WO2014073540A1 - 移動通信システム及び移動通信方法 - Google Patents

移動通信システム及び移動通信方法 Download PDF

Info

Publication number
WO2014073540A1
WO2014073540A1 PCT/JP2013/079928 JP2013079928W WO2014073540A1 WO 2014073540 A1 WO2014073540 A1 WO 2014073540A1 JP 2013079928 W JP2013079928 W JP 2013079928W WO 2014073540 A1 WO2014073540 A1 WO 2014073540A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio base
anchor
reception quality
anchor radio
Prior art date
Application number
PCT/JP2013/079928
Other languages
English (en)
French (fr)
Inventor
童 方偉
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014545715A priority Critical patent/JP6140183B2/ja
Priority to US14/441,816 priority patent/US20150312871A1/en
Publication of WO2014073540A1 publication Critical patent/WO2014073540A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements

Definitions

  • the present invention relates to a mobile communication system including a plurality of radio base stations and a mobile communication method used in the mobile communication system.
  • a mobile communication system including a plurality of radio base stations is known.
  • LTE Long Term Evolution
  • cooperative reception processing, cooperative transmission processing, and the like can be considered as processing performed by a plurality of wireless base stations in cooperation.
  • the coordinated reception process and the coordinated transmission process are referred to as CoMP (Coordinated Multi-Point Operation) or the like (see Non-Patent Document 1).
  • CoMP Coordinatd Multi-Point Operation
  • the cooperative reception process in the uplink selective combining of uplink signals received by a plurality of radio base stations is performed.
  • the plurality of radio base stations include one anchor radio base station and the remaining non-anchor radio base stations.
  • the non-anchor radio base station transmits an uplink signal to the anchor radio base station via the backhaul network.
  • the anchor radio base station selectively combines an uplink signal transmitted from a radio terminal and an uplink signal received from a non-anchor radio base station.
  • the timing at which the radio terminal transmits the uplink signal to the plurality of radio base stations is the same, so for each of the plurality of radio base stations, the radio base station and the radio terminal Can not be synchronized between.
  • the mobile communication system includes a plurality of radio base stations that communicate with radio terminals.
  • the plurality of radio base stations constitute a radio base station group including one anchor radio base station and a non-anchor radio base station other than the anchor radio base station.
  • the non-anchor radio base station notifies the anchor radio base station of a reception quality measured by the non-anchor side measurement unit that measures reception quality of an uplink signal received from the radio terminal, and the non-anchor side measurement unit A notification unit.
  • the anchor radio base station sends a control signal for adjusting the timing at which the radio terminal transmits the uplink signal so that the timing at which the uplink signal is received from the radio terminal is adjusted to a desired timing.
  • a transmission unit that transmits to a wireless terminal, and a determination unit that determines whether or not to exclude the non-anchor radio base station from the group of radio base stations based on reception quality notified from the non-anchor radio base station Prepare.
  • the mobile communication method according to the second feature is used in a mobile communication system including a plurality of radio base stations that communicate with radio terminals.
  • the plurality of radio base stations constitute a radio base station group including one anchor radio base station and a non-anchor radio base station other than the anchor radio base station.
  • the wireless terminal transmits the uplink signal so that the timing of receiving the uplink signal from the wireless terminal is adjusted to a desired timing from the anchor wireless base station to the wireless terminal.
  • Step A for transmitting a control signal for adjusting timing
  • Step B for measuring the reception quality of the uplink signal received from the wireless terminal in the non-anchor radio base station
  • Step C for notifying the anchor radio base station of the reception quality measured in Step B, and the anchor radio base station based on the reception quality notified from the non-anchor radio base station.
  • a step D for determining whether or not to exclude the anchor radio base station from the group of radio base stations.
  • FIG. 1 is a diagram showing a mobile communication system 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating a radio frame according to the first embodiment.
  • FIG. 3 is a diagram illustrating radio resources according to the first embodiment.
  • FIG. 4 is a diagram illustrating an application case according to the first embodiment.
  • FIG. 5 is a diagram illustrating an application case according to the first embodiment.
  • FIG. 6 is a diagram illustrating an application case according to the first embodiment.
  • FIG. 7 is a block diagram showing an anchor radio base station 310A according to the first embodiment.
  • FIG. 8 is a block diagram showing the non-anchor radio base station 310B according to the first embodiment.
  • FIG. 9 is a sequence diagram showing an operation (first method) of the mobile communication system 100 according to the first embodiment.
  • FIG. 10 is a sequence diagram showing an operation (second method) of the mobile communication system 100 according to the first embodiment.
  • FIG. 11 is a diagram illustrating a first threshold setting method according to the first modification.
  • FIG. 12 is a diagram illustrating a first threshold setting method according to the first modification.
  • the mobile communication system includes a plurality of radio base stations that communicate with radio terminals.
  • the plurality of radio base stations constitute a radio base station group including one anchor radio base station and a non-anchor radio base station other than the anchor radio base station.
  • the non-anchor radio base station includes a non-anchor side measurement unit that measures reception quality of the uplink signal received from the radio terminal, and a reception quality measured by the non-anchor side measurement unit to the anchor radio base station.
  • the anchor radio base station transmits a control signal for adjusting the timing at which the radio terminal transmits the uplink signal so that the timing at which the radio signal is received from the radio terminal is adjusted to a desired timing.
  • the timing for receiving the uplink signal from the radio terminal is adjusted to a timing desired for the anchor radio base station, and then based on the reception quality notified from the non-anchor radio base station, the non-anchor radio base station Is determined to be excluded from the radio base station group. Therefore, radio base stations (non-anchor radio base stations) that do not contribute to the cooperative reception process in the uplink can be appropriately excluded from the radio base station group. Furthermore, since it is not necessary to transmit an uplink signal via a backhaul network from a radio base station (non-anchor radio base station) that does not contribute to cooperative reception processing in the uplink to the anchor radio base station, Wasteful consumption of hall network resources is suppressed.
  • FIG. 1 is a diagram showing a mobile communication system 100 according to the first embodiment.
  • the mobile communication system 100 includes a radio terminal 10 (hereinafter referred to as UE 10) and a core network 50.
  • the mobile communication system 100 includes a first communication system and a second communication system.
  • the first communication system is a communication system that supports, for example, LTE (Long Term Evolution).
  • the first communication system includes, for example, a base station 110A (hereinafter, MeNB 110A), a home base station 110B (hereinafter, HeNB 110B), a home base station gateway 120B (hereinafter, HeNB-GW 120B), and an MME 130.
  • MeNB 110A a base station 110A
  • HeNB 110B home base station 110B
  • HeNB-GW 120B home base station gateway 120B
  • MME 130 Mobility Management Entity
  • a radio access network (E-UTRAN; Evolved Universal Terrestrial Radio Access Network) corresponding to the first communication system is configured by MeNB 110A, HeNB 110B, and HeNB-GW 120B.
  • the second communication system is a communication system compatible with, for example, UMTS (Universal Mobile Telecommunication System).
  • the second communication system includes a base station 210A (hereinafter referred to as MNB 210A), a home base station 210B (hereinafter referred to as HNB 210B), an RNC 220A, a home base station gateway 220B (hereinafter referred to as HNB-GW 220B), and an SGSN 230.
  • a radio access network (UTRAN: Universal Terrestrial Radio Access Network) corresponding to the second communication system is configured by MNB 210A, HNB 210B, RNC 220A, and HNB-GW 220B.
  • the UE 10 is a device (User Equipment) configured to communicate with the second communication system or the first communication system.
  • the UE 10 has a function of performing wireless communication with the MeNB 110A and the HeNB 110B.
  • the UE 10 has a function of performing wireless communication with the MNB 210A and the HNB 210B.
  • the MeNB 110A is a device (evolved NodeB) that manages the general cell 111A and performs radio communication with the UE 10 existing in the general cell 111A.
  • the HeNB 110B is a device (Home evolved NodeB) that manages the specific cell 111B and performs radio communication with the UE 10 existing in the specific cell 111B.
  • the HeNB-GW 120B is an apparatus (Home evolved NodeB Gateway) that is connected to the HeNB 110B and manages the HeNB 110B.
  • the MME 130 is an apparatus (Mobility Management Entity) that manages the mobility of the UE 10 that is connected to the MeNB 110A and has established a wireless connection with the MeNB 110A. Further, the MME 130 is an apparatus that manages the mobility of the UE 10 that is connected to the HeNB 110B via the HeNB-GW 120B and has established a radio connection with the HeNB 110B.
  • MME 130 Mobility Management Entity
  • the MNB 210A is a device (NodeB) that manages the general cell 211A and performs radio communication with the UE 10 existing in the general cell 211A.
  • the HNB 210B is a device (Home NodeB) that manages the specific cell 211B and performs radio communication with the UE 10 existing in the specific cell 211B.
  • the RNC 220A is an apparatus (Radio Network Controller) that is connected to the MNB 210A and sets up a radio connection (RRC Connection) with the UE 10 existing in the general cell 211A.
  • RRC Connection Radio Connection
  • the HNB-GW 220B is a device (Home NodeB Gateway) that is connected to the HNB 210B and sets up a radio connection (RRC Connection) with the UE 10 existing in the specific cell 211B.
  • RRC Connection Radio Connection
  • SGSN 230 is a device (Serving GPRS Support Node) that performs packet switching in the packet switching domain.
  • the SGSN 230 is provided in the core network 50.
  • an apparatus MSC: Mobile Switching Center
  • MSC Mobile Switching Center
  • the general cell and the specific cell should be understood as a function of performing radio communication with the UE 10.
  • the general cell and the specific cell are also used as terms indicating a cell coverage area.
  • cells such as general cells and specific cells are identified by the frequency, spreading code, time slot, or the like used in the cells.
  • the coverage area of general cells is wider than the coverage area of specific cells.
  • the general cell is, for example, a macro cell provided by a telecommunications carrier.
