WO2014073392A1 - Powder for use in formation of sprayed layer - Google Patents

Powder for use in formation of sprayed layer Download PDF

Info

Publication number
WO2014073392A1
WO2014073392A1 PCT/JP2013/078902 JP2013078902W WO2014073392A1 WO 2014073392 A1 WO2014073392 A1 WO 2014073392A1 JP 2013078902 W JP2013078902 W JP 2013078902W WO 2014073392 A1 WO2014073392 A1 WO 2014073392A1
Authority
WO
WIPO (PCT)
Prior art keywords
cermet
sprayed layer
powder
weight
layer
Prior art date
Application number
PCT/JP2013/078902
Other languages
French (fr)
Japanese (ja)
Inventor
太一 中道
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to CN201380058636.5A priority Critical patent/CN104781441B/en
Publication of WO2014073392A1 publication Critical patent/WO2014073392A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ

Definitions

  • the present invention relates to a thermal spray layer forming powder, a cermet thermal spray layer, a cermet coating material, and a method for producing the cermet coating material.
  • a processing method in which a coating is formed by spraying an alloy powder or the like on the surface of the base material by a thermal spraying method.
  • a thermal spraying method is widely applied to various members because it can be carried out relatively easily.
  • it is industrially effective as an effective method for partially imparting corrosion resistance and wear resistance to the surface of a substrate. It is used in various fields.
  • Ni-based self-fluxing alloys, Co-based stellite alloys, and the like are used as alloy powder materials for forming a film on a substrate by a thermal spraying method because of excellent adhesion to the substrate. It has been.
  • a thermal spray layer is formed by thermal spraying, the thermal spray layer is heated and subjected to fusing treatment (melting treatment), whereby the thermal spray layer is melted and thermally diffused with the base material. It is known that the adhesion to the material is further improved.
  • Ni-based self-fluxing alloys and Co-based stellite alloys have excellent adhesion to the substrate, there is a problem that the corrosion resistance and wear resistance of the sprayed layer are insufficient.
  • Patent Document 1 discloses a technique for improving corrosion resistance and wear resistance by using a cermet material containing a Mo 2 NiB 2 type double boride as a powder material used in a thermal spraying method. Has been.
  • the Mo 2 NiB 2 type double boride serving as the thermal spray layer is excellent in corrosion resistance and wear resistance, but compared with the above-described Ni-based self-fluxing alloy, There was a possibility that the adhesiveness with the material would decrease.
  • a method of performing a fusing treatment on the sprayed layer made of a Mo 2 NiB 2 type double boride is also used. Since it is necessary to make the temperature higher than 1200 ° C., which is the melting temperature of the sprayed layer, excessive heat may cause deformation of the base material and deterioration of characteristics.
  • the present invention has been made in view of such a situation, and the object thereof is excellent in corrosion resistance and wear resistance, and furthermore, it is possible to carry out a fusing treatment for improving adhesion to a substrate at a relatively low temperature.
  • a powder for forming a sprayed layer for forming a cermet sprayed layer is provided.
  • Another object of the present invention is to provide a cermet sprayed layer and a cermet coating material obtained by using such a thermal spray layer forming powder, and a method for producing such a cermet coating material.
  • the inventors of the present invention can achieve the above object by using a powder containing a Mo 2 NiB 2 type double boride and having a predetermined composition as a powder for forming a sprayed layer for forming a cermet sprayed layer. As a result, the present invention has been completed.
  • it is a powder for forming a thermal spray layer containing a Mo 2 NiB 2 type double boride and the composition is B: 4.0 to 6.0 wt%, Mo: 35.5 to 53. 25 wt%, Cr: 10.0 to 25.0 wt%, Si: 2.0 to 6.0 wt%, C: 0.1 to 1.0 wt%, Ni: remainder A powder for forming a thermal spray layer is provided.
  • the thermal spray layer forming powder of the present invention preferably satisfies the following formula (1) when the B content is A B [wt%] and the Si content is A Si [wt%].
  • a cermet sprayed layer formed by spraying any one of the above-mentioned sprayed layer forming powders, wherein the hard phase containing the Mo 2 NiB 2 type double boride is contained in 50.0-80. 0.0% by weight, with the balance being a Ni-base alloy-based binder phase, Si: 2.0-6.0% by weight and C: 0.1-1.0% by weight A cermet sprayed layer is provided.
  • covering material by which the said cermet sprayed layer is formed on a base material is provided.
  • a cermet comprising a diffusion layer formed by thermally diffusing the base material and the cermet sprayed layer by subjecting the cermet sprayed layer to a melting treatment by heating at 960 to 1100 ° C. A dressing is provided.
  • the base material is alloy steel, carbon steel, or stainless steel.
  • a cermet coating comprising a step of forming a cermet sprayed layer on the substrate by spraying a powder for forming a sprayed layer containing a Mo 2 NiB 2 type double boride on the substrate.
  • the phase contains 50.0 to 80.0% by weight, and the balance is a bonded phase mainly composed of a Ni-based alloy, Si: 2.0 to 6.0% by weight and C: 0.1 to
  • a method for producing a cermet coating material characterized by forming a cermet sprayed layer containing 1.0% by weight is provided.
  • the cermet sprayed layer is further subjected to a melting process of heating at 960 to 1100 ° C.
  • a thermal spray layer for forming a cermet thermal spray layer that is excellent in corrosion resistance and wear resistance and that can be subjected to a fusing treatment for improving adhesion to a substrate at a relatively low temperature.
  • a forming powder can be provided.
  • the present invention can also provide a cermet sprayed layer and a cermet coating material formed by using such a thermal spray layer forming powder, and a method for producing such a cermet coating material.
  • FIG. 1 is a graph showing the results of measuring the melting temperature for Examples 1 to 4 and Comparative Examples 1 to 10.
  • FIG. 2 is a graph showing the results of measuring the melting temperature for Examples 5 to 8 and Comparative Examples 11 to 20.
  • FIG. 3 is a graph showing the results of measuring the melting temperature for Examples 9 to 12 and Comparative Examples 21 to 30.
  • FIG. 4 is an SEM photograph of a cross section of the cermet covering material of Example 10.
  • FIG. 5 is a diagram showing the results of elemental analysis by SEM on the cross section of the cermet covering material of Example 10 cut.
  • the thermal spray layer forming powder of the present invention is an alloy powder for forming a cermet thermal spray layer on a substrate by thermal spraying, and includes a Mo 2 NiB 2 type double boride, and the composition is B: 4.0 to 6 0.0 wt%, Mo: 35.5 to 53.25 wt%, Cr: 10.0 to 25.0 wt%, Si: 2.0 to 6.0 wt%, C: 0.1 to 1.0 % By weight, Ni: remainder.
  • the powder for thermal spray layer formation contains the Mo 2 NiB 2 type double boride and the composition is in the above range, thereby producing the following effects. That is, first, when the powder for forming a thermal spray layer of the present invention is sprayed on a base material to form a cermet thermal spray layer, the resulting cermet thermal spray layer is coated with a Mo 2 NiB 2 type composite material having high corrosion resistance and wear resistance. Due to the action of the boride, it can be made excellent in corrosion resistance and wear resistance.
  • the melting temperature of the obtained cermet sprayed layer can be lowered by the action of lowering the eutectic point due to Si and C, thereby spraying the powder for forming the sprayed layer of the present invention onto the substrate.
  • the heating temperature during the fusing treatment can be lowered. Therefore, according to the present invention, when a fusing treatment is performed on the obtained cermet sprayed layer, the diffusion layer is formed by thermally diffusing the cermet sprayed layer with the base material while preventing deformation and deterioration of the base material due to heat. It is possible to effectively improve the adhesion between the base material and the cermet sprayed layer.
  • the composition but may be within the above range, the content ratio of B and A B [wt%], the content of Si was set to A Si [wt%] In addition, it is preferable to satisfy the following formula (1).
  • cermet thermal spraying obtained by spraying the thermal spray layer forming powder by controlling the relationship between the B content and the Si content in the thermal spray layer forming powder within the range of the above formula (1).
  • the effect of lowering the melting temperature of the layer can be further improved, and the heating temperature required for fusing the cermet sprayed layer can be made lower.
  • the relationship between the B content ratio and the Si content ratio can further improve the effect of lowering the melting temperature of the obtained cermet sprayed layer. From the point, it is more preferable to satisfy the following formula (2).
  • the C content in the thermal spray layer forming powder may be in the range of 0.1 to 1.0% by weight, preferably 0.2 to 0.6% by weight, and more preferably. Is 0.3 to 0.5% by weight.
  • the thermal spray layer forming powder of the present invention may contain elements that are inevitably mixed within a range that does not hinder the effect of lowering the melting temperature of the obtained cermet thermal spray layer.
  • the substrate for spraying the thermal spray layer forming powder of the present invention is not particularly limited, and various metal materials can be used, but from the viewpoint of excellent material strength, alloy steel, carbon steel, stainless steel, Tool steel, powdered high-speed steel, and the like are mentioned. Among these, alloy steel, carbon steel, and stainless steel are preferably used from the viewpoint of relatively low hardness and easy formation of a sprayed layer.
  • the cermet sprayed layer of the present invention is obtained by spraying the above-mentioned powder for forming a sprayed layer on a substrate, and contains 50.0 to 80.0% by weight of a hard phase containing a Mo 2 NiB 2 type double boride. The remainder is a binder phase mainly composed of a Ni-based alloy, and contains Si: 2.0 to 6.0 wt% and C: 0.1 to 1.0 wt%.
  • the hard phase of the cermet sprayed layer is a phase contributing to the hardness of the cermet sprayed layer, that is, the wear resistance.
  • the content ratio of the hard phase in the cermet sprayed layer is preferably 50.0 to 80.0% by weight, more preferably 55.0 to 75.0% by weight, and further preferably 60.0 to 70.0% by weight. .
  • the content rate of a hard phase is preferably 50.0 to 80.0% by weight, more preferably 55.0 to 75.0% by weight, and further preferably 60.0 to 70.0% by weight. .
  • covering material obtained can be improved more. If the content ratio of the hard phase is too low, the cermet sprayed layer becomes too soft and wear resistance is reduced. On the other hand, if the content ratio of the hard phase is too high, the dispersibility of the hard phase becomes too bad and the strength is lowered.
  • the content rate of the hard phase in a cermet sprayed layer is controllable by adjusting the content rate of Mo and B in the powder for thermal spray layer formation for forming a cermet sprayed layer, for example.
  • the binder phase of the cermet sprayed layer is a phase that forms a matrix for binding the hard phase.
  • the binder phase of the cermet sprayed layer is mainly composed of a Ni-based alloy, and such a Ni-based alloy is formed from Ni contained in the sprayed layer forming powder.
  • the Ni-based alloy is not particularly limited, and examples thereof include an alloy of Ni and at least one selected from Cr and Mo.
  • the cermet sprayed layer contains Si: 2.0 to 6.0% by weight and C: 0.1 to 1.0% by weight.
  • the content ratio of Si and C in the cermet sprayed layer is the same as the content ratio of Si and C in the sprayed layer forming powder.
  • the heating temperature in performing the fusing treatment can be made relatively low due to the above-described effects of Si and C.
  • Si and C contained in a cermet sprayed layer should just be contained in the said range, and may be contained in any of the hard phase and binder phase in a cermet sprayed layer.
  • a cermet sprayed layer formed on a base material a cermet sprayed layer containing Mo 2 NiB 2 type double boride as a component of a hard phase has been conventionally used.
  • the cermet sprayed layer containing such a Mo 2 NiB 2 type double boride has a problem that the adhesion to the substrate may be lowered.
  • a method of performing a fusing treatment after the cermet sprayed layer is formed on the base material is used. Since the cermet sprayed layer containing 2 NiB 2 type double boride usually has a melting temperature of 1200 ° C. or higher, the heating temperature in performing the fusing treatment needs to be 1200 ° C. or higher. Further, there has been a problem that excessive heat may cause deformation of the base material or deterioration of characteristics.
  • the cermet sprayed layer of the present invention contains Si and C in a cermet sprayed layer containing a Mo 2 NiB 2 type double boride, and its melting temperature is lowered. It becomes possible to perform fusing treatment, and while preventing deformation and deterioration of properties of the base material, the cermet sprayed layer is thermally diffused with the base material to form a diffusion layer, and the adhesion between the base material and the cermet sprayed layer is effective. Can be improved.
  • the melting temperature of the cermet sprayed layer of the present invention can be controlled, for example, by changing the content ratios of Si and C in the binder phase.
  • the melting temperature is preferably 960 to 1100 ° C.
  • the temperature is preferably 1000 to 1050 ° C.
  • the heating temperature during the fusing treatment can be set according to the melting temperature of the cermet sprayed layer, preferably 960 to 1100 ° C., more preferably 1000 to 1050 ° C.
  • the heating temperature in the fusing treatment to the above range, when the fusing treatment is performed on the cermet sprayed layer, it is possible to effectively prevent the deformation of the base material and the deterioration of the characteristics due to heat.
  • it does not specifically limit about the heating time at the time of performing a fusing process What is necessary is just to set suitably according to the thickness etc. of a cermet sprayed layer.
  • the cermet sprayed layer of the present invention is formed from the above-mentioned sprayed layer forming powder, it contains the same elements as the sprayed layer forming powder, and the composition is about B: 4.0 to 6.0 wt%, Mo: 35.5 to 53.25 wt%, Cr: 10.0 to 25.0 wt%, Si: 2.0 to 6.0 wt%, C: 0.1 to 1. It is preferably 0% by weight and Ni: the balance.
  • B (boron) is an element for forming a Mo 2 NiB 2 type double boride to be a hard phase.
  • the cermet sprayed layer can be appropriately formed with Mo 2 NiB 2 type double boride and excellent in wear resistance and strength. If the B content is too low, the hard phase content will be low, which may reduce the wear resistance. On the other hand, when the content ratio of B is too high, the contact ratio between the hard phases increases, and as a result, the mechanical strength decreases.
  • Mo mobdenum
  • Mo mobdenum
  • a part of Mo in the Mo 2 NiB 2 type double boride constituting the thermal spray layer forming powder or the cermet thermal spray layer may be other than W, Nb, Zr, Ti, Ta, Hf, etc. It may be substituted with an element.
  • Ni nickel
  • Mo 2 NiB 2 type double boride is an element necessary for forming a Mo 2 NiB 2 type double boride. Moreover, it is a main element that forms a Ni-based alloy that becomes a binder phase, and contributes to excellent corrosion resistance. If the Ni content is less than 10% by weight, a sufficient liquid phase does not appear and a dense cermet sprayed layer cannot be obtained, resulting in a decrease in strength. Therefore, the Ni content should be 10% by weight or more. Is preferred.
  • a part of Ni in the Mo 2 NiB 2 type double boride constituting the sprayed layer forming powder or the cermet sprayed layer is replaced with other elements such as Fe, Cr, V, Co. It may be.
  • the Ni-based alloy constituting the binder phase is not particularly limited, and examples thereof include an alloy of Ni and at least one metal selected from Co, Cr, Mo, W, Fe, and Mn.
  • Cr chromium
  • Mo 2 NiB 2 type double boride has an effect of stabilizing the crystal structure to tetragonal crystal.
  • the added Cr also dissolves in the binder phase, and greatly improves the corrosion resistance, wear resistance, high temperature characteristics, and mechanical characteristics of the cermet sprayed layer. If the Cr content is too high , borides such as Cr 5 B 3 are formed and the strength is lowered.
  • Si is an element constituting the binder phase, and when used together with C, has an effect of lowering the melting temperature of the cermet sprayed layer. If the content ratio of Si is too low, the effect of lowering the melting temperature of the cermet sprayed layer cannot be sufficiently obtained, and when performing fusing treatment at the melting temperature of the cermet sprayed layer, deformation of the substrate due to excessive heat or There is a risk that characteristic deterioration will occur. On the other hand, when the content ratio of Si is too high, the effect of lowering the melting temperature cannot be obtained, and the content of silicide increases and properties such as toughness may be deteriorated.
  • C is an element constituting the binder phase, and has the effect of lowering the melting temperature of the cermet sprayed layer when used together with Si.
  • the content ratio of C is too low, the effect of lowering the melting temperature of the cermet sprayed layer cannot be sufficiently obtained, and when performing the fusing treatment, deformation of the base material and deterioration of properties occur due to excessive heat. There is a fear.
  • the content ratio of C is too high, the content of carbide increases, and characteristics such as toughness may be deteriorated.
  • the cermet coating material of the present invention is obtained by forming the above-described cermet sprayed layer on a substrate. Therefore, the cermet coating material of the present invention includes a base material and a cermet sprayed layer formed on the base material. In the cermet coating material of the present invention, in addition to these, the base material and the cermet A diffusion layer formed by thermally diffusing the thermal spray layer may be further provided. The diffusion layer can be formed by subjecting the cermet sprayed layer of the cermet coating material to a fusing treatment under the above-described conditions and thermally diffusing the base material and the cermet sprayed layer.
  • raw material powder for producing a thermal spray layer forming powder is prepared.
  • B 4.0 to 6.0 wt%
  • Mo 35.5 to 53.25 wt%
  • Cr 10.0 to 25.0 wt%
  • Si 2.0 to 6.0
  • a powder prepared by mixing in a ratio of wt%, C: 0.1 to 1.0 wt%, Ni: balance is prepared.
  • the prepared raw material powder is processed into a thermal spray layer forming powder.
  • the raw material powder can be processed into a thermal spray layer forming powder as long as Mo 2 NiB 2 type double boride is formed from the raw material powder.
  • a binder and an organic solvent are added to the raw material powder.
  • These may be mixed and pulverized using a pulverizer such as a ball mill, the raw material powder after mixing and pulverization is granulated with a spray dryer or the like, and the granulated powder is sintered and classified.
  • the Mo 2 NiB 2 type double boride is contained, the composition is B: 4.0 to 6.0% by weight, Mo: 35.5 to 53.25% by weight, Cr: 10
  • a powder for forming a sprayed layer which is 0.0 to 25.0% by weight, Si: 2.0 to 6.0% by weight, C: 0.1 to 1.0% by weight, and Ni: the balance, is obtained.
  • the element mixed unavoidable may be contained in the range which does not inhibit the effect of lowering the melting temperature of the obtained cermet thermal spray layer.
  • the particle size of the raw material powder after mixing and pulverizing is not particularly limited.
  • Mo 2 NiB 2 The particle size may be such that the formation reaction of the double boride of the mold proceeds appropriately.
  • the conditions for sintering may be within a range in which the formation reaction of the Mo 2 NiB 2 type double boride proceeds appropriately.
  • temperature 1000 to 1150 ° C.
  • sintering time 30 to 90
  • the heating rate can be set to 0.5 to 60 ° C./min for 1 minute.
  • the size of the powder for forming a thermal spray layer to be produced is preferably 10 to 200 ⁇ m, more preferably 32 to 150 ⁇ m, in view of easy spraying.
  • the powder for forming the sprayed layer is sprayed onto the base material by a spraying method to form a cermet sprayed layer.
  • covering a cermet sprayed layer on a base material is manufactured.
  • the thermal spraying method either flame spraying or high-speed flame spraying, which has a small thermal effect during formation of the cermet sprayed layer, may be adopted, but high-speed flame spraying is possible because a high-speed metal powder can be formed and a dense film can be formed. Is preferred.
  • the thickness of the cermet sprayed layer to be formed is preferably 0.05 mm to 2.0 mm, and more preferably 0.2 mm to 1.0 mm. If the thickness of the cermet sprayed layer to be formed is less than 0.05 mm, pores may remain in the cermet sprayed layer, and the cermet sprayed layer may be peeled off from the base material due to the pores, and the cermet sprayed layer is thin. Therefore, the wear resistance tends to decrease.
  • the thickness of the cermet sprayed layer to be formed is larger than 2 mm, the residual stress due to heat at the time of forming the cermet sprayed layer increases, so that the adhesion between the cermet sprayed layer and the substrate tends to be lowered.
  • the cermet coating material using the thermal spray layer forming powder of the present invention is manufactured.
  • the cermet covering material thus produced may be further subjected to fusing treatment.
  • the cermet coating material By subjecting the cermet coating material to a fusing treatment, the cermet sprayed layer is thermally diffused with the base material to form a diffusion layer, and the adhesion between the base material and the cermet sprayed layer is improved.
  • the fusing treatment method is not particularly limited, and for example, heating by a flame torch using acetylene and oxygen as fuel, high-frequency induction heating, heating by an atmospheric furnace, heating by a vacuum furnace, etc. can be used. It is preferable to use a heating method using a vacuum furnace from the viewpoint that the cermet sprayed layer can be thermally diffused stably.
  • the heating temperature at the time of performing a fusing process is the same as the conditions mentioned above.
  • the composition is B: 4.0 to 6.0 wt%, Mo: 35.5 to 53.25 wt. %, Cr: 10.0-25.0% by weight, Si: 2.0-6.0% by weight, C: 0.1-1.0% by weight, Ni: the balance, so that the corrosion resistance and wear resistance
  • B 4.0 to 6.0 wt%
  • Mo 35.5 to 53.25 wt. %
  • Cr 10.0-25.0% by weight
  • Si 2.0-6.0% by weight
  • C 0.1-1.0% by weight
  • Ni the balance, so that the corrosion resistance and wear resistance
  • the cermet coating material of the present invention obtained using such a thermal spray layer forming powder has excellent productivity because the heating temperature can be lowered even when fusing treatment is performed. Become. Furthermore, the cermet coating material of the present invention was used as a consumable member because the base material and the cermet sprayed layer were in close contact with each other by fusing treatment and had durability capable of withstanding high load loads. In such a case, the replacement frequency can be reduced, and as a result, the amount of discarded consumable members can be reduced, contributing to environmental protection.
  • Example 1 B 5% by weight, Mo: 44.4% by weight, Cr: 13% by weight, Si: 3.4% by weight, C: 0.34% by weight, Ni: 100% by weight of raw material
  • 5 parts by weight of paraffin was added, and this was pulverized in acetone by a vibration ball mill for 25 hours in acetone.
  • the prepared pulverized powder was dried at 150 ° C. for 18 hours in a nitrogen atmosphere.
  • the dried pulverized powder was mixed with acetone at a weight ratio of 1: 1, and then granulated by a spray dryer, and the granulated powder was held at 1150 ° C. in vacuum for 1 hour to sinter the powder, By classifying this, a thermal spray layer forming powder containing a Mo 2 NiB 2 type double boride was prepared.
  • the melt temperature was measured for the produced sprayed layer forming powder. Specifically, the melting temperature was measured by pulverizing the thermal spray layer forming powder to a particle size of 10 to 300 ⁇ m and measuring the melting temperature with a differential thermal analyzer (manufactured by Rigaku Corporation, model number: TG8120). The results are shown in Table 1 and FIG. In addition, in FIG. 1, the value of the melting temperature (° C.) of the thermal spray layer forming powder with respect to the Si content (wt%) contained in the thermal spray layer forming powder is shown. The same applies to FIGS.
  • Example 2 Thermal spraying was carried out in the same manner as in Example 1 except that the mixing ratio of Si in the raw material was 3.5% by weight (Example 2), 5% by weight (Example 3), and 6% by weight (Example 4). A layer forming powder was prepared, and the melting temperature was similarly measured. The results are shown in Table 1 and FIG.
  • Comparative Examples 1 to 3 Thermal spraying was carried out in the same manner as in Example 1 except that the mixing ratio of Si in the raw material was 0% by weight (Comparative Example 1), 2.5% by weight (Comparative Example 2), and 7% by weight (Comparative Example 3). A layer forming powder was prepared, and the melting temperature was similarly measured. The results are shown in Table 1 and FIG.
  • Comparative Examples 4 to 10 The mixing ratio of C in the raw material was C: 0 wt%, and the mixing ratio of Si in the raw material was 0 wt% (Comparative Example 4), 2.5 wt% (Comparative Example 5), 3 wt% (Comparison) Example 6), 3.5 wt% (Comparative Example 7), 5 wt% (Comparative Example 8), 6 wt% (Comparative Example 9), and 7 wt% (Comparative Example 10). Similarly, a powder for forming a sprayed layer was prepared, and the melting temperature was measured in the same manner. The results are shown in Table 2 and FIG.
  • Examples 5 to 8 >> The mixing ratio of B and Mo in the raw material was B: 4.5 wt%, Mo: 39.9 wt%, and the mixing ratio of Si in the raw material was 2.5 wt% (Example 5), 3 wt% % (Example 6), 3.5 wt% (Example 7), and 5 wt% (Example 8). The temperature was measured. The results are shown in Table 3 and FIG.
  • Comparative Examples 11-13 >> The mixing ratio of B and Mo in the raw material was B: 4.5 wt%, Mo: 39.9 wt%, and the mixing ratio of Si in the raw material was 0 wt% (Comparative Example 11), 2 wt% ( A powder for forming a thermal spray layer was prepared in the same manner as in Example 1 except that the content was changed to Comparative Example 12) and 6% by weight (Comparative Example 13), and the melting temperature was measured in the same manner. The results are shown in Table 3 and FIG.
  • Comparative Examples 14 to 20 The mixing ratio of B, Mo, and C in the raw material was B: 4.5 wt%, Mo: 39.9 wt%, C: 0 wt%, and the mixing ratio of Si in the raw material was 0 wt% ( Comparative Example 14) 2% by weight (Comparative Example 15) 2.5% by weight (Comparative Example 16) 3% by weight (Comparative Example 17) 3.5% by weight (Comparative Example 18) 5% by weight (Comparative) Example 19) A thermal spray layer forming powder was prepared in the same manner as in Example 1 except that the content was 6% by weight (Comparative Example 20), and the melting temperature was measured in the same manner. The results are shown in Table 4 and FIG.
  • Examples 9 to 12 The mixing ratio of B and Mo in the raw material was B: 4% by weight, Mo: 35.5% by weight, and the mixing ratio of Si in the raw material was 2% by weight (Example 9), 2.5% by weight ( Example 10)
  • a powder for forming a sprayed layer was prepared in the same manner as in Example 1 except that the content was 3% by weight (Example 11) and 4% by weight (Example 12). Similarly, the melting temperature was measured. went. The results are shown in Table 5 and FIG.
  • Comparative Examples 21 to 23 >> The mixing ratio of B and Mo in the raw material was B: 4% by weight, Mo: 35.5% by weight, and the mixing ratio of Si in the raw material was 0% by weight (Comparative Example 21), 1.5% by weight ( Comparative Example 22)
  • a thermal spray layer forming powder was prepared in the same manner as in Example 1 except that the content was 5 wt% (Comparative Example 23), and the melting temperature was measured in the same manner. The results are shown in Table 5 and FIG.
  • a steel material (SKD11 steel) was prepared, and the thermal spray layer forming powder of Example 10 described above was sprayed on the prepared steel material with a high-speed flame spraying machine (TAFA, model number: JP8000).
  • TAFA high-speed flame spraying machine
  • a cermet coating material obtained by coating a cermet sprayed layer on the material was obtained.
  • the fusing process was performed with respect to the obtained cermet coating
  • the cermet coating material subjected to the fusing treatment was cut, and the cut cross section was measured with a scanning electron microscope (JSM-840A, manufactured by JEOL Ltd.) to obtain a cross-sectional photograph shown in FIG. As shown in FIG. 4, in the cross section of the cermet covering material, it was confirmed that a diffusion layer was formed between the steel material and the cermet sprayed layer.
  • JSM-840A scanning electron microscope
  • the adhesion between the steel material and the cermet sprayed layer was evaluated using a Vickers hardness tester. Specifically, the evaluation of adhesion was performed by using a square pyramid diamond indenter with an apex angle of 136 ° using a Vickers hardness meter (manufactured by Akashi Seisakusho, model number: MVK-G2) in the vicinity of the diffusion layer of the cut section. After applying a load of 5 kgf, it was performed by checking whether or not the cermet sprayed layer was peeled off at the portion where the load was applied. As a result, it was confirmed that the cermet sprayed layer after applying the load was firmly adhered to the steel material without peeling from the steel material.
  • the cermet thermal spray layer It is possible to suppress the heating temperature for thermally diffusing, and as a result, it is possible to prevent the base material from being deformed or to deteriorate the characteristics and to be determined to have excellent adhesion to the base material.
  • FIG. 4 After spraying the thermal spray layer forming powder of Example 10 on a steel material, it is obtained by performing a fusing treatment at a low heating temperature of 1050 ° C.
  • the cermet coating material it was confirmed that the components (Mo, Ni, Cr, etc.) constituting the cermet sprayed layer were thermally diffused well with the components (Fe etc.) constituting the steel material.
  • the cermet coating material when a load was applied to the interface between the steel material and the cermet sprayed layer using a Vickers hardness tester, the cermet sprayed layer adhered firmly to the steel material without peeling from the steel material.
  • Example 10 After the powder for thermal spray layer formation of Example 10 became a cermet sprayed layer by thermal spraying, even when the fusing treatment was performed at a low temperature, the powder was thermally diffused well, It was confirmed that the adhesion was excellent.
  • the composition was B: 4.0 to 6.0% by weight, Mo: 35.5 to 53.25% by weight, Cr: 10 0.0-25.0% by weight, Si: 2.0-6.0% by weight, C: 0.1-1.0% by weight, Ni: balance, so the adhesion between the steel and the cermet sprayed layer It is considered that the same result can be obtained for the evaluation results.
  • the thermal spray layer forming powder in which the content ratio of each element is not in the above range has a melting temperature exceeding 1050 ° C.
  • the powder is subjected to a fusing treatment at the melting temperature of the thermal spray layer-forming powder after it has become a cermet thermal spray layer by thermal spraying, it can be determined that deformation of the base material and deterioration of properties occur. .

