WO2014073391A1 - Control system for engine starter electric motor - Google Patents

Control system for engine starter electric motor Download PDF

Info

Publication number
WO2014073391A1
WO2014073391A1 PCT/JP2013/078900 JP2013078900W WO2014073391A1 WO 2014073391 A1 WO2014073391 A1 WO 2014073391A1 JP 2013078900 W JP2013078900 W JP 2013078900W WO 2014073391 A1 WO2014073391 A1 WO 2014073391A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
battery
engine
current
control system
Prior art date
Application number
PCT/JP2013/078900
Other languages
French (fr)
Japanese (ja)
Inventor
山田 剛司
繁彦 小俣
中里 成紀
慎悟 北島
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201380059036.0A priority Critical patent/CN104797809A/en
Publication of WO2014073391A1 publication Critical patent/WO2014073391A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/087Details of the switching means in starting circuits, e.g. relays or electronic switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2002Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control system for an engine starter motor that controls an engine starter motor having a resistance for suppressing an energization current, and in particular, control of an engine starter motor suitable for preventing a momentary power failure phenomenon during operation of the starter motor.
  • a control system for an engine starter motor that controls an engine starter motor having a resistance for suppressing an energization current, and in particular, control of an engine starter motor suitable for preventing a momentary power failure phenomenon during operation of the starter motor.
  • an inrush current flows from the battery immediately after energization of the motor of the starter motor, and the voltage between the terminals of the battery drops momentarily. Due to this voltage drop, there may be a momentary power stop phenomenon in which electrical components such as a car navigation system and electric power steering mounted on the vehicle fall into an operation stop state.
  • auxiliary built-in resistor As a technology to prevent this instantaneous power failure, there is an auxiliary built-in resistor, a sub-contact that short-circuits the energization of the resistor, and an electromagnetic solenoid that opens and closes the sub-contact between the main contact of the battery and the starting motor.
  • a starting motor provided with an electromagnetic switch is known (see, for example, Patent Document 1). This closes the main contact at the start of motor energization, energizes the motor with a limited current through a resistor, and then drives the auxiliary electromagnetic switch when sufficient back electromotive force generated by motor rotation is generated. By closing the sub-contact and bypassing the resistor, the entire battery voltage is applied to the motor.
  • the auxiliary electromagnetic switch that opens and closes the sub-contact operates in a state where the battery has a voltage drop due to the current flowing to the motor via the resistor. If the battery voltage drop when the motor is energized due to deterioration of the battery or if the battery is not fully charged, the sub contact cannot be closed because sufficient current does not flow through the excitation coil of the auxiliary electromagnetic switch. As a result, since the motor current is continuously limited by the resistance, the engine start time becomes longer. In addition, since a large current that drives the motor flows through the resistor for a long time, the resistor is blown and the surrounding parts are thermally damaged, so that the energization path to the motor is lost and the engine cannot be started. There is a possibility of falling.
  • the idle state of the vehicle can only be checked when the battery charge is sufficient, or when the deterioration of the battery is confirmed and the starter motor can start the engine.
  • a vehicle control system is set so as to allow a stop (see, for example, Patent Document 2).
  • the battery state determination as described above may not be performed.
  • the battery is spontaneously discharged and the auxiliary electromagnetic switch cannot be operated in the motor drive state of the starter motor when the engine is started. If power is applied for a long time in this state, the resistance may be blown or the surrounding parts may be thermally damaged, which may make it impossible to start the engine thereafter.
  • An object of the present invention is to provide a starter motor control system capable of protecting the energization path to the motor of the starter motor necessary for starting the engine when the engine is started for the first time.
  • the present invention is an engine starter motor control system that includes a starter motor that applies rotational force to the engine when the engine is started, and a current limiting unit that limits a current applied from a battery to the starter motor.
  • the engine start request initial start
  • the engine start request (restart) from the idle stop state when the vehicle is temporarily stopped.
  • a control for controlling a large current to flow from the battery to the starter motor without passing through the current limiter, and to allow a limited current to flow from the battery to the starter motor via the current limiter at the time of restart A part is provided.
  • the energization path to the motor of the starting motor necessary for starting the engine can be protected.
  • FIG. 1 is a system configuration diagram of a control system for an engine starter motor according to an embodiment of the present invention. It is a flowchart which shows operation
  • FIG. 1 is a system configuration diagram of an engine starter motor control system according to an embodiment of the present invention.
  • the starting motor 1 includes a motor 2, a main electromagnetic switch 3, a pinion 4, a shift lever 5, and a main contact 7.
  • the motor 2 generates a rotational force necessary for starting the engine.
  • the pinion 4 transmits the rotational force of the motor 2 to the engine side ring gear 6.
  • the shift lever 5 moves the pinion 4 toward the ring gear 6 so as to mesh with the ring gear 6.
  • the main contact 7 controls energization to the motor 2.
  • the main electromagnetic switch 3 incorporates a main contact 7 and controls the movement of the shift lever 5.
  • a current limiting unit 10 in addition to the control circuit 8 and the battery 9, a current limiting unit 10 is provided.
  • the current limiting unit 10 includes an auxiliary electromagnetic switch 12, a sub contact 20, and a resistor 30.
  • the resistor 30 is arranged in series with the main contact 7 between the energization circuits from the battery 9 to the motor 2.
  • the sub-contact 20 can be switched to a circuit in which the motor 30 is directly energized by short-circuiting the resistor 30.
  • the current limiting unit 10 includes a sub contact 20 and controls opening and closing of the sub contact 20. When the sub contact 20 is closed, a large current of the battery 9 flows to the motor 2 without passing through the resistor 30. When the sub contact 20 is open, a limited current flows from the battery 9 to the motor 2 via the resistor 30.
  • the control device 8 is connected to the main electromagnetic switch 3 and the external terminals 14 and 15 of the current limiting unit 10, and can control the opening and closing of the main contact 7 and the sub contact 20 by energization.
  • the current limiting unit 10 includes a resistor 30 and is configured in a separate housing from the main electromagnetic switch 3.
  • the resistor 30 is included in the main electromagnetic switch 3 or disposed separately.
  • the main electromagnetic switch 3 and the current limiting unit 10 may be configured in the same casing.
  • FIG. 2 is a flowchart showing the operation of the engine starter motor control system according to the embodiment of the present invention.
  • 3 and 4 are time charts for explaining the operation of the engine starter motor control system according to the embodiment of the present invention.
  • the engine start request is classified into two, that is, an initial start request and a restart request, and control is executed.
  • the initial start request refers to an engine start request by an ignition key operation from the driver, and one restart request satisfies predetermined conditions such as a vehicle speed and a battery charging state and the vehicle enters an idle stop state.
  • the engine is automatically started according to a command from the control device in accordance with idle stop release conditions such as brake release.
  • the control device 8 determines whether the engine start request is an initial start request or a restart request. For example, the input signal from the ignition key is monitored, and if there is an input signal from the ignition key, it is determined that the request is for the initial start. On the other hand, if it is a start request by a signal other than the input signal from the ignition key, it is determined that it is a restart request, or an idle stop permission signal is detected, and if there is a start request after that, it is a restart request judge.
  • step 120 in the flowchart of FIG. 3 shows the open / closed state of the main contact 7 (FIG. 3A) and the open / closed state of the sub-contact 20 (FIG. 3B) when control is performed from step 120 to step 180 in FIG.
  • the voltage of the battery 9 (FIG. 3C) and the current flowing through the motor 2 (FIG. 3D) are shown.
  • step 120 the control device 8 energizes the external terminal 14 of the main electromagnetic switch 3 to push out the pinion 4 to mesh with the ring gear 6, and then closes the main contact 7 to start energizing the motor 2.
  • the current flowing to the motor 2 is limited by the resistor 30. Since the motor 2 rotates at a low speed and starts cranking the engine, the generation of a transient current immediately after the start of energization is suppressed, and the voltage drop of the battery 9 is reduced. The voltage V1 between terminals can be reduced and held high.
  • step 130 it is determined whether or not a predetermined condition for short-circuiting the resistor 30 is satisfied.
  • the process proceeds to step 140, where the control device 8 energizes the external terminal 15 of the current limiting unit 10 and the sub-contact 20 is closed.
  • the control device 8 energizes the external terminal 15 of the current limiting unit 10 and the sub-contact 20 is closed.
  • the resistor 30 is short-circuited and current is supplied from the battery 9 to the motor 2, and the motor 2 starts cranking the engine at a high speed.
  • the motor 2 At the time of switching to the energization circuit in which the resistor 30 is short-circuited, the motor 2 is rotating at a low speed by energization in step 120, and the voltage of the battery 9 at the time of switching the energization circuit by the counter electromotive voltage according to the number of rotations.
  • the drop can be reduced and the inter-terminal voltage V2 can be kept high.
  • the predetermined condition in step 130 for example, the battery voltage shown in FIG. 3C is monitored, and it is determined that the predetermined condition is satisfied when the battery voltage becomes equal to or higher than the predetermined voltage.
  • the predetermined voltage is, for example, 10V.
  • the passage of time after the main contact is turned on is monitored, and it is determined that the predetermined condition is satisfied when the predetermined time has elapsed.
  • the predetermined time varies depending on the displacement of the engine started by the starter motor 1, the output level of the starter motor 1, and the like. For example, a time of about 30 ms to 100 ms is set.
  • the purpose is to reduce the voltage drop of the battery 9 and keep the inter-terminal voltage V2 high, from this point of view, it is optimal to monitor the battery voltage under the predetermined condition.
  • the monitoring time is about 30 ms to 100 ms, it is necessary to monitor the battery voltage every 10 ms, for example.
  • the battery voltage does not fluctuate greatly, it is only necessary to monitor the battery voltage for a relatively long time. Therefore, monitoring is not performed in a short time such as every 10 ms. Therefore, monitoring the battery voltage every 10 ms for starting the engine is a heavy burden on the control device 8. Therefore, in order to reduce this burden, a method of monitoring the time after the main contact 7 is turned on as in the second method is simple and appropriate.
  • step 170 it is determined whether an engine start completion condition is satisfied.
  • the routine proceeds to step 180, the energization of the main and auxiliary electromagnetic switches 3 and 10 is stopped, and the engine start control is ended at step 190.
  • the engine speed is monitored, and it can be determined that the engine start is completed when the engine speed reaches a predetermined speed close to the idle speed.
  • control is performed so that the voltage drop during operation is suppressed and the voltage between the terminals of the battery 9 is kept higher, and the instantaneous power failure phenomenon of the in-vehicle electrical component occurs. Can be prevented.
  • step 110 determines whether the control device 8 is an initial start request. If it is determined in step 110 that the control device 8 is an initial start request, the process proceeds to step 150.
  • FIG. 4 shows the open / closed state of the main contact 7 (FIG. 4A), the open / closed state of the sub-contact 20 (FIG. 4B), and the battery when control is performed from step 150 to 1 step 80. 9 (FIG. 4C) and the current flowing through the motor 2 (FIG. 4D).
  • step 150 the control device 8 energizes the external terminal 15 of the auxiliary electromagnetic switch 10 to close the sub-contact 20, and the resistor 30 short-circuits the energization circuit from the battery 9 to the motor 2. Switch to circuit.
  • step 160 the external terminal 14 of the main electromagnetic switch 3 is energized to move the pinion 4 via the shift lever 5 and mesh with the ring gear 6. Subsequently, the main contact 7 is closed, and the motor 2 starts rotating when energized. At this time, since the circuit is switched to the circuit in which the resistor 30 is short-circuited by the sub-contact 20, the entire voltage of the battery 9 is applied to the motor 2, and the motor 2 starts cranking the engine at a high speed.
  • step 170 it is determined whether the engine start completion condition is satisfied.
  • the routine proceeds to step 180, the energization of the main and auxiliary electromagnetic switches 3 and 10 is stopped, and the engine start control is ended at step 190.
  • the main contact switch 7 is operated to close the main contact 7 while the sub-contact 20 is closed by the current limiting unit 10 to avoid energization of the resistor 30, and the starting motor is closed. 1 motor 2 is driven. Therefore, there is no need to operate the current limiting unit 10 in a state where the voltage of the battery 9 drops when the motor 2 is energized. For this reason, even if the power for driving the current limiting unit 10 is insufficient due to the battery 9 being deteriorated or discharged due to being left for a long period of time, the current does not continue to flow through the resistor 30.
  • the current limiting unit 10 when the engine is started for the first time, it is not necessary to operate the current limiting unit 10 in a state where the voltage of the battery 9 drops when the motor is energized. For this reason, even if the power for driving the current limiting unit 10 is insufficient due to the battery 9 being deteriorated or discharged due to being left for a long period of time, the current does not continue to flow through the resistor 30. Therefore, it is possible to prevent the engine from starting into a state where the engine cannot be started due to the fusing and thermal damage of surrounding parts.
  • FIG. 5 is a system configuration diagram of an engine starter motor control system according to another embodiment of the present invention.
  • the current limiting unit 10A has a resistor 30, and this resistor 30 is arranged in parallel with the main contact 7 between the energization circuits from the battery 9 to the motor 2.
  • the current limiting unit 10 ⁇ / b> A includes an auxiliary electromagnetic switch 12, a sub contact 20, and a resistor 30.
  • the sub contact 20 is arranged in series with the resistor 30.
  • a circuit for energizing the motor 2 from the battery 9 through the resistor 30 is formed.
  • a current limited by the resistor 30 flows through the motor 2.
  • an energization circuit is formed from the battery 9 to the motor 2 without passing through the resistor 30, and a large current can flow through the motor 2.
  • the current limiting unit 10A includes a resistor 30 and is configured by a separate housing from the main electromagnetic switch 3, but is limited to this configuration.
  • the resistor 30 may be built in or separately from the main electromagnetic switch 3, and the main electromagnetic switch 3 and the current limiting unit 10 may be configured in the same casing.
  • FIG. 6 is a flowchart showing the operation of the control system for the engine starter motor according to another embodiment of the present invention.
  • 7 and 8 are time charts for explaining the operation of the engine starter motor control system according to another embodiment of the present invention.
  • FIG. 7 shows the open / closed state of the main contact 7 (FIG. 7A) and the open / closed state of the sub-contact 20 (FIG. 7 (A)) when control is performed from step 220 to step 280 at the time of restart of the present embodiment. B)), the voltage of the battery 9 (FIG. 7C), and the current flowing through the motor 2 (FIG. 7D).
  • step 220 the control device 8 closes the sub-contact 20 and energizes the motor 2 with the current limited by the resistor 30 from the battery 9.
  • step 230 it is determined whether or not a predetermined condition for switching to a circuit that bypasses the resistor 30 and energizes the motor 2 is established.
  • the process proceeds to step 240, where the control device 8 operates the main electromagnetic switch 3 to close the main contact 7, and simultaneously or immediately after, the energization to the current limiting unit 10 is stopped and the sub-contact 20 Is released. Thereby, the circuit is switched to a circuit that bypasses the resistor 30 and energizes the motor 2, and the entire voltage of the battery 9 is applied to the motor 2.
  • FIG. 8 shows the open / closed state of the main contact 7 (FIG. 8A) and the open / closed state of the sub-contact 20 (FIG. 8 (FIG. 8 (A)) when the control is performed from step 260 to 280 at the initial start of the present embodiment. B)), the voltage of the battery 9 (FIG. 8C), and the current flowing through the motor 2 (FIG. 8D).
  • step 260 the control device 8 closes the main contact 7 and applies the entire voltage of the battery 9 to the motor 2 to start the engine. At this time, the change in the voltage of the battery 9 and the current flowing through the motor 2 and the effect of the control of this embodiment are the same as the initial start operation of the first embodiment.
  • the main or auxiliary electromagnetic switch 3 or 10A it is not necessary to operate the main or auxiliary electromagnetic switch 3 or 10A in a state where the voltage of the battery 9 drops when the motor is energized. For this reason, even if the electric power for driving the electromagnetic switch is insufficient due to the battery 9 being deteriorated or being discharged due to being left for a long period of time, current does not continue to flow through the resistor 30, It is possible to prevent the engine from starting in a state where it cannot be started due to thermal damage to surrounding parts.
  • the current limiting unit 10 ⁇ / b> A illustrated in FIG. 5 is arranged in parallel with the main contact 7 between the energization circuits from the battery 9 to the motor 2. Therefore, for example, even when a large current flows through the resistor 30 for a long time and the sub-contact 20 is damaged due to heat generation, the engine can be started by closing the main contact 7. On the other hand, in the embodiment of FIG. 1, if a large current flows through the resistor 30 for a long time, the resistor 30 burns out, and the sub-contact 20 is damaged, the engine cannot be started even if the main contact 7 is closed. On the other hand, in the embodiment of FIG.
  • the current limiting unit 10 is disposed in series with the main contact 7 between the energization circuits from the battery 9 to the motor 2. Therefore, the number of connectors of the starter motor 1 is the same regardless of whether or not the current limiting unit 10 is provided, and the configuration of the conventional starter motor 1 can be used as it is, thereby reducing the cost.
  • the configuration of FIG. 5 it is necessary to add one connector for inputting a current from the current limiting unit 10A, and the configuration of the conventional starting motor 1 cannot be used as it is.
  • FIG. 9 is a flowchart showing the operation of a modified example of the control system for the engine starter motor according to each embodiment of the present invention.
  • step 300 is added to the flowchart shown in FIG.
  • the SOC of the battery 9 is controlled by the motor of the starter motor 1 during the control of engine restart using SOC (State Of Charge) indicating the ratio of the current charge amount to the battery capacity when the battery 9 is fully charged.
  • SOC State Of Charge
  • a step is added to determine whether the value is greater than or equal to a value sufficient to operate the electromagnetic switch 3 or 10 for switching to a circuit in which the resistor 30 is short-circuited.
  • step 300 control device 8 determines whether or not the SOC of battery 9 is greater than or equal to a value sufficient for current limiter 10 to operate in a state where the motor 2 of starter motor 1 is driven and the voltage drops.
  • step 140 the same control as that at the time of the initial start shown in the first embodiment is performed.
  • the SOC can be 70%.