  • the specific cell is, for example, a femto cell or a home cell provided by a third party other than the communication carrier.
  • the specific cell may be a CSG (Closed Subscriber Group) cell or a pico cell provided by a communication carrier.
  • the first communication system will be mainly described. However, the following description may be applied to the second communication system.
  • the OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Multiplex
  • a method is used.
  • an uplink control channel (PUCCH: Physical Uplink Channel) and an uplink shared channel (PUSCH: Physical Uplink Channel) as uplink channels.
  • PUSCH Physical Uplink Channel
  • a downlink channel there are a downlink control channel (PDCCH; Physical Downlink Control Channel), a downlink shared channel (PDSCH; Physical Downlink Shared Channel), and the like.
  • the uplink control channel is a channel that carries a control signal.
  • the control signal includes, for example, CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), SR (Scheduling Request), ACK / NACK, and the like.
  • CQI is a signal notifying the recommended modulation method and coding rate to be used for downlink transmission.
  • PMI is a signal indicating a precoder matrix that is preferably used for downlink transmission.
  • the RI is a signal indicating the number of layers (number of streams) to be used for downlink transmission.
  • SR is a signal requesting allocation of uplink radio resources (resource blocks to be described later).
  • ACK / NACK is a signal indicating whether or not a signal transmitted via a downlink channel (for example, PDSCH) has been received.
  • the uplink shared channel is a channel that carries a control signal (including the control signal described above) and / or a data signal.
  • the uplink radio resource may be allocated only to the data signal, or may be allocated so that the data signal and the control signal are multiplexed.
  • the downlink control channel is a channel that carries a control signal.
  • the control signals are, for example, Uplink SI (Scheduling Information), Downlink SI (Scheduling Information), and TPC bits.
  • Uplink SI is a signal indicating uplink radio resource allocation.
  • Downlink SI is a signal indicating downlink radio resource allocation.
  • the TPC bit is a signal for instructing increase / decrease in power of a signal transmitted via an uplink channel.
  • the downlink shared channel is a channel that carries control signals and / or data signals.
  • the downlink radio resource may be allocated only to the data signal, or may be allocated so that the data signal and the control signal are multiplexed.
  • TA Triming Advance
  • TA is transmission timing correction information between UE10 and MeNB110A, and is measured by MeNB110A based on the uplink signal transmitted from UE10.
  • the TA is an example of a control signal for adjusting the timing at which the UE 10 transmits an uplink signal so that the timing at which the uplink signal is received from the UE 10 is adjusted to a desired timing.
  • ACK / NACK can be cited as a control signal transmitted via a channel other than the downlink control channel (PDCCH) and the downlink shared channel (PDSCH).
  • ACK / NACK is a signal indicating whether or not a signal transmitted via an uplink channel (for example, PUSCH) has been received.
  • the broadcast information is information such as MIB (Master Information Block) or SIB (System Information Block).
  • FIG. 2 is a diagram illustrating a radio frame in the first communication system.
  • one radio frame is composed of 10 subframes, and one subframe is composed of two slots.
  • the time length of one slot is 0.5 msec
  • the time length of one subframe is 1 msec
  • the time length of one radio frame is 10 msec.
  • One slot is composed of a plurality of OFDM symbols (for example, 6 OFDM symbols or 7 OFDM symbols) in the downlink.
  • one slot is configured by a plurality of SC-FDMA symbols (for example, six SC-FDMA symbols or seven SC-FDMA symbols) in the uplink.
  • FIG. 3 is a diagram illustrating radio resources in the first communication system.
  • radio resources are defined by a frequency axis and a time axis.
  • the frequency is composed of a plurality of subcarriers, and a predetermined number of subcarriers (12 subcarriers) are collectively referred to as a resource block (RB).
  • RB resource block
  • the time has units such as an OFDM symbol (or SC-FDMA symbol), a slot, a subframe, and a radio frame.
  • radio resources can be allocated for each resource block. Also, it is possible to divide and allocate radio resources to a plurality of users (for example, user # 1 to user # 5) on the frequency axis and the time axis.
  • the radio resource is allocated by the MeNB 110A.
  • MeNB110A is allocated to each UE10 based on CQI, PMI, RI, etc.
  • FIG. 4 is a diagram for explaining an application scene according to the first embodiment.
  • FIG. 4 illustrates a case where one anchor radio base station 310A and a plurality of non-anchor radio base stations 310B are provided as radio base stations.
  • the anchor radio base station 310A and the non-anchor radio base station 310B constitute a radio base station group (CoMP set) that cooperatively receives uplink signals transmitted from the UE 10.
  • CoMP set radio base station group
  • the UE 10 transmits an uplink signal to the anchor radio base station 310A and the non-anchor radio base station 310B.
  • the uplink signal transmitted from the UE 10 is encoded.
  • the uplink signal transmitted from the UE 10 is transmitted, for example, via the above-described uplink shared channel (PUSCH).
  • PUSCH uplink shared channel
  • the non-anchor radio base station 310B transmits an uplink signal to the anchor radio base station 310A via the backhaul network.
  • the anchor radio base station 310A performs selective combining of the uplink signal transmitted from the UE 10 and the uplink signal received from the non-anchor radio base station 310B.
  • the backhaul network may be an X2 interface that directly connects wireless base stations, or may be an S1 interface that connects wireless base stations via an upper node (for example, MME 130).
  • the anchor radio base station 310A and the non-anchor radio base station 310B may be radio base stations. That is, in the first embodiment, the anchor radio base station 310A and the non-anchor radio base station 310B are any one of the MeNB 110A, the HeNB 110B, the MNB 210A, and the HNB 210B.
  • non-anchor base station 310B As a non-anchor base station 310B, the non-anchor base station 310B 1 and non-anchor base station case 310B 2 is provided, will be described with reference to FIGS.
  • the difference between the reception timing of the uplink signal received from the UE 10 and the desired reception timing (ie, TA; Timing Advance) differs for each radio base station as shown in FIG.
  • the anchor radio base station 310A controls the control signal (TA for adjusting the timing at which the UE 10 transmits the uplink signal so that the timing at which the uplink signal is received from the UE 10 is adjusted to a desired timing. ) To the UE 10. As a result, as shown in FIG. 6, in the anchor radio base station 310A, the timing of receiving the uplink signal from the UE 10 is aligned with the desired timing.
  • non-anchor base station 310B 1 and non-anchor base station 310B 2 as shown in FIG. 6, remains timing of receiving the uplink signal from the UE10 is shifted from a desired timing.
  • the non-anchor radio base station 310B 1 and the non-anchor radio base station 310B 2 measure the reception quality of the uplink signal received from the UE 10. Subsequently, non-anchor base station 310B 1 and non-anchor base station 310B 2 notifies the measured reception quality to the anchor radio base station 310A.
  • the anchor radio base station 310A is a radio base station configured by radio base stations performing cooperative reception processing in the uplink based on the reception quality notified from the non-anchor radio base station 310B 1 and the non-anchor radio base station 310B 2 It is determined whether or not the non-anchor radio base station 310B is excluded from the group.
  • the anchor radio base station 310A excludes from the radio base station group the non-anchor radio base station 310B that measures (notifies) the reception quality whose difference with respect to the best reception quality exceeds the first threshold.
  • the best reception quality is the best reception quality among the reception quality measured by the anchor radio base station 310A and the reception quality measured by the non-anchor radio base station 310B.
  • the anchor radio base station 310A excludes the non-anchor radio base station 310B that measures (notifies) the reception quality below the second threshold from the radio base station group.
  • the anchor radio base station 310A may exclude the non-anchor radio base station 310B that satisfies both the first technique condition and the second technique condition from the radio base station group.
  • the anchor radio base station 310A may exclude the non-anchor radio base station 310B that satisfies either the condition of the first technique or the condition of the second technique from the radio base station group.
  • the reception quality is, for example, SINR (Signal to Interference Ratio), C / I (Carrier to Interference), reception level, and the like of the uplink signal transmitted from the UE 10.
  • the uplink signal whose reception quality is to be measured is, for example, DM RS (Demodulation Reference Signal) or SRS (Sounding Reference Signal).
  • DM RS is a reference signal used for demodulation of PUSCH.
  • SRS is a reference signal distributed over the entire uplink band.
  • FIG. 7 is a block diagram showing an anchor radio base station 310A according to the first embodiment.
  • the anchor radio base station 310A includes a reception unit 313A, a transmission unit 314A, an interface 315A, and a control unit 316A.
  • the receiving unit 313A receives an uplink signal from the UE 10 connected to the cell managed by the anchor radio base station 310A.
  • the reception unit 313A receives an uplink signal via an uplink shared channel (PUSCH).
  • PUSCH uplink shared channel
  • the transmission unit 314A transmits a downlink signal to the UE 10 connected to the cell managed by the anchor radio base station 310A.
  • the transmission unit 314A transmits to the UE 10 a control signal (TA) for adjusting the timing at which the UE 10 transmits the uplink signal so that the timing at which the uplink signal is received from the UE 10 is adjusted to a desired timing.
  • TA control signal
  • the transmission unit 314A transmits radio resources (scheduling information) allocated by the anchor radio base station 310A to the UE 10 that uses the anchor radio base station 310A as a serving base station (serving cell).
  • the interface 315A is an interface that communicates with other radio base stations via a backhaul network.
  • the interface 315A is an X2 interface that directly connects wireless base stations.
  • the interface 315A is an S1 interface that connects wireless base stations to each other via an upper node (for example, the MME 130).
  • the interface 315A indicates the reception quality measured by the non-anchor radio base station 310B (reception quality of the uplink signal received by the non-anchor radio base station 310B from the UE 10) via the backhaul network. Obtained from the non-anchor radio base station 310B.
  • the interface 315A receives an uplink signal (PUSCH) received by the non-anchor radio base station 310B from the non-anchor radio base station 310B via the backhaul network.
  • PUSCH uplink signal
  • the control unit 316A controls the operation of the anchor radio base station 310A. For example, the control unit 316A performs selective combining of an uplink signal (PUSCH) received from the UE 10 and an uplink signal (PUSCH) received from the non-anchor radio base station 310B.
