JP2007286499A - Diffraction optics and authentication apparatus - Google Patents

Diffraction optics and authentication apparatus Download PDF

Info

Publication number
JP2007286499A
JP2007286499A JP2006115789A JP2006115789A JP2007286499A JP 2007286499 A JP2007286499 A JP 2007286499A JP 2006115789 A JP2006115789 A JP 2006115789A JP 2006115789 A JP2006115789 A JP 2006115789A JP 2007286499 A JP2007286499 A JP 2007286499A
Authority
JP
Japan
Prior art keywords
light
diffractive optical
optical element
incident
diffractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115789A
Other languages
Japanese (ja)
Inventor
Madoka Nishiyama
円 西山
Naoki Fukutake
直樹 福武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006115789A priority Critical patent/JP2007286499A/en
Publication of JP2007286499A publication Critical patent/JP2007286499A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an authentication apparatus to which a diffractive optical element is applied. <P>SOLUTION: The authentication apparatus 100 is constituted to have an authentication means 20 provided with the diffractive optical element 1, and a diffracted light beam detector 80. An object 30 to be authenticated provided with a diffractive optical element 50 is positioned with respect to the authentication means 20, and the diffracted light from the diffractive optical element 1 by the incident light made incident on the diffraction face of the diffractive optical element 1 is made incident on the diffraction face of the diffractive optical element 50 and is detected by the diffracted light beam detector 80, thereby making possible the collation of the object 30 and the authentication means 20. The authentication means 20 has alignment marks 21, 22 at which the authentication means 20 performs positioning with respect to the authentication means 20 of the object 30, and the object 30 has alignment marks 31, 32 at which the object 30 performs positioning with respect to the authentication means 20 of the object 30. The object 30 is thus optically positioned with respect to the authentication means 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回折光学素子を有する回折光学系および認証装置に関する。   The present invention relates to a diffractive optical system having a diffractive optical element and an authentication apparatus.

従来から、カード、証書類、紙幣等の被転写体の全面あるいは一部に設けられている、各種の絵柄やマーク、デザインを、ホログラムにより表示する際に使用する光学素子を有するホログラム転写シートが知られている。ホログラム転写シートは、これに光を照射して目視もしくは読取用の機械で読み取ることで、上記カード等の偽造防止に役立っている。   Conventionally, there is provided a hologram transfer sheet having an optical element that is provided on a whole surface or a part of a transfer object such as a card, a certificate, a bill, or the like and used to display various patterns, marks, and designs by a hologram. Are known. The hologram transfer sheet is useful for preventing counterfeiting of the card and the like by irradiating light onto the hologram transfer sheet and reading it with a visual or reading machine.

光学素子として様々な種類のものが挙げられるが、レンズ面に光の回折作用を有する回折光学素子(Diffractive Optical Element,DOE)を設けたものがよく知られている。回折光学素子は、微小間隔(約1mm)当たり数百本程度の細い等間隔のスリット状もしくは溝状の格子構造を備えて作られた光学素子であり、光が入射するとスリットや溝のピッチ(間隔)と光の波長とで定まる方向に回折光束を生じさせて回折パターン(回折像)が形成される性質を有している。このような回折光学素子は種々の回折光学系に用いられており、例えば、色収差を低減させるため、特定次数の回折光を一点に集めてレンズとして使用するものなどが知られている。   There are various types of optical elements, and those having a diffractive optical element (Diffractive Optical Element, DOE) having a diffractive action of light on a lens surface are well known. A diffractive optical element is an optical element having a slit-like or groove-like lattice structure with a few hundreds per minute gap (about 1 mm), and when light enters, the pitch of slits or grooves ( The diffraction pattern (diffracted image) is formed by generating a diffracted light beam in a direction determined by the distance) and the wavelength of light. Such a diffractive optical element is used in various diffractive optical systems. For example, in order to reduce chromatic aberration, one that collects diffracted light of a specific order at one point and uses it as a lens is known.

回折光学系に用いられる上記のような回折光学素子には、鋸歯状の断面を持つレンズを階段形状に位相近似した構造を有するものがあり、このような回折光学素子は、電子集積回路と同様な方法で作製でき、基板のエッチングあるいは基板へのスパッタにより、基板表面に階段を形成するプロセスをN回繰り返すことで、2のN乗レベルの階段が形成される。例えば、リソグラフィーとエッチングを4回繰り返すことで、16段の階段を有する回折光学素子を作製することができる。このような回折光学素子は、階段の段数がエッチング等のプロセスを繰り返すことで2倍ずつ増加する構造となっているため、バイナリ光学素子(Binary Optical Element,BOE)と称される(例えば、非特許文献1を参照)。
「回折光学素子入門」 株式会社オプトニクス社 2002年
Some of the diffractive optical elements used in the diffractive optical system have a structure in which a lens having a sawtooth cross section is approximated in phase to a staircase shape. Such a diffractive optical element is similar to an electronic integrated circuit. By repeating the process of forming the staircase on the surface of the substrate N times by etching the substrate or sputtering the substrate, a step of 2 N level is formed. For example, by repeating lithography and etching four times, a diffractive optical element having 16 steps can be manufactured. Such a diffractive optical element has a structure in which the number of steps is increased by a factor of 2 by repeating a process such as etching, and therefore is called a binary optical element (BOE) (for example, non-optical element). (See Patent Document 1).
"Introduction to diffractive optical elements" Optonics Corporation 2002

ところで、上記のようなバイナリ光学素子は、その階段状の回折面の形状(位相パターン)と光の波長とで定まる方向に回折光束を生じさせて回折像が形成される性質を有しているため、ある波長の光を入射させた場合には特定の方向に回折光を集光させて回折像を形成させることができるが、異なった波長の光を入射させた場合には集光させることができず回折像を形成させることができない(集光効率が低下する)といったように、集光させることのできる(集光効率が所定以上高い)回折光学素子の入射光としての使用波長が限定されていた。このため、回折光学素子が入射光の波長に拘らず回折像を形成させることが可能であれば、回折光学素子を様々な用途に使用可能になるものと思われる。   By the way, the binary optical element as described above has a property that a diffracted light beam is generated in a direction determined by the shape of the stepped diffraction surface (phase pattern) and the wavelength of light, thereby forming a diffraction image. Therefore, when light of a certain wavelength is incident, the diffracted light can be condensed in a specific direction to form a diffraction image, but when light of a different wavelength is incident, the light is condensed. The wavelength used as incident light of a diffractive optical element that can be condensed (condensation efficiency is higher than a predetermined value) is limited such that the diffraction pattern cannot be formed (condensation efficiency is reduced). It had been. For this reason, if the diffractive optical element can form a diffracted image regardless of the wavelength of incident light, it is considered that the diffractive optical element can be used for various applications.

また、上記のようなバイナリ光学素子は、従来は、その回折面に入射する入射光の入射角度を変えずに使用するのが一般的であるが、入射光の入射角度を決めずに入射角度を様々に変えて回折面に入射させた場合であっても、入射光の入射角度を変化させない場合と同じように回折光を所定の方向に集光させ、所定の投影面に入射光の入射角度毎に異なる回折像を投影させることが可能であれば、回折光学素子の使用用途が、特に上記のようなカード等の偽造防止などセキュリティの分野において拡大する可能性が高い。   In addition, the binary optical element as described above is generally used without changing the incident angle of incident light incident on the diffraction surface, but the incident angle of incident light is not determined. Even when the incident light is incident on the diffractive surface in various ways, the diffracted light is condensed in a predetermined direction and the incident light is incident on the predetermined projection surface in the same way as when the incident light incident angle is not changed. If it is possible to project different diffracted images for each angle, there is a high possibility that the use of the diffractive optical element will be expanded particularly in the field of security such as forgery prevention of the card as described above.

以上のような課題に鑑みて、本発明では、回折面に入射する入射光に対して各波長毎に異なる回折像を形成させ、また、回折面に異なる入射角度で入射する入射光に対して入射角度毎に異なる回折像を形成させる回折光学素子を有した回折光学系および認証装置を提供することを目的とする。   In view of the above problems, in the present invention, a different diffraction image is formed for each wavelength with respect to incident light incident on the diffractive surface, and for incident light incident on the diffractive surface at different incident angles. It is an object of the present invention to provide a diffractive optical system and an authentication device having a diffractive optical element that forms a different diffraction image for each incident angle.

前記課題を解決するために本発明の請求項1に係る回折光学系は、回折面に入射する特定の複数の波長の入射光に対して各波長毎に異なる回折像を形成させるように回折面が構成されている回折光学素子と、回折面で回折した回折光が入射するように配置され、回折面に同じ入射角度で入射した少なくとも2種類以上の波長の入射光に対して各入射光毎に異なる回折像を形成させる回折光を検出可能な回折光検出手段(例えば、実施形態における透過光用検出器280)とを有する。   In order to solve the above-mentioned problem, a diffractive optical system according to claim 1 of the present invention is configured to form a diffractive image different in each wavelength with respect to incident light of a plurality of specific wavelengths incident on the diffractive surface. Are arranged so that the diffracted light diffracted by the diffractive surface is incident on the diffractive surface, and incident light of at least two types of wavelengths incident on the diffractive surface at the same incident angle for each incident light. And diffracted light detecting means (for example, transmitted light detector 280 in the embodiment) capable of detecting diffracted light that forms different diffraction images.