Abstract

Provided is a control system for a starter electric motor with which the necessary electricity supply path to the starter electric motor to start the engine can be ensured when the engine is initially started. A starter electric motor (1) supplies rotative force to the engine when the engine is started. A current limiting unit (10) limits the current supplied to the starter electric motor (1) from a battery. When the engine is started a control device (8) discriminates between a startup request for the engine from an ignition key operation (an initial start) and a request to start the engine from an idle stop wherein the vehicle has stopped temporarily (a restart). The control device performs a control such that during an initial start a large current is supplied from the battery to the starter electric motor without passing through the current limiting unit, and during a restart a limited current is supplied from the battery to the starter electric motor through the current limiting unit.

Description

エンジン始動電動機の制御システムEngine starter motor control system
 本発明は、通電電流を抑制するための抵抗を備えたエンジン始動電動機を制御するエンジン始動電動機の制御システムに係り、特に、始動電動機動作時の瞬停現象の防止に好適なエンジン始動電動機の制御システムに関する。 The present invention relates to a control system for an engine starter motor that controls an engine starter motor having a resistance for suppressing an energization current, and in particular, control of an engine starter motor suitable for preventing a momentary power failure phenomenon during operation of the starter motor. About the system.
 始動電動機を用いてエンジン始動を行う場合、始動電動機のモータへ通電を開始した直後に突入電流と呼ばれる過渡電流がバッテリから流れ、バッテリの端子間電圧は瞬間的に大きく電圧降下する。この電圧降下により、車両に搭載されているカーナビゲーションシステムや電動パワーステアリングなどの電装品が動作停止状態に陥る瞬停現象が起きることがある。 When an engine is started using a starter motor, a transient current called an inrush current flows from the battery immediately after energization of the motor of the starter motor, and the voltage between the terminals of the battery drops momentarily. Due to this voltage drop, there may be a momentary power stop phenomenon in which electrical components such as a car navigation system and electric power steering mounted on the vehicle fall into an operation stop state.
 特に近年では、環境対策及びエネルギー資源の節約のために、自動車が信号で一時停止するなどの所定の条件下で、エンジンへの燃料供給を停止しアイドリングを自動で抑制するアイドルストップシステムに対する需要が高まっている。このアイドルストップシステムが搭載された車両で、アイドルストップ後のエンジン再始動を始動電動機によって行う場合、始動電動機の動作回数が従来と比較して多くなるため、始動電動機動作時の瞬停現象の防止対策が非常に重要となる。また、車両が動作している状況で始動電動機が動作する可能性があるため、始動電動機動作時の瞬停現象の防止対策が非常に重要となる。 Particularly in recent years, there has been a demand for an idle stop system that automatically stops idling by stopping the fuel supply to the engine under certain conditions such as a vehicle being temporarily stopped by a signal to save environmental resources and save energy resources. It is growing. In a vehicle equipped with this idle stop system, when the engine is restarted after the idle stop by the starter motor, the number of times the starter motor is operated is increased as compared with the conventional motor, thus preventing momentary power failure during the starter motor operation. Countermeasures are very important. Further, since there is a possibility that the starter motor operates in a situation where the vehicle is operating, it is very important to take measures for preventing the instantaneous power failure phenomenon when the starter motor is operating.
 この瞬停を防止する技術として、バッテリと始動電動機のメイン接点間に、抵抗と、抵抗への通電を短絡するサブ接点と、サブ接点を開閉する電磁ソレノイドを、一つの筐体に内蔵した補助電磁スイッチを備えた始動電動機が知られている(例えば、特許文献1参照)。これは、モータ通電開始時にメイン接点を閉じて、抵抗を介して制限された電流をモータへと通電し、その後モータ回転により作られる逆起電力が十分に発生したときに補助電磁スイッチを駆動しサブ接点を閉じて抵抗をバイパスすることによって、バッテリの全電圧をモータに印加するようにしている。 As a technology to prevent this instantaneous power failure, there is an auxiliary built-in resistor, a sub-contact that short-circuits the energization of the resistor, and an electromagnetic solenoid that opens and closes the sub-contact between the main contact of the battery and the starting motor. A starting motor provided with an electromagnetic switch is known (see, for example, Patent Document 1). This closes the main contact at the start of motor energization, energizes the motor with a limited current through a resistor, and then drives the auxiliary electromagnetic switch when sufficient back electromotive force generated by motor rotation is generated. By closing the sub-contact and bypassing the resistor, the entire battery voltage is applied to the motor.
 特許文献1記載の始動電動機においては、サブ接点を開閉する補助電磁スイッチは、抵抗を介してモータへと流れる電流によってバッテリが電圧降下した状態で動作する。バッテリの劣化などによりモータ通電時のバッテリの電圧降下が大きい場合やバッテリの充電が十分でない場合には、補助電磁スイッチの励磁コイルに十分な電流が流れないためサブ接点を閉じることができず、その結果、抵抗によりモータ電流が制限され続けた状態となるため、エンジンの始動時間が長くなる。また、抵抗にモータを駆動する大電流が長時間流れるため、抵抗の溶断や周囲の部品に熱的損傷が生じることで、モータへの通電経路が失われ、エンジンの始動が不可能な状態に陥る可能性がある。 In the starting motor described in Patent Document 1, the auxiliary electromagnetic switch that opens and closes the sub-contact operates in a state where the battery has a voltage drop due to the current flowing to the motor via the resistor. If the battery voltage drop when the motor is energized due to deterioration of the battery or if the battery is not fully charged, the sub contact cannot be closed because sufficient current does not flow through the excitation coil of the auxiliary electromagnetic switch. As a result, since the motor current is continuously limited by the resistance, the engine start time becomes longer. In addition, since a large current that drives the motor flows through the resistor for a long time, the resistor is blown and the surrounding parts are thermally damaged, so that the energization path to the motor is lost and the engine cannot be started. There is a possibility of falling.
 このため、アイドルストップシステムが搭載された車両では、バッテリの充電量が十分であることや、バッテリの劣化状況を確認し、始動電動機がエンジン始動を行うことが可能な状況でのみ、車両のアイドルストップを許可するように車両制御システムが設定されている(例えば、特許文献2参照)。 For this reason, in a vehicle equipped with an idle stop system, the idle state of the vehicle can only be checked when the battery charge is sufficient, or when the deterioration of the battery is confirmed and the starter motor can start the engine. A vehicle control system is set so as to allow a stop (see, for example, Patent Document 2).
特開2009-224315号公報JP 2009-224315 A 特開2007-56745号公報JP 2007-56745 A
 しかし、イグニッションキー操作によるエンジンの始動要求時(初回始動時)には、上記のようなバッテリ状態の判定が行われない場合がある。このとき、例えば劣化したバッテリが搭載された車両が長期間停止状態にあると、バッテリの自然放電が進みエンジン始動時に始動電動機のモータ駆動状態で補助電磁スイッチを動作させることができない。この状態で、長時間通電されると、抵抗が溶断したり周囲部品が熱的損傷を受けたりすることで、その後のエンジン始動が不可能になる恐れがある。 However, when the engine is requested to start by operating the ignition key (at the first start), the battery state determination as described above may not be performed. At this time, for example, if a vehicle on which a deteriorated battery is mounted is in a stopped state for a long time, the battery is spontaneously discharged and the auxiliary electromagnetic switch cannot be operated in the motor drive state of the starter motor when the engine is started. If power is applied for a long time in this state, the resistance may be blown or the surrounding parts may be thermally damaged, which may make it impossible to start the engine thereafter.
 一方、初回始動時に車両制御システムによってバッテリ状態を監視し始動可否の判定を行うようにした場合、始動電動機のモータに通電した状態で電磁スイッチを駆動できる電力を確保するため、従来に比べてバッテリが劣化したと判断されるまでの期間が短くなる。そのため、バッテリの交換サイクルが頻繁になり、ランニングコストの増加や、これに伴う車両の商品性低下が問題となる。 On the other hand, when the battery state is monitored by the vehicle control system at the time of the first start, and whether the start is possible or not is determined, in order to secure electric power that can drive the electromagnetic switch while energizing the motor of the starter motor, The period until it is determined that has deteriorated becomes shorter. For this reason, the battery replacement cycle becomes frequent, and an increase in running cost and a concomitant deterioration in vehicle merchandise are a problem.
 本発明の目的は、エンジンの初回始動時において、エンジン始動に必要な始動電動機のモータへの通電経路を保護できる、始動電動機の制御システムを提供する。 An object of the present invention is to provide a starter motor control system capable of protecting the energization path to the motor of the starter motor necessary for starting the engine when the engine is started for the first time.
