WO2014073268A1 - 排ガス処理装置及び方法 - Google Patents

排ガス処理装置及び方法 Download PDF

Info

Publication number
WO2014073268A1
WO2014073268A1 PCT/JP2013/074710 JP2013074710W WO2014073268A1 WO 2014073268 A1 WO2014073268 A1 WO 2014073268A1 JP 2013074710 W JP2013074710 W JP 2013074710W WO 2014073268 A1 WO2014073268 A1 WO 2014073268A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
conversion catalyst
dust
sulfuric acid
air
Prior art date
Application number
PCT/JP2013/074710
Other languages
English (en)
French (fr)
Inventor
哲 牛久
立人 長安
晴治 香川
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to IN3849DEN2015 priority Critical patent/IN2015DN03849A/en
Priority to CN201380057756.3A priority patent/CN104768631A/zh
Priority to US14/440,654 priority patent/US20150298055A1/en
Priority to KR1020157011683A priority patent/KR20150067292A/ko
Priority to EP13852572.0A priority patent/EP2918328A1/en
Publication of WO2014073268A1 publication Critical patent/WO2014073268A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8609Sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/70Condensing contaminants with coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the present invention relates to an exhaust gas treatment apparatus and method.
  • Nitrogen oxides (NOx), sulfur oxides (SOx), soot, and the like that are generated by fossil fuel combustion in thermal power plants and the like are contained in the flue gas (exhaust gas). Since these NOx, SOx, soot and the like cause air pollution, a thermal power plant having a coal fired boiler has a denitration device for removing NOx and a flue gas desulfurization device for removing SOx. An exhaust gas treatment device is provided.
  • the wet type limestone-gypsum method dominates the flue gas desulfurization equipment.
  • the spray method in which the limestone slurry is sprayed from the nozzle by the spray method and brought into gas-liquid contact with the exhaust gas is highly reliable. Many methods are used as a method of spraying slurry into a tower (Patent Document 1).
  • a dry-type desulfurization apparatus other than the wet-type system has a proposal to remove SO 2 by, for example, activated coke, but there are problems that performance is not sufficient, energy loss and utility are large.
  • an object of the present invention is to provide an exhaust gas treatment apparatus and method capable of performing desulfurization treatment in exhaust gas without using water like a wet type desulfurization apparatus.
  • the first invention of the present invention for solving the above-mentioned problems is an SO 2 ⁇ SO having a conversion catalyst provided in a flue for exhausting exhaust gas from a boiler and converting SO 2 in the exhaust gas into SO 3.
  • 3 is provided in the flue on the downstream side of the conversion catalyst part and the SO 2 / SO 3 conversion catalyst part, heat exchange is performed between the exhaust gas and air, and the temperature of the exhaust gas is set to an acid dew point or less, and the acid dew point or less
  • a heat exchanger that condenses SO 3 in the exhaust gas as sulfuric acid droplets dusted with dust
  • a dust collector that collects the sulfuric acid droplets dusted with dust in the exhaust gas.
  • an exhaust gas treatment apparatus according to the first aspect, wherein an air preheater is interposed upstream of the SO 2 ⁇ SO 3 conversion catalyst section.
  • a third invention is the exhaust gas treatment apparatus according to the first or second invention, further comprising an air supply line for supplying preheated air or boiler circulating water heat-exchanged by the heat exchanger to the boiler. .
  • the exhaust gas has a powder supply means for supplying powder between the SO 2 ⁇ SO 3 conversion catalyst section and the heat exchanger.
  • the processing unit In the processing unit.
  • the exhaust gas processing apparatus according to the fourth aspect, wherein the powder is limestone or dust-collected powder collected by the dust collector.
  • the sixth aspect of the invention is provided in a flue for discharging flue gas from the boiler, and SO 2 ⁇ SO 3 conversion catalyst process having a conversion catalyst that converts SO 2 in the flue gas to SO 3, the SO 2 ⁇ SO (3)
  • a heat exchange step provided in the flue on the downstream side of the conversion catalyst step, exchanging heat between the exhaust gas and air, and setting the temperature of the exhaust gas to an acid dew point or less, and within the heat exchanger, the acid dew point or less
  • a dust collection step of collecting the sulfuric acid droplets in the exhaust gas, which are covered with dust in the exhaust gas.
  • a seventh invention is an exhaust gas treatment method according to the sixth invention, further comprising an air preheating step on the upstream side of the SO 2 ⁇ SO 3 conversion catalyst step.
  • An eighth invention is an exhaust gas treatment method according to the sixth or seventh invention, wherein powder is supplied between the SO 2 ⁇ SO 3 conversion catalyst step and the heat exchange step.
  • SO 2 in the exhaust gas is converted to SO 3 by a catalyst, and the exhaust gas containing the converted SO 3 is heat-exchanged with air by a heat exchanger so that the exhaust gas temperature is below the acid dew point, Soot can be attached to the periphery of the sulfuric acid droplets, and the sulfuric acid covered with soot can be collected together with the soot by a dust collector and desulfurized in the exhaust gas.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of the exhaust gas treatment apparatus according to the second embodiment.
  • FIG. 3 is a schematic diagram of the exhaust gas treatment apparatus according to the third embodiment.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment apparatus according to a first embodiment.
  • an exhaust gas treatment apparatus 10 ⁇ / b> A according to the present embodiment is provided in a flue 13 that exhausts exhaust gas 12 from a boiler 11, and a denitration apparatus 14 that removes nitrogen oxides in the exhaust gas 12.
  • An SO 2 / SO 3 conversion catalyst unit 15 provided in a flue on the downstream side of the device 14 and having a conversion catalyst for converting SO 2 (sulfur dioxide) in the denitrated exhaust gas 12A into SO 3 (sulfur trioxide);
  • the heat exchanger is provided in the flue 13 on the downstream side of the SO 2 / SO 3 conversion catalyst unit 15 and exchanges heat between the exhaust gas 12B and the air 20 so that the temperature of the exhaust gas 12B passing through the catalyst is equal to or lower than the acid dew point.
