WO2014073299A1 - Fresnel lens, fabrication method therefor, and sensing device - Google Patents

Fresnel lens, fabrication method therefor, and sensing device Download PDF

Info

Publication number
WO2014073299A1
WO2014073299A1 PCT/JP2013/076933 JP2013076933W WO2014073299A1 WO 2014073299 A1 WO2014073299 A1 WO 2014073299A1 JP 2013076933 W JP2013076933 W JP 2013076933W WO 2014073299 A1 WO2014073299 A1 WO 2014073299A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresnel lens
substrate
wavelength
lens
taper angle
Prior art date
Application number
PCT/JP2013/076933
Other languages
French (fr)
Japanese (ja)
Inventor
山内 博史
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014073299A1 publication Critical patent/WO2014073299A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Definitions

  • the present invention relates to a Fresnel lens used for various optical systems, a method for manufacturing the same, and a sensing device including the Fresnel lens.
  • a diffractive Fresnel lens that is small and light, has good reproducibility, and has small aberrations has attracted attention.
  • This diffractive Fresnel lens is manufactured, for example, by fine processing such as electron beam drawing, and is also called a Fresnel microlens or a micro Fresnel lens.
  • a conventional diffractive Fresnel lens is formed by approximating the curvature of an ideal curve by forming irregularities with different pattern dimensions on a substrate.
  • the curvature of an ideal curve is approximated by further increasing the number of convex portions of a binary (two-stage) lens.
  • the lens performance is improved by bringing the uneven pattern on the substrate closer to an ideal curve.
  • Non-Patent Document 1 a method of directly transferring the ideal curve onto the substrate using the gray scale exposure method (see Non-Patent Document 1) and a subdivided concave / convex shape are formed. How to do is known.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 61-137101 (published on June 24, 1986)”
  • Non-Patent Document 1 when the gray scale exposure method described in Non-Patent Document 1 is used, the ideal curve can be directly transferred onto the substrate, so that it is possible to manufacture a lens with good light collecting characteristics. Since the cost is high, the manufacturing cost of the lens itself increases.
  • the manufacturing cost of the lens itself increases as a result of the complexity of the manufacturing process accompanying the subdivision and the increase in the number of processes.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a Fresnel lens or the like having good condensing characteristics at a lower cost.
  • a Fresnel lens is a Fresnel lens in which a concavo-convex pattern is formed on a substrate in accordance with the wavelength of incident light and the amount of phase modulation added to outgoing light.
  • the concavo-convex pattern is a pattern in which a plurality of convex portions and concave portions are alternately arranged along the direction from the center portion to the end portion of the Fresnel lens, and between the nearest convex portions in the concavo-convex pattern.
  • the taper angle which is the inclination angle with respect to the optical axis direction of the wall surface surrounding the recess differs according to the space width of the recess formed in the direction from the center to the end of the Fresnel lens. .
  • a method for manufacturing a Fresnel lens according to an aspect of the present invention includes a Fresnel lens in which a concavo-convex pattern is formed on a substrate in accordance with the wavelength of incident light and the amount of phase modulation added to the emitted light.
  • the taper angle which is the remainder of the inclination angle with respect to the optical axis direction of the wall surface surrounding the concave portion, varies depending on the space width that is the width of Characterized by comprising an etching step of a.
  • the upper diagram is a cross-sectional view when the Fresnel lens is cut by a plane including the optical axis
  • the lower diagram is It is a top view when the said Fresnel lens is seen from the light-emitting surface side.
  • a diagram showing a schematic configuration of a sensing device according to an embodiment of the present invention the upper diagram is a cross-sectional view when the sensing device is cut by a plane including the optical axis
  • the lower diagram is It is a top view when the Fresnel lens with which the said sensing device is provided is seen from the light emission surface side.
  • FIGS. 1 to 4 An embodiment of the present invention will be described with reference to FIGS. 1 to 4 as follows. Descriptions of configurations other than those described in the following specific items may be omitted as necessary. However, in the case where they are described in other items, the configurations are the same. For convenience of explanation, members having the same functions as those shown in each item are given the same reference numerals, and the explanation thereof is omitted as appropriate. In addition, the shape of the configuration described in each drawing and the dimensions such as length, size, and width do not reflect the actual shape and dimensions, and are appropriately set for clarity and simplification of the drawings. It has changed.
  • FIG. 1 is a cross-sectional view of a Fresnel lens 10 according to an embodiment of the present invention cut along a plane including an optical axis.
  • the figure shown on the lower side of the figure is a plan view when viewed from the light emitting surface (surface on the side from which diffracted light is emitted) of the Fresnel lens 10.
  • the scale of the dimension of each component shown in the top view is larger than the scale of the dimension of the plan view.
  • the wavelength band of infrared rays incident on the Fresnel lens 10 of this embodiment is, for example, a 3 to 5 micron band or an 8 to 15 micron band.
  • a diffractive Fresnel lens will be described as an example, but a lens to which the present invention can be applied is not limited to this.
  • the present invention can be applied to a refractive type Fresnel lens.
  • an infrared Fresnel lens will be described as an example, but a lens to which the present invention can be applied is not limited thereto.
  • the present invention in addition to an infrared lens, can also be applied to a visible region lens and an ultraviolet region lens.
  • the present invention can also be applied to a diffractive Fresnel lens for femtosecond lasers used for industrial lasers.
  • the Fresnel lens 10 of the present embodiment has a substantially circular cross-section when the lens is cut along a plane perpendicular to the optical axis direction (hereinafter, such a lens is simply referred to as “substantially circular lens”).
  • the cross-sectional shape of the lens is not limited to this.
  • the cross-sectional shape may be a substantially elliptical shape or a substantially rectangular shape.
  • the Fresnel lens 10 is a lens in which a concavo-convex portion 2 (concave / convex pattern) is formed on the substrate 1 in accordance with the wavelength of incident light and the amount of phase modulation added to outgoing light (diffracted light). is there.
  • silicon (Si) is used as the constituent material of the substrate 1, that is, the lens, but is not limited to this.
  • a known resin material or glass material can be used.
  • an effect similar to the effect described later can be obtained for a diffractive infrared Fresnel lens including Si and having a refractive index n of 3 or more.
  • Other examples of the constituent material of the lens used in the infrared wavelength band include ZnSe and Ge.
  • the concave-convex portion 2 of the Fresnel lens 10 has a plurality of convex portions PJ1 to PJ3 and concave portions along a direction from the central portion (lens center) of the Fresnel lens 10 toward the end portion (radial direction of the substantially circular lens).
  • the uneven pattern is generally arranged alternately. More specifically, the concavo-convex pattern is formed on the light exit surface side of the substrate 1 in accordance with the wavelength of incident light and the phase modulation amount of the lens with respect to the emitted light, and has a sawtooth cross section associated with the concavo-convex pattern.
  • the concavo-convex portion 2 having a multi-step staircase shape in which each of the convex portions PJ1 to PJ3 is multi-staged is formed.
  • the wavelength of incident light is a wavelength within the transmission wavelength region that transmits the crystal of the constituent material (Si in the present embodiment) constituting the substrate 1.
  • the refractive index n of is 3 or more. In this way, the incident light has a wavelength within the transmission wavelength region that transmits the crystal of the constituent material constituting the substrate 1 and the refractive index n of the substrate 1 is 3 or more.
  • the Fresnel lens 10 having good optical characteristics can be provided at a lower cost.
  • the depth t (maximum depth of the recess) of the concavo-convex portion 2 is set so that the refractive index n of the substance constituting the lens and the wavelength of incident light are maximized in order to maximize the light collection efficiency of the Fresnel lens 10.
  • the “maximum depth of the concave portion” is a distance between the bottom surface of the space portion (concave portion) W1 and the uppermost surface of the convex portions PJ1 to PJ3.
  • the groove depth t is approximately the same as the film thickness of a photoresist pattern 3 described later, and is approximately 1.3 ⁇ m.
  • the concentric pattern represented by the following (formula 1) is set according to the focal length f, which is the most commonly used ring pattern in the concavo-convex portion 2 of the Fresnel lens 10.
  • f (x, y) ⁇ (x 2 + y 2 ) + f 2 ⁇ 1/2 ⁇ f (Expression 1)
  • (x, y) are x and y coordinates in a two-dimensional orthogonal coordinate system set on the surface of the substrate 1 with reference to the focal position.
  • the number of steps in the step shape of the protrusions PJ1 to PJ3 is four in total, corresponding to the space portions (recesses) W1 to W3.
  • the number of steps in the step shape of the convex portions PJ1 to PJ3 in the Fresnel lens 10 is not limited to this, and may be at least two steps. It goes without saying that the approximation to the ideal curve becomes easier as the number of steps of the projecting portions PJ1 to PJ3 increases.
  • the respective space widths of the concave portions (space portions W1 to W3 shown in FIG. 4C, which will be described later) formed between the nearest convex portions in the concave and convex portion 2.
  • the taper angles ⁇ 1 to ⁇ 3 of the wall surface surrounding the recess are made different.
  • the concave portion formed at the end of the Fresnel lens 10 shown in FIG. 1 cannot be strictly said to be a concave portion formed between the convex portions.
  • the structural requirement that the taper angle of the wall surface surrounding the recess having a wide space width is smaller than the taper angle of the wall surface surrounding the recess having a narrow space width is not limited to the recess formed between the protrusions. This is a requirement that is satisfied including the wall surface of the recess at the end.
  • the “space width” is the width of the recess in the direction from the center to the end of the lens. More specifically, the space width is the widest width, the narrowest width, or the average width among the widths in the direction from the center to the end of the lens in the concave portions of the respective steps of the space portions W1 to W3. Can be illustrated.
  • the space widths SW1 to SW3 are the widest widths of the concave portions in the direction from the center to the end of the lens.
  • the “taper angle” is an additional angle of an inclination angle with respect to the optical axis direction of the wall surface surrounding the recess.
  • At least the wall surface where the taper angles ⁇ 1 to ⁇ 3 are not 90 degrees, that is, the wall surface inclined with respect to the optical axis of the lens is at least.
  • One is formed.
  • the taper angle of the wall surface surrounding each concave portion is not particularly correlated with the space width and is approximately 90 degrees.
  • the wall surface surrounding each concave portion is inclined with respect to the optical axis of the lens.
  • the present inventor can newly form a wall surface inclined with respect to the optical axis of the Fresnel lens 10 described above in a process using a photolithography process and a dry etching process described later. I found it.
  • the process using the photolithography process and the dry etching process it is not necessary to use an expensive mask such as a gray scale mask unlike the technique described in Non-Patent Document 1, and thus the manufacturing cost is further reduced. Can be made.
  • the Fresnel lens 10 having good light collecting characteristics can be provided at a lower cost.
  • the taper angle of the wall surface surrounding the recess having a wide space width is smaller than the taper angle of the wall surface surrounding the recess having a narrow space width.
  • the space width is SW1 ⁇ SW2 ⁇ SW3, while the taper angle is ⁇ 1> ⁇ 2> ⁇ 3.
  • the taper angle (for example, taper angle ⁇ 3) of the wall surface surrounding the recess having a wide space width is equal to the taper angle (for example, taper angle ⁇ 1 or ⁇ 2) of the wall surface surrounding the recess having a narrow space width. Is smaller than Further, by adjusting the space width of each recess according to the curvature of the ideal curve, it is possible to form an uneven pattern approximated with a desired curvature at a desired position.
  • Fresnel lens 10 can be used for various elements or devices used for inspection of a semiconductor wafer (silicon), inspection of a solar cell, security, inspection of a human body, and the like.
  • FIG. 2 shows an example in which a thermal sensor (sensing device) is configured by combining the Fresnel lens 10 and a thermal sensor element.
  • incident light for example, collimated parallel light
  • the Fresnel lens 10 has a lower surface with respect to the paper surface.
  • the diffracted light is diffracted by the formed concavo-convex pattern, and the heat sensor element is irradiated with the diffracted light.
  • the thermal sensor element was shown as an example of the element irradiated with diffracted light in the figure, the use of the diffracted light of the Fresnel lens 10 is not limited to this.
  • the diffracted light of the Fresnel lens 10 can be used for applications such as semiconductor wafer (silicon) inspection, solar cell inspection, security, and human body inspection.
  • FIG. 3 is a cross-sectional view of the substrate 1 after the first photolithography process in the manufacturing method of the Fresnel lens 10.
  • FIG. 4A shows a cross-sectional view of the substrate 1 after the first etching process.
  • FIG. 4B shows a cross-sectional view of the substrate 1 after the second etching process.
  • FIG. 4C shows a cross-sectional view of the substrate 1 after the third etching step.
  • the manufacturing method of the Fresnel lens 10 includes at least the following photolithography process, etching process, and cleaning process.
  • the uneven portion 2 is patterned using a resist mask. More specifically, as shown in FIG. 3, a photoresist pattern 3 is formed on the substrate 1 using a known photolithography technique in accordance with the uneven pattern set above.
  • the film thickness of the photoresist pattern 3 shown in FIG. 3 is 1.3 ⁇ m.
  • the resist material for example, a photosensitive organic substance can be listed. The basic method of photolithography will be described in Supplementary Explanation 1 below.
  • the substrate 1 is processed using dry etching.
  • the basic technique of dry etching is described in Supplementary Explanation 2 below.
  • a high frequency applied voltage (high frequency voltage) by an oscillator (radio frequency oscillator) was applied between the planar electrode and the counter electrode.
  • the gas used for dry etching is optimized by adding a diluting gas such as a fluorine-based gas such as CF 4 or SF 6 or an Ar gas as appropriate in order to etch the substrate 1 as uniformly as possible at a high rate. .
  • a diluting gas such as a fluorine-based gas such as CF 4 or SF 6 or an Ar gas as appropriate in order to etch the substrate 1 as uniformly as possible at a high rate.
  • the taper angle depends on the film thickness of the photoresist used in the above photolithography process (substantially corresponds to the above-described depth t), the gas flow rate, pressure and RF in the above etching process. Since it varies depending on the RF power of the oscillator, etc., suitable conditions are selected so that the lens shape approaches the ideal curve according to various required specifications.
  • the gas flow rate was the Cl 2 133sccm, the O 2 and 5 sccm.
  • each recess When the space width of each recess is wide, more Si as a reactant is etched and more SiO x as a reaction product is generated than when the space width is narrow. Furthermore, the reaction product adheres to the pattern side wall (wall surface surrounding each recess) by increasing the flow rate of O 2 in order to produce more reaction product SiO x or by increasing the pressure. It is possible to control the taper angle by increasing the probability.
  • the space portion W1 of the substrate 1 is wide on the side of the center portion of the lens, and the space becomes closer to the lens outer peripheral portion (end portion).
  • the portion W1 becomes narrow.
  • the taper angle is small on the center side of the lens of the Fresnel lens 10 and the taper angle is large on the outer peripheral side of the lens, so that the desired uneven portion 2 can be obtained.
  • the space part W2 is formed by performing the same photolithography process, dry etching process, and cleaning process as the method of forming the space part W1, and the lens shape shown in FIG. 4B is obtained. Furthermore, in order to form the space part W3, the lens shape shown in FIG. 4C is obtained by performing the same photolithography process, dry etching process, and cleaning process as the method of forming the space parts W1 and W2. be able to.
  • the Fresnel lens 10 shown in FIG. 1 can be manufactured by the method as described above.
  • a method is shown in which, by forming the space portions W1 to W3, a concavo-convex shape having a total of four steps including the bottom of the concave portion is obtained.
  • a lens having a stepped shape can be obtained.
  • the lens 10 can be provided.
  • the diffractive Fresnel lens 10 using the substrate 1 has been described.
  • the same effect can be obtained with the diffractive infrared lens.
  • the transmission wavelength region of the Si crystal is 1.2 ⁇ m to 16 ⁇ m, and Si has a refractive index n of 3 or more in this region. Accordingly, the same effect can be obtained at any wavelength as long as the incident light is in the transmission wavelength region of the crystal of the constituent material constituting the substrate 1.
  • it is possible to provide the Fresnel lens 10 which is inexpensive and does not deteriorate the optical characteristics by forming the stepped shape of the concavo-convex portion 2 by controlling the taper angle according to the processing pitch.
  • Photolithography is the process of exposing the surface of a material coated with a photosensitive material in a pattern (also called pattern exposure, imagewise exposure, etc.), from exposed and unexposed portions. Is a technique for generating a pattern. More specifically, photolithography is performed as follows. A photosensitive organic material called a photoresist is applied onto the substrate 1, and a pattern drawn on a photomask called a reticle is baked using an exposure device called a stepper.
  • a photoresist is applied onto the substrate 1
  • a pattern drawn on a photomask called a reticle is baked using an exposure device called a stepper.
  • cleaning the substrate If organic substances or lipids adhere to the surface of the substrate 1, the adhesion of the resist becomes weak, so the surface of the substrate 1 is washed.
  • resist application A liquid called resist is applied onto the substrate 1 by a spin coater or spraying.
  • the thickness of the resist greatly affects the viscosity of the resist. For example, the lower the viscosity, the thinner the resist film can be made, and the more suitable for creating fine patterns.
  • the range of the film thickness of the resist film is about several ⁇ m to 100 ⁇ m.
  • resists can be roughly divided into two due to their chemical properties. For example, there are a “positive type” that decomposes when dissolved in light and dissolves in the developer, and a “negative type” that dissolves in the developer due to polymerization when exposed to light. That is, the positive type does not have a portion exposed to light, and the negative type has a portion exposed to light.
  • a “positive type” that decomposes when dissolved in light and dissolves in the developer
  • a “negative type” that dissolves in the developer due to polymerization when exposed to light. That is, the positive type does not have a portion exposed to light, and the negative type has a portion exposed to light.
  • the positive type is advantageous for pattern miniaturization, and the positive type is currently the mainstream.
  • an excimer laser such as KrF
  • a chemically amplified photoresist is used because the exposure intensity is weak.
  • the resist is irradiated with light to react. At this time, a necessary shape is drawn on the resist by controlling a portion irradiated with light using a resist mask in which the shape of the concavo-convex pattern is drawn.
  • the exposure apparatus performs reduction projection exposure while moving a mask pattern created larger than the actual size on the substrate 1 using an apparatus called a stepper. As the pattern becomes finer, a light source having a shorter wavelength is required.
  • high-pressure mercury lamp g-line (wavelength 436 nm), i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), etc.
  • EUV light (wavelength 13.5 nm) is in the development stage as the next generation light source.
  • EUV light (wavelength 13.5 nm) is in the development stage as the next generation light source.
  • the substrate 1 is disposed on the cathode of the planar electrode.
  • RIE reactive ion etching
  • the RF oscillator When a high frequency voltage is applied between the counter electrode (anode) and the planar electrode (cathode) by the RF oscillator with the etching gas introduced, plasma is generated between the electrodes.
  • the electrons in the plasma are lighter and faster than positive ions, which are active gases, and therefore immediately gather on the counter electrode and the planar electrode.
  • the collected electrons are connected to the ground at the counter electrode, so that the potential does not change.
  • the DC current is blocked by the blocking capacitor in the flat electrode, and the electrons accumulate on the flat electrode and become negative potential.
  • the high frequency of the RF oscillator which is an alternating current, passes through the blocking capacitor.
  • this planar electrode becomes a negative potential, it is called cathode fall. Due to the negative potential (electric field) of the cathode drop, positive ions, which are active gases in the plasma, are attracted and incident perpendicularly on the surface of the substrate 1 so that anisotropic etching is performed.
  • the etching film and the photoresist pattern 3 are etched by the ion collision of the etching gas.
  • the reaction product generated at this time is evacuated, but part of it adheres to the etching side surface.
  • This is called a sidewall protective film and serves to prevent lateral etching, and the wall surface having the taper angles ⁇ 1 to ⁇ 3 is formed.
  • the Fresnel lens 10 in which the concavo-convex portion 2 including the convex portions PJ1 to PJ3 having the taper angles ⁇ 1 to ⁇ 3 is formed.
  • the uneven pattern is formed on the substrate (substrate 1) according to the wavelength of the incident light and the phase modulation amount added to the emitted light.
  • the concavo-convex pattern is a pattern in which a plurality of convex portions (convex portions PJ1 to PJ3) and concave portions are alternately arranged along a direction from the center to the end of the Fresnel lens.
  • space width SW1 to SW3 which is the width of the concave portion formed between the nearest convex portions in the concave / convex pattern with respect to the direction from the center to the end of the Fresnel lens.
  • the taper angles (taper angles ⁇ 1 to ⁇ 3), which are residual angles of the inclination angle with respect to the optical axis direction of the surrounding wall surface, are different.
  • the taper angle of the wall surface surrounding the recess is varied according to the space width.
  • the taper angle is assumed to be a remainder angle of the inclination angle with respect to the optical axis direction of the wall surface surrounding the recess.
  • at least one wall surface whose taper angle is not 90 degrees, that is, a wall surface inclined with respect to the optical axis of the Fresnel lens is formed.
  • the taper angle of the wall surface surrounding the concave portion is approximately 90 degrees.
  • the present inventor newly found out that it is possible to form a wall surface inclined with respect to the optical axis of the Fresnel lens by a process using a photolithography process and a dry etching process.
  • the method for manufacturing a Fresnel lens according to aspect 5 of the present invention is a method for manufacturing a Fresnel lens in which a concavo-convex pattern is formed on a substrate in accordance with the wavelength of incident light and the amount of phase modulation added to outgoing light, Photolithography for patterning the concavo-convex pattern using a resist mask to form the concavo-convex pattern in which a plurality of convex portions and concave portions are alternately arranged along the direction from the center to the end of the Fresnel lens Processing the substrate using a process and dry etching, and a space width that is a width in a direction from the center to the end of the Fresnel lens of the recess formed between the closest protrusions in the uneven pattern.
  • the taper angle that is the remainder of the inclination angle with respect to the optical axis direction of the wall surface surrounding the recess is varied. And it may contain.
  • an expensive mask such as a gray scale mask unlike the technique described in Non-Patent Document 1, and thus the manufacturing cost is further reduced. Can be made.
  • the taper angle of the wall surface surrounding the recess having the wide space width is smaller than the taper angle of the wall surface surrounding the recess having the narrow space width. Also good.
  • the taper angle becomes easier as the space width of the recesses between adjacent protrusions is wider. Newly found that it is possible to form a small wall. Therefore, in the above configuration, the taper angle of the wall surface surrounding the recess having the wide space width is smaller than the taper angle of the wall surface surrounding the recess having the narrow space width. Further, by adjusting the space width of each recess according to the curvature of the ideal curve, it is possible to form an uneven pattern approximated with a desired curvature at a desired position.
  • the wavelength of the incident light is a wavelength within a transmission wavelength region that transmits a crystal of a constituent material constituting the substrate.
  • the refractive index may be 3 or more. If the wavelength of the incident light is a wavelength in the transmission wavelength region that transmits the crystal of the constituent material constituting the substrate, and the refractive index of the substrate is 3 or more, light of any wavelength in the transmission wavelength region can be collected.
  • a Fresnel lens with good optical characteristics can be provided at a lower cost.
  • the wavelength of the incident light may be a wavelength in an infrared region. According to said structure, the Fresnel lens for infrared rays with a sufficient condensing characteristic can be provided more cheaply.
  • the taper angle may be adjusted by adjusting the film thickness of the resist mask in the photolithography process in aspect 5 above.
  • the present inventor has newly found that it is possible to adjust the taper angle of the wall surface inclined with respect to the optical axis of the Fresnel lens by adjusting the film thickness of the resist mask in the photolithography process. I found it. Therefore, in the above method, the taper angle is adjusted by adjusting the film thickness of the resist mask.
  • the magnitude of the taper angle is adjusted by adjusting the gas flow rate, the pressure, and the power of the high frequency oscillator in the etching step.
  • the inventor can adjust the taper angle of the wall surface inclined with respect to the optical axis of the Fresnel lens by adjusting the gas flow rate, pressure and power of the high-frequency oscillator in the etching process. I found a new thing. Therefore, in the above method, the magnitude of the taper angle is adjusted by adjusting the gas flow rate, pressure, and power of the high-frequency oscillator in the etching process.
  • the sensing device according to aspect 8 of the present invention may include the Fresnel lens according to any one of aspects 1 to 4.
  • the Fresnel lens infrared optical lens
  • the concavo-convex portions formed on the substrate may have different taper angles according to individual space widths.
  • the Fresnel lens according to one embodiment of the present invention may have a structure in which the unevenness formed on the substrate has a taper angle that decreases as the space width increases.
  • a silicon substrate may be used as the substrate.
  • a method for manufacturing a Fresnel lens according to one aspect of the present invention is a method for manufacturing a diffractive Fresnel lens that forms a concavo-convex pattern according to the phase modulation amount of a lens, depending on the wavelength of incident light.
  • the uneven portion may be formed on the substrate by changing the taper angle according to the space width.
  • patterning may be performed using a resist mask when the uneven portion is formed on the substrate.
  • the substrate may be processed using dry etching in the step of forming the uneven portion on the substrate.
  • any of SF 6 , CF 4 , Cl 2 , O 2 , and Ar is used for dry etching in the step of forming the uneven portion on the substrate. Then, the substrate may be processed.
  • the present invention can be applied to Fresnel lenses, in particular, optical lenses for infrared rays that are diffractive Fresnel lenses.
  • the present invention can be applied to optical lenses used for surveillance cameras, inspection of semiconductor wafers (silicon), inspection of solar cells, security, inspection of human bodies, and the like.
  • the present invention can also be used for a sensing device provided with a Fresnel lens.
  • the present invention can be used for a heat sensor that detects heat.
  • Substrate 2 Uneven portion (uneven pattern) 3
  • Photoresist pattern 10 Fresnel lens PJ1 to PJ3 Convex part SW1 to SW3 Space width t Depth W1 to W3 Space part (concave part) ⁇ 1 to ⁇ 3 taper angle