また、前記課題を解決するために本発明の請求項2に係る回折光学系は、回折面に入射する特定の複数の波長の入射光に対して各波長毎に異なる回折像を形成させ、回折面に異なる入射角度で入射する入射光に対して入射角度毎に異なる回折像を形成させるように回折面が構成されている回折光学素子と、回折面で回折した回折光が入射するように配置され、各波長毎に異なる入射角度で回折面に入射した少なくとも2種類以上の入射光に対して各入射光毎に異なる回折像を形成させる回折光を検出可能な回折光検出手段(例えば、実施形態における透過光用検出器380)とを有する。   In order to solve the above problem, the diffractive optical system according to claim 2 of the present invention forms a diffraction image different for each wavelength with respect to incident light of a plurality of specific wavelengths incident on the diffractive surface. A diffractive optical element whose diffractive surface is configured to form different diffracted images for each incident angle with respect to incident light incident on the surface at different incident angles, and arranged so that diffracted light diffracted by the diffractive surface is incident Diffracted light detecting means capable of detecting diffracted light that forms different diffracted images for each incident light with respect to at least two types of incident light incident on the diffraction surface at different incident angles for each wavelength (for example, implementation) And a transmitted light detector 380) in the form.

また、上記構成の回折光学系において、回折光学素子の回折面に入射される入射光の波長幅が30nm以上であるのが好ましい。   In the diffractive optical system configured as described above, it is preferable that the wavelength width of incident light incident on the diffractive surface of the diffractive optical element is 30 nm or more.

また、上記構成の回折光学系において、回折光学素子が、回折面が少なくとも2段以上の段数からなる階段を有して断面階段状に形成されたバイナリ光学素子で構成されているのが好ましい。   In the diffractive optical system configured as described above, it is preferable that the diffractive optical element is formed of a binary optical element having a diffractive surface having a step having at least two steps and having a stepped cross section.

さらに、上記構成の回折光学系において、入射光の波長をλとしたとき記回折光学素子の階段の少なくとも1段の高さがλ以下であるのが好ましい。   Furthermore, in the diffractive optical system configured as described above, it is preferable that the height of at least one step of the diffractive optical element is λ or less, where λ is the wavelength of incident light.

また、上記構成の回折光学系において、回折光学素子の回折面を透過した透過光もしくは回折面で反射した反射光により回折像が形成されるようにするのが好ましい。   In the diffractive optical system configured as described above, it is preferable that a diffracted image is formed by transmitted light transmitted through the diffractive surface of the diffractive optical element or reflected light reflected by the diffractive surface.

一方、上記構成の回折光学系において、回折光学素子の回折面を透過した透過光および回折面で反射した反射光により回折像が形成されるようにしてもよい。   On the other hand, in the diffractive optical system configured as described above, a diffracted image may be formed by transmitted light transmitted through the diffractive surface of the diffractive optical element and reflected light reflected by the diffractive surface.

また、上記構成の回折光学系において、回折光学素子の回折面が、印刷法、フォトリソグラフィー法、ナノプリント法、射出成形法もしくはガラスモールド法により形成されるのが好ましい。   In the diffractive optical system configured as described above, the diffractive surface of the diffractive optical element is preferably formed by a printing method, a photolithography method, a nanoprint method, an injection molding method, or a glass mold method.

一方、前記課題を解決するために本発明に係る認証装置は、請求項1〜9のいずれかに記載の回折光学素子が第1の回折光学素子として設けられた認証手段と、請求項1もしくは2に記載の回折光検出手段(例えば、実施形態における回折光検出器80)とを有して構成され、請求項1〜9のいずれかに記載の回折光学素子が第2の回折光学素子として設けられた被認証対象を認証手段に対して近接させた状態に位置を合わせて、第1の回折光学素子の回折面に入射した入射光による第1の回折光学素子からの回折光を第2の回折光学素子の回折面に入射させ第2の回折光学素子からの回折光を回折光検出手段により検出することにより、被認証対象と認証手段との照合が可能である。   On the other hand, an authentication apparatus according to the present invention for solving the above-described problems includes an authentication unit in which the diffractive optical element according to any one of claims 1 to 9 is provided as a first diffractive optical element, and claim 1 or And a diffractive optical element according to any one of claims 1 to 9, wherein the diffractive optical element according to any one of claims 1 to 9 is used as the second diffractive optical element. The position of the provided object to be authenticated is adjusted to be close to the authentication means, and the diffracted light from the first diffractive optical element by the incident light incident on the diffractive surface of the first diffractive optical element is The object to be authenticated and the authentication means can be verified by making the light incident on the diffraction surface of the diffractive optical element and detecting the diffracted light from the second diffractive optical element by the diffracted light detecting means.

また、上記構成の認証装置において、認証手段が被認証対象の認証手段に対する位置決めを行う第1の位置決め手段を有し、被認証対象が被認証対象の認証手段に対する位置決めを行う第2の位置決め手段を有しているのが好ましい。   Further, in the authentication apparatus having the above-described configuration, the authentication unit includes a first positioning unit that positions the authentication target authentication unit, and the authentication target includes a second positioning unit that positions the authentication target authentication unit. It is preferable to have.

また、上記構成の認証装置において、位置決め用光線を第1の位置決め手段および第2の位置決め手段に照射することにより被認証対象が認証手段に対して光学的に位置決めされるのが好ましい。   In the authentication apparatus having the above-described configuration, it is preferable that the authentication target is optically positioned with respect to the authentication unit by irradiating the first positioning unit and the second positioning unit with the positioning light beam.

さらに、上記構成の認証装置において、第1の位置決め手段が認証手段に少なくとも2箇所以上設けられ、第2の位置決め手段が被認証対象に少なくとも2箇所以上設けられているのが好ましい。   Furthermore, in the authentication apparatus having the above configuration, it is preferable that at least two or more first positioning means are provided in the authentication means, and at least two or more second positioning means are provided in the authentication target.

また、上記構成の認証装置において、被認証対象の認証手段に対する理想的な位置決め位置との位置決め誤差が5μm以下もしくは2μm以下である場合に被認証対象と認証手段との照合が可能であるのが好ましい。   Further, in the authentication apparatus having the above configuration, when the positioning error from the ideal positioning position with respect to the authentication means to be authenticated is 5 μm or less or 2 μm or less, it is possible to collate the authentication target with the authentication means. preferable.

また、上記構成の認証装置において、第1の回折光学素子の回折面に入射される照合用光線の波長と位置決め用光線の波長とが同一であるのが好ましい。   In the authentication device having the above-described configuration, it is preferable that the wavelength of the verification light beam incident on the diffraction surface of the first diffractive optical element is the same as the wavelength of the positioning light beam.

一方、上記構成の認証装置において、第1の回折光学素子の回折面に入射される照合用光線の波長と位置決め用光線の波長とが異なってもよい。   On the other hand, in the authentication device having the above-described configuration, the wavelength of the verification light beam incident on the diffraction surface of the first diffractive optical element may be different from the wavelength of the positioning light beam.

本発明に関する回折光学系および認証装置によれば、認証手段に設けられた回折光学素子の回折面に入射した認証手段からの回折光を被認証対象に設けられた回折光学素子の回折面に入射して、被認証対象からの回折光を回折光検出手段により検出することにより、被認証対象と認証手段との照合が可能である。このような認証装置は、偽札や偽造カードの発見等、主にセキュリティ用途に使用可能である。   According to the diffractive optical system and the authentication apparatus according to the present invention, the diffracted light from the authentication unit incident on the diffractive surface of the diffractive optical element provided on the authentication unit is incident on the diffractive surface of the diffractive optical element provided on the authentication target. Then, by detecting the diffracted light from the object to be authenticated by the diffracted light detection means, it is possible to collate the object to be authenticated and the authentication means. Such an authentication device can be used mainly for security purposes such as discovery of counterfeit bills and counterfeit cards.

以下、本発明の好ましい実施の形態について図1乃至図5を参照して説明する。ここではまず、本発明に係る回折光学系を構成する回折光学素子の回折面の1ピッチ内の位相分布を表す位相パターン(回折面の形状)の設計方法について説明する。本実施例においては、回折光学素子の回折面の形状の算出のために位相回復法による計算機合成ホログラム(CGH(Computer Generated Hologram))を用いるが、必ずしも位相回復法によるものに限られず、他の方法によるCGHを用いて設計を行ってもよい。   Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. First, a method for designing a phase pattern (diffractive surface shape) representing a phase distribution within one pitch of the diffractive surface of the diffractive optical element constituting the diffractive optical system according to the present invention will be described. In this embodiment, a computer-generated hologram (CGH (Computer Generated Hologram)) based on the phase recovery method is used for calculating the shape of the diffractive surface of the diffractive optical element. You may design using CGH by a method.

従来においては位相回復法により単色光を回折光学素子に対して垂直入射する場合の回折光学素子の回折面の形状の設計が行われており、以下のような位相回復アルゴリズムが用いられている(図1(a)参照)。まず、初期位相パターン(回折光学素子の初期回折面形状)を決定し(S11)、それをフーリエ変換して回折パターン(回折像として投影されるパターン)を取得する(S13)。このとき、初期位相パターンとして、ランダムパターンがよい。そして、得られた回折パターンの位相をそのまま維持し、その強度のみ所望のパターンに置換する(S14)。この置換された回折パターンを逆フーリエ変換することにより回折光学素子の位相パターン(回折面の形状)を取得できるが(S15)、これを離散化された位相パターンに強制的に合わせる(S12)。ここまでが一つのループとなる。そして、このようなループを繰り返すことで、すなわち、位相パターンのフーリエ変換による回折パターンの取得と、回折パターンの逆フーリエ変換による位相パターンの取得とを繰り返すことで、回折光学素子の回折面の形状がある所定の形状に収束する。   Conventionally, the shape of the diffractive surface of a diffractive optical element when monochromatic light is perpendicularly incident on the diffractive optical element is designed by the phase recovery method, and the following phase recovery algorithm is used ( FIG. 1 (a)). First, an initial phase pattern (initial diffractive surface shape of the diffractive optical element) is determined (S11), and Fourier transform is performed to obtain a diffraction pattern (pattern projected as a diffraction image) (S13). At this time, a random pattern is preferable as the initial phase pattern. Then, the phase of the obtained diffraction pattern is maintained as it is, and only the intensity is replaced with a desired pattern (S14). The phase pattern (diffractive surface shape) of the diffractive optical element can be obtained by performing inverse Fourier transform on the replaced diffraction pattern (S15), and this is forcibly matched with the discretized phase pattern (S12). This is one loop. Then, by repeating such a loop, that is, by repeating the acquisition of the diffraction pattern by the Fourier transform of the phase pattern and the acquisition of the phase pattern by the inverse Fourier transform of the diffraction pattern, the shape of the diffraction surface of the diffractive optical element Converge to a certain shape.