  • the soot 31 is attached around the sulfuric acid droplet 30 in the exhaust gas which has become below the acid dew point, and the sulfuric acid 32 covered with this soot and the soot 31 in the exhaust gas 12C are And a dust collector 17 to collect.
  • F 1 is a pushing fan
  • F 2 is an attracting fan.
  • the exhaust gas 12A denitrated and discharged from the denitration device 14 has an exhaust gas temperature of, for example, about 300 to 400 ° C. At this temperature, the exhaust gas 12A is introduced into the SO 2 / SO 3 conversion catalyst unit 15 and SO 2 provided therein is converted into SO 2 . The conversion catalyst that converts to 3 oxidizes SO 2 to SO 3 . This SO 3 is still a gas body.
  • the converted exhaust gas 12B containing SO 3 is introduced into the heat exchanger 16 where heat exchange with the air 20 causes the temperature of the exhaust gas 12B to drop below the acid dew point (for example, 100 ° C.).
  • the heat exchanger 16 is a heat exchanger of a heat exchange type that directly exchanges heat between a gas and a gas, or an indirect heat exchange between a gas that is to be cooled and a gas that is to be warmed using a heat medium.
  • a heat exchange type heat exchanger or the like can be used.
  • SO 3 in the gas body contains water in the exhaust gas and becomes sulfuric acid (H 2 SO 4 ) droplets.
  • the sulfuric acid droplets in the exhaust gas 12B are covered with a large amount of soot contained in the exhaust gas 12B, and become sulfuric acid covered with soot.
  • the temperature of the exhaust gas is set to the acid dew point or lower, and the SO 3 in the exhaust gas having the acid dew point or lower is converted into sulfuric acid droplets covered with soot. I try to condense it.
  • the sulfuric acid covered with the soot is surrounded by countless soot around the sulfuric acid droplet, and the exhaust gas 12C containing the sulfuric acid covered with the soot is introduced into the dust collector 17. And in this dust collector 17, sulfuric acid is collected with soot, the desulfurization in exhaust gas is completed, and it becomes the purified exhaust gas 12D. Thereafter, the purified gas 12D by induced draft fan F 2, are sent to the stack 18.
  • air 20 is used as the heat exchange medium of the heat exchanger 16 and the preheated air 20A is sent to the boiler 11 side by the air supply line 21, but the boiler circulation is performed using water as the heat medium. It may be used for preheating water.
  • water may be used as a heat medium. As a result, the energy efficiency of the entire power plant can be improved.
  • the heat exchange medium since air having an atmospheric temperature is used as the heat exchange medium, it is not necessary to use a large amount of water as in a conventional wet desulfurization apparatus. Furthermore, since the mechanism for removing the sulfur content in the gas is based on condensation, moisture that mediates the neutralization reaction becomes unnecessary.
  • the recovered heat can be used for preheating boiler combustion air, and heat exchange efficiency is improved by exchanging heat up to 100 ° C. or lower than before. That is, conventionally, in heat exchange with an air preheater, when the temperature is lowered to 100 ° C. below the acid dew point, sulfurous acid and sulfuric acid corrosion occur, so heat exchange at 150 ° C. at most.
  • air when air is preheated, it can be lowered to 100 ° C. below the acid dew point, so that the energy exchange efficiency is improved by 50 ° C. compared to the conventional case. As a result, the energy efficiency of the power plant can be increased by 0.5% or more.
  • the power of the attracting fan F 2 that attracts the exhaust gas can be reduced.
  • the amount of SO 2 gas that passes through the heat exchanger and is released into the atmosphere can be kept low.
  • FIG. 2 is a schematic diagram of an exhaust gas treatment system according to Embodiment 2 of the present invention.
  • the exhaust gas treatment system 10 ⁇ / b > B of the present embodiment introduces limestone 41 that is powder into the flue 13 between the SO 2 / SO 3 conversion catalyst unit 15 and the heat exchanger 16.
  • a powder supply means 42 is provided.
  • the amount of dust that is sufficient to spray sulfuric acid is determined, when using heavy oil or coal with low ash content as fuel F, the amount of dust is measured in advance. As an example, limestone 41 is introduced.
  • the dust collection powder 17a such as limestone recovered as surplus and collected by the dust collector 17 may be partially recycled through the recycle line 17b and supplied as powder to the upstream of the heat exchanger 16. Good.
  • FIG. 3 is a schematic diagram of an exhaust gas treatment system according to Embodiment 3 of the present invention.
  • an air preheater 19 is further interposed between the denitration device 14 and the SO 2 / SO 3 conversion catalyst unit 15 in the first embodiment. I have to.
  • the air preheater 19 exchanges heat between the high-temperature exhaust gas 12A 1 and the air 20, and introduces the preheated air 20A after the heat exchange into the boiler 11.
  • the exhaust gas temperature introduced into the SO 2 / SO 3 conversion catalyst section 15 is lower than that in the first embodiment. . Therefore, in this embodiment, SO 2 ⁇ SO 3 conversion catalyst used in the SO 2 ⁇ SO 3 conversion catalyst unit 15 is to use a high catalyst catalytic activity at low temperatures (0.99 ° C.).
  • the exhaust gas 12B of the SO 2 / SO 3 conversion catalyst section 15 is also low in temperature, the amount of preheating of the air 20 in the heat exchanger 16 is small, but before the preheating air 20A is introduced into the boiler 11.
  • the air supply line 21 is passed through the air preheater 19, where it is preheated and then introduced into the boiler 11.
  • the line after the air preheater 19 is connected to the SO 2 / SO 3 conversion catalyst unit 15, the heat exchanger 16, and
  • the dust collector 17 By using the dust collector 17, the wet type can be converted into a desulfurization method using a heat exchanger that does not require moisture, and even in a plant without a wet desulfurization device, the downstream of the existing air preheater By bypassing from the duct, a desulfurization method using a heat exchanger can be additionally installed.
  • the desulfurization method using the heat exchanger according to the present invention which does not require moisture from the wet type, and the heat of the exhaust gas can be used effectively, so that the energy efficiency of the power plant is 0.5% It is possible to raise it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)