  • PUSCH uplink signal
  • PUSCH uplink signal
  • control unit 316A performs non-anchor radio transmission from a radio base station group configured by radio base stations that perform cooperative reception processing in the uplink based on the reception quality notified from the non-anchor radio base station 310B. It is determined whether or not to exclude the base station 310B.
  • the control unit 316A excludes the non-anchor radio base station 310B that measures (notifies) the reception quality whose difference with respect to the best reception quality exceeds the first threshold from the radio base station group.
  • the control unit 316A configures an anchor side measurement unit that measures reception quality of the uplink signal received from the UE 10.
  • the best reception quality is the best reception quality among the reception quality measured by the anchor radio base station 310A and the reception quality measured by the non-anchor radio base station 310B.
  • control unit 316A excludes the non-anchor radio base station 310B that measures (notifies) the reception quality below the second threshold from the radio base station group.
  • the reception quality is, for example, SINR (Signal to Interference Ratio), C / I (Carrier to Interference), reception level, and the like of the uplink signal transmitted from the UE 10.
  • the uplink signal whose reception quality is to be measured is, for example, DM RS (Demodulation Reference Signal) or SRS (Sounding Reference Signal).
  • DM RS is a reference signal used for demodulation of PUSCH.
  • SRS is a reference signal distributed over the entire uplink band.
  • FIG. 8 is a block diagram showing the non-anchor radio base station 310B according to the first embodiment.
  • the non-anchor radio base station 310B includes a reception unit 313B, a transmission unit 314B, an interface 315B, and a control unit 316B.
  • the receiving unit 313B receives an uplink signal from the UE 10 connected to a cell managed by the non-anchor radio base station 310B.
  • the reception unit 313B receives an uplink signal via an uplink shared channel (PUSCH).
  • PUSCH uplink shared channel
  • the transmission unit 314B transmits a downlink signal to the UE 10 connected to the cell managed by the non-anchor radio base station 310B.
  • the transmission unit 314B transmits radio resources (scheduling information) allocated by the non-anchor radio base station 310B to the UE 10 that uses the non-anchor radio base station 310B as a serving base station (serving cell).
  • the interface 315B is an interface that communicates with other radio base stations via the backhaul network.
  • the interface 315B is an X2 interface that directly connects wireless base stations.
  • the interface 315B is an S1 interface that connects wireless base stations via an upper node (for example, the MME 130).
  • the interface 315B anchors the reception quality measured by the non-anchor radio base station 310B via the backhaul network (the reception quality of the uplink signal received by the non-anchor radio base station 310B from the UE 10). Notify the radio base station 310A.
  • the interface 315B transmits an uplink signal (PUSCH) received by the non-anchor radio base station 310B to the anchor radio base station 310A via the backhaul network.
  • PUSCH uplink signal
  • the control unit 316B controls the operation of the non-anchor radio base station 310B.
  • the control part 316B comprises the non-anchor side measurement part which measures the reception quality of the said uplink signal received from UE10.
  • the reception quality is, for example, SINR (Signal to Interference Ratio), C / I (Carrier to Interference), reception level, and the like of the uplink signal transmitted from the UE 10.
  • the uplink signal whose reception quality is to be measured is, for example, DM RS (Demodulation Reference Signal) or SRS (Sounding Reference Signal).
  • DM RS is a reference signal used for demodulation of PUSCH.
  • SRS is a reference signal distributed over the entire uplink band.
  • FIGS. 9 and 10 are sequence diagrams showing operations of the mobile communication system 100 according to the first embodiment.
  • the anchor radio base station 310A adjusts the timing at which the UE 10 transmits the uplink signal so that the timing at which the uplink signal is received from the UE 10 is adjusted to a desired timing.
  • the control signal (TA) is transmitted to the UE 10.
  • step 12 the UE 10 adjusts the transmission timing of the uplink signal based on the control signal (TA) received from the anchor radio base station 310A.
  • TA control signal
  • Step 13 the UE 10 transmits an uplink signal (PUSCH) at the timing adjusted in Step 12.
  • the anchor radio base station 310A and the non-anchor radio base station 310B perform cooperative reception processing in the uplink.
  • step 14A the anchor radio base station 310A measures reception quality of an uplink signal (for example, “DM RS” or “SRS”) received from the UE 10.
  • step 14B the non-anchor radio base station 310B measures reception quality of an uplink signal (for example, “DM RS” or “SRS”) received from the UE 10.
  • the non-anchor radio base station 310B receives the reception quality measured by the non-anchor radio base station 310B via the backhaul network (the reception quality of the uplink signal that the non-anchor radio base station 310B receives from the UE 10). To the anchor radio base station 310A.
  • the anchor radio base station 310A determines whether or not the difference between the best reception quality and the reception quality notified from the non-anchor radio base station 310B is larger than the first threshold value.
  • the best reception quality is the best reception quality among the reception quality measured by the anchor radio base station 310A and the reception quality measured by the non-anchor radio base station 310B.
  • the anchor radio base station 310A proceeds to the process of step 17. If the determination result is “NO”, the anchor radio base station 310A ends a series of processing.
  • step 17 the anchor radio base station 310 ⁇ / b> A notifies the non-anchor radio base station 310 ⁇ / b> B that measures (notifies) the reception quality whose difference with respect to the best reception quality exceeds the first threshold to be excluded from the radio base station group. To do.
  • step 14A is omitted in the flow shown in FIG.
  • step 16X is performed.
  • Step 16X the anchor radio base station 310A determines whether or not the reception quality notified from the non-anchor radio base station 310B is lower than the second threshold value.
  • step 17 the anchor radio base station 310A notifies the non-anchor radio base station 310B that measures (notifies) the reception quality below the second threshold to be excluded from the radio base station group. If the determination result is “NO”, the anchor radio base station 310A ends a series of processing.
  • the anchor radio base station 310A determines whether or not the reception quality notified from the non-anchor radio base station 310B is lower than the second threshold.
  • the second method is not limited to this.
  • the non-anchor radio base station 310B may determine whether or not the reception quality of the uplink signal received by the non-anchor radio base station 310B from the UE 10 is below a second threshold value. If the reception quality is below the second threshold, the non-anchor radio base station 310B notifies the anchor radio base station 310A that the reception quality is below the second threshold.
  • the anchor radio base station 310A may exclude the non-anchor radio base station 310B that satisfies both the condition of the first technique and the condition of the second technique from the radio base station group.
  • the anchor radio base station 310A may exclude the non-anchor radio base station 310B that satisfies either the condition of the first technique or the condition of the second technique from the radio base station group.
  • the timing of receiving an uplink signal from the UE 10 is adjusted to a timing desired by the anchor radio base station 310A, and then based on the reception quality notified from the non-anchor radio base station 310B, It is determined whether or not to exclude the radio base station 310B from the radio base station group. Therefore, radio base stations (non-anchor radio base stations 310B) that do not contribute to cooperative reception processing in the uplink can be appropriately excluded from the radio base station group. Furthermore, there is no need to transmit an uplink signal via a backhaul network from a radio base station (non-anchor radio base station 310B) that does not contribute to uplink cooperative reception processing to the anchor radio base station 310A. , Wasteful consumption of backhaul network resources is suppressed.
  • the first threshold is variable. Specifically, the first method and the second method will be described as a method for setting the first threshold.
  • the first threshold is determined according to the best reception quality. Specifically, a smaller value is adopted as the first threshold value as the best reception quality is better. That is, when the reception quality of the uplink signal (PUSCH) is good, a small value is adopted as the first threshold value.
  • PUSCH uplink signal
  • the first threshold value when the best reception quality (SINR) is 10 dB or more, 0 dB is adopted as the first threshold value. That is, the fact that the first threshold is 0 dB means that cooperative reception processing in the uplink is not performed.
  • the best reception quality (SINR) when the best reception quality (SINR) is less than 0 dB, 10 dB is adopted as the first threshold value. That is, the first threshold value is determined so that many non-anchor radio base stations 310B are included in the radio base station group.
  • the first threshold is determined according to the modulation scheme of the uplink signal (PUSCH). Specifically, a lower value is adopted as the first threshold value as the modulation scheme is lower order. That is, when it is assumed that the reception quality of the uplink signal (PUSCH) is good, a small value is adopted as the first threshold value.
  • the modulation method is BPSK
  • 5 dB is adopted as the first threshold value.
  • 10 dB is adopted as the first threshold value.
  • the first threshold value may be determined by a combination of the first method and the second method. In such a case, a smaller value is adopted as the first threshold value as the best reception quality is better and the modulation scheme is lower.
  • the anchor radio base station 310A is generally a serving base station (serving cell) for the UE 10 that is a target of the cooperative reception process in the uplink.
  • the best reception quality is generally the reception quality measured at the anchor radio base station 310A.
  • a program for causing a computer to execute each process performed by the UE 10, the anchor radio base station 310A, and the non-anchor radio base station 310B may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip configured by a memory that stores a program for executing each process performed by the UE 10 and a processor that executes the program stored in the memory may be provided.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the mobile communication system and the mobile communication method according to the present invention can appropriately exclude radio base stations that do not contribute to uplink cooperative reception processing from the radio base station group, they are useful in the mobile communication field. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 非アンカー無線基地局は、無線端末から受信する上りリンク信号の受信品質を測定する非アンカー側測定部と、非アンカー側測定部によって測定された受信品質をアンカー無線基地局に通知する通知部とを備える。アンカー無線基地局は、無線端末から上りリンク信号を受信するタイミングを所望のタイミングに調整するように、無線端末が上りリンク信号を送信するタイミングを調整するための制御信号を無線端末に送信する送信部と、非アンカー無線基地局から通知された受信品質に基づいて、非アンカー無線基地局を無線基地局群から除外するか否かを判定する判定部とを備える。