以上は、単色光を回折光学素子に対して垂直入射する場合の位相回復アルゴリズムであるが、本実施例においては、この位相回復アルゴリズムを応用し、入射波長により回折パターンが変化し、また、入射光の入射角度により回折パターンが変化する回折光学素子の設計を行う(図1(b)参照)。本実施例では、上記の従来の場合と同様に、まず最初に回折素子の初期表面形状を与える。そして、入射光の波長および入射光の入射角度毎(λ1〜λN,θ1〜θN)に、上記位相回復アルゴリズムを1ループ分だけ実行し(S21,S23,S25)、入射光の波長および入射光の入射角度毎に回折格子の位相パターン(回折面の形状)を取得する(S22,S24,S26)。しかしながら、上記アルゴリズムにより取得された位相パターンは、入射光の波長および入射角度毎に相違しているため、本実施例では最小自乗法により入射光の波長および入射角度による位相パターンの違いを考慮した一つの最適な位相パターンを求める(S27)。そして、当該最小自乗法に基づく位相パターンを次のループの初期位相パターンとして用い、各波長毎に位相パターンを取得したのち、最小自乗法により最適な位相パターンを求める。このようなことを繰り返すことで、回折素子の表面形状は、ある所定の状態に収束していく。ここで、回折光学素子の予測される集光効率(全回折光のうち特定の範囲に集光される回折光の割合)が約80%になった場合に回折面の形状の算出を停止させ、すなわち位相回復アルゴリズムを停止させ、その時点で取得されている位相パターンを、波長の違いを考慮した回折素子の回折面の形状として決定する。 The above is a phase recovery algorithm in the case where monochromatic light is perpendicularly incident on the diffractive optical element. In this embodiment, the phase recovery algorithm is applied to change the diffraction pattern depending on the incident wavelength. A diffractive optical element whose diffraction pattern changes depending on the incident angle of light is designed (see FIG. 1B). In this embodiment, the initial surface shape of the diffractive element is first given in the same manner as in the conventional case. The phase recovery algorithm is executed for one loop for each wavelength of incident light and each incident angle (λ 1 to λ N , θ 1 to θ N ) (S21, S23, S25). A phase pattern (the shape of the diffraction surface) of the diffraction grating is acquired for each wavelength and incident angle of incident light (S22, S24, S26). However, since the phase pattern obtained by the above algorithm is different for each wavelength and incident angle of the incident light, in this embodiment, the difference in the phase pattern depending on the wavelength and the incident angle of the incident light is considered by the least square method. One optimum phase pattern is obtained (S27). Then, the phase pattern based on the least square method is used as the initial phase pattern of the next loop, and after obtaining the phase pattern for each wavelength, the optimum phase pattern is obtained by the least square method. By repeating this, the surface shape of the diffraction element converges to a certain predetermined state. Here, the calculation of the shape of the diffractive surface is stopped when the predicted light collection efficiency of the diffractive optical element (the ratio of the diffracted light collected in a specific range out of all diffracted light) reaches about 80% That is, the phase recovery algorithm is stopped, and the phase pattern acquired at that time is determined as the shape of the diffraction surface of the diffractive element in consideration of the difference in wavelength.

次に、上記のようにして回折面の形状が求められた多段の回折光学素子の実際の作製方法について、図2を参照して説明する。多段の回折光学素子は、以下のようにフォトリソグラフィーとエッチングとのプロセスを繰り返すことで作製される。まず、シリコン基板(シリコンに限らず、GaAsなどの半導体材料の基板であればよい)2上にレジスト膜3を塗布し、上記の計算により決定された回折面の形状に応じたレチクルマスクを通して露光を行う(図2(a)参照)。露光に使用する光線は、g線(436nm)やi線(365nm)、電子線のほか、X線等の放射線であってもよい。また、レーザ光を使用した直接描画による露光方法であってもよい。さらに、2光束干渉させて露光を行ってもよい。露光に続いて現像がなされ、続くエッチングのプロセスが行われる。   Next, an actual manufacturing method of the multi-stage diffractive optical element in which the shape of the diffractive surface is obtained as described above will be described with reference to FIG. A multi-stage diffractive optical element is manufactured by repeating the processes of photolithography and etching as follows. First, a resist film 3 is applied on a silicon substrate 2 (which is not limited to silicon but may be a substrate made of a semiconductor material such as GaAs) and exposed through a reticle mask corresponding to the shape of the diffraction surface determined by the above calculation. (See FIG. 2A). The light beam used for the exposure may be g-ray (436 nm), i-ray (365 nm), electron beam, or X-ray radiation. Moreover, the exposure method by direct drawing using a laser beam may be used. Further, the exposure may be performed with two light beam interference. Development is performed following the exposure, and a subsequent etching process is performed.

エッチングは、エッチング装置を用いることでドライエッチングにより行われる。このときにエッチングガスは、基板(シリコン、GaAs等)2の種類に応じて任意に選択するが、一例として四フッ化カーボンガスといったものが用いられる。このようにして、一回のフォトリソグラフィーおよびエッチングのプロセスが終了すると、図2(b)のように、所望の深さの回折溝を有し、所望のパターンに応じた2段レンズ(2BOE素子)が作製される。   Etching is performed by dry etching using an etching apparatus. At this time, the etching gas is arbitrarily selected according to the type of the substrate (silicon, GaAs, etc.) 2. As an example, a carbon tetrafluoride gas is used. In this way, when one photolithography and etching process is completed, as shown in FIG. 2B, a two-stage lens (2BOE element) having a diffraction groove of a desired depth and corresponding to a desired pattern is obtained. ) Is produced.

この2段レンズに、さらに、フォトリソグラフィーおよびエッチングのプロセスを繰り返すことで4段レンズが作製され(図2(c)および(d)参照)、この4段レンズに、さらにフォトリソグラフィーおよびエッチングのプロセスを繰り返すことで8段レンズが作製される(図2(e)および(f)参照)。この8段レンズから、16段レンズ、32段レンズ、…といったように、フォトリソグラフィーおよびエッチングのプロセスを複数繰り返すと、回折面の形状が多段のバイナリ形状からなる回折光学素子を得ることが可能である。   Further, a photolithography and etching process is repeated on the two-stage lens to produce a four-stage lens (see FIGS. 2C and 2D). The photolithography and etching process is further performed on the four-stage lens. Is repeated to produce an eight-stage lens (see FIGS. 2E and 2F). From this 8-stage lens, a diffractive optical element having a multi-stage binary shape can be obtained by repeating a plurality of photolithography and etching processes such as a 16-stage lens, a 32-stage lens, and so on. is there.

また、上記のようにして作製された多段の回折光学素子の回折面の形状を、電気鋳造法により電着を行って金型に転写することも可能である。そして、基板ガラス上に十分に加熱され可塑性を有した紫外線硬化樹脂を滴下する。この後、滴下した紫外線硬化樹脂に所望の表面の反転形状が形成された上記金型を押し当てる。さらに、基板ガラス側から紫外線を照射することで、紫外線硬化樹脂を硬化させ、硬化させた紫外線硬化樹脂を金型および基板ガラスから取り外す。これにより、金型に形成されていた表面の形状が紫外線硬化樹脂に転写され、この紫外線硬化樹脂を回折光学素子の複製物として使用できる。このような回折光学素子の回折面の形成方法はガラスモールド法と称されるが、これに限らず、印刷法、ナノプリント法もしくは射出成形法により回折面を形成してもよい。   It is also possible to transfer the shape of the diffractive surface of the multi-stage diffractive optical element manufactured as described above to a mold by electrodeposition by electroforming. Then, an ultraviolet curable resin that is sufficiently heated and has plasticity is dropped onto the substrate glass. Thereafter, the above-mentioned mold in which a desired surface reversal shape is formed is pressed against the dropped ultraviolet curable resin. Further, the ultraviolet curable resin is cured by irradiating ultraviolet rays from the substrate glass side, and the cured ultraviolet curable resin is removed from the mold and the substrate glass. Thereby, the shape of the surface formed in the mold is transferred to the ultraviolet curable resin, and this ultraviolet curable resin can be used as a replica of the diffractive optical element. Such a method of forming a diffractive surface of a diffractive optical element is called a glass mold method, but is not limited thereto, and the diffractive surface may be formed by a printing method, a nanoprint method, or an injection molding method.