Abstract

ボイラ11からの排ガス12を排出する煙道13に設けられ、排ガス12中の窒素酸化物を除去する脱硝装置14と、脱硝装置14の後流側の煙道に設けられ、脱硝した排ガス12A中のSO2 (二酸化硫黄)をSO3(三酸化硫黄)に転換する転換触媒を有するSO2・SO3 転換触媒部15と、SO2・SO3転換触媒部15の後流側の煙道13に設けられ、排ガス12Bと空気20とを熱交換し、触媒を通過した排ガス12Bの温度を酸露点以下とする熱交換器16と、熱交換器16内で、酸露点以下となった排ガス中の硫酸液滴の周囲に煤塵を付着させ、この煤塵で覆われた硫酸と、排ガス12C中の煤塵とを捕集する集塵機17と、を有する排ガス処理装置であって、排ガス中のSO2 をSO3 に触媒により転換させ、この転換したSO3 を含む排ガスを熱交換器で空気と熱交換させて、排ガス温度を酸露点以下とし、排ガス中の硫酸液滴の周囲に煤塵を付着させ、煤塵で覆われた硫酸を、煤塵と共に集塵機で捕集し、排ガス中の脱硫をすることができるものである。

Description

排ガス処理装置及び方法
 本発明は、排ガス処理装置及び方法に関するものである。
 火力発電所等において化石燃料の燃焼に伴い発生する窒素酸化物(NOx)、硫黄酸化物(SOx)、煤塵等が排煙(排ガス)中に含まれている。これらのNOx、SOx、煤塵等は大気汚染の原因となるので、石炭焚ボイラを有する火力発電所等には、NOxを除去するための脱硝装置、SOxを除去するための排煙脱硫装置を有する排ガス処理装置が設けられている。
 ここで、排煙脱硫装置は、湿式方式の石灰石‐石膏法が主流を占めており、中でも石灰石スラリーをノズルからスプレ方式で噴霧して排ガスと気液接触させるスプレ方式は信頼性が高く、石灰石スラリーの塔内への噴霧方法として多く採用されている(特許文献1)。
特開2006-326575号公報
 しかしながら、湿式方式の脱硫装置は、脱硫性能に優れるものの、水消費量が増大する、という問題がある。
 湿式方式以外の乾式方式の脱硫装置は、例えば活性コークスによりSO2を除去することの提案があるが、性能が十分ではなかったり、エネルギーロス並びにユーティリティーが大きかったりする、という問題がある。
 近年、世界中での環境規制値の制約が厳しくなっているので、従来では設置していないような水が不足している地域においても、脱硫装置の設置が求められるようになってきている。
 そこで、湿式方式の脱硫装置のような水を使用せずに、排ガス中の脱硫処理を行うことができる排ガス処理装置の出現が切望されている。
 本発明は、前記問題に鑑み、湿式方式の脱硫装置のような水を使用せずに、排ガス中の脱硫処理を行うことができる排ガス処理装置及び方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、ボイラからの排ガスを排出する煙道に設けられ、前記排ガス中のSO2をSO3に転換する転換触媒を有するSO2・SO3転換触媒部と、前記SO2・SO3転換触媒部の後流側の煙道に設けられ、前記排ガスと空気とを熱交換し、前記排ガスの温度を酸露点以下とし、この酸露点以下とされた前記排ガス中のSO3を、煤塵にまぶされた硫酸液滴として凝縮させる熱交換器と、前記排ガス中の煤塵にまぶされた硫酸液滴を捕集する集塵機と、を有することを特徴とする排ガス処理装置にある。
 第2の発明は、第1の発明において、前記SO2・SO3転換触媒部の前流に、空気予熱器を介装することを特徴とする排ガス処理装置にある。
 第3の発明は、第1又は2の発明において、前記熱交換器で熱交換された予熱空気又はボイラ循環水を前記ボイラに供給する空気供給ラインを有することを特徴とする排ガス処理装置にある。
 第4の発明は、第1又は2の発明において、前記SO2・SO3転換触媒部と前記熱交換器との間に、粉体を供給する粉体供給手段を有することを特徴とする排ガス処理装置にある。
 第5の発明は、第4の発明において、前記粉体が、石灰石又は前記集塵機で集塵された集塵粉体であることを特徴とする排ガス処理装置にある。
 第6の発明は、ボイラからの排ガスを排出する煙道に設けられ、前記排ガス中のSO2をSO3に転換する転換触媒を有するSO2・SO3転換触媒工程と、前記SO2・SO3転換触媒工程の後流側の煙道に設けられ、前記排ガスと空気とを熱交換し、前記排ガスの温度を酸露点以下とする熱交換工程と、前記熱交換器内で、酸露点以下となった前記排ガス中の硫酸液滴を、前記排ガス中の煤塵にまぶして捕集する集塵工程と、を有することを特徴とする排ガス処理方法にある。