Description

移動通信システム及び移動通信方法
 本発明は、複数の無線基地局を備える移動通信システム、移動通信システムで用いる移動通信方法に関する。
 従来、複数の無線基地局を備える移動通信システムが知られている。例えば、このような移動通信システムとして、LTE(Long Term Evolution)が知られている。
 ここで、複数の無線基地局が連携して行う処理として、ハンドオーバ、協調受信処理、協調送信処理などが考えられる。協調受信処理及び協調送信処理は、CoMP(Coordinated Multi-Point Operation)などと称される(非特許文献1参照)。例えば、上りリンクにおける協調受信処理においては、複数の無線基地局で受信する上りリンク信号の選択合成が行われる。
 具体的には、複数の無線基地局は、1つのアンカー無線基地局と、残りの非アンカー無線基地局とを含む。非アンカー無線基地局は、バックホール・ネットワークを介して、上りリンク信号をアンカー無線基地局に送信する。アンカー無線基地局は、無線端末から送信される上りリンク信号及び非アンカー無線基地局から受信する上りリンク信号の選択合成を行う。
3GPP技術報告 「TR 36.819 V11.1.0」 2011年12月
 このようなケースにおいて、複数の無線基地局と無線端末との間の同期を取ることが好ましい。しかしながら、上りリンクにおける協調受信処理では、複数の無線基地局に対して無線端末が上りリンク信号を送信するタイミングが同じであるため、複数の無線基地局のそれぞれについて、無線基地局と無線端末との間の同期を取ることができない。
 第1の特徴に係る移動通信システムは、無線端末と通信を行う複数の無線基地局を備える。前記複数の無線基地局は、1つのアンカー無線基地局と前記アンカー無線基地局以外の非アンカー無線基地局とを含む無線基地局群を構成する。前記非アンカー無線基地局は、前記無線端末から受信する上りリンク信号の受信品質を測定する非アンカー側測定部と、前記非アンカー側測定部によって測定された受信品質を前記アンカー無線基地局に通知する通知部とを備える。前記アンカー無線基地局は、前記無線端末から前記上りリンク信号を受信するタイミングを所望のタイミングに調整するように、前記無線端末が前記上りリンク信号を送信するタイミングを調整するための制御信号を前記無線端末に送信する送信部と、前記非アンカー無線基地局から通知された受信品質に基づいて、前記非アンカー無線基地局を前記無線基地局群から除外するか否かを判定する判定部とを備える。
 第2の特徴に係る移動通信方法は、無線端末と通信を行う複数の無線基地局を備える移動通信システムで用いる。前記複数の無線基地局は、1つのアンカー無線基地局と前記アンカー無線基地局以外の非アンカー無線基地局とを含む無線基地局群を構成する。移動通信方法は、前記アンカー無線基地局から前記無線端末に対して、前記無線端末から上りリンク信号を受信するタイミングを所望のタイミングに調整するように、前記無線端末が前記上りリンク信号を送信するタイミングを調整するための制御信号を送信するステップAと、前記非アンカー無線基地局において、前記無線端末から受信する前記上りリンク信号の受信品質を測定するステップBと、前記非アンカー無線基地局から前記アンカー無線基地局に対して、前記ステップBで測定された受信品質を通知するステップCと、前記アンカー無線基地局において、前記非アンカー無線基地局から通知された受信品質に基づいて、前記非アンカー無線基地局を前記無線基地局群から除外するか否かを判定するステップDとを備える。
図1は、第1実施形態に係る移動通信システム100を示す図である。 図2は、第1実施形態に係る無線フレームを示す図である。 図3は、第1実施形態に係る無線リソースを示す図である。 図4は、第1実施形態に係る適用ケースを示す図である。 図5は、第1実施形態に係る適用ケースを示す図である。 図6は、第1実施形態に係る適用ケースを示す図である。 図7は、第1実施形態に係るアンカー無線基地局310Aを示すブロック図である。 図8は、第1実施形態に係る非アンカー無線基地局310Bを示すブロック図である。 図9は、第1実施形態に係る移動通信システム100の動作(第1手法)を示すシーケンス図である。 図10は、第1実施形態に係る移動通信システム100の動作(第2手法)を示すシーケンス図である。 図11は、変更例1に係る第1閾値の設定方法を示す図である。 図12は、変更例1に係る第1閾値の設定方法を示す図である。
 以下において、本発明の実施形態に係る移動通信システムについて、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [実施形態の概要]
 実施形態に係る移動通信システムは、無線端末と通信を行う複数の無線基地局を備える。前記複数の無線基地局は、1つのアンカー無線基地局と前記アンカー無線基地局以外の非アンカー無線基地局とを含む無線基地局群を構成する。前記非アンカー無線基地局は、前記無線端末から受信する前記上りリンク信号の受信品質を測定する非アンカー側測定部と、前記非アンカー側測定部によって測定された受信品質を前記アンカー無線基地局に通知する通知部とを備える。前記アンカー無線基地局は、前記無線端末から上りリンク信号を受信するタイミングを所望のタイミングに調整するように、前記無線端末が前記上りリンク信号を送信するタイミングを調整するための制御信号を前記無線端末に送信する送信部と、前記非アンカー無線基地局から通知された受信品質に基づいて、前記非アンカー無線基地局を前記無線基地局群から除外するか否かを判定する判定部とを備える。
 実施形態では、無線端末から上りリンク信号を受信するタイミングがアンカー無線基地局にとって所望のタイミングに調整された上で、非アンカー無線基地局から通知された受信品質に基づいて、非アンカー無線基地局を無線基地局群から除外するか否かが判定される。従って、上りリンクにおける協調受信処理に寄与しない無線基地局(非アンカー無線基地局)を無線基地局群から適切に除外することができる。さらには、上りリンクにおける協調受信処理に寄与しない無線基地局(非アンカー無線基地局)からアンカー無線基地局に対して、バックホール・ネットワークを介して上りリンク信号を送信する必要がないため、バックホール・ネットワークのリソースの無駄な消費が抑制される。
 [第1実施形態]
 (移動通信システム)
 以下において、第1実施形態に係る移動通信システムについて説明する。図1は、第1実施形態に係る移動通信システム100を示す図である。
 図1に示すように、移動通信システム100は、無線端末10(以下、UE10)と、コアネットワーク50とを含む。また、移動通信システム100は、第1通信システムと第2通信システムとを含む。
 第1通信システムは、例えば、LTE(Long Term Evolution)に対応する通信システムである。第1通信システムは、例えば、基地局110A(以下、MeNB110A)と、ホーム基地局110B(以下、HeNB110B)と、ホーム基地局ゲートウェイ120B(以下、HeNB-GW120B)と、MME130とを有する。
 なお、第1通信システムに対応する無線アクセスネットワーク(E-UTRAN;Evoled Universal Terrestrial Radio Access Network)は、MeNB110A、HeNB110B及びHeNB-GW120Bによって構成される。
 第2通信システムは、例えば、UMTS(Universal Mobile Telecommunication System)に対応する通信システムである。第2通信システムは、基地局210A(以下、MNB210A)と、ホーム基地局210B(以下、HNB210B)と、RNC220Aと、ホーム基地局ゲートウェイ220B(以下、HNB-GW220B)と、SGSN230とを有する。
 なお、第2通信システムに対応する無線アクセスネットワーク(UTRAN;Universal Terrestrial Radio Access Network)は、MNB210A、HNB210B、RNC220A、HNB-GW220Bによって構成される。
 UE10は、第2通信システム或いは第1通信システムと通信を行うように構成された装置(User Equipment)である。例えば、UE10は、MeNB110A及びHeNB110Bと無線通信を行う機能を有する。或いは、UE10は、MNB210A及びHNB210Bと無線通信を行う機能を有する。
 MeNB110Aは、一般セル111Aを管理しており、一般セル111Aに存在するUE10と無線通信を行う装置(evolved NodeB)である。
 HeNB110Bは、特定セル111Bを管理しており、特定セル111Bに存在するUE10と無線通信を行う装置(Home evolved NodeB)である。
 HeNB-GW120Bは、HeNB110Bに接続されており、HeNB110Bを管理する装置(Home evolved NodeB Gateway)である。
 MME130は、MeNB110Aと接続されており、MeNB110Aと無線接続を設定しているUE10の移動性を管理する装置(Mobility Management Entity)である。また、MME130は、HeNB-GW120Bを介してHeNB110Bと接続されており、HeNB110Bと無線接続を設定しているUE10の移動性を管理する装置である。
 MNB210Aは、一般セル211Aを管理しており、一般セル211Aに存在するUE10と無線通信を行う装置(NodeB)である。
 HNB210Bは、特定セル211Bを管理しており、特定セル211Bに存在するUE10と無線通信を行う装置(Home NodeB)である。
 RNC220Aは、MNB210Aに接続されており、一般セル211Aに存在するUE10と無線接続(RRC Connection)を設定する装置(Radio Network Controller)である。
 HNB-GW220Bは、HNB210Bに接続されており、特定セル211Bに存在するUE10と無線接続(RRC Connection)を設定する装置(Home NodeB Gateway)である。
 SGSN230は、パケット交換ドメインにおいてパケット交換を行う装置(Serving GPRS Support Node)である。SGSN230は、コアネットワーク50に設けられる。図1では省略しているが、回線交換ドメインにおいて回線交換を行う装置(MSC;Mobile Switching Center)がコアネットワーク50に設けられていてもよい。
 なお、一般セル及び特定セルは、UE10と無線通信を行う機能として理解すべきである。但し、一般セル及び特定セルは、セルのカバーエリアを示す用語としても用いられる。また、一般セル及び特定セルなどのセルは、セルで用いられる周波数、拡散コード又はタイムスロットなどによって識別される。
 ここで、一般セルのカバーエリアは、特定セルのカバーエリアよりも広い。一般セルは、例えば、通信事業者によって提供されるマクロセルである。特定セルは、例えば、通信事業者以外の第三者によって提供されるフェムトセル又はホームセルである。但し、特定セルは、通信事業者によって提供されるCSG(Closed Subscriber Group)セル又はピコセルであってもよい。
 なお、以下においては、第1通信システムについて主として説明する。但し、以下の記載が第2通信システムに適用されてもよい。
 ここで、第1通信システムでは、下りリンクの多重方式として、OFDMA(Orthogonal Frequency Division Multiple Access)方式が用いられており、上りリンクの多重方式として、SC-FDMA(Single-Carrier Frequency Division Multiple Access)方式が用いられる。
 また、第1通信システムでは、上りリンクのチャネルとして、上りリンク制御チャネル(PUCCH;Physical Uplink Control Channel)及び上りリンク共有チャネル(PUSCH;Physical Uplink Shared Channel)などが存在する。また、下りリンクのチャネルとして、下りリンク制御チャネル(PDCCH;Physical Downlink Control Channel)及び下りリンク共有チャネル(PDSCH;Physical Downlink Shared Channel)などが存在する。
 上りリンク制御チャネルは、制御信号を搬送するチャネルである。制御信号は、例えば、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、SR(Scheduling Request)、ACK/NACKなどである。
 CQIは、下りリンクの伝送に使用すべき推奨変調方式と符号化速度を通知する信号である。PMIは、下りリンクの伝送の為に使用することが望ましいプリコーダマトリックスを示す信号である。RIは、下りリンクの伝送に使用すべきレイヤ数(ストリーム数)を示す信号である。SRは、上りリンク無線リソース(後述するリソースブロック)の割当てを要求する信号である。ACK/NACKは、下りリンクのチャネル(例えば、PDSCH)を介して送信される信号を受信できたか否かを示す信号である。
 上りリンク共有チャネルは、制御信号(上述した制御信号を含む)又は/及びデータ信号を搬送するチャネルである。例えば、上りリンク無線リソースは、データ信号にのみ割当てられてもよく、データ信号及び制御信号が多重されるように割当てられてもよい。
 下りリンク制御チャネルは、制御信号を搬送するチャネルである。制御信号は、例えば、Uplink SI(Scheduling Information)、Downlink SI(Scheduling Information)、TPCビットである。
 Uplink SIは、上りリンク無線リソースの割当てを示す信号である。Downlink SIは、下りリンク無線リソースの割当てを示す信号である。TPCビットは、上りリンクのチャネルを介して送信される信号の電力の増減を指示する信号である。
 下りリンク共有チャネルは、制御信号又は/及びデータ信号を搬送するチャネルである。例えば、下りリンク無線リソースは、データ信号にのみ割当てられてもよく、データ信号及び制御信号が多重されるように割当てられてもよい。
 なお、下りリンク共有チャネルを介して送信される制御信号としては、TA(Timing Advance)が挙げられる。TAは、UE10とMeNB110Aとの間の送信タイミング補正情報であり、UE10から送信される上りリンク信号に基づいてMeNB110Aによって測定される。詳細には、TAは、UE10から上りリンク信号を受信するタイミングを所望のタイミングに調整するように、UE10が上りリンク信号を送信するタイミングを調整するための制御信号の一例である。
 また、下りリンク制御チャネル(PDCCH)、下りリンク共有チャネル(PDSCH)以外のチャネルを介して送信される制御信号としては、ACK/NACKが挙げられる。ACK/NACKは、上りリンクのチャネル(例えば、PUSCH)を介して送信される信号を受信できたか否かを示す信号である。
 なお、一般セル及び特定セルは、報知チャネル(BCCH;Broadcast Control Channel)を介して報知情報を報知する。報知情報は、例えば、MIB(Master Information Block)やSIB(System Information Block)などの情報である。
 (無線フレーム)
 以下において、第1通信システムにおける無線フレームについて説明する。図2は、第1通信システムにおける無線フレームを示す図である。
 図2に示すように、1つの無線フレームは、10のサブフレームによって構成されており、1つのサブフレームは、2つのスロットによって構成される。1つのスロットの時間長は、0.5msecであり、1つのサブフレームの時間長は、1msecであり、1つの無線フレームの時間長は、10msecである。
 なお、1つのスロットは、下りリンクにおいて、複数のOFDMシンボル(例えば、6つのOFDMシンボル或いは7つのOFDMシンボル)によって構成される。同様に、1つのスロットは、上りリンクにおいて、複数のSC-FDMAシンボル(例えば、6つのSC-FDMAシンボル或いは7つのSC-FDMAシンボル)によって構成される。
 (無線リソース)
 以下において、第1通信システムにおける無線リソースについて説明する。図3は、第1通信システムにおける無線リソースを示す図である。
 図3に示すように、無線リソースは、周波数軸及び時間軸によって定義される。周波数は、複数のサブキャリアによって構成されており、所定数のサブキャリア(12のサブキャリア)を纏めてリソースブロック(RB:Resource Block)と称する。時間は、上述したように、OFDMシンボル(又は、SC-FDMAシンボル)、スロット、サブフレーム、無線フレームなどの単位を有する。
 ここで、無線リソースは、1リソースブロック毎に割当て可能である。また、周波数軸及び時間軸上において、複数のユーザ(例えば、ユーザ#1~ユーザ#5)に対して分割して無線リソースを割当てることが可能である。
 また、無線リソースは、MeNB110Aによって割当てられる。MeNB110Aは、CQI、PMI、RIなどに基づいて、各UE10に割当てられる。
 (適用シーン)
 以下において、第1実施形態に係る適用シーンについて説明する。図4は、第1実施形態に係る適用シーンを説明するための図である。図4では、1つのアンカー無線基地局310A及び複数の非アンカー無線基地局310Bが無線基地局として設けられるケースについて例示する。アンカー無線基地局310A及び非アンカー無線基地局310Bは、UE10から送信される上りリンク信号を協調して受信する無線基地局群(CoMPセット)を構成する。
 図4に示すように、UE10は、アンカー無線基地局310A及び非アンカー無線基地局310Bに対して、上りリンク信号を送信する。UE10から送信される上りリンク信号は、符号化されていることに留意すべきである。例えば、UE10から送信される上りリンク信号は、例えば、上述した上りリンク共有チャネル(PUSCH)を介して送信される。
 ここで、非アンカー無線基地局310Bは、バックホール・ネットワークを介して、上りリンク信号をアンカー無線基地局310Aに送信する。アンカー無線基地局310Aは、UE10から送信される上りリンク信号及び非アンカー無線基地局310Bから受信する上りリンク信号の選択合成を行う。
 バックホール・ネットワークは、無線基地局同士を直接的に接続するX2インタフェースであってもよく、無線基地局同士を上位ノード(例えば、MME130)経由で接続するS1インタフェースであってもよい。
 アンカー無線基地局310A及び非アンカー無線基地局310Bは、無線基地局であればよい。すなわち、第1実施形態において、アンカー無線基地局310A及び非アンカー無線基地局310Bは、MeNB110A、HeNB110B、MNB210A及びHNB210Bのいずれかである。
 ここで、非アンカー無線基地局310Bとして、非アンカー無線基地局310B及び非アンカー無線基地局310Bが設けられるケースについて、図5及び図6を参照しながら説明する。
 このようなケースにおいて、UE10から受信する上りリンク信号の受信タイミングと所望の受信タイミングとのずれ(すなわち、TA;Timing Advance)は、図5に示すように、無線基地局毎に異なる。
 第1実施形態では、アンカー無線基地局310Aは、UE10から上りリンク信号を受信するタイミングを所望のタイミングに調整するように、UE10が上りリンク信号を送信するタイミングを調整するための制御信号(TA)をUE10に送信する。これによって、図6に示すように、アンカー無線基地局310Aにおいては、UE10から上りリンク信号を受信するタイミングが所望のタイミングに揃う。
 一方で、非アンカー無線基地局310B及び非アンカー無線基地局310Bにおいては、図6に示すように、UE10から上りリンク信号を受信するタイミングが所望のタイミングからずれたままである。このようなケースにおいて、非アンカー無線基地局310B及び非アンカー無線基地局310Bは、UE10から受信する上りリンク信号の受信品質を測定する。続いて、非アンカー無線基地局310B及び非アンカー無線基地局310Bは、測定された受信品質をアンカー無線基地局310Aに通知する。
 アンカー無線基地局310Aは、非アンカー無線基地局310B及び非アンカー無線基地局310Bから通知された受信品質に基づいて、上りリンクにおける協調受信処理を行う無線基地局によって構成される無線基地局群から非アンカー無線基地局310Bを除外するか否かを判定する。
 第1手法としては、アンカー無線基地局310Aは、最良受信品質に対する差異が第1閾値を超える受信品質を測定(通知)する非アンカー無線基地局310Bを無線基地局群から除外する。最良受信品質は、アンカー無線基地局310Aによって測定された受信品質及び非アンカー無線基地局310Bによって測定された受信品質のうち、最も良好な受信品質である。
 第2手法として、アンカー無線基地局310Aは、第2閾値を下回る受信品質を測定(通知)する非アンカー無線基地局310Bを無線基地局群から除外する。
 第1実施形態において、アンカー無線基地局310Aは、第1手法の条件及び第2手法の条件の双方を満たす非アンカー無線基地局310Bを無線基地局群から除外してもよい。或いは、アンカー無線基地局310Aは、第1手法の条件及び第2手法の条件のいずれかを満たす非アンカー無線基地局310Bを無線基地局群から除外してもよい。
 ここで、受信品質は、例えば、UE10から送信される上りリンク信号のSINR(Signal to Interference Ratio)、C/I(Carrier to Interference)、受信レベルなどである。受信品質を測定すべき上りリンク信号は、例えば、DM RS(Demodulation Reference Signal)又はSRS(Sounding Reference Signal)である。DM RSは、PUSCHの復調に用いる参照信号である。SRSは、上りリンクの帯域全体に亘って分散される参照信号である。
 (アンカー無線基地局)
 以下において、第1実施形態に係るアンカー無線基地局について説明する。図7は、第1実施形態に係るアンカー無線基地局310Aを示すブロック図である。
 図7に示すように、アンカー無線基地局310Aは、受信部313Aと、送信部314Aと、インタフェース315Aと、制御部316Aとを有する。
 受信部313Aは、アンカー無線基地局310Aによって管理されるセルと接続されたUE10から上りリンク信号を受信する。受信部313Aは、例えば、上りリンク共有チャネル(PUSCH)を介して上りリンク信号を受信する。
 送信部314Aは、アンカー無線基地局310Aによって管理されるセルと接続されたUE10に下りリンク信号を送信する。送信部314Aは、UE10から上りリンク信号を受信するタイミングを所望のタイミングに調整するように、UE10が上りリンク信号を送信するタイミングを調整するための制御信号(TA)をUE10に送信する送信部を構成する。送信部314Aは、アンカー無線基地局310Aをサービング基地局(サービングセル)として利用するUE10に対して、アンカー無線基地局310Aによって割当てられた無線リソース(スケジューリング情報)を送信する。
 インタフェース315Aは、バックホール・ネットワーク経由で他の無線基地局と通信を行うインタフェースである。インタフェース315Aは、無線基地局同士を直接的に接続するX2インタフェースである。或いは、インタフェース315Aは、無線基地局同士を上位ノード(例えば、MME130)経由で接続するS1インタフェースである。
 第1実施形態において、インタフェース315Aは、バックホール・ネットワークを介して、非アンカー無線基地局310Bによって測定された受信品質(非アンカー無線基地局310BがUE10から受信する上りリンク信号の受信品質)を非アンカー無線基地局310Bから取得する。インタフェース315Aは、バックホール・ネットワークを介して、非アンカー無線基地局310Bが受信する上りリンク信号(PUSCH)を非アンカー無線基地局310Bから受信する。
 制御部316Aは、アンカー無線基地局310Aの動作を制御する。例えば、制御部316Aは、UE10から受信する上りリンク信号(PUSCH)及び非アンカー無線基地局310Bから受信する上りリンク信号(PUSCH)の選択合成を行う。
 第1実施形態において、制御部316Aは、非アンカー無線基地局310Bから通知された受信品質に基づいて、上りリンクにおける協調受信処理を行う無線基地局によって構成される無線基地局群から非アンカー無線基地局310Bを除外するか否かを判定する。
 第1手法としては、制御部316Aは、最良受信品質に対する差異が第1閾値を超える受信品質を測定(通知)する非アンカー無線基地局310Bを無線基地局群から除外する。第1手法において、制御部316Aは、UE10から受信する前記上りリンク信号の受信品質を測定するアンカー側測定部を構成する。
 なお、最良受信品質は、上述したように、アンカー無線基地局310Aによって測定された受信品質及び非アンカー無線基地局310Bによって測定された受信品質のうち、最も良好な受信品質である。
 第2手法として、制御部316Aは、第2閾値を下回る受信品質を測定(通知)する非アンカー無線基地局310Bを無線基地局群から除外する。
 上述したように、受信品質は、例えば、UE10から送信される上りリンク信号のSINR(Signal to Interference Ratio)、C/I(Carrier to Interference)、受信レベルなどである。受信品質を測定すべき上りリンク信号は、例えば、DM RS(Demodulation Reference Signal)又はSRS(Sounding Reference Signal)である。DM RSは、PUSCHの復調に用いる参照信号である。SRSは、上りリンクの帯域全体に亘って分散される参照信号である。
 (非アンカー無線基地局)
 以下において、第1実施形態に係る非アンカー無線基地局について説明する。図8は、第1実施形態に係る非アンカー無線基地局310Bを示すブロック図である。
 図8に示すように、非アンカー無線基地局310Bは、受信部313Bと、送信部314Bと、インタフェース315Bと、制御部316Bとを有する。
 受信部313Bは、非アンカー無線基地局310Bによって管理されるセルと接続されたUE10から上りリンク信号を受信する。受信部313Bは、例えば、上りリンク共有チャネル(PUSCH)を介して上りリンク信号を受信する。
 送信部314Bは、非アンカー無線基地局310Bによって管理されるセルと接続されたUE10に下りリンク信号を送信する。送信部314Bは、非アンカー無線基地局310Bをサービング基地局(サービングセル)として利用するUE10に対して、非アンカー無線基地局310Bによって割当てられた無線リソース(スケジューリング情報)を送信する。
 インタフェース315Bは、バックホール・ネットワーク経由で他の無線基地局と通信を行うインタフェースである。インタフェース315Bは、無線基地局同士を直接的に接続するX2インタフェースである。或いは、インタフェース315Bは、無線基地局同士を上位ノード(例えば、MME130)経由で接続するS1インタフェースである。
 第1実施形態において、インタフェース315Bは、バックホール・ネットワークを介して非アンカー無線基地局310Bによって測定された受信品質(非アンカー無線基地局310BがUE10から受信する上りリンク信号の受信品質)をアンカー無線基地局310Aに通知する。インタフェース315Bは、バックホール・ネットワークを介して、非アンカー無線基地局310Bが受信する上りリンク信号(PUSCH)をアンカー無線基地局310Aに送信する。
 制御部316Bは、非アンカー無線基地局310Bの動作を制御する。第1実施形態において、制御部316Bは、UE10から受信する前記上りリンク信号の受信品質を測定する非アンカー側測定部を構成する。
 上述したように、受信品質は、例えば、UE10から送信される上りリンク信号のSINR(Signal to Interference Ratio)、C/I(Carrier to Interference)、受信レベルなどである。受信品質を測定すべき上りリンク信号は、例えば、DM RS(Demodulation Reference Signal)又はSRS(Sounding Reference Signal)である。DM RSは、PUSCHの復調に用いる参照信号である。SRSは、上りリンクの帯域全体に亘って分散される参照信号である。
 (移動通信システムの動作)
 以下において、第1実施形態に係る移動通信システムの動作について説明する。図9及び図10は、第1実施形態に係る移動通信システム100の動作を示すシーケンス図である。
 第1に、最良受信品質に対する差異が第1閾値を超える受信品質を測定(通知)する非アンカー無線基地局310Bを無線基地局群から除外する第1手法について、図9を参照しながら説明する。
 図9に示すように、ステップ11において、アンカー無線基地局310Aは、UE10から上りリンク信号を受信するタイミングを所望のタイミングに調整するように、UE10が上りリンク信号を送信するタイミングを調整するための制御信号(TA)をUE10に送信する。
 ステップ12において、UE10は、アンカー無線基地局310Aから受信する制御信号(TA)に基づいて、上りリンク信号の送信タイミングを調整する。
 ステップ13において、UE10は、ステップ12で調整されたタイミングで上りリンク信号(PUSCH)を送信する。ここで、アンカー無線基地局310A及び非アンカー無線基地局310Bは、上りリンクにおける協調受信処理を行っている。
 ステップ14Aにおいて、アンカー無線基地局310Aは、UE10から受信する上りリンク信号(例えば、“DM RS”又は“SRS”)の受信品質を測定する。同様に、ステップ14Bにおいて、非アンカー無線基地局310Bは、UE10から受信する上りリンク信号(例えば、“DM RS”又は“SRS”)の受信品質を測定する。
 ステップ15において、非アンカー無線基地局310Bは、バックホール・ネットワークを介して非アンカー無線基地局310Bによって測定された受信品質(非アンカー無線基地局310BがUE10から受信する上りリンク信号の受信品質)をアンカー無線基地局310Aに通知する。
 ステップ16において、アンカー無線基地局310Aは、最良受信品質と非アンカー無線基地局310Bから通知される受信品質との差異が第1閾値よりも大きいか否かを判定する。なお、最良受信品質は、上述したように、アンカー無線基地局310Aによって測定された受信品質及び非アンカー無線基地局310Bによって測定された受信品質のうち、最も良好な受信品質である。
 判定結果が“YES”である場合には、アンカー無線基地局310Aは、ステップ17の処理に移る。判定結果が“NO”である場合には、アンカー無線基地局310Aは、一連の処理を終了する。
 ステップ17において、アンカー無線基地局310Aは、最良受信品質に対する差異が第1閾値を超える受信品質を測定(通知)する非アンカー無線基地局310Bに対して、無線基地局群から除外する旨を通知する。
 第2に、第2閾値を下回る受信品質を測定(通知)する非アンカー無線基地局310Bを無線基地局群から除外する第2手法について、図10を参照しながら説明する。図10において、図9と同様の処理については、同様の符号を付している。従って、図9と同様の処理の説明については省略する。
 図9に示すフローと比べて、図10に示すフローでは、ステップ14Aの処理が省略されている。また、ステップ16の処理に代えて、ステップ16Xの処理が行われる。
 ステップ16Xにおいて、アンカー無線基地局310Aは、非アンカー無線基地局310Bから通知される受信品質が第2閾値を下回っているか否かを判定する。
 判定結果が“YES”である場合には、アンカー無線基地局310Aは、ステップ17の処理に移る。すなわち、ステップ17において、アンカー無線基地局310Aは、第2閾値を下回る受信品質を測定(通知)する非アンカー無線基地局310Bに対して、無線基地局群から除外する旨を通知する。判定結果が“NO”である場合には、アンカー無線基地局310Aは、一連の処理を終了する。
 第2手法では、アンカー無線基地局310Aは、非アンカー無線基地局310Bから通知される受信品質が第2閾値を下回っているか否かを判定する。しかしながら、第2手法は、これに限定されるものではない。具体的には、非アンカー無線基地局310Bは、非アンカー無線基地局310BがUE10から受信する上りリンク信号の受信品質が第2閾値を下回っているか否かを判定してもよい。非アンカー無線基地局310Bは、受信品質が第2閾値を下回っている場合には、受信品質が第2閾値を下回っている旨をアンカー無線基地局310Aに通知する。
 図9及び図10では、第1手法及び第2手法を別々に説明したが、実施形態は、これに限定されるものではない。例えば、アンカー無線基地局310Aは、第1手法の条件及び第2手法の条件の双方を満たす非アンカー無線基地局310Bを無線基地局群から除外してもよい。或いは、アンカー無線基地局310Aは、第1手法の条件及び第2手法の条件のいずれかを満たす非アンカー無線基地局310Bを無線基地局群から除外してもよい。
 (作用及び効果)
 第1実施形態では、UE10から上りリンク信号を受信するタイミングがアンカー無線基地局310Aにとって所望のタイミングに調整された上で、非アンカー無線基地局310Bから通知された受信品質に基づいて、非アンカー無線基地局310Bを無線基地局群から除外するか否かが判定される。従って、上りリンクにおける協調受信処理に寄与しない無線基地局(非アンカー無線基地局310B)を無線基地局群から適切に除外することができる。さらには、上りリンクにおける協調受信処理に寄与しない無線基地局(非アンカー無線基地局310B)からアンカー無線基地局310Aに対して、バックホール・ネットワークを介して上りリンク信号を送信する必要がないため、バックホール・ネットワークのリソースの無駄な消費が抑制される。
 [変更例1]
 以下において、第1実施形態の変更例1について説明する。以下においては、第1実施形態に対する相違点について主として説明する。
 第1実施形態では特に触れていないが、変更例1では、第1閾値が可変である。具体的には、第1閾値を設定する手法として、第1手法及び第2手法について説明する。
 第1手法では、図11に示すように、第1閾値は、最良受信品質に応じて定められる。具体的には、最良受信品質が良好であるほど、第1閾値として小さな値が採用される。すなわち、上りリンク信号(PUSCH)の受信品質が良好である場合に、第1閾値として小さな値が採用される。
 例えば、最良受信品質(SINR)が10dB以上である場合には、第1閾値として0dBが採用される。すなわち、第1閾値が0dBであるということは、上りリンクにおける協調受信処理が行われないことを意味する。一方で、最良受信品質(SINR)が0dB未満である場合には、第1閾値として10dBが採用される。すなわち、多くの非アンカー無線基地局310Bが無線基地局群に含まれるように第1閾値が定められる。
 第2手法では、図12に示すように、第1閾値は、上りリンク信号(PUSCH)の変調方式に応じて定められる。具体的には、変調方式が低次であるほど、第1閾値として小さな値が採用される。すなわち、上りリンク信号(PUSCH)の受信品質が良好であると想定される場合に、第1閾値として小さな値が採用される。
 例えば、変調方式がBPSKである場合には、第1閾値として5dBが採用される。一方で、変調方式が16QAM以上である場合には、第1閾値として10dBが採用される。
 第1閾値は、第1手法及び第2手法の組合せによって定められてもよい。このようなケースでは、最良受信品質が良好であるほど、かつ、変調方式が低次であるほど、第1閾値として小さな値が採用される。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では特に触れていないが、アンカー無線基地局310Aは、一般的には、上りリンクにおける協調受信処理の対象とされるUE10にとってサービング基地局(サービングセル)である。また、UE10から上りリンク信号を受信するタイミングが所望のタイミングに調整されるため、最良受信品質は、一般的には、アンカー無線基地局310Aにおいて測定される受信品質である。
 上述した実施形態では特に触れていないが、UE10、アンカー無線基地局310A及び非アンカー無線基地局310Bが行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 或いは、UE10が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップが提供されてもよい。
 上述した実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、米国仮出願第61/724393号(2012年11月9日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る移動通信システム及び移動通信方法は、上りリンクにおける協調受信処理に寄与しない無線基地局を無線基地局群から適切に除外することができるため、移動通信分野において有用である。