次に、上記の位相回復法によって設計された、回折光学素子の回折面の形状の一例を示す。図3に一例として示す回折光学素子1は所定の深さを有する複数の回折溝5が所定のピッチで形成されたいわゆるバイナリ光学素子であり、その入射面は所定の段数を有して階段状(いわゆるバイナリ形状)に形成されている。図3に示すように、この回折光学素子1は8段の階段を有する8段レンズで構成されているが、必ずしも8段レンズである必要はなく、4段レンズや2段レンズであってもよく、あるいは、8段よりも段数が多い16段レンズや32段レンズ等で構成してもよい。この回折光学素子1の階段の1段の高さHは、例えば入射光の波長λnm以下になるように設計されている。また、回折光学素子1の回折溝5の深さDは2μm以上もしくは4μm以上であるのが好ましい。さらに、回折溝5のピッチ幅Pは4μm以下であるのが好ましいが、2μm以下であってもよい。さらに、ピッチ幅Pは入射光の波長λnm以下であってもよく、また、入射光の波長λnmの2/3以下であってもよい。   Next, an example of the shape of the diffractive surface of the diffractive optical element designed by the above phase recovery method is shown. The diffractive optical element 1 shown as an example in FIG. 3 is a so-called binary optical element in which a plurality of diffraction grooves 5 having a predetermined depth are formed at a predetermined pitch, and its incident surface has a predetermined number of steps and is stepped. (So-called binary shape). As shown in FIG. 3, the diffractive optical element 1 is composed of an eight-stage lens having eight steps. However, the diffractive optical element 1 is not necessarily an eight-stage lens, and may be a four-stage lens or a two-stage lens. Alternatively, a 16-stage lens, a 32-stage lens, or the like having more stages than 8 stages may be used. The height H of one step of the diffractive optical element 1 is designed to be equal to or less than the wavelength λ nm of incident light, for example. The depth D of the diffraction groove 5 of the diffractive optical element 1 is preferably 2 μm or more or 4 μm or more. Further, the pitch width P of the diffraction grooves 5 is preferably 4 μm or less, but may be 2 μm or less. Further, the pitch width P may be equal to or less than the wavelength λ nm of the incident light, or may be equal to or less than 2/3 of the wavelength λ nm of the incident light.

次に、上記のようにして設計された回折光学素子を有する回折光学系について、図4(a)、(b)を用いて説明する。図4(a)に示す回折光学系200は、回折光学素子250、ミラー210、透過光用検出器280および反射光用検出器285を有して構成される。ミラー210は、図示しない光源からの光を反射させて回折光学素子250の回折面に入射させることが可能である。透過光用検出器280および反射光用検出器285は、回折光学素子250の回折面で回折した回折光が入射するように配置され、回折像を形成させる回折光を検出可能である。透過光用検出器280および反射光用検出器285は、回折光を受光する受光素子を装備しており、透過光用検出器280および反射光用検出器285に接続されたパーソナルコンピュータ等の画像表示画面に回折像を表示させることができる。   Next, a diffractive optical system having a diffractive optical element designed as described above will be described with reference to FIGS. The diffractive optical system 200 shown in FIG. 4A includes a diffractive optical element 250, a mirror 210, a transmitted light detector 280, and a reflected light detector 285. The mirror 210 can reflect light from a light source (not shown) and enter the diffraction surface of the diffractive optical element 250. The transmitted light detector 280 and the reflected light detector 285 are arranged so that the diffracted light diffracted by the diffraction surface of the diffractive optical element 250 is incident thereon, and can detect the diffracted light that forms a diffraction image. The transmitted light detector 280 and the reflected light detector 285 are equipped with a light receiving element that receives diffracted light, and an image of a personal computer or the like connected to the transmitted light detector 280 and the reflected light detector 285. A diffraction image can be displayed on the display screen.

回折光学素子250は、紙幣、カード220等、後述する被認証対象に、ナノプリント法、印刷法を用いて転写することで形成されている。転写された回折光学素子250の表面には、保護膜がコーティングされている。当該保護膜として、スパッタリングや蒸着で作製された薄膜であってもよいし、保護フィルムを貼付したものや、あるいは超硬質のセラミックス皮膜をコーティングしたいわゆるハードコートであってもよい。   The diffractive optical element 250 is formed by transferring to a subject to be authenticated, which will be described later, such as a banknote, a card 220, or the like, using a nanoprint method or a printing method. The surface of the transferred diffractive optical element 250 is coated with a protective film. The protective film may be a thin film produced by sputtering or vapor deposition, or may be a film with a protective film attached, or a so-called hard coat coated with a super-hard ceramic film.

ミラー210には圧電駆動型のMEMS(Micro-electro-mechanical System)素子が設けられており、素子に印加する電圧の大きさを制御することでミラー210への入射光が所定の入射角度になるようにミラー210を回転させることが可能である。そして、MEMS素子によりミラー210を回転させて光源からの入射光の入射角度を変化させ、ミラー210で反射した反射光の回折光学素子250の回折面に対する入射角度を変えることが可能である。また、カード220が載置されている不図示の台にも同様に圧電駆動型のMEMSが設けられており、MEMS素子により不図示の台を回転させてカード220を回転させることでミラー210からの回折光学素子250の回折面への入射光の入射角度を所定の入射角度になるように変えることも可能である。   The mirror 210 is provided with a piezoelectric drive type MEMS (Micro-electro-mechanical System) element, and the incident light to the mirror 210 becomes a predetermined incident angle by controlling the magnitude of the voltage applied to the element. Thus, the mirror 210 can be rotated. Then, the mirror 210 is rotated by the MEMS element to change the incident angle of the incident light from the light source, and the incident angle of the reflected light reflected by the mirror 210 with respect to the diffraction surface of the diffractive optical element 250 can be changed. Similarly, a piezoelectric drive type MEMS is provided on a table (not shown) on which the card 220 is placed, and the card 220 is rotated by rotating the table (not shown) by the MEMS element. It is also possible to change the incident angle of the incident light on the diffractive surface of the diffractive optical element 250 so as to become a predetermined incident angle.

図4(a)に示すように、図示しない光源から出射される青色光、赤色光および緑色光がミラー210で反射し、この反射光が回折光学素子250の回折面に略垂直方向に入射すると、青色光、赤色光および緑色光は、回折光学素子250の回折面で各波長毎に異なる方向に回折し回折光学素子250を透過して回折光として透過光用検出器280に入射する。透過光用検出器280では、各波長毎に異なる回折像を形成させる回折光を検出することが可能である。   As shown in FIG. 4A, when blue light, red light, and green light emitted from a light source (not shown) are reflected by the mirror 210, and this reflected light is incident on the diffraction surface of the diffractive optical element 250 in a substantially vertical direction. The blue light, the red light, and the green light are diffracted in different directions for each wavelength on the diffraction surface of the diffractive optical element 250, pass through the diffractive optical element 250, and enter the transmitted light detector 280 as diffracted light. The transmitted light detector 280 can detect diffracted light that forms a different diffraction image for each wavelength.

また、図4(a)において、青色光、赤色光および緑色光のうちいずれかを選択して単色光をミラー210に入射させ、ミラー210を回転させることで、回折光学素子250の回折面に入射する入射光の入射角度を所定の角度ずつ変化させると、回折光学素子250の回折面に異なる入射角度で入射する入射光が入射角度毎に異なる方向に回折し、回折光が透過光用検出器280によって検出される。なお、ミラー210を回転させることで回折光学素子250の回折面への入射光の入射角度を変化させるのではなく、カード220の方を回転させることで回折光学素子250の回折面への入射光の入射角度を変化させるようにしてもよく、この場合も回折光学素子250によって入射光が入射角度毎に異なる方向に回折し、回折光が透過光用検出器280によって検出される。   4A, any one of blue light, red light, and green light is selected and monochromatic light is incident on the mirror 210, and the mirror 210 is rotated, so that the diffraction surface of the diffractive optical element 250 is rotated. When the incident angle of incident light is changed by a predetermined angle, incident light incident on the diffraction surface of the diffractive optical element 250 at different incident angles is diffracted in different directions for each incident angle, and the diffracted light is detected for transmitted light. 280 is detected. Note that the incident light incident on the diffractive surface of the diffractive optical element 250 is not changed by rotating the mirror 210, but the incident light incident on the diffractive surface of the diffractive optical element 250 is rotated by rotating the card 220. In this case, the incident light is diffracted by the diffractive optical element 250 in different directions for each incident angle, and the diffracted light is detected by the transmitted light detector 280.

また、図4(a)において、青色光、赤色光および緑色光のうち例えば青色光を選択して回折光学素子250の回折面への入射角度毎に異なる方向に回折する回折光を透過光用検出器280によって検出した後に、例えば赤色光を入射光として選択し、青色光の入射の場合と同様に回折光学素子250の回折面への入射角度を変化させた場合は、青色光の入射の場合とは異なる方向に入射角度毎に回折する回折光が透過光用検出器280によって検出される。すなわち、各波長毎および入射角度毎に異なる方向に回折する回折光が透過光用検出器280によって検出される。   Further, in FIG. 4A, for example, blue light, red light, and green light is selected from the blue light, and diffracted light that is diffracted in different directions for each incident angle on the diffraction surface of the diffractive optical element 250 is transmitted light. After detection by the detector 280, for example, when red light is selected as incident light and the incident angle on the diffraction surface of the diffractive optical element 250 is changed as in the case of incident blue light, the incident of blue light is changed. Diffracted light that is diffracted for each incident angle in a direction different from the case is detected by the transmitted light detector 280. That is, the diffracted light diffracted in different directions for each wavelength and for each incident angle is detected by the transmitted light detector 280.

なお、回折光学系200では、上記のような回折光学素子250を透過した透過光による回折光を検出する構成に限らず、回折光学素子250で反射した反射光による各波長毎に異なる回折像を形成させる回折光を反射光用検出器285で検出してもよいし、あるいは、回折光学素子250の回折面の一部分を透過した透過光による透過光用検出器280を用いた回折光の検出と、回折光学素子250の回折面の残りの部分で反射した反射光による反射光用検出器285を用いた回折光の検出とを組み合わせてもよい。   The diffractive optical system 200 is not limited to the configuration that detects the diffracted light by the transmitted light that has passed through the diffractive optical element 250 as described above, and a diffracted image that is different for each wavelength by the reflected light that is reflected by the diffractive optical element 250. The diffracted light to be formed may be detected by the reflected light detector 285, or the diffracted light is detected using the transmitted light detector 280 by the transmitted light that has passed through a part of the diffractive surface of the diffractive optical element 250. The detection of the diffracted light using the reflected light detector 285 by the reflected light reflected by the remaining part of the diffractive surface of the diffractive optical element 250 may be combined.