Abstract

In accordance with each space width of depression parts which are formed in respective intervals between the closest protrusion parts (PJ1-PJ3) in a serrated part (2), the sizes of taper angles, which are complementary angles to angles of inclination with respect to the optical axes of partition faces which surround each depression part, vary.

Description

フレネルレンズおよびその製造方法、ならびに、センシングデバイスFresnel lens, manufacturing method thereof, and sensing device
 本発明は、種々の光学系に用いられるフレネルレンズおよびその製造方法、ならびに、該フレネルレンズを備えたセンシングデバイスに関する。 The present invention relates to a Fresnel lens used for various optical systems, a method for manufacturing the same, and a sensing device including the Fresnel lens.
 従来の屈折型のフレネルレンズに加え、近年、小型軽量で再現性がよく、収差が小さい回折型のフレネルレンズが注目されている。この回折型のフレネルレンズは、例えば、電子ビーム描画などの微細加工によって製造されるため、フレネルマイクロレンズまたはマイクロフレネルレンズとも呼ばれている。 In recent years, in addition to the conventional refractive Fresnel lens, a diffractive Fresnel lens that is small and light, has good reproducibility, and has small aberrations has attracted attention. This diffractive Fresnel lens is manufactured, for example, by fine processing such as electron beam drawing, and is also called a Fresnel microlens or a micro Fresnel lens.
 従来の回折型のフレネルレンズは、基板上に異なるパターン寸法の凹凸を形成することで理想曲線の曲率を近似して形成されている。例えば、特許文献1に記載のマイクロフレネルレンズでは、バイナリ(2段階)レンズの凸部をさらに多段階化することで理想曲線の曲率を近似している。一方、近年、レンズの集光性能を向上させるために基板上の凹凸パターンをより理想曲線に近づけることでレンズ性能の向上が図られている。その際に、基板上の凹凸パターンを理想曲線に近似するためにグレイスケール露光法を用いて理想曲線を直接基板上に転写する方法(非特許文献1参照)や凹凸形状をより細分化して形成する方法が知られている。 A conventional diffractive Fresnel lens is formed by approximating the curvature of an ideal curve by forming irregularities with different pattern dimensions on a substrate. For example, in the micro Fresnel lens described in Patent Document 1, the curvature of an ideal curve is approximated by further increasing the number of convex portions of a binary (two-stage) lens. On the other hand, in recent years, in order to improve the light condensing performance of the lens, the lens performance is improved by bringing the uneven pattern on the substrate closer to an ideal curve. At that time, in order to approximate the concave / convex pattern on the substrate to the ideal curve, a method of directly transferring the ideal curve onto the substrate using the gray scale exposure method (see Non-Patent Document 1) and a subdivided concave / convex shape are formed. How to do is known.
日本国公開特許公報「特開昭61-137101号公報(1986年6月24日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 61-137101 (published on June 24, 1986)”
 しかしながら、上記の従来技術では、集光特性の良いレンズを製造しようとすると製造コストが高価になってしまうという問題点がある。 However, the above-described conventional technique has a problem that the manufacturing cost becomes expensive when trying to manufacture a lens having good condensing characteristics.
 例えば、上記特許文献1に記載の技術では、バイナリレンズの凸部をさらに多段階化することで、理想曲線の曲率を近似しているため、基板上の凹凸パターンをより理想曲線に近づけるためには、凸部をより細かく多段階化する必要がある。このため、凸部の多段階化に伴う製造工程の複雑化、工程数の増加により、結果的にレンズ自身の製造コストが高くなってしまう。 For example, in the technique described in Patent Document 1, since the curvature of the ideal curve is approximated by further increasing the number of convex portions of the binary lens, the uneven pattern on the substrate is made closer to the ideal curve. Need to make the convex part more finely and multi-staged. For this reason, the manufacturing process accompanying the increase in the number of steps of the convex part and the increase in the number of processes result in an increase in the manufacturing cost of the lens itself.
 一方、非特許文献1に記載のグレイスケール露光法を用いる場合、理想曲線を直接基板上に転写することができるため、集光特性の良いレンズの製造が可能であるが、グレイスケールマスクの製造コストが高いためにレンズ自身の製造コストが高くなってしまう。 On the other hand, when the gray scale exposure method described in Non-Patent Document 1 is used, the ideal curve can be directly transferred onto the substrate, so that it is possible to manufacture a lens with good light collecting characteristics. Since the cost is high, the manufacturing cost of the lens itself increases.
 さらに、凹凸形状をより細分化して形成する方法を用いる場合、細分化に伴う製造工程の複雑化、工程数の増加により、結果的にレンズ自身の製造コストが高くなってしまう。 Furthermore, when using the method of forming the uneven shape by subdividing, the manufacturing cost of the lens itself increases as a result of the complexity of the manufacturing process accompanying the subdivision and the increase in the number of processes.
 本発明は、上記従来の問題点に鑑みなされたものであって、集光特性の良いフレネルレンズなどをより安価に提供することを目的とする。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a Fresnel lens or the like having good condensing characteristics at a lower cost.
 上記の課題を解決するために、本発明の一態様に係るフレネルレンズは、入射光の波長および出射光に付加する位相変調量に応じて基板上に凹凸パターンが形成されたフレネルレンズであって、上記凹凸パターンは、上記フレネルレンズの中心部から端部に向かう方向に沿って複数の凸部と凹部とが交互に配列されたパターンとなっており、上記凹凸パターンにおける最近接の凸部間に形成された凹部の上記フレネルレンズの中心部から端部に向かう方向に対するスペース幅に応じて、上記凹部を囲む壁面の光軸方向に対する傾斜角であるテーパー角度が異なっていることを特徴とする。 In order to solve the above problems, a Fresnel lens according to one embodiment of the present invention is a Fresnel lens in which a concavo-convex pattern is formed on a substrate in accordance with the wavelength of incident light and the amount of phase modulation added to outgoing light. The concavo-convex pattern is a pattern in which a plurality of convex portions and concave portions are alternately arranged along the direction from the center portion to the end portion of the Fresnel lens, and between the nearest convex portions in the concavo-convex pattern. The taper angle which is the inclination angle with respect to the optical axis direction of the wall surface surrounding the recess differs according to the space width of the recess formed in the direction from the center to the end of the Fresnel lens. .
 上記の課題を解決するために、本発明の一態様に係るフレネルレンズの製造方法は、入射光の波長および出射光に付加する位相変調量に応じて基板上に凹凸パターンが形成されたフレネルレンズの製造方法であって、レジストマスクを用いて上記凹凸パターンのパターンニングを行い、上記フレネルレンズの中心部から端部に向かう方向に沿って複数の凸部と凹部とが交互に配列された上記凹凸パターンを形成するフォトリソグラフィー工程と、ドライエッチングを用いて上記基板の加工を行い、上記凹凸パターンにおける最近接の凸部間に形成された凹部の上記フレネルレンズの中心部から端部に向かう方向に対する幅であるスペース幅に応じて、上記凹部を囲む壁面の光軸方向に対する傾斜角の余角であるテーパー角度の大きさを異ならせるエッチング工程と、を含むことを特徴とする。 In order to solve the above problems, a method for manufacturing a Fresnel lens according to an aspect of the present invention includes a Fresnel lens in which a concavo-convex pattern is formed on a substrate in accordance with the wavelength of incident light and the amount of phase modulation added to the emitted light. A method of patterning the concavo-convex pattern using a resist mask, wherein a plurality of convex portions and concave portions are alternately arranged along a direction from a center portion to an end portion of the Fresnel lens. A direction from the center of the Fresnel lens toward the end of the concave portion formed between the nearest convex portions in the concavo-convex pattern by processing the substrate using a photolithography process for forming the concavo-convex pattern and dry etching The taper angle, which is the remainder of the inclination angle with respect to the optical axis direction of the wall surface surrounding the concave portion, varies depending on the space width that is the width of Characterized by comprising an etching step of a.
 本発明の一態様によれば、集光特性の良いフレネルレンズをより安価に提供することができるという効果を奏する。 According to one aspect of the present invention, there is an effect that it is possible to provide a Fresnel lens with good condensing characteristics at a lower cost.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
本発明の実施の一形態に係るフレネルレンズの構造を示す図であり、上側の図は、上記フレネルレンズを、光軸を含む平面で切断したときの断面図であり、下側の図は、上記フレネルレンズを光出射面の側から見たときの平面図である。It is a diagram showing the structure of a Fresnel lens according to an embodiment of the present invention, the upper diagram is a cross-sectional view when the Fresnel lens is cut by a plane including the optical axis, the lower diagram is It is a top view when the said Fresnel lens is seen from the light-emitting surface side. 本発明の実施の一形態に係るセンシングデバイスの概要構成を示す図であり、上側の図は、上記センシングデバイスを、光軸を含む平面で切断したときの断面図であり、下側の図は、上記センシングデバイスが備えるフレネルレンズを光出射面の側から見たときの平面図である。It is a diagram showing a schematic configuration of a sensing device according to an embodiment of the present invention, the upper diagram is a cross-sectional view when the sensing device is cut by a plane including the optical axis, the lower diagram is It is a top view when the Fresnel lens with which the said sensing device is provided is seen from the light emission surface side. 上記フレネルレンズの製造方法に関し、第1回目のフォトリソグラフィー工程後における基板の断面図である。It is sectional drawing of the board | substrate after the 1st photolithography process regarding the manufacturing method of the said Fresnel lens. 上記フレネルレンズの製造方法に関し、(a)は、第1回目のエッチング工程後における基板の断面図を示し、(b)は、第2回目のエッチング工程後における基板の断面図を示し、(c)は、第3回目のエッチング工程後における基板の断面図を示す。Regarding the method for manufacturing the Fresnel lens, (a) shows a cross-sectional view of the substrate after the first etching step, (b) shows a cross-sectional view of the substrate after the second etching step, and (c) ) Shows a cross-sectional view of the substrate after the third etching step.
 本発明の実施の一形態について、図1~図4に基づいて説明すれば、以下のとおりである。以下の特定の項目で説明する構成以外の構成については、必要に応じて説明を省略する場合があるが、他の項目で説明されている場合は、その構成と同じである。また、説明の便宜上、各項目に示した部材と同一の機能を有する部材については、同一の符号を付し、適宜その説明を省略する。また、各図面に記載した構成の形状、ならびに、長さ、大きさおよび幅などの寸法は、実際の形状や寸法を反映させたものではなく、図面の明瞭化と簡略化のために適宜に変更している。 An embodiment of the present invention will be described with reference to FIGS. 1 to 4 as follows. Descriptions of configurations other than those described in the following specific items may be omitted as necessary. However, in the case where they are described in other items, the configurations are the same. For convenience of explanation, members having the same functions as those shown in each item are given the same reference numerals, and the explanation thereof is omitted as appropriate. In addition, the shape of the configuration described in each drawing and the dimensions such as length, size, and width do not reflect the actual shape and dimensions, and are appropriately set for clarity and simplification of the drawings. It has changed.
 〔フレネルレンズ10の構成〕
 以下、図1に基づき、本発明の実施の一形態である赤外線用の回折型のフレネルレンズ10(後述する基板1を加工したもの)の構成について説明する。図1の紙面に対して上側に示す図は、本発明の実施の一形態であるフレネルレンズ10を、光軸を含む平面で切断したときの断面図である。一方、同図の下側に示す図は、フレネルレンズ10の光出射面(回折光が出射される側の面)の側から見たときの平面図である。但し、同図では、図面の明瞭化のため、上記の上面図に示す各構成要素の寸法の縮尺は、上記の平面図の寸法の縮尺よりも大きくなっている。本実施形態のフレネルレンズ10に入射させる赤外線の波長帯は、例えば、3~5ミクロン帯または8~15ミクロン帯である。
[Configuration of Fresnel Lens 10]
Hereinafter, the configuration of an infrared diffractive Fresnel lens 10 (in which a substrate 1 described later is processed) according to an embodiment of the present invention will be described with reference to FIG. 1 is a cross-sectional view of a Fresnel lens 10 according to an embodiment of the present invention cut along a plane including an optical axis. On the other hand, the figure shown on the lower side of the figure is a plan view when viewed from the light emitting surface (surface on the side from which diffracted light is emitted) of the Fresnel lens 10. However, in the same figure, for the sake of clarity of the drawing, the scale of the dimension of each component shown in the top view is larger than the scale of the dimension of the plan view. The wavelength band of infrared rays incident on the Fresnel lens 10 of this embodiment is, for example, a 3 to 5 micron band or an 8 to 15 micron band.
 なお、以下では、回折型のフレネルレンズを例にとって説明するが、本発明を適用可能なレンズは、これに限定されない。例えば、屈折型のフレネルレンズにも適用可能である。また、以下では、赤外線用のフレネルレンズを例にとって説明するが、本発明を適用可能なレンズは、これに限定されない。例えば、赤外線用のレンズの他、可視領域用、紫外領域用のレンズなどにも適用可能である。その他、例えば、産業用のレーザに用いられるフェムト秒レーザ用の回折型のフレネルレンズなどにも適用することができる。 In the following, a diffractive Fresnel lens will be described as an example, but a lens to which the present invention can be applied is not limited to this. For example, the present invention can be applied to a refractive type Fresnel lens. Hereinafter, an infrared Fresnel lens will be described as an example, but a lens to which the present invention can be applied is not limited thereto. For example, in addition to an infrared lens, the present invention can also be applied to a visible region lens and an ultraviolet region lens. In addition, for example, the present invention can also be applied to a diffractive Fresnel lens for femtosecond lasers used for industrial lasers.
 (基板1、凹凸部2)
 本実施形態のフレネルレンズ10は、光軸方向に対して垂直な平面でレンズを切断したときの断面形状が略円形状(以下、このようなレンズを単に「略円形レンズ」という)であるが、レンズの断面形状はこれに限定されない。例えば、断面形状が略楕円形状や略矩形形状などであっても良い。また、図1に示すように、フレネルレンズ10は、入射光の波長および出射光(回折光)に付加する位相変調量に応じて基板1に凹凸部2(凹凸パターン)が形成されたレンズである。
(Substrate 1, uneven portion 2)
The Fresnel lens 10 of the present embodiment has a substantially circular cross-section when the lens is cut along a plane perpendicular to the optical axis direction (hereinafter, such a lens is simply referred to as “substantially circular lens”). The cross-sectional shape of the lens is not limited to this. For example, the cross-sectional shape may be a substantially elliptical shape or a substantially rectangular shape. As shown in FIG. 1, the Fresnel lens 10 is a lens in which a concavo-convex portion 2 (concave / convex pattern) is formed on the substrate 1 in accordance with the wavelength of incident light and the amount of phase modulation added to outgoing light (diffracted light). is there.
 また、本実施形態では、基板1、すなわち、レンズの構成材料としてシリコン(Si)を用いているが、これに限定されない。例えば、屈折率nが3以上の物質であれば、公知の樹脂材料やガラス材料などを用いることができる。また、例えば、Siを含み、屈折率nが3以上の材料から構成された回折型の赤外線用のフレネルレンズについても後述する効果と同様の効果が得られる。その他、赤外線の波長帯で使用されるレンズの構成材料の例としては、ZnSe、Ge等を挙示することができる。 In the present embodiment, silicon (Si) is used as the constituent material of the substrate 1, that is, the lens, but is not limited to this. For example, as long as the refractive index n is 3 or more, a known resin material or glass material can be used. Further, for example, an effect similar to the effect described later can be obtained for a diffractive infrared Fresnel lens including Si and having a refractive index n of 3 or more. Other examples of the constituent material of the lens used in the infrared wavelength band include ZnSe and Ge.
 また、フレネルレンズ10の凹凸部2は、フレネルレンズ10の中心部(レンズ中心)から端部に向かう方向(略円形レンズの半径方向)に沿って、複数の凸部PJ1~PJ3と凹部とが概ね交互に配列された凹凸パターンとなっている。より具体的には、基板1の光出射面の側に、入射光の波長および出射光に対するレンズの位相変調量に応じて上記凹凸パターンが形成され、該凹凸パターンに伴う鋸歯状断面を有し、凸部PJ1~PJ3のそれぞれが多段階化された複数段の階段形状を有する凹凸部2が形成されている。 The concave-convex portion 2 of the Fresnel lens 10 has a plurality of convex portions PJ1 to PJ3 and concave portions along a direction from the central portion (lens center) of the Fresnel lens 10 toward the end portion (radial direction of the substantially circular lens). The uneven pattern is generally arranged alternately. More specifically, the concavo-convex pattern is formed on the light exit surface side of the substrate 1 in accordance with the wavelength of incident light and the phase modulation amount of the lens with respect to the emitted light, and has a sawtooth cross section associated with the concavo-convex pattern. In addition, the concavo-convex portion 2 having a multi-step staircase shape in which each of the convex portions PJ1 to PJ3 is multi-staged is formed.
 また、本実施形態のフレネルレンズ10では、入射光の波長は、基板1を構成する構成材料(本実施形態では、Si)の結晶を透過する透過波長領域内の波長となっており、基板1の屈折率nは、3以上である。このように、入射光の波長が、基板1を構成する構成材料の結晶を透過する透過波長領域内の波長であり、かつ基板1の屈折率nが3以上であれば、どの波長でも、集光特性の良いフレネルレンズ10をより安価に提供することができる。 Further, in the Fresnel lens 10 of the present embodiment, the wavelength of incident light is a wavelength within the transmission wavelength region that transmits the crystal of the constituent material (Si in the present embodiment) constituting the substrate 1. The refractive index n of is 3 or more. In this way, the incident light has a wavelength within the transmission wavelength region that transmits the crystal of the constituent material constituting the substrate 1 and the refractive index n of the substrate 1 is 3 or more. The Fresnel lens 10 having good optical characteristics can be provided at a lower cost.
 (凹凸部2の溝の深さt)
 凹凸部2の溝の深さt(凹部の最大の深さ)は、フレネルレンズ10の集光効率を最大化するために、レンズを構成している物質の屈折率n、および入射光の波長λを用いて、t=λ/(n-1)と設定している。ここで、「凹部の最大の深さ」とは、スペース部(凹部)W1の底面と、凸部PJ1~PJ3の最上面との間の距離のことである。なお、溝の深さtは、本実施形態では、ほぼ後述するフォトレジストパターン3の膜厚と同程度であり、1.3μm程度である。
(Groove depth t of the uneven portion 2)
The depth t (maximum depth of the recess) of the concavo-convex portion 2 is set so that the refractive index n of the substance constituting the lens and the wavelength of incident light are maximized in order to maximize the light collection efficiency of the Fresnel lens 10. Using λ, t = λ / (n−1) is set. Here, the “maximum depth of the concave portion” is a distance between the bottom surface of the space portion (concave portion) W1 and the uppermost surface of the convex portions PJ1 to PJ3. In this embodiment, the groove depth t is approximately the same as the film thickness of a photoresist pattern 3 described later, and is approximately 1.3 μm.
 次に、フレネルレンズ10の凹凸部2における輪帯パターンは最も一般的に用いられる、次の(式1)で表される同心円状パターンを焦点距離fに応じて設定している。 Next, the concentric pattern represented by the following (formula 1) is set according to the focal length f, which is the most commonly used ring pattern in the concavo-convex portion 2 of the Fresnel lens 10.
 f(x,y)={(x+y)+f1/2-f・・・(式1)
 ここで、(x,y)は、焦点位置を基準として基板1の表面上に設定した2次元直交座標系におけるx、y座標である。
f (x, y) = {(x 2 + y 2 ) + f 2 } 1/2 −f (Expression 1)
Here, (x, y) are x and y coordinates in a two-dimensional orthogonal coordinate system set on the surface of the substrate 1 with reference to the focal position.
 さらに、本実施形態における基板1の屈折率は、n=3.5、入射光(赤外線)の波長は、λ=10.0μm、焦点距離は、f=0.69μmとした。また、本実施形態では、スペース部(凹部)W1~W3に対応して、凸部PJ1~PJ3の階段形状の段数は計4段で形成している。しかしながら、フレネルレンズ10における凸部PJ1~PJ3の階段形状の段数はこれに限定されず、少なくとも2段以上であれば良い。なお、凸部PJ1~PJ3の階段形状の段数が増加すればするほど、理想曲線への近似が容易となることは言うまでもない。 Furthermore, the refractive index of the substrate 1 in this embodiment is n = 3.5, the wavelength of incident light (infrared rays) is λ = 10.0 μm, and the focal length is f = 0.69 μm. In the present embodiment, the number of steps in the step shape of the protrusions PJ1 to PJ3 is four in total, corresponding to the space portions (recesses) W1 to W3. However, the number of steps in the step shape of the convex portions PJ1 to PJ3 in the Fresnel lens 10 is not limited to this, and may be at least two steps. It goes without saying that the approximation to the ideal curve becomes easier as the number of steps of the projecting portions PJ1 to PJ3 increases.
 また、本実施形態のフレネルレンズ10では、凹凸部2における最近接の凸部間に形成された凹部〔後述する図4の(c)に示すスペース部W1~W3など〕の、それぞれのスペース幅SW1~SW3(または、スペース部W1~W3の各段のスペース幅)に応じて、凹部を囲む壁面のテーパー角度θ1~θ3の大きさを異ならせている。なお、図1に示すフレネルレンズ10の端部に形成された凹部は、厳密には凸部間に形成された凹部とは言えない。しかしながら、広いスペース幅を有する凹部を囲む壁面のテーパー角度が、狭いスペース幅を有する凹部を囲む壁面のテーパー角度よりも小さくなるという構成要件は、凸部間に形成された凹部のみならず、この端部の凹部の壁面を含めて成立する要件である。 Further, in the Fresnel lens 10 of the present embodiment, the respective space widths of the concave portions (space portions W1 to W3 shown in FIG. 4C, which will be described later) formed between the nearest convex portions in the concave and convex portion 2. Depending on SW1 to SW3 (or the space width of each stage of the space portions W1 to W3), the taper angles θ1 to θ3 of the wall surface surrounding the recess are made different. Note that the concave portion formed at the end of the Fresnel lens 10 shown in FIG. 1 cannot be strictly said to be a concave portion formed between the convex portions. However, the structural requirement that the taper angle of the wall surface surrounding the recess having a wide space width is smaller than the taper angle of the wall surface surrounding the recess having a narrow space width is not limited to the recess formed between the protrusions. This is a requirement that is satisfied including the wall surface of the recess at the end.
 ここで、本明細書において、「スペース幅」とは、レンズの中心部から端部に向かう方向に対する凹部の幅であるものとする。より具体的には、スペース幅は、スペース部W1~W3の各段の凹部において、レンズの中心部から端部に向かう方向に対する幅のうち、最も広い幅、最も狭い幅、または平均の幅などを例示することができる。なお、本実施形態では、スペース幅SW1~SW3は、各凹部において、レンズの中心部から端部に向かう方向に対する幅のうち、最も広い幅としている。また、本明細書において、「テーパー角度」とは、凹部を囲む壁面の光軸方向に対する傾斜角の余角であるものとする。 Here, in this specification, the “space width” is the width of the recess in the direction from the center to the end of the lens. More specifically, the space width is the widest width, the narrowest width, or the average width among the widths in the direction from the center to the end of the lens in the concave portions of the respective steps of the space portions W1 to W3. Can be illustrated. In the present embodiment, the space widths SW1 to SW3 are the widest widths of the concave portions in the direction from the center to the end of the lens. Further, in this specification, the “taper angle” is an additional angle of an inclination angle with respect to the optical axis direction of the wall surface surrounding the recess.
 以上で説明した点について別の観点から説明すれば、本実施形態のフレネルレンズ10では、テーパー角度θ1~θ3が90度でない壁面、すなわち、レンズの光軸に対して傾斜している壁面が少なくとも1つ形成されている。 If the points described above are described from another point of view, in the Fresnel lens 10 of the present embodiment, at least the wall surface where the taper angles θ1 to θ3 are not 90 degrees, that is, the wall surface inclined with respect to the optical axis of the lens is at least. One is formed.
 一方、従来のバイナリレンズの凸部を多段階化する手法では、各凹部を囲む壁面のテーパー角度は、スペース幅とは特に相関をもっておらず、概ね90度である。すなわち、従来のバイナリレンズの凸部を多段階化する手法では、各凹部を囲む壁面に関し、レンズの光軸に対して傾斜している壁面を形成することは全く想定されていなかった。 On the other hand, in the conventional method of multi-leveling the convex portions of the binary lens, the taper angle of the wall surface surrounding each concave portion is not particularly correlated with the space width and is approximately 90 degrees. In other words, in the conventional method of multi-leveling the convex portion of the binary lens, it has not been assumed at all that the wall surface surrounding each concave portion is inclined with respect to the optical axis of the lens.
 ここで、テーパー角度が90度でない、異なるテーパー角度を有する壁面の数を多くすれば多くする程、従来のバイナリレンズの凸部を多段階化したレンズよりも、少ない段数で理想曲線に近づけることができる。また、テーパー角度が90度でない、異なるテーパー角度を有する壁面の数を多くすれば多くする程、凹凸形状をあまり細かく細分化することなく理想曲線に近づけることが容易になる。このため、集光特性の良いフレネルレンズ10を製造するための製造コストをより低減させることができる。 Here, the more the number of wall surfaces having different taper angles, the taper angle of which is not 90 degrees, the closer to the ideal curve with a smaller number of steps than the conventional multi-stage convex lens of the binary lens. Can do. Further, the greater the number of wall surfaces having different taper angles, the taper angle of which is not 90 degrees, the easier it is to approach the ideal curve without finely subdividing the uneven shape. For this reason, the manufacturing cost for manufacturing the Fresnel lens 10 with good condensing characteristics can be further reduced.
 また、本発明者は、後述するフォトリソグラフィー工程およびドライエッチング工程を用いるプロセスにて、上述したフレネルレンズ10の光軸に対して傾斜している壁面を形成することが可能であることを新たに見出した。ここで、フォトリソグラフィー工程およびドライエッチング工程を用いるプロセスによれば、非特許文献1に記載の技術のように、グレイスケールマスクのような高価なマスクを用いる必要がないため、製造コストをより低減させることができる。以上により、集光特性の良いフレネルレンズ10をより安価に提供することができる。 In addition, the present inventor can newly form a wall surface inclined with respect to the optical axis of the Fresnel lens 10 described above in a process using a photolithography process and a dry etching process described later. I found it. Here, according to the process using the photolithography process and the dry etching process, it is not necessary to use an expensive mask such as a gray scale mask unlike the technique described in Non-Patent Document 1, and thus the manufacturing cost is further reduced. Can be made. As described above, the Fresnel lens 10 having good light collecting characteristics can be provided at a lower cost.
 また、本実施形態のフレネルレンズ10では、広いスペース幅を有する凹部を囲む壁面のテーパー角度が、狭いスペース幅を有する凹部を囲む壁面のテーパー角度よりも小さくなっている。例えば、図1に示すように、本実施形態のフレネルレンズ10では、スペース幅は、SW1<SW2<SW3であるのに対して、テーパー角度は、θ1>θ2>θ3となっている。本発明者は、フォトリソグラフィー工程およびドライエッチング工程にてフレネルレンズ10の光軸に対して傾斜している壁面を形成する場合、隣接する凸部間の凹部のスペース幅が広い程、容易にテーパー角度が小さな壁面を形成することが可能であることを新たに見出した。このため、フレネルレンズ10では、広いスペース幅を有する凹部を囲む壁面のテーパー角度(例えば、テーパー角度θ3)が、狭いスペース幅を有する凹部を囲む壁面のテーパー角度(例えば、テーパー角度θ1またはθ2)よりも小さくなっている。また、理想曲線の曲率に応じて各凹部のスペース幅を調整することによって、所望の位置で所望の曲率で近似された凹凸パターンを形成することができる。 Further, in the Fresnel lens 10 of the present embodiment, the taper angle of the wall surface surrounding the recess having a wide space width is smaller than the taper angle of the wall surface surrounding the recess having a narrow space width. For example, as shown in FIG. 1, in the Fresnel lens 10 of the present embodiment, the space width is SW1 <SW2 <SW3, while the taper angle is θ1> θ2> θ3. When the inventor forms a wall surface inclined with respect to the optical axis of the Fresnel lens 10 in the photolithography process and the dry etching process, the taper is easily tapered as the space width of the concave portion between the adjacent convex portions is wide. It was newly found that it is possible to form a wall surface with a small angle. For this reason, in the Fresnel lens 10, the taper angle (for example, taper angle θ3) of the wall surface surrounding the recess having a wide space width is equal to the taper angle (for example, taper angle θ1 or θ2) of the wall surface surrounding the recess having a narrow space width. Is smaller than Further, by adjusting the space width of each recess according to the curvature of the ideal curve, it is possible to form an uneven pattern approximated with a desired curvature at a desired position.
 〔フレネルレンズ10の利用方法〕
 上述したフレネルレンズ10は、例えば、半導体用のウエハー(シリコン)の検査、太陽電池の検査、セキュリティー用、人体の検査などに用いる各種の素子または装置に利用することができる。例えば、図2には、フレネルレンズ10と熱センサー素子とを組合せて熱センサー(センシングデバイス)を構成した例を示している。図2に示すように、フレネルレンズ10の光入射面の側から入射光(例えば、コリメートされた平行光)を紙面に対して上側から入射させると、フレネルレンズ10の紙面に対して下側に形成された凹凸パターンで回折され、その回折光が熱センサー素子に照射される。なお、同図では回折光が照射される素子の一例として、熱センサー素子を示したが、フレネルレンズ10の回折光の用途はこれに限定されない。例えば、フレネルレンズ10の回折光は、半導体用のウエハー(シリコン)の検査、太陽電池の検査、セキュリティー用、人体の検査などの用途に利用することができる。
[How to use Fresnel lens 10]
The above-described Fresnel lens 10 can be used for various elements or devices used for inspection of a semiconductor wafer (silicon), inspection of a solar cell, security, inspection of a human body, and the like. For example, FIG. 2 shows an example in which a thermal sensor (sensing device) is configured by combining the Fresnel lens 10 and a thermal sensor element. As shown in FIG. 2, when incident light (for example, collimated parallel light) is incident from the upper side with respect to the paper surface from the light incident surface side of the Fresnel lens 10, the Fresnel lens 10 has a lower surface with respect to the paper surface. The diffracted light is diffracted by the formed concavo-convex pattern, and the heat sensor element is irradiated with the diffracted light. In addition, although the thermal sensor element was shown as an example of the element irradiated with diffracted light in the figure, the use of the diffracted light of the Fresnel lens 10 is not limited to this. For example, the diffracted light of the Fresnel lens 10 can be used for applications such as semiconductor wafer (silicon) inspection, solar cell inspection, security, and human body inspection.
 〔フレネルレンズ10の製造方法〕
 次に、図3および図4に基づき、上述したフレネルレンズ10の製造方法について説明する。図3は、フレネルレンズ10の製造方法に関し、第1回目のフォトリソグラフィー工程後における基板1の断面図である。一方、図4の(a)は、第1回目のエッチング工程後における基板1の断面図を示す。また、図4の(b)は、第2回目のエッチング工程後における基板1の断面図を示す。さらに、図4の(c)は、第3回目のエッチング工程後における基板1の断面図を示す。フレネルレンズ10の製造方法は、少なくとも下記のフォトリソグラフィー工程、エッチング工程、および洗浄工程と、を含む。
[Manufacturing method of Fresnel lens 10]
Next, a method for manufacturing the above-described Fresnel lens 10 will be described with reference to FIGS. FIG. 3 is a cross-sectional view of the substrate 1 after the first photolithography process in the manufacturing method of the Fresnel lens 10. On the other hand, FIG. 4A shows a cross-sectional view of the substrate 1 after the first etching process. FIG. 4B shows a cross-sectional view of the substrate 1 after the second etching process. Further, FIG. 4C shows a cross-sectional view of the substrate 1 after the third etching step. The manufacturing method of the Fresnel lens 10 includes at least the following photolithography process, etching process, and cleaning process.
 (フォトリソグラフィー工程)
 フォトリソグラフィー工程では、レジストマスクを用いて凹凸部2のパターンニングを行う。より具体的には、図3に示すように、基板1上に上記で設定した凹凸パターンに応じて、既知のフォトリソグラフィー技術を用いてフォトレジストパターン3を形成する。図3に示すフォトレジストパターン3の膜厚(紙面に対して上下方向に沿う厚み;以下、「レジスト膜厚」という)は、1.3μmである。レジスト材料としては、例えば、感光性有機物質などを挙示することができる。なお、フォトリソグラフィーの基本的な手法については、以下の補足説明1に記載する。
(Photolithography process)
In the photolithography process, the uneven portion 2 is patterned using a resist mask. More specifically, as shown in FIG. 3, a photoresist pattern 3 is formed on the substrate 1 using a known photolithography technique in accordance with the uneven pattern set above. The film thickness of the photoresist pattern 3 shown in FIG. 3 (thickness along the vertical direction with respect to the paper surface; hereinafter referred to as “resist film thickness”) is 1.3 μm. As the resist material, for example, a photosensitive organic substance can be listed. The basic method of photolithography will be described in Supplementary Explanation 1 below.
 (エッチング工程)
 エッチング工程では、ドライエッチングを用いて基板1の加工を行う。なお、ドライエッチングの基本的な手法については、以下の補足説明2に記載する。本実施形態では、ドライエッチングにより図3に示すスペース部W1のエッチングを行う。より具体的には、本実施形態のドライエッチングでは、例えば、ClおよびOを重量比25:1で混合し、所定の圧力下、例えば約40mTorr(=約5.33Pa)にて、RF発振器(radio frequency;高周波発振器)による高周波数の印加電圧(高周波電圧)を平面電極および対向電極間に印加して行った。ドライエッチングに用いるガスは、可能な限り均一にかつ高レートで基板1をエッチングするため、適宜CFやSFといったフッ素系ガスやArガスのような希釈ガスの添加を行い、適正化を行う。
(Etching process)
In the etching process, the substrate 1 is processed using dry etching. The basic technique of dry etching is described in Supplementary Explanation 2 below. In the present embodiment, the space W1 shown in FIG. 3 is etched by dry etching. More specifically, in the dry etching of the present embodiment, for example, Cl 2 and O 2 are mixed at a weight ratio of 25: 1, and RF is applied at a predetermined pressure, for example, about 40 mTorr (= about 5.33 Pa). A high frequency applied voltage (high frequency voltage) by an oscillator (radio frequency oscillator) was applied between the planar electrode and the counter electrode. The gas used for dry etching is optimized by adding a diluting gas such as a fluorine-based gas such as CF 4 or SF 6 or an Ar gas as appropriate in order to etch the substrate 1 as uniformly as possible at a high rate. .
 このとき、スペース幅が同一の凹凸パターンではテーパー角度は、上記のフォトリソグラフィー工程で用いるフォトレジストの膜厚(ほぼ、上述した深さtに対応)、上記のエッチング工程におけるガス流量、圧力およびRF発振器のRFパワー等に応じて変動するため、様々な要求仕様に応じてレンズ形状が理想曲線に近づく様に好適な条件を選択する。 At this time, in the concave / convex pattern having the same space width, the taper angle depends on the film thickness of the photoresist used in the above photolithography process (substantially corresponds to the above-described depth t), the gas flow rate, pressure and RF in the above etching process. Since it varies depending on the RF power of the oscillator, etc., suitable conditions are selected so that the lens shape approaches the ideal curve according to various required specifications.
 すなわち、スペース部W1のスペース幅に応じてテーパー角度を変えるために、上記エッチング工程において、パターン側壁(スペース部W1を囲む壁面)に生成する反応生成物の量をスペース幅に応じて変えるために好適なガス流量、圧力およびRFパワーを選択する。例えば、本実施形態では、ガス流量は、Clを133sccm、Oを5sccmとした。また、圧力は上記のとおり40mTorrとし、RFパワーは、Source=1200W、Bias=180Wに設定した。 That is, in order to change the taper angle according to the space width of the space portion W1, in order to change the amount of reaction product generated on the pattern side wall (wall surface surrounding the space portion W1) according to the space width in the etching step. Select a suitable gas flow, pressure and RF power. For example, in this embodiment, the gas flow rate was the Cl 2 133sccm, the O 2 and 5 sccm. The pressure was 40 mTorr as described above, and the RF power was set to Source = 1200 W and Bias = 180 W.
 各凹部のスペース幅が広い場合には、スペース幅が狭い場合に比べて反応物であるSiがより多くエッチングされ、反応生成物であるSiOがより多く生成する。さらに、反応生成物であるSiOをより多く生成するためにOの流量を多くしたり、高圧力化で処理したりすることで反応生成物がパターン側壁(各凹部を囲む壁面)に付着する確率を上げることでテーパー角度をコントロールすることが可能となる。 When the space width of each recess is wide, more Si as a reactant is etched and more SiO x as a reaction product is generated than when the space width is narrow. Furthermore, the reaction product adheres to the pattern side wall (wall surface surrounding each recess) by increasing the flow rate of O 2 in order to produce more reaction product SiO x or by increasing the pressure. It is possible to control the taper angle by increasing the probability.
 このようにして得られた基板1では、図4の(a)に示すように、基板1のスペース部W1は、レンズの中心部の側で広く、レンズ外周部(端部)に近づくにつれてスペース部W1は狭くなる。それにより、フレネルレンズ10のレンズの中心部の側ではテーパー角度が小さく、レンズの外周部の側ではテーパー角度は大きくなるため所望の凹凸部2を得ることができる。 In the substrate 1 thus obtained, as shown in FIG. 4A, the space portion W1 of the substrate 1 is wide on the side of the center portion of the lens, and the space becomes closer to the lens outer peripheral portion (end portion). The portion W1 becomes narrow. As a result, the taper angle is small on the center side of the lens of the Fresnel lens 10 and the taper angle is large on the outer peripheral side of the lens, so that the desired uneven portion 2 can be obtained.
 (洗浄工程)
 次に、洗浄工程では、上記の手法で、基板1上にスペース部W1を形成したのちにフォトレジストパターン3およびドライエッチング工程で生成した反応生成物を、既知のOプラズマ処理およびフッ酸薬液処理を行い、図4の(a)に示すレンズ形状を得る。
(Washing process)
Next, in the cleaning step, the reaction product generated in the photoresist pattern 3 and the dry etching step after forming the space portion W1 on the substrate 1 by the above-described method is converted into a known O 2 plasma treatment and hydrofluoric acid chemical solution. Processing is performed to obtain the lens shape shown in FIG.
 次に、スペース部W1を形成した方法と同様のフォトリソグラフィー工程、ドライエッチング工程、および洗浄工程を行うことでスペース部W2を形成し、図4の(b)に示すレンズ形状を得る。さらに、スペース部W3を形成するために、スペース部W1およびW2を形成した方法と同様のフォトリソグラフィー工程、ドライエッチング工程、および洗浄工程を行うことで図4の(c)に示すレンズ形状を得ることができる。以上のような手法により、図1に示すフレネルレンズ10を製造することができる。 Next, the space part W2 is formed by performing the same photolithography process, dry etching process, and cleaning process as the method of forming the space part W1, and the lens shape shown in FIG. 4B is obtained. Furthermore, in order to form the space part W3, the lens shape shown in FIG. 4C is obtained by performing the same photolithography process, dry etching process, and cleaning process as the method of forming the space parts W1 and W2. be able to. The Fresnel lens 10 shown in FIG. 1 can be manufactured by the method as described above.
 なお、本実施形態では、スペース部W1~W3を形成することにより、凹部の底部を含め、階段形状が計4段の凹凸形状を得る方法を示しているが、同様の方法でさらに多くの段数の階段形状を有するレンズを得ることができる。また、以上の方法によれば、スペース幅に応じてテーパー角度の異なるフレネルレンズ10の製造が可能となり、レンズ形状を理想曲線により近づけることが可能となり、コストアップすることなく集光特性の高いフレネルレンズ10を提供することが可能となる。 In the present embodiment, a method is shown in which, by forming the space portions W1 to W3, a concavo-convex shape having a total of four steps including the bottom of the concave portion is obtained. A lens having a stepped shape can be obtained. Further, according to the above method, it is possible to manufacture the Fresnel lens 10 having different taper angles according to the space width, the lens shape can be made closer to the ideal curve, and the Fresnel having high light collecting characteristics without increasing the cost. The lens 10 can be provided.
 以上の説明では、基板1を用いた回折型のフレネルレンズ10について説明したが、屈折率が、n=3以上の物質であればよく、Siを含み、屈折率nが3以上の材料から構成された回折型の赤外線用レンズについても同様の効果が得られる。なお、Siの結晶の透過波長領域は、1.2μm~16μmであり、しかもSiはこの領域で屈折率nが3以上である。従って、入射光が基板1を構成する構成材料の結晶の透過波長領域ならどの波長でも、同様の効果が得られる。以上の方法によれば、凹凸部2の階段形状を加工ピッチに応じてテーパー角度を制御して形成することで安価で光学特性を劣化させないフレネルレンズ10を提供することが可能となる。 In the above description, the diffractive Fresnel lens 10 using the substrate 1 has been described. However, any material having a refractive index of n = 3 or more may be used, and it includes Si and a material having a refractive index n of 3 or more. The same effect can be obtained with the diffractive infrared lens. The transmission wavelength region of the Si crystal is 1.2 μm to 16 μm, and Si has a refractive index n of 3 or more in this region. Accordingly, the same effect can be obtained at any wavelength as long as the incident light is in the transmission wavelength region of the crystal of the constituent material constituting the substrate 1. According to the above method, it is possible to provide the Fresnel lens 10 which is inexpensive and does not deteriorate the optical characteristics by forming the stepped shape of the concavo-convex portion 2 by controlling the taper angle according to the processing pitch.
 〔補足説明1:フォトリソグラフィー工程〕
 フォトリソグラフィー(Photolithography)は、感光性の物質を塗布した物質の表面を、パターン状に露光(パターン露光、像様露光などとも言う)することで、露光された部分と露光されていない部分とからなるパターンを生成する技術のことである。より具体的には、フォトリソグラフィーは次のように行われる。基板1上にフォトレジストと呼ばれる感光性有機物質を塗布し、ステッパーと呼ばれる露光装置を用いて、レチクルと呼ばれるフォトマスクに描かれたパターンを焼き付ける。以下、各工程をさらに詳しく説明する。
[Supplementary explanation 1: photolithography process]
Photolithography is the process of exposing the surface of a material coated with a photosensitive material in a pattern (also called pattern exposure, imagewise exposure, etc.), from exposed and unexposed portions. Is a technique for generating a pattern. More specifically, photolithography is performed as follows. A photosensitive organic material called a photoresist is applied onto the substrate 1, and a pattern drawn on a photomask called a reticle is baked using an exposure device called a stepper. Hereinafter, each process will be described in more detail.
 (基板の洗浄)
 基板1の表面に有機物や脂質が表面に付着していると、レジストの付着が弱くなってしまうため、基板1の表面を洗浄する。洗浄方法としては、エタノールを使用しての超音波洗浄や、HSO:H=4:1の混合液などを用いた洗浄方法がある。
(Washing the substrate)
If organic substances or lipids adhere to the surface of the substrate 1, the adhesion of the resist becomes weak, so the surface of the substrate 1 is washed. Examples of the cleaning method include ultrasonic cleaning using ethanol, and a cleaning method using a mixed solution of H 2 SO 4 : H 2 O 2 = 4: 1.
 (レジスト塗布)
 基板1上に、レジストと呼ばれる液体を、スピンコーターや吹きつけによって塗布する。レジストの特性として、その膜厚はレジストの粘度が大きく影響する。例えば、粘度が低い方が、薄いレジスト膜を作成でき、さらにはファインパターンの作成に適している。レジスト膜の膜厚の範囲は、数μm~100μm程度である。
(Resist application)
A liquid called resist is applied onto the substrate 1 by a spin coater or spraying. As a resist characteristic, the thickness of the resist greatly affects the viscosity of the resist. For example, the lower the viscosity, the thinner the resist film can be made, and the more suitable for creating fine patterns. The range of the film thickness of the resist film is about several μm to 100 μm.
 また、レジストには、その化学的性質から、大きく2つに分けることができる。例えば、光が当たると分解し、現像液に溶けてしまう「ポジ型」と、光が当たると重合により現像液に溶けなくなる「ネガ型」がある。つまり、ポジ型は光の当たった部分がなくなり、ネガ型は光の当たった部分が残る。上記のフレネルレンズ10の製造方法においては、「ポジ型」および「ネガ型」のいずれを利用しても良い。なお、パターンの微細化にはポジ型が有利とされ、現在ではポジ型が主流である。また、KrFなどのエキシマレーザーを用いた露光の場合、露光強度が弱いため、化学増幅型フォトレジストが使用される。 Also, resists can be roughly divided into two due to their chemical properties. For example, there are a “positive type” that decomposes when dissolved in light and dissolves in the developer, and a “negative type” that dissolves in the developer due to polymerization when exposed to light. That is, the positive type does not have a portion exposed to light, and the negative type has a portion exposed to light. In the manufacturing method of the Fresnel lens 10 described above, either “positive type” or “negative type” may be used. Note that the positive type is advantageous for pattern miniaturization, and the positive type is currently the mainstream. In the case of exposure using an excimer laser such as KrF, a chemically amplified photoresist is used because the exposure intensity is weak.
 (プリベーク)
 レジスト塗布後、露光前に加熱〔ベーク(焼き)〕し、レジストを固化する。
(Prebaked)
After applying the resist, it is heated (baked) before exposure to solidify the resist.
 (露光)
 レジストに光を照射して反応させる。このとき、凹凸パターンの形状を描いたレジストマスクを用い、光を照射する部分を制御することで必要な形状をレジスト上に描く。露光装置は、実寸よりも大きく作成したマスクパターンをステッパーと呼ばれる装置を用いて基板1上を移動させながら縮小投影露光する。パターンが微細化するほど短波長の光源が必要であり、現在は高圧水銀灯のg線(波長436nm)、i線(波長365nm)、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)などが主流で、次世代の光源としてEUV光(波長13.5nm)が開発段階にある。また、X線を光源に用いる方法や、電子線で直接レジスト上に描画する方法(電子線リソグラフィー)も存在する。
(exposure)
The resist is irradiated with light to react. At this time, a necessary shape is drawn on the resist by controlling a portion irradiated with light using a resist mask in which the shape of the concavo-convex pattern is drawn. The exposure apparatus performs reduction projection exposure while moving a mask pattern created larger than the actual size on the substrate 1 using an apparatus called a stepper. As the pattern becomes finer, a light source having a shorter wavelength is required. Currently, high-pressure mercury lamp g-line (wavelength 436 nm), i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), etc. EUV light (wavelength 13.5 nm) is in the development stage as the next generation light source. There are also a method of using X-rays as a light source and a method of drawing directly on a resist with an electron beam (electron beam lithography).
 (現像・リンス)
 露光した基板1を現像液に浸し、余分な部分のレジストを除去する。この過程ではじめて凹凸パターン(例えば、図3に示すスペース部W1)が基板1上に現れる。現像液はレジストを溶解する薬液が使用される。用いられる薬液には、レジストを溶解する有機溶剤の場合と、有機または無機アルカリの場合がある。現在のフォトリソグラフィーでは、有機アルカリであるTMAH(Tetra-methyl-ammonium-hydroxyde)の2.38wt%水溶液が主流となっている。これは、水酸化カリウム(KOH)などの無機アルカリでは金属イオンの工程への混入を避けられないためである。リンス液(主に超純水)で数回すすぎ、不要部分を完全に除去する。
(Development / Rinse)
The exposed substrate 1 is dipped in a developing solution to remove excess portions of the resist. Only in this process, an uneven pattern (for example, the space portion W1 shown in FIG. 3) appears on the substrate 1. As the developer, a chemical solution that dissolves the resist is used. The chemical solution used may be an organic solvent that dissolves the resist or an organic or inorganic alkali. In current photolithography, a 2.38 wt% aqueous solution of TMAH (Tetra-methyl-ammonium-hydroxyde), which is an organic alkali, is the mainstream. This is because an inorganic alkali such as potassium hydroxide (KOH) cannot avoid mixing metal ions into the process. Rinse several times with a rinse solution (mainly ultrapure water) to completely remove unwanted parts.
 (ポストベーク)
 付着したリンス液を加熱によって除去する。加熱により、基板1との密着性が良くなる。
(Post bake)
The attached rinse solution is removed by heating. The adhesion with the substrate 1 is improved by heating.
 〔補足説明2:エッチング工程〕
 次に、上述したエッチングについて説明する。上述した形態のように、基板1に凹凸部2を形成する場合、エッチングによって不要な部分を除去する。エッチングには、ドライエッチングとウェットエッチングとが存在する。レジストの残っている部分はエッチングによって除去されないため、残したいパターンが基板1上に形成される。最後に溶剤などによってレジストを完全に除去する。
[Supplementary explanation 2: Etching process]
Next, the etching described above will be described. When the uneven portion 2 is formed on the substrate 1 as in the above-described form, unnecessary portions are removed by etching. Etching includes dry etching and wet etching. Since the remaining portion of the resist is not removed by etching, a pattern to be left is formed on the substrate 1. Finally, the resist is completely removed with a solvent or the like.
 (RIE装置について)
 例えば、RIE(リアクティブイオンエッチング)装置では、基板1は平面電極のカソードに配置される。エッチングガスが導入された状態で、RF発振器により対向電極(アノード)と平面電極(カソード)間に高周波電圧が印加されると、電極間にプラズマが発生する。このプラズマ中の電子は、活性ガスであるプラスイオンに比べて軽く動きが速いため、対向電極と平面電極にすぐに集まる。集まった電子は、対向電極ではアースに接続されているために電位は変わらないが、平面電極はブロッキングコンデンサにより直流の電流は遮断されてしまい平面電極に電子が溜まりマイナス電位になる。(交流であるRF発振器の高周波は、ブロッキングコンデンサを通過する。)この平面電極がマイナス電位になることを陰極降下という。この陰極降下のマイナス電位(電界)により、プラズマ中の活性ガスであるプラスイオンが引かれて、基板1の表面に垂直に入射するため異方性エッチングが行われる。
(About RIE equipment)
For example, in the RIE (reactive ion etching) apparatus, the substrate 1 is disposed on the cathode of the planar electrode. When a high frequency voltage is applied between the counter electrode (anode) and the planar electrode (cathode) by the RF oscillator with the etching gas introduced, plasma is generated between the electrodes. The electrons in the plasma are lighter and faster than positive ions, which are active gases, and therefore immediately gather on the counter electrode and the planar electrode. The collected electrons are connected to the ground at the counter electrode, so that the potential does not change. However, the DC current is blocked by the blocking capacitor in the flat electrode, and the electrons accumulate on the flat electrode and become negative potential. (The high frequency of the RF oscillator, which is an alternating current, passes through the blocking capacitor.) When this planar electrode becomes a negative potential, it is called cathode fall. Due to the negative potential (electric field) of the cathode drop, positive ions, which are active gases in the plasma, are attracted and incident perpendicularly on the surface of the substrate 1 so that anisotropic etching is performed.
 (異方性エッチング)
 異方性エッングでは、エッチングガスのイオン衝突により、エッチング膜とフォトレジストパターン3とがエッチングされる。このときに発生する反応生成物は真空排気されるが、一部はエッチング側面に付着する。これは側壁保護膜と呼ばれ横方向のエッチングを阻止する役目を果たし、上述したテーパー角度θ1~θ3を有する壁面が形成される。これにより、テーパー角度θ1~θ3を有する凸部PJ1~PJ3を備える凹凸部2が形成されたフレネルレンズ10の製造が可能になる。
(Anisotropic etching)
In the anisotropic etching, the etching film and the photoresist pattern 3 are etched by the ion collision of the etching gas. The reaction product generated at this time is evacuated, but part of it adheres to the etching side surface. This is called a sidewall protective film and serves to prevent lateral etching, and the wall surface having the taper angles θ1 to θ3 is formed. As a result, it is possible to manufacture the Fresnel lens 10 in which the concavo-convex portion 2 including the convex portions PJ1 to PJ3 having the taper angles θ1 to θ3 is formed.
 〔まとめ〕
 本発明の態様1に係るフレネルレンズ(フレネルレンズ10)は、入射光の波長および出射光に付加する位相変調量に応じて基板(基板1)上に凹凸パターン(凹凸部2)が形成されたフレネルレンズであって、上記凹凸パターンは、上記フレネルレンズの中心部から端部に向かう方向に沿って複数の凸部(凸部PJ1~PJ3)と凹部とが交互に配列されたパターンとなっており、上記凹凸パターンにおける最近接の凸部間に形成された凹部の上記フレネルレンズの中心部から端部に向かう方向に対する幅であるスペース幅(スペース幅SW1~SW3)に応じて、上記スペースを囲む壁面の光軸方向に対する傾斜角の余角であるテーパー角度(テーパー角度θ1~θ3)の大きさが異なっている構成である。
[Summary]
In the Fresnel lens (Fresnel lens 10) according to the aspect 1 of the present invention, the uneven pattern (uneven portion 2) is formed on the substrate (substrate 1) according to the wavelength of the incident light and the phase modulation amount added to the emitted light. In the Fresnel lens, the concavo-convex pattern is a pattern in which a plurality of convex portions (convex portions PJ1 to PJ3) and concave portions are alternately arranged along a direction from the center to the end of the Fresnel lens. In accordance with the space width (space width SW1 to SW3), which is the width of the concave portion formed between the nearest convex portions in the concave / convex pattern with respect to the direction from the center to the end of the Fresnel lens, In this configuration, the taper angles (taper angles θ1 to θ3), which are residual angles of the inclination angle with respect to the optical axis direction of the surrounding wall surface, are different.
 上記の構成では、スペース幅に応じて、凹部を囲む壁面のテーパー角度の大きさを異ならせている。ここで、テーパー角度は、凹部を囲む壁面の光軸方向に対する傾斜角の余角であるものとする。換言すれば、テーパー角度が90度でない壁面、すなわち、フレネルレンズの光軸に対して傾斜している壁面が少なくとも1つ形成されている。従来のバイナリレンズの凸部を多段階化する手法では、凹部を囲む壁面のテーパー角度は、概ね90度である。すなわち、従来のバイナリレンズの凸部を多段階化する手法では、レンズの光軸に対して傾斜している壁面を形成することは全く想定されていなかった。ここで、テーパー角度が90度でない、異なるテーパー角度を有する壁面の数を多くすれば多くする程、従来のバイナリレンズの凸部を多段階化したレンズよりも、少ない段数で理想曲線に近づけることができる。また、テーパー角度が90度でない、異なるテーパー角度を有する壁面の数を多くすれば多くする程、凹凸形状をあまり細かく細分化することなく理想曲線に近づけることが容易になる。このため、集光特性の良いフレネルレンズを製造するための製造コストをより低減させることができる。 In the above configuration, the taper angle of the wall surface surrounding the recess is varied according to the space width. Here, the taper angle is assumed to be a remainder angle of the inclination angle with respect to the optical axis direction of the wall surface surrounding the recess. In other words, at least one wall surface whose taper angle is not 90 degrees, that is, a wall surface inclined with respect to the optical axis of the Fresnel lens is formed. In the conventional method of making the convex portion of the binary lens multistage, the taper angle of the wall surface surrounding the concave portion is approximately 90 degrees. That is, in the conventional method of multi-leveling the convex portion of the binary lens, it has never been assumed to form a wall surface that is inclined with respect to the optical axis of the lens. Here, the more the number of wall surfaces having different taper angles, the taper angle of which is not 90 degrees, the closer to the ideal curve with a smaller number of steps than the conventional multi-stage convex lens of the binary lens. Can do. Further, the greater the number of wall surfaces having different taper angles, the taper angle of which is not 90 degrees, the easier it is to approach the ideal curve without finely subdividing the uneven shape. For this reason, the manufacturing cost for manufacturing a Fresnel lens with good condensing characteristics can be further reduced.
 また、本発明者は、フォトリソグラフィー工程およびドライエッチング工程を用いるプロセスにて上記フレネルレンズの光軸に対して傾斜している壁面を形成することが可能であることを新たに見出した。 Further, the present inventor newly found out that it is possible to form a wall surface inclined with respect to the optical axis of the Fresnel lens by a process using a photolithography process and a dry etching process.
 すなわち、本発明の態様5に係るフレネルレンズの製造方法は、入射光の波長および出射光に付加する位相変調量に応じて基板上に凹凸パターンが形成されたフレネルレンズの製造方法であって、レジストマスクを用いて上記凹凸パターンのパターンニングを行い、上記フレネルレンズの中心部から端部に向かう方向に沿って複数の凸部と凹部とが交互に配列された上記凹凸パターンを形成するフォトリソグラフィー工程と、ドライエッチングを用いて上記基板の加工を行い、上記凹凸パターンにおける最近接の凸部間に形成された凹部の上記フレネルレンズの中心部から端部に向かう方向に対する幅であるスペース幅に応じて、上記凹部を囲む壁面の光軸方向に対する傾斜角の余角であるテーパー角度の大きさを異ならせるエッチング工程と、を含んでいても良い。ここで、フォトリソグラフィー工程およびドライエッチング工程を用いるプロセスによれば、非特許文献1に記載の技術のように、グレイスケールマスクのような高価なマスクを用いる必要がないため、製造コストをより低減させることができる。以上により、上記の構成または方法によれば、集光特性の良いフレネルレンズをより安価に提供することができる。 That is, the method for manufacturing a Fresnel lens according to aspect 5 of the present invention is a method for manufacturing a Fresnel lens in which a concavo-convex pattern is formed on a substrate in accordance with the wavelength of incident light and the amount of phase modulation added to outgoing light, Photolithography for patterning the concavo-convex pattern using a resist mask to form the concavo-convex pattern in which a plurality of convex portions and concave portions are alternately arranged along the direction from the center to the end of the Fresnel lens Processing the substrate using a process and dry etching, and a space width that is a width in a direction from the center to the end of the Fresnel lens of the recess formed between the closest protrusions in the uneven pattern. Depending on the etching process, the taper angle that is the remainder of the inclination angle with respect to the optical axis direction of the wall surface surrounding the recess is varied. And it may contain. Here, according to the process using the photolithography process and the dry etching process, it is not necessary to use an expensive mask such as a gray scale mask unlike the technique described in Non-Patent Document 1, and thus the manufacturing cost is further reduced. Can be made. As described above, according to the above-described configuration or method, it is possible to provide a Fresnel lens with good condensing characteristics at a lower cost.
 また、本発明の態様2に係るフレネルレンズは、上記態様1において、広いスペース幅を有する凹部を囲む壁面のテーパー角度が、狭いスペース幅を有する凹部を囲む壁面のテーパー角度よりも小さくなっていても良い。本発明者は、フォトリソグラフィー工程およびドライエッチング工程にて上記フレネルの光軸に対して傾斜している壁面を形成する場合、隣接する凸部間の凹部のスペース幅が広い程、容易にテーパー角度が小さな壁面を形成することが可能であることを新たに見出した。そこで、上記の構成では、広いスペース幅を有する凹部を囲む壁面のテーパー角度が、狭いスペース幅を有する凹部を囲む壁面のテーパー角度よりも小さくなっている。また、理想曲線の曲率に応じて各凹部のスペース幅を調整することによって、所望の位置で所望の曲率で近似された凹凸パターンを形成することができる。 In the Fresnel lens according to aspect 2 of the present invention, in the aspect 1, the taper angle of the wall surface surrounding the recess having the wide space width is smaller than the taper angle of the wall surface surrounding the recess having the narrow space width. Also good. When the inventor forms a wall surface inclined with respect to the optical axis of the Fresnel in the photolithography process and the dry etching process, the taper angle becomes easier as the space width of the recesses between adjacent protrusions is wider. Newly found that it is possible to form a small wall. Therefore, in the above configuration, the taper angle of the wall surface surrounding the recess having the wide space width is smaller than the taper angle of the wall surface surrounding the recess having the narrow space width. Further, by adjusting the space width of each recess according to the curvature of the ideal curve, it is possible to form an uneven pattern approximated with a desired curvature at a desired position.
 また、本発明の態様3に係るフレネルレンズは、上記態様1または2において、上記入射光の波長は、上記基板を構成する構成材料の結晶を透過する透過波長領域内の波長であり、上記基板の屈折率が3以上であっても良い。入射光の波長が、基板を構成する構成材料の結晶を透過する透過波長領域内の波長であり、かつ基板の屈折率が3以上であれば、透過波長領域内のどの波長の光でも、集光特性の良いフレネルレンズをより安価に提供することができる。 In the Fresnel lens according to aspect 3 of the present invention, in the aspect 1 or 2, the wavelength of the incident light is a wavelength within a transmission wavelength region that transmits a crystal of a constituent material constituting the substrate. The refractive index may be 3 or more. If the wavelength of the incident light is a wavelength in the transmission wavelength region that transmits the crystal of the constituent material constituting the substrate, and the refractive index of the substrate is 3 or more, light of any wavelength in the transmission wavelength region can be collected. A Fresnel lens with good optical characteristics can be provided at a lower cost.
 また、本発明の態様4に係るフレネルレンズは、上記態様1~3のいずれかにおいて、上記入射光の波長は、赤外線領域内の波長であっても良い。上記の構成によれば、集光特性の良い赤外線用のフレネルレンズをより安価に提供することができる。 Further, in the Fresnel lens according to Aspect 4 of the present invention, in any one of Aspects 1 to 3, the wavelength of the incident light may be a wavelength in an infrared region. According to said structure, the Fresnel lens for infrared rays with a sufficient condensing characteristic can be provided more cheaply.
 また、本発明の態様6に係るフレネルレンズの製造方法は、上記態様5において、上記フォトリソグラフィー工程における上記レジストマスクの膜厚を調整することで上記テーパー角度の大きさを調整しても良い。本発明者は、フォトリソグラフィー工程におけるレジストマスクの膜厚を調整することで上記フレネルレンズの光軸に対して傾斜している壁面のテーパー角度の大きさを調整することが可能であることを新たに見出した。そこで、上記の方法では、レジストマスクの膜厚を調整することで上記テーパー角度の大きさを調整している。 Further, in the manufacturing method of the Fresnel lens according to aspect 6 of the present invention, the taper angle may be adjusted by adjusting the film thickness of the resist mask in the photolithography process in aspect 5 above. The present inventor has newly found that it is possible to adjust the taper angle of the wall surface inclined with respect to the optical axis of the Fresnel lens by adjusting the film thickness of the resist mask in the photolithography process. I found it. Therefore, in the above method, the taper angle is adjusted by adjusting the film thickness of the resist mask.
 また、本発明の態様7に係るフレネルレンズの製造方法は、上記態様5または6において、上記エッチング工程におけるガス流量、圧力および高周波発振器のパワーを調整することで上記テーパー角度の大きさを調整しても良い。本発明者は、エッチング工程におけるガス流量、圧力および高周波発振器のパワーを調整することで上記フレネルレンズの光軸に対して傾斜している壁面のテーパー角度の大きさを調整することが可能であることを新たに見出した。そこで、上記の方法では、エッチング工程におけるガス流量、圧力および高周波発振器のパワーを調整することでテーパー角度の大きさを調整している。 In addition, in the manufacturing method of a Fresnel lens according to aspect 7 of the present invention, in the aspect 5 or 6, the magnitude of the taper angle is adjusted by adjusting the gas flow rate, the pressure, and the power of the high frequency oscillator in the etching step. May be. The inventor can adjust the taper angle of the wall surface inclined with respect to the optical axis of the Fresnel lens by adjusting the gas flow rate, pressure and power of the high-frequency oscillator in the etching process. I found a new thing. Therefore, in the above method, the magnitude of the taper angle is adjusted by adjusting the gas flow rate, pressure, and power of the high-frequency oscillator in the etching process.
 本発明の態様8に係るセンシングデバイスは、上記態様1~4のいずれかのフレネルレンズを備えていても良い。 The sensing device according to aspect 8 of the present invention may include the Fresnel lens according to any one of aspects 1 to 4.
 〔本発明の別の表現〕
 また、本発明は、以下のように表現することもできる。すなわち、本発明の一態様に係るフレネルレンズ(赤外光学レンズ)は、入射光の波長に依存し、レンズの位相変調量に応じた凹凸パターンが異なるスペース幅を有する回折型のフレネルレンズであって、基板上に形成される上記凹凸部が個々のスペース幅に応じてテーパー角度が異なっていても良い。
[Another expression of the present invention]
The present invention can also be expressed as follows. That is, the Fresnel lens (infrared optical lens) according to one aspect of the present invention is a diffractive Fresnel lens having a space width in which the concavo-convex pattern differs depending on the phase modulation amount of the lens, depending on the wavelength of incident light. In addition, the concavo-convex portions formed on the substrate may have different taper angles according to individual space widths.
 また、本発明の一態様に係るフレネルレンズは、上記基板上に形成される凹凸部が、スペース幅が広くなればテーパー角度が減少する構造を有していても良い。 Further, the Fresnel lens according to one embodiment of the present invention may have a structure in which the unevenness formed on the substrate has a taper angle that decreases as the space width increases.
 また、本発明の一態様に係るフレネルレンズは、上記基板にシリコン基板を用いても良い。 In the Fresnel lens according to one embodiment of the present invention, a silicon substrate may be used as the substrate.
 また、本発明の一態様に係るフレネルレンズの製造方法は、入射光の波長に依存し、レンズの位相変調量に応じた凹凸パターンを形成する回折型のフレネルレンズの製造方法であって、個々のスペース幅に応じてテーパー角度を異ならせて上記凹凸部を基板上に形成しても良い。 A method for manufacturing a Fresnel lens according to one aspect of the present invention is a method for manufacturing a diffractive Fresnel lens that forms a concavo-convex pattern according to the phase modulation amount of a lens, depending on the wavelength of incident light. The uneven portion may be formed on the substrate by changing the taper angle according to the space width.
 また、本発明の一態様に係るフレネルレンズの製造方法は、基板上に凹凸部を形成する際に、レジストマスクを用いてパターニングを行っても良い。 Further, in the method for manufacturing a Fresnel lens according to one embodiment of the present invention, patterning may be performed using a resist mask when the uneven portion is formed on the substrate.
 また、本発明の一態様に係るフレネルレンズの製造方法は、基板上に凹凸部を形成する工程において、ドライエッチングを用いて基板の加工を行っても良い。 Further, in the method of manufacturing the Fresnel lens according to one embodiment of the present invention, the substrate may be processed using dry etching in the step of forming the uneven portion on the substrate.
 また、本発明の一態様に係るフレネルレンズの製造方法は、基板上に凹凸部を形成する工程において、SF、CF、Cl、O、およびArのいずれかを用いてドライエッチングにて基板の加工を行っても良い。 In the method for manufacturing a Fresnel lens according to one embodiment of the present invention, any of SF 6 , CF 4 , Cl 2 , O 2 , and Ar is used for dry etching in the step of forming the uneven portion on the substrate. Then, the substrate may be processed.
 以上の構成または方法によれば、例えば、Siでフレネルレンズの凹凸部を構成する際にスペース幅に応じてテーパー角度を制御することにより、レンズの理想曲線により近い形状のレンズ形状を実現でき、その結果、集光特性のよい回折型の赤外光学レンズ(赤外線用のフレネルレンズ)を安価に提供できる。 According to the above configuration or method, for example, by controlling the taper angle according to the space width when configuring the uneven portion of the Fresnel lens with Si, it is possible to realize a lens shape closer to the ideal curve of the lens, As a result, a diffractive infrared optical lens (infrared Fresnel lens) with good condensing characteristics can be provided at low cost.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、フレネルレンズ、特に、回折型のフレネルレンズである赤外線用の光学レンズに適用することができる。例えば、本発明は、監視カメラ、半導体用のウエハー(シリコン)の検査、太陽電池の検査、セキュリティー用、人体の検査などに用いられる光学レンズに適用することができる。また、本発明は、フレネルレンズを備えたセンシングデバイスなどにも利用することができる。例えば、本発明は、熱を検出する熱センサーなどに利用することができる。 The present invention can be applied to Fresnel lenses, in particular, optical lenses for infrared rays that are diffractive Fresnel lenses. For example, the present invention can be applied to optical lenses used for surveillance cameras, inspection of semiconductor wafers (silicon), inspection of solar cells, security, inspection of human bodies, and the like. The present invention can also be used for a sensing device provided with a Fresnel lens. For example, the present invention can be used for a heat sensor that detects heat.
 1 基板
 2 凹凸部(凹凸パターン)
 3 フォトレジストパターン
 10 フレネルレンズ
PJ1~PJ3 凸部
SW1~SW3 スペース幅
t 深さ
W1~W3 スペース部(凹部)
θ1~θ3 テーパー角度
1 Substrate 2 Uneven portion (uneven pattern)
3 Photoresist pattern 10 Fresnel lens PJ1 to PJ3 Convex part SW1 to SW3 Space width t Depth W1 to W3 Space part (concave part)
θ1 to θ3 taper angle

Claims (8)

  1.  入射光の波長および出射光に付加する位相変調量に応じて基板上に凹凸パターンが形成されたフレネルレンズであって、
     上記凹凸パターンは、上記フレネルレンズの中心部から端部に向かう方向に沿って複数の凸部と凹部とが交互に配列されたパターンとなっており、
     上記凹凸パターンにおける最近接の凸部間に形成された凹部の上記フレネルレンズの中心部から端部に向かう方向に対する幅であるスペース幅に応じて、上記凹部を囲む壁面の光軸方向に対する傾斜角の余角であるテーパー角度の大きさが異なっていることを特徴とするフレネルレンズ。
    A Fresnel lens in which a concavo-convex pattern is formed on a substrate according to the wavelength of incident light and the amount of phase modulation added to outgoing light,
    The concavo-convex pattern is a pattern in which a plurality of convex portions and concave portions are alternately arranged along the direction from the center portion to the end portion of the Fresnel lens,
    Inclination angle with respect to the optical axis direction of the wall surface surrounding the concave portion according to the space width that is the width of the concave portion formed between the nearest convex portions in the concave-convex pattern with respect to the direction from the center to the end of the Fresnel lens The Fresnel lens is characterized in that the size of the taper angle, which is the residual angle, is different.
  2.  広いスペース幅を有する凹部を囲む壁面のテーパー角度が、狭いスペース幅を有する凹部を囲む壁面のテーパー角度よりも小さくなっていることを特徴とする請求項1に記載のフレネルレンズ。 2. The Fresnel lens according to claim 1, wherein a taper angle of a wall surface surrounding the concave portion having a wide space width is smaller than a taper angle of a wall surface surrounding the concave portion having a narrow space width.
  3.  上記入射光の波長は、上記基板を構成する構成材料の結晶を透過する透過波長領域内の波長であり、上記基板の屈折率が3以上であることを特徴とする請求項1または2に記載のフレネルレンズ。 The wavelength of the said incident light is a wavelength in the transmission wavelength range which permeate | transmits the crystal | crystallization of the constituent material which comprises the said board | substrate, The refractive index of the said board | substrate is 3 or more, The claim 1 or 2 characterized by the above-mentioned. Fresnel lens.
  4.  上記入射光の波長は、赤外線領域内の波長であることを特徴とする請求項1から3までのいずれか1項に記載のフレネルレンズ。 The Fresnel lens according to any one of claims 1 to 3, wherein the wavelength of the incident light is a wavelength in an infrared region.
  5.  入射光の波長および出射光に付加する位相変調量に応じて基板上に凹凸パターンが形成されたフレネルレンズの製造方法であって、
     レジストマスクを用いて上記凹凸パターンのパターンニングを行い、上記フレネルレンズの中心部から端部に向かう方向に沿って複数の凸部と凹部とが交互に配列された上記凹凸パターンを形成するフォトリソグラフィー工程と、
     ドライエッチングを用いて上記基板の加工を行い、上記凹凸パターンにおける最近接の凸部間に形成された凹部の上記フレネルレンズの中心部から端部に向かう方向に対する幅であるスペース幅に応じて、上記凹部を囲む壁面の光軸方向に対する傾斜角の余角であるテーパー角度の大きさを異ならせるエッチング工程と、を含むことを特徴とする製造方法。
    A method of manufacturing a Fresnel lens in which a concavo-convex pattern is formed on a substrate according to the wavelength of incident light and the amount of phase modulation added to outgoing light,
    Photolithography for patterning the concavo-convex pattern using a resist mask to form the concavo-convex pattern in which a plurality of convex portions and concave portions are alternately arranged along the direction from the center to the end of the Fresnel lens Process,
    Processing the substrate using dry etching, according to the space width that is the width from the center of the Fresnel lens toward the end of the concave portion formed between the nearest convex portions in the concave-convex pattern, And an etching step of varying a taper angle that is an additional angle of inclination with respect to the optical axis direction of the wall surface surrounding the recess.
  6.  上記フォトリソグラフィー工程における上記レジストマスクの膜厚を調整することで上記テーパー角度の大きさを調整することを特徴とする請求項5に記載の製造方法。 6. The method according to claim 5, wherein the taper angle is adjusted by adjusting a film thickness of the resist mask in the photolithography process.
  7.  上記エッチング工程におけるガス流量、圧力および高周波発振器のパワーを調整することで上記テーパー角度の大きさを調整することを特徴とする請求項5または6に記載の製造方法。 The manufacturing method according to claim 5 or 6, wherein the taper angle is adjusted by adjusting a gas flow rate, a pressure, and a power of a high-frequency oscillator in the etching step.
  8.  請求項1から4までのいずれか1項に記載のフレネルレンズを備えたことを特徴とするセンシングデバイス。 A sensing device comprising the Fresnel lens according to any one of claims 1 to 4.
PCT/JP2013/076933 2012-11-12 2013-10-03 Fresnel lens, fabrication method therefor, and sensing device WO2014073299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-248694 2012-11-12
JP2012248694 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073299A1 true WO2014073299A1 (en) 2014-05-15

Family

ID=50684416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076933 WO2014073299A1 (en) 2012-11-12 2013-10-03 Fresnel lens, fabrication method therefor, and sensing device

Country Status (1)

Country Link
WO (1) WO2014073299A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642966A (en) * 2016-08-12 2019-04-16 马克斯-普朗克科学促进学会 The full material Fresnel zone chip arrays of high-resolution and its manufacturing process
CN114815007A (en) * 2022-03-16 2022-07-29 中国科学院光电技术研究所 Method for manufacturing continuous relief Fresnel lens
WO2022185716A1 (en) * 2021-03-01 2022-09-09 パナソニックIpマネジメント株式会社 Fresnel lens and sensor system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275417A (en) * 1999-03-25 2000-10-06 Canon Inc Optical element
JP2001217188A (en) * 1999-12-13 2001-08-10 Asm Lithography Bv Illuminator lithography system, lithography system comprising such illuminator, and manufacturing method using such lithography system
JP2001343582A (en) * 2000-05-30 2001-12-14 Nikon Corp Projection optical system, exposure device with the same, manufacturing method of microdevice using the exposure device
JP2003177226A (en) * 2001-10-05 2003-06-27 Matsushita Electric Ind Co Ltd Diffraction optical element and optical head using the same
JP2004106320A (en) * 2002-09-18 2004-04-08 Ricoh Opt Ind Co Ltd Manufacturing method for article with fine surface structure
JP2006120247A (en) * 2004-10-21 2006-05-11 Sony Corp Condenser lens and its manufacturing method, exposure apparatus using same, optical pickup apparatus, and optical recording and reproducing apparatus
WO2007043383A1 (en) * 2005-10-07 2007-04-19 Nikon Corporation Fine structure body and method for manufacturing same
JP2007286499A (en) * 2006-04-19 2007-11-01 Nikon Corp Diffraction optics and authentication apparatus
JP2009048208A (en) * 2008-10-27 2009-03-05 Kagawa Univ Method for manufacturing inclined structure and mold matrix manufactured by the method
JP2010532496A (en) * 2007-07-03 2010-10-07 ピクセルオプティクス, インコーポレイテッド Multifocal lens with diffractive optical power region
JP2011257695A (en) * 2010-06-11 2011-12-22 Canon Inc Diffraction optical element, optical system and optical equipment
JP2012083382A (en) * 2010-10-06 2012-04-26 Canon Inc Diffraction optical element, optical system, and optical instrument

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275417A (en) * 1999-03-25 2000-10-06 Canon Inc Optical element
JP2001217188A (en) * 1999-12-13 2001-08-10 Asm Lithography Bv Illuminator lithography system, lithography system comprising such illuminator, and manufacturing method using such lithography system
JP2001343582A (en) * 2000-05-30 2001-12-14 Nikon Corp Projection optical system, exposure device with the same, manufacturing method of microdevice using the exposure device
JP2003177226A (en) * 2001-10-05 2003-06-27 Matsushita Electric Ind Co Ltd Diffraction optical element and optical head using the same
JP2004106320A (en) * 2002-09-18 2004-04-08 Ricoh Opt Ind Co Ltd Manufacturing method for article with fine surface structure
JP2006120247A (en) * 2004-10-21 2006-05-11 Sony Corp Condenser lens and its manufacturing method, exposure apparatus using same, optical pickup apparatus, and optical recording and reproducing apparatus
WO2007043383A1 (en) * 2005-10-07 2007-04-19 Nikon Corporation Fine structure body and method for manufacturing same
JP2007286499A (en) * 2006-04-19 2007-11-01 Nikon Corp Diffraction optics and authentication apparatus
JP2010532496A (en) * 2007-07-03 2010-10-07 ピクセルオプティクス, インコーポレイテッド Multifocal lens with diffractive optical power region
JP2009048208A (en) * 2008-10-27 2009-03-05 Kagawa Univ Method for manufacturing inclined structure and mold matrix manufactured by the method
JP2011257695A (en) * 2010-06-11 2011-12-22 Canon Inc Diffraction optical element, optical system and optical equipment
JP2012083382A (en) * 2010-10-06 2012-04-26 Canon Inc Diffraction optical element, optical system, and optical instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642966A (en) * 2016-08-12 2019-04-16 马克斯-普朗克科学促进学会 The full material Fresnel zone chip arrays of high-resolution and its manufacturing process
CN109642966B (en) * 2016-08-12 2022-04-08 马克斯-普朗克科学促进学会 High-resolution full-material Fresnel zone plate array and manufacturing process thereof
WO2022185716A1 (en) * 2021-03-01 2022-09-09 パナソニックIpマネジメント株式会社 Fresnel lens and sensor system
CN114815007A (en) * 2022-03-16 2022-07-29 中国科学院光电技术研究所 Method for manufacturing continuous relief Fresnel lens

Similar Documents

Publication Publication Date Title
JP5470020B2 (en) Photomask, photomask manufacturing method, and plasma etching chamber system
JP2020522009A (en) Broadband achromatic planar optical component with dispersion-designed dielectric metasurface
WO2002023272A1 (en) Dual layer reticle blank and manufacturing process
JP2006243712A (en) Method for quartz photomask with plasma etching
US9291889B2 (en) Photo mask and method for forming pattern using the same
US20230360914A1 (en) Reflection mode photomask
TW201017342A (en) Exposure method and memory medium storing computer program
WO2014073299A1 (en) Fresnel lens, fabrication method therefor, and sensing device
CN105359255A (en) Reflective photomask and production method therefor
US9291913B2 (en) Pattern generator for a lithography system
JP3727911B2 (en) Mask, mask manufacturing method, and semiconductor device manufacturing method
KR101173155B1 (en) Method for fabricating microlens array
JP2005257962A (en) Phase shift mask and method for manufacturing phase shift mask
KR20080056652A (en) Multi-step photomask etching with chlorine for uniformity control
KR100763227B1 (en) A photomask using separated expose technique, method for fabricating the photomask and an apparatus for fabricating the photomask using the method
KR20160088209A (en) Photolithography Method
KR20170054630A (en) reticle and exposure apparatus including the same
JP4557373B2 (en) Three-dimensional structure manufacturing method using concentration distribution mask
JP5573306B2 (en) Photomask blank manufacturing method
KR102164381B1 (en) Method for manufacturing nanostructure and nanostructure manufactured by using the same
JP4386546B2 (en) Concentration distribution mask and three-dimensional structure manufacturing method using the same
KR100650892B1 (en) Method of fabricating photoresist layer pattern
JP2001312044A (en) Density distribution mask and method for manufacturing three-dimensional structure using the same
Teo et al. Deep Submicron Photonic Bandgap Crystal Fabrication Processes
JP2023525347A (en) Method for manufacturing an optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP