WO2014073158A1 - Luminous flux control member, light emitting device, illumination device and molding die - Google Patents

Luminous flux control member, light emitting device, illumination device and molding die Download PDF

Info

Publication number
WO2014073158A1
WO2014073158A1 PCT/JP2013/005964 JP2013005964W WO2014073158A1 WO 2014073158 A1 WO2014073158 A1 WO 2014073158A1 JP 2013005964 W JP2013005964 W JP 2013005964W WO 2014073158 A1 WO2014073158 A1 WO 2014073158A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresnel lens
light
virtual
lens portion
light emitting
Prior art date
Application number
PCT/JP2013/005964
Other languages
French (fr)
Japanese (ja)
Inventor
齊藤 共啓
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2014073158A1 publication Critical patent/WO2014073158A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units
    • G03B2215/0589Diffusors, filters or refraction means
    • G03B2215/0592Diffusors, filters or refraction means installed in front of light emitter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light flux controlling member for controlling the light distribution of light emitted from a light emitting element, a light emitting device and an illuminating device having the light flux controlling member, and a mold for molding the light flux controlling member.
  • LED flash having a light emitting diode (hereinafter also referred to as "LED”) as a light source
  • LED light emitting diode
  • a combination of an LED and a Fresnel lens is well known (see, for example, Patent Document 1).
  • FIG. 1A is a cross-sectional view of a light emitting device described in Patent Document 1.
  • a light emitting device 10 described in Patent Document 1 includes a substrate 20, a light source substrate 21, a light source 30 including a light emitting element and a phosphor, and a Fresnel lens 40.
  • the Fresnel lens 40 is disposed on the substrate 20 so as to face the light emitting surface of the light source 30.
  • FIG. 1B is a cross-sectional view of the Fresnel lens 40.
  • a refractive Fresnel lens portion 41 and a reflective Fresnel lens portion 42 are formed on one surface of the Fresnel lens 40.
  • Each of the refractive Fresnel lens portion 41 and the reflective Fresnel lens portion 42 has a plurality of annular projections arranged concentrically.
  • the refractive Fresnel lens unit 41 is formed at a position facing the light source 30.
  • the reflective Fresnel lens unit 42 is formed around the refractive Fresnel lens unit 41 so as to surround the light source 30.
  • the surface on which the refractive Fresnel lens portion 41 and the reflective Fresnel lens portion 42 are formed functions as an incident area 43, and the surface on the opposite side of the incident area 43 functions as an output area 44.
  • light emitted from the light source 30 at a small angle with respect to the optical axis is refracted in a predetermined direction by the refractive Fresnel lens unit 41 and emitted from the emission region 44.
  • light emitted from the light source 30 at a large angle with respect to the optical axis enters from the incident surface 45 of the reflective Fresnel lens unit 42, is reflected by the reflective surface 46 in a predetermined direction, and is emitted from the emission region 44 Ru.
  • the light emitting device 10 described in Patent Document 1 controls the light distribution of light emitted from the light source 30 using the Fresnel lens 40 having the refractive Fresnel lens portion 41 and the reflective Fresnel lens portion 42. ing.
  • the shape of the imaging area of the imaging camera is a square. Therefore, in order to obtain a clear captured image, the light emitting device preferably illuminates the irradiated region in a square shape.
  • the four corners of the irradiation area may be dark.
  • it is going to irradiate light fully to four corners of a field to be irradiated since it is necessary to spread light, useless light will be generated.
  • the Fresnel lens of Patent Document 1 it is not possible to uniformly and efficiently irradiate the light emitted from the light emitting element to the quadrangular irradiated area.
  • the light flux controlling member is a light flux controlling member for controlling the light distribution of light emitted from the light emitting element, and includes an incident area to which light emitted from the light emitting element is incident, and light incident from the incident area.
  • An emission area for emitting light, the incident area intersects the optical axis of the light emitting element, and a part of the light emitted from the light emitting element is made incident, and the incident light is directed to the emission area
  • the light emitting device further includes a refracting portion that refracts light and a Fresnel lens portion positioned outside the refracting portion, and the Fresnel lens portion includes an incident surface on which a part of light emitted from the light emitting element is incident, and the incident surface And a plurality of ridges formed in pairs and having a reflection surface for reflecting incident light toward the emission region, the plurality of ridges being similar to each other in plan view, concentric, and each side being parallel Arranged to be They are arranged on
  • the light emitting device of the present invention has a light emitting element and the light flux controlling member of the present invention.
  • the lighting device of the present invention includes the light emitting device of the present invention and a cover that diffuses and transmits the light emitted from the light emitting device.
  • the molding die of the present invention is a molding die for molding the light flux controlling member of the present invention, and has a Fresnel lens portion molding region for molding the Fresnel lens portion, and the Fresnel lens portion molding region is It has a plurality of concave streaks arranged on each side of a plurality of virtual quadrangles which are similar to each other in plan view and are arranged concentrically and parallel to each side, and on each diagonal of the virtual quadrilateral, A groove portion is disposed which separates the groove arranged on one side of the virtual quadrangle and the groove arranged on the other side adjacent to the side in the virtual square.
  • the light emitted from the light emitting element can be uniformly and efficiently irradiated to the rectangular light receiving region.
  • the illumination device of the present invention can illuminate light in a square-shaped irradiation area uniformly and efficiently.
  • FIGS. 1A and 1B are diagrams showing the configuration of the light emitting device described in Patent Document 1.
  • FIG. FIG. 1 is a cross-sectional view of a light emitting device according to Embodiment 1.
  • 3A to 3D are diagrams showing the configuration of the light flux controlling member according to the first embodiment.
  • 4A to 4C are cross-sectional views of the light flux controlling member according to the first embodiment.
  • 5A to 5C are diagrams showing the configuration of the light flux controlling member of the comparative example.
  • 6A to 6D are diagrams showing simulation results of illuminance distribution using the light emitting device of the comparative example.
  • 7A and 7B are optical path diagrams in the light emitting device according to Embodiment 1.
  • FIG. 1 is a cross-sectional view of a light emitting device according to Embodiment 1.
  • 3A to 3D are diagrams showing the configuration of the light flux controlling member according to the first embodiment.
  • 4A to 4C are cross-sectional views of the light flux
  • FIG. 8A and 8B are optical path diagrams of the light emitting device according to the first embodiment.
  • 9A and 9B are optical path diagrams in the light emitting device according to Embodiment 1.
  • FIG. 10A and 10B are optical path diagrams in the light emitting device according to the first embodiment.
  • 11A to 11D are diagrams showing simulation results of illuminance distribution using the light emitting device according to the first embodiment.
  • 12A to 12D are diagrams showing simulation results of illuminance distribution using the light emitting device according to the first embodiment.
  • 13A to 13D are diagrams showing simulation results of illuminance distribution using the light emitting device according to the first embodiment.
  • 14A to 14D are diagrams showing simulation results of illuminance distribution using the light emitting device according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a lighting device according to Embodiment 1.
  • 16A and 16B are diagrams showing the configuration of the light flux controlling member according to the second embodiment.
  • 17A to 17D are diagrams showing the configuration of a light flux controlling member according to Embodiment 2.
  • FIG. 18A to 18H are cross-sectional views of a light flux controlling member according to the second embodiment.
  • 19A to 19C are diagrams showing the configuration of a forming die used for forming the light flux controlling member according to the second embodiment.
  • 20A to 20D are diagrams showing the configuration of a forming die used for forming the light flux controlling member according to the second embodiment.
  • 21A to 21H are cross-sectional views of a forming die used for forming the light flux controlling member according to the second embodiment.
  • FIGS. 22A and 22B are diagrams showing the configuration of a light flux controlling member according to Embodiment 3.
  • FIG. 23A to 23D are diagrams showing the configuration of a light flux controlling member according to Embodiment 3.
  • FIG. 24A to 24H are cross-sectional views of a light flux controlling member according to the third embodiment.
  • 25A to 25C are diagrams showing a configuration of a forming die used for forming the light flux controlling member according to the third embodiment.
  • 26A to 26C are diagrams showing the configuration of a forming die used for forming the light flux controlling member according to the third embodiment.
  • FIGS. 27A to 27H are cross-sectional views of a forming die used to form the light flux controlling member according to the third embodiment.
  • FIG. 2 is a cross-sectional view of the light emitting device 100 according to Embodiment 1 of the present invention.
  • the light emitting device 100 includes a light emitting element 120 and a light flux control member 140.
  • the light emitting element 120 is, for example, a light emitting diode (LED) such as a white light emitting diode.
  • the light flux controlling member 140 controls the light distribution of the light emitted from the light emitting element 120.
  • the light flux controlling member 140 is arranged such that its central axis CA coincides with the optical axis LA of the light emitting element 120.
  • the light flux control member 140 may be formed by injection molding.
  • the material of the light flux controlling member 140 is not particularly limited as long as it can pass light of a desired wavelength.
  • the material of the light flux controlling member 140 is a light transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), epoxy resin (EP), or glass.
  • 3 and 4 are diagrams showing the configuration of the light flux controlling member 140 according to the present embodiment.
  • 3A is a plan view of the light flux controlling member 140
  • FIG. 3B is a side view
  • FIG. 3C is a bottom view
  • FIG. 3D is a bottom view omitting the refracting portion 144 and the Fresnel lens portion 145.
  • 4A is a cross-sectional view taken along the line AA shown in FIG. 3C
  • FIG. 4B is a cross-sectional view taken along the line BB
  • FIG. 4C is an enlarged view of a dashed line shown in FIG. 4B.
  • the light flux controlling member 140 is located on the side opposite to the incident area 141 where the light emitted from the light emitting element 120 is incident and the light incident from the incident area 141. And an emission area 142 for emitting light.
  • a flange 143 may be provided between the incident area 141 and the outgoing area 142.
  • the plan view shape of the light flux controlling member 140 is not particularly limited.
  • the plan view shape of light flux controlling member 140 of the present embodiment is a rectangle (more specifically, a square).
  • the incident region 141 allows the light emitted from the light emitting element 120 to be incident.
  • the incident area 141 has a refracting portion 144 located in the central portion of the incident area 141 and a Fresnel lens portion 145 located outside the refracting portion 144.
  • the refracting unit 144 causes a part of the light emitted from the light emitting element 120 (light emitted at a small angle with respect to the optical axis LA) to enter into the light flux controlling member 140, and the incident light to the emitting area 142. Refraction towards.
  • the refracting portion 144 is disposed at a position facing the light emitting element 120 so as to intersect the central axis CA of the light flux controlling member 140 (the optical axis LA of the light emitting element 120) (see FIG. 2).
  • bending part 144 will not be specifically limited if the said function can be exhibited.
  • the shape of the refractive portion 144 may be spherical or aspheric, or may be a refractive Fresnel lens.
  • the shape of the refracting portion 144 in the present embodiment is a quadrangular pyramid.
  • the Fresnel lens portion 145 has a convex surface having an incident surface on which a part of light emitted from the light emitting element 120 is incident, and a reflective surface formed in a pair with the incident surface to reflect incident light toward the emission region. Contains multiple articles. These ridges are arranged on the sides of a plurality of virtual quadrilaterals arranged so as to be similar to each other in a plan view and concentric and parallel to each side.
  • the Fresnel lens unit 145 includes a first Fresnel lens unit 145 a located on the refractive unit 144 side and a second Fresnel lens unit 145 b located outside the first Fresnel lens unit 145 a.
  • the light incident from the refracting portion 144 and the second Fresnel lens portion 145 b mainly illuminates the central portion of the quadrangular irradiated region.
  • the light incident from the first Fresnel lens portion 145 a mainly illuminates the outer peripheral portion of the square shaped irradiated region.
  • the first Fresnel lens portion 145a causes a part of the light emitted from the light emitting element 120 (the light emitted at a slightly large angle with respect to the optical axis LA) to enter into the light flux controlling member 140, and the incident light The light is reflected toward the exit area 142 (see FIG. 8A).
  • the first Fresnel lens portions 145a assume a plurality of first virtual quadrilaterals S1 (see FIG. 3D) which are arranged so as to be similar to each other in plan view and concentric and parallel to each other. And a plurality of first ridges 147 disposed on each side of.
  • the first virtual quadrilateral S1 corresponds to the above-described virtual quadrilateral, and the first ridge 147 corresponds to the above-described ridge.
  • the shape of the first virtual quadrilateral S1 is not particularly limited.
  • the shape of the first virtual quadrilateral S1 of the present embodiment is a rectangle (more specifically, a square).
  • the first ridges 147 arranged on one side of each first virtual quadrangle S1 are in contact with the first ridges 147 arranged on the other side adjacent to the first virtual quadrilateral S1 to which each belongs. It may be good or separated.
  • the first ridges 147 disposed on any one side of the first virtual quadrangle S1 are formed in the same shape from one end to the other end.
  • the shapes of the four first ridges 147 disposed on the four sides of the first virtual quadrangle S1 are also the same.
  • the size of the first ridge 147 in a certain first virtual quadrangle S1 and the size of the first ridge 147 in another first virtual quadrangle S1 may be the same or different.
  • the first ridges 147 are a first inclined surface 148 which is an incident surface to which light emitted from the light emitting element 120 is incident, and a reflective surface which reflects the light incident from the first inclined surface 148 toward the emission region 142 And a second inclined surface 149.
  • the first inclined surface 148 is located on the inner side (central axis CA side), and the second inclined surface 149 is located on the outer side.
  • the first inclined surface 148 and the second inclined surface 149 may be continuous or discontinuous. In the former case, a ridge is formed between the first inclined surface 148 and the second inclined surface 149. In the latter case, another surface is formed between the first inclined surface 148 and the second inclined surface 149.
  • first inclined surface 148 may be a straight line or a curved line.
  • the angle of the first inclined surface 148 with respect to the optical axis LA of the light emitting element 120 is not particularly limited as long as light incident from the first inclined surface 148 can be refracted to the second inclined surface 149 side. It can be set appropriately according to the position and the like.
  • the “angle of the first inclined surface 148” refers to the angle of the tangent of the first inclined surface 148 at the light incident point.
  • second inclined surface 149 may be straight or curved.
  • the angle of the second inclined surface 149 with respect to the optical axis LA of the light emitting element 120 is such that the light incident from the first inclined surface 148 is on the emission region 142 side so that the light emitted from the emission region 142 is directed to the outer peripheral portion of the irradiated region. It is not particularly limited as long as it can be reflected.
  • the “angle of the second inclined surface 149” refers to the angle of the tangent of the second inclined surface 149 at the light incident point.
  • the second Fresnel lens portion 145 b causes a part of the light emitted from the light emitting element 120 (the light emitted at a large angle with respect to the optical axis LA) to enter into the light flux controlling member 140 and emits the incident light. It is reflected toward the area 142 (see FIG. 8D).
  • the second Fresnel lens unit 145b is similar to the first virtual quadrilateral S1 in plan view, and has one or more second virtual quadrilaterals S2 concentric with the first virtual quadrilateral S1 and arranged parallel to each side. It assumes and has a plurality of 2nd convex stripes 150 arranged on the four sides.
  • the second virtual quadrilateral S2 corresponds to the above-described virtual quadrilateral
  • the second ridge 150 corresponds to the above-described ridge.
  • the case is shown in which four second ridges 150 are disposed on the four sides of one second virtual quadrangle S2.
  • the second ridges 150 disposed on one side of the second virtual quadrilateral S2 may be in contact with the second ridges 150 disposed on the other side adjacent to the second virtual quadrilateral S2, or may be separated. It may be done. Usually, the second ridges 150 disposed on any one side of the second virtual quadrangle S2 are formed in the same shape from one end to the other end. Furthermore, the shapes of the four second ridges 150 disposed on the four sides of the second virtual quadrangle S2 are also the same. The size of the second ridge 150 in a second virtual quadrilateral S2 and the size of the second ridge 150 in another second virtual quadrilateral S2 may be the same or different.
  • the second convex 150 is formed larger than the refracting portion 144 and the first Fresnel lens portion 145a from the viewpoint of entering the light in the lateral direction which is not incident from the refracting portion 144 and the first Fresnel lens portion 145a. Is preferred.
  • the second ridges 150 are a third inclined surface 151 which is an incident surface to which light emitted from the light emitting element 120 is incident, and a reflection surface which reflects the light incident from the third inclined surface 151 toward the emission region 142 And a fourth inclined surface 152.
  • the third inclined surface 151 is located inside (the center axis CA side), and the fourth inclined surface 152 is located outside. Further, the third inclined surface 151 and the fourth inclined surface 152 may be continuous or discontinuous. In the former case, a ridgeline is formed between the third inclined surface 151 and the fourth inclined surface 152. In the latter case, another surface is formed between the third inclined surface 151 and the fourth inclined surface 152. When another surface is provided between the third inclined surface 151 and the fourth inclined surface 152, manufacturability can be improved by eliminating the acute angle part (ridge line part).
  • third inclined surface 151 may be a straight line or a curved line.
  • the angle of the third inclined surface 151 with respect to the optical axis LA of the light emitting element 120 is not particularly limited as long as the light incident from the third inclined surface 151 can be refracted toward the fourth inclined surface 152 side. It can be set appropriately according to the position and the like.
  • the “angle of the third inclined surface 151” refers to the angle of the tangent of the third inclined surface 151 at the light incident point.
  • fourth inclined surface 152 may be a straight line or a curved line.
  • the angle of the fourth inclined surface 152 with respect to the optical axis LA of the light emitting element 120 is such that the light incident from the first inclined surface 148 is on the side of the emission region 142 so that the light emitted from the emission region 142 is directed to the central portion of the irradiated region. It is not particularly limited as long as it can be reflected.
  • the “angle of the fourth inclined surface 152” means the angle of the tangent of the fourth inclined surface 152 at the light incident point.
  • FIG. 5A is a plan view of the light flux controlling member 50 of the comparative example
  • FIG. 5B is a cross-sectional view of the line CC shown in FIG. 5A
  • FIG. 5C is a bottom view.
  • the light flux controlling member 50 of the comparative example relates to the present embodiment in that it has a circular shape in plan view and a plurality of annular convex portions 60 arranged concentrically. It differs from the light flux control member 140.
  • FIG. 6 is a diagram showing simulation results of illuminance distribution using the light emitting device of the comparative example.
  • FIG. 6A is a simulation result of the illuminance distribution in the case of assuming an irradiated region 100 mm away from the light emitting surface of the light emitting element
  • FIG. 6B is a case in which the irradiated region 500 mm away from the light emitting surface of the light emitting device
  • FIG. 6C is a simulation result of the illuminance distribution
  • FIG. 6C is a simulation result of the illuminance distribution in the case of assuming an irradiated region separated from the light emitting surface of the light emitting element by 1000 mm
  • FIG. 6A is a simulation result of the illuminance distribution in the case of assuming an irradiated region 100 mm away from the light emitting surface of the light emitting element
  • FIG. 6B is a case in which the irradiated region 500 mm away from the light emitting surface of the
  • FIG. 6D is 1500 mm away from the light emitting surface of the light emitting element It is a simulation result of illumination distribution at the time of assuming a field to be irradiated.
  • the vertical and horizontal axes in the left views of FIGS. 6A to 6D indicate the distance (mm) from the light axis LA of the light emitting element (the central axis CA of the light flux controlling member 50). Further, the vertical axis in the right figure indicates the illuminance (lux).
  • the outline of the illuminance distribution in the irradiated region is circular regardless of the distance from the light emitting surface of the light emitting element.
  • FIGS. 7B, 8A, and 8B are cross-sectional views taken along line DD parallel to one side of the first virtual quadrilateral S1 and the second virtual quadrilateral S2 shown in FIG. 7A.
  • FIG. 7B is an optical path diagram of light incident from the refractive portion 144, the first Fresnel lens portion 145a, and the second Fresnel lens portion 145b in the cross section.
  • portions (one each) of the assumed first virtual quadrangle S1 and the second virtual quadrangle S2 are indicated by broken lines.
  • FIG. 8A is an optical path diagram of light incident from the first Fresnel lens portion 145a in the DD cross section shown in FIG. 7A
  • FIG. 8B is a second Fresnel lens portion 145b in the DD cross section shown in FIG. 7A. It is an optical path figure of the light which injects from.
  • FIG. 9A is a plan view of the light emitting device 100
  • FIGS. 9B, 10A, and 10B are cross-sectional views of the first virtual quadrangle S1 and the second virtual quadrangle S2 shown in FIG. is there.
  • FIG. 9A is a plan view of the light emitting device 100
  • FIGS. 9B, 10A, and 10B are cross-sectional views of the first virtual quadrangle S1 and the second virtual quadrangle S2 shown in FIG. is there.
  • FIG. 9A is a plan view of the light emitting device 100
  • FIGS. 9B, 10A, and 10B are cross-sectional views of the first virtual quadr
  • FIG. 9B is an optical path diagram of light incident from the refracting portion 144, the first Fresnel lens portion 145a, and the second Fresnel lens portion 145b in the cross section.
  • 10A is an optical path diagram of light incident from the first Fresnel lens portion 145a in the EE cross section shown in FIG. 9A
  • FIG. 10B is a second Fresnel lens portion 145b in the EE cross section shown in FIG. 9A.
  • It is an optical path figure of the light which injects from. 7B, FIG. 8, FIG. 9B and FIG. 10 show only the light emitted from one half of the light emitting surface.
  • the light in a cross section parallel to one side of the first virtual quadrangle S1 (second virtual quadrangle S2) passing through the optical axis LA, the light is emitted from the emission area 142 and is separated from the optical axis LA as it is separated from the emission area 142
  • the angle of the light with respect to the optical axis LA is "positive", and the angle of the light which is emitted from the emission area 142 and approaches the optical axis LA as it leaves the emission area 142 is "negative". In this case, as shown in FIG.
  • the angle with respect to the optical axis LA of the first outgoing light L1 reflected by the first Fresnel lens portion 145a and emitted from the outgoing area 142 is “positive” (light flux control condition: 0 ° ⁇ 1a, ⁇ 1b). That is, the first outgoing light L1 reflected by the first Fresnel lens portion 145a and emitted from the outgoing area 142 is controlled to be directed to the outer peripheral portion of the illuminated area. Further, of the first emission light L1, the emission angle ( ⁇ 1a) of the first inner emission light L1a emitted most from the optical axis LA side is from the emission angle ( ⁇ 1b) of the first outer emission light L1b emitted from the outermost side. It is controlled to be smaller. Thus, the light incident from the first Fresnel lens portion 145a is controlled to be directed to the outer peripheral portion of the illuminated area.
  • the second emission light L2 reflected by the second Fresnel lens portion 145b and emitted from the emission region 142 has a positive angle with respect to the optical axis LA (LA ′), “0 (zero) Parallel) and “negative” output light (light flux control condition: ⁇ 2a ⁇ 0 ° ⁇ ⁇ 2b).
  • the emission angle ( ⁇ 2 b) of the second outer emission light L 2 b emitted from the outermost side of the second emission light L 2 is controlled to be smaller than the emission angle ( ⁇ 1 b) of the first outer emission light L 1 b (Light flux control condition: ⁇ 2b ⁇ 1b).