さらに、回折光学素子250の回折面に入射させる入射光は、青色光、赤色光および緑色光からなる単色光の組み合わせに限らず、波長幅が30nm以上である白色光を入射してもよい。白色光を回折光学素子250の回折面に入射した場合には、各波長の入射光が回折光学素子250によって波長により決まった方向に回折し、各波長毎に回折像を重ね合わたフルカラー画像を形成させる回折光を検出することが可能である。   Further, the incident light incident on the diffractive surface of the diffractive optical element 250 is not limited to a combination of monochromatic light composed of blue light, red light, and green light, and white light having a wavelength width of 30 nm or more may be incident. When white light is incident on the diffractive surface of the diffractive optical element 250, the incident light of each wavelength is diffracted by the diffractive optical element 250 in a direction determined by the wavelength, and a full color image is formed by superimposing the diffraction images for each wavelength. The diffracted light to be detected can be detected.

図4(b)に示す回折光学系300は、回折光学素子350および透過光用検出器380を有して構成される。透過光用検出器380は、透過光用検出器280と同様にパーソナルコンピュータ等に接続され画像表示画面に回折像を表示させることができる。回折光学素子350は、上述の回折光学素子250と同様、紙幣、カード320等に、ナノプリント法等により転写することで形成されている。回折光学系300では、図示しない光源からの光が回折光学素子350の回折面に入射し、透過光用検出器380が、回折光学素子350の回折面で回折した回折光が入射するように配置され、回折像を形成させる回折光を検出可能である。   A diffractive optical system 300 shown in FIG. 4B includes a diffractive optical element 350 and a transmitted light detector 380. Similarly to the transmitted light detector 280, the transmitted light detector 380 is connected to a personal computer or the like and can display a diffraction image on the image display screen. The diffractive optical element 350 is formed by transferring onto a banknote, a card 320, or the like by a nanoprint method or the like, similar to the diffractive optical element 250 described above. In the diffractive optical system 300, light from a light source (not shown) is incident on the diffractive surface of the diffractive optical element 350, and the transmitted light detector 380 is disposed so that diffracted light diffracted by the diffractive surface of the diffractive optical element 350 is incident. The diffracted light that forms the diffraction image can be detected.

図4(b)に示すように回折光学系300では、青色光が回折光学素子350の回折面の法線方向に対して入射角度θをなして回折光学素子350の回折面に入射し、緑色光が回折光学素子350の回折面の法線方向と同一の入射角度をなして回折光学素子350の回折面に入射し、さらに、赤色光が回折光学素子350の回折面の法線方向に対して入射角度θをなして回折光学素子350の回折面に入射する。 As shown in FIG. 4B, in the diffractive optical system 300, blue light is incident on the diffractive surface of the diffractive optical element 350 at an incident angle θ 1 with respect to the normal direction of the diffractive surface of the diffractive optical element 350, The green light enters the diffractive surface of the diffractive optical element 350 at the same incident angle as the normal direction of the diffractive surface of the diffractive optical element 350, and the red light further enters the normal direction of the diffractive surface of the diffractive optical element 350. On the other hand, it enters the diffractive surface of the diffractive optical element 350 at an incident angle θ 2 .

青色光が上記の入射角度で回折光学素子350の回折面に入射すると、回折光学素子350の回折面で回折光学素子350の回折面の法線方向に対して角度θをなす方向に回折し回折光学素子350を透過して回折光として透過光用検出器380に入射する。また、緑色光が上記の入射角度で回折光学素子350の回折面に入射すると、回折光学素子350の回折面で緑色光の入射方向、すなわち、回折光学素子350の回折面の法線方向に回折し回折光学素子350を透過して回折光として透過光用検出器380に入射する。さらに、赤色光が上記の入射角度で回折光学素子350の回折面に入射すると、回折光学素子350の回折面で回折光学素子350の回折面の法線方向に対して角度θをなす方向に回折し回折光学素子350を透過して回折光として透過光用検出器380に入射する。 When blue light enters the diffractive surface of the diffractive optical element 350 at the above incident angle, the diffractive surface of the diffractive optical element 350 diffracts in a direction that forms an angle θ 3 with respect to the normal direction of the diffractive optical element 350. The light passes through the diffractive optical element 350 and enters the transmitted light detector 380 as diffracted light. When green light is incident on the diffractive surface of the diffractive optical element 350 at the above incident angle, the diffractive surface of the diffractive optical element 350 diffracts in the incident direction of green light, that is, in the normal direction of the diffractive surface of the diffractive optical element 350. Then, the light passes through the diffractive optical element 350 and enters the transmitted light detector 380 as diffracted light. Further, when the red light is incident on the diffractive surface of the diffractive optical element 350 at the above incident angle, the diffractive surface of the diffractive optical element 350 forms an angle θ 4 with respect to the normal direction of the diffractive surface of the diffractive optical element 350. The light is diffracted and transmitted through the diffractive optical element 350 to enter the transmitted light detector 380 as diffracted light.

このように、透過光用検出器380は、各波長毎に異なる入射角度で回折光学素子350の回折面に入射した2種類以上の入射光に対して(図4(b)では、青色光、緑色光および赤色光からなる3種類の入射光)各入射光毎に異なる回折像を形成させる回折光を検出可能である。   As described above, the transmitted light detector 380 has two or more types of incident light incident on the diffractive surface of the diffractive optical element 350 at different incident angles for each wavelength (in FIG. 4B, blue light, It is possible to detect diffracted light that forms a different diffraction image for each incident light.

以上、本発明に係る回折光学系について説明したが、以下では、上記回折光学系を構成する回折光学素子を利用した認証装置100について説明する。図5に認証装置100の概略構成を示す。この認証装置100は、カード、紙幣等、被検物である被認証対象30の真偽を認証手段20を用いることで判定するものであり、略平板状の認証手段20と、被認証対象30を駆動する駆動系60と、アライメント用検出器70,75と、回折光検出器80のほか、ビームスプリッター13,14とミラー15とを有して構成される。認証手段20には、上記のように構成された回折光学素子1(特許請求の範囲の請求項10で記載するところの第1の回折光学素子)が設けられている。一方、被認証対象30にも、上記のように構成された回折光学素子50(特許請求の範囲の請求項10で記載するところの第2の回折光学素子)が設けられている。   Although the diffractive optical system according to the present invention has been described above, the authentication apparatus 100 using the diffractive optical element constituting the diffractive optical system will be described below. FIG. 5 shows a schematic configuration of the authentication device 100. This authentication device 100 determines authenticity of an object 30 to be authenticated, such as a card or banknote, by using the authentication means 20. The authentication means 20 and the object 30 to be authenticated are substantially flat. In addition to the drive system 60 for driving the light source, the alignment detectors 70 and 75, and the diffracted light detector 80, the beam splitters 13 and 14 and the mirror 15 are included. The authentication means 20 is provided with the diffractive optical element 1 (the first diffractive optical element described in claim 10) configured as described above. On the other hand, the object 30 to be authenticated is also provided with the diffractive optical element 50 (second diffractive optical element described in claim 10) configured as described above.

被認証対象30は、図示しないXYステージ上に載置されており、スリット状のアライメントマーク31,32が略十字状に2箇所に形成されている。この被認証対象30は、図示しないバキュームチャックにより当該XYステージ上に固定保持される。被認証対象30は、当該バキュームチャックを作動、停止させることで、XYステージに固定させ、あるいはXYステージから取り外して交換することが可能である。被認証対象30を載置するXYステージは、モータ等からなる駆動系60によりX軸方向、Y軸方向およびZ軸方向に移動させることが可能である。一方、認証手段20は、被認証対象30の下方に設けられており、図示しないステージ上に固定されている。認証手段20にも、スリット状のアライメントマーク21,22が略十字状に2箇所の形成されている。なお、認証手段20に形成されたアライメントマーク21,22および被認証対象30に形成されたアライメントマーク31,32は、必ずしも略十字状に形成されている必要はなく、光を透過してアライメント用検出器70,75が光を検出可能であれば、どのような形状であってもよい。   The authentication target 30 is placed on an XY stage (not shown), and slit-shaped alignment marks 31 and 32 are formed at two locations in a substantially cross shape. The authentication target 30 is fixed and held on the XY stage by a vacuum chuck (not shown). The object 30 to be authenticated can be fixed to the XY stage by operating and stopping the vacuum chuck, or can be exchanged after being removed from the XY stage. The XY stage on which the authentication target 30 is placed can be moved in the X-axis direction, the Y-axis direction, and the Z-axis direction by a drive system 60 composed of a motor or the like. On the other hand, the authentication means 20 is provided below the authentication target 30 and is fixed on a stage (not shown). The authentication means 20 is also formed with two slit-shaped alignment marks 21 and 22 in a substantially cross shape. Note that the alignment marks 21 and 22 formed on the authentication means 20 and the alignment marks 31 and 32 formed on the authentication target 30 do not necessarily have to be formed in a substantially cross shape. Any shape may be used as long as the detectors 70 and 75 can detect light.

図示しない光源から出射された青色光、赤色光および緑色光からなる多色光は、ビームスプリッター13において反射して上方に、すなわち略平板状の認証手段20の下面側に向かう。認証手段20は、ビームスプリッター13において反射した光源からの光がアライメントマーク21を透過するような位置に位置してステージ上に固定されており、認証手段20の下面側に達したビームスプリッター13からの反射光はアライメントマーク21を透過して被認証対象30の下面側に向かう。また、光源から出射された光は、上記のようにビームスプリッター13にて反射するほか、ビームスプリッター13およびビームスプリッター14を通過してミラー15に達し、ミラー15にて反射して上方に向かい、認証手段20の下面側に達する。認証手段20は、ミラー15で反射した光源10からの光が、アライメントマーク22を透過するような位置に位置してステージ上に固定されており、認証手段20の下面側に達したミラー15からの反射光は、アライメントマーク22を透過して被認証対象30の下面側に向かう。   The polychromatic light composed of blue light, red light and green light emitted from a light source (not shown) is reflected by the beam splitter 13 and travels upward, that is, toward the lower surface side of the substantially flat authentication means 20. The authentication means 20 is fixed on the stage at a position where the light from the light source reflected by the beam splitter 13 passes through the alignment mark 21, and the authentication means 20 reaches the lower surface side of the authentication means 20 from the beam splitter 13. The reflected light passes through the alignment mark 21 and travels toward the lower surface side of the authentication target 30. In addition to being reflected by the beam splitter 13 as described above, the light emitted from the light source passes through the beam splitter 13 and the beam splitter 14 and reaches the mirror 15, and is reflected by the mirror 15 and travels upward. It reaches the lower surface side of the authentication means 20. The authentication means 20 is fixed on the stage at a position where the light from the light source 10 reflected by the mirror 15 passes through the alignment mark 22, and from the mirror 15 reaching the lower surface side of the authentication means 20. The reflected light passes through the alignment mark 22 and travels toward the lower surface side of the authentication target 30.