 第7の発明は、第6の発明において、前記SO2・SO3転換触媒工程の前流側に、空気予熱工程を有することを特徴とする排ガス処理方法にある。
 第8の発明は、第6又は7の発明において、前記SO2・SO3転換触媒工程と前記熱交換工程との間に、粉体を供給することを特徴とする排ガス処理方法にある。
 本発明によれば、排ガス中のSO2をSO3に触媒により転換させ、この転換したSO3を含む排ガスを熱交換器で空気と熱交換させて、排ガス温度を酸露点以下とし、排ガス中の硫酸液滴の周囲に煤塵を付着させ、煤塵で覆われた硫酸を、煤塵と共に集塵機で捕集し、排ガス中の脱硫をすることができる。
図1は、実施例1に係る排ガス処理装置の概略図である。 図2は、実施例2に係る排ガス処理装置の概略図である。 図3は、実施例3に係る排ガス処理装置の概略図である。
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、実施例1に係る排ガス処理装置の概略図である。図1に示すように、本実施例に係る排ガス処理装置10Aは、ボイラ11からの排ガス12を排出する煙道13に設けられ、排ガス12中の窒素酸化物を除去する脱硝装置14と、脱硝装置14の後流側の煙道に設けられ、脱硝した排ガス12A中のSO2(二酸化硫黄)をSO3(三酸化硫黄)に転換する転換触媒を有するSO2・SO3転換触媒部15と、SO2・SO3転換触媒部15の後流側の煙道13に設けられ、排ガス12Bと空気20とを熱交換し、触媒を通過した排ガス12Bの温度を酸露点以下とする熱交換器16と、熱交換器16内で、酸露点以下となった排ガス中の硫酸液滴30の周囲に煤塵31を付着させ、この煤塵で覆われた硫酸32と、排ガス12C中の煤塵31とを捕集する集塵機17と、を有するものである。図中、F1は押込ファン、F2は誘引ファンを図示する。
 脱硝装置14からの脱硝排出された排ガス12Aは、排ガス温度が例えば300~400℃前後であり、この温度でSO2・SO3転換触媒部15に導入され、内部に設けられたSO2をSO3に転換する転換触媒により、SO2が酸化されてSO3となる。
 このSO3はまだガス体である。
 次いで、この転換されたSO3を含む排ガス12Bは、熱交換器16に導入され、ここで空気20と熱交換することで、排ガス12Bは酸露点以下(例えば100℃)まで温度降下される。
 ここで、前記熱交換器16は、ガスとガスとを接触させる直接熱交換する熱交換方式の熱交換器や、冷やしたいガスと温めたいガスとを熱媒を用いて、間接熱交換する間接熱交換方式の熱交換器等を用いることができる。
 この温度降下された結果、ガス体のSO3が排ガス中の水分を含み硫酸(H2SO4)液滴となる。
 ここで、排ガス12B中の硫酸液滴は、排ガス12B中に含まれる多量の煤塵によりまぶされ、煤塵で覆われた硫酸となる。
 このように、本発明によれば、熱交換器16で、排ガスの温度を酸露点以下とし、この酸露点以下となった前記排ガス中のSO3を、煤塵にまぶされた硫酸液滴として凝縮させるようにしている。
 この煤塵で覆われた硫酸は、硫酸液滴の周囲が無数の煤塵により包まれており、この煤塵で覆われた硫酸を含む排ガス12Cは、集塵機17へ導入される。そして、この集塵機17において、煤塵と共に硫酸が捕集され、排ガス中の脱硫が完了し、浄化された排ガス12Dとなる。
 その後、浄化ガス12Dは誘引ファンF2により、煙突18に送られる。
 本実施例では、熱交換器16の熱交換媒体として、空気20を用いて、予熱空気20Aを空気供給ライン21により、ボイラ11側へ送っているが、熱媒体として水を用いて、ボイラ循環水の予熱用に用いるようにしてもよい。
 また、空気20と排ガス12Bの熱交換をする際に、熱媒体として水を用いるようにしてもよい。
 この結果、発電所全体のエネルギー効率の向上を図ることができる。
 本発明によれば、熱交換媒体として大気温度の空気を用いるようにしているので、従来の湿式脱硫装置のような多量の水を用いることが不要となる。
 さらに、ガス中硫黄分を除去する機構が凝縮によるので、中和反応の媒介となる水分が不要となる。
 また、回収した熱をボイラ燃焼空気の予熱用に用いることができ、従来よりも100℃以下まで熱交換することで、熱交換効率が向上する。すなわち、従来では、空気予熱器での熱交換では、酸露点以下の100℃まで低下させると、亜硫酸や硫酸腐食が発生するので、せいぜい150℃での熱交換であった。