 上記目的を達成するため、本発明は、エンジンの始動時にエンジンに回転力を与える始動電動機と、バッテリから前記始動電動機に与える電流を制限する電流制限部とを有するエンジン始動電動機の制御システムであって、エンジンの始動動作時に、イグニションキー操作による前記エンジンの始動要求(初回始動)と、車両が一時停止した時のアイドルストップ状態からのエンジン始動要求(再始動)とを判別し、初回始動時には、前記電流制限部を介することなく前記バッテリから前記始動電動機に大電流を流し、再始動時には、前記電流制限部を介して前記バッテリから前記始動電動機に制限された電流を流すように制御する制御部を備えるようにしたものである。 
 かかる構成により、エンジンの初回始動時において、エンジン始動に必要な始動電動機のモータへの通電経路を保護できるものとなる。
In order to achieve the above object, the present invention is an engine starter motor control system that includes a starter motor that applies rotational force to the engine when the engine is started, and a current limiting unit that limits a current applied from a battery to the starter motor. When the engine is started, the engine start request (initial start) by operating the ignition key is distinguished from the engine start request (restart) from the idle stop state when the vehicle is temporarily stopped. , A control for controlling a large current to flow from the battery to the starter motor without passing through the current limiter, and to allow a limited current to flow from the battery to the starter motor via the current limiter at the time of restart A part is provided.
With this configuration, when the engine is started for the first time, the energization path to the motor of the starting motor necessary for starting the engine can be protected.
 本発明によれば、エンジンの初回始動時において、エンジン始動に必要な始動電動機のモータへの通電経路を保護できるものとなる。 According to the present invention, when the engine is started for the first time, the energization path to the motor of the starting motor necessary for starting the engine can be protected.
本発明の一実施形態によるエンジン始動電動機の制御システムのシステム構成図である。1 is a system configuration diagram of a control system for an engine starter motor according to an embodiment of the present invention. 本発明の一実施形態によるエンジン始動電動機の制御システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control system of the engine starting electric motor by one Embodiment of this invention. 本発明の一実施形態によるエンジン始動電動機の制御システムの動作を説明するタイムチャートである。It is a time chart explaining operation | movement of the control system of the engine starting electric motor by one Embodiment of this invention. 本発明の一実施形態によるエンジン始動電動機の制御システムの動作を説明するタイムチャートである。It is a time chart explaining operation | movement of the control system of the engine starting electric motor by one Embodiment of this invention. 本発明の他の実施形態によるエンジン始動電動機の制御システムのシステム構成図である。It is a system block diagram of the control system of the engine starting electric motor by other embodiment of this invention. 本発明の他の実施形態によるエンジン始動電動機の制御システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control system of the engine starting electric motor by other embodiment of this invention. 本発明の他の実施形態によるエンジン始動電動機の制御システムの動作を説明するタイムチャートである。It is a time chart explaining operation | movement of the control system of the engine starting electric motor by other embodiment of this invention. 本発明の他の実施形態によるエンジン始動電動機の制御システムの動作を説明するタイムチャートである。It is a time chart explaining operation | movement of the control system of the engine starting electric motor by other embodiment of this invention. 本発明の各実施形態によるエンジン始動電動機の制御システムの変形例の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the modification of the control system of the engine starting electric motor by each embodiment of this invention.
 以下、図1~図4を用いて、本発明の一実施形態によるエンジン始動電動機の制御システムの構成及び動作について説明する。 
 最初に、図1を用いて、本実施形態によるエンジン始動電動機の制御システムの構成について説明する。 
 図1は、本発明の一実施形態によるエンジン始動電動機の制御システムのシステム構成図である。
The configuration and operation of the engine starter motor control system according to an embodiment of the present invention will be described below with reference to FIGS.
First, the configuration of the control system for the engine starter motor according to the present embodiment will be described with reference to FIG.
FIG. 1 is a system configuration diagram of an engine starter motor control system according to an embodiment of the present invention.
 始動電動機1は、モータ2と、主電磁スイッチ3と、ピニオン4と、シフトレバー5と、メイン接点7とから構成される。モータ2は、エンジン始動に必要な回転力を生み出す。ピニオン4は、モータ2の回転力をエンジン側リングギヤ6へと伝達する。シフトレバー5は、リングギヤ6と噛み合うようにピニオン4をリングギヤ6方向に移送する。メイン接点7は、モータ2への通電を制御する。主電磁スイッチ3は、メイン接点7を内蔵し、シフトレバー5の動きを制御する。 The starting motor 1 includes a motor 2, a main electromagnetic switch 3, a pinion 4, a shift lever 5, and a main contact 7. The motor 2 generates a rotational force necessary for starting the engine. The pinion 4 transmits the rotational force of the motor 2 to the engine side ring gear 6. The shift lever 5 moves the pinion 4 toward the ring gear 6 so as to mesh with the ring gear 6. The main contact 7 controls energization to the motor 2. The main electromagnetic switch 3 incorporates a main contact 7 and controls the movement of the shift lever 5.
 更に、本システムでは、制御回路8と、バッテリ9の他に、電流制限部10を備えている。電流制限部10は、補助電磁スイッチ12と、サブ接点20と、抵抗30とを備えている。抵抗30は、バッテリ9からモータ2までの通電回路間にメイン接点7と直列に配置されている。サブ接点20は、抵抗30を短絡してバッテリ9から直接モータ2に通電する回路へと切替可能である。電流制限部10は、サブ接点20を内蔵しサブ接点20の開閉を制御する。サブ接点20が閉じると、抵抗30を介さずに、バッテリ9の大電流がモータ2に流れる。サブ接点20が開いていると、抵抗30を介して、制限された電流がバッテリ9からモータ2に流れる。 Furthermore, in this system, in addition to the control circuit 8 and the battery 9, a current limiting unit 10 is provided. The current limiting unit 10 includes an auxiliary electromagnetic switch 12, a sub contact 20, and a resistor 30. The resistor 30 is arranged in series with the main contact 7 between the energization circuits from the battery 9 to the motor 2. The sub-contact 20 can be switched to a circuit in which the motor 30 is directly energized by short-circuiting the resistor 30. The current limiting unit 10 includes a sub contact 20 and controls opening and closing of the sub contact 20. When the sub contact 20 is closed, a large current of the battery 9 flows to the motor 2 without passing through the resistor 30. When the sub contact 20 is open, a limited current flows from the battery 9 to the motor 2 via the resistor 30.
 制御装置8は、主電磁スイッチ3と電流制限部10の外部端子14及び15と接続され、通電によりメイン接点7とサブ接点20の開閉を制御することができる。 The control device 8 is connected to the main electromagnetic switch 3 and the external terminals 14 and 15 of the current limiting unit 10, and can control the opening and closing of the main contact 7 and the sub contact 20 by energization.
 本実施例において、電流制限部10は、抵抗30を内蔵し主電磁スイッチ3とは別の筐体で構成されているが、抵抗30は主電磁スイッチ3に内蔵されるか、または別個に配置されても良く、また主電磁スイッチ3と電流制限部10は同一の筐体で構成しても良い。 In the present embodiment, the current limiting unit 10 includes a resistor 30 and is configured in a separate housing from the main electromagnetic switch 3. However, the resistor 30 is included in the main electromagnetic switch 3 or disposed separately. The main electromagnetic switch 3 and the current limiting unit 10 may be configured in the same casing.
 次に、図2~図4を用いて、本実施形態によるエンジン始動電動機の制御システムの動作について説明する。 
 図2は、本発明の一実施形態によるエンジン始動電動機の制御システムの動作を示すフローチャートである。図3及び図4は、本発明の一実施形態によるエンジン始動電動機の制御システムの動作を説明するタイムチャートである。
Next, the operation of the engine starter motor control system according to the present embodiment will be described with reference to FIGS.
FIG. 2 is a flowchart showing the operation of the engine starter motor control system according to the embodiment of the present invention. 3 and 4 are time charts for explaining the operation of the engine starter motor control system according to the embodiment of the present invention.
 本実施形態のエンジン始動電動機の制御システムにおいては、エンジン始動要求を初回始動要求と再始動要求の二つに分類して制御を実行する。ここで、初回始動要求とは、ドライバーからのイグニションキー操作によるエンジン始動要求を指し、一方の再始動要求とは、車速やバッテリ充電状況などの所定条件を満足して車両がアイドルストップ状態になった後、ブレーキ解除などのアイドルストップ解除条件に応じて制御装置からの指令によりエンジンを自動的に始動することを指す。 In the engine starter motor control system according to the present embodiment, the engine start request is classified into two, that is, an initial start request and a restart request, and control is executed. Here, the initial start request refers to an engine start request by an ignition key operation from the driver, and one restart request satisfies predetermined conditions such as a vehicle speed and a battery charging state and the vehicle enters an idle stop state. After that, the engine is automatically started according to a command from the control device in accordance with idle stop release conditions such as brake release.