Abstract

Provided is a powder for use in the formation of a sprayed layer, which contains a Mo2NiB2-type complex boride, said powder being characterized by having a chemical composition comprising 4.0 to 6.0 wt% of B, 35.5 to 53.25 wt% of Mo, 10.0 to 25.0 wt% of Cr, 2.0 to 6.0 wt% of Si, 0.1 to 1.0 wt% of C, and a remainder made up by Ni. According to the present invention, it becomes possible to provide a powder for use in the formation of a sprayed layer, which enables the formation of a cermet sprayed layer that has excellent corrosion resistance and abrasion resistance and can be subjected to a fusing treatment, which is a treatment for improving the adhesion to a base, at a relatively low temperature.

Description

[規則37.2に基づきISAが決定した発明の名称] 溶射層形成用粉末[Name of invention determined by ISA based on Rule 37.2] Powder for sprayed layer formation
 本発明は、溶射層形成用粉末、サーメット溶射層、サーメット被覆材、およびサーメット被覆材の製造方法に関する。 The present invention relates to a thermal spray layer forming powder, a cermet thermal spray layer, a cermet coating material, and a method for producing the cermet coating material.
 金属などの基材の表面特性を向上させるために、基材の表面に溶射法により合金粉末等を溶射して皮膜を形成する加工法が用いられている。このような溶射法は、比較的簡便に実施できることから各種の部材に広く適用されており、特に基材の表面に部分的に耐食性や耐摩耗性を付与したい場合に効果的な手法として産業上様々な分野において用いられている。 In order to improve the surface characteristics of a base material such as metal, a processing method is used in which a coating is formed by spraying an alloy powder or the like on the surface of the base material by a thermal spraying method. Such a thermal spraying method is widely applied to various members because it can be carried out relatively easily. Especially, it is industrially effective as an effective method for partially imparting corrosion resistance and wear resistance to the surface of a substrate. It is used in various fields.
 溶射法により基材上に皮膜を形成するための合金粉末材料としては、基材との密着性に優れるという点より、一般的に、Ni基の自溶性合金、Co基のステライト合金等が用いられている。特に、Ni基の自溶性合金は、溶射により溶射層を形成した後に、溶射層を加熱してフュージング処理(溶融処理)を施すことにより、溶射層が溶融して基材と熱拡散し、基材との密着性がさらに向上することが知られている。しかしながら、Ni基の自溶性合金やCo基のステライト合金は、基材との密着性に優れるものの、溶射層の耐食性および耐摩耗性が不十分であるという問題がある。 In general, Ni-based self-fluxing alloys, Co-based stellite alloys, and the like are used as alloy powder materials for forming a film on a substrate by a thermal spraying method because of excellent adhesion to the substrate. It has been. In particular, in a Ni-based self-fluxing alloy, after a thermal spray layer is formed by thermal spraying, the thermal spray layer is heated and subjected to fusing treatment (melting treatment), whereby the thermal spray layer is melted and thermally diffused with the base material. It is known that the adhesion to the material is further improved. However, although Ni-based self-fluxing alloys and Co-based stellite alloys have excellent adhesion to the substrate, there is a problem that the corrosion resistance and wear resistance of the sprayed layer are insufficient.
 これに対し、たとえば、特許文献1には、溶射法に用いる粉末材料として、MoNiB型の複硼化物を含有するサーメット材を用いることで、耐食性および耐摩耗性を向上させる技術が開示されている。 On the other hand, for example, Patent Document 1 discloses a technique for improving corrosion resistance and wear resistance by using a cermet material containing a Mo 2 NiB 2 type double boride as a powder material used in a thermal spraying method. Has been.
特開2009-68052号公報JP 2009-68052 A
 しかしながら、上記特許文献1に記載の技術では、溶射層となるMoNiB型の複硼化物は、耐食性および耐摩耗性に優れる一方で、上述したNi基の自溶性合金と比較すると、基材との密着性が低下するおそれがあった。これに対し、基材との密着性を向上させるために、MoNiB型の複硼化物からなる溶射層にフュージング処理を施す方法も用いられているが、この場合には、加熱温度を該溶射層の溶融温度である1200℃以上の高温とする必要があるため、過剰な熱により、基材の変形や特性低下が生じるおそれもあった。 However, in the technique described in Patent Document 1, the Mo 2 NiB 2 type double boride serving as the thermal spray layer is excellent in corrosion resistance and wear resistance, but compared with the above-described Ni-based self-fluxing alloy, There was a possibility that the adhesiveness with the material would decrease. On the other hand, in order to improve the adhesion to the base material, a method of performing a fusing treatment on the sprayed layer made of a Mo 2 NiB 2 type double boride is also used. Since it is necessary to make the temperature higher than 1200 ° C., which is the melting temperature of the sprayed layer, excessive heat may cause deformation of the base material and deterioration of characteristics.
 本発明は、このような実状に鑑みてなされ、その目的は、耐食性および耐摩耗性に優れ、さらに、基材との密着性を向上させるためのフュージング処理を比較的低温で実施することが可能なサーメット溶射層を形成するための溶射層形成用粉末を提供する。また、本発明は、このような溶射層形成用粉末を用いて得られるサーメット溶射層およびサーメット被覆材、ならびにこのようなサーメット被覆材の製造方法を提供することも目的とする。 The present invention has been made in view of such a situation, and the object thereof is excellent in corrosion resistance and wear resistance, and furthermore, it is possible to carry out a fusing treatment for improving adhesion to a substrate at a relatively low temperature. Provided is a powder for forming a sprayed layer for forming a cermet sprayed layer. Another object of the present invention is to provide a cermet sprayed layer and a cermet coating material obtained by using such a thermal spray layer forming powder, and a method for producing such a cermet coating material.
 本発明者等は、サーメット溶射層を形成するための溶射層形成用粉末として、MoNiB型の複硼化物を含有し、所定の組成とした粉末を用いることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 The inventors of the present invention can achieve the above object by using a powder containing a Mo 2 NiB 2 type double boride and having a predetermined composition as a powder for forming a sprayed layer for forming a cermet sprayed layer. As a result, the present invention has been completed.
 すなわち、本発明によれば、MoNiB型の複硼化物を含む溶射層形成用粉末であって、組成がB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部であることを特徴とする溶射層形成用粉末が提供される。 That is, according to the present invention, it is a powder for forming a thermal spray layer containing a Mo 2 NiB 2 type double boride and the composition is B: 4.0 to 6.0 wt%, Mo: 35.5 to 53. 25 wt%, Cr: 10.0 to 25.0 wt%, Si: 2.0 to 6.0 wt%, C: 0.1 to 1.0 wt%, Ni: remainder A powder for forming a thermal spray layer is provided.
 本発明の溶射層形成用粉末は、Bの含有割合をA[重量%]とし、Siの含有割合をASi[重量%]とした場合に、下記式(1)を満たすことが好ましい。
  A-2.5<ASi<2A-3  ・・・(1)
The thermal spray layer forming powder of the present invention preferably satisfies the following formula (1) when the B content is A B [wt%] and the Si content is A Si [wt%].
A B −2.5 <A Si <2A B −3 (1)
 本発明によれば、上記いずれかの溶射層形成用粉末を溶射することで形成されるサーメット溶射層であって、前記MoNiB型の複硼化物を含む硬質相を50.0~80.0重量%の割合で含み、残部が、Ni基合金を主成分とする結合相であり、Si:2.0~6.0重量%およびC:0.1~1.0重量%を含むことを特徴とするサーメット溶射層が提供される。 According to the present invention, there is provided a cermet sprayed layer formed by spraying any one of the above-mentioned sprayed layer forming powders, wherein the hard phase containing the Mo 2 NiB 2 type double boride is contained in 50.0-80. 0.0% by weight, with the balance being a Ni-base alloy-based binder phase, Si: 2.0-6.0% by weight and C: 0.1-1.0% by weight A cermet sprayed layer is provided.
 また、本発明によれば、上記サーメット溶射層が基材上に形成されてなるサーメット被覆材が提供される。
 あるいは、本発明によれば、上記サーメット溶射層を960~1100℃で加熱する溶融処理を施すことで、前記基材と前記サーメット溶射層とを熱拡散させることにより形成された拡散層を備えるサーメット被覆材が提供される。
Moreover, according to this invention, the cermet coating | covering material by which the said cermet sprayed layer is formed on a base material is provided.
Alternatively, according to the present invention, a cermet comprising a diffusion layer formed by thermally diffusing the base material and the cermet sprayed layer by subjecting the cermet sprayed layer to a melting treatment by heating at 960 to 1100 ° C. A dressing is provided.
 本発明によれば、上記いずれかのサーメット被覆材において、好ましくは、上記基材が合金鋼、炭素鋼、またはステンレス鋼である。 According to the present invention, in any of the cermet covering materials, preferably, the base material is alloy steel, carbon steel, or stainless steel.
 また、本発明によれば、MoNiB型の複硼化物を含む溶射層形成用粉末を基材上に溶射することで、前記基材上にサーメット溶射層を形成する工程を有するサーメット被覆材の製造方法であって、前記溶射層形成用粉末として、組成がB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部である粉末を用い、前記MoNiB型の複硼化物を含む硬質相を50.0~80.0重量%の割合で含み、残部が、Ni基合金を主成分とする結合相であり、Si:2.0~6.0重量%およびC:0.1~1.0重量%を含むサーメット溶射層を形成することを特徴とするサーメット被覆材の製造方法が提供される。 According to the present invention, there is also provided a cermet coating comprising a step of forming a cermet sprayed layer on the substrate by spraying a powder for forming a sprayed layer containing a Mo 2 NiB 2 type double boride on the substrate. A method for producing a material, wherein the sprayed layer forming powder has a composition of B: 4.0 to 6.0% by weight, Mo: 35.5 to 53.25% by weight, Cr: 10.0 to 25. Hard containing 0% by weight, Si: 2.0-6.0% by weight, C: 0.1-1.0% by weight, Ni: balance powder, and containing the Mo 2 NiB 2 type double boride The phase contains 50.0 to 80.0% by weight, and the balance is a bonded phase mainly composed of a Ni-based alloy, Si: 2.0 to 6.0% by weight and C: 0.1 to A method for producing a cermet coating material characterized by forming a cermet sprayed layer containing 1.0% by weight is provided.
 本発明におけるサーメット被覆材の製造方法において、前記溶射層形成用粉末として、Bの含有割合をA[重量%]とし、Siの含有割合をASi[重量%]とした場合に、下記式(1)を満たす粉末を用いることが好ましい。
  A-2.5<ASi<2A-3  ・・・(1)
In the method for producing a cermet coating material according to the present invention, when the content ratio of B is A B [wt%] and the Si content ratio is A Si [wt%] as the thermal spray layer forming powder, the following formula It is preferable to use a powder satisfying (1).
A B −2.5 <A Si <2A B −3 (1)
 本発明におけるサーメット被覆材の製造方法において、好ましくは、前記基材上に前記サーメット溶射層を形成した後、前記サーメット溶射層に960~1100℃で加熱する溶融処理を施す工程をさらに有する。 In the method for producing a cermet coating material according to the present invention, preferably, after the cermet sprayed layer is formed on the substrate, the cermet sprayed layer is further subjected to a melting process of heating at 960 to 1100 ° C.
 本発明によれば、耐食性および耐摩耗性に優れ、さらに、基材との密着性を向上させるためのフュージング処理を比較的低温で実施することが可能なサーメット溶射層を形成するための溶射層形成用粉末を提供することができる。また、本発明は、このような溶射層形成用粉末を用いて形成されるサーメット溶射層およびサーメット被覆材、ならびにこのようなサーメット被覆材の製造方法を提供することもできる。 According to the present invention, a thermal spray layer for forming a cermet thermal spray layer that is excellent in corrosion resistance and wear resistance and that can be subjected to a fusing treatment for improving adhesion to a substrate at a relatively low temperature. A forming powder can be provided. In addition, the present invention can also provide a cermet sprayed layer and a cermet coating material formed by using such a thermal spray layer forming powder, and a method for producing such a cermet coating material.
図1は、実施例1~4および比較例1~10について、溶融温度を測定した結果を示す図である。FIG. 1 is a graph showing the results of measuring the melting temperature for Examples 1 to 4 and Comparative Examples 1 to 10. 図2は、実施例5~8および比較例11~20について、溶融温度を測定した結果を示す図である。FIG. 2 is a graph showing the results of measuring the melting temperature for Examples 5 to 8 and Comparative Examples 11 to 20. 図3は、実施例9~12および比較例21~30について、溶融温度を測定した結果を示す図である。FIG. 3 is a graph showing the results of measuring the melting temperature for Examples 9 to 12 and Comparative Examples 21 to 30. 図4は、実施例10のサーメット被覆材を切断した断面におけるSEM写真である。FIG. 4 is an SEM photograph of a cross section of the cermet covering material of Example 10. 図5は、実施例10のサーメット被覆材を切断した断面について、SEMにより元素分析を行った結果を示す図である。FIG. 5 is a diagram showing the results of elemental analysis by SEM on the cross section of the cermet covering material of Example 10 cut.
 以下、本発明の溶射層形成用粉末について説明する。
 本発明の溶射層形成用粉末は、溶射により基材上にサーメット溶射層を形成するための合金粉末であり、MoNiB型の複硼化物を含み、組成がB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部であることを特徴とする。
Hereinafter, the thermal spray layer forming powder of the present invention will be described.
The thermal spray layer forming powder of the present invention is an alloy powder for forming a cermet thermal spray layer on a substrate by thermal spraying, and includes a Mo 2 NiB 2 type double boride, and the composition is B: 4.0 to 6 0.0 wt%, Mo: 35.5 to 53.25 wt%, Cr: 10.0 to 25.0 wt%, Si: 2.0 to 6.0 wt%, C: 0.1 to 1.0 % By weight, Ni: remainder.
 本発明においては、溶射層形成用粉末について、MoNiB型の複硼化物を含有し、組成が上記範囲であるものとすることにより、次のような効果を奏するものである。すなわち、まず、本発明の溶射層形成用粉末を基材に溶射してサーメット溶射層を形成した際に、得られたサーメット溶射層を、耐食性および耐摩耗性が高いMoNiB型の複硼化物の作用により、耐食性および耐摩耗性に優れたものとすることができる。加えて、得られたサーメット溶射層について、SiおよびCによる共晶点の低下の作用により、その溶融温度を低下させることができ、これにより、本発明の溶射層形成用粉末を基材に溶射して形成したサーメット溶射層に対して、基材との密着性の向上を図るためにフュージング処理を施す場合において、フュージング処理時の加熱温度をより低温とすることができる。そのため、本発明によれば、得られたサーメット溶射層にフュージング処理を施す場合において、熱による基材の変形や特性低下を防止しながら、サーメット溶射層を基材と熱拡散させて拡散層を形成し、基材とサーメット溶射層との密着性を有効に向上させることが可能となる。 In the present invention, the powder for thermal spray layer formation contains the Mo 2 NiB 2 type double boride and the composition is in the above range, thereby producing the following effects. That is, first, when the powder for forming a thermal spray layer of the present invention is sprayed on a base material to form a cermet thermal spray layer, the resulting cermet thermal spray layer is coated with a Mo 2 NiB 2 type composite material having high corrosion resistance and wear resistance. Due to the action of the boride, it can be made excellent in corrosion resistance and wear resistance. In addition, the melting temperature of the obtained cermet sprayed layer can be lowered by the action of lowering the eutectic point due to Si and C, thereby spraying the powder for forming the sprayed layer of the present invention onto the substrate. In the case where the fusing treatment is performed on the cermet sprayed layer formed in this way in order to improve the adhesion to the substrate, the heating temperature during the fusing treatment can be lowered. Therefore, according to the present invention, when a fusing treatment is performed on the obtained cermet sprayed layer, the diffusion layer is formed by thermally diffusing the cermet sprayed layer with the base material while preventing deformation and deterioration of the base material due to heat. It is possible to effectively improve the adhesion between the base material and the cermet sprayed layer.
 なお、本発明の溶射層形成用粉末は、その組成が上記範囲であればよいが、Bの含有割合をA[重量%]とし、Siの含有割合をASi[重量%]とした場合に、下記式(1)を満たすことが好ましい。
  A-2.5<ASi<2A-3  ・・・(1)
In the case sprayed layer forming powder of the present invention, the composition but may be within the above range, the content ratio of B and A B [wt%], the content of Si was set to A Si [wt%] In addition, it is preferable to satisfy the following formula (1).
A B −2.5 <A Si <2A B −3 (1)
 本発明においては、溶射層形成用粉末におけるBの含有割合とSiの含有割合との関係を上記式(1)の範囲に制御することにより、溶射層形成用粉末を溶射して得たサーメット溶射層について、その溶融温度を低下させる効果をより向上させることができ、サーメット溶射層にフュージング処理を施す際に必要な加熱温度を、より低いものとすることができる。 In the present invention, cermet thermal spraying obtained by spraying the thermal spray layer forming powder by controlling the relationship between the B content and the Si content in the thermal spray layer forming powder within the range of the above formula (1). The effect of lowering the melting temperature of the layer can be further improved, and the heating temperature required for fusing the cermet sprayed layer can be made lower.
 また、本発明の溶射層形成用粉末においては、このようなBの含有割合とSiの含有割合との関係は、得られるサーメット溶射層の溶融温度を低下させる効果をさらに向上させることができるという点より、下記式(2)を満たすことがより好ましい。
  A-2≦ASi≦2A-4  ・・・(2)
Further, in the thermal spray layer forming powder of the present invention, the relationship between the B content ratio and the Si content ratio can further improve the effect of lowering the melting temperature of the obtained cermet sprayed layer. From the point, it is more preferable to satisfy the following formula (2).
A B -2 ≦ A Si ≦ 2A B −4 (2)
 なお、溶射層形成用粉末におけるCの含有割合は、上述したように、0.1~1.0重量%の範囲であればよいが、好ましくは0.2~0.6重量%、より好ましくは0.3~0.5重量%である。溶射層形成用粉末中のCの含有割合を上記範囲とすることにより、得られるサーメット溶射層の溶融温度を低下させる効果をより向上させることができる。 Note that, as described above, the C content in the thermal spray layer forming powder may be in the range of 0.1 to 1.0% by weight, preferably 0.2 to 0.6% by weight, and more preferably. Is 0.3 to 0.5% by weight. By setting the content ratio of C in the thermal spray layer forming powder within the above range, the effect of lowering the melting temperature of the obtained cermet thermal spray layer can be further improved.
 また、本発明の溶射層形成用粉末においては、得られるサーメット溶射層の溶融温度を低下させる効果を阻害しない範囲で、不可避的に混入してしまう元素が含まれていてもよい。 In addition, the thermal spray layer forming powder of the present invention may contain elements that are inevitably mixed within a range that does not hinder the effect of lowering the melting temperature of the obtained cermet thermal spray layer.
<基材>
 本発明の溶射層形成用粉末を溶射するための基材としては、特に限定されず、各種金属材料を用いることができるが、材料強度に優れるという点より、合金鋼、炭素鋼、ステンレス鋼、工具鋼、および粉末ハイス鋼等が挙げられ、これらのなかでも、比較的硬度が低く、溶射層の形成が容易であるという点より、合金鋼、炭素鋼、ステンレス鋼が好ましく用いられる。
<Base material>
The substrate for spraying the thermal spray layer forming powder of the present invention is not particularly limited, and various metal materials can be used, but from the viewpoint of excellent material strength, alloy steel, carbon steel, stainless steel, Tool steel, powdered high-speed steel, and the like are mentioned. Among these, alloy steel, carbon steel, and stainless steel are preferably used from the viewpoint of relatively low hardness and easy formation of a sprayed layer.
<サーメット溶射層>
 本発明のサーメット溶射層は、上述した溶射層形成用粉末を基材に溶射することにより得られ、MoNiB型の複硼化物を含む硬質相を50.0~80.0重量%の割合で含み、残部が、Ni基合金を主成分とする結合相であり、Si:2.0~6.0重量%およびC:0.1~1.0重量%を含む。
<Cermet sprayed layer>
The cermet sprayed layer of the present invention is obtained by spraying the above-mentioned powder for forming a sprayed layer on a substrate, and contains 50.0 to 80.0% by weight of a hard phase containing a Mo 2 NiB 2 type double boride. The remainder is a binder phase mainly composed of a Ni-based alloy, and contains Si: 2.0 to 6.0 wt% and C: 0.1 to 1.0 wt%.
 ここで、サーメット溶射層の硬質相は、サーメット溶射層の硬度、すなわち耐摩耗性に寄与する相である。 Here, the hard phase of the cermet sprayed layer is a phase contributing to the hardness of the cermet sprayed layer, that is, the wear resistance.
 サーメット溶射層における硬質相の含有割合は、好ましくは50.0~80.0重量%、より好ましくは55.0~75.0重量%、さらに好ましくは60・0~70.0重量%である。硬質相の含有割合を上記範囲とすることにより、得られるサーメット被覆材の耐食性および耐摩耗性をより向上させることができる。硬質相の含有割合が低すぎると、サーメット溶射層が柔らかくなり過ぎてしまい、耐摩耗性が低下する。一方、硬質相の含有割合が高すぎると、硬質相の分散性が悪くなり過ぎてしまい、強度が低下する。なお、サーメット溶射層における硬質相の含有割合は、たとえば、サーメット溶射層を形成するための溶射層形成用粉末における、MoおよびBの含有割合を調整することにより制御することができる。 The content ratio of the hard phase in the cermet sprayed layer is preferably 50.0 to 80.0% by weight, more preferably 55.0 to 75.0% by weight, and further preferably 60.0 to 70.0% by weight. . By making the content rate of a hard phase into the said range, the corrosion resistance and abrasion resistance of the cermet coating | covering material obtained can be improved more. If the content ratio of the hard phase is too low, the cermet sprayed layer becomes too soft and wear resistance is reduced. On the other hand, if the content ratio of the hard phase is too high, the dispersibility of the hard phase becomes too bad and the strength is lowered. In addition, the content rate of the hard phase in a cermet sprayed layer is controllable by adjusting the content rate of Mo and B in the powder for thermal spray layer formation for forming a cermet sprayed layer, for example.
 また、サーメット溶射層の結合相は、硬質相を結合するためのマトリックスを形成することとなる相である。 Further, the binder phase of the cermet sprayed layer is a phase that forms a matrix for binding the hard phase.
 サーメット溶射層の結合相は、Ni基合金を主成分とするものであり、このようなNi基合金は、上記溶射層形成用粉末に含まれるNiから形成される。Ni基合金としては、特に限定されず、Niと、Cr,Moから選択される少なくとも1種との合金などが挙げられる。 The binder phase of the cermet sprayed layer is mainly composed of a Ni-based alloy, and such a Ni-based alloy is formed from Ni contained in the sprayed layer forming powder. The Ni-based alloy is not particularly limited, and examples thereof include an alloy of Ni and at least one selected from Cr and Mo.
 また、サーメット溶射層は、Si:2.0~6.0重量%およびC:0.1~1.0重量%を含む。本発明においては、サーメット溶射層は上記溶射層形成用粉末を用いて形成されるため、サーメット溶射層におけるSiおよびCの含有割合は、溶射層形成用粉末におけるSiおよびCの含有割合と同様となる。そのため、本発明のサーメット溶射層においては、上述したSiおよびCの作用により、フュージング処理を施す場合の加熱温度を比較的低温とすることができる。なお、サーメット溶射層に含まれるSiおよびCは、含有割合が上記範囲となっていればよく、サーメット溶射層における硬質相および結合相のいずれに含まれていてもよい。 The cermet sprayed layer contains Si: 2.0 to 6.0% by weight and C: 0.1 to 1.0% by weight. In the present invention, since the cermet sprayed layer is formed using the above-mentioned sprayed layer forming powder, the content ratio of Si and C in the cermet sprayed layer is the same as the content ratio of Si and C in the sprayed layer forming powder. Become. Therefore, in the cermet sprayed layer of the present invention, the heating temperature in performing the fusing treatment can be made relatively low due to the above-described effects of Si and C. In addition, Si and C contained in a cermet sprayed layer should just be contained in the said range, and may be contained in any of the hard phase and binder phase in a cermet sprayed layer.
 なお、基材上に形成するサーメット溶射層としては、従来より、硬質相の成分にMoNiB型の複硼化物を含有するサーメット溶射層が用いられている。しかしながら、このようなMoNiB型の複硼化物を含有するサーメット溶射層は、基材との密着性が低下するおそれがあるという不具合があった。これに対し、サーメット溶射層と基材との密着性を向上させるために、基材上にサーメット溶射層を形成した後に、フュージング処理を施す方法が用いられているが、この場合には、MoNiB型の複硼化物を含有するサーメット溶射層は、通常、その溶融温度が1200℃以上であるため、フュージング処理を施す際における加熱温度を1200℃以上の高温とする必要があり、そのため、過剰な熱により、基材の変形や特性低下が生じるおそれがあるという不具合もあった。 In addition, as a cermet sprayed layer formed on a base material, a cermet sprayed layer containing Mo 2 NiB 2 type double boride as a component of a hard phase has been conventionally used. However, the cermet sprayed layer containing such a Mo 2 NiB 2 type double boride has a problem that the adhesion to the substrate may be lowered. On the other hand, in order to improve the adhesion between the cermet sprayed layer and the base material, a method of performing a fusing treatment after the cermet sprayed layer is formed on the base material is used. Since the cermet sprayed layer containing 2 NiB 2 type double boride usually has a melting temperature of 1200 ° C. or higher, the heating temperature in performing the fusing treatment needs to be 1200 ° C. or higher. Further, there has been a problem that excessive heat may cause deformation of the base material or deterioration of characteristics.
 これに対し、本発明のサーメット溶射層は、MoNiB型の複硼化物を含有するサーメット溶射層に、SiおよびCを含有させ、その溶融温度を低下させたものであるため、低温でフュージング処理を施すことが可能となり、基材の変形や特性低下を防止しながら、サーメット溶射層を基材と熱拡散させて拡散層を形成し、基材とサーメット溶射層との密着性を有効に向上させることができる。 On the other hand, the cermet sprayed layer of the present invention contains Si and C in a cermet sprayed layer containing a Mo 2 NiB 2 type double boride, and its melting temperature is lowered. It becomes possible to perform fusing treatment, and while preventing deformation and deterioration of properties of the base material, the cermet sprayed layer is thermally diffused with the base material to form a diffusion layer, and the adhesion between the base material and the cermet sprayed layer is effective. Can be improved.
 なお、本発明のサーメット溶射層の溶融温度は、たとえば、結合相中のSiおよびCの含有割合を変化させることにより制御することができるが、溶融温度としては、好ましくは960~1100℃、より好ましくは1000~1050℃である。 The melting temperature of the cermet sprayed layer of the present invention can be controlled, for example, by changing the content ratios of Si and C in the binder phase. The melting temperature is preferably 960 to 1100 ° C. The temperature is preferably 1000 to 1050 ° C.
 また、本発明のサーメット溶射層にフュージング処理を施す場合には、フュージング処理時の加熱温度は、サーメット溶射層の溶融温度に応じて設定することができ、好ましくは960~1100℃、より好ましくは1000~1050℃である。本発明においては、フュージング処理における加熱温度を上記範囲とすることにより、サーメット溶射層にフュージング処理を施す場合において、熱による基材の変形や特性低下の発生を有効に防止することができる。なお、フュージング処理を施す際の加熱時間については、特に限定されないが、サーメット溶射層の厚みなどに応じて適宜設定すればよい。 In the case where the cermet sprayed layer of the present invention is subjected to fusing treatment, the heating temperature during the fusing treatment can be set according to the melting temperature of the cermet sprayed layer, preferably 960 to 1100 ° C., more preferably 1000 to 1050 ° C. In the present invention, by setting the heating temperature in the fusing treatment to the above range, when the fusing treatment is performed on the cermet sprayed layer, it is possible to effectively prevent the deformation of the base material and the deterioration of the characteristics due to heat. In addition, although it does not specifically limit about the heating time at the time of performing a fusing process, What is necessary is just to set suitably according to the thickness etc. of a cermet sprayed layer.
 本発明のサーメット溶射層は、上述した溶射層形成用粉末により形成されるものであるため、溶射層形成用粉末と同様の元素を含有することとなり、その組成については、B:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部であることが好ましい。 Since the cermet sprayed layer of the present invention is formed from the above-mentioned sprayed layer forming powder, it contains the same elements as the sprayed layer forming powder, and the composition is about B: 4.0 to 6.0 wt%, Mo: 35.5 to 53.25 wt%, Cr: 10.0 to 25.0 wt%, Si: 2.0 to 6.0 wt%, C: 0.1 to 1. It is preferably 0% by weight and Ni: the balance.
 B(ホウ素)は、硬質相となるMoNiB型の複硼化物を形成するための元素である。Bの含有割合を上記範囲とすることにより、サーメット溶射層を、適度にMoNiB型の複硼化物が形成され、耐摩耗性や強度に優れたものとすることができる。Bの含有割合が低すぎると、硬質相の含有割合が低くなってしまい、これにより耐摩耗性が低下するおそれがある。一方、Bの含有割合が高すぎると、硬質相同士の接触率が高くなってしまい、結果として、機械的強度が低下してしまう。 B (boron) is an element for forming a Mo 2 NiB 2 type double boride to be a hard phase. By setting the content ratio of B in the above range, the cermet sprayed layer can be appropriately formed with Mo 2 NiB 2 type double boride and excellent in wear resistance and strength. If the B content is too low, the hard phase content will be low, which may reduce the wear resistance. On the other hand, when the content ratio of B is too high, the contact ratio between the hard phases increases, and as a result, the mechanical strength decreases.
 Mo(モリブデン)は、Bとともに、硬質相となるMoNiB型の複硼化物を形成するための元素であるとともに、Moの一部は結合相に固溶し、これにより耐食性を向上させる効果を有する。Moの含有割合が低すぎると、耐摩耗性および耐食性が低下するおそれがある。一方、Moの含有割合が高すぎると、第三相を形成し、機械的強度が低下してしまう。なお、本発明においては、溶射層形成用粉末またはサーメット溶射層を構成するMoNiB型の複硼化物のMoの一部が、W,Nb,Zr,Ti,Ta,Hfなどの他の元素で置換されたものであってよい。 Mo (molybdenum) is an element for forming a Mo 2 NiB 2 type double boride that becomes a hard phase together with B, and a part of Mo is dissolved in the binder phase, thereby improving the corrosion resistance. Has an effect. If the Mo content is too low, the wear resistance and corrosion resistance may be reduced. On the other hand, if the Mo content is too high, a third phase is formed and the mechanical strength is reduced. In the present invention, a part of Mo in the Mo 2 NiB 2 type double boride constituting the thermal spray layer forming powder or the cermet thermal spray layer may be other than W, Nb, Zr, Ti, Ta, Hf, etc. It may be substituted with an element.
 Ni(ニッケル)は、BおよびMoと同様に、MoNiB型の複硼化物を形成するために必要な元素である。また、結合相となるNi基合金を形成する主な元素であり、優れた耐食性に寄与する。Ni含有量が10重量%未満の場合は、十分な液相が出現せず緻密なサーメット溶射層が得られず、強度の低下を招いてしまうため、Ni含有量は10重量%以上であることが好ましい。なお、本発明においては、溶射層形成用粉末またはサーメット溶射層を構成するMoNiB型の複硼化物のNiの一部が、Fe,Cr,V,Coなどの他の元素で置換されたものであってもよい。また、結合相を構成するNi基合金としては、特に限定されないが、たとえば、Niと、Co,Cr,Mo,W,Fe,Mnから選択される少なくとも1種の金属との合金が挙げられる。 Similar to B and Mo, Ni (nickel) is an element necessary for forming a Mo 2 NiB 2 type double boride. Moreover, it is a main element that forms a Ni-based alloy that becomes a binder phase, and contributes to excellent corrosion resistance. If the Ni content is less than 10% by weight, a sufficient liquid phase does not appear and a dense cermet sprayed layer cannot be obtained, resulting in a decrease in strength. Therefore, the Ni content should be 10% by weight or more. Is preferred. In the present invention, a part of Ni in the Mo 2 NiB 2 type double boride constituting the sprayed layer forming powder or the cermet sprayed layer is replaced with other elements such as Fe, Cr, V, Co. It may be. In addition, the Ni-based alloy constituting the binder phase is not particularly limited, and examples thereof include an alloy of Ni and at least one metal selected from Co, Cr, Mo, W, Fe, and Mn.
 Cr(クロム)は、MoNiB型の複硼化物中のNiと置換固溶し、結晶構造を正方晶に安定化させる効果を有する。また添加したCrは、結合相中にも固溶し、サーメット溶射層の耐食性、耐摩耗性、高温特性、および機械的特性を大幅に向上させる。Cr含有量が多くなりすぎると、Crなどの硼化物を形成し、強度が低下してしまう。 Cr (chromium) has a solid solution with Ni in the Mo 2 NiB 2 type double boride and has an effect of stabilizing the crystal structure to tetragonal crystal. The added Cr also dissolves in the binder phase, and greatly improves the corrosion resistance, wear resistance, high temperature characteristics, and mechanical characteristics of the cermet sprayed layer. If the Cr content is too high , borides such as Cr 5 B 3 are formed and the strength is lowered.
 Si(ケイ素)は、結合相を構成する元素であり、Cと併用されることにより、サーメット溶射層の溶融温度を低下させる効果を有する。Siの含有割合が低すぎると、サーメット溶射層の溶融温度を低下させる効果が十分に得られず、サーメット溶射層の溶融温度でフュージング処理を施す場合に、過剰な熱により、基材の変形や特性低下が発生してしまうおそれがある。一方、Siの含有割合が高すぎると、溶融温度を低下させる効果が得られないことに加え、ケイ化物の含有量が多くなり、靭性などの特性が低下するというおそれがある。 Si (silicon) is an element constituting the binder phase, and when used together with C, has an effect of lowering the melting temperature of the cermet sprayed layer. If the content ratio of Si is too low, the effect of lowering the melting temperature of the cermet sprayed layer cannot be sufficiently obtained, and when performing fusing treatment at the melting temperature of the cermet sprayed layer, deformation of the substrate due to excessive heat or There is a risk that characteristic deterioration will occur. On the other hand, when the content ratio of Si is too high, the effect of lowering the melting temperature cannot be obtained, and the content of silicide increases and properties such as toughness may be deteriorated.
 C(炭素)は、結合相を構成する元素であり、Siと併用されることにより、サーメット溶射層の溶融温度を低下させる効果を有する。Cの含有割合が低すぎると、サーメット溶射層の溶融温度を低下させる効果が十分に得られず、フュージング処理を施す場合に、過剰な熱により、基材の変形や特性低下が発生してしまうおそれがある。一方、Cの含有割合が高すぎると、炭化物の含有量が多くなり、靭性などの特性が低下するというおそれがある。 C (carbon) is an element constituting the binder phase, and has the effect of lowering the melting temperature of the cermet sprayed layer when used together with Si. When the content ratio of C is too low, the effect of lowering the melting temperature of the cermet sprayed layer cannot be sufficiently obtained, and when performing the fusing treatment, deformation of the base material and deterioration of properties occur due to excessive heat. There is a fear. On the other hand, when the content ratio of C is too high, the content of carbide increases, and characteristics such as toughness may be deteriorated.
<サーメット被覆材>
 本発明のサーメット被覆材は、基材上に上述したサーメット溶射層を形成することにより得られる。そのため、本発明のサーメット被覆材は、基材と、基材上に形成されたサーメット溶射層とを備えることとなるが、本発明のサーメット被覆材においては、これらに加えて、基材とサーメット溶射層とを熱拡散させることにより形成された拡散層をさらに備えてもよい。なお、拡散層は、サーメット被覆材のサーメット溶射層に対して、上述した条件によりフュージング処理を施して、基材とサーメット溶射層とを熱拡散させることにより形成することができる。
<Cermet coating material>
The cermet coating material of the present invention is obtained by forming the above-described cermet sprayed layer on a substrate. Therefore, the cermet coating material of the present invention includes a base material and a cermet sprayed layer formed on the base material. In the cermet coating material of the present invention, in addition to these, the base material and the cermet A diffusion layer formed by thermally diffusing the thermal spray layer may be further provided. The diffusion layer can be formed by subjecting the cermet sprayed layer of the cermet coating material to a fusing treatment under the above-described conditions and thermally diffusing the base material and the cermet sprayed layer.
<サーメット被覆材の製造方法>
 次に、本発明のサーメット被覆材の製造方法について、説明する。
<Method for producing cermet covering material>
Next, the manufacturing method of the cermet coating | covering material of this invention is demonstrated.
 まず、溶射層形成用粉末を製造するための原料粉末を準備する。原料粉末としては、B:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部となるような比率で混合した粉末を準備する。 First, raw material powder for producing a thermal spray layer forming powder is prepared. As raw material powders, B: 4.0 to 6.0 wt%, Mo: 35.5 to 53.25 wt%, Cr: 10.0 to 25.0 wt%, Si: 2.0 to 6.0 A powder prepared by mixing in a ratio of wt%, C: 0.1 to 1.0 wt%, Ni: balance is prepared.
 次いで、準備した原料粉末を溶射層形成用粉末に加工する。原料粉末を溶射層形成用粉末に加工する方法は、原料粉末からMoNiB型の複硼化物が形成されるような方法であれば何でもよく、たとえば、原料粉末にバインダーおよび有機溶剤を添加し、これらをボールミルのような粉砕装置を用いて混合粉砕を行い、混合粉砕後の原料粉末をスプレードライヤーなどにより造粒し、造粒した粉末を焼結した後に分級する方法が挙げられる。これにより、本発明においては、MoNiB型の複硼化物を含有し、組成がB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部である溶射層形成用粉末が得られる。なお、本発明の溶射層形成用粉末においては、得られるサーメット溶射層の溶融温度を低下させる効果を阻害しない範囲で、不可避的に混入してしまう元素が含まれていてもよい。 Next, the prepared raw material powder is processed into a thermal spray layer forming powder. The raw material powder can be processed into a thermal spray layer forming powder as long as Mo 2 NiB 2 type double boride is formed from the raw material powder. For example, a binder and an organic solvent are added to the raw material powder. These may be mixed and pulverized using a pulverizer such as a ball mill, the raw material powder after mixing and pulverization is granulated with a spray dryer or the like, and the granulated powder is sintered and classified. Thus, in the present invention, the Mo 2 NiB 2 type double boride is contained, the composition is B: 4.0 to 6.0% by weight, Mo: 35.5 to 53.25% by weight, Cr: 10 A powder for forming a sprayed layer, which is 0.0 to 25.0% by weight, Si: 2.0 to 6.0% by weight, C: 0.1 to 1.0% by weight, and Ni: the balance, is obtained. In addition, in the powder for thermal spray layer formation of this invention, the element mixed unavoidable may be contained in the range which does not inhibit the effect of lowering the melting temperature of the obtained cermet thermal spray layer.
 なお、ボールミルなどにより混合粉砕する際においては、混合粉砕後の原料粉末の粒径は、特に限定されず、混合粉砕後の原料粉末を造粒して焼結を行う際において、MoNiB型の複硼化物の形成反応が適切に進行するような粒径とすればよい。 When mixing and pulverizing with a ball mill or the like, the particle size of the raw material powder after mixing and pulverizing is not particularly limited. When granulating and sintering the raw material powder after mixing and pulverizing, Mo 2 NiB 2 The particle size may be such that the formation reaction of the double boride of the mold proceeds appropriately.
 また、焼結を行う際の条件は、MoNiB型の複硼化物の形成反応が適切に進行する範囲であればよく、たとえば、温度:1000~1150℃、焼結時間:30~90分間、昇温速度:0.5~60℃/分の条件とすることができる。 In addition, the conditions for sintering may be within a range in which the formation reaction of the Mo 2 NiB 2 type double boride proceeds appropriately. For example, temperature: 1000 to 1150 ° C., sintering time: 30 to 90 The heating rate can be set to 0.5 to 60 ° C./min for 1 minute.
 製造する溶射層形成用粉末の大きさとしては、溶射を行い易いという点より、粒子径が10~200μmであることが好ましく、32~150μmであることがより好ましい。 The size of the powder for forming a thermal spray layer to be produced is preferably 10 to 200 μm, more preferably 32 to 150 μm, in view of easy spraying.
 次いで、溶射層形成用粉末を、溶射法により基材に溶射してサーメット溶射層を形成する。これにより、本発明においては、基材上にサーメット溶射層を被覆してなるサーメット被覆材が製造される。溶射法としては、サーメット溶射層形成時の熱影響が小さいフレーム溶射、高速フレーム溶射のいずれを採用してもよいが、金属粉末の速度が速く緻密な膜が形成できるという点より、高速フレーム溶射が好ましい。 Next, the powder for forming the sprayed layer is sprayed onto the base material by a spraying method to form a cermet sprayed layer. Thereby, in this invention, the cermet coating | covering material formed by coat | covering a cermet sprayed layer on a base material is manufactured. As the thermal spraying method, either flame spraying or high-speed flame spraying, which has a small thermal effect during formation of the cermet sprayed layer, may be adopted, but high-speed flame spraying is possible because a high-speed metal powder can be formed and a dense film can be formed. Is preferred.
 また、形成するサーメット溶射層の厚みは、好ましくは0.05mm~2.0mmであり、より好ましくは0.2mm~1.0mmである。形成するサーメット溶射層の厚みを0.05mm未満とすると、サーメット溶射層中にポアが残存し、ポア部分をきっかけとしてサーメット溶射層が基材から剥離する場合があり、また、サーメット溶射層が薄いため耐摩耗性が低下する傾向にある。一方、形成するサーメット溶射層の厚みを2mmより大きくすると、サーメット溶射層を形成する際の熱による残留応力が大きくなるため、サーメット溶射層と基材との密着性が低下する傾向にある。 Further, the thickness of the cermet sprayed layer to be formed is preferably 0.05 mm to 2.0 mm, and more preferably 0.2 mm to 1.0 mm. If the thickness of the cermet sprayed layer to be formed is less than 0.05 mm, pores may remain in the cermet sprayed layer, and the cermet sprayed layer may be peeled off from the base material due to the pores, and the cermet sprayed layer is thin. Therefore, the wear resistance tends to decrease. On the other hand, if the thickness of the cermet sprayed layer to be formed is larger than 2 mm, the residual stress due to heat at the time of forming the cermet sprayed layer increases, so that the adhesion between the cermet sprayed layer and the substrate tends to be lowered.
 以上のようにして、本発明の溶射層形成用粉末を用いた、サーメット被覆材が製造される。 As described above, the cermet coating material using the thermal spray layer forming powder of the present invention is manufactured.
 なお、本発明においては、このようにして製造したサーメット被覆材に対し、さらにフュージング処理を施してもよい。サーメット被覆材に対しフュージング処理を施すことにより、サーメット溶射層が基材と熱拡散して拡散層が形成され、基材とサーメット溶射層との密着性が向上する。フュージング処理の方法としては、特に限定されず、たとえば、燃料としてアセチレンおよび酸素を用いたフレームトーチによる加熱、高周波誘導加熱、雰囲気炉による加熱、真空炉による加熱などの方法を用いることができるが、サーメット溶射層を安定して熱拡散させることができるという点より、真空炉による加熱の方法を用いるのが好ましい。なお、フュージング処理を施す際の加熱温度は、上述した条件と同様である。 In the present invention, the cermet covering material thus produced may be further subjected to fusing treatment. By subjecting the cermet coating material to a fusing treatment, the cermet sprayed layer is thermally diffused with the base material to form a diffusion layer, and the adhesion between the base material and the cermet sprayed layer is improved. The fusing treatment method is not particularly limited, and for example, heating by a flame torch using acetylene and oxygen as fuel, high-frequency induction heating, heating by an atmospheric furnace, heating by a vacuum furnace, etc. can be used. It is preferable to use a heating method using a vacuum furnace from the viewpoint that the cermet sprayed layer can be thermally diffused stably. In addition, the heating temperature at the time of performing a fusing process is the same as the conditions mentioned above.
 本発明によれば、MoNiB型の複硼化物を含有する溶射層形成用粉末について、その組成をB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部とすることにより、耐食性および耐摩耗性に優れ、さらに、基材との密着性を向上させるためのフュージング処理を比較的低温で実施することが可能なサーメット溶射層を形成することができる。 According to the present invention, regarding the powder for forming a thermal spray layer containing the Mo 2 NiB 2 type double boride, the composition is B: 4.0 to 6.0 wt%, Mo: 35.5 to 53.25 wt. %, Cr: 10.0-25.0% by weight, Si: 2.0-6.0% by weight, C: 0.1-1.0% by weight, Ni: the balance, so that the corrosion resistance and wear resistance In addition, it is possible to form a cermet sprayed layer that is excellent in properties and that can be subjected to a fusing treatment for improving adhesion to a substrate at a relatively low temperature.
 また、このような溶射層形成用粉末を用いて得られる本発明のサーメット被覆材は、フュージング処理を施す場合においても、加熱温度をより低温とすることができるため、生産性に優れたものとなる。さらに、本発明のサーメット被覆材は、フュージング処理により、基材とサーメット溶射層とが良好に密着して、高荷重負荷にも耐えうる耐久性を有するものとなることから、消耗部材として用いた場合に交換頻度を低減させることができ、その結果として、消耗部材の廃棄量を削減し、環境保護に寄与することができる。 In addition, the cermet coating material of the present invention obtained using such a thermal spray layer forming powder has excellent productivity because the heating temperature can be lowered even when fusing treatment is performed. Become. Furthermore, the cermet coating material of the present invention was used as a consumable member because the base material and the cermet sprayed layer were in close contact with each other by fusing treatment and had durability capable of withstanding high load loads. In such a case, the replacement frequency can be reduced, and as a result, the amount of discarded consumable members can be reduced, contributing to environmental protection.
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
≪実施例1≫
 B:5重量%、Mo:44.4重量%、Cr:13重量%、Si:3.4重量%、C:0.34重量%、Ni:残部の比率で混合してなる原料100重量部に対して、5重量部のパラフィンを加え、これをアセトン中で、振動ボールミルにより25時間湿式粉砕を行うことで粉砕粉を作製した。次いで、作製した粉砕粉を、窒素雰囲気下において150℃で18時間乾燥した。そして、乾燥した粉砕粉を、アセトンと1:1の重量割合で混合した後に、スプレードライヤーによって造粒し、造粒した粉末を真空にて1150℃で1時間保持して粉末を焼結し、これを分級することにより、MoNiB型の複硼化物を含有する溶射層形成用粉末を作製した。
Example 1
B: 5% by weight, Mo: 44.4% by weight, Cr: 13% by weight, Si: 3.4% by weight, C: 0.34% by weight, Ni: 100% by weight of raw material On the other hand, 5 parts by weight of paraffin was added, and this was pulverized in acetone by a vibration ball mill for 25 hours in acetone. Next, the prepared pulverized powder was dried at 150 ° C. for 18 hours in a nitrogen atmosphere. Then, the dried pulverized powder was mixed with acetone at a weight ratio of 1: 1, and then granulated by a spray dryer, and the granulated powder was held at 1150 ° C. in vacuum for 1 hour to sinter the powder, By classifying this, a thermal spray layer forming powder containing a Mo 2 NiB 2 type double boride was prepared.
 次いで、作製した溶射層形成用粉末について、溶融温度の測定を行った。具体的には、溶融温度の測定は、溶射層形成用粉末を粒径10~300μmとなるように粉砕し、示差熱分析装置(リガク社製、型番:TG8120)により溶融温度を測定した。結果を表1、および図1(A)に示す。なお、図1においては、溶射層形成用粉末に含まれるSiの含有割合(重量%)に対する、溶射層形成用粉末の溶融温度(℃)の値を示した。後述する図2,3についても同様とする。 Next, the melt temperature was measured for the produced sprayed layer forming powder. Specifically, the melting temperature was measured by pulverizing the thermal spray layer forming powder to a particle size of 10 to 300 μm and measuring the melting temperature with a differential thermal analyzer (manufactured by Rigaku Corporation, model number: TG8120). The results are shown in Table 1 and FIG. In addition, in FIG. 1, the value of the melting temperature (° C.) of the thermal spray layer forming powder with respect to the Si content (wt%) contained in the thermal spray layer forming powder is shown. The same applies to FIGS.
≪実施例2~4≫
 原料中のSiの混合比率を、3.5重量%(実施例2)、5重量%(実施例3)、6重量%(実施例4)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表1、および図1(A)に示す。
<< Examples 2 to 4 >>
Thermal spraying was carried out in the same manner as in Example 1 except that the mixing ratio of Si in the raw material was 3.5% by weight (Example 2), 5% by weight (Example 3), and 6% by weight (Example 4). A layer forming powder was prepared, and the melting temperature was similarly measured. The results are shown in Table 1 and FIG.
≪比較例1~3≫
 原料中のSiの混合比率を、0重量%(比較例1)、2.5重量%(比較例2)、7重量%(比較例3)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表1、および図1(A)に示す。
<< Comparative Examples 1 to 3 >>
Thermal spraying was carried out in the same manner as in Example 1 except that the mixing ratio of Si in the raw material was 0% by weight (Comparative Example 1), 2.5% by weight (Comparative Example 2), and 7% by weight (Comparative Example 3). A layer forming powder was prepared, and the melting temperature was similarly measured. The results are shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
≪比較例4~10≫
 原料中のCの混合比率をC:0重量%とし、さらに原料中のSiの混合比率を、0重量%(比較例4)、2.5重量%(比較例5)、3重量%(比較例6)、3.5重量%(比較例7)、5重量%(比較例8)、6重量%(比較例9)、7重量%(比較例10)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表2、および図1(B)に示す。
<< Comparative Examples 4 to 10 >>
The mixing ratio of C in the raw material was C: 0 wt%, and the mixing ratio of Si in the raw material was 0 wt% (Comparative Example 4), 2.5 wt% (Comparative Example 5), 3 wt% (Comparison) Example 6), 3.5 wt% (Comparative Example 7), 5 wt% (Comparative Example 8), 6 wt% (Comparative Example 9), and 7 wt% (Comparative Example 10). Similarly, a powder for forming a sprayed layer was prepared, and the melting temperature was measured in the same manner. The results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪実施例5~8≫
 原料中のBおよびMoの混合比率をB:4.5重量%、Mo:39.9重量%とし、さらに原料中のSiの混合比率を、2.5重量%(実施例5)、3重量%(実施例6)、3.5重量%(実施例7)、5重量%(実施例8)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表3、および図2(A)に示す。
<< Examples 5 to 8 >>
The mixing ratio of B and Mo in the raw material was B: 4.5 wt%, Mo: 39.9 wt%, and the mixing ratio of Si in the raw material was 2.5 wt% (Example 5), 3 wt% % (Example 6), 3.5 wt% (Example 7), and 5 wt% (Example 8). The temperature was measured. The results are shown in Table 3 and FIG.
≪比較例11~13≫
 原料中のBおよびMoの混合比率をB:4.5重量%、Mo:39.9重量%とし、さらに原料中のSiの混合比率を、0重量%(比較例11)、2重量%(比較例12)、6重量%(比較例13)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表3、および図2(A)に示す。
<< Comparative Examples 11-13 >>
The mixing ratio of B and Mo in the raw material was B: 4.5 wt%, Mo: 39.9 wt%, and the mixing ratio of Si in the raw material was 0 wt% (Comparative Example 11), 2 wt% ( A powder for forming a thermal spray layer was prepared in the same manner as in Example 1 except that the content was changed to Comparative Example 12) and 6% by weight (Comparative Example 13), and the melting temperature was measured in the same manner. The results are shown in Table 3 and FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
≪比較例14~20≫
 原料中のB、Mo、およびCの混合比率をB:4.5重量%、Mo:39.9重量%、C:0重量%とし、さらに原料中のSiの混合比率を、0重量%(比較例14)、2重量%(比較例15)、2.5重量%(比較例16)、3重量%(比較例17)、3.5重量%(比較例18)、5重量%(比較例19)、6重量%(比較例20)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表4、および図2(B)に示す。
<< Comparative Examples 14 to 20 >>
The mixing ratio of B, Mo, and C in the raw material was B: 4.5 wt%, Mo: 39.9 wt%, C: 0 wt%, and the mixing ratio of Si in the raw material was 0 wt% ( Comparative Example 14) 2% by weight (Comparative Example 15) 2.5% by weight (Comparative Example 16) 3% by weight (Comparative Example 17) 3.5% by weight (Comparative Example 18) 5% by weight (Comparative) Example 19) A thermal spray layer forming powder was prepared in the same manner as in Example 1 except that the content was 6% by weight (Comparative Example 20), and the melting temperature was measured in the same manner. The results are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
≪実施例9~12≫
 原料中のBおよびMoの混合比率をB:4重量%、Mo:35.5重量%とし、さらに原料中のSiの混合比率を、2重量%(実施例9)、2.5重量%(実施例10)、3重量%(実施例11)、4重量%(実施例12)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表5、および図3(A)に示す。
<< Examples 9 to 12 >>
The mixing ratio of B and Mo in the raw material was B: 4% by weight, Mo: 35.5% by weight, and the mixing ratio of Si in the raw material was 2% by weight (Example 9), 2.5% by weight ( Example 10) A powder for forming a sprayed layer was prepared in the same manner as in Example 1 except that the content was 3% by weight (Example 11) and 4% by weight (Example 12). Similarly, the melting temperature was measured. went. The results are shown in Table 5 and FIG.
≪比較例21~23≫
 原料中のBおよびMoの混合比率をB:4重量%、Mo:35.5重量%とし、さらに原料中のSiの混合比率を、0重量%(比較例21)、1.5重量%(比較例22)、5重量%(比較例23)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表5、および図3(A)に示す。
<< Comparative Examples 21 to 23 >>
The mixing ratio of B and Mo in the raw material was B: 4% by weight, Mo: 35.5% by weight, and the mixing ratio of Si in the raw material was 0% by weight (Comparative Example 21), 1.5% by weight ( Comparative Example 22) A thermal spray layer forming powder was prepared in the same manner as in Example 1 except that the content was 5 wt% (Comparative Example 23), and the melting temperature was measured in the same manner. The results are shown in Table 5 and FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
≪比較例24~30≫
 原料中のB、Mo、およびCの混合比率をB:4重量%、Mo:35.5重量%、C:0重量%とし、さらに原料中のSiの混合比率を、0重量%(比較例24)、1.5重量%(比較例25)、2重量%(比較例26)、2.5重量%(比較例27)、3重量%(比較例28)、4重量%(比較例29)、5重量%(比較例30)とした以外は、実施例1と同様にして溶射層形成用粉末を作製し、同様に溶融温度の測定を行った。結果を表6、および図3(B)に示す。
<< Comparative Examples 24 to 30 >>
The mixing ratio of B, Mo, and C in the raw material was B: 4% by weight, Mo: 35.5% by weight, C: 0% by weight, and the mixing ratio of Si in the raw material was 0% by weight (comparative example) 24), 1.5% by weight (Comparative Example 25), 2% by weight (Comparative Example 26), 2.5% by weight (Comparative Example 27), 3% by weight (Comparative Example 28), 4% by weight (Comparative Example 29) ) A sprayed layer forming powder was prepared in the same manner as in Example 1 except that the content was 5 wt% (Comparative Example 30), and the melting temperature was measured in the same manner. The results are shown in Table 6 and FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 次いで、鋼材(SKD11鋼)を準備し、準備した鋼材に対し、上述した実施例10の溶射層形成用粉末を、高速フレーム溶射機(TAFA社製、型番:JP8000)により溶射することで、基材上にサーメット溶射層を被覆してなるサーメット被覆材を得た。そして、得られたサーメット被覆材に対し、真空炉中で、加熱温度:1050℃、加熱時間30分間の条件にてフュージング処理を施した。 Next, a steel material (SKD11 steel) was prepared, and the thermal spray layer forming powder of Example 10 described above was sprayed on the prepared steel material with a high-speed flame spraying machine (TAFA, model number: JP8000). A cermet coating material obtained by coating a cermet sprayed layer on the material was obtained. And the fusing process was performed with respect to the obtained cermet coating | covering material on the conditions of heating temperature: 1050 degreeC and heating time for 30 minutes in the vacuum furnace.
 その後、フュージング処理を施したサーメット被覆材を切断し、切断した断面を走査型電子顕微鏡(日本電子株式会社製、JSM-840A)により測定することで、図4に示す断面写真を得た。図4に示すように、サーメット被覆材の断面においては、鋼材とサーメット溶射層との間に拡散層が形成されていることが確認された。 Thereafter, the cermet coating material subjected to the fusing treatment was cut, and the cut cross section was measured with a scanning electron microscope (JSM-840A, manufactured by JEOL Ltd.) to obtain a cross-sectional photograph shown in FIG. As shown in FIG. 4, in the cross section of the cermet covering material, it was confirmed that a diffusion layer was formed between the steel material and the cermet sprayed layer.
 さらに、サーメット被覆材の断面における、図4に示す領域A(鋼材の部分)、領域B(鋼材とサーメット溶射層との拡散層の部分)、および領域C(サーメット溶射層の部分)のそれぞれについて、走査型電子顕微鏡により、ZAF補正法を用いて元素分析を行った。領域Aにおける各元素のピークを図5(A)に、領域Bにおける各元素のピークを図5(B)に、領域Cにおける各元素のピークを図5(C)にそれぞれ示す。また、元素分析により得られた領域Bの組成を表7に示す。 Further, in the cross section of the cermet covering material, each of region A (part of steel material), region B (part of diffusion layer of steel material and cermet sprayed layer), and region C (part of cermet sprayed layer) shown in FIG. Elemental analysis was performed with a scanning electron microscope using the ZAF correction method. The peak of each element in the region A is shown in FIG. 5A, the peak of each element in the region B is shown in FIG. 5B, and the peak of each element in the region C is shown in FIG. Table 7 shows the composition of region B obtained by elemental analysis.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 次いで、切断した断面について、ビッカース硬度計を用いて、鋼材とサーメット溶射層との密着性を評価した。具体的には、密着性の評価は、切断した断面の拡散層付近に、ビッカース硬度計(明石製作所社製、型番:MVK-G2)により、頂角136°の正四角錐ダイヤモンド圧子を用いて、5kgfの荷重を加えた後、荷重が加わった部分においてサーメット溶射層が剥離したか否かを確認することにより行った。結果として、荷重を加えた後のサーメット溶射層は、鋼材から剥離することなく、鋼材に強固に密着していることが確認された。 Next, for the cut cross section, the adhesion between the steel material and the cermet sprayed layer was evaluated using a Vickers hardness tester. Specifically, the evaluation of adhesion was performed by using a square pyramid diamond indenter with an apex angle of 136 ° using a Vickers hardness meter (manufactured by Akashi Seisakusho, model number: MVK-G2) in the vicinity of the diffusion layer of the cut section. After applying a load of 5 kgf, it was performed by checking whether or not the cermet sprayed layer was peeled off at the portion where the load was applied. As a result, it was confirmed that the cermet sprayed layer after applying the load was firmly adhered to the steel material without peeling from the steel material.
 表1,3,5に示すように、MoNiB型の複硼化物を含有し、組成がB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部である実施例1~12の溶射層形成用粉末は、いずれも溶融温度が1000℃以下であった。これにより、実施例1~12の溶射層形成用粉末は、いずれも溶融温度が1000℃以下であることから、溶射によりサーメット溶射層となった後にフュージング処理が施される際において、サーメット溶射層を熱拡散させるための加熱温度を抑えることができ、その結果として、基材の変形や特性低下の発生を防止し、基材との密着性に優れたものであると判断することができる。 As shown in Tables 1, 3 and 5, it contains Mo 2 NiB 2 type double boride, and the composition is B: 4.0 to 6.0% by weight, Mo: 35.5 to 53.25% by weight, Cr: 10.0 to 25.0% by weight, Si: 2.0 to 6.0% by weight, C: 0.1 to 1.0% by weight, Ni: balance The formation of the sprayed layer of Examples 1 to 12 All of the powders for use had a melting temperature of 1000 ° C. or lower. As a result, the thermal spray layer forming powders of Examples 1 to 12 all had a melting temperature of 1000 ° C. or less, and therefore when the fusing treatment was performed after the thermal sprayed cermet thermal spray layer was formed, the cermet thermal spray layer It is possible to suppress the heating temperature for thermally diffusing, and as a result, it is possible to prevent the base material from being deformed or to deteriorate the characteristics and to be determined to have excellent adhesion to the base material.
 さらに、図4、図5(B)、および表7に示すように、実施例10の溶射層形成用粉末を鋼材に溶射した後、1050℃の低い加熱温度でフュージング処理を施すことで得られたサーメット被覆材は、サーメット溶射層を構成する成分(Mo、Ni、Crなど)が、鋼材を構成する成分(Feなど)と良好に熱拡散していることが確認された。加えて、得られたサーメット被覆材について、ビッカース硬度計を用いて、鋼材とサーメット溶射層との界面に荷重を加えたところ、サーメット溶射層は鋼材から剥離することなく、鋼材に強固に密着していることが確認された。これにより、実施例10の溶射層形成用粉末は、溶射によりサーメット溶射層となった後、低温でフュージング処理が施された場合においても、基材に対して良好に熱拡散し、基材との密着性に優れたものであることが確認された。また、他の実施例(実施例1~9,11,12)についても、その組成がB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部であることから、鋼材とサーメット溶射層との密着性の評価結果について、同様の結果が得られると考えられる。 Furthermore, as shown in FIG. 4, FIG. 5 (B), and Table 7, after spraying the thermal spray layer forming powder of Example 10 on a steel material, it is obtained by performing a fusing treatment at a low heating temperature of 1050 ° C. In the cermet coating material, it was confirmed that the components (Mo, Ni, Cr, etc.) constituting the cermet sprayed layer were thermally diffused well with the components (Fe etc.) constituting the steel material. In addition, for the obtained cermet coating material, when a load was applied to the interface between the steel material and the cermet sprayed layer using a Vickers hardness tester, the cermet sprayed layer adhered firmly to the steel material without peeling from the steel material. It was confirmed that Thereby, after the powder for thermal spray layer formation of Example 10 became a cermet sprayed layer by thermal spraying, even when the fusing treatment was performed at a low temperature, the powder was thermally diffused well, It was confirmed that the adhesion was excellent. In the other examples (Examples 1 to 9, 11, and 12), the composition was B: 4.0 to 6.0% by weight, Mo: 35.5 to 53.25% by weight, Cr: 10 0.0-25.0% by weight, Si: 2.0-6.0% by weight, C: 0.1-1.0% by weight, Ni: balance, so the adhesion between the steel and the cermet sprayed layer It is considered that the same result can be obtained for the evaluation results.
 一方、表1~6の比較例1~30に示すように、各元素の含有割合が上記範囲にない溶射層形成用粉末は、溶融温度が1050℃超であり、このような溶射層形成用粉末は、溶射によりサーメット溶射層となった後に、溶射層形成用粉末の溶融温度でフュージング処理が施される際において、基材の変形や特性低下が発生してしまうものと判断することができる。 On the other hand, as shown in Comparative Examples 1 to 30 in Tables 1 to 6, the thermal spray layer forming powder in which the content ratio of each element is not in the above range has a melting temperature exceeding 1050 ° C. When the powder is subjected to a fusing treatment at the melting temperature of the thermal spray layer-forming powder after it has become a cermet thermal spray layer by thermal spraying, it can be determined that deformation of the base material and deterioration of properties occur. .

Claims (9)

  1.  MoNiB型の複硼化物を含む溶射層形成用粉末であって、
     組成がB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部であることを特徴とする溶射層形成用粉末。
    A powder for forming a thermal spray layer containing a Mo 2 NiB 2 type double boride,
    Composition: B: 4.0 to 6.0 wt%, Mo: 35.5 to 53.25 wt%, Cr: 10.0 to 25.0 wt%, Si: 2.0 to 6.0 wt%, C: Powder for forming a thermal spray layer, wherein 0.1 to 1.0% by weight, Ni: balance.
  2.  請求項1に記載の溶射層形成用粉末であって、
     Bの含有割合をA[重量%]とし、Siの含有割合をASi[重量%]とした場合に、下記式(1)を満たすことを特徴とする溶射層形成用粉末。
      A-2.5<ASi<2A-3  ・・・(1)
    The thermal spray layer forming powder according to claim 1,
    A thermal spray layer forming powder characterized by satisfying the following formula (1) when the B content is A B [wt%] and the Si content is A Si [wt%].
    A B −2.5 <A Si <2A B −3 (1)
  3.  請求項1または2に記載の溶射層形成用粉末を溶射することで形成されるサーメット溶射層であって、
     前記MoNiB型の複硼化物を含む硬質相を50.0~80.0重量%の割合で含み、残部が、Ni基合金を主成分とする結合相であり、Si:2.0~6.0重量%およびC:0.1~1.0重量%を含むことを特徴とするサーメット溶射層。
    A cermet sprayed layer formed by spraying the sprayed layer forming powder according to claim 1,
    The hard phase containing the Mo 2 NiB 2 type double boride is included at a ratio of 50.0 to 80.0% by weight, and the balance is a bonded phase mainly composed of a Ni-based alloy, and Si: 2.0 A cermet sprayed layer comprising: -6.0 wt% and C: 0.1-1.0 wt%.
  4.  請求項3に記載のサーメット溶射層が基材上に形成されてなるサーメット被覆材。 A cermet coating material in which the cermet sprayed layer according to claim 3 is formed on a substrate.
  5.  前記サーメット溶射層に960~1100℃で加熱する溶融処理を施すことで、前記基材と前記サーメット溶射層とを熱拡散させることにより形成された拡散層を備えることを特徴とする請求項4に記載のサーメット被覆材。 5. The diffusion layer formed by thermally diffusing the base material and the cermet sprayed layer by subjecting the cermet sprayed layer to a melting treatment by heating at 960 to 1100 ° C. The described cermet coating material.
  6.  前記基材が合金鋼、炭素鋼、またはステンレス鋼であることを特徴する請求項4または5に記載のサーメット被覆材。 The cermet covering material according to claim 4 or 5, wherein the base material is alloy steel, carbon steel, or stainless steel.
  7.  MoNiB型の複硼化物を含む溶射層形成用粉末を基材上に溶射することで、前記基材上にサーメット溶射層を形成する工程を有するサーメット被覆材の製造方法であって、
     前記溶射層形成用粉末として、組成がB:4.0~6.0重量%、Mo:35.5~53.25重量%、Cr:10.0~25.0重量%、Si:2.0~6.0重量%、C:0.1~1.0重量%、Ni:残部である粉末を用い、
     前記MoNiB型の複硼化物を含む硬質相を50.0~80.0重量%の割合で含み、残部が、Ni基合金を主成分とする結合相であり、Si:2.0~6.0重量%およびC:0.1~1.0重量%を含むサーメット溶射層を形成することを特徴とするサーメット被覆材の製造方法。
    A method for producing a cermet coating material comprising a step of forming a cermet sprayed layer on a base material by spraying a powder for forming a sprayed layer containing Mo 2 NiB 2 type double boride on the base material,
    The thermal spray layer forming powder has a composition of B: 4.0 to 6.0% by weight, Mo: 35.5 to 53.25% by weight, Cr: 10.0 to 25.0% by weight, Si: 2. 0 to 6.0% by weight, C: 0.1 to 1.0% by weight, Ni: remaining powder,
    The hard phase containing the Mo 2 NiB 2 type double boride is included at a ratio of 50.0 to 80.0% by weight, and the balance is a bonded phase mainly composed of a Ni-based alloy, and Si: 2.0 A method for producing a cermet coating material, comprising forming a cermet sprayed layer containing -6.0 wt% and C: 0.1-1.0 wt%.
  8.  前記溶射層形成用粉末として、Bの含有割合をA[重量%]とし、Siの含有割合をASi[重量%]とした場合に、下記式(1)を満たす粉末を用いることを特徴とする請求項7に記載のサーメット被覆材の製造方法。
      A-2.5<ASi<2A-3  ・・・(1)
    As the thermal spray layer forming powder, a powder satisfying the following formula (1) is used when the B content is A B [wt%] and the Si content is A Si [wt%]. The method for producing a cermet covering material according to claim 7.
    A B −2.5 <A Si <2A B −3 (1)
  9.  前記基材上に前記サーメット溶射層を形成した後、前記サーメット溶射層に960~1100℃で加熱する溶融処理を施す工程をさらに有することを特徴とする請求項7または8に記載のサーメット被覆材の製造方法。 The cermet coating material according to claim 7 or 8, further comprising a step of performing a melting treatment by heating the cermet sprayed layer at 960 to 1100 ° C after forming the cermet sprayed layer on the substrate. Manufacturing method.
PCT/JP2013/078902 2012-11-08 2013-10-25 Powder for use in formation of sprayed layer WO2014073392A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380058636.5A CN104781441B (en) 2012-11-08 2013-10-25 Deposited metal formation powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-246014 2012-11-08
JP2012246014A JP6087587B2 (en) 2012-11-08 2012-11-08 Powder for forming sprayed layer, cermet sprayed layer, cermet coating material, and method for producing cermet coating material