 本発明では、空気を予熱する際に、酸露点以下の100℃まで降下させることができるので、従来よりも50℃分エネルギー交換効率が向上することとなる。
 この結果、発電所のエネルギー効率を0.5%以上上昇させることが可能となる。
 また、排ガス12を100℃以下まで冷却することで、排ガスを誘引する誘引ファンF2の動力を低減させることができる。
 また、本発明では、SO2をSO3へ転換する転換触媒を用いることで、熱交換器を通過して大気中に放出されるSO2ガスの量を低く抑えることができる。
 次に、本発明の実施例2に係る排ガス処理装置について説明する。なお、実施例1と同一構成部材には同一符号を付して重複した説明は省略する。
 図2は、本発明の実施例2に係る排ガス処理システムの概略図である。
 図2に示すように、本実施例の排ガス処理システム10Bは、SO2・SO3転換触媒部15と熱交換器16との間の煙道13中に、粉体である石灰石41を導入する粉体供給手段42が設けられている。
 ボイラ11の燃料Fとして、石炭を用いる場合には、排ガス12中の煤塵の量は膨大であるので、問題はないが、燃料Fとして例えば重油や灰分の少ない石炭等を用いる場合、その重油の種類によって、排ガス12中の煤塵量が少ない場合がある。
 この場合には、熱交換器16での煤塵31による硫酸液滴30の被覆が完全とならない場合がある。
 このため、石灰石41を導入して、煤塵31と石灰石41とにより硫酸液滴30の周囲を被覆してサラサラ状態で、集塵機17に送って、捕集するようにしている。
 ここで、硫酸をまぶすに十分な煤塵量は決まっているため、燃料Fとして重油や灰分の少ない石炭を用いる場合には、煤塵量を予め計測し、不足する場合には、必要量の粉体、例として石灰石41を導入するようにしている。
 また、余剰となり集塵機17にて回収された石灰石等の集塵粉体17aは、リサイクルライン17bを介して、一部リサイクルされて熱交換器16の前流に粉体として供給するようにしてもよい。
 次に、本発明の実施例3に係る排ガス処理装置について説明する。なお、実施例1と同一構成部材には同一符号を付して重複した説明は省略する。
 図3は、本発明の実施例3に係る排ガス処理システムの概略図である。
 図3に示すように、本実施例の排ガス処理システム10Cは、実施例1において、さらに脱硝装置14とSO2・SO3転換触媒部15との間に、空気予熱器19を介装するようにしている。
 この空気予熱器19で、高温排ガス12A1と空気20とを熱交換して、熱交換後の予熱空気20Aをボイラ11へ導入している。
 本実施例では、空気予熱器19により高温排ガス12A1を150℃の低温排ガス12A2としているので、SO2・SO3転換触媒部15に導入される排ガス温度は、実施例1よりも低くなる。よって、本実施例では、SO2・SO3転換触媒部15で用いるSO2・SO3転換触媒は、低温(150℃)での触媒活性が高い触媒を用いるようにしている。
 また、SO2・SO3転換触媒部15の排ガス12Bも低温であるので、熱交換器16での空気20の予熱量は小さいものとなるが、予熱空気20Aは、ボイラ11へ導入する前に、空気供給ライン21を空気予熱器19内に通過させ、ここで予熱した後、ボイラ11へ導入するようにしている。
 また、この実施例では、空気予熱器19を設置した従来の湿式脱硫装置を備えた排ガス処理装置において、空気予熱器19以降のラインをSO2・SO3転換触媒部15、熱交換器16及び集塵機17とすることで、湿式方式から水分不要な熱交換器を用いた脱硫方式に形式変換することができるし、湿式脱硫装置の設置されていないプラントにおいても、既存の空気予熱器後流のダクトからバイパスすることで、熱交換器を用いた脱硫方式を追設することができる。
 よって、既設の排ガス処理設備においても、湿式形式から水分不要な本発明の熱交換器による脱硫方式とし、さらに排ガスの熱を有効利用することができるので、発電所のエネルギー効率を0.5%以上上昇させることが可能となる。
 10A~10C 排ガス処理装置
 11 ボイラ
 12、12A~12D 排ガス
 13 煙道
 14 脱硝装置
 15 SO2・SO3転換触媒部
 16 熱交換器
 17 集塵機
 18 煙突
 19 空気予熱器
 20 空気
 20A 予熱空気
 30 硫酸液滴
 31 煤塵
 32 煤塵で覆われた硫酸