 図2のステップ110において、制御装置8は、エンジン始動要求が、初回始動要求であるのか再始動要求であるのかを判定する。例えば、イグニションキーからの入力信号を監視し、イグニションキーからの入力信号がある場合には、初回始動要求と判定する。一方、イグニションキーからの入力信号以外の信号による始動要求の場合は再始動要求であると判定したり、アイドルストップ許可信号を検知し、その後に始動要求があった場合は再始動要求であると判定する。 2, the control device 8 determines whether the engine start request is an initial start request or a restart request. For example, the input signal from the ignition key is monitored, and if there is an input signal from the ignition key, it is determined that the request is for the initial start. On the other hand, if it is a start request by a signal other than the input signal from the ignition key, it is determined that it is a restart request, or an idle stop permission signal is detected, and if there is a start request after that, it is a restart request judge.
 制御装置8が再始動要求であると判断した場合は、図2のフローチャートのステップ120へと進む。図3は、図2ステップ120からステップ180まで制御が行われた場合の、メイン接点7の開閉状態(図3(A))と、サブ接点20の開閉状態(図3(B))と、バッテリ9の電圧(図3(C))と、モータ2を流れる電流(図3(D))を示している。 If the control device 8 determines that it is a restart request, the process proceeds to step 120 in the flowchart of FIG. FIG. 3 shows the open / closed state of the main contact 7 (FIG. 3A) and the open / closed state of the sub-contact 20 (FIG. 3B) when control is performed from step 120 to step 180 in FIG. The voltage of the battery 9 (FIG. 3C) and the current flowing through the motor 2 (FIG. 3D) are shown.
 ステップ120において、制御装置8は主電磁スイッチ3の外部端子14に通電を行いピニオン4を押し出してリングギヤ6に噛み合わせる、続いてメイン接点7を閉じることでモータ2へと通電が開始されるが、抵抗30によりモータ2への通電電流は制限されており、モータ2は低速で回転しエンジンのクランキングを開始するため、通電開始直後の過渡電流の発生を抑制し、バッテリ9の電圧降下を低減し端子間電圧V1を高く保持することができる。 In step 120, the control device 8 energizes the external terminal 14 of the main electromagnetic switch 3 to push out the pinion 4 to mesh with the ring gear 6, and then closes the main contact 7 to start energizing the motor 2. The current flowing to the motor 2 is limited by the resistor 30. Since the motor 2 rotates at a low speed and starts cranking the engine, the generation of a transient current immediately after the start of energization is suppressed, and the voltage drop of the battery 9 is reduced. The voltage V1 between terminals can be reduced and held high.
 続いて、ステップ130で抵抗30を短絡する所定の条件が成立したかどうかを判定する。抵抗30を短絡する条件が成立した場合は、ステップ140に進み制御装置8は電流制限部10の外部端子15に通電を行いサブ接点20が閉じる。これにより、抵抗30を短絡してバッテリ9からモータ2へと通電する回路が形成され、モータ2は高速でエンジンのクランキングを開始する。抵抗30を短絡した通電回路へと切り替えた時点では、モータ2はステップ120における通電により低速で回転している状態であり、回転数に応じた逆起電圧によって通電回路切替時のバッテリ9の電圧降下を低減し、端子間電圧V2を高く保持することができる。 Subsequently, in step 130, it is determined whether or not a predetermined condition for short-circuiting the resistor 30 is satisfied. When the condition for short-circuiting the resistor 30 is established, the process proceeds to step 140, where the control device 8 energizes the external terminal 15 of the current limiting unit 10 and the sub-contact 20 is closed. As a result, a circuit is formed in which the resistor 30 is short-circuited and current is supplied from the battery 9 to the motor 2, and the motor 2 starts cranking the engine at a high speed. At the time of switching to the energization circuit in which the resistor 30 is short-circuited, the motor 2 is rotating at a low speed by energization in step 120, and the voltage of the battery 9 at the time of switching the energization circuit by the counter electromotive voltage according to the number of rotations. The drop can be reduced and the inter-terminal voltage V2 can be kept high.
 ステップ130における所定の条件としては、例えば、図3(C)に示すバッテリ電圧を監視して、バッテリ電圧が所定電圧以上になったとき、所定の条件が成立したと判定する。12Vのバッテリの場合、所定の電圧としては、例えば、10Vとする。また、別の所定の条件としては、メイン接点がオンになった後の時間経過を監視して、所定時間が経過したとき、所定の条件が成立したと判定する。所定時間については、始動電動機1によって始動されるエンジンの排気量や、始動電動機1の出力の大きさ等によって違うが、例えば、30ms~100ms辺りの時間が設定される。ここでは、バッテリ9の電圧降下を低減し端子間電圧V2を高く保持することが目的であるので、かかる観点からは、所定の条件は、バッテリ電圧を監視するのが最適である。但し、監視する時間は、30ms~100ms程度であるため、バッテリ電圧の監視は、例えば、10ms毎に行う必要がある。通常のエンジン制御では、バッテリ電圧は大きくは変動しないため、比較的長時間毎に監視すればよいため、10ms毎というような短時間での監視は行っていない。そのため、エンジン始動のために、10ms毎にバッテリ電圧を監視するというのは、制御装置8にとって負担が大きい。そこで、この負担を軽減するには、第2の方式のように、メイン接点7がオンした後の時間を監視する方式が簡便ながら、適当な方式でもある。 As the predetermined condition in step 130, for example, the battery voltage shown in FIG. 3C is monitored, and it is determined that the predetermined condition is satisfied when the battery voltage becomes equal to or higher than the predetermined voltage. In the case of a 12V battery, the predetermined voltage is, for example, 10V. As another predetermined condition, the passage of time after the main contact is turned on is monitored, and it is determined that the predetermined condition is satisfied when the predetermined time has elapsed. The predetermined time varies depending on the displacement of the engine started by the starter motor 1, the output level of the starter motor 1, and the like. For example, a time of about 30 ms to 100 ms is set. Here, since the purpose is to reduce the voltage drop of the battery 9 and keep the inter-terminal voltage V2 high, from this point of view, it is optimal to monitor the battery voltage under the predetermined condition. However, since the monitoring time is about 30 ms to 100 ms, it is necessary to monitor the battery voltage every 10 ms, for example. In normal engine control, since the battery voltage does not fluctuate greatly, it is only necessary to monitor the battery voltage for a relatively long time. Therefore, monitoring is not performed in a short time such as every 10 ms. Therefore, monitoring the battery voltage every 10 ms for starting the engine is a heavy burden on the control device 8. Therefore, in order to reduce this burden, a method of monitoring the time after the main contact 7 is turned on as in the second method is simple and appropriate.
 ステップ140の処理の後、ステップ170では、エンジンの始動完了条件が成立したかどうかを判定する。始動完了条件が成立した場合は、ステップ180に進み主及び補助電磁スイッチ3及び10の通電を停止し、ステップ190においてエンジン始動制御を終了する。 After step 140, in step 170, it is determined whether an engine start completion condition is satisfied. When the start completion condition is satisfied, the routine proceeds to step 180, the energization of the main and auxiliary electromagnetic switches 3 and 10 is stopped, and the engine start control is ended at step 190.
 なお、エンジンの始動完了条件としては、エンジン回転数を監視し、エンジン回転数がアイドル回転数に近い所定回転数になったとき、エンジン始動が完了したと判定できる。 It should be noted that as the engine start completion condition, the engine speed is monitored, and it can be determined that the engine start is completed when the engine speed reaches a predetermined speed close to the idle speed.
 上記のようにして、エンジン再始動を行う場合には、動作時の電圧降下を抑制しバッテリ9の端子間電圧をより高く保持するように制御を実施し、車載電装品の瞬停現象の発生を防止することができる。 As described above, when the engine is restarted, control is performed so that the voltage drop during operation is suppressed and the voltage between the terminals of the battery 9 is kept higher, and the instantaneous power failure phenomenon of the in-vehicle electrical component occurs. Can be prevented.
 一方で、ステップ110において、制御装置8が初回始動要求であると判定した場合には、ステップ150へと進む。図4は、ステップ150から1ステップ80まで制御が行われた場合の、メイン接点7の開閉状態(図4(A))と、サブ接点20の開閉状態(図4(B))と、バッテリ9の電圧(図4(C))と、モータ2を流れる電流(図4(D))を示している。 On the other hand, if it is determined in step 110 that the control device 8 is an initial start request, the process proceeds to step 150. FIG. 4 shows the open / closed state of the main contact 7 (FIG. 4A), the open / closed state of the sub-contact 20 (FIG. 4B), and the battery when control is performed from step 150 to 1 step 80. 9 (FIG. 4C) and the current flowing through the motor 2 (FIG. 4D).
 エンジンの初回始動時は、ステップ150において、制御装置8は、補助電磁スイッチ10の外部端子15に通電を行いサブ接点20を閉じて、バッテリ9からモータ2への通電回路を抵抗30が短絡した回路へと切り替える。 When the engine is started for the first time, in step 150, the control device 8 energizes the external terminal 15 of the auxiliary electromagnetic switch 10 to close the sub-contact 20, and the resistor 30 short-circuits the energization circuit from the battery 9 to the motor 2. Switch to circuit.
 続いてステップ160において、主電磁スイッチ3の外部端子14に通電を行うことでシフトレバー5を介してピニオン4が移動し、リングギヤ6と噛み合う。続いて、メイン接点7が閉じ、通電によってモータ2が回転を開始する。この時、サブ接点20により抵抗30が短絡された回路へと切り替わっているため、バッテリ9の全電圧がモータ2へと印加されてモータ2は高速でエンジンのクランキングを開始する。 Subsequently, in step 160, the external terminal 14 of the main electromagnetic switch 3 is energized to move the pinion 4 via the shift lever 5 and mesh with the ring gear 6. Subsequently, the main contact 7 is closed, and the motor 2 starts rotating when energized. At this time, since the circuit is switched to the circuit in which the resistor 30 is short-circuited by the sub-contact 20, the entire voltage of the battery 9 is applied to the motor 2, and the motor 2 starts cranking the engine at a high speed.