Publications (1)

Publication Number Publication Date
WO2014073392A1 true WO2014073392A1 (en) 2014-05-15

Family

ID=50684502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078902 WO2014073392A1 (en) 2012-11-08 2013-10-25 Powder for use in formation of sprayed layer

Country Status (2)

Country Link
JP (1) JP6087587B2 (en)
WO (1) WO2014073392A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190194786A1 (en) * 2017-12-22 2019-06-27 Up Scientech Materials Corp. Hardfacing Material
CN111349837A (en) * 2020-03-19 2020-06-30 中国南方电网有限责任公司超高压输电公司柳州局 Metal ceramic and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155527A (en) * 2001-11-20 2003-05-30 Toshiba Mach Co Ltd Ni BASED CORROSION RESISTANT AND WEAR RESISTANT ALLOY, AND COMPOSITE AND MEMBER FOR DIE CASTING MACHINE OBTAINED BY USING THE SAME
JP5005889B2 (en) * 2005-03-28 2012-08-22 住友金属工業株式会社 High strength low Young's modulus titanium alloy and its manufacturing method
WO2012133328A1 (en) * 2011-03-30 2012-10-04 東洋鋼鈑株式会社 Hard sintered alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409067B2 (en) * 2000-08-03 2010-02-03 東洋鋼鈑株式会社 Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP4264219B2 (en) * 2002-03-27 2009-05-13 三菱重工業株式会社 Rubber kneader rotor
JP5154869B2 (en) * 2007-09-11 2013-02-27 東洋鋼鈑株式会社 Thermal spray layer forming high corrosion resistance wear resistant member and thermal spray layer forming powder forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155527A (en) * 2001-11-20 2003-05-30 Toshiba Mach Co Ltd Ni BASED CORROSION RESISTANT AND WEAR RESISTANT ALLOY, AND COMPOSITE AND MEMBER FOR DIE CASTING MACHINE OBTAINED BY USING THE SAME
JP5005889B2 (en) * 2005-03-28 2012-08-22 住友金属工業株式会社 High strength low Young's modulus titanium alloy and its manufacturing method
WO2012133328A1 (en) * 2011-03-30 2012-10-04 東洋鋼鈑株式会社 Hard sintered alloy

Also Published As

Publication number Publication date
JP6087587B2 (en) 2017-03-01
JP2014095109A (en) 2014-05-22
CN104781441A (en) 2015-07-15

Similar Documents

Publication Publication Date Title
EP1485220B1 (en) Corrosion resistant powder and coating
US9919358B2 (en) Sintered molybdenum carbide-based spray powder
TWI661882B (en) Process for producing chromium nitride-containing sintered spraying powder, chromium-containing sintered spray powder and use thereof, and coated component and producing process thereof
CN108642361B (en) High-strength high-hardness ceramic material and production process thereof
CA2567089C (en) Wear resistant alloy powders and coatings
US20140272388A1 (en) Molten metal resistant composite coatings
Aramian et al. A review on the microstructure and properties of TiC and Ti (C, N) based cermets
JP6116998B2 (en) Powder for forming sprayed layer, cermet sprayed layer, cermet coating material, and method for producing cermet coating material
TWI680209B (en) Multicomponent alloy coating
CN101653883A (en) Alloy mixed powder for alloy particle submerged arc overlay welding
JP6087587B2 (en) Powder for forming sprayed layer, cermet sprayed layer, cermet coating material, and method for producing cermet coating material
JP2988281B2 (en) Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
JP5154869B2 (en) Thermal spray layer forming high corrosion resistance wear resistant member and thermal spray layer forming powder forming the same
KR101542447B1 (en) Engine valve
JP6169566B2 (en) Cermet covering material, alloy powder for producing cermet covering material, and method for producing cermet covering material
WO2010103563A1 (en) Highly corrosion-resistant and wearing-resistant member with thermal-spraying deposit and powder for thermal-spraying deposit formation for forming the same
JP2012102362A (en) Boride cermet-based powder for thermal spraying
US20140245863A1 (en) Corrosion-resistant and wear-resistant ni-based alloy
WO2016186037A1 (en) Hard sintered alloy and method for manufacturing same
JP6985961B2 (en) Piston ring and its manufacturing method
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
CN104781441B (en) Deposited metal formation powder
KR102280609B1 (en) Oxide dispersion strengthened Fe-based superalloy casting material and method of manufacturing the same
JP2011132057A (en) Sintered compact
WO2010110873A1 (en) Chrome-free coating for substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852541

Country of ref document: EP

Kind code of ref document: A1