  • ⁇ 2a indicates the emission angle of the second inner emission light L2a emitted from the innermost portion of the second emission light L2.
  • the emission angle here means an angle with respect to the optical axis LA of the emitted light.
  • the control is performed toward the outer peripheral direction of the irradiated area, and is directed to the corner direction in the rectangular irradiated area. It can be seen that light is being generated. That is, in a cross section parallel to one side of the first virtual quadrangle S1 (second virtual quadrangle S2) passing through the optical axis LA, the first convex streak 147 (second convex streak 150) satisfies the above-described light flux control condition If not, it is not possible to obtain a highly uniform square irradiated area. Note that, in the design of the first ridge 147 and the second ridge 150, light emitted from an intersection with the light axis LA on the light emitting surface of the light emitting element 120 is used.
  • FIG. 11 to 14 are diagrams showing simulation results of illuminance distribution using the light emitting device 100 according to the present embodiment.
  • FIG. 11 is a simulation result of the illuminance distribution in the case of assuming an irradiated region 100 mm away from the light emitting surface of the light emitting element 120.
  • FIG. 11A is a simulation result of illuminance distribution based on light incident from the refracting portion 144 and the first Fresnel lens portion 145a
  • FIG. 11B is a simulation result of illuminance distribution based on light incident from the second Fresnel lens portion 145b.
  • 11C corresponds to the illuminance scale of FIG. 11B according to FIG. 11A
  • FIG. 11D shows the illuminance distribution based on the light incident from the refracting portion 144, the first Fresnel lens portion 145a and the second Fresnel lens portion 145b.
  • FIG. 12 is a simulation result of the illuminance distribution in the case of assuming an irradiated region 500 mm away from the light emitting surface of the light emitting element 120.
  • FIG. 12A is a simulation result of illuminance distribution based on light incident from the refracting portion 144 and the first Fresnel lens portion 145a
  • FIG. 12B is a simulation result of illuminance distribution based on light incident from the second Fresnel lens portion 145b
  • 12C corresponds to the illuminance scale of FIG. 12B according to FIG. 12A
  • FIG. 12D shows illuminance distribution based on light incident from the refracting portion 144, the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. Simulation results of
  • FIG. 13 is a simulation result of the illuminance distribution in the case where it is assumed that a region to be irradiated which is 1000 mm away from the light emitting surface of the light emitting element 120.
  • 13A is a simulation result of illuminance distribution based on light incident from the refracting portion 144 and the first Fresnel lens portion 145a
  • FIG. 13B is a simulation result of illuminance distribution based on light incident from the second Fresnel lens portion 145b
  • 13C corresponds to the illuminance scale of FIG. 13B in FIG. 13A
  • FIG. 13D shows illuminance distribution based on light incident from the refracting portion 144, the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. Simulation results of
  • FIG. 14 is a simulation result of the illuminance distribution in the case where it is assumed that a region to be irradiated 1500 mm away from the light emitting surface of the light emitting element 120 is assumed.
  • FIG. 14A is a simulation result of illuminance distribution based on light incident from the refracting portion 144 and the first Fresnel lens portion 145a
  • FIG. 14B is a simulation result of illuminance distribution based on light incident from the second Fresnel lens portion 145b
  • 14C corresponds to the illuminance scale of FIG. 14B according to FIG. 14A
  • FIG. 14D shows illuminance distribution based on light incident from the refracting portion 144, the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. Simulation results of
  • the vertical and horizontal axes in the left views of FIGS. 11 to 14 indicate the distance (mm) from the light axis LA of the light emitting element (the central axis CA of the light flux controlling member 140). Further, the vertical axis in the right figure indicates the illuminance (lux).
  • the first fresnel regardless of the distance from the light emitting surface of the light emitting element 120.
  • the light incident from the lens portion 145 a illuminates the outer peripheral portion of the illuminated region.
  • the light incident from the second Fresnel lens portion 145b illuminates the central portion of the illuminated region.
  • FIG. 11D, FIG. 12D, FIG. 13D and FIG. 14D in the light emitting device 100 having the light flux controlling member 140 according to the present embodiment, regardless of the distance from the light emitting surface of the light emitting element 120 The irradiation area was square.
  • the first virtual quadrilateral S1 and the second virtual quadrilateral S2 are squares, it is possible to illuminate the square-shaped irradiated area as in the present embodiment. That is, the shapes of the first virtual quadrilateral S1 and the second virtual quadrilateral S2 and the shape of the irradiated region are similar. Therefore, in the case of illuminating the rectangular irradiation area, the first virtual quadrangle S1 and the second virtual quadrangle S2 may be made rectangular.
  • FIG. 6, FIG. 11D, FIG. 12D, FIG. 13D and FIG. 14D indicate histograms of illuminance at the four corners (darkest parts) of the illuminated area.
  • the four corners of the irradiated area when the light flux controlling member 140 according to the present embodiment is used is brighter than the four corners of the irradiated area when the light flux controlling member 50 of the comparative example is used.
  • the light emitting device 100 according to the present embodiment is formed from the central portion more than the light emitting device of the comparative example by forming the ridges satisfying the light beam control condition described above on each side of the square. It can be seen that the square shaped irradiation region up to the outer peripheral portion is illuminated uniformly and efficiently.
  • the light beam control member 140 controls the light distribution of the light emitted from the output region 142 by the light flux control of the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. By controlling according to the conditions, it is possible to illuminate the square shaped irradiation area uniformly and efficiently.
  • the planar shape of the light emitting element 120 is not particularly limited.
  • Examples of the planar shape of the light emitting element 120 include polygonal shapes such as a circular shape and a quadrangular shape.
  • the positional relationship between one side of light emitting element 120 and one side of first virtual square S1 (second virtual square S2) of light flux controlling member 140 is not particularly limited either. Even in the case of arranging them, the same effect can be obtained.
  • FIG. 15 is a diagram showing a configuration of a lighting device 400 according to the present embodiment.
  • the lighting device 400 may have a plurality of light emitting devices 100 and a cover 420.
  • the light emitting device 100 includes the light flux controlling member 140 and the light emitting element 120.
  • the light emitting element 120 is fixed to the substrate 440.
  • the cover 420 diffuses and transmits light emitted from the light emitting device 100 and protects the light emitting device 100.
  • the cover 420 is disposed on the light path of the light emitted from the light emitting device 100.
  • the material of the cover 420 is not particularly limited as long as the above-described function can be exhibited.
  • the material of the cover 420 is a light transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), epoxy resin (EP), or glass.
  • Illumination device 400 according to the present embodiment has the same effects as light flux controlling member 140 and light emitting device 100 according to the present embodiment.
  • the light emitting device and the illuminating device according to the second embodiment are different from the light emitting device 100 and the illuminating device 400 according to the first embodiment in the shape of the light flux controlling member 240. Therefore, the same components as those of the light emitting device 100 and the lighting device 400 according to the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted, and new components of the light flux controlling member 240 will be mainly described.
  • the light flux controlling member 240 according to the second embodiment differs from the light flux controlling member 140 according to the first embodiment in that the light flux controlling member 240 further has a wall portion 260 separating adjacent ridges on the diagonal of the first virtual quadrangle S1.
  • FIG. 16A is a perspective view of the light flux controlling member 240 according to Embodiment 2 as viewed from the lower side
  • FIG. 16B is an enlarged view of a portion shown by a broken line in FIG. 16A
  • FIG. 17A is a bottom view of the light flux controlling member 240 according to the second embodiment
  • FIG. 17B is a side view
  • FIG. 17C is a bottom view with the refracting portion 144 and the Fresnel lens portion 245 omitted.
  • 17D is a cross-sectional view of line FF shown in FIG. 17A.
  • FIG. 18A is a cross-sectional view taken along the line GG shown in FIG. 17A
  • FIG. 18B is an enlarged view of a portion shown by a broken line in FIG. 18A
  • FIG. 18C is a cross-sectional view taken along the HH line.
  • 18D is an enlarged view of a portion shown by a broken line in FIG. 18C
  • FIG. 18E is a cross-sectional view of a line II
  • FIG. 18F is an enlarged view of a portion shown by a broken line in FIG. 18G is a cross-sectional view taken along the line JJ
  • FIG. 18H is an enlarged view of a portion shown by a broken line in FIG. 18G.
  • the light flux controlling member 240 has an incident area 241 and an output area 142.
  • a flange 243 is provided between the incident area 241 and the outgoing area 142.
  • the incident area 241 has a refracting portion 144, and a Fresnel lens portion 245 including a first Fresnel lens portion 245a and a second Fresnel lens portion 145b.
  • the first Fresnel lens portions 245a are assumed to have a plurality of first virtual quadrilaterals S1 arranged so as to be similar to each other in plan view and concentric and parallel to each other, and four first quadrilaterals arranged on four sides thereof It has convex ridges 247.
  • the wall portion 260 is disposed on each diagonal of the first virtual quadrangle S1.
  • the wall portion 260 has a predetermined thickness, and separates two first ridges 247, 247 adjacent to each other in the first virtual quadrangle S1.
  • the wall portion 260 is designed to have the same height as the height of the valley of the first ridge 247 to the top of the first ridge 247 or more.
  • the cross-sectional shape of the wall portion 260 in the direction orthogonal to the diagonal line of the first virtual quadrangle S1 is a vertically long rectangle.
  • the wall portion 260 is continuously disposed from the first ridge 247 of the first virtual quadrilateral S1 that is the innermost in plan view to the first ridge 247 of the first virtual quadrilateral S1 that is the outermost. .
  • the inner end of the wall 260 may extend to the bending portion 144.
  • the first convex is generated. It may be lower than the height to the top of the bar 247 (see paragraph 0074).
  • the simulation result of the illuminance distribution using the light emitting device having the light flux controlling member 240 according to the second embodiment is the illuminance using the light emitting device 100 having the light flux controlling member 140 according to the first embodiment. It is the same as the simulation result of the distribution.
  • FIG. 19A is a bottom perspective view of the first mold 272 of the forming die 270
  • FIG. 19B is an enlarged view of a portion of a circle C1 indicated by a broken line in FIG. 19A
  • FIG. 19C is a broken line It is an enlarged view of a portion of circle C2 shown.
  • FIG. 20A is a bottom view of the first mold 272, FIG.
  • FIG. 20B is a bottom view omitting the refractive part molding area and the Fresnel lens part molding area 274, and FIG. 20C is a KK shown in FIG. 20A.
  • FIG. 20D is a cross-sectional view of a line
  • FIG. 20D is an enlarged view of a portion shown by a broken line in FIG. 20A.
  • 21A is a cross-sectional view taken along the line L-L shown in FIG. 21A
  • FIG. 21B is an enlarged view of a portion shown by a broken line in FIG. 21A
  • FIG. 21C is a cross-sectional view taken along the line M-M.
  • FIG. 21D is an enlarged view of a portion indicated by a broken line in FIG. 21C, FIG.
  • FIG. 21E is a cross-sectional view of line NN
  • FIG. 21F is an enlarged view of a portion indicated by a broken line in FIG.
  • FIG. 21G is a cross-sectional view taken along line OO
  • FIG. 21H is an enlarged view of a portion shown by a broken line in FIG. 21G.
  • a mold used for molding a Fresnel lens can be manufactured by lathing a circular mold to form a plurality of concentric grooves (concave portions).
  • the light flux controlling member 240 according to the present invention has the Fresnel lens portion 245 including the linear first convex streaks 247. Therefore, the forming die 270 according to the present invention can not form a concave corresponding to the first protrusion 247 by lathe processing.
  • the groove 280 is disposed at the boundary portion of the adjacent first concaves 277.
  • the molding die 270 has a first mold 272 for molding a portion on the incident area 241 side of the light flux control member 240 and a mold for molding the portion on the emission area 142 side. And a second mold (not shown).
  • the first mold 272 has a shape corresponding to the shape of the light flux controlling member 240 on the incident region 241 side.
  • the first mold 272 has a refracting portion forming region 273 for forming the refracting portion 144 and a Fresnel lens portion forming region 274 for forming the Fresnel lens portion 245.
  • the Fresnel lens portion forming area 274 has a plurality of concave streaks arranged on each side of a plurality of virtual quadrilaterals arranged to be concentric and parallel to each other in plan view.
  • a groove portion is disposed which separates a concave stripe disposed on one side of the virtual quadrilateral and a concave stripe disposed on the other side adjacent to one side of the virtual quadrilateral ing.
  • the Fresnel lens part molding area 274 is located outside the first Fresnel lens part molding area, a first Fresnel lens part molding area 275 for molding the first Fresnel lens part 145a, and And a second Fresnel lens portion forming area 276 for forming the second Fresnel lens portion 145 b.
  • the first Fresnel lens portion forming regions 275 correspond to the plurality of first virtual quadrilaterals S1 and are formed of the plurality of first virtual quadrilaterals S1 ′ which are similar to each other in plan view and are concentric and parallel to each other. It has a plurality of first concaves 277 arranged on each side.
  • the first virtual quadrangle S1 ' corresponds to the aforementioned virtual quadrangle, and the first concave streak 277 corresponds to the aforementioned concave streak.
  • a groove 280 is disposed on each diagonal of the first virtual quadrangle S1 '.
  • the second Fresnel lens part molding area 276 is similar to the first virtual quadrilateral S1 ′ in plan view corresponding to one or more of the first virtual quadrilateral S1 ′, and is concentric with the first virtual quadrilateral S1 ′ It has a plurality of second concaves 278 arranged on each side of one or more second virtual quadrilaterals S2 'arranged such that the sides are parallel.
  • the second virtual quadrilateral S2 ' corresponds to the aforementioned virtual quadrilateral, and the second concave streak 278 corresponds to the aforementioned concave streak.
  • the groove 280 functions as a passage for degassing of the cavity at the time of injection molding to be described later.
  • the groove 280 has a predetermined depth, and separates two adjacent first concave lines 277 and 277 adjacent to each other in the first virtual quadrangle S1 '.
  • the groove 280 is formed to have the same depth or a depth greater than that from the top of the first concave 277 to the valley of the first concave 277.
  • the groove 280 is continuously disposed from the first concave streak 277 of the first virtual quadrilateral S1 ′ at the innermost side in plan view to the first concave streak 277 of the first virtual quadrilateral S1 ′ at the outermost side There is. That is, the groove 280 may be disposed at least in the first Fresnel lens portion molding region 275. Note that the inner end of the groove 280 may extend to the refractive part molding area 273.
  • the second mold (not shown) has a shape corresponding to the shape of the light emitting region 142 of the light flux controlling member 240.
  • the second mold is clamped with the first mold 272 to form a cavity in the shape of the light flux control member 240.
  • the light flux controlling member 240 can be manufactured by injection molding.
  • Injection molding includes a mold clamping process of clamping a mold 270 (first mold 272 and a second mold), a filling process of filling a molten resin into the interior (cavity) of the mold 270, and a mold There is a pressure holding process of naturally cooling while holding pressure in a state where the molten resin is filled in the resin 270 and a mold opening process of opening the mold 270 clamped.
  • the depth of the groove 280 is necessarily the depth from the top of the first concave 277 to the valley. There is no need to match it. Therefore, in the light flux controlling member 240, the wall portion 260 may be formed continuously so as to connect the refracting portion 144 and the second Fresnel lens portion 145b. In addition, the molten resin does not have to completely flow in the filling step.
  • the shape of the groove 280 is not particularly limited as long as the gas in the cavity escapes in the filling step.
  • the groove 280 may function as a passage for degassing, the number of the grooves 280 may be one or two to four.
  • the groove 280 may be formed on the opposite side of the gate filled with the molten resin, or may not be formed on the opposite side.
  • the light flux controlling member 240 according to the present embodiment has the same effect as the light flux controlling member 140 according to the first embodiment. Further, the light emitting device and the lighting device according to the present embodiment have the same effects as the light emitting device 100 and the lighting device 400 according to the first embodiment.
  • the molding die 270 according to the present embodiment has the groove 280 for degassing, so that the generation of molding defects due to air bubbles can be suppressed and the manufacturing yield can be improved. Further, in the molding die 270 according to the present embodiment, adjacent linear first concave streaks 277, 277 are separated from each other, there is no need to connect the first concave streaks 277 in a rectangular shape, and the rectangular corners Since it is not formed, it is possible to easily form the Fresnel lens portion molding region 274 by machining.
  • the first molding die 272 may be divided into four in a plane including the diagonal of the first virtual quadrangle S1 'and the central axis CA. In this case, since the groove portions 280 can prevent the end faces of the first recessed strips 277 from colliding with each other during the assembling operation of the first molding die 272, the assembling operation can be facilitated.
  • the light emitting device and the illuminating device of the third embodiment are different from the light emitting device and the illuminating device of the second embodiment in the shape of the light flux controlling member 340. Therefore, the same components as those of the light emitting device 100 and the lighting device 400 according to the second embodiment will be assigned the same reference numerals and descriptions thereof will be omitted, and new components of the light flux controlling member 340 will be mainly described.
  • the light flux controlling member 340 according to the third embodiment differs from the light flux controlling member 240 according to the second embodiment in the sectional shape of the wall portion.
  • FIG. 22 to 24 are diagrams showing the configuration of the light flux controlling member 340 according to the third embodiment.
  • FIG. 22A is a perspective view of the light flux controlling member 340 according to Embodiment 3 as viewed from the lower side
  • FIG. 22B is an enlarged view of a portion shown by a broken line in FIG. 22A.
  • FIG. 23A is a bottom view of the light flux controlling member 340 according to the third embodiment
  • FIG. 23B is a side view
  • FIG. 23C is a bottom view with the refracting portion 144 and the Fresnel lens portion 345 omitted.
  • 23D is a cross-sectional view of line PP shown in FIG. 23A.
  • 24A is a cross-sectional view taken along the line QQ shown in FIG.
  • FIG. 24B is an enlarged view of a portion shown by a broken line in FIG. 24A
  • FIG. 24C is a cross-sectional view taken along the line RR.
  • 24D is an enlarged view of a portion shown by a broken line in FIG. 24C
  • FIG. 24E is a cross-sectional view of the SS line
  • FIG. 24F is an enlarged view of a portion shown by a broken line in FIG.
  • FIG. 24G is a cross-sectional view taken along the line TT
  • FIG. 24H is an enlarged view of a portion shown by a broken line in FIG. 24G.
  • the light flux controlling member 340 has an incident area 341 and an emission area 142.
  • a flange 243 is provided between the incident area 341 and the outgoing area 142.
  • the incident area 341 has a refracting portion 144 and a Fresnel lens portion 345 including a first Fresnel lens portion 345a and a second Fresnel lens portion 145b.
  • the first Fresnel lens portions 345a are assumed to have a plurality of first virtual quadrilaterals S1 arranged so as to be similar to each other in plan view and concentric and parallel to each other, and the four first virtual quadrilaterals S1 arranged on the four sides It has convex lines 347.
  • the wall portion 360 is disposed on each diagonal of the first virtual quadrangle S1.
  • the wall portion 360 has a predetermined thickness, and separates two first convex lines 347 and 347 adjacent to each other in the first virtual quadrangle S1.
  • the wall portion 360 is designed to have the same height as the height from the valley of the first ridge 347 to the top of the first ridge 347 or more.
  • the cross-sectional shape of the wall portion 360 in the direction orthogonal to the diagonal line of the first virtual quadrangle S1 is a vertically long isosceles triangle.
  • the wall portion 360 is continuously disposed from the first convex strip 347 of the first virtual quadrangle S1 which is the innermost in the plan view to the first convex strip 347 of the first virtual quadrangle S1 which is the outermost. .
  • the inner end of the wall 360 may extend to the bending portion 144.
  • the height of the wall portion 360 in the light flux controlling member 340 of the third embodiment may not be the same height from the valley to the top of the first ridge 347.
  • the simulation result of the illuminance distribution using the light emitting device having the light flux controlling member 340 according to the third embodiment is the illuminance using the light emitting device 100 having the light flux controlling member 140 according to the first embodiment. It is the same as the simulation result of the distribution.
  • FIG. 25A is a bottom perspective view of the first mold 372 of the mold 370
  • FIG. 25B is an enlarged view of a portion of a circle C3 indicated by a broken line in FIG. 25A
  • FIG. 25C is a broken line
  • FIG. 7 is an enlarged view of the portion of the circle C4 taken.
  • FIG. 26A is a bottom view of the first mold 372, FIG.
  • FIG. 26B is a bottom view omitting the refractive part molding area and the Fresnel lens part molding area 274, and FIG. 26C is a UU shown in FIG.
  • FIG. 26D is a cross-sectional view of a line and FIG. 26D is an enlarged view of a portion shown by a broken line in FIG. 26A.
  • 27A is a cross-sectional view taken along the line V-V shown in FIG. 26A
  • FIG. 27B is an enlarged view of a portion shown by a broken line in FIG. 27A
  • FIG. 27C is a cross-sectional view taken along the WW line.
  • 27D is an enlarged view of a portion shown by a broken line in FIG. 27C, FIG.
  • FIG. 27E is a cross-sectional view of line XX
  • FIG. 27F is an enlarged view of a portion shown by a broken line in FIG.
  • FIG. 27G is a cross-sectional view taken along line YY
  • FIG. 27H is an enlarged view of a portion shown by a broken line in FIG. 27G.
  • the molding die 370 has a first mold 372 for molding the incident area 341 side and a second mold (not shown) for molding the emission area 142 side.
  • the first mold 372 has a shape corresponding to the shape on the incident region 341 side.
  • the first mold 372 has a refractive part molding area 273 for molding the refractive part 144, and a Fresnel lens part molding area 374 for molding the Fresnel lens part 345.
  • the Fresnel lens portion molding region 374 is located outside the first Fresnel lens portion molding region 375 for molding the first Fresnel lens portion 345a and the second Fresnel lens portion 145b.
  • a second Fresnel lens portion forming area 276 for forming.
  • a plurality of first virtual quadrilaterals S1 corresponding to the plurality of first virtual quadrilaterals S1 ′ which are similar to each other in plan view and are arranged concentrically and parallel to each other 1 has a concave 377.
  • Grooves 380 are disposed on the diagonals of the first virtual quadrangle S1 '.
  • the groove 380 separates the two first concaves 377 and 377 adjacent to each other in the first virtual quadrangle S1 '.
  • the cross-sectional shape of the groove 380 in the direction orthogonal to the diagonal of the first virtual quadrangle S1 ' is a vertically long isosceles triangle.
  • the depth to the deepest portion of the groove portion 380 is formed to be the same as or deeper than the depth from the top to the valley of the first concave 377.
  • the groove 780 is continuously disposed from the first concave streak 377 of the first virtual quadrilateral S1 ′ at the innermost side in plan view to the first concave streak 377 of the first virtual quadrilateral S1 ′ at the outermost side There is. That is, the groove portion 380 may be disposed at least in the first Fresnel lens portion molding region 375. Note that the inner end of the groove 380 may extend to the refractive part molding area 273.
  • the light flux controlling member 340 according to the present embodiment has the same effect as the light flux controlling member 240 according to the second embodiment.
  • the light emitting device and the illuminating device according to the present embodiment have the same effects as the light emitting device and the illuminating device according to the second embodiment.
  • the light flux controlling member, the light emitting device, and the lighting device according to the present invention can illuminate the square shaped irradiation region uniformly and efficiently.
  • the light emitting device according to the present invention is useful, for example, as a flash of a camera.
  • the illumination device according to the present invention is useful as, for example, general illumination in a room, and a surface light source device having a liquid crystal panel as an illuminated surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Stroboscope Apparatuses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Studio Devices (AREA)
  • Led Device Packages (AREA)
  • Lenses (AREA)