 ステップ170では、エンジンの始動完了条件が成立したかどうかを判定する。始動完了条件が成立した場合は、ステップ180に進み主及び補助電磁スイッチ3及び10の通電を停止し、ステップ190においてエンジン始動制御を終了する。 In step 170, it is determined whether the engine start completion condition is satisfied. When the start completion condition is satisfied, the routine proceeds to step 180, the energization of the main and auxiliary electromagnetic switches 3 and 10 is stopped, and the engine start control is ended at step 190.
 本実施形態では、エンジン初回始動時は、まず電流制限部10によってサブ接点20を閉じて抵抗30への通電を回避した状態で、主電磁スイッチ3を動作してメイン接点7を閉じて始動電動機1のモータ2を駆動する。そのため、モータ2通電時のバッテリ9が電圧降下した状態で電流制限部10を動作させる必要が無い。このため、バッテリ9が劣化した状態や長期間の放置などによる放電によって、電流制限部10を駆動する電力が不足した状態であったとしても、抵抗30に電流が流れ続けることが無く、抵抗30の溶断や周囲部品の熱的損傷によりエンジン始動が不可能な状態に陥ることを防止できる。また、車両が停止状態にあり、ドライバーが始動要求を出すエンジンの初回始動時においては、瞬停現象を防止する重要度は大きくないため、通電開始時からバッテリ9の全電圧をモータ2に印加することで、迅速なエンジン始動を実現することができる。 In this embodiment, when the engine is started for the first time, first, the main contact switch 7 is operated to close the main contact 7 while the sub-contact 20 is closed by the current limiting unit 10 to avoid energization of the resistor 30, and the starting motor is closed. 1 motor 2 is driven. Therefore, there is no need to operate the current limiting unit 10 in a state where the voltage of the battery 9 drops when the motor 2 is energized. For this reason, even if the power for driving the current limiting unit 10 is insufficient due to the battery 9 being deteriorated or discharged due to being left for a long period of time, the current does not continue to flow through the resistor 30. Therefore, it is possible to prevent the engine from starting into a state where the engine cannot be started due to the fusing and thermal damage of surrounding parts. Further, when the engine is stopped for the first time when the driver issues a start request, the importance of preventing the instantaneous power failure phenomenon is not so great. Therefore, the entire voltage of the battery 9 is applied to the motor 2 from the start of energization. By doing so, a quick engine start can be realized.
 以上説明したように、本実施形態によれば、エンジン初回始動時においては、モータ通電時のバッテリ9が電圧降下した状態で電流制限部10を動作させる必要が無い。このため、バッテリ9が劣化した状態や長期間の放置などによる放電によって、電流制限部10を駆動する電力が不足した状態であったとしても、抵抗30に電流が流れ続けることが無く、抵抗30の溶断や周囲部品の熱的損傷によりエンジン始動が不可能な状態に陥ることを防止できる。 As described above, according to the present embodiment, when the engine is started for the first time, it is not necessary to operate the current limiting unit 10 in a state where the voltage of the battery 9 drops when the motor is energized. For this reason, even if the power for driving the current limiting unit 10 is insufficient due to the battery 9 being deteriorated or discharged due to being left for a long period of time, the current does not continue to flow through the resistor 30. Therefore, it is possible to prevent the engine from starting into a state where the engine cannot be started due to the fusing and thermal damage of surrounding parts.
 また、車両が停止状態にあり、ドライバーが始動要求を出すエンジンの初回始動時においては、瞬停現象を防止する重要度は大きくないため、通電開始時からバッテリ9の全電圧をモータ2に印加することで、迅速なエンジン始動を実現することができる。 Further, when the engine is stopped for the first time when the driver issues a start request, the importance of preventing the instantaneous power failure phenomenon is not so great. Therefore, the entire voltage of the battery 9 is applied to the motor 2 from the start of energization. By doing so, a quick engine start can be realized.
 次に、図5~図8を用いて、本発明の他の実施形態によるエンジン始動電動機の制御システムの構成及び動作について説明する。 
 最初に、図5を用いて、本実施形態によるエンジン始動電動機の制御システムの構成について説明する。 
 図5は、本発明の他の実施形態によるエンジン始動電動機の制御システムのシステム構成図である。
Next, the configuration and operation of a control system for an engine starter motor according to another embodiment of the present invention will be described with reference to FIGS.
First, the configuration of the engine starter motor control system according to the present embodiment will be described with reference to FIG.
FIG. 5 is a system configuration diagram of an engine starter motor control system according to another embodiment of the present invention.
 本実施例の始動電動機1において、電流制限部10Aは抵抗30を有し、この抵抗30がバッテリ9からモータ2までの通電回路間にメイン接点7と並列に配置されている。 In the starting motor 1 of the present embodiment, the current limiting unit 10A has a resistor 30, and this resistor 30 is arranged in parallel with the main contact 7 between the energization circuits from the battery 9 to the motor 2.
 電流制限部10Aは、補助電磁スイッチ12と、サブ接点20と、抵抗30とを備えている。サブ接点20は、抵抗30と直列に配置されている。サブ接点20を閉じると、抵抗30を介してバッテリ9からモータ2へ通電する回路が形成される。その結果、モータ2には抵抗30により制限された電流が流れる。メイン接点7を閉じると、抵抗30を介さずバッテリ9からモータ2へと通電回路が形成され、モータ2に大電流を流すことができる。 The current limiting unit 10 </ b> A includes an auxiliary electromagnetic switch 12, a sub contact 20, and a resistor 30. The sub contact 20 is arranged in series with the resistor 30. When the sub contact 20 is closed, a circuit for energizing the motor 2 from the battery 9 through the resistor 30 is formed. As a result, a current limited by the resistor 30 flows through the motor 2. When the main contact 7 is closed, an energization circuit is formed from the battery 9 to the motor 2 without passing through the resistor 30, and a large current can flow through the motor 2.
 なお、本実施形態においても第1の実施形態と同様に、電流制限部10Aは抵抗30を内蔵し主電磁スイッチ3とは別の筐体で構成されているが、この構成に限定されるものではなく、抵抗30は主電磁スイッチ3に内蔵または別個に配置されても良く、また主電磁スイッチ3と電流制限部10は同一の筐体で構成しても良い。 In this embodiment as well, as in the first embodiment, the current limiting unit 10A includes a resistor 30 and is configured by a separate housing from the main electromagnetic switch 3, but is limited to this configuration. Instead, the resistor 30 may be built in or separately from the main electromagnetic switch 3, and the main electromagnetic switch 3 and the current limiting unit 10 may be configured in the same casing.
 次に、図6~図8を用いて、本実施形態によるエンジン始動電動機の制御システムの動作について説明する。 
 図6は、本発明の他の実施形態によるエンジン始動電動機の制御システムの動作を示すフローチャートである。図7及び図8は、本発明の他の実施形態によるエンジン始動電動機の制御システムの動作を説明するタイムチャートである。
Next, the operation of the engine starter motor control system according to the present embodiment will be described with reference to FIGS.
FIG. 6 is a flowchart showing the operation of the control system for the engine starter motor according to another embodiment of the present invention. 7 and 8 are time charts for explaining the operation of the engine starter motor control system according to another embodiment of the present invention.
 図6のステップ210において、制御装置8は、エンジン始動要求が、再始動であるか初回始動であるかを判定する。再始動要求であると判断した場合、ステップ220へと進む。図7は、本実施例の再始動時にステップ220からステップ280まで制御が行われた場合の、メイン接点7の開閉状態(図7(A))と、サブ接点20の開閉状態(図7(B))と、バッテリ9の電圧(図7(C))と、モータ2を流れる電流(図7(D))を示している。 6, the control device 8 determines whether the engine start request is a restart or an initial start. If it is determined that the request is a restart request, the process proceeds to step 220. FIG. 7 shows the open / closed state of the main contact 7 (FIG. 7A) and the open / closed state of the sub-contact 20 (FIG. 7 (A)) when control is performed from step 220 to step 280 at the time of restart of the present embodiment. B)), the voltage of the battery 9 (FIG. 7C), and the current flowing through the motor 2 (FIG. 7D).
 制御装置8はステップ220において、サブ接点20を閉じてバッテリ9から抵抗30によって制限された電流をモータ2へと通電する。 In step 220, the control device 8 closes the sub-contact 20 and energizes the motor 2 with the current limited by the resistor 30 from the battery 9.
 続いて、ステップ230で、抵抗30をバイパスしてモータ2へ通電する回路へ切り替える所定の条件が成立したかどうかを判定する。回路の切替条件が成立した場合は、ステップ240に進み、制御装置8は主電磁スイッチ3を動作させてメイン接点7を閉じ、同時または直後に電流制限部10への通電を停止しサブ接点20を開放する。これにより、抵抗30をバイパスしてモータ2へと通電する回路に切り替え、バッテリ9の全電圧をモータ2に印加する。 Subsequently, in step 230, it is determined whether or not a predetermined condition for switching to a circuit that bypasses the resistor 30 and energizes the motor 2 is established. When the circuit switching condition is satisfied, the process proceeds to step 240, where the control device 8 operates the main electromagnetic switch 3 to close the main contact 7, and simultaneously or immediately after, the energization to the current limiting unit 10 is stopped and the sub-contact 20 Is released. Thereby, the circuit is switched to a circuit that bypasses the resistor 30 and energizes the motor 2, and the entire voltage of the battery 9 is applied to the motor 2.
 このときの、バッテリ9の電圧とモータ2を流れる電流の変化とその効果は、第1の実施形態の再始動動作と同一である。 At this time, the change in the voltage of the battery 9 and the current flowing through the motor 2 and the effect thereof are the same as in the restart operation of the first embodiment.
 一方で、ステップ210において、制御装置8が、初回始動要求であると判定した場合にはステップ260へと進む。図8は、本実施例の初回始動時のステップ260から280まで制御が行われた場合の、メイン接点7の開閉状態(図8(A))と、サブ接点20の開閉状態(図8(B))と、バッテリ9の電圧(図8(C))と、モータ2を流れる電流(図8(D))を示している。 On the other hand, if it is determined in step 210 that the control device 8 is an initial start request, the process proceeds to step 260. FIG. 8 shows the open / closed state of the main contact 7 (FIG. 8A) and the open / closed state of the sub-contact 20 (FIG. 8 (FIG. 8 (A)) when the control is performed from step 260 to 280 at the initial start of the present embodiment. B)), the voltage of the battery 9 (FIG. 8C), and the current flowing through the motor 2 (FIG. 8D).
 制御装置8は、ステップ260において、メイン接点7を閉じてバッテリ9の全電圧をモータ2へと印加してエンジンを始動させる。このときの、バッテリ9の電圧とモータ2を流れる電流の変化と本実施例の制御による効果は、第1の実施形態の初回始動動作と同一である。 In step 260, the control device 8 closes the main contact 7 and applies the entire voltage of the battery 9 to the motor 2 to start the engine. At this time, the change in the voltage of the battery 9 and the current flowing through the motor 2 and the effect of the control of this embodiment are the same as the initial start operation of the first embodiment.
 以上説明したように、本実施形態によれば、エンジン初回始動においては、モータ通電時のバッテリ9が電圧降下した状態で主または補助電磁スイッチ3または10Aを動作させる必要が無い。このため、バッテリ9が劣化した状態や長期間の放置などによる放電によって、電磁スイッチを駆動する電力が不足した状態であったとしても、抵抗30に電流が流れ続けることが無く、抵抗の溶断や周囲部品の熱的損傷によりエンジン始動が不可能な状態に陥ることを防止できる。 As described above, according to the present embodiment, at the initial engine start, it is not necessary to operate the main or auxiliary electromagnetic switch 3 or 10A in a state where the voltage of the battery 9 drops when the motor is energized. For this reason, even if the electric power for driving the electromagnetic switch is insufficient due to the battery 9 being deteriorated or being discharged due to being left for a long period of time, current does not continue to flow through the resistor 30, It is possible to prevent the engine from starting in a state where it cannot be started due to thermal damage to surrounding parts.
 また、車両が停止状態にあり、ドライバーが始動要求を出すエンジンの初回始動時においては、瞬停現象を防止する重要度は大きくないため、通電開始時からバッテリ9の全電圧をモータ2に印加することで、迅速なエンジン始動を実現することができる。 Further, when the engine is stopped for the first time when the driver issues a start request, the importance of preventing the instantaneous power failure phenomenon is not so great. Therefore, the entire voltage of the battery 9 is applied to the motor 2 from the start of energization. By doing so, a quick engine start can be realized.
 なお、図1に示した実施形態と、図5に示した実施形態を比較すると次のような相違点がある。図5に示した電流制限部10Aは、バッテリ9からモータ2までの通電回路間にメイン接点7と並列に配置されている。そのため、例えば、抵抗30に大電流が長時間流れ、発熱によりサブ接点20が損傷した場合でも、メイン接点7を閉じることでエンジンの始動は可能である。一方、図1の実施形態では、抵抗30に大電流が長時間流れ、抵抗30が焼き切れ、サブ接点20が損傷すると、メイン接点7を閉じてもエンジンの始動はできないものである。一方、図1の実施形態では、電流制限部10は、バッテリ9からモータ2までの通電回路間にメイン接点7と直列に配置されている。そのため、電流制限部10が無い場合と、ある場合も比較しても、始動電動機1のコネクタの数は同じであり、従来の始動電動機1の構成をそのまま利用でき、コストを低減できる。一方、図5の構成では、電流制限部10Aからの電流が入力するためのコネクタを一つ追加する必要があり、従来の始動電動機1の構成をそのまま利用できないものである。 It should be noted that there is the following difference between the embodiment shown in FIG. 1 and the embodiment shown in FIG. The current limiting unit 10 </ b> A illustrated in FIG. 5 is arranged in parallel with the main contact 7 between the energization circuits from the battery 9 to the motor 2. Therefore, for example, even when a large current flows through the resistor 30 for a long time and the sub-contact 20 is damaged due to heat generation, the engine can be started by closing the main contact 7. On the other hand, in the embodiment of FIG. 1, if a large current flows through the resistor 30 for a long time, the resistor 30 burns out, and the sub-contact 20 is damaged, the engine cannot be started even if the main contact 7 is closed. On the other hand, in the embodiment of FIG. 1, the current limiting unit 10 is disposed in series with the main contact 7 between the energization circuits from the battery 9 to the motor 2. Therefore, the number of connectors of the starter motor 1 is the same regardless of whether or not the current limiting unit 10 is provided, and the configuration of the conventional starter motor 1 can be used as it is, thereby reducing the cost. On the other hand, in the configuration of FIG. 5, it is necessary to add one connector for inputting a current from the current limiting unit 10A, and the configuration of the conventional starting motor 1 cannot be used as it is.
 次に、図9を用いて、本発明の各実施形態によるエンジン始動電動機の制御システムにおける制御方法の変形例について説明する。なお、本実施形態によるエンジン始動電動機の制御システムの構成は、図1に示したものと同様である。 
 図9は、本発明の各実施形態によるエンジン始動電動機の制御システムの変形例の動作を示すフローチャートである。図9の例では、図2に示したフローチャートに対して、ステップ300を追加している。
Next, a modified example of the control method in the engine starter motor control system according to each embodiment of the present invention will be described with reference to FIG. The configuration of the control system for the engine starter motor according to this embodiment is the same as that shown in FIG.
FIG. 9 is a flowchart showing the operation of a modified example of the control system for the engine starter motor according to each embodiment of the present invention. In the example of FIG. 9, step 300 is added to the flowchart shown in FIG.
 本例では、バッテリ9の満充電時の電池容量に対する現在の充電量の比率を示すSOC(State Of Charge)を用いて、エンジン再始動の制御途中に、バッテリ9のSOCが始動電動機1のモータ2が駆動した状態で、抵抗30を短絡した回路へと切り替える電磁スイッチ3または10を動作させるために十分な値以上であるかを判定するステップを追加している。 In this example, the SOC of the battery 9 is controlled by the motor of the starter motor 1 during the control of engine restart using SOC (State Of Charge) indicating the ratio of the current charge amount to the battery capacity when the battery 9 is fully charged. In the state where 2 is driven, a step is added to determine whether the value is greater than or equal to a value sufficient to operate the electromagnetic switch 3 or 10 for switching to a circuit in which the resistor 30 is short-circuited.
 具体的には、バッテリ9のSOCを判定するステップを加えている。ステップ300において、制御装置8は、バッテリ9のSOCが始動電動機1のモータ2が駆動し電圧降下した状態で、電流制限部10が動作するために十分な値以上であるかを判定する。バッテリ9のSOCが不足していると判断した場合はステップ140へと進み、第1の実施形態に示す初回始動時と同様の制御を行う。 Specifically, a step of determining the SOC of the battery 9 is added. In step 300, control device 8 determines whether or not the SOC of battery 9 is greater than or equal to a value sufficient for current limiter 10 to operate in a state where the motor 2 of starter motor 1 is driven and the voltage drops. When it is determined that the SOC of the battery 9 is insufficient, the process proceeds to step 140, and the same control as that at the time of the initial start shown in the first embodiment is performed.
 なお、判定条件である十分な値としては、例えば、SOCが70%の場合とすることができる。 In addition, as a sufficient value as a determination condition, for example, the SOC can be 70%.
 なお、以上の説明は、図2の実施形態に対する変形例であるが、図6に示したフローチャートに対して、図9のステップ300をステップ210の後に追加することで、同様に制御することができる。 Although the above description is a modification of the embodiment of FIG. 2, the same control can be performed by adding step 300 of FIG. 9 after step 210 to the flowchart shown in FIG. it can.
 以上の本実施形態によれば、アイドルストップ中に車載電装品の使用等の電力消費によって、エンジンの再始動が行えなくなることを防止することができる。 According to the above-described embodiment, it is possible to prevent the engine from being restarted due to power consumption such as use of in-vehicle electrical components during idle stop.
1…始動電動機
2…モータ
3…主電磁スイッチ
4…ピニオン
5…シフトレバー
6…リングギヤ
7…メイン接点
8…制御装置
9…バッテリ
10,10A…電流制限部
12…補助電磁スイッチ
14…主電磁スイッチの外部接点
15…補助電磁スイッチの外部接点
20…サブ接点
30…抵抗
DESCRIPTION OF SYMBOLS 1 ... Starting motor 2 ... Motor 3 ... Main electromagnetic switch 4 ... Pinion 5 ... Shift lever 6 ... Ring gear 7 ... Main contact 8 ... Control device 9 ... Battery 10, 10A ... Current limiting part 12 ... Auxiliary electromagnetic switch 14 ... Main electromagnetic switch External contact 15 ... External contact 20 of auxiliary electromagnetic switch ... Sub contact 30 ... Resistance