Claims (8)

  1.  ボイラからの排ガスを排出する煙道に設けられ、前記排ガス中のSO2をSO3に転換する転換触媒を有するSO2・SO3転換触媒部と、
     前記SO2・SO3転換触媒部の後流側の煙道に設けられ、前記排ガスと空気とを熱交換し、前記排ガスの温度を酸露点以下とし、この酸露点以下とされた前記排ガス中のSO3を、煤塵にまぶされた硫酸液滴として凝縮させる熱交換器と、
     前記排ガス中の煤塵にまぶされた硫酸液滴を捕集する集塵機と、を有することを特徴とする排ガス処理装置。
  2.  請求項1において、
     前記SO2・SO3転換触媒部の前流に、空気予熱器を介装することを特徴とする排ガス処理装置。
  3.  請求項1又は2において、
     前記熱交換器で熱交換された予熱空気又はボイラ循環水を前記ボイラに供給する空気供給ラインを有することを特徴とする排ガス処理装置。
  4.  請求項1又は2において、
     前記SO2・SO3転換触媒部と前記熱交換器との間に、粉体を供給する粉体供給手段を有することを特徴とする排ガス処理装置。
  5.  請求項4において、
     前記粉体が、石灰石又は前記集塵機で集塵された集塵粉体であることを特徴とする排ガス処理装置。
  6.  ボイラからの排ガスを排出する煙道に設けられ、前記排ガス中のSO2をSO3に転換する転換触媒を有するSO2・SO3転換触媒工程と、
     前記SO2・SO3転換触媒工程の後流側の煙道に設けられ、前記排ガスと空気とを熱交換し、前記排ガスの温度を酸露点以下とする熱交換工程と、
     前記熱交換器内で、酸露点以下となった前記排ガス中の硫酸液滴を、前記排ガス中の煤塵にまぶして捕集する集塵工程と、を有することを特徴とする排ガス処理方法。
  7.  請求項6において、
     前記SO2・SO3転換触媒工程の前流側に、空気予熱工程を有することを特徴とする排ガス処理方法。
  8.  請求項6又は7において、
     前記SO2・SO3転換触媒工程と前記熱交換工程との間に、粉体を供給することを特徴とする排ガス処理方法。
PCT/JP2013/074710 2012-11-09 2013-09-12 排ガス処理装置及び方法 WO2014073268A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN3849DEN2015 IN2015DN03849A (ja) 2012-11-09 2013-09-12
CN201380057756.3A CN104768631A (zh) 2012-11-09 2013-09-12 废气处理装置及方法
US14/440,654 US20150298055A1 (en) 2012-11-09 2013-09-12 Flue gas treatment system and method
KR1020157011683A KR20150067292A (ko) 2012-11-09 2013-09-12 배기가스 처리장치 및 방법
EP13852572.0A EP2918328A1 (en) 2012-11-09 2013-09-12 Exhaust gas treatment system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-247788 2012-11-09
JP2012247788A JP2014094352A (ja) 2012-11-09 2012-11-09 排ガス処理装置及び方法