被認証対象30を載置するXYステージは、上記のように、駆動系60によりX軸方向およびY軸方向に移動可能になっており、XYステージをX軸およびY軸方向に移動させて、アライメントマーク21を透過した光がアライメントマーク31を透過するような位置に、また、アライメントマーク22を透過した光がアライメントマーク32を透過するような位置に被認証対象30を移動させることで、被認証対象30が認証手段20に対して光学的に位置決めされる。   As described above, the XY stage on which the authentication target 30 is placed is movable in the X-axis direction and the Y-axis direction by the drive system 60, and the XY stage is moved in the X-axis and Y-axis directions. The object 30 to be authenticated is moved to a position where the light transmitted through the alignment mark 21 passes through the alignment mark 31 and the position where the light transmitted through the alignment mark 22 passes through the alignment mark 32. The authentication object 30 is optically positioned with respect to the authentication means 20.

被認証対象30の上方にはアライメント用検出器70が設けられており、光源からの光が被認証対象30により遮られてアライメントマーク31もしくはアライメントマーク32を透過しない場合には、アライメント検出器70,75において光が検出されないが、光が被認証対象30のアライメントマーク31を透過すると、このアライメント検出器70により光が検出され、一方、光が被認証対象30のアライメントマーク32を透過すると、アライメント検出器75により光が検出される。このようなアライメント検出器75として、例えば光パワーメータのような受光素子を装備したものが挙げられ、光パワーメータに接続された画像表示画面に表示される各アライメントマーク21,31,22,32を視ながら位置決めを行うことが可能である。   An alignment detector 70 is provided above the authentication target 30. When the light from the light source is blocked by the authentication target 30 and does not pass through the alignment mark 31 or the alignment mark 32, the alignment detector 70. , 75, no light is detected. However, when the light passes through the alignment mark 31 of the authentication target 30, the light is detected by the alignment detector 70. On the other hand, when the light passes through the alignment mark 32 of the authentication target 30, Light is detected by the alignment detector 75. Examples of such an alignment detector 75 include those equipped with a light receiving element such as an optical power meter. The alignment marks 21, 31, 22 and 32 displayed on the image display screen connected to the optical power meter. It is possible to perform positioning while viewing.

アライメント検出器70,75により光源からの光が検出されると、駆動系60による被認証対象30のX軸方向およびY軸方向の移動制御が停止され、被認証対象30の認証手段20に対するX軸およびY軸方向の位置合わせが完了する。被認証対象30の位置合わせがなされると、被認証対象30は、認証手段20の上方に認証手段20に対して離間する状態で、アライメントマーク31およびアライメントマーク21がZ軸方向に合致し、アライメントマーク32およびアライメントマーク22がZ軸方向に合致する状態となり、被認証対象30の認証が可能な状態となる。なお、被認証対象30の認証が可能な状態となる理想的な位置決め位置との位置決め誤差は、5μm以下もしくは2μm以下であるのが好ましい。   When the light from the light source is detected by the alignment detectors 70 and 75, the movement control of the authentication target 30 in the X-axis direction and the Y-axis direction by the drive system 60 is stopped, and the X of the authentication target 20 with respect to the authentication means 20 of the authentication target 30 is stopped. The alignment in the axial direction and the Y-axis direction is completed. When the subject 30 is aligned, the subject 30 is separated from the authenticator 20 above the authenticator 20, and the alignment mark 31 and the alignment mark 21 coincide with the Z-axis direction. The alignment mark 32 and the alignment mark 22 are in a state matching the Z-axis direction, and the authentication target 30 can be authenticated. In addition, it is preferable that the positioning error with respect to the ideal positioning position where the authentication target 30 can be authenticated is 5 μm or less or 2 μm or less.

被認証対象30の認証は、以下のようにして行われる。図示しない光源から出射されビームスプリッター13を透過した青色光、赤色光および緑色光からなる多色光は、ビームスプリッター14を透過してミラー15に入射するほか、ビームスプリッター14において反射して上方に向かい認証手段20の下面側に達する。認証手段20に達した光は、回折光学素子1の回折面に入射光として入射し、所定の方向に回折される。回折光学素子1を透過した回折光学素子1からの回折光は、被認証対象30の下面側から回折光学素子50に入射して、回折光学素子50の回折面において所定の方向に回折される。   Authentication of the authentication target 30 is performed as follows. The polychromatic light composed of blue light, red light and green light emitted from a light source (not shown) and transmitted through the beam splitter 13 passes through the beam splitter 14 and enters the mirror 15, and is reflected by the beam splitter 14 and travels upward. It reaches the lower surface side of the authentication means 20. The light reaching the authentication means 20 enters the diffractive surface of the diffractive optical element 1 as incident light and is diffracted in a predetermined direction. The diffracted light from the diffractive optical element 1 that has passed through the diffractive optical element 1 enters the diffractive optical element 50 from the lower surface side of the authentication target 30, and is diffracted in a predetermined direction on the diffractive surface of the diffractive optical element 50.

被認証対象30の上方には、回折光学素子50の回折面で回折した回折光が入射するように回折光検出器80が配置され、回折像を形成させる回折光を検出可能である。回折光検出器80は、回折光を受光する受光素子を装備しており、回折光検出器80に接続されたパーソナルコンピュータ等の画像表示画面に回折像を表示させることができる。被認証対象30が、偽札や偽造カード等でない場合には、認証手段20の回折光学素子1からの回折光が回折光学素子50の回折面において所定の方向に回折し、この回折光検出器80により回折光が検出される。回折光検出器80により回折光が検出されると、被認証対象30の認証が行われる。   A diffracted light detector 80 is arranged above the authentication target 30 so that the diffracted light diffracted by the diffractive surface of the diffractive optical element 50 is incident, and the diffracted light that forms the diffraction image can be detected. The diffracted light detector 80 includes a light receiving element that receives the diffracted light, and can display a diffracted image on an image display screen of a personal computer or the like connected to the diffracted light detector 80. When the authentication target 30 is not a counterfeit bill or counterfeit card, the diffracted light from the diffractive optical element 1 of the authentication means 20 is diffracted in a predetermined direction on the diffractive surface of the diffractive optical element 50, and the diffracted light detector 80 Thus, diffracted light is detected. When the diffracted light is detected by the diffracted light detector 80, the authentication target 30 is authenticated.

上記のように、被認証対象30を載置するXYステージは、X軸方向およびY軸方向のほかZ軸方向にも移動可能になっており、駆動系60を作動させてXYステージをZ軸方向に(上下に)移動させることで、認証手段20からの回折光を被認証対象30の回折光学素子50により所定の方向に回折させ、回折光検出器80により回折光が検出される。すなわち、認証手段20に対する被認証対象30の上下方向の離間長さが所定の長さになった場合に、回折光検出器80が回折光を検出し、被認証対象30の認証が行われる。   As described above, the XY stage on which the authentication target 30 is placed is movable in the Z-axis direction in addition to the X-axis direction and the Y-axis direction, and the drive system 60 is operated to move the XY stage to the Z-axis direction. By moving in the direction (up and down), the diffracted light from the authentication means 20 is diffracted in a predetermined direction by the diffractive optical element 50 of the authentication target 30, and the diffracted light detector 80 detects the diffracted light. That is, when the vertical separation distance of the authentication target 20 with respect to the authentication unit 20 reaches a predetermined length, the diffracted light detector 80 detects the diffracted light, and the authentication target 30 is authenticated.

以上は被認証対象30の認証が行われる場合であるが、被認証対象30が偽札や偽造カード等である場合には、被認証対象30をZ軸方向に(上下に)移動させても、認証手段20の回折光学素子1からの回折光が回折光学素子50の回折面において所定の方向に回折しないため、たとえアライメントマーク31,21がZ軸方向に合致し、アライメントマーク32,22がZ軸方向に合致して、被認証対象30の認証が可能な状態に被認証対象30が認証手段20に対して位置決めされた状態であっても、回折光検出器80において回折光学素子50からの回折光が検出されず、被認証対象30の認証は行われない。   The above is a case where the authentication target 30 is authenticated. However, when the authentication target 30 is a counterfeit bill or a counterfeit card, even if the authentication target 30 is moved in the Z-axis direction (up and down), Since the diffracted light from the diffractive optical element 1 of the authentication means 20 does not diffract in a predetermined direction on the diffractive surface of the diffractive optical element 50, the alignment marks 31 and 21 are aligned with the Z-axis direction, and the alignment marks 32 and 22 are Z Even if the authentication target 30 is positioned with respect to the authentication means 20 in a state where the authentication target 30 can be authenticated in conformity with the axial direction, the diffracted light detector 80 detects from the diffractive optical element 50. The diffracted light is not detected, and the authentication target 30 is not authenticated.