Claims (4)

  1.  エンジンの始動時にエンジンに回転力を与える始動電動機と、
     バッテリから前記始動電動機に与える電流を制限する電流制限部とを有するエンジン始動電動機の制御システムであって、
     エンジンの始動動作時に、イグニションキー操作による前記エンジンの始動要求(初回始動)と、車両が一時停止した時のアイドルストップ状態からのエンジン始動要求(再始動)とを判別し、初回始動時には、前記電流制限部を介することなく前記バッテリから前記始動電動機に大電流を流し、再始動時には、前記電流制限部を介することなく前記バッテリから前記始動電動機に制限された電流を流すように制御する制御部を備えることを特徴とするエンジン始動電動機の制御システム。
    A starter motor that applies rotational force to the engine when the engine is started;
    A control system for an engine starter motor having a current limiter for limiting a current applied from a battery to the starter motor,
    When the engine is started, an engine start request (initial start) by operating an ignition key is discriminated from an engine start request (restart) from an idle stop state when the vehicle is temporarily stopped. A control unit that controls a large current to flow from the battery to the starting motor without going through a current limiting unit, and a limited current to flow from the battery to the starting motor without going through the current limiting unit when restarting An engine starter motor control system comprising:
  2.  請求項1記載のエンジン始動電動機の制御システムにおいて、
     前記制御部は、前記初回始動と前記再始動の判別時に再始動と判別すると、更に、前記バッテリの状態が所定の条件を満足する場合には、前記初回始動時の制御により、前記電流制限部を介することなく前記バッテリから前記始動電動機に大電流を流し、所定の条件を満たさない場合には、前記再始動時の制御により、前記電流制限部を介することなく前記バッテリから前記始動電動機に制限された電流を流すように制御することを特徴とするエンジン始動電動機の制御システム。
    In the control system of the engine starter motor according to claim 1,
    When the control unit determines that the restart is performed at the time of the initial start and the restart, and further, when the state of the battery satisfies a predetermined condition, the current limiting unit is controlled by the control at the initial start. When a large current is passed from the battery to the starter motor without passing through and a predetermined condition is not satisfied, the control from the battery is restricted from the battery to the starter motor without passing through the current limiter when the predetermined condition is not satisfied. The engine starter motor control system is characterized in that control is performed so as to allow the generated current to flow.
  3.  請求項1記載のエンジン始動電動機の制御システムにおいて、
     前記始動電動機は、
     前記バッテリから電力供給を受けて回転するモータと、
     前記バッテリから前記モータへの通電を制御するメイン接点と、
     前記メイン接点を開閉する主電磁スイッチとを備え、
     前記電流制限部は、
     前記バッテリから前記モータまでの回路間に直列に配置され、前記モータへ流れる電流を抑制する抵抗と、
     該抵抗を短絡して前記バッテリから前記モータへと直接通電を行う回路に切り替え可能なサブ接点と、
     該サブ接点を開閉する補助電磁スイッチとを備えることを特徴とするエンジン始動電動機の制御システム。
    In the control system of the engine starter motor according to claim 1,
    The starting motor is
    A motor that rotates by receiving power supply from the battery;
    A main contact for controlling energization from the battery to the motor;
    A main electromagnetic switch for opening and closing the main contact,
    The current limiting unit is
    A resistor arranged in series between the circuit from the battery to the motor, and a resistor for suppressing the current flowing to the motor;
    A sub-contact that can be switched to a circuit that directly energizes the battery to the motor by short-circuiting the resistor;
    An engine starter motor control system comprising: an auxiliary electromagnetic switch for opening and closing the sub-contact.
  4.  請求項1記載のエンジン始動電動機の制御システムにおいて、
     前記始動電動機は、
     前記バッテリから電力供給を受けて回転するモータと、
     前記バッテリから前記モータへの通電を制御するメイン接点と、
     前記メイン接点を開閉する主電磁スイッチとを備え、
     前記電流制限部は、
     前記バッテリから前記モータまでの回路間に並列に配置され、前記モータへ流れる電流を抑制する抵抗と、
     該抵抗を短絡して前記バッテリから前記モータへと直接通電を行う回路に切り替え可能なサブ接点と、
     該サブ接点を開閉する補助電磁スイッチとを備えることを特徴とするエンジン始動電動機の制御システム。
    In the control system of the engine starter motor according to claim 1,
    The starting motor is
    A motor that rotates by receiving power supply from the battery;
    A main contact for controlling energization from the battery to the motor;
    A main electromagnetic switch for opening and closing the main contact,
    The current limiting unit is
    A resistor arranged in parallel between the circuit from the battery to the motor, to suppress the current flowing to the motor;
    A sub-contact that can be switched to a circuit that directly energizes the battery to the motor by short-circuiting the resistor;
    An engine starter motor control system comprising: an auxiliary electromagnetic switch for opening and closing the sub-contact.
PCT/JP2013/078900 2012-11-12 2013-10-25 Control system for engine starter electric motor WO2014073391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380059036.0A CN104797809A (en) 2012-11-12 2013-10-25 Spherical band seal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012248100A JP2014095355A (en) 2012-11-12 2012-11-12 Control system for engine-starting motor machine
JP2012-248100 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073391A1 true WO2014073391A1 (en) 2014-05-15

