구비되고,Refrigerant inlet is formed on the side of the refrigeration container and the refrigerant inlet is formed so that the refrigerant flows from the outside and the refrigerant outlet is formed to flow outside,
    상기 제1 축냉모듈에 구비되는 열교환 파이프의 유입구가 상기 냉매유입구에 연결되고, 상기 제N 축냉모듈에 구비되는 열교환 파이프의 유출구가 상기 냉매유출구에 연결되는 것을 특징으로 하는 다수 축냉모듈을 장착한 냉동 컨테이너.Refrigeration equipped with a plurality of refrigeration module, characterized in that the inlet of the heat exchange pipe provided in the first storage module is connected to the refrigerant inlet, the outlet of the heat exchange pipe provided in the N-th storage module is connected to the refrigerant outlet. container.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 냉매유입구와 상기 냉매유출구는,The refrigerant inlet and the refrigerant outlet,
    상기 냉동 컨테이너의 외부에 마련되는 냉동기와의 연결을 위해 구비되는 것을 특징으로 하는 다수 축냉모듈을 장착한 냉동 컨테이너.Refrigerating container equipped with a plurality of cold storage modules, characterized in that provided for the connection to the refrigerator provided on the outside of the freezing container.
  20. 제 17 항에 있어서, The method of claim 17,
    상기 열교환 파이프라인은, The heat exchange pipeline,
    상기 제1 내지 N 축냉모듈에 각각 구비되는 열교환 파이프를 포함하고,It includes a heat exchange pipe that is provided in each of the first to N storage module,
    상기 제1 내지 N 축냉모듈 중 일부 축냉모듈을 연결시키는 U자관을 더 포함하는 것을 특징으로 하는 다수 축냉모듈을 장착한 냉동 컨테이너.Refrigerating container equipped with a plurality of cold storage module, characterized in that further comprising a U-tube for connecting some of the cold storage module of the first to N storage modules.
  21. 제 16 내지 20 항 중 어느 하나의 항에 있어서,The method according to any one of claims 16 to 20,
    상기 냉동 컨테이너가 탑재되는 것을 특징으로 하는 냉동 컨테이너 차량.Refrigerating container vehicle, characterized in that the refrigeration container is mounted.
PCT/KR2012/009442 2012-11-09 2012-11-09 Cold storage module, reefer container provided with plurality of cold storage modules and reefer container vehicle WO2014073721A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2012/009442 WO2014073721A1 (en) 2012-11-09 2012-11-09 Cold storage module, reefer container provided with plurality of cold storage modules and reefer container vehicle
KR1020127033125A KR20140072764A (en) 2012-11-09 2012-11-09 cold storage module, refrigerator container mounting a plurality of cold storage module, and refrigerator vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/009442 WO2014073721A1 (en) 2012-11-09 2012-11-09 Cold storage module, reefer container provided with plurality of cold storage modules and reefer container vehicle

Publications (1)

Publication Number Publication Date
WO2014073721A1 true WO2014073721A1 (en) 2014-05-15

Family

ID=50684807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009442 WO2014073721A1 (en) 2012-11-09 2012-11-09 Cold storage module, reefer container provided with plurality of cold storage modules and reefer container vehicle

Country Status (2)

Country Link
KR (1) KR20140072764A (en)
WO (1) WO2014073721A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106428251A (en) * 2016-11-07 2017-02-22 浙江科技学院 Cold accumulation type refrigerator van and control method thereof
CN108759536A (en) * 2018-06-29 2018-11-06 丁玉龙 energy storage device
IT201900003317A1 (en) * 2019-03-07 2019-06-07 Sandenvendo Europe S P A RECHARGEABLE THERMAL ACCUMULATOR, TRANSPORT CONTAINER INCLUDING AT LEAST ONE SUCH ACCUMULATOR, THERMAL RECHARGE DEVICE FOR AT LEAST ONE SUCH ACCUMULATOR AND SYSTEM INCLUDING AT LEAST ONE SUCH ACCUMULATOR AND AT LEAST ONE SUCH DEVICE.
WO2019117221A1 (en) * 2017-12-12 2019-06-20 株式会社Syパートナーズ Vehicle body water cooling device
CN111731072A (en) * 2020-06-19 2020-10-02 中达通智慧物流(上海)有限公司 Cold-storage strip, cold-storage subassembly and refrigerator car
CN114475155A (en) * 2022-02-16 2022-05-13 中车石家庄车辆有限公司 Cold accumulation type carriage and new energy refrigerator car

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101715151B1 (en) * 2015-02-11 2017-03-10 한국식품연구원 Freezeing-Thawing Device and method for Chain
KR102411426B1 (en) * 2015-10-29 2022-06-22 한국식품연구원 Transportation box and distributing method using it thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200165489Y1 (en) * 1999-07-30 2000-02-15 김영배 Refrigerated truck of cooling reserving type
US20070287005A1 (en) * 2002-02-08 2007-12-13 Saikumar Jayaraman Phase change material containing fusible particles as thermally conductive filler
WO2010093405A1 (en) * 2009-02-10 2010-08-19 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in led lamps
KR20120045765A (en) * 2010-11-01 2012-05-09 (주)에이스써모 Air circulation cooling type thermal storage system
KR20120058347A (en) * 2010-11-29 2012-06-07 현대자동차주식회사 Thermo plastic complex for stiffener and Preparing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200165489Y1 (en) * 1999-07-30 2000-02-15 김영배 Refrigerated truck of cooling reserving type
US20070287005A1 (en) * 2002-02-08 2007-12-13 Saikumar Jayaraman Phase change material containing fusible particles as thermally conductive filler
WO2010093405A1 (en) * 2009-02-10 2010-08-19 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in led lamps
KR20120045765A (en) * 2010-11-01 2012-05-09 (주)에이스써모 Air circulation cooling type thermal storage system
KR20120058347A (en) * 2010-11-29 2012-06-07 현대자동차주식회사 Thermo plastic complex for stiffener and Preparing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106428251A (en) * 2016-11-07 2017-02-22 浙江科技学院 Cold accumulation type refrigerator van and control method thereof
WO2019117221A1 (en) * 2017-12-12 2019-06-20 株式会社Syパートナーズ Vehicle body water cooling device
CN108759536A (en) * 2018-06-29 2018-11-06 丁玉龙 energy storage device
IT201900003317A1 (en) * 2019-03-07 2019-06-07 Sandenvendo Europe S P A RECHARGEABLE THERMAL ACCUMULATOR, TRANSPORT CONTAINER INCLUDING AT LEAST ONE SUCH ACCUMULATOR, THERMAL RECHARGE DEVICE FOR AT LEAST ONE SUCH ACCUMULATOR AND SYSTEM INCLUDING AT LEAST ONE SUCH ACCUMULATOR AND AT LEAST ONE SUCH DEVICE.
WO2020178866A3 (en) * 2019-03-07 2020-10-15 Sandenvendo Europe S.P.A. Rechargeable thermal accumulator, transport container comprising such accumulator, thermal recharging device of such accumulator and related system
CN111731072A (en) * 2020-06-19 2020-10-02 中达通智慧物流(上海)有限公司 Cold-storage strip, cold-storage subassembly and refrigerator car
CN114475155A (en) * 2022-02-16 2022-05-13 中车石家庄车辆有限公司 Cold accumulation type carriage and new energy refrigerator car
CN114475155B (en) * 2022-02-16 2023-07-07 中车石家庄车辆有限公司 Cold storage type carriage and new energy refrigerator car

Also Published As

Publication number Publication date
KR20140072764A (en) 2014-06-13

Similar Documents

Publication Publication Date Title
WO2014073721A1 (en) Cold storage module, reefer container provided with plurality of cold storage modules and reefer container vehicle
WO2015030309A1 (en) Cold storage module having mesh metal structure of unequal gap, refrigerator container having cold storage modules mounted therein, and refrigerator vehicle
WO2016178512A1 (en) System for cold energy use through lng reliquefaction
CN110277604A (en) A kind of thermal management device and system for battery pack
CN111799529B (en) Battery thermal management system and management method based on high-thermal-conductivity phase-change material
US11404735B2 (en) Immersed heat dissipation device for power battery
CN102103399A (en) Ultrahigh heat density cooling system
CN201003824Y (en) Ice cold-storage air-conditioning device
CN114136046A (en) Vehicle-mounted efficient heat-insulation Stirling deep low-temperature refrigerator
KR20150024625A (en) cold storage module allowing for gravitation tolerance, refrigerator container mounting a plurality of cold storage module, and refrigerator vehicle
KR101429164B1 (en) Brine heat exchange type Cold Storage Module.
CN210601993U (en) Mobile air conditioner
KR20200068899A (en) Printed Circuit Heat Exchanger and the method
JP2000039280A (en) Cold storage heat exchanger and its operation method
WO2015060536A1 (en) Method and system for cooling superconducting magnet
CN207459028U (en) A kind of power battery pack cooled down using A/C evaporator
RU2328842C1 (en) Cabinet for radioelectronic equipment
CN220420707U (en) Comprehensive thermal management system for energy storage battery
JP2000039281A (en) Cold storage heat exchnager
JPH0451747B2 (en)
CN113587504B (en) Refrigerating device, reagent storage device and in-vitro diagnostic instrument
TW542892B (en) Heat exchanger and refrigerator provided therewith
CN212988097U (en) Anti-freezing protection type heat exchanger
CN218957839U (en) Thermal management system of battery pack
CN208998616U (en) A kind of cold-storage heat-exchanger rig

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127033125

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201503445

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 12888176

Country of ref document: EP

Kind code of ref document: A1