Abstract

A luminous flux control member (140) according to the present invention comprises: an incident region (141) on which the light emitted from a light emitting element (120) is incident; and an emission region (142) for emitting the light incident from the incident region (141). The incident region (141) comprises a refractive part (144) and a Fresnel lens part (145) located outside the refractive part (144). The Fresnel lens part (145) has a plurality of projected stripes arranged on each side of a plurality of virtual squares, the virtual squares being mutually similar and concentric with the respective sides thereof arranged parallel to each other.

Description

光束制御部材、発光装置、照明装置および成形型Light flux control member, light emitting device, lighting device and mold
 本発明は、発光素子から出射された光の配光を制御する光束制御部材、前記光束制御部材を有する発光装置および照明装置、ならびに前記光束制御部材を成形するための成形型に関する。 The present invention relates to a light flux controlling member for controlling the light distribution of light emitted from a light emitting element, a light emitting device and an illuminating device having the light flux controlling member, and a mold for molding the light flux controlling member.
 近年、省エネルギーや小型化の観点から、撮像カメラ用の発光装置として、発光ダイオード(以下「LED」ともいう)を光源とする発光装置(LEDフラッシュ)が使用されるようになってきた。このような発光装置としては、LEDと、フレネルレンズとを組み合わせたものがよく知られている(例えば、特許文献1参照)。 In recent years, from the viewpoint of energy saving and miniaturization, a light emitting device (LED flash) having a light emitting diode (hereinafter also referred to as "LED") as a light source has come to be used as a light emitting device for an imaging camera. As such a light emitting device, a combination of an LED and a Fresnel lens is well known (see, for example, Patent Document 1).
 図1Aは、特許文献1に記載の発光装置の断面図である。図1Aに示されるように、特許文献1に記載の発光装置10は、基板20と、光源用基板21と、発光素子および蛍光体を含む光源30と、フレネルレンズ40とを有する。フレネルレンズ40は、光源30の発光面と対向するように基板20上に配置されている。 FIG. 1A is a cross-sectional view of a light emitting device described in Patent Document 1. As shown in FIG. 1A, a light emitting device 10 described in Patent Document 1 includes a substrate 20, a light source substrate 21, a light source 30 including a light emitting element and a phosphor, and a Fresnel lens 40. The Fresnel lens 40 is disposed on the substrate 20 so as to face the light emitting surface of the light source 30.
 図1Bは、フレネルレンズ40の断面図である。図1Bに示されるように、フレネルレンズ40の一方の面には、屈折型フレネルレンズ部41および反射型フレネルレンズ部42が形成されている。屈折型フレネルレンズ部41および反射型フレネルレンズ部42は、それぞれ、同心円状に配置された円環状の突起を複数有している。屈折型フレネルレンズ部41は、光源30と対向する位置に形成されている。反射型フレネルレンズ部42は、屈折型フレネルレンズ部41の周囲に、光源30を取り囲むように形成されている。フレネルレンズ40において、屈折型フレネルレンズ部41および反射型フレネルレンズ部42が形成されている面は、入射領域43として機能し、入射領域43の反対側の面は出射領域44として機能する。 FIG. 1B is a cross-sectional view of the Fresnel lens 40. As shown in FIG. 1B, on one surface of the Fresnel lens 40, a refractive Fresnel lens portion 41 and a reflective Fresnel lens portion 42 are formed. Each of the refractive Fresnel lens portion 41 and the reflective Fresnel lens portion 42 has a plurality of annular projections arranged concentrically. The refractive Fresnel lens unit 41 is formed at a position facing the light source 30. The reflective Fresnel lens unit 42 is formed around the refractive Fresnel lens unit 41 so as to surround the light source 30. In the Fresnel lens 40, the surface on which the refractive Fresnel lens portion 41 and the reflective Fresnel lens portion 42 are formed functions as an incident area 43, and the surface on the opposite side of the incident area 43 functions as an output area 44.
 図1Aに示される発光装置10では、光源30から光軸に対して小さな角度で出射した光は、屈折型フレネルレンズ部41において所定の方向に屈折されて、出射領域44から出射される。一方、光源30から光軸に対して大きな角度で出射した光は、反射型フレネルレンズ部42の入射面45から入射し、反射面46で所定の方向に反射されて、出射領域44から出射される。このように、特許文献1に記載の発光装置10は、屈折型フレネルレンズ部41および反射型フレネルレンズ部42を有するフレネルレンズ40を用いて、光源30から出射された光の配光を制御している。 In the light emitting device 10 shown in FIG. 1A, light emitted from the light source 30 at a small angle with respect to the optical axis is refracted in a predetermined direction by the refractive Fresnel lens unit 41 and emitted from the emission region 44. On the other hand, light emitted from the light source 30 at a large angle with respect to the optical axis enters from the incident surface 45 of the reflective Fresnel lens unit 42, is reflected by the reflective surface 46 in a predetermined direction, and is emitted from the emission region 44 Ru. As described above, the light emitting device 10 described in Patent Document 1 controls the light distribution of light emitted from the light source 30 using the Fresnel lens 40 having the refractive Fresnel lens portion 41 and the reflective Fresnel lens portion 42. ing.
特開2011-192494号公報JP, 2011-192494, A
 一般的に、撮像カメラの撮像領域の形状は、四角形である。よって、鮮明な撮像画像を得るためには、発光装置は被照射領域を四角形状に照らすことが好ましい。しかしながら、特許文献1のフレネルレンズを用いて四角形状の被照射領域に光を照射した場合、被照射領域の四隅が暗くなるおそれがある。また、被照射領域の四隅に十分に光を照射しようとすると、光を拡げる必要があるため、無駄な光が発生してしまう。このように、特許文献1のフレネルレンズを使用した場合、発光素子から出射された光を四角形状の被照射領域に均一かつ効率的に照射することができなかった。 Generally, the shape of the imaging area of the imaging camera is a square. Therefore, in order to obtain a clear captured image, the light emitting device preferably illuminates the irradiated region in a square shape. However, when light is irradiated to a square-shaped irradiation area using the Fresnel lens of Patent Document 1, the four corners of the irradiation area may be dark. Moreover, when it is going to irradiate light fully to four corners of a field to be irradiated, since it is necessary to spread light, useless light will be generated. As described above, when the Fresnel lens of Patent Document 1 is used, it is not possible to uniformly and efficiently irradiate the light emitted from the light emitting element to the quadrangular irradiated area.
 本発明の目的は、四角形状の被照射領域に発光素子から出射された光を均一かつ効率的に照射することができる光束制御部材を提供することである。また、本発明の別の目的は、この光束制御部材を有する発光装置および照明装置、ならびにこの光束制御部材を成形するための成形型を提供することである。 An object of the present invention is to provide a light flux controlling member capable of uniformly and efficiently irradiating light emitted from a light emitting element to a square-shaped irradiation region. Another object of the present invention is to provide a light emitting device and a lighting device having the light flux controlling member, and a mold for molding the light flux controlling member.
 本発明の光束制御部材は、発光素子から出射された光の配光を制御する光束制御部材であって、発光素子から出射された光を入射させる入射領域と、前記入射領域から入射した光を出射させる出射領域と、を有し、前記入射領域は、前記発光素子の光軸と交わり、前記発光素子から出射された光の一部を入射させるとともに、入射した光を前記出射領域に向けて屈折させる屈折部と、前記屈折部の外側に位置するフレネルレンズ部と、を有し、前記フレネルレンズ部は、前記発光素子から出射された光の一部を入射させる入射面と、前記入射面と対に形成され、入射した光を前記出射領域に向けて反射させる反射面とを有する凸条を複数含み、複数の前記凸条は、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の仮想四角形の各辺上に配置される。 The light flux controlling member according to the present invention is a light flux controlling member for controlling the light distribution of light emitted from the light emitting element, and includes an incident area to which light emitted from the light emitting element is incident, and light incident from the incident area. An emission area for emitting light, the incident area intersects the optical axis of the light emitting element, and a part of the light emitted from the light emitting element is made incident, and the incident light is directed to the emission area The light emitting device further includes a refracting portion that refracts light and a Fresnel lens portion positioned outside the refracting portion, and the Fresnel lens portion includes an incident surface on which a part of light emitted from the light emitting element is incident, and the incident surface And a plurality of ridges formed in pairs and having a reflection surface for reflecting incident light toward the emission region, the plurality of ridges being similar to each other in plan view, concentric, and each side being parallel Arranged to be They are arranged on respective sides of the number of virtual rectangle.
 本発明の発光装置は、発光素子と本発明の光束制御部材とを有する。 The light emitting device of the present invention has a light emitting element and the light flux controlling member of the present invention.
 本発明の照明装置は、本発明の発光装置と、前記発光装置からの出射光を拡散させつつ透過させるカバーとを有する。 The lighting device of the present invention includes the light emitting device of the present invention and a cover that diffuses and transmits the light emitted from the light emitting device.
 本発明の成形型は、本発明の光束制御部材を成形するための成形型であって、前記フレネルレンズ部を成形するためのフレネルレンズ部成形領域を有し、前記フレネルレンズ部成形領域は、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の仮想四角形の各辺上に配置された複数の凹条を有し、前記仮想四角形の各対角線上に、前記仮想四角形の一辺上に配置されている前記凹条と、当該仮想四角形において前記一辺に隣接する他の一辺上に配置されている前記凹条とを離間する溝部が配置されている。 The molding die of the present invention is a molding die for molding the light flux controlling member of the present invention, and has a Fresnel lens portion molding region for molding the Fresnel lens portion, and the Fresnel lens portion molding region is It has a plurality of concave streaks arranged on each side of a plurality of virtual quadrangles which are similar to each other in plan view and are arranged concentrically and parallel to each side, and on each diagonal of the virtual quadrilateral, A groove portion is disposed which separates the groove arranged on one side of the virtual quadrangle and the groove arranged on the other side adjacent to the side in the virtual square.
 本発明の光束制御部材を有する発光装置は、四角形状の被照射領域に発光素子から出射された光を均一かつ効率的に照射することができる。また、本発明の照明装置は、四角形状の被照射領域に均一かつ効率的に光を照らすことができる。 According to the light emitting device having the light flux controlling member of the present invention, the light emitted from the light emitting element can be uniformly and efficiently irradiated to the rectangular light receiving region. Moreover, the illumination device of the present invention can illuminate light in a square-shaped irradiation area uniformly and efficiently.
図1A,Bは、特許文献1に記載の発光装置の構成を示す図である。FIGS. 1A and 1B are diagrams showing the configuration of the light emitting device described in Patent Document 1. FIG. 実施の形態1に係る発光装置の断面図である。FIG. 1 is a cross-sectional view of a light emitting device according to Embodiment 1. 図3A~Dは、実施の形態1に係る光束制御部材の構成を示す図である。3A to 3D are diagrams showing the configuration of the light flux controlling member according to the first embodiment. 図4A~Cは、実施の形態1に係る光束制御部材の断面図である。4A to 4C are cross-sectional views of the light flux controlling member according to the first embodiment. 図5A~Cは、比較例の光束制御部材の構成を示す図である。5A to 5C are diagrams showing the configuration of the light flux controlling member of the comparative example. 図6A~Dは、比較例の発光装置を用いた照度分布のシミュレーション結果を示す図である。6A to 6D are diagrams showing simulation results of illuminance distribution using the light emitting device of the comparative example. 図7A,Bは、実施の形態1に係る発光装置における光路図である。7A and 7B are optical path diagrams in the light emitting device according to Embodiment 1. FIG. 図8A,Bは、実施の形態1に係る発光装置における光路図である。8A and 8B are optical path diagrams of the light emitting device according to the first embodiment. 図9A,Bは、実施の形態1に係る発光装置における光路図である。9A and 9B are optical path diagrams in the light emitting device according to Embodiment 1. FIG. 図10A,Bは、実施の形態1に係る発光装置における光路図である。10A and 10B are optical path diagrams in the light emitting device according to the first embodiment. 図11A~Dは、実施の形態1に係る発光装置を用いた照度分布のシミュレーション結果を示す図である。11A to 11D are diagrams showing simulation results of illuminance distribution using the light emitting device according to the first embodiment. 図12A~Dは、実施の形態1に係る発光装置を用いた照度分布のシミュレーション結果を示す図である。12A to 12D are diagrams showing simulation results of illuminance distribution using the light emitting device according to the first embodiment. 図13A~Dは、実施の形態1に係る発光装置を用いた照度分布のシミュレーション結果を示す図である。13A to 13D are diagrams showing simulation results of illuminance distribution using the light emitting device according to the first embodiment. 図14A~Dは、実施の形態1に係る発光装置を用いた照度分布のシミュレーション結果を示す図である。14A to 14D are diagrams showing simulation results of illuminance distribution using the light emitting device according to the first embodiment. 実施の形態1に係る照明装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a lighting device according to Embodiment 1. 図16A,Bは、実施の形態2に係る光束制御部材の構成を示す図である。16A and 16B are diagrams showing the configuration of the light flux controlling member according to the second embodiment. 図17A~Dは、実施の形態2に係る光束制御部材の構成を示す図である。17A to 17D are diagrams showing the configuration of a light flux controlling member according to Embodiment 2. FIG. 図18A~Hは、実施の形態2に係る光束制御部材の断面図である。18A to 18H are cross-sectional views of a light flux controlling member according to the second embodiment. 図19A~Cは、実施の形態2に係る光束制御部材の成形に用いる成形型の構成を示す図である。19A to 19C are diagrams showing the configuration of a forming die used for forming the light flux controlling member according to the second embodiment. 図20A~Dは、実施の形態2に係る光束制御部材の成形に用いる成形型の構成を示す図である。20A to 20D are diagrams showing the configuration of a forming die used for forming the light flux controlling member according to the second embodiment. 図21A~Hは、実施の形態2に係る光束制御部材の成形に用いる成形型の断面図である。21A to 21H are cross-sectional views of a forming die used for forming the light flux controlling member according to the second embodiment. 図22A,Bは、実施の形態3に係る光束制御部材の構成を示す図である。22A and 22B are diagrams showing the configuration of a light flux controlling member according to Embodiment 3. FIG. 図23A~Dは、実施の形態3に係る光束制御部材の構成を示す図である。23A to 23D are diagrams showing the configuration of a light flux controlling member according to Embodiment 3. FIG. 図24A~Hは、実施の形態3に係る光束制御部材の断面図である。24A to 24H are cross-sectional views of a light flux controlling member according to the third embodiment. 図25A~Cは、実施の形態3に係る光束制御部材の成形に用いる成形型の構成を示す図である。25A to 25C are diagrams showing a configuration of a forming die used for forming the light flux controlling member according to the third embodiment. 図26A~Cは、実施の形態3に係る光束制御部材の成形に用いる成形型の構成を示す図である。26A to 26C are diagrams showing the configuration of a forming die used for forming the light flux controlling member according to the third embodiment. 図27A~Hは、実施の形態3に係る光束制御部材の成形に用いる成形型の断面図である。FIGS. 27A to 27H are cross-sectional views of a forming die used to form the light flux controlling member according to the third embodiment.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [実施の形態1]
 (光束制御部材および発光装置の構成)
 図2は、本発明の実施の形態1に係る発光装置100の断面図である。図2に示されるように、発光装置100は、発光素子120および光束制御部材140を有する。発光素子120は、例えば白色発光ダイオードなどの発光ダイオード(LED)である。光束制御部材140は、発光素子120から出射された光の配光を制御する。光束制御部材140は、その中心軸CAが発光素子120の光軸LAに合致するように配置される。
First Embodiment
(Configuration of luminous flux control member and light emitting device)
FIG. 2 is a cross-sectional view of the light emitting device 100 according to Embodiment 1 of the present invention. As shown in FIG. 2, the light emitting device 100 includes a light emitting element 120 and a light flux control member 140. The light emitting element 120 is, for example, a light emitting diode (LED) such as a white light emitting diode. The light flux controlling member 140 controls the light distribution of the light emitted from the light emitting element 120. The light flux controlling member 140 is arranged such that its central axis CA coincides with the optical axis LA of the light emitting element 120.
 光束制御部材140は、射出成形により形成されうる。光束制御部材140の材料は、所望の波長の光を通過させ得るものであれば特に限定されない。たとえば、光束制御部材140の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂、またはガラスである。 The light flux control member 140 may be formed by injection molding. The material of the light flux controlling member 140 is not particularly limited as long as it can pass light of a desired wavelength. For example, the material of the light flux controlling member 140 is a light transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), epoxy resin (EP), or glass.
 図3および図4は、本実施の形態に係る光束制御部材140の構成を示す図である。図3Aは、光束制御部材140の平面図であり、図3Bは、側面図であり、図3Cは、底面図であり、図3Dは、屈折部144およびフレネルレンズ部145を省略した底面図である。図4Aは、図3Cに示されるA-A線の断面図であり、図4Bは、B-B線の断面図であり、図4Cは、図4Bに示される破線部分の拡大図である。 3 and 4 are diagrams showing the configuration of the light flux controlling member 140 according to the present embodiment. 3A is a plan view of the light flux controlling member 140, FIG. 3B is a side view, FIG. 3C is a bottom view, and FIG. 3D is a bottom view omitting the refracting portion 144 and the Fresnel lens portion 145. is there. 4A is a cross-sectional view taken along the line AA shown in FIG. 3C, FIG. 4B is a cross-sectional view taken along the line BB, and FIG. 4C is an enlarged view of a dashed line shown in FIG. 4B.
 図3および図4に示されるように、光束制御部材140は、発光素子120から出射された光を入射させる入射領域141と、入射領域141の反対側に位置し、入射領域141から入射した光を出射させる出射領域142とを有する。入射領域141と出射領域142との間には、フランジ143が設けられていてもよい。 As shown in FIG. 3 and FIG. 4, the light flux controlling member 140 is located on the side opposite to the incident area 141 where the light emitted from the light emitting element 120 is incident and the light incident from the incident area 141. And an emission area 142 for emitting light. A flange 143 may be provided between the incident area 141 and the outgoing area 142.
 光束制御部材140の平面視形状は、特に限定されない。本実施の形態の光束制御部材140の平面視形状は、長方形(より具体的には正方形)である。 The plan view shape of the light flux controlling member 140 is not particularly limited. The plan view shape of light flux controlling member 140 of the present embodiment is a rectangle (more specifically, a square).
 入射領域141は、発光素子120から出射された光を入射させる。入射領域141は、入射領域141の中央部分に位置する屈折部144と、屈折部144の外側に位置するフレネルレンズ部145とを有する。 The incident region 141 allows the light emitted from the light emitting element 120 to be incident. The incident area 141 has a refracting portion 144 located in the central portion of the incident area 141 and a Fresnel lens portion 145 located outside the refracting portion 144.
 屈折部144は、発光素子120から出射された光の一部(光軸LAに対して小さな角度で出射された光)を光束制御部材140内に入射させるとともに、入射した光を出射領域142に向かって屈折させる。屈折部144は、発光素子120と対向する位置に、光束制御部材140の中心軸CA(発光素子120の光軸LA)と交わるように配置されている(図2参照)。なお、屈折部144の形状は、上記の機能を発揮することができれば、特に限定されない。たとえば、屈折部144の形状は、球面または非球面であってもよいし、屈折型フレネルレンズであってもよい。本実施の形態における屈折部144の形状は、四角錐状である。 The refracting unit 144 causes a part of the light emitted from the light emitting element 120 (light emitted at a small angle with respect to the optical axis LA) to enter into the light flux controlling member 140, and the incident light to the emitting area 142. Refraction towards. The refracting portion 144 is disposed at a position facing the light emitting element 120 so as to intersect the central axis CA of the light flux controlling member 140 (the optical axis LA of the light emitting element 120) (see FIG. 2). In addition, the shape of the refraction | bending part 144 will not be specifically limited if the said function can be exhibited. For example, the shape of the refractive portion 144 may be spherical or aspheric, or may be a refractive Fresnel lens. The shape of the refracting portion 144 in the present embodiment is a quadrangular pyramid.
 フレネルレンズ部145は、発光素子120から出射された光の一部を入射させる入射面と、入射面と対に形成され、入射した光を前記出射領域に向けて反射させる反射面とを有する凸条を複数含む。これらの凸条は、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の仮想四角形の各辺上に配置されている。 The Fresnel lens portion 145 has a convex surface having an incident surface on which a part of light emitted from the light emitting element 120 is incident, and a reflective surface formed in a pair with the incident surface to reflect incident light toward the emission region. Contains multiple articles. These ridges are arranged on the sides of a plurality of virtual quadrilaterals arranged so as to be similar to each other in a plan view and concentric and parallel to each side.
 より具体的には、フレネルレンズ部145は、屈折部144側に位置する第1フレネルレンズ部145aと、第1フレネルレンズ部145aの外側に位置する第2フレネルレンズ部145bとを有する。この後説明するように、屈折部144および第2フレネルレンズ部145bから入射した光は、主として四角形状の被照射領域の中央部分を照らす。一方、第1フレネルレンズ部145aから入射した光は、主として四角形状の被照射領域の外周部分を照らす。 More specifically, the Fresnel lens unit 145 includes a first Fresnel lens unit 145 a located on the refractive unit 144 side and a second Fresnel lens unit 145 b located outside the first Fresnel lens unit 145 a. As described later, the light incident from the refracting portion 144 and the second Fresnel lens portion 145 b mainly illuminates the central portion of the quadrangular irradiated region. On the other hand, the light incident from the first Fresnel lens portion 145 a mainly illuminates the outer peripheral portion of the square shaped irradiated region.
 第1フレネルレンズ部145aは、発光素子120から出射された光の一部(光軸LAに対してやや大きな角度で出射された光)を光束制御部材140内に入射させるとともに、入射した光を出射領域142に向けて反射させる(図8A参照)。第1フレネルレンズ部145aは、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の第1仮想四角形S1(図3D参照)を想定し、これら第1仮想四角形S1の各辺上に配置された複数の第1凸条147を有する。第1仮想四角形S1は、前述の仮想四角形に該当し、第1凸条147は、前述の凸条に該当する。第1仮想四角形S1の形状は、特に限定されない。本実施の形態の第1仮想四角形S1の形状は、長方形(より具体的には正方形)である。 The first Fresnel lens portion 145a causes a part of the light emitted from the light emitting element 120 (the light emitted at a slightly large angle with respect to the optical axis LA) to enter into the light flux controlling member 140, and the incident light The light is reflected toward the exit area 142 (see FIG. 8A). The first Fresnel lens portions 145a assume a plurality of first virtual quadrilaterals S1 (see FIG. 3D) which are arranged so as to be similar to each other in plan view and concentric and parallel to each other. And a plurality of first ridges 147 disposed on each side of. The first virtual quadrilateral S1 corresponds to the above-described virtual quadrilateral, and the first ridge 147 corresponds to the above-described ridge. The shape of the first virtual quadrilateral S1 is not particularly limited. The shape of the first virtual quadrilateral S1 of the present embodiment is a rectangle (more specifically, a square).
 各第1仮想四角形S1の一辺上に配置された第1凸条147は、それぞれが属する第1仮想四角形S1の隣接する他の一辺上に配置された第1凸条147と、接していてもよいし、離間していてもよい。通常、第1仮想四角形S1の任意の一辺上に配置された第1凸条147は、一端から他端まで同一形状に形成される。さらに、第1仮想四角形S1の四辺上に配置された4つの第1凸条147の形状も同じである。ある第1仮想四角形S1における第1凸条147と、他の第1仮想四角形S1における第1凸条147との大きさは、同じであってもよいし、異なっていてもよい。 The first ridges 147 arranged on one side of each first virtual quadrangle S1 are in contact with the first ridges 147 arranged on the other side adjacent to the first virtual quadrilateral S1 to which each belongs. It may be good or separated. Usually, the first ridges 147 disposed on any one side of the first virtual quadrangle S1 are formed in the same shape from one end to the other end. Furthermore, the shapes of the four first ridges 147 disposed on the four sides of the first virtual quadrangle S1 are also the same. The size of the first ridge 147 in a certain first virtual quadrangle S1 and the size of the first ridge 147 in another first virtual quadrangle S1 may be the same or different.
 第1凸条147は、発光素子120から出射された光を入射させる入射面である第1傾斜面148と、第1傾斜面148から入射した光を出射領域142に向けて反射させる反射面である第2傾斜面149とを有する。各第1凸条147において、第1傾斜面148は内側(中心軸CA側)に位置し、第2傾斜面149は外側に位置する。また、各第1凸条147において、第1傾斜面148と第2傾斜面149とは、連続していてもよいし、不連続であってもよい。前者の場合、第1傾斜面148と第2傾斜面149との間に稜線が形成される。後者の場合、第1傾斜面148と第2傾斜面149との間に別の面が形成される。第1傾斜面148と第2傾斜面149との間に別の面を設けた場合、鋭角部分(稜線部分)を無くすことで、製造性を向上させることができる。 The first ridges 147 are a first inclined surface 148 which is an incident surface to which light emitted from the light emitting element 120 is incident, and a reflective surface which reflects the light incident from the first inclined surface 148 toward the emission region 142 And a second inclined surface 149. In each of the first ridges 147, the first inclined surface 148 is located on the inner side (central axis CA side), and the second inclined surface 149 is located on the outer side. Moreover, in each of the first ridges 147, the first inclined surface 148 and the second inclined surface 149 may be continuous or discontinuous. In the former case, a ridge is formed between the first inclined surface 148 and the second inclined surface 149. In the latter case, another surface is formed between the first inclined surface 148 and the second inclined surface 149. When another surface is provided between the first inclined surface 148 and the second inclined surface 149, manufacturability can be improved by eliminating the acute angle portion (ridge line portion).
 中心軸CAを含む断面において、第1傾斜面148は、直線であってもよいし、曲線であってもよい。発光素子120の光軸LAに対する第1傾斜面148の角度は、第1傾斜面148から入射した光を第2傾斜面149側に屈折させることができれば特に限定されず、発光素子120の大きさや位置などに応じて適宜設定されうる。なお、中心軸CAを含む断面において、第1傾斜面148が曲線の場合、「第1傾斜面148の角度」とは、光の入射点における第1傾斜面148の接線の角度をいう。 In the cross section including central axis CA, first inclined surface 148 may be a straight line or a curved line. The angle of the first inclined surface 148 with respect to the optical axis LA of the light emitting element 120 is not particularly limited as long as light incident from the first inclined surface 148 can be refracted to the second inclined surface 149 side. It can be set appropriately according to the position and the like. In the case where the first inclined surface 148 is a curved line in a cross section including the central axis CA, the “angle of the first inclined surface 148” refers to the angle of the tangent of the first inclined surface 148 at the light incident point.
 中心軸CAを含む断面において、第2傾斜面149は、直線であってもよいし、曲線であってもよい。発光素子120の光軸LAに対する第2傾斜面149の角度は、出射領域142から出射した光が被照射領域の外周部分に向かうように、第1傾斜面148から入射した光を出射領域142側に反射させることができれば特に限定されない。なお、中心軸CAを含む断面において、第2傾斜面149が曲線の場合、「第2傾斜面149の角度」とは、光の入射点における第2傾斜面149の接線の角度をいう。 In the cross section including central axis CA, second inclined surface 149 may be straight or curved. The angle of the second inclined surface 149 with respect to the optical axis LA of the light emitting element 120 is such that the light incident from the first inclined surface 148 is on the emission region 142 side so that the light emitted from the emission region 142 is directed to the outer peripheral portion of the irradiated region. It is not particularly limited as long as it can be reflected. In the case where the second inclined surface 149 is a curved line in a cross section including the central axis CA, the “angle of the second inclined surface 149” refers to the angle of the tangent of the second inclined surface 149 at the light incident point.
 第2フレネルレンズ部145bは、発光素子120から出射された光の一部(光軸LAに対して大きな角度で出射された光)を光束制御部材140内に入射させるとともに、入射した光を出射領域142に向けて反射させる(図8D参照)。第2フレネルレンズ部145bは、平面視において第1仮想四角形S1と相似し、第1仮想四角形S1と同心かつ各辺が平行となるように配置された1または2以上の第2仮想四角形S2を想定し、その四辺上に配置された複数の第2凸条150を有する。第2仮想四角形S2は、前述の仮想四角形に該当し、第2凸条150は、前述の凸条に該当する。本実施の形態では、1つの第2仮想四角形S2の四辺上に配置された4つの第2凸条150を有する場合を示している。 The second Fresnel lens portion 145 b causes a part of the light emitted from the light emitting element 120 (the light emitted at a large angle with respect to the optical axis LA) to enter into the light flux controlling member 140 and emits the incident light. It is reflected toward the area 142 (see FIG. 8D). The second Fresnel lens unit 145b is similar to the first virtual quadrilateral S1 in plan view, and has one or more second virtual quadrilaterals S2 concentric with the first virtual quadrilateral S1 and arranged parallel to each side. It assumes and has a plurality of 2nd convex stripes 150 arranged on the four sides. The second virtual quadrilateral S2 corresponds to the above-described virtual quadrilateral, and the second ridge 150 corresponds to the above-described ridge. In the present embodiment, the case is shown in which four second ridges 150 are disposed on the four sides of one second virtual quadrangle S2.
 第2仮想四角形S2の一辺上に配置された第2凸条150は、第2仮想四角形S2の隣接する他の一辺上に配置された第2凸条150と、接していてもよいし、離間していてもよい。通常、第2仮想四角形S2の任意の一辺上に配置された第2凸条150は、一端から他端まで同一形状に形成される。さらに、第2仮想四角形S2の四辺上に配置された4つの第2凸条150の形状も同じである。ある第2仮想四角形S2における第2凸条150と、他の第2仮想四角形S2における第2凸条150との大きさは、同じであってもよいし、異なっていてもよい。また、第2凸条150は、屈折部144および第1フレネルレンズ部145aから入射しなかった側方方向の光を入射させる観点から、屈折部144および第1フレネルレンズ部145aより大きく形成されていることが好ましい。 The second ridges 150 disposed on one side of the second virtual quadrilateral S2 may be in contact with the second ridges 150 disposed on the other side adjacent to the second virtual quadrilateral S2, or may be separated. It may be done. Usually, the second ridges 150 disposed on any one side of the second virtual quadrangle S2 are formed in the same shape from one end to the other end. Furthermore, the shapes of the four second ridges 150 disposed on the four sides of the second virtual quadrangle S2 are also the same. The size of the second ridge 150 in a second virtual quadrilateral S2 and the size of the second ridge 150 in another second virtual quadrilateral S2 may be the same or different. In addition, the second convex 150 is formed larger than the refracting portion 144 and the first Fresnel lens portion 145a from the viewpoint of entering the light in the lateral direction which is not incident from the refracting portion 144 and the first Fresnel lens portion 145a. Is preferred.
 第2凸条150は、発光素子120から出射された光を入射させる入射面である第3傾斜面151と、第3傾斜面151から入射した光を出射領域142に向けて反射させる反射面である第4傾斜面152とを有する。第3傾斜面151は内側(中心軸CA側)に位置し、第4傾斜面152は外側に位置する。また、第3傾斜面151と第4傾斜面152とは、連続していてもよいし、不連続であってもよい。前者の場合、第3傾斜面151と第4傾斜面152との間に稜線が形成される。後者の場合、第3傾斜面151と第4傾斜面152との間に別の面が形成される。第3傾斜面151と第4傾斜面152との間に別の面を設けた場合、鋭角部分(稜線部分)を無くすことで、製造性を向上させることができる。 The second ridges 150 are a third inclined surface 151 which is an incident surface to which light emitted from the light emitting element 120 is incident, and a reflection surface which reflects the light incident from the third inclined surface 151 toward the emission region 142 And a fourth inclined surface 152. The third inclined surface 151 is located inside (the center axis CA side), and the fourth inclined surface 152 is located outside. Further, the third inclined surface 151 and the fourth inclined surface 152 may be continuous or discontinuous. In the former case, a ridgeline is formed between the third inclined surface 151 and the fourth inclined surface 152. In the latter case, another surface is formed between the third inclined surface 151 and the fourth inclined surface 152. When another surface is provided between the third inclined surface 151 and the fourth inclined surface 152, manufacturability can be improved by eliminating the acute angle part (ridge line part).
 中心軸CAを含む断面において、第3傾斜面151は、直線であってもよいし、曲線であってもよい。発光素子120の光軸LAに対する第3傾斜面151の角度は、第3傾斜面151から入射した光を第4傾斜面152側に屈折させることができれば特に限定されず、発光素子120の大きさや位置などに応じて適宜設定されうる。なお、中心軸CAを含む断面において、第3傾斜面151が曲線の場合、「第3傾斜面151の角度」とは、光の入射点における第3傾斜面151の接線の角度をいう。 In the cross section including central axis CA, third inclined surface 151 may be a straight line or a curved line. The angle of the third inclined surface 151 with respect to the optical axis LA of the light emitting element 120 is not particularly limited as long as the light incident from the third inclined surface 151 can be refracted toward the fourth inclined surface 152 side. It can be set appropriately according to the position and the like. In the case where the third inclined surface 151 is a curved line in a cross section including the central axis CA, the “angle of the third inclined surface 151” refers to the angle of the tangent of the third inclined surface 151 at the light incident point.
 中心軸CAを含む断面において、第4傾斜面152は、直線であってもよいし、曲線であってもよい。発光素子120の光軸LAに対する第4傾斜面152の角度は、出射領域142から出射した光が被照射領域の中央部分に向かうように、第1傾斜面148から入射した光を出射領域142側に反射させることができれば特に限定されない。なお、中心軸CAを含む断面において、第4傾斜面152が曲線の場合、「第4傾斜面152の角度」とは、光の入射点における第4傾斜面152の接線の角度をいう。 In the cross section including central axis CA, fourth inclined surface 152 may be a straight line or a curved line. The angle of the fourth inclined surface 152 with respect to the optical axis LA of the light emitting element 120 is such that the light incident from the first inclined surface 148 is on the side of the emission region 142 so that the light emitted from the emission region 142 is directed to the central portion of the irradiated region. It is not particularly limited as long as it can be reflected. In the case where the fourth inclined surface 152 is a curved line in a cross section including the central axis CA, the “angle of the fourth inclined surface 152” means the angle of the tangent of the fourth inclined surface 152 at the light incident point.
 [光路シミュレーションおよび照度シミュレーション]
 図3および図4に示される本実施の形態に係る光束制御部材140を有する発光装置100について、発光素子120から出射された光の光路のシミュレーションおよび照度分布のシミュレーションを行った。また、比較のため、図5に示される光束制御部材50を有する発光装置についても、発光素子から出射された光の光路のシミュレーションおよび照度分布のシミュレーションをした。
[Optical path simulation and illumination simulation]
For the light emitting device 100 having the light flux controlling member 140 according to the present embodiment shown in FIGS. 3 and 4, simulation of the optical path of the light emitted from the light emitting element 120 and simulation of the illuminance distribution were performed. Further, for comparison, also in the light emitting device having the light flux controlling member 50 shown in FIG. 5, simulation of the light path of light emitted from the light emitting element and simulation of the illuminance distribution were performed.
 図5Aは、比較例の光束制御部材50の平面図であり、図5Bは、図5Aに示されるC-C線の断面図であり、図5Cは、底面図である。図5に示されるように、比較例の光束制御部材50は、平面視形状が円形である点、同心円状に配置された円環状の凸部60を複数有する点などで本実施の形態に係る光束制御部材140と異なる。 FIG. 5A is a plan view of the light flux controlling member 50 of the comparative example, FIG. 5B is a cross-sectional view of the line CC shown in FIG. 5A, and FIG. 5C is a bottom view. As shown in FIG. 5, the light flux controlling member 50 of the comparative example relates to the present embodiment in that it has a circular shape in plan view and a plurality of annular convex portions 60 arranged concentrically. It differs from the light flux control member 140.
 図6は、比較例の発光装置を用いた照度分布のシミュレーション結果を示す図である。図6Aは、発光素子の発光面から100mm離れた被照射領域を想定した場合の照度分布のシミュレーション結果であり、図6Bは、発光素子の発光面から500mm離れた被照射領域を想定した場合の照度分布のシミュレーション結果であり、図6Cは、発光素子の発光面から1000mm離れた被照射領域を想定した場合の照度分布のシミュレーション結果であり、図6Dは、発光素子の発光面から1500mm離れた被照射領域を想定した場合の照度分布のシミュレーション結果である。図6A~図6Dの左図における縦軸および横軸は、発光素子の光軸LA(光束制御部材50の中心軸CA)からの距離(mm)を示している。また、右図における縦軸は、照度(lux)を示している。 FIG. 6 is a diagram showing simulation results of illuminance distribution using the light emitting device of the comparative example. FIG. 6A is a simulation result of the illuminance distribution in the case of assuming an irradiated region 100 mm away from the light emitting surface of the light emitting element, and FIG. 6B is a case in which the irradiated region 500 mm away from the light emitting surface of the light emitting device FIG. 6C is a simulation result of the illuminance distribution, and FIG. 6C is a simulation result of the illuminance distribution in the case of assuming an irradiated region separated from the light emitting surface of the light emitting element by 1000 mm, and FIG. 6D is 1500 mm away from the light emitting surface of the light emitting element It is a simulation result of illumination distribution at the time of assuming a field to be irradiated. The vertical and horizontal axes in the left views of FIGS. 6A to 6D indicate the distance (mm) from the light axis LA of the light emitting element (the central axis CA of the light flux controlling member 50). Further, the vertical axis in the right figure indicates the illuminance (lux).
 図6A~Dに示されるように、比較例の光束制御部材50を有する発光装置では、発光素子の発光面からの距離に関わらず、被照射領域における照度分布の外形は円形であった。 As shown in FIGS. 6A to 6D, in the light emitting device having the light flux controlling member 50 of the comparative example, the outline of the illuminance distribution in the irradiated region is circular regardless of the distance from the light emitting surface of the light emitting element.
 図7~図10は、本実施の形態に係る発光装置100の平面図および光路図である。図7Aは、発光装置100の平面図であり、図7B、図8Aおよび図8Bは、図7Aに示される第1仮想四角形S1および第2仮想四角形S2の一辺に平行なD-D線の断面図である。図7Bは、その断面における屈折部144、第1フレネルレンズ部145aおよび第2フレネルレンズ部145bから入射する光の光路図である。図7Aでは、想定される第1仮想四角形S1および第2仮想四角形S2の一部(それぞれ1つずつ)を破線で示している。図8Aは、図7Aに示されるD-D断面における第1フレネルレンズ部145aから入射する光の光路図であり、図8Bは、図7Aに示されるD-D断面における第2フレネルレンズ部145bから入射する光の光路図である。図9Aは、発光装置100の平面図であり、図9B、図10Aおよび図10Bは、図9Aに示される第1仮想四角形S1および第2仮想四角形S2の対角E-E線の断面図である。図9Bは、その断面における屈折部144、第1フレネルレンズ部145aおよび第2フレネルレンズ部145bから入射する光の光路図である。図10Aは、図9Aに示されるE-E断面における第1フレネルレンズ部145aから入射する光の光路図であり、図10Bは、図9Aに示されるE-E断面における第2フレネルレンズ部145bから入射する光の光路図である。なお、図7B、図8、図9Bおよび図10では、発光面の半面から出射された光のみ示している。 7 to 10 are a plan view and an optical path diagram of the light emitting device 100 according to the present embodiment. 7A is a plan view of the light emitting device 100, and FIGS. 7B, 8A, and 8B are cross-sectional views taken along line DD parallel to one side of the first virtual quadrilateral S1 and the second virtual quadrilateral S2 shown in FIG. 7A. FIG. FIG. 7B is an optical path diagram of light incident from the refractive portion 144, the first Fresnel lens portion 145a, and the second Fresnel lens portion 145b in the cross section. In FIG. 7A, portions (one each) of the assumed first virtual quadrangle S1 and the second virtual quadrangle S2 are indicated by broken lines. 8A is an optical path diagram of light incident from the first Fresnel lens portion 145a in the DD cross section shown in FIG. 7A, and FIG. 8B is a second Fresnel lens portion 145b in the DD cross section shown in FIG. 7A. It is an optical path figure of the light which injects from. FIG. 9A is a plan view of the light emitting device 100, and FIGS. 9B, 10A, and 10B are cross-sectional views of the first virtual quadrangle S1 and the second virtual quadrangle S2 shown in FIG. is there. FIG. 9B is an optical path diagram of light incident from the refracting portion 144, the first Fresnel lens portion 145a, and the second Fresnel lens portion 145b in the cross section. 10A is an optical path diagram of light incident from the first Fresnel lens portion 145a in the EE cross section shown in FIG. 9A, and FIG. 10B is a second Fresnel lens portion 145b in the EE cross section shown in FIG. 9A. It is an optical path figure of the light which injects from. 7B, FIG. 8, FIG. 9B and FIG. 10 show only the light emitted from one half of the light emitting surface.
 以下の説明では、光軸LAを通り、かつ第1仮想四角形S1(第2仮想四角形S2)の一辺と平行な断面において、出射領域142から出射し、出射領域142から離れるにつれて光軸LAから離れる光の光軸LAに対する角度を「正」とし、出射領域142から出射し、出射領域142から離れるにつれて光軸LAに近づく光の光軸LAに対する角度を「負」とする。この場合、図8Aに示されるように、第1フレネルレンズ部145aで反射して出射領域142から出射した第1出射光L1の光軸LAに対する角度は、「正」である(光束制御条件:0°<θ1a,θ1b)。すなわち、第1フレネルレンズ部145aで反射して出射領域142から出射した第1出射光L1は、被照射領域の外周部分に向かうように制御される。また、第1出射光L1のうち、最も光軸LA側から出射した第1内側出射光L1aの出射角(θ1a)は、最も外側から出射した第1外側出射光L1bの出射角(θ1b)より小さくなるように制御されている。これにより、第1フレネルレンズ部145aから入射した光は、被照射領域の外周部分に向かうように制御される。 In the following description, in a cross section parallel to one side of the first virtual quadrangle S1 (second virtual quadrangle S2) passing through the optical axis LA, the light is emitted from the emission area 142 and is separated from the optical axis LA as it is separated from the emission area 142 The angle of the light with respect to the optical axis LA is "positive", and the angle of the light which is emitted from the emission area 142 and approaches the optical axis LA as it leaves the emission area 142 is "negative". In this case, as shown in FIG. 8A, the angle with respect to the optical axis LA of the first outgoing light L1 reflected by the first Fresnel lens portion 145a and emitted from the outgoing area 142 is “positive” (light flux control condition: 0 ° <θ1a, θ1b). That is, the first outgoing light L1 reflected by the first Fresnel lens portion 145a and emitted from the outgoing area 142 is controlled to be directed to the outer peripheral portion of the illuminated area. Further, of the first emission light L1, the emission angle (θ1a) of the first inner emission light L1a emitted most from the optical axis LA side is from the emission angle (θ1b) of the first outer emission light L1b emitted from the outermost side. It is controlled to be smaller. Thus, the light incident from the first Fresnel lens portion 145a is controlled to be directed to the outer peripheral portion of the illuminated area.
 また、図8Bに示されるように、第2フレネルレンズ部145bで反射して出射領域142から出射した第2出射光L2は、光軸LA(LA’)に対する角度が「正」、「0(平行)」および「負」の出射光を有する(光束制御条件:θ2a≦0°≦θ2b)。また、第2出射光L2のうち、最も外側から出射した第2外側出射光L2bの出射角(θ2b)は、第1外側出射光L1bの出射角(θ1b)より小さくなるように制御されている(光束制御条件:θ2b<θ1b)。これらにより、第2フレネルレンズ部145bから入射した光は、被照射領域の中央部分に向かうように制御される。なお、「θ2a」は、第2出射光L2のうち、最も内側から出射した第2内側出射光L2aの出射角を示している。ここでいう出射角とは、出射光の光軸LAに対する角度を意味する。 Further, as shown in FIG. 8B, the second emission light L2 reflected by the second Fresnel lens portion 145b and emitted from the emission region 142 has a positive angle with respect to the optical axis LA (LA ′), “0 (zero) Parallel) and “negative” output light (light flux control condition: θ2a ≦ 0 ° ≦ θ2b). In addition, the emission angle (θ 2 b) of the second outer emission light L 2 b emitted from the outermost side of the second emission light L 2 is controlled to be smaller than the emission angle (θ 1 b) of the first outer emission light L 1 b (Light flux control condition: θ2b <θ1b). Thus, light incident from the second Fresnel lens portion 145 b is controlled to be directed to the central portion of the illuminated area. Note that “θ2a” indicates the emission angle of the second inner emission light L2a emitted from the innermost portion of the second emission light L2. The emission angle here means an angle with respect to the optical axis LA of the emitted light.
 このように、光軸LAを通り、かつ第1仮想四角形S1(第2仮想四角形S2)の一辺に平行な断面において、前述の光束制御条件(0°<θ1a,θ1b、θ2a≦0°≦θ2b、θ2b<θ1b)を満たし、一端から他端まで同一形状の第1凸条147(第2凸条150)を第1仮想四角形S1(第2仮想四角形S2)の各辺に沿って形成すると、図10に示される第1仮想四角形S1(第2仮想四角形S2)の対角線を含む断面では、被照射領域の外周方向に向かうように制御されており、四角形状の被照射領域におけるコーナー方向に向かう光が生成されていることがわかる。すなわち、光軸LAを通り、かつ第1仮想四角形S1(第2仮想四角形S2)の一辺に平行な断面において、第1凸条147(第2凸条150)が、前述の光束制御条件を満たさない場合には、均一性の高い四角形状の被照射領域が得られない。なお、第1凸条147および第2凸条150の設計には、発光素子120の発光面上の光軸LAとの交点から出射する光を用いる。 Thus, in the cross section parallel to one side of the first virtual quadrilateral S1 (the second virtual quadrilateral S2) passing through the optical axis LA, the above-described light flux control conditions (0 ° <θ1a, θ1b, θ2a ≦ 0 ° ≦ θ2b , Θ2b <θ1b), and forming a first convex strip 147 (second convex strip 150) having the same shape from one end to the other end along each side of the first virtual quadrangle S1 (second virtual quadrangle S2), In the cross section including the diagonal of the first virtual quadrilateral S1 (second virtual quadrilateral S2) shown in FIG. 10, the control is performed toward the outer peripheral direction of the irradiated area, and is directed to the corner direction in the rectangular irradiated area. It can be seen that light is being generated. That is, in a cross section parallel to one side of the first virtual quadrangle S1 (second virtual quadrangle S2) passing through the optical axis LA, the first convex streak 147 (second convex streak 150) satisfies the above-described light flux control condition If not, it is not possible to obtain a highly uniform square irradiated area. Note that, in the design of the first ridge 147 and the second ridge 150, light emitted from an intersection with the light axis LA on the light emitting surface of the light emitting element 120 is used.
 図11~図14は、本実施の形態に係る発光装置100を用いた照度分布のシミュレーション結果を示す図である。図11は、発光素子120の発光面から100mm離れた被照射領域を想定した場合の照度分布のシミュレーション結果である。図11Aは、屈折部144および第1フレネルレンズ部145aから入射した光に基づく照度分布のシミュレーション結果であり、図11Bは、第2フレネルレンズ部145bから入射した光に基づく照度分布のシミュレーション結果であり、図11Cは、図11Bの照度スケールを図11Aに合わせたものであり、図11Dは、屈折部144、第1フレネルレンズ部145aおよび第2フレネルレンズ部145bから入射した光に基づく照度分布のシミュレーション結果である。 11 to 14 are diagrams showing simulation results of illuminance distribution using the light emitting device 100 according to the present embodiment. FIG. 11 is a simulation result of the illuminance distribution in the case of assuming an irradiated region 100 mm away from the light emitting surface of the light emitting element 120. FIG. 11A is a simulation result of illuminance distribution based on light incident from the refracting portion 144 and the first Fresnel lens portion 145a, and FIG. 11B is a simulation result of illuminance distribution based on light incident from the second Fresnel lens portion 145b. 11C corresponds to the illuminance scale of FIG. 11B according to FIG. 11A, and FIG. 11D shows the illuminance distribution based on the light incident from the refracting portion 144, the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. Simulation results of
 図12は、発光素子120の発光面から500mm離れた被照射領域を想定した場合の照度分布のシミュレーション結果である。図12Aは、屈折部144および第1フレネルレンズ部145aから入射した光に基づく照度分布のシミュレーション結果であり、図12Bは、第2フレネルレンズ部145bから入射した光に基づく照度分布のシミュレーション結果であり、図12Cは、図12Bの照度スケールを図12Aに合わせたものであり、図12Dは、屈折部144、第1フレネルレンズ部145aおよび第2フレネルレンズ部145bから入射した光に基づく照度分布のシミュレーション結果である。 FIG. 12 is a simulation result of the illuminance distribution in the case of assuming an irradiated region 500 mm away from the light emitting surface of the light emitting element 120. FIG. 12A is a simulation result of illuminance distribution based on light incident from the refracting portion 144 and the first Fresnel lens portion 145a, and FIG. 12B is a simulation result of illuminance distribution based on light incident from the second Fresnel lens portion 145b. 12C corresponds to the illuminance scale of FIG. 12B according to FIG. 12A, and FIG. 12D shows illuminance distribution based on light incident from the refracting portion 144, the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. Simulation results of
 図13は、発光素子120の発光面から1000mm離れた被照射領域を想定した場合の照度分布のシミュレーション結果である。図13Aは、屈折部144および第1フレネルレンズ部145aから入射した光に基づく照度分布のシミュレーション結果であり、図13Bは、第2フレネルレンズ部145bから入射した光に基づく照度分布のシミュレーション結果であり、図13Cは、図13Bの照度スケールを図13Aに合わせたものであり、図13Dは、屈折部144、第1フレネルレンズ部145aおよび第2フレネルレンズ部145bから入射した光に基づく照度分布のシミュレーション結果である。 FIG. 13 is a simulation result of the illuminance distribution in the case where it is assumed that a region to be irradiated which is 1000 mm away from the light emitting surface of the light emitting element 120. 13A is a simulation result of illuminance distribution based on light incident from the refracting portion 144 and the first Fresnel lens portion 145a, and FIG. 13B is a simulation result of illuminance distribution based on light incident from the second Fresnel lens portion 145b. 13C corresponds to the illuminance scale of FIG. 13B in FIG. 13A, and FIG. 13D shows illuminance distribution based on light incident from the refracting portion 144, the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. Simulation results of
 図14は、発光素子120の発光面から1500mm離れた被照射領域を想定した場合の照度分布のシミュレーション結果である。図14Aは、屈折部144および第1フレネルレンズ部145aから入射した光に基づく照度分布のシミュレーション結果であり、図14Bは、第2フレネルレンズ部145bから入射した光に基づく照度分布のシミュレーション結果であり、図14Cは、図14Bの照度スケールを図14Aに合わせたものであり、図14Dは、屈折部144、第1フレネルレンズ部145aおよび第2フレネルレンズ部145bから入射した光に基づく照度分布のシミュレーション結果である。 FIG. 14 is a simulation result of the illuminance distribution in the case where it is assumed that a region to be irradiated 1500 mm away from the light emitting surface of the light emitting element 120 is assumed. FIG. 14A is a simulation result of illuminance distribution based on light incident from the refracting portion 144 and the first Fresnel lens portion 145a, and FIG. 14B is a simulation result of illuminance distribution based on light incident from the second Fresnel lens portion 145b. 14C corresponds to the illuminance scale of FIG. 14B according to FIG. 14A, and FIG. 14D shows illuminance distribution based on light incident from the refracting portion 144, the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. Simulation results of
 なお、図11~図14の左図における縦軸および横軸は、発光素子の光軸LA(光束制御部材140の中心軸CA)からの距離(mm)を示している。また、右図における縦軸は、照度(lux)を示している。 The vertical and horizontal axes in the left views of FIGS. 11 to 14 indicate the distance (mm) from the light axis LA of the light emitting element (the central axis CA of the light flux controlling member 140). Further, the vertical axis in the right figure indicates the illuminance (lux).
 図11A、図12A、図13Aおよび図14Aに示されるように、本実施の形態に係る光束制御部材140を有する発光装置100では、発光素子120の発光面からの距離に関わらず、第1フレネルレンズ部145aから入射した光は、被照射領域の外周部分を照らす。また、図11C、図12C、図13Cおよび図14Cに示されるように、第2フレネルレンズ部145bから入射した光は、被照射領域の中央部分を照らす。さらに、図11D、図12D、図13Dおよび図14Dに示されるように、本実施の形態に係る光束制御部材140を有する発光装置100では、発光素子120の発光面からの距離に関わらず、被照射領域が四角形状であった。 As shown in FIG. 11A, FIG. 12A, FIG. 13A and FIG. 14A, in the light emitting device 100 having the light flux controlling member 140 according to the present embodiment, the first fresnel regardless of the distance from the light emitting surface of the light emitting element 120. The light incident from the lens portion 145 a illuminates the outer peripheral portion of the illuminated region. Further, as shown in FIGS. 11C, 12C, 13C and 14C, the light incident from the second Fresnel lens portion 145b illuminates the central portion of the illuminated region. Furthermore, as shown in FIG. 11D, FIG. 12D, FIG. 13D and FIG. 14D, in the light emitting device 100 having the light flux controlling member 140 according to the present embodiment, regardless of the distance from the light emitting surface of the light emitting element 120 The irradiation area was square.
 このように、第1仮想四角形S1および第2仮想四角形S2が正方形ならば、本実施の形態のように、正方形状の被照射領域を照らすことができる。すなわち、第1仮想四角形S1および第2仮想四角形S2の形状と、被照射領域の形状は、相似形状である。よって、長方形状の被照射領域を照らす場合には、第1仮想四角形S1および第2仮想四角形S2を長方形にすればよい。 As described above, if the first virtual quadrilateral S1 and the second virtual quadrilateral S2 are squares, it is possible to illuminate the square-shaped irradiated area as in the present embodiment. That is, the shapes of the first virtual quadrilateral S1 and the second virtual quadrilateral S2 and the shape of the irradiated region are similar. Therefore, in the case of illuminating the rectangular irradiation area, the first virtual quadrangle S1 and the second virtual quadrangle S2 may be made rectangular.
 図6、図11D、図12D、図13Dおよび図14Dの矢印は、被照射領域の四隅(最も暗い部分)における照度のヒストグラムを指している。これは、本実施の形態に係る光束制御部材140を用いた場合の被照射領域の四隅は、比較例の光束制御部材50を用いた場合の被照射領域の四隅より明るいことを示している。すなわち、本実施の形態に係る発光装置100は、前述した光束制御条件を満たす凸条を四角形の各辺上に配置されるように形成することで、比較例の発光装置よりも、中央部分から外周部分に至るまでの四角形状の被照射領域を均一かつ効率的に照らしていることがわかる。 The arrows in FIG. 6, FIG. 11D, FIG. 12D, FIG. 13D and FIG. 14D indicate histograms of illuminance at the four corners (darkest parts) of the illuminated area. This indicates that the four corners of the irradiated area when the light flux controlling member 140 according to the present embodiment is used is brighter than the four corners of the irradiated area when the light flux controlling member 50 of the comparative example is used. That is, the light emitting device 100 according to the present embodiment is formed from the central portion more than the light emitting device of the comparative example by forming the ridges satisfying the light beam control condition described above on each side of the square. It can be seen that the square shaped irradiation region up to the outer peripheral portion is illuminated uniformly and efficiently.
 [効果]
 以上のように、本実施の形態に係る光束制御部材140は、第1フレネルレンズ部145aおよび第2フレネルレンズ部145bから入射し、出射領域142から出射する光の配光をそれぞれ前述の光束制御条件にしたがって制御することで、四角形状の被照射領域を均一かつ効率的に照らすことができる。
[effect]
As described above, the light beam control member 140 according to the present embodiment controls the light distribution of the light emitted from the output region 142 by the light flux control of the first Fresnel lens portion 145a and the second Fresnel lens portion 145b. By controlling according to the conditions, it is possible to illuminate the square shaped irradiation area uniformly and efficiently.
 なお、発光素子120の平面形状は、特に限定されない。発光素子120の平面形状の例には、円形状、四角形状などの多角形状が含まれる。たとえば、四角形状の発光素子120の場合、発光素子120の一辺と、光束制御部材140の第1仮想四角形S1(第2仮想四角形S2)の一辺との位置関係も特に限定されず、45°ずらして配置した場合であっても、同様の効果を得ることができる。 The planar shape of the light emitting element 120 is not particularly limited. Examples of the planar shape of the light emitting element 120 include polygonal shapes such as a circular shape and a quadrangular shape. For example, in the case of square light emitting element 120, the positional relationship between one side of light emitting element 120 and one side of first virtual square S1 (second virtual square S2) of light flux controlling member 140 is not particularly limited either. Even in the case of arranging them, the same effect can be obtained.
 [照明装置の構成]
 次に、本実施の形態に係る発光装置100を有する照明装置400について説明する。
[Configuration of lighting device]
Next, a lighting device 400 having the light emitting device 100 according to the present embodiment will be described.
 図15は、本実施の形態に係る照明装置400の構成を示す図である。図15に示されるように、照明装置400は、複数の発光装置100およびカバー420を有していてもよい。前述したように、発光装置100は、光束制御部材140および発光素子120を含む。発光素子120は、基板440に固定されている。 FIG. 15 is a diagram showing a configuration of a lighting device 400 according to the present embodiment. As shown in FIG. 15, the lighting device 400 may have a plurality of light emitting devices 100 and a cover 420. As described above, the light emitting device 100 includes the light flux controlling member 140 and the light emitting element 120. The light emitting element 120 is fixed to the substrate 440.
 カバー420は、発光装置100からの出射光を拡散させつつ透過させるとともに、発光装置100を保護する。カバー420は、発光装置100から出射される光の光路上に配置されている。カバー420の材料は、上記の機能を発揮することができれば特に限定されない。カバー420の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂、またはガラスである。 The cover 420 diffuses and transmits light emitted from the light emitting device 100 and protects the light emitting device 100. The cover 420 is disposed on the light path of the light emitted from the light emitting device 100. The material of the cover 420 is not particularly limited as long as the above-described function can be exhibited. The material of the cover 420 is a light transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), epoxy resin (EP), or glass.
 [効果]
 本実施の形態に係る照明装置400は、本実施の形態に係る光束制御部材140および発光装置100と同様の効果を有する。
[effect]
Illumination device 400 according to the present embodiment has the same effects as light flux controlling member 140 and light emitting device 100 according to the present embodiment.
 [実施の形態2]
 実施の形態2に係る発光装置および照明装置は、光束制御部材240の形状が実施の形態1に係る発光装置100および照明装置400とそれぞれ異なる。そこで、実施の形態1に係る発光装置100および照明装置400と同一の構成要素については、同一の符号を付してその説明を省略し、光束制御部材240の新しい構成要素を中心に説明する。実施の形態2に係る光束制御部材240は、第1仮想四角形S1の対角線上に、隣り合う凸条を離間する壁部260をさらに有する点で実施の形態1に係る光束制御部材140と異なる。
Second Embodiment
The light emitting device and the illuminating device according to the second embodiment are different from the light emitting device 100 and the illuminating device 400 according to the first embodiment in the shape of the light flux controlling member 240. Therefore, the same components as those of the light emitting device 100 and the lighting device 400 according to the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted, and new components of the light flux controlling member 240 will be mainly described. The light flux controlling member 240 according to the second embodiment differs from the light flux controlling member 140 according to the first embodiment in that the light flux controlling member 240 further has a wall portion 260 separating adjacent ridges on the diagonal of the first virtual quadrangle S1.
 (光束制御部材の構成)
 図16~図18は、実施の形態2に係る光束制御部材240の構成を示す図である。図16Aは、実施の形態2に係る光束制御部材240を下側から見た斜視図であり、図16Bは、図16Aにおいて破線で示される部分の拡大図である。図17Aは、実施の形態2に係る光束制御部材240の底面図であり、図17Bは、側面図であり、図17Cは、屈折部144およびフレネルレンズ部245を省略した底面図であり、図17Dは、図17Aに示されるF-F線の断面図である。図18Aは、図17Aに示されるG-G線の断面図であり、図18Bは、図18Aにおいて破線で示される部分の拡大図であり、図18Cは、H-H線の断面図であり、図18Dは、図18Cにおいて破線で示される部分の拡大図であり、図18Eは、I-I線の断面図であり、図18Fは、図18Eにおいて破線で示される部分の拡大図であり、図18Gは、J-J線の断面図であり、図18Hは、図18Gにおいて破線で示される部分の拡大図である。
(Configuration of luminous flux control member)
16 to 18 are diagrams showing the configuration of the light flux controlling member 240 according to the second embodiment. 16A is a perspective view of the light flux controlling member 240 according to Embodiment 2 as viewed from the lower side, and FIG. 16B is an enlarged view of a portion shown by a broken line in FIG. 16A. FIG. 17A is a bottom view of the light flux controlling member 240 according to the second embodiment, FIG. 17B is a side view, and FIG. 17C is a bottom view with the refracting portion 144 and the Fresnel lens portion 245 omitted. 17D is a cross-sectional view of line FF shown in FIG. 17A. 18A is a cross-sectional view taken along the line GG shown in FIG. 17A, FIG. 18B is an enlarged view of a portion shown by a broken line in FIG. 18A, and FIG. 18C is a cross-sectional view taken along the HH line. 18D is an enlarged view of a portion shown by a broken line in FIG. 18C, FIG. 18E is a cross-sectional view of a line II, and FIG. 18F is an enlarged view of a portion shown by a broken line in FIG. 18G is a cross-sectional view taken along the line JJ, and FIG. 18H is an enlarged view of a portion shown by a broken line in FIG. 18G.
 図16~図18に示されるように、実施の形態2に係る光束制御部材240は、入射領域241および出射領域142を有する。入射領域241と出射領域142との間には、フランジ243が設けられている。また、入射領域241は、屈折部144と、第1フレネルレンズ部245aおよび第2フレネルレンズ部145bを含むフレネルレンズ部245と、を有する。 As shown in FIGS. 16 to 18, the light flux controlling member 240 according to the second embodiment has an incident area 241 and an output area 142. A flange 243 is provided between the incident area 241 and the outgoing area 142. Further, the incident area 241 has a refracting portion 144, and a Fresnel lens portion 245 including a first Fresnel lens portion 245a and a second Fresnel lens portion 145b.
 第1フレネルレンズ部245aは、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の第1仮想四角形S1を想定し、その四辺上に配置された4つの第1凸条247を有する。 The first Fresnel lens portions 245a are assumed to have a plurality of first virtual quadrilaterals S1 arranged so as to be similar to each other in plan view and concentric and parallel to each other, and four first quadrilaterals arranged on four sides thereof It has convex ridges 247.
 第1仮想四角形S1の各対角線上には、壁部260が配置されている。壁部260は、所定の厚みを有しており、第1仮想四角形S1において互いに隣接する2つの第1凸条247,247を離間する。壁部260は、第1凸条247の谷部から第1凸条247の頂部までと同じ高さ、またはそれ以上の高さに設計される。第1仮想四角形S1の対角線に直交する方向における壁部260の断面形状は、縦長の長方形である。また、壁部260は、平面視において最も内側にある第1仮想四角形S1の第1凸条247から、最も外側にある第1仮想四角形S1の第1凸条247まで連続して配置されている。なお、壁部260の内側端部は、屈折部144まで延在されていてもよい。 The wall portion 260 is disposed on each diagonal of the first virtual quadrangle S1. The wall portion 260 has a predetermined thickness, and separates two first ridges 247, 247 adjacent to each other in the first virtual quadrangle S1. The wall portion 260 is designed to have the same height as the height of the valley of the first ridge 247 to the top of the first ridge 247 or more. The cross-sectional shape of the wall portion 260 in the direction orthogonal to the diagonal line of the first virtual quadrangle S1 is a vertically long rectangle. In addition, the wall portion 260 is continuously disposed from the first ridge 247 of the first virtual quadrilateral S1 that is the innermost in plan view to the first ridge 247 of the first virtual quadrilateral S1 that is the outermost. . The inner end of the wall 260 may extend to the bending portion 144.
 また、壁部260は、第1仮想四角形S1の対角線の方向における一方の端部が屈折部144に達しており、他方の端部が第2フレネルレンズ部145bに達していれば、第1凸条247の頂部までの高さよりも低くてもよい(段落0074参照)。 Further, in the wall portion 260, if one end in the direction of the diagonal of the first virtual quadrangle S1 reaches the refracting portion 144 and the other end reaches the second Fresnel lens portion 145b, the first convex is generated. It may be lower than the height to the top of the bar 247 (see paragraph 0074).
 なお、特に図示しないが、実施の形態2に係る光束制御部材240を有する発光装置を用いた照度分布のシミュレーション結果は、実施の形態1に係る光束制御部材140を有する発光装置100を用いた照度分布のシミュレーション結果と同じであった。 Although not particularly illustrated, the simulation result of the illuminance distribution using the light emitting device having the light flux controlling member 240 according to the second embodiment is the illuminance using the light emitting device 100 having the light flux controlling member 140 according to the first embodiment. It is the same as the simulation result of the distribution.
 (成形型の構成)
 次に、実施の形態2に係る光束制御部材240を成形するための成形型270について説明する。図19~図21は、実施の形態2に係る光束制御部材240の成形に用いられる成形型270の構成を示す図である。図19Aは、成形型270の第1金型272を下から見た斜視図であり、図19Bは、図19Aにおいて破線で示される円C1の部分の拡大図であり、図19Cは、破線で示される円C2の部分の拡大図である。図20Aは、第1金型272の底面図であり、図20Bは、屈折部成形領域およびフレネルレンズ部成形領域274を省略した底面図であり、図20Cは、図20Aに示されるK-K線の断面図であり、図20Dは、図20Aにおいて破線で示される部分の拡大図である。図21Aは、図21Aに示されるL-L線の断面図であり、図21Bは、図21Aにおいて破線で示される部分の拡大図であり、図21Cは、M-M線の断面図であり、図21Dは、図21Cにおいて破線で示される部分の拡大図であり、図21Eは、N-N線の断面図であり、図21Fは、図21Eにおいて破線で示される部分の拡大図であり、図21Gは、O-O線の断面図であり、図21Hは、図21Gにおいて破線で示される部分の拡大図である。
(Structure of mold)
Next, a forming die 270 for forming the light flux controlling member 240 according to the second embodiment will be described. 19 to 21 are diagrams showing the configuration of a forming die 270 used for forming the light flux controlling member 240 according to the second embodiment. 19A is a bottom perspective view of the first mold 272 of the forming die 270, FIG. 19B is an enlarged view of a portion of a circle C1 indicated by a broken line in FIG. 19A, and FIG. 19C is a broken line It is an enlarged view of a portion of circle C2 shown. FIG. 20A is a bottom view of the first mold 272, FIG. 20B is a bottom view omitting the refractive part molding area and the Fresnel lens part molding area 274, and FIG. 20C is a KK shown in FIG. 20A. FIG. 20D is a cross-sectional view of a line, and FIG. 20D is an enlarged view of a portion shown by a broken line in FIG. 20A. 21A is a cross-sectional view taken along the line L-L shown in FIG. 21A, FIG. 21B is an enlarged view of a portion shown by a broken line in FIG. 21A, and FIG. 21C is a cross-sectional view taken along the line M-M. FIG. 21D is an enlarged view of a portion indicated by a broken line in FIG. 21C, FIG. 21E is a cross-sectional view of line NN, and FIG. 21F is an enlarged view of a portion indicated by a broken line in FIG. FIG. 21G is a cross-sectional view taken along line OO, and FIG. 21H is an enlarged view of a portion shown by a broken line in FIG. 21G.
 一般的に、フレネルレンズの成形に使用される成形型は、円形の金型を旋盤加工して同心円状の溝(凹部)を複数形成することで製造されうる。しかしながら、前述したように、本発明に係る光束制御部材240は、直線状の第1凸条247を含むフレネルレンズ部245を有する。よって、本発明に係る成形型270は、第1凸条247に対応する凹条を旋盤加工により形成することができない。また、互いに隣接する2つの凹条が接続している場合、凹条による角を機械加工により形成することは困難である。仮に第1凸条247に対応する凹条を形成することができたとしても、射出成形時に凹条と隣接する凹条との境界部分に気泡が残ってしまうおそれがある。 In general, a mold used for molding a Fresnel lens can be manufactured by lathing a circular mold to form a plurality of concentric grooves (concave portions). However, as described above, the light flux controlling member 240 according to the present invention has the Fresnel lens portion 245 including the linear first convex streaks 247. Therefore, the forming die 270 according to the present invention can not form a concave corresponding to the first protrusion 247 by lathe processing. In addition, when two concave streaks adjacent to each other are connected, it is difficult to form a corner by the concave streak by machining. Even if a concave corresponding to the first ridge 247 can be formed, air bubbles may remain at the boundary between the concave and the adjacent concave during injection molding.
 このような問題を解決すべく、本実施の形態に係る光束制御部材240を成形する成形型270では、隣接する第1凹条277の境界部分に溝部280が配置されている。 In order to solve such a problem, in the forming die 270 for forming the light flux controlling member 240 according to the present embodiment, the groove 280 is disposed at the boundary portion of the adjacent first concaves 277.
 図19~図21に示されるように、成形型270は、光束制御部材240の入射領域241側の部分を成形するための第1金型272と、出射領域142側の部分を成形するための第2金型(図示省略)と、を有する。 As shown in FIG. 19 to FIG. 21, the molding die 270 has a first mold 272 for molding a portion on the incident area 241 side of the light flux control member 240 and a mold for molding the portion on the emission area 142 side. And a second mold (not shown).
 第1金型272は、光束制御部材240の入射領域241側の形状に対応した形状を有する。第1金型272は、屈折部144を成形するための屈折部成形領域273と、フレネルレンズ部245を成形するためのフレネルレンズ部成形領域274と、を有している。フレネルレンズ部成形領域274は、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の仮想四角形の各辺上に配置された複数の凹条を有する。仮想四角形の各対角線上には、仮想四角形の一辺上に配置されている凹条と、当該仮想四角形において一辺に隣接する他の一辺上に配置されている凹条とを離間する溝部が配置されている。より具体的には、フレネルレンズ部成形領域274は、第1フレネルレンズ部145aを成形するための第1フレネルレンズ部成形領域275と、前記第1フレネルレンズ部成形領域の外側に位置し、第2フレネルレンズ部145bを成形するための第2フレネルレンズ部成形領域276と、を有している。 The first mold 272 has a shape corresponding to the shape of the light flux controlling member 240 on the incident region 241 side. The first mold 272 has a refracting portion forming region 273 for forming the refracting portion 144 and a Fresnel lens portion forming region 274 for forming the Fresnel lens portion 245. The Fresnel lens portion forming area 274 has a plurality of concave streaks arranged on each side of a plurality of virtual quadrilaterals arranged to be concentric and parallel to each other in plan view. On each diagonal of the virtual quadrilateral, a groove portion is disposed which separates a concave stripe disposed on one side of the virtual quadrilateral and a concave stripe disposed on the other side adjacent to one side of the virtual quadrilateral ing. More specifically, the Fresnel lens part molding area 274 is located outside the first Fresnel lens part molding area, a first Fresnel lens part molding area 275 for molding the first Fresnel lens part 145a, and And a second Fresnel lens portion forming area 276 for forming the second Fresnel lens portion 145 b.
 第1フレネルレンズ部成形領域275は、複数の第1仮想四角形S1に対応した、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の第1仮想四角形S1’の各辺上に配置された複数の第1凹条277を有している。第1仮想四角形S1’は前述の仮想四角形に該当し、第1凹条277は、前述の凹条に該当する。第1仮想四角形S1’の各対角線上には、溝部280が配置されている。 The first Fresnel lens portion forming regions 275 correspond to the plurality of first virtual quadrilaterals S1 and are formed of the plurality of first virtual quadrilaterals S1 ′ which are similar to each other in plan view and are concentric and parallel to each other. It has a plurality of first concaves 277 arranged on each side. The first virtual quadrangle S1 'corresponds to the aforementioned virtual quadrangle, and the first concave streak 277 corresponds to the aforementioned concave streak. A groove 280 is disposed on each diagonal of the first virtual quadrangle S1 '.
 第2フレネルレンズ部成形領域276は、1または2以上の前記第1仮想四角形S1’に対応した、平面視において前記第1仮想四角形S1’と相似し、前記第1仮想四角形S1’と同心かつ各辺が平行となるように配置された1または2以上の第2仮想四角形S2’の各辺上に配置された複数の第2凹条278を有している。第2仮想四角形S2’は、前述の仮想四角形に該当し、第2凹条278は、前述の凹条に該当する。 The second Fresnel lens part molding area 276 is similar to the first virtual quadrilateral S1 ′ in plan view corresponding to one or more of the first virtual quadrilateral S1 ′, and is concentric with the first virtual quadrilateral S1 ′ It has a plurality of second concaves 278 arranged on each side of one or more second virtual quadrilaterals S2 'arranged such that the sides are parallel. The second virtual quadrilateral S2 'corresponds to the aforementioned virtual quadrilateral, and the second concave streak 278 corresponds to the aforementioned concave streak.
 溝部280は、後述する射出成形時において、キャビティーのガス抜け用の通路として機能する。溝部280は、所定の深さを有しており、第1仮想四角形S1’において互いに隣接する2つの第1凹条277,277を離間する。溝部280は、第1凹条277の頂部から第1凹条277の谷部までと同じ深さ、またはそれよりも深く形成される。また、溝部280は、平面視において最も内側にある第1仮想四角形S1’の第1凹条277から、最も外側にある第1仮想四角形S1’の第1凹条277まで連続して配置されている。すなわち、溝部280は、少なくとも第1フレネルレンズ部成形領域275に配置されていればよい。なお、溝部280の内側端部は、屈折部成形領域273まで延在されていてもよい。 The groove 280 functions as a passage for degassing of the cavity at the time of injection molding to be described later. The groove 280 has a predetermined depth, and separates two adjacent first concave lines 277 and 277 adjacent to each other in the first virtual quadrangle S1 '. The groove 280 is formed to have the same depth or a depth greater than that from the top of the first concave 277 to the valley of the first concave 277. In addition, the groove 280 is continuously disposed from the first concave streak 277 of the first virtual quadrilateral S1 ′ at the innermost side in plan view to the first concave streak 277 of the first virtual quadrilateral S1 ′ at the outermost side There is. That is, the groove 280 may be disposed at least in the first Fresnel lens portion molding region 275. Note that the inner end of the groove 280 may extend to the refractive part molding area 273.
 第2金型(図示省略)は、光束制御部材240の出射領域142側の形状に対応した形状を有する。第2金型は、第1金型272と型締めされることで、光束制御部材240の形状をしたキャビティーを形成する。 The second mold (not shown) has a shape corresponding to the shape of the light emitting region 142 of the light flux controlling member 240. The second mold is clamped with the first mold 272 to form a cavity in the shape of the light flux control member 240.
 前述したように光束制御部材240は、射出成形により製造されうる。射出成形は、成形型270(第1金型272および第2金型)を型締めする型締め工程と、成形型270の内部(キャビティー)に溶融した樹脂を充填する充填工程と、成形型270内に溶融樹脂を充填させた状態で保圧しながら自然冷却する保圧工程と、型締めされた成形型270を型開きする型開き工程と、を有する。 As described above, the light flux controlling member 240 can be manufactured by injection molding. Injection molding includes a mold clamping process of clamping a mold 270 (first mold 272 and a second mold), a filling process of filling a molten resin into the interior (cavity) of the mold 270, and a mold There is a pressure holding process of naturally cooling while holding pressure in a state where the molten resin is filled in the resin 270 and a mold opening process of opening the mold 270 clamped.
 前述したように、溝部280は、射出成形時の充填工程において、ガス抜き用の通路として機能すればよいため、溝部280の深さは、必ずしも第1凹条277の頂部から谷部までの深さと一致させる必要はない。したがって、光束制御部材240において、壁部260は、屈折部144と第2フレネルレンズ部145bを繋ぐように連続して成形されていればよい。また、充填工程において溶融樹脂が完全に流れ込む必要もない。また、溝部280の形状は、充填工程においてキャビティー内のガスが抜ければ特に限定されない。 As described above, since the groove 280 only needs to function as a passage for degassing in the filling step during injection molding, the depth of the groove 280 is necessarily the depth from the top of the first concave 277 to the valley. There is no need to match it. Therefore, in the light flux controlling member 240, the wall portion 260 may be formed continuously so as to connect the refracting portion 144 and the second Fresnel lens portion 145b. In addition, the molten resin does not have to completely flow in the filling step. The shape of the groove 280 is not particularly limited as long as the gas in the cavity escapes in the filling step.
 さらに、溝部280は、ガス抜き用の通路として機能すればよいので、溝部280の数は、1つであってもよいし、2~4つであってもよい。溝部280が1つの場合、当該溝部280は、溶融樹脂が充填されるゲートに対して、反対側に形成されていてもよく、反対側に形成されていなくてもよい。 Furthermore, since the groove 280 may function as a passage for degassing, the number of the grooves 280 may be one or two to four. When there is one groove 280, the groove 280 may be formed on the opposite side of the gate filled with the molten resin, or may not be formed on the opposite side.
 (効果)
 本実施の形態に係る光束制御部材240は、実施の形態1に係る光束制御部材140と同様の効果を有する。また、本実施の形態に係る発光装置および照明装置は、実施の形態1に係る発光装置100および照明装置400と同様の効果を有する。
(effect)
The light flux controlling member 240 according to the present embodiment has the same effect as the light flux controlling member 140 according to the first embodiment. Further, the light emitting device and the lighting device according to the present embodiment have the same effects as the light emitting device 100 and the lighting device 400 according to the first embodiment.
 本実施の形態に係る成形型270は、ガス抜き用の溝部280を有しているため、気泡による成形不良の発生を抑制し、製造歩留りを向上させることができる。また、本実施の形態に係る成形型270では、隣接する直線状の第1凹条277,277が互いに離間しており、第1凹条277を矩形状に繋げる必要がなく、矩形の角が形成されていないため、機械加工によりフレネルレンズ部成形領域274を容易に形成することができる。 The molding die 270 according to the present embodiment has the groove 280 for degassing, so that the generation of molding defects due to air bubbles can be suppressed and the manufacturing yield can be improved. Further, in the molding die 270 according to the present embodiment, adjacent linear first concave streaks 277, 277 are separated from each other, there is no need to connect the first concave streaks 277 in a rectangular shape, and the rectangular corners Since it is not formed, it is possible to easily form the Fresnel lens portion molding region 274 by machining.
 なお、第1成形型272は、第1仮想四角形S1’の対角線および中心軸CAを含む平面で4つに分割されていてもよい。この場合、第1成形型272の組み立て作業時において、溝部280により第1凹条277の端面同士が衝突することを防ぐことができるため、組み立て作業を容易にすることができる。 The first molding die 272 may be divided into four in a plane including the diagonal of the first virtual quadrangle S1 'and the central axis CA. In this case, since the groove portions 280 can prevent the end faces of the first recessed strips 277 from colliding with each other during the assembling operation of the first molding die 272, the assembling operation can be facilitated.
 [実施の形態3]
 (光束制御部材の構成)
 実施の形態3の発光装置および照明装置は、光束制御部材340の形状が実施の形態2の発光装置および照明装置とそれぞれ異なる。そこで、実施の形態2に係る発光装置100および照明装置400と同一の構成要素については、同一の符号を付してその説明を省略し、光束制御部材340の新しい構成要素を中心に説明する。実施の形態3に係る光束制御部材340は、壁部の断面形状が実施の形態2に係る光束制御部材240と異なる。
Third Embodiment
(Configuration of luminous flux control member)
The light emitting device and the illuminating device of the third embodiment are different from the light emitting device and the illuminating device of the second embodiment in the shape of the light flux controlling member 340. Therefore, the same components as those of the light emitting device 100 and the lighting device 400 according to the second embodiment will be assigned the same reference numerals and descriptions thereof will be omitted, and new components of the light flux controlling member 340 will be mainly described. The light flux controlling member 340 according to the third embodiment differs from the light flux controlling member 240 according to the second embodiment in the sectional shape of the wall portion.
 図22~図24は、実施の形態3に係る光束制御部材340の構成を示す図である。図22Aは、実施の形態3に係る光束制御部材340を下側から見た斜視図であり、図22Bは、図22Aにおいて破線で示される部分の拡大図である。図23Aは、実施の形態3に係る光束制御部材340の底面図であり、図23Bは、側面図であり、図23Cは、屈折部144およびフレネルレンズ部345を省略した底面図であり、図23Dは、図23Aに示されるP-P線の断面図である。図24Aは、図23Aに示されるQ-Q線の断面図であり、図24Bは、図24Aにおいて破線で示される部分の拡大図であり、図24Cは、R-R線の断面図であり、図24Dは、図24Cにおいて破線で示される部分の拡大図であり、図24Eは、S-S線の断面図であり、図24Fは、図24Eにおいて破線で示される部分の拡大図であり、図24Gは、T-T線の断面図であり、図24Hは、図24Gにおいて破線で示される部分の拡大図である。 22 to 24 are diagrams showing the configuration of the light flux controlling member 340 according to the third embodiment. FIG. 22A is a perspective view of the light flux controlling member 340 according to Embodiment 3 as viewed from the lower side, and FIG. 22B is an enlarged view of a portion shown by a broken line in FIG. 22A. FIG. 23A is a bottom view of the light flux controlling member 340 according to the third embodiment, FIG. 23B is a side view, and FIG. 23C is a bottom view with the refracting portion 144 and the Fresnel lens portion 345 omitted. 23D is a cross-sectional view of line PP shown in FIG. 23A. 24A is a cross-sectional view taken along the line QQ shown in FIG. 23A, FIG. 24B is an enlarged view of a portion shown by a broken line in FIG. 24A, and FIG. 24C is a cross-sectional view taken along the line RR. 24D is an enlarged view of a portion shown by a broken line in FIG. 24C, FIG. 24E is a cross-sectional view of the SS line, and FIG. 24F is an enlarged view of a portion shown by a broken line in FIG. FIG. 24G is a cross-sectional view taken along the line TT, and FIG. 24H is an enlarged view of a portion shown by a broken line in FIG. 24G.
 図22~図24に示されるように、実施の形態3に係る光束制御部材340は、入射領域341および出射領域142を有する。入射領域341と出射領域142との間には、フランジ243が設けられている。また、入射領域341は、屈折部144と、第1フレネルレンズ部345aおよび第2フレネルレンズ部145bを含むフレネルレンズ部345と、を有する。 As shown in FIGS. 22 to 24, the light flux controlling member 340 according to the third embodiment has an incident area 341 and an emission area 142. A flange 243 is provided between the incident area 341 and the outgoing area 142. Further, the incident area 341 has a refracting portion 144 and a Fresnel lens portion 345 including a first Fresnel lens portion 345a and a second Fresnel lens portion 145b.
 第1フレネルレンズ部345aは、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の第1仮想四角形S1を想定し、その四辺上に配置された4つの第1凸条347を有する。 The first Fresnel lens portions 345a are assumed to have a plurality of first virtual quadrilaterals S1 arranged so as to be similar to each other in plan view and concentric and parallel to each other, and the four first virtual quadrilaterals S1 arranged on the four sides It has convex lines 347.
 第1仮想四角形S1の各対角線上には、壁部360が配置されている。壁部360は、所定の厚みを有しており、第1仮想四角形S1において互いに隣接する2つの第1凸条347,347を離間する。壁部360は、第1凸条347の谷部から第1凸条347の頂部までと同じ高さ、またはそれ以上の高さとなるように設計される。第1仮想四角形S1の対角線に直交する方向における壁部360の断面形状は、縦長の二等辺三角形である。また、壁部360は、平面視において最も内側にある第1仮想四角形S1の第1凸条347から、最も外側にある第1仮想四角形S1の第1凸条347まで連続して配置されている。なお、壁部360の内側端部は、屈折部144まで延在されていてもよい。実施の形態3の光束制御部材340における壁部360の高さも、第1凸条347の谷部から頂部までの同じ高さでなくてもよい。 The wall portion 360 is disposed on each diagonal of the first virtual quadrangle S1. The wall portion 360 has a predetermined thickness, and separates two first convex lines 347 and 347 adjacent to each other in the first virtual quadrangle S1. The wall portion 360 is designed to have the same height as the height from the valley of the first ridge 347 to the top of the first ridge 347 or more. The cross-sectional shape of the wall portion 360 in the direction orthogonal to the diagonal line of the first virtual quadrangle S1 is a vertically long isosceles triangle. In addition, the wall portion 360 is continuously disposed from the first convex strip 347 of the first virtual quadrangle S1 which is the innermost in the plan view to the first convex strip 347 of the first virtual quadrangle S1 which is the outermost. . The inner end of the wall 360 may extend to the bending portion 144. The height of the wall portion 360 in the light flux controlling member 340 of the third embodiment may not be the same height from the valley to the top of the first ridge 347.
 また、特に図示しないが、実施の形態3に係る光束制御部材340を有する発光装置を用いた照度分布のシミュレーション結果は、実施の形態1に係る光束制御部材140を有する発光装置100を用いた照度分布のシミュレーション結果と同じであった。 Although not particularly illustrated, the simulation result of the illuminance distribution using the light emitting device having the light flux controlling member 340 according to the third embodiment is the illuminance using the light emitting device 100 having the light flux controlling member 140 according to the first embodiment. It is the same as the simulation result of the distribution.
 (成形型の構成)
 次に、実施の形態3に係る光束制御部材340を成形するための成形型370について説明する。図25~図27は、実施の形態3に係る光束制御部材340の成形に用いられる成形型370の構成を示す図である。図25Aは、成形型370の第1金型372を下から見た斜視図であり、図25Bは、図25Aにおいて破線で示される円C3の部分の拡大図であり、図25Cは、破線出示される円C4の部分の拡大図である。図26Aは、第1金型372の底面図であり、図26Bは、屈折部成形領域およびフレネルレンズ部成形領域274を省略した底面図であり、図26Cは、図26Aに示されるU-U線の断面図であり、図26Dは、図26Aにおいて破線で示される部分の拡大図である。図27Aは、図26Aに示されるV-V線の断面図であり、図27Bは、図27Aにおいて破線で示される部分の拡大図であり、図27Cは、W-W線の断面図であり、図27Dは、図27Cにおいて破線で示される部分の拡大図であり、図27Eは、X-X線の断面図であり、図27Fは、図27Eにおいて破線で示される部分の拡大図であり、図27Gは、Y-Y線の断面図であり、図27Hは、図27Gにおいて破線で示される部分の拡大図である。
(Structure of mold)
Next, a forming die 370 for forming the light flux controlling member 340 according to the third embodiment will be described. 25 to 27 are views showing the configuration of a mold 370 used for molding the light flux controlling member 340 according to the third embodiment. 25A is a bottom perspective view of the first mold 372 of the mold 370, FIG. 25B is an enlarged view of a portion of a circle C3 indicated by a broken line in FIG. 25A, and FIG. 25C is a broken line FIG. 7 is an enlarged view of the portion of the circle C4 taken. FIG. 26A is a bottom view of the first mold 372, FIG. 26B is a bottom view omitting the refractive part molding area and the Fresnel lens part molding area 274, and FIG. 26C is a UU shown in FIG. FIG. 26D is a cross-sectional view of a line and FIG. 26D is an enlarged view of a portion shown by a broken line in FIG. 26A. 27A is a cross-sectional view taken along the line V-V shown in FIG. 26A, FIG. 27B is an enlarged view of a portion shown by a broken line in FIG. 27A, and FIG. 27C is a cross-sectional view taken along the WW line. 27D is an enlarged view of a portion shown by a broken line in FIG. 27C, FIG. 27E is a cross-sectional view of line XX, and FIG. 27F is an enlarged view of a portion shown by a broken line in FIG. FIG. 27G is a cross-sectional view taken along line YY, and FIG. 27H is an enlarged view of a portion shown by a broken line in FIG. 27G.
 図25~図27に示されるように、成形型370は、入射領域341側を成形する第1金型372と、出射領域142側を成形する第2金型(図示省略)と、を有する。 As shown in FIGS. 25 to 27, the molding die 370 has a first mold 372 for molding the incident area 341 side and a second mold (not shown) for molding the emission area 142 side.
 第1金型372は、入射領域341側の形状に対応した形状を有する。第1金型372は、屈折部144を成形する屈折部成形領域273と、フレネルレンズ部345を成形するフレネルレンズ部成形領域374と、を有している。フレネルレンズ部成形領域374は、第1フレネルレンズ部345aを成形するための第1フレネルレンズ部成形領域375と、第1フレネルレンズ部成形領域375の外側に位置し、第2フレネルレンズ部145bを成形するための第2フレネルレンズ部成形領域276と、を有している。複数の第1仮想四角形S1に対応した、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の第1仮想四角形S1’の各辺上に配置された複数の第1凹条377を有している。第1仮想四角形S1’の各対角線上には、溝部380が配置されている。 The first mold 372 has a shape corresponding to the shape on the incident region 341 side. The first mold 372 has a refractive part molding area 273 for molding the refractive part 144, and a Fresnel lens part molding area 374 for molding the Fresnel lens part 345. The Fresnel lens portion molding region 374 is located outside the first Fresnel lens portion molding region 375 for molding the first Fresnel lens portion 345a and the second Fresnel lens portion 145b. And a second Fresnel lens portion forming area 276 for forming. A plurality of first virtual quadrilaterals S1 corresponding to the plurality of first virtual quadrilaterals S1 ′ which are similar to each other in plan view and are arranged concentrically and parallel to each other 1 has a concave 377. Grooves 380 are disposed on the diagonals of the first virtual quadrangle S1 '.
 溝部380は、第1仮想四角形S1’において互いに隣接する2つの第1凹条377,377を離間する。第1仮想四角形S1’の対角線に直交する方向における溝部380の断面形状は、縦長の二等辺三角形である。溝部380の最深部までの深さは、第1凹条377の頂部から谷部までの深さと同じ、またはそれより深く形成される。また、溝部780は、平面視において最も内側にある第1仮想四角形S1’の第1凹条377から、最も外側にある第1仮想四角形S1’の第1凹条377まで連続して配置されている。すなわち、溝部380は、少なくとも第1フレネルレンズ部成形領域375に配置されていればよい。なお、溝部380の内側端部は、屈折部成形領域273まで延在されていてもよい。 The groove 380 separates the two first concaves 377 and 377 adjacent to each other in the first virtual quadrangle S1 '. The cross-sectional shape of the groove 380 in the direction orthogonal to the diagonal of the first virtual quadrangle S1 'is a vertically long isosceles triangle. The depth to the deepest portion of the groove portion 380 is formed to be the same as or deeper than the depth from the top to the valley of the first concave 377. In addition, the groove 780 is continuously disposed from the first concave streak 377 of the first virtual quadrilateral S1 ′ at the innermost side in plan view to the first concave streak 377 of the first virtual quadrilateral S1 ′ at the outermost side There is. That is, the groove portion 380 may be disposed at least in the first Fresnel lens portion molding region 375. Note that the inner end of the groove 380 may extend to the refractive part molding area 273.
 (効果)
 本実施の形態に係る光束制御部材340は、実施の形態2に係る光束制御部材240と同様の効果を有する。また、本実施の形態に係る発光装置および照明装置は、実施の形態2に係る発光装置および照明装置と同様の効果を有する。
(effect)
The light flux controlling member 340 according to the present embodiment has the same effect as the light flux controlling member 240 according to the second embodiment. In addition, the light emitting device and the illuminating device according to the present embodiment have the same effects as the light emitting device and the illuminating device according to the second embodiment.
 本発明に係る光束制御部材、発光装置および照明装置は、四角形状の被照射領域を均一かつ効率的に照らすことができる。本発明に係る発光装置は、例えば、カメラのフラッシュなどとして有用である。また、本発明に係る照明装置は、例えば、室内の一般照明、液晶パネルを被照射面とする面光源装置などとして有用である。 The light flux controlling member, the light emitting device, and the lighting device according to the present invention can illuminate the square shaped irradiation region uniformly and efficiently. The light emitting device according to the present invention is useful, for example, as a flash of a camera. The illumination device according to the present invention is useful as, for example, general illumination in a room, and a surface light source device having a liquid crystal panel as an illuminated surface.
 本出願は、2012年11月7日出願の特願2012-245492および2013年1月25日出願の特願2013-012213に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2012-245492 filed on Nov. 7, 2012 and Japanese Patent Application No. 2013-012213 filed on January 25, 2013. The contents described in the application specification and drawings are all incorporated herein by reference.
 10,100 発光装置
 20,440 基板
 21 光源用基板
 30 光源
 40 フレネルレンズ
 41 屈折型フレネルレンズ部
 42 反射型フレネルレンズ部
 43,141,241,341 入射領域
 44,142 出射領域
 45 入射面
 46 出射面
 50,140,240,340 光束制御部材
 60 凸部
 120 発光素子
 143,243 フランジ
 144 屈折部
 145,245,345 フレネルレンズ部
 145a,245a,345a 第1フレネルレンズ部
 145b 第2フレネルレンズ部
 147,247,347 第1凸条
 148 第1傾斜面
 149 第2傾斜面
 150 第2凸条
 151 第3傾斜面
 152 第4傾斜面
 260,360 壁部
 270,370 成形型
 272,372 第1金型
 273 屈折部成形領域
 274,374 フレネルレンズ部成形領域
 275,375 第1フレネルレンズ部成形領域
 276 第2フレネルレンズ部成形領域
 277,377 第1凹条
 278 第2凹条
 280,380 溝部
 400 照明装置
 420 カバー
 CA 中心軸
 LA 光軸
 S1 第1仮想四角形
 S1’ 第1仮想四角形
 S2 第2仮想四角形
 S2’ 第2仮想四角形
DESCRIPTION OF SYMBOLS 10, 100 Light-emitting device 20, 440 Substrate 21 Substrate for light source 30 Light source 40 Fresnel lens 41 Refractive Fresnel lens part 42 Reflective Fresnel lens part 43, 141, 241, 341 Incident area 44, 142 Output area 45 Incident surface 46 Output surface 50, 140, 240, 340 Light flux control member 60 Convex part 120 Light emitting element 143, 243 Flange 144 Refractive part 145, 245, 345 Fresnel lens part 145a, 245a, 345a 1st Fresnel lens part 145b 2nd Fresnel lens part 147, 247 , 347 1st convex line 148 1st inclined surface 149 2nd inclined surface 150 2nd ridge 151 3rd inclined surface 152 4th inclined surface 260, 360 wall 270, 370 forming die 272, 372 first mold 273 refraction Part molding area 274, 374 Fresnel lens Zone molding area 275, 375 1st Fresnel lens section molding area 276 2nd Fresnel lens section molding area 277, 377 1st concave line 278 2nd concave line 280, 380 groove section 400 illumination device 420 cover CA central axis LA optical axis S1 First virtual quadrilateral S1 'First virtual quadrilateral S2 Second virtual quadrilateral S2' second virtual quadrilateral

Claims (11)

  1.  発光素子から出射された光の配光を制御する光束制御部材であって、
     発光素子から出射された光を入射させる入射領域と、
     前記入射領域から入射した光を出射させる出射領域と、を有し、
     前記入射領域は、
      前記発光素子の光軸と交わり、前記発光素子から出射された光の一部を入射させるとともに、入射した光を前記出射領域に向けて屈折させる屈折部と、
      前記屈折部の外側に位置するフレネルレンズ部と、
     を有し、
     前記フレネルレンズ部は、前記発光素子から出射された光の一部を入射させる入射面と、前記入射面と対に形成され、入射した光を前記出射領域に向けて反射させる反射面とを有する凸条を複数含み、
     複数の前記凸条は、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の仮想四角形の各辺上に配置されている、
     光束制御部材。
    A luminous flux control member for controlling distribution of light emitted from a light emitting element
    An incident area where light emitted from the light emitting element is incident;
    An emission area for emitting light incident from the incident area;
    The incident region is
    A refracting portion that intersects the optical axis of the light emitting element and allows a part of the light emitted from the light emitting element to be incident, and refracts the incident light toward the emission area.
    A Fresnel lens portion located outside the refractive portion;
    Have
    The Fresnel lens portion has an incident surface on which a part of light emitted from the light emitting element is incident, and a reflective surface formed in a pair with the incident surface and reflecting incident light toward the emission region. Including multiple ridges,
    The plurality of ridges are arranged on each side of a plurality of virtual quadrilaterals arranged so as to be similar to each other in plan view and concentric and parallel to each side.
    Luminous flux control member.
  2.  前記仮想四角形の各対角線上に、前記仮想四角形の一辺上に配置されている前記凸条と、当該仮想四角形において前記一辺に隣接する他の一辺上に配置されている前記凸条とを離間する壁部が配置されている、請求項1に記載の光束制御部材。 The ridges arranged on one side of the virtual square and the ridges arranged on the other side adjacent to the side in the virtual square are separated on each diagonal of the virtual square. The light flux controlling member according to claim 1, wherein a wall portion is disposed.
  3.  前記フレネルレンズ部は、前記屈折部側に位置する第1フレネルレンズ部と、前記第1フレネルレンズ部の外側に位置する第2フレネルレンズ部とを有し、
     前記第1フレネルレンズ部に属する前記仮想四角形を第1仮想四角形とし、前記第1仮想四角形の各辺上に配置されている前記凸条を第1凸条とし、前記第2フレネルレンズ部に属する前記仮想四角形を第2仮想四角形とし、前記第2仮想四角形の各辺上に配置されている前記凸条を第2凸条とした場合、
     前記第1フレネルレンズ部は、複数の前記第1仮想四角形の各辺上に配置された複数の前記第1凸条を含み、
     前記第2フレネルレンズ部は、1または2以上の前記第2仮想四角形の各辺上に配置された複数の前記第2凸条を含み、
     前記壁部は、少なくとも前記第1フレネルレンズ部に配置されている、
     請求項2に記載の光束制御部材。
    The Fresnel lens portion has a first Fresnel lens portion located on the refractive portion side, and a second Fresnel lens portion located outside the first Fresnel lens portion.
    The virtual quadrilateral belonging to the first Fresnel lens portion is a first virtual quadrilateral, and the ridges arranged on each side of the first virtual quadrilateral are first ridges, and belong to the second Fresnel lens portion In the case where the virtual quadrilateral is a second virtual quadrilateral and the ridges arranged on each side of the second virtual quadrilateral are second ridges,
    The first Fresnel lens portion includes a plurality of the first ridges arranged on each side of the plurality of first virtual squares,
    The second Fresnel lens portion includes a plurality of the second ridges arranged on each side of one or more of the second virtual quadrilaterals,
    The wall portion is disposed at least in the first Fresnel lens portion.
    The luminous flux control member according to claim 2.
  4.  前記フレネルレンズ部は、前記屈折部側に位置する第1フレネルレンズ部と、前記第1フレネルレンズ部の外側に位置する第2フレネルレンズ部とを有し、
     前記第1フレネルレンズ部に属する前記仮想四角形を第1仮想四角形とし、前記第1仮想四角形の各辺上に配置されている前記凸条を第1凸条とし、前記第2フレネルレンズ部に属する前記仮想四角形を第2仮想四角形とし、前記第2仮想四角形の各辺上に配置されている前記凸条を第2凸条とした場合、
     前記第1フレネルレンズ部は、複数の前記第1仮想四角形の各辺上に配置された複数の前記第1凸条を含み、
     前記第2フレネルレンズ部は、1または2以上の前記第2仮想四角形の各辺上に配置された複数の前記第2凸条を含み、
     前記光軸を通り、かつ前記第1仮想四角形の一辺と平行な断面において、前記出射領域から出射し、前記出射領域から離れるにつれて前記光軸から離れる光の前記光軸に対する角度を「正」とし、前記出射領域から出射し、前記出射領域から離れるにつれて前記光軸に近づく光の前記光軸に対する角度を「負」とした場合、
     前記第1フレネルレンズ部は、前記第1フレネルレンズ部を経由して前記出射領域から出射した第1出射光の前記光軸に対する角度が「正」となるように形成され、
     前記第2フレネルレンズ部は、前記第2フレネルレンズ部を経由して前記出射領域から出射した第2出射光の中に、前記光軸と平行な光を含むように形成される、
     請求項1に記載の光束制御部材。
    The Fresnel lens portion has a first Fresnel lens portion located on the refractive portion side, and a second Fresnel lens portion located outside the first Fresnel lens portion.
    The virtual quadrilateral belonging to the first Fresnel lens portion is a first virtual quadrilateral, and the ridges arranged on each side of the first virtual quadrilateral are first ridges, and belong to the second Fresnel lens portion In the case where the virtual quadrilateral is a second virtual quadrilateral and the ridges arranged on each side of the second virtual quadrilateral are second ridges,
    The first Fresnel lens portion includes a plurality of the first ridges arranged on each side of the plurality of first virtual squares,
    The second Fresnel lens portion includes a plurality of the second ridges arranged on each side of one or more of the second virtual quadrilaterals,
    In a cross section parallel to one side of the first virtual quadrangle passing through the optical axis, an angle with respect to the optical axis of light which is emitted from the emission area and deviates from the optical axis as it is separated from the emission area When the angle with respect to the optical axis of the light that is emitted from the emission area and approaches the optical axis as the distance from the emission area is “negative”:
    The first Fresnel lens portion is formed such that an angle of the first outgoing light emitted from the outgoing area via the first Fresnel lens portion with respect to the optical axis is "positive".
    The second Fresnel lens portion is formed to include light parallel to the optical axis in the second outgoing light emitted from the outgoing region via the second Fresnel lens portion.
    The luminous flux control member according to claim 1.
  5.  前記断面において、前記第2出射光のうち、前記光軸に対して前記出射領域の最も外側から出射した第2外側出射光の前記光軸に対する角度は、前記第1出射光のうち、前記光軸に対して前記出射領域の最も外側から出射した第1外側出射光の前記光軸に対する角度より小さい、請求項4に記載の光束制御部材。 In the cross section, of the second emission light, an angle with respect to the optical axis of the second outer emission light emitted from the outermost side of the emission region with respect to the optical axis is the light of the first emission light. The light flux controlling member according to claim 4, which is smaller than an angle of the first outside outgoing light emitted from the outermost side of the outgoing area with respect to the axis with respect to the optical axis.
  6.  複数の前記第1仮想四角形および前記第2仮想四角形は、正方形である、請求項3~5のいずれか一項に記載の光束制御部材。 The light flux controlling member according to any one of claims 3 to 5, wherein the plurality of first virtual squares and the second virtual squares are squares.
  7.  発光素子と、
     請求項1~6のいずれか一項に記載の光束制御部材と、
     を有する、発光装置。
    A light emitting element,
    A light flux controlling member according to any one of claims 1 to 6;
    A light emitting device.
  8.  請求項7に記載の発光装置と、
     前記発光装置からの出射光を拡散させつつ透過させるカバーと、
     を有する、照明装置。
    A light emitting device according to claim 7;
    A cover that diffuses and transmits light emitted from the light emitting device;
    A lighting device having
  9.  請求項1~6のいずれか一項に記載の光束制御部材を成形するための成形型であって、
     前記フレネルレンズ部を成形するためのフレネルレンズ部成形領域を有し、
     前記フレネルレンズ部成形領域は、平面視において互いに相似し、同心かつ各辺が平行となるように配置された複数の仮想四角形の各辺上に配置された複数の凹条を有し、
     前記仮想四角形の各対角線上に、前記仮想四角形の一辺上に配置されている前記凹条と、当該仮想四角形において前記一辺に隣接する他の一辺上に配置されている前記凹条とを離間する溝部が配置されている、
     成形型。
    A mold for molding the light flux controlling member according to any one of claims 1 to 6, comprising:
    A Fresnel lens portion forming area for forming the Fresnel lens portion;
    The Fresnel lens portion forming area has a plurality of concave streaks arranged on each side of a plurality of virtual quadrilaterals arranged so as to be similar to each other in a plan view and concentric and parallel to each other,
    In each of the diagonal lines of the virtual quadrilateral, the concave line disposed on one side of the virtual quadrilateral and the concave line disposed on the other side adjacent to the side in the virtual quadrilateral are separated The groove is arranged,
    Mold.
  10.  前記溝の深さは、前記凹条の頂部から前記凹条の谷部までの深さより深い、請求項9に記載の成形型。 The mold according to claim 9, wherein the depth of the groove is deeper than the depth from the top of the groove to the valley of the groove.
  11.  前記フレネルレンズ部成形領域は、第1フレネルレンズ部成形領域と、前記第1フレネルレンズ部成形領域の外側に位置する第2フレネルレンズ部成形領域とを有し、
     前記第1フレネルレンズ部成形領域に属する前記仮想四角形を第1仮想四角形とし、前記第1仮想四角形の各辺上に配置されている前記凹条を第1凹条とし、前記第2フレネルレンズ部成形領域に属する前記仮想四角形を第2仮想四角形とし、前記第2仮想四角形の各辺上に配置されている前記凹条を第2凹条とした場合、
     前記第1フレネルレンズ部成形領域は、複数の前記第1仮想四角形の各辺上に配置された複数の前記第1凹条を含み、
     前記第2フレネルレンズ部成形領域は、1または2以上の前記第2仮想四角形の各辺上に配置された複数の前記第2凹条を含み、
     前記溝は、少なくとも前記第1フレネルレンズ部成形領域に配置されている、
     請求項9または請求項10に記載の成形型。
    The Fresnel lens part molding area has a first Fresnel lens part molding area, and a second Fresnel lens part molding area located outside the first Fresnel lens part molding area.
    The virtual quadrilateral belonging to the first Fresnel lens portion forming area is a first virtual quadrilateral, the concave streaks disposed on each side of the first virtual quadrilateral are a first concave streak, and the second Fresnel lens quadrilateral In the case where the virtual quadrilateral belonging to the forming area is a second virtual quadrilateral, and the concaves arranged on each side of the second virtual quadrilateral are second concaves,
    The first Fresnel lens unit forming area includes a plurality of the first concaves arranged on each side of the plurality of first virtual squares,
    The second Fresnel lens part molding region includes a plurality of the second concaves arranged on each side of one or more of the second virtual quadrilaterals,
    The groove is disposed at least in the first Fresnel lens unit forming area,
    The mold according to claim 9 or 10.
PCT/JP2013/005964 2012-11-07 2013-10-07 Luminous flux control member, light emitting device, illumination device and molding die WO2014073158A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-245492 2012-11-07
JP2012245492 2012-11-07
JP2013-012213 2013-01-25
JP2013012213A JP6181377B2 (en) 2012-11-07 2013-01-25 Luminous flux control member, light emitting device, lighting device, and mold

Publications (1)

Publication Number Publication Date
WO2014073158A1 true WO2014073158A1 (en) 2014-05-15

Family

ID=50684284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005964 WO2014073158A1 (en) 2012-11-07 2013-10-07 Luminous flux control member, light emitting device, illumination device and molding die

Country Status (2)

Country Link
JP (1) JP6181377B2 (en)
WO (1) WO2014073158A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030169A1 (en) * 2013-08-29 2015-03-05 株式会社エンプラス Light flux control member, light-emitting device, and illumination device
JP2015225849A (en) * 2014-05-30 2015-12-14 株式会社エンプラス Light flux control member, light emitting device, and lighting device
DE102014112891A1 (en) * 2014-09-08 2016-03-10 Osram Opto Semiconductors Gmbh Optical element and optoelectronic component
CN105676323A (en) * 2014-11-21 2016-06-15 玉晶光电股份有限公司 Thin lens
CN107388094A (en) * 2016-05-17 2017-11-24 松下知识产权经营株式会社 Lighting device
WO2020075807A1 (en) * 2018-10-12 2020-04-16 株式会社エンプラス Luminous flux controlling member, light-emitting device, and lighting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190503A (en) * 2017-04-28 2018-11-29 コイズミ照明株式会社 Optical element and lighting fixture
JP6761991B2 (en) * 2019-10-02 2020-09-30 パナソニックIpマネジメント株式会社 Wavelength converter and lighting device
JP7410382B2 (en) 2019-12-26 2024-01-10 日亜化学工業株式会社 light source device
WO2022201727A1 (en) * 2021-03-23 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 Fresnel lens, electronic apparatus, and method for manufacturing fresnel lens

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247907A (en) * 1985-08-27 1987-03-02 東芝ライテック株式会社 Lighting fixture
JP2002071912A (en) * 2000-08-25 2002-03-12 Hitachi Cable Ltd Light controlling film, methdo of manufacturing the same, and display device
JP2002221605A (en) * 2001-01-26 2002-08-09 Sharp Corp Fresnel lens, illumination device and display device which use the same, method for designing fresnel lens and designing device therefor
JP2007134316A (en) * 2005-10-14 2007-05-31 Toshiba Corp Lighting apparatus
JP2010251213A (en) * 2009-04-17 2010-11-04 Toshiba Lighting & Technology Corp Light-emitting module and lighting device
JP2012204085A (en) * 2011-03-24 2012-10-22 Toshiba Lighting & Technology Corp Lighting fixture
WO2013065408A1 (en) * 2011-11-04 2013-05-10 コニカミノルタ株式会社 Led light emitting device, and lens for led light emitting device
WO2013108509A1 (en) * 2012-01-18 2013-07-25 コニカミノルタ株式会社 Auxiliary light source unit, optical element, and mobile electronic device
WO2013164923A1 (en) * 2012-05-01 2013-11-07 コニカミノルタ株式会社 Supplementary light source unit and optical element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4314837B2 (en) * 2003-01-31 2009-08-19 パナソニック株式会社 Light emitting device
JP4504662B2 (en) * 2003-04-09 2010-07-14 シチズン電子株式会社 LED lamp
JP4529921B2 (en) * 2006-02-28 2010-08-25 日本ゼオン株式会社 Injection mold
JP4604123B2 (en) * 2009-03-31 2010-12-22 シャープ株式会社 LIGHT SOURCE MODULE AND ELECTRONIC DEVICE PROVIDED WITH THE MODULE
JP5881294B2 (en) * 2010-08-20 2016-03-09 株式会社エンプラス Luminous flux control member and optical apparatus provided with the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247907A (en) * 1985-08-27 1987-03-02 東芝ライテック株式会社 Lighting fixture
JP2002071912A (en) * 2000-08-25 2002-03-12 Hitachi Cable Ltd Light controlling film, methdo of manufacturing the same, and display device
JP2002221605A (en) * 2001-01-26 2002-08-09 Sharp Corp Fresnel lens, illumination device and display device which use the same, method for designing fresnel lens and designing device therefor
JP2007134316A (en) * 2005-10-14 2007-05-31 Toshiba Corp Lighting apparatus
JP2010251213A (en) * 2009-04-17 2010-11-04 Toshiba Lighting & Technology Corp Light-emitting module and lighting device
JP2012204085A (en) * 2011-03-24 2012-10-22 Toshiba Lighting & Technology Corp Lighting fixture
WO2013065408A1 (en) * 2011-11-04 2013-05-10 コニカミノルタ株式会社 Led light emitting device, and lens for led light emitting device
WO2013108509A1 (en) * 2012-01-18 2013-07-25 コニカミノルタ株式会社 Auxiliary light source unit, optical element, and mobile electronic device
WO2013164923A1 (en) * 2012-05-01 2013-11-07 コニカミノルタ株式会社 Supplementary light source unit and optical element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030169A1 (en) * 2013-08-29 2015-03-05 株式会社エンプラス Light flux control member, light-emitting device, and illumination device
US10001258B2 (en) 2013-08-29 2018-06-19 Enplas Corporation Light flux control member, light-emitting device, and illumination device
JP2015225849A (en) * 2014-05-30 2015-12-14 株式会社エンプラス Light flux control member, light emitting device, and lighting device
DE102014112891A1 (en) * 2014-09-08 2016-03-10 Osram Opto Semiconductors Gmbh Optical element and optoelectronic component
US10170672B2 (en) 2014-09-08 2019-01-01 Osram Opto Semiconductors Gmbh Optical element and optoelectronic component
DE102014112891B4 (en) * 2014-09-08 2021-07-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optical element and optoelectronic component
CN105676323A (en) * 2014-11-21 2016-06-15 玉晶光电股份有限公司 Thin lens
CN107388094A (en) * 2016-05-17 2017-11-24 松下知识产权经营株式会社 Lighting device
WO2020075807A1 (en) * 2018-10-12 2020-04-16 株式会社エンプラス Luminous flux controlling member, light-emitting device, and lighting device
JP2020061330A (en) * 2018-10-12 2020-04-16 株式会社エンプラス Luminous flux control member, light-emitting device, and illumination device
JP7093712B2 (en) 2018-10-12 2022-06-30 株式会社エンプラス Luminous flux control member, light emitting device and lighting device

Also Published As

Publication number Publication date
JP2014112173A (en) 2014-06-19
JP6181377B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2014073158A1 (en) Luminous flux control member, light emitting device, illumination device and molding die
JP6342901B2 (en) Luminous flux control member, light emitting device, and illumination device
US9903553B2 (en) Light-guiding pillar and vehicle lamp using the same
US10502871B2 (en) Light flux controlling member, light-emitting device, illumination apparatus, and mold
JP6356997B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP6097166B2 (en) Luminous flux control member, light emitting device, and illumination device
JP2010192439A (en) Light emitting device and light guide member for the same
US9557035B2 (en) Light flux controlling member, light emitting device and illumination apparatus
JP6383652B2 (en) Light emitting device and light flux controlling member
US10770632B2 (en) Light source device
US8684575B2 (en) Lighting unit
US20220416134A1 (en) Light source device
JP2014209158A (en) Luminous flux control member, light emission device and luminaire
CN110291327B (en) Surface light source device and display device
TW201500776A (en) Lens and light source module with the same
TWI532222B (en) Lighting apparatus and lens structure thereof
WO2017002723A1 (en) Light flux control member, light-emitting device and illumination device
JP6291267B2 (en) Luminous flux control member, light emitting device, and illumination device
CN207349871U (en) Flux control member, light-emitting device, planar light source device and display device
JP2016018893A (en) Light-emitting device
CN111316034A (en) Light flux controlling member, light emitting device, surface light source device, and display device
TWI585337B (en) Led display device
JP2015204224A (en) Light distribution control member, lighting device and camera flash module
JP2018088326A (en) Led bulb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853185

Country of ref document: EP

Kind code of ref document: A1