Claims (6)

  1.  無線端末と通信を行う複数の無線基地局を備える移動通信システムであって、
     前記複数の無線基地局は、1つのアンカー無線基地局と前記アンカー無線基地局以外の非アンカー無線基地局とを含む無線基地局群を構成しており、
     前記非アンカー無線基地局は、
      前記無線端末から受信する上りリンク信号の受信品質を測定する非アンカー側測定部と、
      前記非アンカー側測定部によって測定された受信品質を前記アンカー無線基地局に通知する通知部とを備え、
     前記アンカー無線基地局は、
      前記無線端末から前記上りリンク信号を受信するタイミングを所望のタイミングに調整するように、前記無線端末が前記上りリンク信号を送信するタイミングを調整するための制御信号を前記無線端末に送信する送信部と、
      前記非アンカー無線基地局から通知された受信品質に基づいて、前記非アンカー無線基地局を前記無線基地局群から除外するか否かを判定する判定部とを備えることを特徴とする移動通信システム。
  2.  前記アンカー無線基地局は、前記無線端末から受信する前記上りリンク信号の受信品質を測定するアンカー側測定部を備え、
     前記判定部は、前記アンカー側測定部によって測定された受信品質及び前記非アンカー側測定部によって測定された受信品質に含まれる最良の受信品質に対する差異が第1閾値を超える受信品質を測定する非アンカー無線基地局を前記無線基地局群から除外すると判定することを特徴とする請求項1に記載の移動通信システム。
  3.  前記判定部は、前記非アンカー側測定部によって測定された受信品質が第2閾値を下回る受信品質を測定する非アンカー無線基地局を前記無線基地局群から除外すると判定することを特徴とする請求項1に記載の移動通信システム。
  4.  前記第1閾値は、前記最良の受信品質に応じて定められることを特徴とする請求項2に記載の移動通信システム。
  5.  前記第1閾値は、前記上りリンク信号の変調方式に応じて定められることを特徴とする請求項2に記載の移動通信システム。
  6.  無線端末と通信を行う複数の無線基地局を備える移動通信システムで用いる移動通信方法であって、
     前記複数の無線基地局は、1つのアンカー無線基地局と前記アンカー無線基地局以外の非アンカー無線基地局とを含む無線基地局群を構成しており、
     前記アンカー無線基地局から前記無線端末に対して、前記無線端末から上りリンク信号を受信するタイミングを所望のタイミングに調整するように、前記無線端末が前記上りリンク信号を送信するタイミングを調整するための制御信号を送信するステップAと、
     前記非アンカー無線基地局において、前記無線端末から受信する前記上りリンク信号の受信品質を測定するステップBと、
     前記非アンカー無線基地局から前記アンカー無線基地局に対して、前記ステップBで測定された受信品質を通知するステップCと、
     前記アンカー無線基地局において、前記非アンカー無線基地局から通知された受信品質に基づいて、前記非アンカー無線基地局を前記無線基地局群から除外するか否かを判定するステップDとを備えることを特徴とする移動通信方法。
PCT/JP2013/079928 2012-11-09 2013-11-05 移動通信システム及び移動通信方法 WO2014073540A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014545715A JP6140183B2 (ja) 2012-11-09 2013-11-05 移動通信システム、移動通信方法及びアンカー無線基地局
US14/441,816 US20150312871A1 (en) 2012-11-09 2013-11-05 Mobile communication system and mobile communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261724393P 2012-11-09 2012-11-09
US61/724,393 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014073540A1 true WO2014073540A1 (ja) 2014-05-15

Family

ID=50684643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079928 WO2014073540A1 (ja) 2012-11-09 2013-11-05 移動通信システム及び移動通信方法

Country Status (3)

Country Link
US (1) US20150312871A1 (ja)
JP (1) JP6140183B2 (ja)
WO (1) WO2014073540A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082711A1 (zh) * 2014-11-26 2016-06-02 电信科学技术研究院 一种移动通信方法、设备及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157997A1 (zh) * 2014-04-18 2015-10-22 华为技术有限公司 空间流的确定方法、基站和用户设备
JP6998860B2 (ja) * 2016-04-08 2022-01-18 株式会社Nttドコモ 基地局、無線通信システム及び送信制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016489A1 (ja) * 2009-08-06 2011-02-10 シャープ株式会社 通信システム、通信方法及び基地局
JP2012525102A (ja) * 2009-04-27 2012-10-18 アルカテル−ルーセント 無線通信ネットワークにおけるアップリンク通信

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4324751B2 (ja) * 1999-07-07 2009-09-02 ソニー株式会社 通信チャンネル選択方法および無線ネットワーク装置
US6862271B2 (en) * 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US8711773B2 (en) * 2008-09-05 2014-04-29 Blackberry Limited Multi-carrier operation for wireless systems
TW200529605A (en) * 2004-02-20 2005-09-01 Airgo Networks Inc Adaptive packet detection for detecting packets in a wireless medium
GB2409953B (en) * 2004-07-09 2006-08-30 Compxs Uk Ltd Clear channel assessment
KR101314611B1 (ko) * 2007-01-30 2013-10-07 엘지전자 주식회사 주파수 선택성에 따른 mcs 인덱스 선택 방법, 장치, 및이를 위한 통신 시스템
KR20080073196A (ko) * 2007-02-05 2008-08-08 엘지전자 주식회사 Mimo 시스템에서 효율적인 채널 품질 정보 전송 방법
US8243634B2 (en) * 2007-03-07 2012-08-14 Telefonaktiebolaget L M Ericsson (Publ) Random access in time division duplex communication systems
US8331308B1 (en) * 2007-11-09 2012-12-11 Research In Motion Limited Systems and methods for network MIMO
US9485704B2 (en) * 2008-04-03 2016-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for handling handover related parameters in a mobile communications network
FR2942684B1 (fr) * 2009-02-27 2012-12-28 Commissariat Energie Atomique Methode de signalisation de la qualite d'un canal de transmission.
US9137764B2 (en) * 2009-03-17 2015-09-15 Htc Corporation Method of managing timing alignment functionality for multiple component carriers and related communication device
US8483707B2 (en) * 2009-06-26 2013-07-09 Motorola Mobility Llc Wireless terminal and method for managing the receipt of position reference singals for use in determining a location
KR101615235B1 (ko) * 2009-09-09 2016-04-25 엘지전자 주식회사 MU-MIMO 방식을 지원하는 무선 통신 시스템에서 CoMP 동작에서의 참조신호 송수신 방법 및 이를 이용하는 단말 장치와 기지국 장치
KR101567831B1 (ko) * 2009-09-30 2015-11-10 엘지전자 주식회사 무선 통신 시스템에서의 CoMP 피드백 정보를 전송하기 위한 방법 및 단말 장치
BR112012012086A2 (pt) * 2009-11-19 2017-10-03 Interdigital Patent Holdings Inc Ativação/desativação de portadoras componentes em sistemas com múltiplas portadoras
KR101612302B1 (ko) * 2009-11-24 2016-04-14 삼성전자주식회사 무선통신 시스템에서 협력통신을 수행하기 위한 방법 및 장치
US9402255B2 (en) * 2010-09-30 2016-07-26 Panasonic Intellectual Property Corporation Of America Timing advance configuration for multiple uplink component carriers
US9131363B2 (en) * 2010-11-16 2015-09-08 Lg Electronics Inc. Carrier aggregation management and related device and system
KR20120083651A (ko) * 2011-01-18 2012-07-26 삼성전자주식회사 여러 다른 종류로 이루어진 네트워크에서 네트워크 진입을 위한 방법 및 장치
US9198069B2 (en) * 2011-02-09 2015-11-24 Broadcom Corporation Priority measurement rules for channel measurement occasions
KR102073027B1 (ko) * 2011-04-05 2020-02-04 삼성전자 주식회사 반송파 집적 기술을 사용하는 무선통신시스템에서 복수 개의 타임 정렬 타이머 운용 방법 및 장치
EP2684402B1 (en) * 2011-03-08 2020-02-05 Panasonic Intellectual Property Corporation of America Propagation delay difference reporting for multiple component carriers
WO2012129806A1 (en) * 2011-03-31 2012-10-04 Renesas Mobile Corporation Method and apparatus for facilitating device-to-device communication
JP5760685B2 (ja) * 2011-05-20 2015-08-12 ソニー株式会社 通信制御装置、通信制御方法、プログラムおよび通信システム
JP2012244477A (ja) * 2011-05-20 2012-12-10 Sony Corp 通信制御装置、通信制御方法、プログラムおよび通信システム
US20130084850A1 (en) * 2011-10-03 2013-04-04 Renesas Mobile Corporation Prioritizing Radio Access Technologies For Measurement
KR20130045169A (ko) * 2011-10-24 2013-05-03 주식회사 팬택 다중 요소 반송파 시스템에서 상향링크 동기의 수행장치 및 방법
EP2806684A4 (en) * 2012-01-19 2015-08-12 Kyocera Corp BASIC STATION AND COMMUNICATION CONTROL PROCEDURE
US9641295B2 (en) * 2012-01-19 2017-05-02 Kyocera Corporation Mobile communication system, base station and communication control method
US8879518B2 (en) * 2012-02-08 2014-11-04 Acer Incorporated Method of timing reference management
US9755813B2 (en) * 2012-03-15 2017-09-05 Lg Electronics Inc. Method and apparatus for controlling deactivation timer of cell included in tag
US9320059B2 (en) * 2012-03-18 2016-04-19 Lg Electronics Inc. Method and device for managing tag of cell in communication system
US8886236B2 (en) * 2012-07-31 2014-11-11 Aruba Networks, Inc. Method and system for using a minimum sensitivity threshold for receiving wireless signals
CN104521273A (zh) * 2012-08-07 2015-04-15 瑞典爱立信有限公司 多载波系统中用于控制中断和测量性能的方法和装置
KR101708574B1 (ko) * 2012-08-23 2017-02-20 인터디지탈 패튼 홀딩스, 인크 무선 시스템에서의 다중 스케줄러들을 이용한 동작
KR102018057B1 (ko) * 2013-02-25 2019-09-04 한국전자통신연구원 중첩 셀 환경에서의 조정 다중점 송수신 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525102A (ja) * 2009-04-27 2012-10-18 アルカテル−ルーセント 無線通信ネットワークにおけるアップリンク通信
WO2011016489A1 (ja) * 2009-08-06 2011-02-10 シャープ株式会社 通信システム、通信方法及び基地局

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082711A1 (zh) * 2014-11-26 2016-06-02 电信科学技术研究院 一种移动通信方法、设备及系统

Also Published As

Publication number Publication date
JP6140183B2 (ja) 2017-05-31
JPWO2014073540A1 (ja) 2016-09-08
US20150312871A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP6174285B1 (ja) 移動通信方法及び無線基地局
JP5851583B2 (ja) 移動通信システム、移動通信方法、無線基地局、及び無線端末
JP5947877B2 (ja) 移動通信システム、移動通信方法及び無線基地局
JP6140183B2 (ja) 移動通信システム、移動通信方法及びアンカー無線基地局
JP5736054B2 (ja) 一般基地局
US10154478B2 (en) Mobile communication system and mobile communication method
WO2014017504A1 (ja) 移動通信システム、移動通信システムで用いる移動通信方法
JP5872679B2 (ja) 移動通信システム、移動通信方法及び無線基地局
JP5329723B2 (ja) 移動通信方法、移動端末、無線基地局及びプログラム
US10051491B2 (en) Mobile communication system and mobile communication method
JP5883021B2 (ja) 移動通信方法及び基地局
JP5947878B2 (ja) 移動通信システム、移動通信方法、無線基地局及び無線端末
WO2013065844A1 (ja) 移動通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545715

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14441816

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853591

Country of ref document: EP

Kind code of ref document: A1