Family

ID=50684501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078900 WO2014073391A1 (en) 2012-11-12 2013-10-25 Control system for engine starter electric motor

Country Status (3)

Country Link
JP (1) JP2014095355A (en)
CN (1) CN104797809A (en)
WO (1) WO2014073391A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210908A1 (en) * 2017-05-16 2018-11-22 Valeo Equipements Electriques Moteur Combustion engine starter equipped with a current limiter
US10823129B2 (en) 2017-08-21 2020-11-03 Ford Global Technologies, Llc Methods and systems for controlling a starter motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015208036A1 (en) 2014-05-02 2015-11-05 Toshiba Kikai Kabushiki Kaisha Shaping device, molding method and molded products
JP6645178B2 (en) * 2015-12-24 2020-02-14 スズキ株式会社 Control device for hybrid vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068426A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Engine start controller
JP2011185196A (en) * 2010-03-10 2011-09-22 Denso Corp Engine starting device
JP2011185260A (en) * 2010-02-10 2011-09-22 Denso Corp Starter controller
JP2013170529A (en) * 2012-02-22 2013-09-02 Nissan Motor Co Ltd Engine starting device of idle stop vehicle
JP2013209900A (en) * 2012-03-30 2013-10-10 Hitachi Automotive Systems Ltd Engine startup device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068426A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Engine start controller
JP2011185260A (en) * 2010-02-10 2011-09-22 Denso Corp Starter controller
JP2011185196A (en) * 2010-03-10 2011-09-22 Denso Corp Engine starting device
JP2013170529A (en) * 2012-02-22 2013-09-02 Nissan Motor Co Ltd Engine starting device of idle stop vehicle
JP2013209900A (en) * 2012-03-30 2013-10-10 Hitachi Automotive Systems Ltd Engine startup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210908A1 (en) * 2017-05-16 2018-11-22 Valeo Equipements Electriques Moteur Combustion engine starter equipped with a current limiter
FR3066663A1 (en) * 2017-05-16 2018-11-23 Valeo Equipements Electriques Moteur THERMAL MOTOR STARTER WITH CURRENT LIMITER
US10823129B2 (en) 2017-08-21 2020-11-03 Ford Global Technologies, Llc Methods and systems for controlling a starter motor

Also Published As

Publication number Publication date
CN104797809A (en) 2015-07-22
JP2014095355A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP4942803B2 (en) Engine starter
US9856847B2 (en) Vehicle power source device
WO2015015743A1 (en) Vehicular power source system
JP5928177B2 (en) Torque assist control device
JP5216106B2 (en) Electric system for automobile, control method for starting motor, and battery isolator in such electric system
JP2009068426A (en) Engine start controller
KR101233958B1 (en) Engine starting device
JP2004308645A (en) Engine starter
WO2014073391A1 (en) Control system for engine starter electric motor
JP5907118B2 (en) Power supply system abnormality detection device
JP2014012998A (en) Power supply device for engine mounted vehicle with idle stop
JP5042731B2 (en) Vehicle power supply
JP4799641B2 (en) Engine starter
WO2013145897A1 (en) Engine startup device
JP2012102640A (en) Starter control device
JP5394569B2 (en) Engine starter and control method for engine starter
JP4869395B2 (en) Engine starter
JP2015093554A (en) Vehicular power supply device
JP2015123823A (en) Vehicular power supply device
JP2013091424A (en) Electronic control device
JP2015209126A (en) Power supply device and control method therefor
JP2012237225A (en) Engine starting device
US20190334471A1 (en) Control apparatus of rotating electrical machine
US9464615B2 (en) Method for using the start-up device of a motor vehicle engine
JP7227718B2 (en) vehicle power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853080

Country of ref document: EP

Kind code of ref document: A1