以上のように、本発明に係る認証装置を用いれば、回折光学素子1および回折光学素子50の回折面における入射光の回折を利用することで、紙幣やカード等を被認証対象として被認証対象の認証を行うことが可能である。   As described above, if the authentication apparatus according to the present invention is used, a bill or a card is to be authenticated by using diffraction of incident light on the diffraction surfaces of the diffractive optical element 1 and the diffractive optical element 50. It is possible to perform authentication.

なお、本実施例では、図5に示すように、アライメント用検出器70,75で検出するための位置決め用光線と、回折光学素子1および回折光学素子50の回折面で回折させて回折光検出器80で検出するための照合用光線とが、いずれも青色光、赤色光および緑色光からなる多色光であるが、例えば当該位置決め用光線を青色光に、当該照合用光線を赤色光にすることで、位置決め用光線と照合用光線との波長を別々にしてもよい。また、位置決め用光線の光源と照合用光線の光源とを別々にしてもよい。さらに、位置決め用光線および照合用光線は、可視光に限られず、赤外線や波長1.5μm帯でのレーザ光であってもよい。   In this embodiment, as shown in FIG. 5, the diffracted light is detected by being diffracted by the positioning light rays to be detected by the alignment detectors 70 and 75 and the diffraction surfaces of the diffractive optical element 1 and the diffractive optical element 50. The collation light beams to be detected by the detector 80 are all multicolor light composed of blue light, red light, and green light. For example, the positioning light beam is converted into blue light, and the collation light beam is converted into red light. Thus, the wavelengths of the positioning light beam and the verification light beam may be made different. Further, the positioning light source and the collation light source may be provided separately. Further, the positioning light beam and the collating light beam are not limited to visible light, but may be infrared light or laser light in a wavelength band of 1.5 μm.

また、上記実施例では、青色光、赤色光および緑色光を、いずれも回折光学素子1の回折面に対して同一の入射角度で入射させているが、青色光、赤色光および緑色光を、各々回折光学素子1の回折面に対して異なった入射角度で入射させ(特許請求の範囲の請求項2の記載内容に対応する)、各入射毎に設置された回折光検出手段により各回折光を検出するように構成してもよい。   In the above embodiment, blue light, red light, and green light are all incident on the diffractive surface of the diffractive optical element 1 at the same incident angle, but blue light, red light, and green light are Each diffracted light is incident on the diffractive surface of the diffractive optical element 1 at a different incident angle (corresponding to the content described in claim 2 of the claims), and each diffracted light is detected by the diffracted light detecting means installed for each incident. You may comprise so that it may detect.

なお、これまで本発明の好ましい実施形態について説明してきたが、本発明の範囲は上述した実施形態に限定されるものではない。例えば、上記の実施例においては、上記のようにして設計された回折光学素子1および回折光学素子50の回折面を入射光の入射面とし、回折される回折光を検出するように構成されていたが、回折光学素子1および回折光学素子50の回折面を入射光の出射面とし、出射面からの回折光を検出するように構成してもよい。   Although the preferred embodiments of the present invention have been described so far, the scope of the present invention is not limited to the above-described embodiments. For example, in the above embodiment, the diffractive optical element 1 and the diffractive optical element 50 designed as described above are used as the incident light incident surface, and the diffracted diffracted light is detected. However, the diffractive surfaces of the diffractive optical element 1 and the diffractive optical element 50 may be configured to detect the diffracted light from the exit surface by using the exit surface of the incident light.

また、図5に基づく上記の説明では、回折光学素子1および回折光学素子50を透過した透過光を回折光として回折光検出器80で検出するように構成されているが、検出される回折光は透過光に限られるわけではなく、回折光学素子1で反射し回折光学素子50を透過した回折光、回折光学素子1を透過し回折光学素子50で反射した回折光、もしくは回折光学素子1および回折光学素子50で反射した回折光を回折光検出器80で検出するように構成してもよい。   In the above description based on FIG. 5, the diffracted light detector 80 detects the transmitted light transmitted through the diffractive optical element 1 and the diffractive optical element 50 as diffracted light. Is not limited to transmitted light, but is diffracted light reflected by diffractive optical element 1 and transmitted through diffractive optical element 50, diffracted light transmitted through diffractive optical element 1 and reflected by diffractive optical element 50, or diffractive optical element 1 and The diffracted light reflected by the diffractive optical element 50 may be detected by the diffracted light detector 80.

本発明に係る回折光学系を構成する回折光学素子の回折パターンを計算機合成ホログラムにより取得するためのアルゴリズムを示すブロック図で、(a)は従来から用いられている単色光用の位相回復アルゴリズムで、(b)は単色光用の位相回復アルゴリズムを応用して、白色光を入射光として回折光学素子の回折面に対する入射光の入射角度を変えた場合の回折パターンを取得するためのアルゴリズムである。It is a block diagram which shows the algorithm for acquiring the diffraction pattern of the diffractive optical element which comprises the diffractive optical system which concerns on this invention with a computer-synthesis hologram, (a) is the phase recovery algorithm for monochromatic light used conventionally. (B) is an algorithm for applying a phase recovery algorithm for monochromatic light and obtaining a diffraction pattern when white light is used as incident light and the incident angle of the incident light with respect to the diffraction surface of the diffractive optical element is changed. . 本発明に係る回折光学系を構成する回折光学素子の製造工程を(a)から(f)の順で示す図である。It is a figure which shows the manufacturing process of the diffractive optical element which comprises the diffractive optical system which concerns on this invention in order of (a) to (f). 上記回折光学素子の回折面の形状を示す模式断面図である。It is a schematic cross section which shows the shape of the diffraction surface of the said diffractive optical element. (a)は、上記回折光学素子の回折面に同じ入射角度で入射した2種類以上の波長の入射光による回折光を検出する回折光学系の模式図で、(b)は、各波長毎に異なる入射角度で上記回折光学素子の回折面に入射した2種類以上の入射光に対して各入射光毎の回折光を検出する回折光学系の模式図である。(A) is a schematic diagram of a diffractive optical system that detects diffracted light by incident light of two or more wavelengths incident on the diffraction surface of the diffractive optical element at the same incident angle, and (b) is for each wavelength. It is a schematic diagram of a diffractive optical system that detects diffracted light for each incident light with respect to two or more types of incident light incident on the diffraction surface of the diffractive optical element at different incident angles. 上記回折光学素子が設けられた認証手段を有して構成される認証装置を示す模式図である。It is a schematic diagram which shows the authentication apparatus comprised by having an authentication means provided with the said diffractive optical element.

符号の説明Explanation of symbols

1 回折光学素子(第1の回折光学素子) 2 基板 3 レジスト膜 5 回折溝 13,14 ビームスプリッター 15 ミラー 20 認証手段 21,22,31,32 アライメントマーク 50 回折光学素子(第2の回折光学素子) 60 駆動系 70,75 アライメント用検出器 80 回折光検出器(回折光検出手段) 100 認証装置 200 回折光学系 210 ミラー 220 カード 250 回折光学素子 280 透過光用検出器(回折光検出手段) 285 反射光用検出器(回折光検出手段) 300 回折光学系 320 カード 350 回折光学素子 380 透過光用検出器(回折光検出手段) DESCRIPTION OF SYMBOLS 1 Diffractive optical element (1st diffractive optical element) 2 Substrate 3 Resist film 5 Diffraction groove 13, 14 Beam splitter 15 Mirror 20 Authentication means 21, 22, 31, 32 Alignment mark 50 Diffractive optical element (2nd diffractive optical element) ) 60 Drive system 70, 75 Alignment detector 80 Diffracted light detector (diffracted light detecting means) 100 Authentication device 200 Diffraction optical system 210 Mirror 220 Card 250 Diffraction optical element 280 Transmitted light detector (diffracted light detecting means) 285 Reflected light detector (diffracted light detecting means) 300 Diffraction optical system 320 Card 350 Diffraction optical element 380 Transmitted light detector (diffracted light detecting means)

Claims (17)

回折面に入射する特定の複数の波長の入射光に対して各波長毎に異なる回折像を形成させるように前記回折面が構成されている回折光学素子と、
前記回折面で回折した回折光が入射するように配置され、前記回折面に同じ入射角度で入射した少なくとも2種類以上の波長の入射光に対して各入射光毎に異なる回折像を形成させる回折光を検出可能な回折光検出手段とを有することを特徴とする回折光学系。
A diffractive optical element in which the diffractive surface is configured to form different diffracted images for each wavelength with respect to incident light of a plurality of wavelengths incident on the diffractive surface;
Diffraction that is arranged so that the diffracted light diffracted by the diffractive surface is incident, and that forms different diffracted images for each incident light with respect to incident light having at least two types of wavelengths incident on the diffractive surface at the same incident angle. A diffractive optical system comprising: diffracted light detecting means capable of detecting light.
回折面に入射する特定の複数の波長の入射光に対して各波長毎に異なる回折像を形成させ、前記回折面に異なる入射角度で入射する入射光に対して前記入射角度毎に異なる回折像を形成させるように前記回折面が構成されている回折光学素子と、
前記回折面で回折した回折光が入射するように配置され、各波長毎に異なる入射角度で前記回折面に入射した少なくとも2種類以上の入射光に対して各入射光毎に異なる回折像を形成させる回折光を検出可能な回折光検出手段とを有することを特徴とする回折光学系。
Different diffraction images are formed for each wavelength with respect to incident light of a plurality of specific wavelengths incident on the diffractive surface, and different diffracted images for each incident angle with respect to incident light incident on the diffractive surface at different incident angles. A diffractive optical element in which the diffractive surface is configured to form:
It is arranged so that the diffracted light diffracted by the diffractive surface is incident, and different diffracted images are formed for each incident light with respect to at least two types of incident light incident on the diffractive surface at different incident angles for each wavelength. And a diffracted light detecting means capable of detecting the diffracted light to be diffracted.
前記回折光学素子の前記回折面に入射される入射光の波長幅が30nm以上であることを特徴とする請求項1もしくは2に記載の回折光学系。   The diffractive optical system according to claim 1 or 2, wherein a wavelength width of incident light incident on the diffractive surface of the diffractive optical element is 30 nm or more. 前記回折光学素子が、前記回折面が少なくとも2段以上の段数からなる階段を有して断面階段状に形成されたバイナリ光学素子で構成されていることを特徴とする1〜3のいずれかに記載の回折光学系。   Any of 1 to 3, wherein the diffractive optical element is composed of a binary optical element having a diffractive surface having a step having at least two steps and having a stepped cross section. The diffractive optical system described. 入射光の波長をλとしたとき、前記回折光学素子の前記階段の少なくとも1段の高さがλ以下であることを特徴とする請求項4に記載の回折光学系。   5. The diffractive optical system according to claim 4, wherein when the wavelength of incident light is λ, the height of at least one step of the diffractive optical element is λ or less. 前記回折光学素子の前記回折面を透過した透過光により前記回折像が形成されることを特徴とする請求項1〜5のいずれかに記載の回折光学系。   The diffractive optical system according to claim 1, wherein the diffracted image is formed by transmitted light transmitted through the diffractive surface of the diffractive optical element. 前記回折光学素子の前記回折面で反射した反射光により前記回折像が形成されることを特徴とする請求項1〜5のいずれかに記載の回折光学系。   6. The diffractive optical system according to claim 1, wherein the diffracted image is formed by reflected light reflected by the diffractive surface of the diffractive optical element. 前記回折光学素子の前記回折面を透過した透過光および前記回折面で反射した反射光により前記回折像が形成されることを特徴とする請求項1〜5のいずれかに記載の回折光学系。   6. The diffractive optical system according to claim 1, wherein the diffracted image is formed by transmitted light transmitted through the diffractive surface of the diffractive optical element and reflected light reflected by the diffractive surface. 前記回折光学素子の前記回折面が、印刷法、フォトリソグラフィー法、ナノプリント法、射出成形法もしくはガラスモールド法により形成されることを特徴とする請求項1〜8のいずれかに記載の回折光学系。   The diffractive optical element according to claim 1, wherein the diffractive surface of the diffractive optical element is formed by a printing method, a photolithography method, a nanoprint method, an injection molding method, or a glass mold method. system. 請求項1〜9のいずれかに記載の前記回折光学素子が第1の回折光学素子として設けられた認証手段と、
請求項1もしくは2に記載の前記回折光検出手段とを有して構成され、
請求項1〜9のいずれかに記載の前記回折光学素子が第2の回折光学素子として設けられた被認証対象を前記認証手段に対して近接させた状態に位置を合わせて、前記第1の回折光学素子の前記回折面に入射した入射光による前記第1の回折光学素子からの回折光を前記第2の回折光学素子の前記回折面に入射させ前記第2の回折光学素子からの回折光を前記回折光検出手段により検出することにより、前記被認証対象と前記認証手段との照合が可能であることを特徴とする認証装置。
Authentication means provided with the diffractive optical element according to any one of claims 1 to 9 as a first diffractive optical element;
The diffracted light detecting means according to claim 1 or 2,
The diffractive optical element according to any one of claims 1 to 9 is aligned with a state in which an authentication target provided as a second diffractive optical element is brought close to the authentication unit, Diffracted light from the first diffractive optical element is incident on the diffractive surface of the second diffractive optical element by incident light incident on the diffractive surface of the diffractive optical element, and is diffracted from the second diffractive optical element. By detecting the diffracted light by the diffracted light detecting means, it is possible to collate the authentication target with the authentication means.
前記認証手段が前記被認証対象の前記認証手段に対する位置決めを行う第1の位置決め手段を有し、
前記被認証対象が前記被認証対象の前記認証手段に対する位置決めを行う第2の位置決め手段を有していることを特徴とする請求項10に記載の認証装置。
The authentication means includes first positioning means for positioning the authentication target with respect to the authentication means,
The authentication apparatus according to claim 10, wherein the authentication target includes second positioning means for positioning the authentication target with respect to the authentication means.
位置決め用光線を第1の位置決め手段および第2の位置決め手段に照射することにより前記被認証対象が前記認証手段に対して光学的に位置決めされることを特徴とする請求項11に記載の認証装置。   The authentication apparatus according to claim 11, wherein the authentication target is optically positioned with respect to the authentication unit by irradiating the first positioning unit and the second positioning unit with a positioning beam. . 前記第1の位置決め手段が前記認証手段に少なくとも2箇所以上設けられ、前記第2の位置決め手段が前記被認証対象に少なくとも2箇所以上設けられていることを特徴とする請求項12に記載の認証装置。   The authentication according to claim 12, wherein at least two or more of the first positioning means are provided in the authentication means, and at least two or more of the second positioning means are provided in the authentication target. apparatus. 前記被認証対象の前記認証手段に対する理想的な位置決め位置との位置決め誤差が5μm以下である場合に前記被認証対象と前記認証手段との照合が可能であることを特徴とする請求項13に記載の認証装置。   14. The verification object and the authentication unit can be collated when a positioning error between the authentication target and the ideal positioning position of the authentication target with respect to the authentication unit is 5 μm or less. Authentication device. 前記被認証対象の前記認証手段に対する理想的な位置決め位置との位置決め誤差が2μm以下である場合に前記被認証対象と前記認証手段との照合が可能であることを特徴とする請求項13に記載の認証装置。   The verification target and the authentication unit can be collated when a positioning error between the authentication target and the ideal positioning position of the authentication target with respect to the authentication unit is 2 μm or less. Authentication device. 前記第1の回折光学素子の前記回折面に入射される照合用光線の波長と前記位置決め用光線の波長とが同一であることを特徴とする請求項12〜15のいずれかに記載の認証装置。   The authentication apparatus according to claim 12, wherein the wavelength of the collimating light beam incident on the diffractive surface of the first diffractive optical element is the same as the wavelength of the positioning light beam. . 前記第1の回折光学素子の前記回折面に入射される照合用光線の波長と前記位置決め用光線の波長とが異なることを特徴とする請求項12〜15のいずれかに記載の認証装置。   The authentication apparatus according to any one of claims 12 to 15, wherein a wavelength of the verification light beam incident on the diffraction surface of the first diffractive optical element is different from a wavelength of the positioning light beam.
JP2006115789A 2006-04-19 2006-04-19 Diffraction optics and authentication apparatus Pending JP2007286499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115789A JP2007286499A (en) 2006-04-19 2006-04-19 Diffraction optics and authentication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115789A JP2007286499A (en) 2006-04-19 2006-04-19 Diffraction optics and authentication apparatus

Publications (1)

Publication Number Publication Date
JP2007286499A true JP2007286499A (en) 2007-11-01

Family

ID=38758296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115789A Pending JP2007286499A (en) 2006-04-19 2006-04-19 Diffraction optics and authentication apparatus

Country Status (1)

Country Link
JP (1) JP2007286499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073299A1 (en) * 2012-11-12 2014-05-15 シャープ株式会社 Fresnel lens, fabrication method therefor, and sensing device
WO2019013211A1 (en) * 2017-07-11 2019-01-17 株式会社ダイセル Fresnel lens and production method for same
WO2020080169A1 (en) * 2018-10-15 2020-04-23 Agc株式会社 Diffractive optical element and illumination optical system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073299A1 (en) * 2012-11-12 2014-05-15 シャープ株式会社 Fresnel lens, fabrication method therefor, and sensing device
WO2019013211A1 (en) * 2017-07-11 2019-01-17 株式会社ダイセル Fresnel lens and production method for same
JP2019014209A (en) * 2017-07-11 2019-01-31 株式会社ダイセル Fresnel lens, and method for manufacturing the same
JP7169052B2 (en) 2017-07-11 2022-11-10 株式会社ダイセル Fresnel lens and manufacturing method thereof
WO2020080169A1 (en) * 2018-10-15 2020-04-23 Agc株式会社 Diffractive optical element and illumination optical system

Similar Documents

Publication Publication Date Title
US7262851B2 (en) Method and apparatus for detecting relative positional deviation between two objects
JP4454614B2 (en) Binary sine subwavelength diffraction grating as alignment mark
US8845317B2 (en) Alignment method, imprint method, alignment apparatus, and position measurement method
JP5600145B2 (en) Structure of level sensor for lithographic apparatus and device manufacturing method
US8208140B2 (en) Alignment system and alignment marks for use therewith
JP5232871B2 (en) Diffraction-based overlay metrology tool and method
CN108292038B (en) Objective lens system
JP5494577B2 (en) Illumination optical apparatus, exposure apparatus, and electronic device manufacturing method
JP4509131B2 (en) Alignment tool for lithography equipment
US20170106690A1 (en) Hybrid security device for security document or token
US8169703B1 (en) Monolithic arrays of diffraction gratings
CN108292108A (en) Measure target, method and apparatus, computer program and lithography system
JP2010067969A (en) Imprint lithography
Fallica et al. High-resolution grayscale patterning using extreme ultraviolet interference lithography
US10777440B2 (en) Detection device, imprint apparatus, planarization device, detection method, and article manufacturing method
JP4564976B2 (en) Lithographic apparatus, lens interferometer and device manufacturing method
JP6993782B2 (en) Imprinting equipment and article manufacturing method
JP7124212B2 (en) Apparatus and method for measuring mark position
CN111344636A (en) Marking, overlay target and alignment and overlay method
US10545416B2 (en) Detection apparatus, lithography apparatus, and method of manufacturing article
JP2007286499A (en) Diffraction optics and authentication apparatus
US20150213461A1 (en) Nano-stamp and matched reader for anti-counterfeiting applications
TW202113470A (en) Apparatus for and method of identifying reticle in a lithography apparatus
JP4725845B2 (en) Method for manufacturing diffractive optical element
JP4725846B2 (en) Method for manufacturing diffractive optical element