Publications (1)

Publication Number Publication Date
WO2014073268A1 true WO2014073268A1 (ja) 2014-05-15

Family

ID=50684385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074710 WO2014073268A1 (ja) 2012-11-09 2013-09-12 排ガス処理装置及び方法

Country Status (7)

Country Link
US (1) US20150298055A1 (ja)
EP (1) EP2918328A1 (ja)
JP (1) JP2014094352A (ja)
KR (1) KR20150067292A (ja)
CN (1) CN104768631A (ja)
IN (1) IN2015DN03849A (ja)
WO (1) WO2014073268A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104307351A (zh) * 2014-10-29 2015-01-28 中冶华天工程技术有限公司 烧结烟气脱硫脱硝方法
US20150068189A1 (en) * 2013-09-11 2015-03-12 Mitsubishi Hitachi Power Systems, Ltd. Mercury removal system, gasification system, gasification combined power generation system and mercury removal method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696947B (zh) * 2015-02-15 2017-03-01 北京福源天航科技有限公司 一种链条炉燃煤催化剂循环利用方法
DE102015003255A1 (de) * 2015-03-16 2016-09-22 Man Diesel & Turbo Se Verfahren zur Abgasnachbehandlung und Abgasnachbehandlungssystem
CN107008146A (zh) * 2017-05-27 2017-08-04 盐城市兰丰环境工程科技有限公司 一种脱硫脱硝高效率烟气净化设备
CN107537316A (zh) * 2017-09-19 2018-01-05 中国大唐集团科学技术研究院有限公司华中分公司 烟道脱硫系统及方法、烟气催化反应装置
CN109224832B (zh) * 2018-11-26 2024-03-12 中冶焦耐(大连)工程技术有限公司 一种焦炉烟气脱硫除尘系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225624A (ja) * 1984-04-23 1985-11-09 Babcock Hitachi Kk 硫黄酸化物含有ガスの処理方法
JPH11347363A (ja) * 1998-06-09 1999-12-21 Mitsubishi Heavy Ind Ltd 脱硫反応器の触媒パック構造
JP2000070666A (ja) * 1998-08-27 2000-03-07 Chiyoda Corp 排煙脱硫方法
JP2006326575A (ja) 2005-04-26 2006-12-07 Mitsubishi Heavy Ind Ltd 排ガス処理装置および排ガス処理方法
WO2008078721A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
JP2009291734A (ja) * 2008-06-06 2009-12-17 Hitachi Plant Technologies Ltd 排ガス処理装置およびその方法
JP2011110480A (ja) * 2009-11-25 2011-06-09 Babcock Hitachi Kk 酸素燃焼システムの排ガス処理装置
JP2013142501A (ja) * 2012-01-11 2013-07-22 Babcock Hitachi Kk 排ガス処理装置及び排ガス処理方法
JP2013202422A (ja) * 2012-03-27 2013-10-07 Babcock Hitachi Kk 石炭焚ボイラの燃焼排ガス処理方法及び装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189309A (en) * 1978-03-14 1980-02-19 Hoekstra Irenus A Desulfurization of flue gas
US4487139A (en) * 1979-10-04 1984-12-11 Heat Exchanger Industries, Inc. Exhaust gas treatment method and apparatus
US4526112A (en) * 1982-08-10 1985-07-02 Heat Exchanger Industries, Inc. Heat exchanger method and apparatus
DE3601378A1 (de) * 1986-01-18 1987-07-23 Degussa Verfahren zur reinigung von oxide des stickstoffs und schwefels enthaltenden abgasen aus verbrennungsanlagen
US5198201A (en) * 1988-03-08 1993-03-30 Johnson Arthur F Removal of sulphur and nitrogen oxides from flue gases
DE3810337A1 (de) * 1988-03-26 1989-10-05 Metallgesellschaft Ag Verfahren zur reinigung von rauchgasen
US5244642A (en) * 1992-06-18 1993-09-14 The Chemithon Corporation Method for conditioning flue gas
US5554350A (en) * 1994-12-15 1996-09-10 Combustion Engineering, Inc. Air pollution control and heat recovery system and process for coal fired power plant
CN1094065C (zh) * 1998-11-13 2002-11-13 中国石油化工集团公司 一种含硫氧化物工业废气的处理方法
CN1111078C (zh) * 1999-12-30 2003-06-11 赵善茂 一种锅炉烟气的综合利用方法
US8282901B2 (en) * 2010-07-08 2012-10-09 Air Products And Chemicals, Inc. Integration of catalytic CO2 oxidation and oxyfuel sour compression
WO2013044937A1 (en) * 2011-09-29 2013-04-04 Haldor Topsøe A/S Sulphuric acid production with recycle of desulphurized gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225624A (ja) * 1984-04-23 1985-11-09 Babcock Hitachi Kk 硫黄酸化物含有ガスの処理方法
JPH11347363A (ja) * 1998-06-09 1999-12-21 Mitsubishi Heavy Ind Ltd 脱硫反応器の触媒パック構造
JP2000070666A (ja) * 1998-08-27 2000-03-07 Chiyoda Corp 排煙脱硫方法
JP2006326575A (ja) 2005-04-26 2006-12-07 Mitsubishi Heavy Ind Ltd 排ガス処理装置および排ガス処理方法
WO2008078721A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
JP2009291734A (ja) * 2008-06-06 2009-12-17 Hitachi Plant Technologies Ltd 排ガス処理装置およびその方法
JP2011110480A (ja) * 2009-11-25 2011-06-09 Babcock Hitachi Kk 酸素燃焼システムの排ガス処理装置
JP2013142501A (ja) * 2012-01-11 2013-07-22 Babcock Hitachi Kk 排ガス処理装置及び排ガス処理方法
JP2013202422A (ja) * 2012-03-27 2013-10-07 Babcock Hitachi Kk 石炭焚ボイラの燃焼排ガス処理方法及び装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068189A1 (en) * 2013-09-11 2015-03-12 Mitsubishi Hitachi Power Systems, Ltd. Mercury removal system, gasification system, gasification combined power generation system and mercury removal method
US9540577B2 (en) * 2013-09-11 2017-01-10 Mitsubishi Hitachi Power Systems, Ltd. Mercury removal system, gasification system, gasification combined power generation system and mercury removal method
CN104307351A (zh) * 2014-10-29 2015-01-28 中冶华天工程技术有限公司 烧结烟气脱硫脱硝方法

Also Published As

Publication number Publication date
JP2014094352A (ja) 2014-05-22
KR20150067292A (ko) 2015-06-17
US20150298055A1 (en) 2015-10-22
IN2015DN03849A (ja) 2015-10-02
CN104768631A (zh) 2015-07-08
EP2918328A1 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2014073268A1 (ja) 排ガス処理装置及び方法
US9857125B2 (en) Denitration and waste heat recovery integrated furnace
CN210035516U (zh) 危废焚烧烟气处理装置
CN104759192A (zh) 一种低成本燃煤烟气多种污染物超低排放系统及方法
CN106940025A (zh) 燃煤锅炉烟气净化及余热回收处理系统及方法
WO2014103682A1 (ja) 排ガス処理設備およびこれを用いるガスタービン発電システム
CN210021683U (zh) 回转窑烟气处理装置
CN102980198A (zh) 水洗凝结式烟气三回收装置
CN110075681B (zh) 一种适用于水泥窑烟气的干法脱硫脱硝装置及方法
US20110308436A1 (en) System and Method for Improved Heat Recovery from Flue Gases with High SO3 Concentrations
CN110354670A (zh) 一种炭黑尾气锅炉烟气脱白系统和方法
CN205627628U (zh) 一种低温焦炉烟气脱硫脱硝一体化装置
CN104791817A (zh) 一种锅炉烟道的烟气脱硝脱硫的装置
CN103611417B (zh) 一种焦炉废气湿法脱硝方法
CN113769551A (zh) 用于生物质电厂烟气的低温脱硫脱硝方法和系统
CN206755210U (zh) 燃煤锅炉烟气净化及余热回收处理系统
CN102755821A (zh) 炭素煅烧炉废气脱硫除尘方法及其装置
EP0797477A1 (en) Air pollution control and heat recovery system
CN109731472B (zh) 节能锅炉烟气净化系统及方法
CN109529621B (zh) 基于催化氧化和深度冷凝的半干法脱硫脱硝脱汞装置及方法
CN111135698A (zh) 一种烧结烟气脱硫、消白、脱硝综合治理系统及工艺
CN208406572U (zh) 一种低温烟气脱硫脱硝消白系统
CN202315634U (zh) 干式高效节能多污染物烟气净化系统
CN214287485U (zh) 钙炭法烟气脱硫脱硝装置
CN101746737A (zh) 一种硫酸的制备方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011683

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440654

Country of ref document: US

Ref document number: 2013852572

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE