JP7093712B2 - Luminous flux control member, light emitting device and lighting device - Google Patents

Luminous flux control member, light emitting device and lighting device Download PDF

Info

Publication number
JP7093712B2
JP7093712B2 JP2018193551A JP2018193551A JP7093712B2 JP 7093712 B2 JP7093712 B2 JP 7093712B2 JP 2018193551 A JP2018193551 A JP 2018193551A JP 2018193551 A JP2018193551 A JP 2018193551A JP 7093712 B2 JP7093712 B2 JP 7093712B2
Authority
JP
Japan
Prior art keywords
light emitting
ridge
light
control member
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193551A
Other languages
Japanese (ja)
Other versions
JP2020061330A (en
Inventor
晃伸 関
浩之 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2018193551A priority Critical patent/JP7093712B2/en
Priority to PCT/JP2019/040030 priority patent/WO2020075807A1/en
Priority to CN201980066929.5A priority patent/CN112823259A/en
Publication of JP2020061330A publication Critical patent/JP2020061330A/en
Application granted granted Critical
Publication of JP7093712B2 publication Critical patent/JP7093712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Description

本発明は、光束制御部材、発光装置および照明装置に関する。 The present invention relates to a luminous flux control member, a light emitting device and a lighting device.

照明装置や看板などの光源として、LEDなどの発光素子を有する発光装置が使用されている。中でも、特殊な形状を有するチャンネル文字型看板などの光源としては、発光素子から出射される光を、水平方向で互いに反対向きである2つの方向に反射させて、配光特性に異方性をもたせた(楕円配光を示す)発光装置が使用されている。 As a light source for a lighting device, a signboard, or the like, a light emitting device having a light emitting element such as an LED is used. Among them, as a light source such as a channel character type signboard having a special shape, the light emitted from the light emitting element is reflected in two directions opposite to each other in the horizontal direction to make the light distribution characteristic anisotropic. A light source (indicating an elliptical light distribution) is used.

配光特性に異方性をもたせた発光装置として、例えば特許文献1には、図1に示されるように、発光素子12と、発光素子12から出射された光を上方へ反射させる反射カップ14aを有する基台(チップ搭載用リード)14と、発光素子12および反射カップ14aを封止する光束制御部材13(特許文献1では透光性樹脂)とを有する発光装置が開示されている。光束制御部材13は、発光素子12から出射された光や反射カップ14aで反射された光を反射する2つの反射面17と、反射面17で反射された光を外部へ出射する2つの出射面19(特許文献1では側面)とを有する。 As a light emitting device having an anisotropic light distribution characteristic, for example, in Patent Document 1, as shown in FIG. 1, a light emitting element 12 and a reflection cup 14a that reflects light emitted from the light emitting element 12 upward are shown. A light emitting device having a base (lead for mounting a chip) 14 and a light flux control member 13 (translucent resin in Patent Document 1) for sealing a light emitting element 12 and a reflection cup 14a is disclosed. The luminous flux control member 13 has two reflecting surfaces 17 that reflect the light emitted from the light emitting element 12 and the light reflected by the reflecting cup 14a, and two emitting surfaces that emit the light reflected by the reflecting surface 17 to the outside. 19 (side surface in Patent Document 1).

このような発光装置では、発光素子12の上面から出射された光は、光束制御部材13の反射面17に直接到達し、発光素子12の側面から出射された光は、反射カップ14aで反射された後、光束制御部材13の2つの反射面17に到達する。そして、光束制御部材13の2つの反射面17に到達したこれらの光は、水平方向で互いに反対方向に進み、光束制御部材13の2つの出射面19から外部へ出射される。 In such a light emitting device, the light emitted from the upper surface of the light emitting element 12 directly reaches the reflecting surface 17 of the luminous flux control member 13, and the light emitted from the side surface of the light emitting element 12 is reflected by the reflection cup 14a. After that, it reaches the two reflecting surfaces 17 of the luminous flux control member 13. Then, these lights that have reached the two reflecting surfaces 17 of the luminous flux control member 13 travel in the opposite directions in the horizontal direction, and are emitted to the outside from the two emitting surfaces 19 of the luminous flux control member 13.

このような発光装置に用いられる発光素子としては、LEDなどの発光素子が用いられる。安価で大量生産されているLEDの多くは、例えば青色光を発する発光部と、その周囲を覆い、発光部から出射される青色光を白色光に変換する蛍光体とを有する発光素子(SMDタイプの発光素子)である。 As the light emitting element used in such a light emitting device, a light emitting element such as an LED is used. Most of the inexpensive and mass-produced LEDs have, for example, a light emitting element (SMD type) having a light emitting part that emits blue light and a phosphor that covers the periphery thereof and converts the blue light emitted from the light emitting part into white light. Light emitting element).

特開平9-18058号公報Japanese Unexamined Patent Publication No. 9-18508

SMDタイプの発光素子では、発光素子の光軸に対して大きな角度で出射された青色光は、蛍光体内で長い光路を伝播して出射されるため、白色光に変換されやすい。一方で、発光素子の光軸に対して小さな角度で出射された青色光は、蛍光体内で短い光路を伝播して出射されるため、白色光に変換されにくく、青味がかった光として出射されやすい。このようなSMDタイプの発光素子に限らず、出射方向によって色味の異なる光を発するような発光素子を、特許文献1に示されるような配光特性に異方性をもたせた発光装置に適用すると、発光素子の光軸に対して小さな角度で出射された光が到達する領域と、光軸に対して大きな角度で出射された光が到達する領域とで色ムラを生じやすいという問題があった。具体的には、発光素子の光軸に対して小さな角度で出射された光が、光拡散板の特定の領域に集中して到達しやすく、その領域の青色が強く出やすいという問題があった。 In the SMD type light emitting element, blue light emitted at a large angle with respect to the optical axis of the light emitting element propagates in a long optical path in the phosphor and is emitted, so that it is easily converted into white light. On the other hand, blue light emitted at a small angle with respect to the optical axis of the light emitting element propagates in a short optical path in the phosphor and is emitted, so that it is difficult to be converted into white light and is emitted as bluish light. Cheap. Not limited to such an SMD type light emitting element, a light emitting element that emits light having a different color depending on the emission direction is applied to a light emitting device having an anisotropic light distribution characteristic as shown in Patent Document 1. Then, there is a problem that color unevenness is likely to occur in the region where the light emitted at a small angle with respect to the optical axis of the light emitting element reaches and the region where the light emitted at a large angle with respect to the optical axis reaches. rice field. Specifically, there is a problem that light emitted at a small angle with respect to the optical axis of the light emitting element tends to concentrate and reach a specific region of the light diffusing plate, and the blue color in that region tends to be strong. ..

一方で、色ムラを抑制しようとすると、配光特性が損なわれる傾向もある。したがって、配光特性を損なわずに(配光特性を高度に維持しつつ)、色ムラを抑制できることが望まれている。 On the other hand, when trying to suppress color unevenness, the light distribution characteristics tend to be impaired. Therefore, it is desired to be able to suppress color unevenness without impairing the light distribution characteristics (while maintaining a high degree of light distribution characteristics).

そこで、本発明の目的は、所望の配光特性を維持しつつ、発光素子に起因する色ムラを抑制できる光束制御部材を提供することである。また、本発明の別の目的は、この光束制御部材を有する発光装置および照明装置を提供することである。 Therefore, an object of the present invention is to provide a luminous flux control member capable of suppressing color unevenness caused by a light emitting element while maintaining a desired light distribution characteristic. Another object of the present invention is to provide a light emitting device and a lighting device having this luminous flux control member.

本発明に係る光束制御部材は、発光素子から出射された光の配光を制御するための光束制御部材であって、裏側に配置された凹部の内面であって、発光素子から出射された光を入射する入射面と、表側に配置され、前記入射面で入射した光の一部を、前記発光素子の光軸と略垂直であり、かつ互いに反対向きである2つの方向にそれぞれ反射させる2つの反射面と、前記2つの反射面を挟んで互いに対向して配置され、前記2つの反射面で反射された光をそれぞれ外部に出射させる2つの出射面と、を有し、前記入射面は、前記凹部の内天面と、前記凹部の内天面を挟み、かつ前記2つの出射面が対向する方向に配置された2つの内側面とを有し、前記内天面には、前記発光素子の光軸に沿って見たときに、前記2つの出射面が対向する方向と略平行な稜線を有する複数の第1凸条が配置されており、前記第1凸条の稜線と垂直な断面における前記第1凸条の高さは、前記2つの出射面に近づくにつれて低くなる。 The light beam control member according to the present invention is a light beam control member for controlling light distribution of light emitted from a light emitting element, is an inner surface of a recess arranged on the back side, and is light emitted from the light emitting element. 2 is arranged on the incident surface and a part of the light incident on the incident surface is reflected in two directions that are substantially perpendicular to the optical axis of the light emitting element and are opposite to each other. The incident surface has two reflecting surfaces and two emitting surfaces that are arranged so as to face each other with the two reflecting surfaces interposed therebetween and emit light reflected by the two reflecting surfaces to the outside. The inner top surface of the recess has two inner surfaces that sandwich the inner top surface of the recess and are arranged in a direction in which the two emission surfaces face each other, and the inner top surface has the light emitting surface. When viewed along the optical axis of the element, a plurality of first ridges having ridges substantially parallel to the directions in which the two emission surfaces face each other are arranged, and are perpendicular to the ridges of the first ridge. The height of the first ridge in the cross section becomes lower as it approaches the two exit surfaces.

本発明に係る光束制御部材は、発光素子から出射された光の配光を制御するための光束制御部材であって、裏側に配置された凹部の内面であって、発光素子から出射された光を入射する入射面と、表側に配置され、前記入射面で入射した光の一部を、前記発光素子の光軸と略垂直であり、かつ互いに反対向きである2つの方向にそれぞれ反射させる2つの反射面と、前記2つの反射面を挟んで互いに対向して配置され、前記2つの反射面で反射された光をそれぞれ外部に出射させる2つの出射面と、を有し、前記2つの出射面のそれぞれには、前記2つの出射面が対向する方向に沿って見たときに、前記発光素子の光軸と略平行な稜線を有する複数の第2凸条が配置されており、前記第2凸条の稜線と垂直な断面における前記第2凸条の高さは、裏側に近づくにつれて低くなる。 The light beam control member according to the present invention is a light beam control member for controlling light distribution of light emitted from a light emitting element, is an inner surface of a recess arranged on the back side, and is light emitted from the light emitting element. 2 is arranged on the incident surface and a part of the light incident on the incident surface is reflected in two directions that are substantially perpendicular to the optical axis of the light emitting element and are opposite to each other. It has two reflecting surfaces and two emitting surfaces that are arranged so as to face each other with the two reflecting surfaces interposed therebetween and emit light reflected by the two reflecting surfaces to the outside. A plurality of second ridges having a ridge line substantially parallel to the optical axis of the light emitting element are arranged on each of the surfaces when viewed along the directions in which the two emission surfaces face each other. The height of the second ridge in the cross section perpendicular to the ridge of the two ridges decreases as it approaches the back side.

本発明に係る発光装置は、発光素子と、前記入射面が、前記発光素子と対向するように配置された、本発明に係る光束制御部材とを有する。 The light emitting device according to the present invention has a light emitting element and a light flux control member according to the present invention in which the incident surface is arranged so as to face the light emitting element.

本発明に係る照明装置は、複数の本発明に係る発光装置と、前記発光装置から出射された光を拡散させつつ透過させる光拡散板とを有する。 The lighting device according to the present invention has a plurality of light emitting devices according to the present invention and a light diffusing plate that diffuses and transmits light emitted from the light emitting device.

本発明によれば、所望の配光特性を維持しつつ、発光素子に起因する色ムラを抑制できる光束制御部材を提供することができる。 According to the present invention, it is possible to provide a luminous flux control member capable of suppressing color unevenness caused by a light emitting element while maintaining a desired light distribution characteristic.

図1は、従来の発光装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a conventional light emitting device. 図2A、Bは、実施の形態1に係る照明装置の構成を示す図である。2A and 2B are diagrams showing the configuration of the lighting device according to the first embodiment. 図3は、光拡散板を外した状態の照明装置の平面図である。FIG. 3 is a plan view of the lighting device with the light diffusing plate removed. 図4A~Cは、図3に示される発光装置周辺の構成を示す図である。4A to 4C are views showing the configuration around the light emitting device shown in FIG. 図5A~Dは、実施の形態1に係る光束制御部材の構成を示す図である。5A to 5D are views showing the configuration of the light flux control member according to the first embodiment. 図6Aは、図5Cの第1内天面のA-A線断面図であり、図6Bは、図5Cの第1内天面のB-B線断面図である。6A is a sectional view taken along line AA of the first inner top surface of FIG. 5C, and FIG. 6B is a sectional view taken along line BB of the first inner top surface of FIG. 5C. 図7は、第1凸条の稜線に垂直な断面における、第1内天面の断面形状を示すグラフである。FIG. 7 is a graph showing the cross-sectional shape of the first inner top surface in the cross section perpendicular to the ridgeline of the first ridge. 図8A~Cは、第1凸条の稜線に垂直な断面における、第1内天面の断面形状の変形例を示す図である。8A to 8C are views showing a modified example of the cross-sectional shape of the first inner top surface in the cross section perpendicular to the ridgeline of the first ridge. 図9A~Fは、第1凸条の稜線に垂直な断面における、第1内天面の断面形状の変形例を示す図である。9A to 9F are views showing a modified example of the cross-sectional shape of the first inner top surface in the cross section perpendicular to the ridgeline of the first ridge. 図10Aは、実施の形態1に係る光束制御部材を用いた照明装置の光拡散板上における照度分布の解析結果と、比較用の光束制御部材を用いた照明装置の光拡散板上における照度分布の解析結果とを示すグラフであり、図10Bは、実施の形態1に係る光束制御部材を用いた照明装置の光拡散板上における色度Y値の解析結果と、比較用の光束制御部材を用いた照明装置の光拡散板上における色度Y値の解析結果を示すグラフである。FIG. 10A shows the analysis result of the illuminance distribution on the light diffusing plate of the illuminating device using the luminous flux control member according to the first embodiment and the illuminance distribution on the light diffusing plate of the illuminating device using the luminous flux control member for comparison. 10B is a graph showing the analysis results of the above, and FIG. 10B shows the analysis results of the chromaticity Y value on the light diffusing plate of the lighting device using the light flux control member according to the first embodiment and the light flux control member for comparison. It is a graph which shows the analysis result of the chromaticity Y value on the light diffusing plate of the illuminating device used. 図11A~Dは、実施の形態2に係る光束制御部材の構成を示す図である。11A to 11D are views showing the configuration of the light flux control member according to the second embodiment. 図12Aは、図11Dの出射面のA-A線断面図であり、図12Bは、図11Dの出射面のB-B線断面図である。12A is a sectional view taken along line AA of the exit surface of FIG. 11D, and FIG. 12B is a sectional view taken along line BB of the exit surface of FIG. 11D. 図13A~Cは、第2凸条の稜線に垂直な断面における、出射面の断面形状の変形例を示す図である。FIGS. 13A to 13C are views showing an example of deformation of the cross-sectional shape of the exit surface in the cross section perpendicular to the ridgeline of the second ridge. 図14A~Fは、第2凸条の稜線に垂直な断面における、出射面の断面形状の変形例を示す図である。14A to 14F are views showing an example of deformation of the cross-sectional shape of the exit surface in the cross section perpendicular to the ridgeline of the second ridge. 図15Aは、実施の形態2に係る光束制御部材を用いた照明装置の光拡散板上における照度分布の解析結果と、比較用の光束制御部材を用いた照明装置の光拡散板上における照度分布の解析結果を示すグラフであり、図15Bは、実施の形態2に係る光束制御部材を用いた照明装置の光拡散板上における色度Y値の解析結果と、比較用の光束制御部材を用いた照明装置の光拡散板上における色度Y値の解析結果とを示すグラフである。FIG. 15A shows the analysis result of the illuminance distribution on the light diffusing plate of the illuminating device using the light flux control member according to the second embodiment and the illuminance distribution on the light diffusing plate of the illuminating device using the luminous flux control member for comparison. 15B is a graph showing the analysis result of the above, and FIG. 15B uses the analysis result of the chromaticity Y value on the light diffusing plate of the lighting device using the light flux control member according to the second embodiment and the light flux control member for comparison. It is a graph which shows the analysis result of the chromaticity Y value on the light diffusing plate of the lighting apparatus. 図16A~Dは、実施の形態3に係る光束制御部材の構成を示す図である。16A to 16D are views showing the configuration of the luminous flux control member according to the third embodiment. 図17Aは、図16Cの第1内天面のA-A線断面図であり、図17Bは、図16Cの第1内天面のB-B線断面図である。17A is a sectional view taken along line AA of the first inner top surface of FIG. 16C, and FIG. 17B is a sectional view taken along line BB of the first inner top surface of FIG. 16C. 図18Aは、第3凸条の稜線に垂直な断面における、光束制御部材の反射面の断面形状を示すグラフであり、図18Bは、第3凸条の稜線に垂直な断面において、第3凸条を有する光束制御部材の反射面の断面形状の設計値から、第3凸条を有しない光束制御部材の反射面の断面形状の設計値を差し引いた結果(Δh1)を示すグラフである。FIG. 18A is a graph showing a cross-sectional shape of the reflection surface of the light beam control member in a cross section perpendicular to the ridgeline of the third convex line, and FIG. 18B is a graph showing the third convexity in a cross section perpendicular to the ridgeline of the third convex line. It is a graph which shows the result (Δh1) which subtracted the design value of the cross-sectional shape of the reflection surface of the light beam control member which does not have a 3rd convex from the design value of the cross-sectional shape of the reflection surface of the light beam control member which has a stripe. 図19Aは、実施の形態3に係る光束制御部材を用いた照明装置の光拡散板上における照度分布の解析結果と、比較用の光束制御部材を用いた照明装置の光拡散板上における照度分布の解析結果とを示すグラフであり、図19Bは、実施の形態3に係る光束制御部材を用いた照明装置の、光拡散板上における色度Y値の解析結果と、比較用の光束制御部材を用いた照明装置の、光拡散板上における色度Y値の解析結果とを示すグラフである。FIG. 19A shows the analysis result of the illuminance distribution on the light diffusing plate of the illuminating device using the light flux control member according to the third embodiment and the illuminance distribution on the light diffusing plate of the illuminating device using the luminous flux control member for comparison. 19B is a graph showing the analysis result of the above, and FIG. 19B shows the analysis result of the chromaticity Y value on the light diffusing plate of the lighting device using the light flux control member according to the third embodiment and the light flux control member for comparison. It is a graph which shows the analysis result of the chromaticity Y value on the light diffusing plate of the lighting apparatus using. 図20は、変形例に係る照明装置の構成を示す部分拡大斜視図である。FIG. 20 is a partially enlarged perspective view showing the configuration of the lighting device according to the modified example.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[実施の形態1]
(照明装置の構成)
図2AおよびB、ならびに図3は、実施の形態1に係る照明装置100の構成を示す図である。図2Aは、照明装置100の平面図であり、図2Bは、正面図である。図3は、本実施の形態に係る照明装置100において、光拡散板150を外した状態の平面図である。図4A~Cは、図3に示される発光装置130周辺の構成を示す図である。図4Aは、図3に示される発光装置130周辺の斜視図であり、図4Bは、図4Aの平面図であり、図4Cは、図4Bの4C-4C線の断面図である。同図に示される照明装置100は、例えばチャンネル文字看板として用いられるものである。
[Embodiment 1]
(Construction of lighting equipment)
2A and 2B, and FIG. 3 are diagrams showing the configuration of the lighting device 100 according to the first embodiment. 2A is a plan view of the lighting device 100, and FIG. 2B is a front view. FIG. 3 is a plan view of the lighting device 100 according to the present embodiment in a state where the light diffusing plate 150 is removed. 4A to 4C are views showing the configuration around the light emitting device 130 shown in FIG. 4A is a perspective view of the periphery of the light emitting device 130 shown in FIG. 3, FIG. 4B is a plan view of FIG. 4A, and FIG. 4C is a cross-sectional view taken along the line 4C-4C of FIG. 4B. The lighting device 100 shown in the figure is used, for example, as a channel character signboard.

図2A、Bおよび図3に示されるように、照明装置100は、筐体110、複数の基板120(不図示)、複数の発光装置130、ケーブル140および光拡散板150を有する。 As shown in FIGS. 2A, B and 3, the lighting device 100 includes a housing 110, a plurality of substrates 120 (not shown), a plurality of light emitting devices 130, a cable 140 and a light diffusing plate 150.

筐体110は、その内部に複数の基板120および複数の発光装置130を収容するための、1つの面の少なくとも一部が開放された箱状体である。本実施の形態では、筐体110は、底板と、底板に対向する天板と、底板および天板を繋ぐ4つの側板とから構成されている。天板には、発光領域となる開口部が形成されている。この開口部は、光拡散板150により塞がれる。底板と天板とは平行に配置されている。底板の表面から光拡散板150までの高さ(空間厚さ)は、特に限定されないが、20~100mm程度である。そして、筐体110は、例えば、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)などの樹脂や、ステンレス鋼やアルミニウムなどの金属などから構成される。 The housing 110 is a box-shaped body in which at least a part of one surface is opened for accommodating a plurality of substrates 120 and a plurality of light emitting devices 130 inside the housing 110. In the present embodiment, the housing 110 is composed of a bottom plate, a top plate facing the bottom plate, and four side plates connecting the bottom plate and the top plate. The top plate is formed with an opening that serves as a light emitting region. This opening is closed by the light diffusing plate 150. The bottom plate and the top plate are arranged in parallel. The height (space thickness) from the surface of the bottom plate to the light diffusing plate 150 is not particularly limited, but is about 20 to 100 mm. The housing 110 is made of, for example, a resin such as polymethyl methacrylate (PMMA) or polycarbonate (PC), or a metal such as stainless steel or aluminum.

筐体100の平面視の形状は、任意の形状であってよい。本実施の形態では、チャンネル文字看板などに用いられることから、筐体100の平面視の形状は、S字形状となっている。 The shape of the housing 100 in a plan view may be any shape. In the present embodiment, since it is used for a channel character signboard or the like, the shape of the housing 100 in a plan view is an S-shape.

複数の基板120は、複数の発光装置130を、筐体110の底板上に所定の間隔で配置するための平板である(図4C参照)。本実施の形態では、基板120は、筐体110の底板上に、後述するコーキング材141を介して配置されている(図4C参照)。基板120の配線は、ケーブル140によって電気的に接続されている。 The plurality of substrates 120 are flat plates for arranging the plurality of light emitting devices 130 on the bottom plate of the housing 110 at predetermined intervals (see FIG. 4C). In the present embodiment, the substrate 120 is arranged on the bottom plate of the housing 110 via a caulking material 141 described later (see FIG. 4C). The wiring of the board 120 is electrically connected by the cable 140.

複数の発光装置130は、筐体110の底板上に、複数の基板120を介してそれぞれ配置されている。筐体110の底板上に配置される発光装置130の数は、特に限定されない。筐体110の底板上に配置される発光装置130の数は、筐体110の開口部により規定される発光領域(発光面)の大きさに基づいて適宜設定される。 The plurality of light emitting devices 130 are arranged on the bottom plate of the housing 110 via the plurality of substrates 120, respectively. The number of light emitting devices 130 arranged on the bottom plate of the housing 110 is not particularly limited. The number of light emitting devices 130 arranged on the bottom plate of the housing 110 is appropriately set based on the size of the light emitting region (light emitting surface) defined by the opening of the housing 110.

複数の発光装置130は、それぞれ発光素子131と、光束制御部材132とを有する。複数の発光装置130は、それぞれ発光素子131から出射される光の光軸(後述する発光素子131の光軸LA)が基板120の表面に対する法線に沿うように配置されている。 Each of the plurality of light emitting devices 130 has a light emitting element 131 and a light flux control member 132. In each of the plurality of light emitting devices 130, the optical axis of the light emitted from the light emitting element 131 (the optical axis LA of the light emitting element 131 described later) is arranged so as to be along the normal line with respect to the surface of the substrate 120.

発光素子131は、照明装置100(および発光装置130)の光源である。発光素子131は、基板120上に配置されており(図4C参照)、基板120上または基板120内に形成された配線と電気的に接続されている。 The light emitting element 131 is a light source of the lighting device 100 (and the light emitting device 130). The light emitting element 131 is arranged on the substrate 120 (see FIG. 4C) and is electrically connected to the wiring formed on the substrate 120 or in the substrate 120.

発光素子131は、例えば発光ダイオード(LED)である。発光装置130に含まれる発光素子131の出射光の色は、特に限定されない。本実施の形態では、例えば青色光を発する発光部と、その周囲を覆い、発光部から出射される青色光を白色光に変換する蛍光体とを有するSMDタイプの発光素子を用いることができる。 The light emitting element 131 is, for example, a light emitting diode (LED). The color of the emitted light of the light emitting element 131 included in the light emitting device 130 is not particularly limited. In the present embodiment, for example, an SMD type light emitting element having a light emitting portion that emits blue light and a phosphor that covers the periphery thereof and converts the blue light emitted from the light emitting portion into white light can be used.

光束制御部材132は、発光素子131から出射された光の配光を制御し、上記光の進行方向を基板120の面方向、特に発光素子131の光軸LAに対して略垂直であり、かつ互いに反対向きである2つの方向に変える。光束制御部材132は、その入射面133が発光素子131と対向するように、具体的には、その中心軸CAが発光素子131の光軸LAに一致するように配置されている(図4C参照)。「発光素子131の光軸LA」とは、発光素子131からの立体的な出射光束の中心の光線を意味する。「光束制御部材132の中心軸CA」とは、例えば2回対称の対称軸をいう。 The luminous flux control member 132 controls the light distribution of the light emitted from the light emitting element 131, and the traveling direction of the light is substantially perpendicular to the surface direction of the substrate 120, particularly the optical axis LA of the light emitting element 131. Change in two directions that are opposite to each other. The luminous flux control member 132 is arranged so that its incident surface 133 faces the light emitting element 131, specifically, its central axis CA coincides with the optical axis LA of the light emitting element 131 (see FIG. 4C). ). The "optical axis LA of the light emitting element 131" means a light ray at the center of a three-dimensional emitted light flux from the light emitting element 131. The "central axis CA of the luminous flux control member 132" means, for example, a axis of symmetry that is twice symmetric.

以下、各発光装置130において、発光素子131の発光中心を通り、かつ発光素子131の光軸LAに平行な方向をZ軸方向、Z軸方向に対して垂直な平面において、互いに直交する2つの方向をX軸方向およびY軸方向という。具体的には、後述する光束制御部材132において、後述する2つの出射面135が対向する方向をY軸方向とし、該Z軸方向に対して垂直な平面において、Y軸方向と直交する方向をX軸方向という。 Hereinafter, in each light emitting device 130, two light emitting elements 131 pass through the light emitting center and are orthogonal to each other in a direction parallel to the optical axis LA of the light emitting element 131 in the Z-axis direction and a plane perpendicular to the Z-axis direction. The directions are called the X-axis direction and the Y-axis direction. Specifically, in the light beam control member 132 described later, the direction in which the two emission surfaces 135 described later face each other is the Y-axis direction, and the direction orthogonal to the Y-axis direction in the plane perpendicular to the Z-axis direction is set. It is called the X-axis direction.

光束制御部材132の材料は、所望の波長の光を通過させ得るものであれば特に限定されない。たとえば、光束制御部材132の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂、またはガラスである。 The material of the luminous flux control member 132 is not particularly limited as long as it can pass light of a desired wavelength. For example, the material of the luminous flux control member 132 is a light-transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), or epoxy resin (EP), or glass.

本実施の形態に係る照明装置100は、光束制御部材132の構成に主たる特徴を有する。そこで、光束制御部材132については、別途詳細に説明する。 The lighting device 100 according to the present embodiment has a main feature in the configuration of the luminous flux control member 132. Therefore, the luminous flux control member 132 will be described in detail separately.

ケーブル140は、隣り合う複数の基板120同士を電気的に接続している。基板120とケーブル140の接続部は、コーキング材141で補強されている(図4C参照)。コーキング材141の材質の例には、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂が含まれる。 The cable 140 electrically connects a plurality of adjacent boards 120 to each other. The connection between the substrate 120 and the cable 140 is reinforced with a caulking material 141 (see FIG. 4C). Examples of the material of the caulking material 141 include urethane resin, silicone resin, and epoxy resin.

このように、複数の発光装置130を、ケーブル140を介して電気的に接続してモジュール化することで、複数の発光装置130を筐体110の形状に合わせて自在に配置することができる。 In this way, by electrically connecting the plurality of light emitting devices 130 via the cable 140 and modularizing them, the plurality of light emitting devices 130 can be freely arranged according to the shape of the housing 110.

光拡散板150は、筐体110の開口部を塞ぐように配置されている(図2AおよびB参照)。光拡散板150は、光透過性および光拡散性を有する板状の部材であり、光束制御部材132の出射面135(図5参照)からの出射光を拡散させつつ透過させる。光拡散板150は、例えば照明装置100の発光面となり得る。 The light diffusing plate 150 is arranged so as to close the opening of the housing 110 (see FIGS. 2A and 2B). The light diffusing plate 150 is a plate-shaped member having light transmittance and light diffusivity, and transmits light emitted from the emission surface 135 (see FIG. 5) of the light flux control member 132 while diffusing it. The light diffusing plate 150 can be, for example, a light emitting surface of the lighting device 100.

光拡散板150の材料は、光束制御部材132の出射面135からの出射光を拡散させつつ透過させ得るものであれば特に制限されないが、たとえばポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、スチレン・メチルメタクリレート共重合樹脂(MS)などの光透過性樹脂である。光拡散性を付与するため、光拡散板150の表面に微細な凹凸が形成されているか、または光拡散板150の内部にビーズなどの光拡散子が分散している。 The material of the light diffusing plate 150 is not particularly limited as long as it can transmit the emitted light from the emitting surface 135 of the light beam control member 132 while diffusing it, and is, for example, polymethyl methacrylate (PMMA), polycarbonate (PC), and the like. It is a light-transmitting resin such as polystyrene (PS) and styrene-methylmethacrylate copolymer resin (MS). In order to impart light diffusivity, fine irregularities are formed on the surface of the light diffusing plate 150, or light diffusing elements such as beads are dispersed inside the light diffusing plate 150.

本実施の形態に係る照明装置100では、各発光素子131から出射された光は、光束制御部材132により光拡散板150の広範囲を照らすように、特に発光素子131の光軸LAに対して略垂直方向に、かつ互いに反対向きである2つの方向(図4A~CにおけるY軸方向)へ向かう光に変えられて出射される。各光束制御部材132から出射された光は、さらに光拡散板150により拡散されて、外部に出射される。それにより、照明装置100の色ムラおよび照度ムラを抑制することができる。 In the lighting device 100 according to the present embodiment, the light emitted from each light emitting element 131 is omitted so as to illuminate a wide range of the light diffusing plate 150 by the luminous flux control member 132, particularly with respect to the optical axis LA of the light emitting element 131. It is converted into light emitted in two directions (Y-axis direction in FIGS. 4A to 4C) that are vertically and opposite to each other. The light emitted from each luminous flux control member 132 is further diffused by the light diffusing plate 150 and emitted to the outside. Thereby, color unevenness and illuminance unevenness of the lighting device 100 can be suppressed.

(光束制御部材の構成)
図5A~Dは、光束制御部材132の構成を示す図である。図5Aは、光束制御部材132の平面図であり、図5Bは、図5Aの5B-5B線の断面図であり、図5Cは、底面図であり、図5Dは、側面図である。図6Aは、図5Cの第1内天面133aのA-A線断面図であり、図6Bは、図5Cの第1内天面133aのB-B線断面図である。
(Structure of luminous flux control member)
5A to 5D are views showing the configuration of the luminous flux control member 132. 5A is a plan view of the luminous flux control member 132, FIG. 5B is a cross-sectional view taken along the line 5B-5B of FIG. 5A, FIG. 5C is a bottom view, and FIG. 5D is a side view. 6A is a sectional view taken along line AA of the first inner top surface 133a of FIG. 5C, and FIG. 6B is a sectional view taken along line BB of the first inner top surface 133a of FIG. 5C.

光束制御部材132は、発光素子131から出射された光の配光を制御する。図5A~Dに示されるように、光束制御部材132は、入射面133、2つの反射面134、2つの出射面135、鍔部136および2つの脚部137を有する。以下、光束制御部材132の入射面が形成されている側(発光素子131側)を裏側、反射面134が形成されている側を表側という。 The luminous flux control member 132 controls the light distribution of the light emitted from the light emitting element 131. As shown in FIGS. 5A-D, the luminous flux control member 132 has an incident surface 133, two reflecting surfaces 134, two emitting surfaces 135, a collar 136 and two legs 137. Hereinafter, the side on which the incident surface of the luminous flux control member 132 is formed (the side of the light emitting element 131) is referred to as the back side, and the side on which the reflection surface 134 is formed is referred to as the front side.

入射面133は、発光素子131から出射された光の一部を入射させる。入射面133は、光束制御部材132の裏側、すなわち底面138の中央部に形成された凹部139の内面である。凹部139の内面形状は、特に限定されず、エッジを含む面であってもよいし、半球状や半楕円体状などのように、エッジを含まない曲面であってもよい。本実施の形態では、凹部139の内面形状は、エッジを含む面である。 The incident surface 133 causes a part of the light emitted from the light emitting element 131 to be incident. The incident surface 133 is the inner surface of the recess 139 formed on the back side of the luminous flux control member 132, that is, in the central portion of the bottom surface 138. The inner surface shape of the concave portion 139 is not particularly limited, and may be a surface including an edge, or may be a curved surface having no edge, such as a hemispherical shape or a semi-elliptical shape. In the present embodiment, the inner surface shape of the recess 139 is a surface including an edge.

具体的には、凹部139の内面(入射面133)は、少なくとも第1内天面133a(内天面)および2つの内側面133bを有し、それらの間に、2つの第2内天面133c、2つの第3内天面133d、および2つの第4内天面133eをさらに有する(図5BおよびC参照)。2つの第2内天面133c、2つの第3内天面133d、および2つの第4内天面133eは、2つの出射面135が対向する方向(Y軸方向)において、第1内天面133aを挟むように配置されている。 Specifically, the inner surface (incident surface 133) of the recess 139 has at least a first inner surface 133a (inner surface) and two inner surface 133b, and two second inner surfaces between them. It further has 133c, two third inner surfaces 133d, and two fourth inner surfaces 133e (see FIGS. 5B and C). The two second inner top surfaces 133c, the two third inner top surfaces 133d, and the two fourth inner top surfaces 133e are the first inner top surfaces in the direction in which the two exit surfaces 135 face each other (Y-axis direction). It is arranged so as to sandwich 133a.

第1内天面133aは、発光素子131の光軸LAと交わるように、凹部139の中央部に配置された面である。第1内天面133aは、発光素子131の発光中心から発光素子131の光軸LAに対して少なくとも0°以上10°以下の角度で出射された光が入射するように形成されていることが好ましい。また、第1内天面133aは、発光素子131の光軸LAに対して小さい角度で出射される光を、2つの反射面134の境界部に進行させないようにする観点から、発光素子131の光軸LAに近づくにつれて、発光素子131の発光面からの高さが高くなるように形成されていることが好ましい。第1内天面133aには、発光素子131に起因する色ムラを抑制するために、複数の第1凸条142が配置されている(図5C参照)。 The first inner top surface 133a is a surface arranged in the central portion of the recess 139 so as to intersect the optical axis LA of the light emitting element 131. The first inner top surface 133a is formed so that light emitted from the light emitting center of the light emitting element 131 at an angle of at least 0 ° or more and 10 ° or less is incident on the optical axis LA of the light emitting element 131. preferable. Further, the first inner top surface 133a is a light emitting element 131 from the viewpoint of preventing light emitted at a small angle with respect to the optical axis LA of the light emitting element 131 from traveling to the boundary between the two reflecting surfaces 134. It is preferable that the light emitting element 131 is formed so that the height from the light emitting surface increases as it approaches the optical axis LA. A plurality of first ridges 142 are arranged on the first inner top surface 133a in order to suppress color unevenness caused by the light emitting element 131 (see FIG. 5C).

複数の第1凸条142は、発光素子131の光軸LAに沿って見たときに(Z軸方向に沿って見たときに)、当該複数の第1凸条142の稜線が、2つの出射面135が対向する方向(Y軸方向)と略平行となるように配置されている。第1凸条142の稜線が2つの出射面135が対向する方向(Y軸方向)と略平行であるとは、Z軸方向に沿って見たときに、第1凸条142の稜線と、2つの出射面135が対向する方向(Y軸方向)とがなす角度が15°以下、好ましくは0°であることをいう。すなわち、第1凸条142の稜線が延びる方向は、必ずしもY軸方向と一致していなくてもよい。2つの反射面134の境界部(あるいは2つの反射面134の間に設定される、光軸LAを含む仮想平面(X軸とZ軸を含むXZ平面))から2つの出射面135のそれぞれへ向かって、複数の第1凸条142が交差することのなく延びるように形成されていればよい。 When the plurality of first ridges 142 are viewed along the optical axis LA of the light emitting element 131 (when viewed along the Z-axis direction), the plurality of first ridges 142 have two ridges. The emission surface 135 is arranged so as to be substantially parallel to the opposite direction (Y-axis direction). The fact that the ridgeline of the first ridge 142 is substantially parallel to the direction in which the two emission surfaces 135 face each other (Y-axis direction) means that the ridgeline of the first ridge 142 is substantially parallel to the ridgeline of the first ridge 142 when viewed along the Z-axis direction. It means that the angle formed by the two emission surfaces 135 in the opposite direction (Y-axis direction) is 15 ° or less, preferably 0 °. That is, the direction in which the ridgeline of the first ridge 142 extends does not necessarily have to coincide with the Y-axis direction. From the boundary between the two reflecting surfaces 134 (or the virtual plane containing the optical axis LA (or the XZ plane including the X-axis and the Z-axis) set between the two reflecting surfaces 134) to each of the two emitting surfaces 135. It suffices if the plurality of first ridges 142 are formed so as to extend without intersecting with each other.

第1凸条142の稜線に垂直な断面における、第1凸条142の断面形状は、特に制限されず、三角形であってもよいし、矩形(台形を含む)であってもよいし、半円形または半楕円形であってもよいし、波形であってもよい。本実施の形態では、第1凸条142の稜線に垂直な断面における、第1凸条142の断面形状は、三角形である(図6AおよびB参照)。 The cross-sectional shape of the first ridge 142 in the cross section perpendicular to the ridgeline of the first ridge 142 is not particularly limited, and may be a triangle, a rectangle (including a trapezoid), or a half. It may be circular, semi-elliptical, or corrugated. In the present embodiment, the cross-sectional shape of the first ridge 142 in the cross section perpendicular to the ridgeline of the first ridge 142 is a triangle (see FIGS. 6A and 6B).

第1凸条142における「稜線」とは、凸条の最も高い部分(頂部)の線状の連なりを意味し、発光素子131の光軸LAを含み、かつX軸方向と平行な断面における、第1凸条142の頂点を繋げた線をいう。第1凸条142における「稜線」は、第1凸条142ごとに1つであってもよいし、2つ以上であってもよい。例えば、第1凸条142の断面形状が波形である場合、波の頂点を繋げた1本の線が稜線となる。第1凸条142の断面形状が台形である場合、台形の2つの頂点(上底と脚との交点)の一方の点同士を繋げた線と、他方の点同士を繋げた線の2本の線が、それぞれ稜線となる。 The "ridge line" in the first ridge 142 means a linear chain of the highest portion (top) of the ridge, includes the optical axis LA of the light emitting element 131, and has a cross section parallel to the X-axis direction. A line connecting the vertices of the first convex strip 142. The number of "ridge lines" in the first ridge 142 may be one for each first ridge 142, or may be two or more. For example, when the cross-sectional shape of the first ridge 142 is a waveform, one line connecting the vertices of the wave becomes a ridge line. When the cross-sectional shape of the first ridge 142 is trapezoidal, there are two lines, one that connects one point of the two vertices of the trapezoid (the intersection of the upper base and the leg) and the other that connects the other points. Each line of is a ridgeline.

図7は、第1凸条142の稜線に垂直な断面における、第1内天面133aの断面形状を示すグラフである。図7において、横軸は、第1内天面133aの中心からの距離d1(X軸方向の距離;mm)を示しており、縦軸は、第1内天面133aの基準面からの高さh1(Z軸方向の高さ;mm)を示す。基準面とは、第1凸条142の稜線に垂直な断面において、第1凸条142の頂点とその隣にある谷底の中点を結んだ線をいう。 FIG. 7 is a graph showing the cross-sectional shape of the first inner top surface 133a in the cross section perpendicular to the ridgeline of the first ridge 142. In FIG. 7, the horizontal axis represents the distance d1 (distance in the X-axis direction; mm) from the center of the first inner top surface 133a, and the vertical axis is the height from the reference plane of the first inner top surface 133a. H1 (height in the Z-axis direction; mm) is shown. The reference plane is a line connecting the apex of the first ridge 142 and the midpoint of the valley bottom adjacent to the apex of the first ridge 142 in a cross section perpendicular to the ridgeline of the first ridge 142.

第1凸条142の稜線に垂直な断面において、複数の第1凸条142の中心間距離a(X軸方向の距離)は、同じであってもよいし、同じでなくてもよい。所望の配光を実現しつつ、色ムラを抑制する観点からは、複数の第1凸条142の中心間距離aは、同じであることが好ましい。「複数の第1凸条142の中心間距離a」とは、複数の第1凸条142の中心線同士の距離をいう(図7参照)。 In the cross section perpendicular to the ridgeline of the first ridge 142, the distance a (distance in the X-axis direction) between the centers of the plurality of first ridges 142 may or may not be the same. From the viewpoint of suppressing color unevenness while realizing a desired light distribution, it is preferable that the distance a between the centers of the plurality of first ridges 142 is the same. The “distance between the centers of the plurality of first ridges 142 a” means the distance between the center lines of the plurality of first ridges 142 (see FIG. 7).

第1凸条142の稜線に垂直な断面において、複数の第1凸条142の高さb(Z軸方向の長さ)は、同じであってもよいし、同じでなくてもよい。所望の配光を実現しつつ、色ムラを抑制する観点からは、複数の第1凸条142の高さbは同じであることが好ましい。「第1凸条142の高さb」とは、第1凸条142の稜線に垂直な断面において、隣接する2つの第1凸条142の頂点を結ぶ直線と、この2つの第1凸条142の間に形成される凹部とその両側に形成される2つの凹部の谷底を結ぶ直線との距離の半分に相当する長さを意味する(図7参照)。 In the cross section perpendicular to the ridgeline of the first ridge 142, the height b (length in the Z-axis direction) of the plurality of first ridges 142 may or may not be the same. From the viewpoint of suppressing color unevenness while realizing a desired light distribution, it is preferable that the heights b of the plurality of first ridges 142 are the same. The "height b of the first ridge 142" is a straight line connecting the vertices of two adjacent first ridges 142 in a cross section perpendicular to the ridgeline of the first ridge 142, and the two first ridges. It means a length corresponding to half of the distance between the recess formed between 142 and the straight line connecting the valley bottoms of the two recesses formed on both sides thereof (see FIG. 7).

第1凸条142の稜線に垂直な断面における、複数の第1凸条142の中心間距離aと高さbの比率は、a:b=1:0~1:0.5であることが好ましい。a:bが上記範囲内であると、光拡散板150上における照度分布に大きな影響を及ぼさずに、第1内天面133aで入射する光の進行方向を僅かに変化させやすいため、所望の配光を実現しつつ、色ムラを抑制しやすい。色ムラの改善効果、金型の加工精度、および光束制御部材の成形時の転写性を考慮し、複数の第1凸条142の中心間距離aは、0.1mm以上1mm以下であることが好ましい。 The ratio of the distance a between the centers of the plurality of first ridges 142 to the height b in the cross section perpendicular to the ridgeline of the first ridge 142 is a: b = 1: 0 to 1: 0.5. preferable. When a: b is within the above range, the traveling direction of the light incident on the first inner top surface 133a is likely to be slightly changed without significantly affecting the illuminance distribution on the light diffusing plate 150, which is desired. It is easy to suppress color unevenness while realizing light distribution. The distance a between the centers of the plurality of first ridges 142 should be 0.1 mm or more and 1 mm or less in consideration of the effect of improving color unevenness, the processing accuracy of the mold, and the transferability at the time of molding the luminous flux control member. preferable.

第1凸条142の稜線に垂直な断面における、第1凸条142の高さbは、2つの出射面135に近づくにつれて低くなる(図5C、6AおよびB参照)。すなわち、発光素子131の発光中心から発光素子131の光軸LAに対して小さい角度で出射される光、特に第1内天面133aの中心付近で入射する光は、色ムラへの寄与が大きい。そのため、第1凸条142の稜線方向において、第1内天面133aの中心側の第1凸条142の高さbを高くすることで、入射した光の進行方向を変えやすくすることができる。一方、発光素子131の発光中心から発光素子131の光軸LAに対して大きい角度で出射される光、例えば第1内天面133aのうち出射面135に近い側で入射する光は、色ムラへの寄与は少ない。そのため、第1凸条142の稜線方向において、2つの出射面135に近い側の第1凸条142の高さbを低くすることで、入射した光の進行方向を必要以上に変わらないようにすることができる。それにより、照明装置100の発光面における色ムラを抑制しつつ、発光装置130の配光特性を損なわれにくくしうる(図6AおよびB参照)。 The height b of the first ridge 142 in the cross section perpendicular to the ridge of the first ridge 142 decreases as it approaches the two exit surfaces 135 (see FIGS. 5C, 6A and B). That is, light emitted from the light emitting center of the light emitting element 131 at a small angle with respect to the optical axis LA of the light emitting element 131, particularly light incident near the center of the first inner top surface 133a, contributes greatly to color unevenness. .. Therefore, by increasing the height b of the first ridge 142 on the center side of the first inner top surface 133a in the ridgeline direction of the first ridge 142, it is possible to easily change the traveling direction of the incident light. .. On the other hand, light emitted from the light emitting center of the light emitting element 131 at a large angle with respect to the optical axis LA of the light emitting element 131, for example, light incident on the side of the first inner top surface 133a closer to the emitting surface 135, has color unevenness. Contribution to small. Therefore, by lowering the height b of the first ridge 142 on the side closer to the two emission surfaces 135 in the ridgeline direction of the first ridge 142, the traveling direction of the incident light is not changed more than necessary. can do. As a result, it is possible to suppress color unevenness on the light emitting surface of the lighting device 100 and to prevent the light distribution characteristics of the light emitting device 130 from being impaired (see FIGS. 6A and 6B).

第1凸条142の高さbは、2つの出射面135に近づくにつれて、直線的に低くなってもよいし、曲線的に低くなってもよい。直線的に低くなるとは、第1凸条142の稜線の傾きが、第1凸条142の稜線方向の位置によらず一定であることを意味し;曲線的に低くなるとは、第1凸条142の稜線の傾きが、第1凸条142の稜線方向の位置によって変化することを意味する。なお、第1凸条142の稜線の傾きは、具体的には、第1凸条142の稜線を含む断面における稜線の傾きをいう。第1凸条142の稜線を含む断面における稜線が曲線である場合、各位置における稜線の傾きは、当該各位置における曲線の接線の傾きをいう。本実施の形態では、第1凸条142の高さbは、2つの出射面135に近づくにつれて、直線的に低くなっている。 The height b of the first ridge 142 may be linearly lowered or curvedly lowered as it approaches the two exit surfaces 135. A linear decrease means that the slope of the ridgeline of the first ridge 142 is constant regardless of the position of the first ridge 142 in the ridgeline direction; a curve lower means that the slope of the ridgeline is constant. It means that the inclination of the ridgeline of 142 changes depending on the position of the first ridge 142 in the ridgeline direction. The inclination of the ridgeline of the first ridge 142 specifically means the inclination of the ridgeline in the cross section including the ridgeline of the first ridge 142. When the ridgeline in the cross section including the ridgeline of the first ridge 142 is a curve, the slope of the ridgeline at each position means the slope of the tangent line of the curve at each position. In the present embodiment, the height b of the first ridge 142 is linearly lowered as it approaches the two exit surfaces 135.

第1凸条142の高さbが2つの出射面135に近づくにつれて低くなる領域は、第1凸条142の稜線方向の全部であってもよいし、一部であってもよい。本実施の形態では、第1凸条142の高さbが2つの出射面135に近づくにつれて低くなる領域は、第1凸条142の稜線方向の全部である。 The region where the height b of the first ridge 142 becomes lower as it approaches the two exit surfaces 135 may be the entire or a part of the ridgeline direction of the first ridge 142. In the present embodiment, the region where the height b of the first ridge 142 becomes lower as it approaches the two exit surfaces 135 is the entire ridgeline direction of the first ridge 142.

2つの反射面134は、光束制御部材132の表側、すなわち入射面133を挟んで発光素子131と反対側(光拡散板150側)に配置されている。また、2つの反射面134は、入射面133から入射した光の一部を、発光素子131の光軸LAと略垂直であり、かつ互いに反対向きである2つの方向(2つの出射面135が対向する方向、すなわちY軸方向)に反射させる。2つの反射面134は、発光素子131の光軸LAを含み、かつY軸方向と平行な断面において、発光素子131の光軸LAを境界として、発光素子131の光軸LAから端部(出射面135)に向かうにつれて、底面138(基板120)からの高さが高くなるようにそれぞれ配置されている。具体的には、2つの反射面134は、当該断面において、発光素子131の光軸LAから端部(出射面135)に向かうにつれて、接線の傾きが徐々に小さくなるようにそれぞれ形成されている。 The two reflecting surfaces 134 are arranged on the front side of the light flux control member 132, that is, on the side opposite to the light emitting element 131 (on the light diffusing plate 150 side) with the incident surface 133 interposed therebetween. Further, the two reflecting surfaces 134 have two directions (two emitting surfaces 135) in which a part of the light incident from the incident surface 133 is substantially perpendicular to the optical axis LA of the light emitting element 131 and is opposite to each other. Reflect in the opposite direction, that is, in the Y-axis direction. The two reflecting surfaces 134 include the optical axis LA of the light emitting element 131, and in a cross section parallel to the Y-axis direction, the end portion (emission) from the optical axis LA of the light emitting element 131 with the optical axis LA of the light emitting element 131 as a boundary. They are arranged so that the height from the bottom surface 138 (the substrate 120) increases toward the surface 135). Specifically, the two reflecting surfaces 134 are formed so that the inclination of the tangent line gradually decreases from the optical axis LA of the light emitting element 131 toward the end portion (emission surface 135) in the cross section. ..

2つの出射面135は、2つの反射面134を挟んで(Y軸方向に)互いに対向して配置されている。2つの出射面135は、入射面133(特に2つの内側面133b)で入射し、出射面135に直接到達した光、および入射面133(特に第1内天面133a)で入射し、2つの反射面134で反射された光を外部にそれぞれ出射させる。 The two emission surfaces 135 are arranged so as to face each other (in the Y-axis direction) with the two reflection surfaces 134 interposed therebetween. The two exit surfaces 135 are incident on the incident surface 133 (particularly the two inner surface 133b) and directly reach the exit surface 135, and are incident on the incident surface 133 (particularly the first inner surface 133a). The light reflected by the reflecting surface 134 is emitted to the outside.

出射面135は、平面であってもよいし、曲面であってもよい。本実施の形態では、出射面135は、光軸LAと略平行な面である。「光軸LAと略平行」とは、光軸LAを含み、かつY軸方向に平行な断面において、光軸LAと出射面135とのなす角度のうち小さいほうの角度が3°以下であることを意味する。なお、出射面135が曲面である場合には、光軸LAと出射面135とのなす角度のうち小さいほうの角度は、当該断面において、光軸LAと、出射面135の当該断面における曲線の接線とのなす角度のうち小さいほうの角度を意味する。 The exit surface 135 may be a flat surface or a curved surface. In the present embodiment, the emission surface 135 is a surface substantially parallel to the optical axis LA. "Almost parallel to the optical axis LA" means that the smaller angle between the optical axis LA and the emission surface 135 is 3 ° or less in a cross section including the optical axis LA and parallel to the Y-axis direction. It means that. When the emission surface 135 is a curved surface, the smaller angle between the optical axis LA and the emission surface 135 is the curve of the optical axis LA and the emission surface 135 in the cross section. It means the smaller angle of the angle formed by the tangent line.

鍔部136は、2つの出射面135と光束制御部材132の底面138の外周部との間に位置し、中心軸CAに対して外側に突出している。鍔部136の形状は、略長方形である。鍔部136は、必須の構成要素ではないが、鍔部136を設けることで、光束制御部材132の取り扱いおよび位置合わせが容易になる。鍔部136の厚みは、特に制限されず、2つの出射面135の必要面積や鍔部136の成形性などを考慮して決定され得る。 The collar portion 136 is located between the two emission surfaces 135 and the outer peripheral portion of the bottom surface 138 of the luminous flux control member 132, and projects outward with respect to the central axis CA. The shape of the crossguard 136 is substantially rectangular. The crossguard 136 is not an essential component, but the provision of the crossguard 136 facilitates the handling and alignment of the luminous flux control member 132. The thickness of the collar portion 136 is not particularly limited, and can be determined in consideration of the required area of the two exit surfaces 135, the formability of the collar portion 136, and the like.

2つの脚部137は、光束制御部材132の底面138(裏面)の外周部に、底面138および鍔部136の底部から発光素子131側に突出している略円柱状の部材である。2つの脚部137は、発光素子131に対して適切な位置に光束制御部材132を支持する(図4C参照)。脚部137を、基板120に形成した穴部に嵌合させて、XY平面と平行な方向の位置決めに用いてもよい。なお、脚部137の数は、特に制限されない。 The two leg portions 137 are substantially columnar members protruding from the bottom surface of the bottom surface 138 and the bottom portion of the flange portion 136 toward the light emitting element 131 on the outer peripheral portion of the bottom surface 138 (back surface) of the light flux control member 132. The two legs 137 support the luminous flux control member 132 at an appropriate position with respect to the light emitting element 131 (see FIG. 4C). The leg portion 137 may be fitted into a hole portion formed in the substrate 120 and used for positioning in a direction parallel to the XY plane. The number of legs 137 is not particularly limited.

(作用)
本実施の形態に係る光束制御部材132の作用について、比較用の光束制御部材と対比しながら説明する。なお、比較用の光束制御部材は、第1内天面133aに複数の第1凸条142を有しない以外は本実施の形態に係る光束制御部材と同様に構成されている。
(Action)
The operation of the luminous flux control member 132 according to the present embodiment will be described while comparing with the luminous flux control member for comparison. The luminous flux control member for comparison is configured in the same manner as the luminous flux control member according to the present embodiment, except that the first inner top surface 133a does not have a plurality of first ridges 142.

比較用の光束制御部材(不図示)および本実施の形態の光束制御部材132では、発光素子131から出射された光は、入射面133で入射し、一部の光は2つの反射面134で反射されて、発光素子131の光軸LAと垂直で、かつ互いに反対向きである2つの方向に進行した後、2つの出射面135から外部に出射される。出射面135から出射される光が、光拡散板150の発光装置130から離れた位置に到達するように制御されている(図4Cおよび5B参照)。 In the luminous flux control member (not shown) for comparison and the luminous flux control member 132 of the present embodiment, the light emitted from the light emitting element 131 is incident on the incident surface 133, and some of the light is incident on the two reflecting surfaces 134. After being reflected and traveling in two directions perpendicular to the optical axis LA of the light emitting element 131 and opposite to each other, the light is emitted to the outside from the two emission surfaces 135. The light emitted from the emission surface 135 is controlled to reach a position away from the light emitting device 130 of the light diffusing plate 150 (see FIGS. 4C and 5B).

そして、比較用の光束制御部材では、第1内天面133aは、平滑面である。したがって、発光素子131の光軸LAに対して小さい角度(例えば発光素子131の発光中心から発光素子131の光軸LAに対して少なくとも0°以上10°以下の角度)で出射された光は、平滑面からの入射であるため、進行方向が乱されることなく、光拡散板150の特定の領域に集中して到達しやすい。その結果、発光素子131の特定の領域の青色が、他の領域よりも強く出やすくなり、色ムラが生じやすい。 In the luminous flux control member for comparison, the first inner top surface 133a is a smooth surface. Therefore, the light emitted at a small angle with respect to the optical axis LA of the light emitting element 131 (for example, an angle of at least 0 ° or more and 10 ° or less from the light emitting center of the light emitting element 131 with respect to the optical axis LA of the light emitting element 131) is emitted. Since the incident light is from a smooth surface, the light diffusing plate 150 can be easily reached by concentrating on a specific region without disturbing the traveling direction. As a result, the blue color in a specific region of the light emitting element 131 tends to be stronger than in other regions, and color unevenness tends to occur.

これに対して、本実施の形態の光束制御部材132では、第1内天面133aには、Y軸方向と略平行な稜線を有する複数の第1凸条142が配置され(図5C参照)、かつ第1凸条142の高さは、出射面135に近づくにつれて低くなっている(図6AおよびB参照)。
それにより、発光素子131の発光中心から発光素子131の光軸LAに対して小さい角度で出射された光、特に第1内天面133aの中心付近で入射する光(色ムラへの寄与が大きい光)は、第1凸条142によって光の進行方向が十分に変えられるため、光拡散板150の特定の領域に集中して到達しにくくしうる。一方、発光素子131の発光中心から発光素子131の光軸LAに対して大きい角度で出射された光、例えば2つの出射面135側の端部付近で入射する光(色ムラへの寄与が小さい光)は、第1凸条142によって、光の進行方向が必要以上には変えられないため、配光特性が損なわれにくい。それにより、照明装置100の発光面における色ムラを抑制しつつ、発光装置130の配光特性をこれまで以上に損なわれにくくしうる。
On the other hand, in the luminous flux control member 132 of the present embodiment, a plurality of first ridges 142 having ridges substantially parallel to the Y-axis direction are arranged on the first inner top surface 133a (see FIG. 5C). Moreover, the height of the first ridge 142 decreases as it approaches the exit surface 135 (see FIGS. 6A and 6B).
As a result, light emitted from the light emitting center of the light emitting element 131 at a small angle with respect to the optical axis LA of the light emitting element 131, particularly light incident near the center of the first inner top surface 133a (a large contribution to color unevenness). Since the traveling direction of the light is sufficiently changed by the first ridge 142, the light) can be concentrated in a specific region of the light diffusing plate 150 and difficult to reach. On the other hand, light emitted from the light emitting center of the light emitting element 131 at a large angle with respect to the optical axis LA of the light emitting element 131, for example, light incident near the ends of the two light emitting surfaces 135 on the side (the contribution to color unevenness is small). Since the traveling direction of the light cannot be changed more than necessary by the first ridge 142, the light distribution characteristics are not easily impaired. As a result, the light distribution characteristics of the light emitting device 130 can be less likely to be impaired than before while suppressing color unevenness on the light emitting surface of the lighting device 100.

なお、上記実施の形態1では、第1凸条142の稜線に垂直な断面において、第1凸条142の幅(X軸方向の大きさ)が、第1凸条142の稜線方向で一定である例を示したが(図5C、6AおよびB参照)、これに限定されず、一定でなくてもよい。すなわち、第1凸条142の稜線に垂直な断面における、第1凸条142の幅(X軸方向の大きさ)は、A-A線断面と、B-B線断面とで異なっていてもよい。 In the first embodiment, the width (size in the X-axis direction) of the first ridge 142 is constant in the ridge direction of the first ridge 142 in the cross section perpendicular to the ridge of the first ridge 142. An example is shown (see FIGS. 5C, 6A and B), but is not limited to this and may not be constant. That is, even if the width (size in the X-axis direction) of the first ridge 142 in the cross section perpendicular to the ridgeline of the first ridge 142 is different between the AA line cross section and the BB line cross section. good.

図8A~Cは、第1凸条142の稜線に垂直な断面における、第1内天面133aの断面形状の変形例を示す図である。図8A~Cに示されるように、第1凸条142の稜線に垂直な断面において、第1凸条142の幅c(X軸方向の大きさ)は、出射面135に近づくにつれて小さくなってもよい。それにより、第1凸条142の頂角が同じ大きさとなるように金型を加工できるため金型製作が容易となる。なお、第1凸条142の稜線に垂直な断面における、複数の第1凸条142の中心間距離aは一定である(図8A~C参照)。 8A to 8C are views showing a modified example of the cross-sectional shape of the first inner top surface 133a in the cross section perpendicular to the ridgeline of the first ridge 142. As shown in FIGS. 8A to 8C, in the cross section perpendicular to the ridgeline of the first ridge 142, the width c (size in the X-axis direction) of the first ridge 142 becomes smaller as it approaches the exit surface 135. May be good. As a result, the mold can be processed so that the apex angle of the first ridge 142 has the same size, which facilitates the production of the mold. The distance a between the centers of the plurality of first ridges 142 in the cross section perpendicular to the ridge of the first ridge 142 is constant (see FIGS. 8A to 8C).

また、上記実施の形態1では、第1凸条142の稜線に垂直な断面において、第1凸条142の断面形状が、図6AおよびBに示されるような三角形である例を示したが、これに限定されない。 Further, in the first embodiment, an example is shown in which the cross-sectional shape of the first ridge 142 is a triangle as shown in FIGS. 6A and 6B in the cross section perpendicular to the ridgeline of the first ridge 142. Not limited to this.

図9A~Fは、第1凸条142の稜線に垂直な断面における、第1内天面133aの断面形状の変形例を示す図である。すなわち、第1凸条142の稜線に垂直な断面における、第1凸条142の断面形状は、半円形または半楕円形であってもよいし(図9AおよびB、9EおよびF参照)、波形であってもよい(図9CおよびD参照)。 9A to 9F are views showing a modified example of the cross-sectional shape of the first inner top surface 133a in the cross section perpendicular to the ridgeline of the first ridge 142. That is, the cross-sectional shape of the first ridge 142 in the cross section perpendicular to the ridgeline of the first ridge 142 may be semi-circular or semi-elliptical (see FIGS. 9A and B, 9E and F), and has a waveform. It may be (see FIGS. 9C and D).

(シミュレーション1)
本実施の形態に係る光束制御部材A-1(図5C、6AおよびB)またはA-2(図8A~C)を用いた照明装置100の、光拡散板150上における照度分布および色度Y値を解析した。照度分布および色度Y値の解析は、1つの発光装置130のみを有する照明装置100を用いて行った。
また、比較のため、第1内天面133aが凸条を有しない以外は光束制御部材A-1またはA-2と同様である光束制御部材(比較)を用いた照明装置の、光拡散板上における照度分布と色度Y値も解析した。
(Simulation 1)
Illuminance distribution and chromaticity Y on the light diffusing plate 150 of the lighting device 100 using the light flux control members A-1 (FIGS. 5C, 6A and B) or A-2 (FIGS. 8A to 8C) according to the present embodiment. The value was analyzed. The analysis of the illuminance distribution and the chromaticity Y value was performed using the lighting device 100 having only one light emitting device 130.
Further, for comparison, the light diffusing plate of the lighting device using the light flux control member (comparison) which is the same as the light flux control member A-1 or A-2 except that the first inner top surface 133a does not have a protrusion. The illuminance distribution and chromaticity Y value above were also analyzed.

光束制御部材A-1およびA-2のパラメータを、以下のように設定した。 The parameters of the luminous flux control members A-1 and A-2 were set as follows.

<第1内天面133aのパラメータ>
第1凸条142の稜線に垂直な断面において、第1凸条142の断面形状は、三角形とした。第1凸条142の稜線に垂直な断面における、複数の第1凸条142の中心間距離aおよび高さbは、以下のように設定した。
・光束制御部材A-1:
中心間距離a:高さb=1:0.14(A-A線断面)
中心間距離a=500μm、高さb=72μm
第1凸条142の高さbは、Y軸方向に出射面135に近づくにつれて徐々に低くなり、B-B線断面における高さbが0μmに近づくように設定した。
・光束制御部材A-2
中心間距離a:高さb=1:0.14(A-A線断面)
中心間距離a=500μm、高さb=72μm
第1凸条142の高さbは、Y軸方向に出射面135に近づくにつれて徐々に低くなり、B-B線断面における高さbが0μmに近づくように設定した。また、第1凸条142の幅も、Y軸方向に出射面135に近づくにつれて徐々に小さくなり、B-B線断面における幅が0μmに近づくように設定した。
<Parameter of the first inner top surface 133a>
In the cross section perpendicular to the ridgeline of the first ridge 142, the cross-sectional shape of the first ridge 142 is a triangle. The distance a and the height b between the centers of the plurality of first ridges 142 in the cross section perpendicular to the ridge of the first ridge 142 are set as follows.
-Luminous flux control member A-1:
Distance between centers a: Height b = 1: 0.14 (A-A line cross section)
Distance between centers a = 500 μm, height b = 72 μm
The height b of the first ridge 142 gradually decreased as it approached the exit surface 135 in the Y-axis direction, and the height b in the BB line cross section was set to approach 0 μm.
・ Luminous flux control member A-2
Distance between centers a: Height b = 1: 0.14 (A-A line cross section)
Distance between centers a = 500 μm, height b = 72 μm
The height b of the first ridge 142 gradually decreased as it approached the exit surface 135 in the Y-axis direction, and the height b in the BB line cross section was set to approach 0 μm. Further, the width of the first ridge 142 is also set so as to gradually decrease as it approaches the exit surface 135 in the Y-axis direction, and the width in the BB line cross section approaches 0 μm.

<その他の共通パラメータ>
・光束制御部材132の外径:Y軸方向の長さ11.1mm、X軸方向の長さ9.2mm
・発光素子131の高さ:0.75mm
・発光素子131の大きさ:φ2.8mm
・基板120と光拡散板150との間隔:50mm
<Other common parameters>
-Outer diameter of the luminous flux control member 132: length 11.1 mm in the Y-axis direction, length 9.2 mm in the X-axis direction
-Height of light emitting element 131: 0.75 mm
-Size of light emitting element 131: φ2.8 mm
-Space between the substrate 120 and the light diffusing plate 150: 50 mm

図10Aは、本実施の形態に係る照明装置の光拡散板上における照度分布の解析結果と、比較用の照明装置の光拡散板上における照度分布の解析結果とを示すグラフである。図10Aの横軸は、光拡散板150における、発光素子131の光軸LAからの距離d2(Y軸方向の距離;mm)を示し、縦軸は、光拡散板150における各距離での最大照度を1としたときの相対照度を示している。
図10Bは、本実施の形態に係る照明装置の光拡散板上における色度Y値の解析結果と、比較用の照明装置の光拡散板上における色度Y値の解析結果を示すグラフである。図10Bの横軸は、光拡散板150における、発光素子131の光軸LAからの距離d2(Y軸方向の距離;mm)を示し、縦軸は、光拡散板150における色度Y値を示している。
FIG. 10A is a graph showing the analysis result of the illuminance distribution on the light diffusing plate of the lighting device according to the present embodiment and the analysis result of the illuminance distribution on the light diffusing plate of the comparative lighting device. The horizontal axis of FIG. 10A indicates the distance d2 (distance in the Y-axis direction; mm) of the light emitting element 131 from the optical axis LA of the light diffusing plate 150, and the vertical axis represents the maximum distance of the light diffusing plate 150 at each distance. The relative illuminance when the illuminance is 1 is shown.
FIG. 10B is a graph showing the analysis result of the chromaticity Y value on the light diffusing plate of the lighting device according to the present embodiment and the analysis result of the chromaticity Y value on the light diffusing plate of the lighting device for comparison. .. The horizontal axis of FIG. 10B shows the distance d2 (distance in the Y-axis direction; mm) of the light emitting element 131 from the optical axis LA of the light diffusing plate 150, and the vertical axis shows the chromaticity Y value of the light diffusing plate 150. Shows.

図10Aに示されるように、本実施の形態に係る光束制御部材A-1またはA-2を用いた照明装置の照度分布は、Y軸方向における光の拡がりが、比較用の光束制御部材を用いた照明装置の照度分布と同等であり、配光特性を高度に維持していることがわかる。 As shown in FIG. 10A, the illuminance distribution of the lighting device using the light flux control member A-1 or A-2 according to the present embodiment shows that the spread of light in the Y-axis direction is a light flux control member for comparison. It is equivalent to the illuminance distribution of the lighting device used, and it can be seen that the light distribution characteristics are highly maintained.

また、図10Bに示されるように、比較用の光束制御部材を用いた照明装置は、発光素子131の光軸LAからの距離d2が40mm付近(特定の領域)の谷底部とそれと隣接する頂部(図10Bの矢印参照)との色度差が大きく、青味がかった色ムラが生じるのに対し、本実施の形態に係る光束制御部材A-1またはA-2を用いた照明装置100は、発光素子131の光軸LAからの距離d2が40mm付近の谷底部とそれと隣接する頂部との色度差が小さく、色ムラが低減されていることがわかる。 Further, as shown in FIG. 10B, in the lighting device using the light flux control member for comparison, the valley bottom portion and the top portion adjacent to the valley bottom portion where the distance d2 from the optical axis LA of the light emitting element 131 is around 40 mm (specific region). The lighting device 100 using the luminous flux control member A-1 or A-2 according to the present embodiment has a large difference in chromaticity from (see the arrow in FIG. 10B) and causes bluish color unevenness. It can be seen that the difference in chromaticity between the valley bottom portion where the distance d2 of the light emitting element 131 from the optical axis LA is around 40 mm and the top portion adjacent thereto is small, and the color unevenness is reduced.

これらのことから、本実施の形態に係る光束制御部材を用いた照明装置は、配光特性を高度に維持しつつ、照明装置100の発光面における色ムラを十分に抑制できることがわかる。 From these facts, it can be seen that the lighting device using the luminous flux control member according to the present embodiment can sufficiently suppress color unevenness on the light emitting surface of the lighting device 100 while maintaining a high degree of light distribution characteristics.

(効果)
以上のように、本実施の形態に係る光束制御部材132は、第1内天面133aに複数の第1凸条142が配置されており、かつ第1凸条142の高さが、出射面135に近づくにつれて低くなっている。それにより、発光素子131から出射された光のうち、特に発光素子131の光軸LAに対して小さい角度で出射された光(色ムラへの寄与が大きい光)の出射方向を適度に変えつつ、それ以外の光(色ムラへの寄与が少ない光)の出射方向は必要以上に変えないため、所望の配光特性を維持しつつ、色ムラを抑制することができる。
(effect)
As described above, in the luminous flux control member 132 according to the present embodiment, a plurality of first ridges 142 are arranged on the first inner top surface 133a, and the height of the first ridges 142 is the emission surface. It becomes lower as it approaches 135. As a result, among the light emitted from the light emitting element 131, the light emitted at a small angle with respect to the optical axis LA of the light emitting element 131 (light having a large contribution to color unevenness) is appropriately changed. Since the emission direction of other light (light that contributes less to color unevenness) is not changed more than necessary, it is possible to suppress color unevenness while maintaining the desired light distribution characteristics.

[実施の形態2]
(光束制御部材の構成)
次に、図11を参照して、実施の形態2に係る光束制御部材132について説明する。図11A~Dは、実施の形態2に係る光束制御部材の構成を示す図である。図11Aは、光束制御部材132の平面図であり、図11Bは、図11Aの11B-11B線の断面図であり、図11Cは、底面図であり、図11Dは、側面図である。図12Aは、図11Dの出射面のA-A線断面図であり、図12Bは、図11Dの出射面のB-B線断面図である。本実施の形態に係る光束制御部材132は、入射面133(第1天面133a)が複数の第1凸条142を有する代わりに、2つの出射面135が複数の第2凸条143を有する点で、実施の形態1に係る光束制御部材132と異なる。そこで、実施の形態1に係る光束制御部材132と同じ構成要素については同一の符番を付して、その説明を省略する。
[Embodiment 2]
(Structure of luminous flux control member)
Next, with reference to FIG. 11, the luminous flux control member 132 according to the second embodiment will be described. 11A to 11D are views showing the configuration of the light flux control member according to the second embodiment. 11A is a plan view of the luminous flux control member 132, FIG. 11B is a cross-sectional view taken along the line 11B-11B of FIG. 11A, FIG. 11C is a bottom view, and FIG. 11D is a side view. 12A is a sectional view taken along line AA of the exit surface of FIG. 11D, and FIG. 12B is a sectional view taken along line BB of the exit surface of FIG. 11D. In the luminous flux control member 132 according to the present embodiment, instead of the incident surface 133 (first top surface 133a) having a plurality of first ridges 142, the two exit surfaces 135 have a plurality of second ridges 143. In that respect, it differs from the luminous flux control member 132 according to the first embodiment. Therefore, the same components as those of the luminous flux control member 132 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

本実施の形態に係る光束制御部材132では、2つの出射面135に、複数の第2凸条143がそれぞれ配置されている(図11D参照)。 In the luminous flux control member 132 according to the present embodiment, a plurality of second ridges 143 are arranged on each of the two emission surfaces 135 (see FIG. 11D).

第2凸条143の稜線に垂直な断面における、第2凸条143の断面形状は、特に制限されず、波形であってもよいし、半円形または半楕円形であってもよいし、三角形であってもよいし、矩形(台形を含む)であってもよい。本実施の形態では、第2凸条143の稜線に垂直な断面における、第2凸条143の断面形状は、三角形である(図12AおよびB参照)。 The cross-sectional shape of the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 is not particularly limited, and may be corrugated, semicircular or semi-elliptical, or triangular. It may be a rectangle (including a trapezoid). In the present embodiment, the cross-sectional shape of the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 is a triangle (see FIGS. 12A and 12B).

第2凸条143は、2つの出射面135が対向する方向(Y軸方向)に沿って見たときに、発光素子131の光軸LAと略平行な稜線を有する。略平行とは、Y軸方向に沿って見たときに、発光素子131の光軸LAと、第2凸条143の稜線とがなす角度が15°以下、好ましくは0°であることをいう。このように、光軸LAと第2凸条143の稜線とがなす角度を極力小さくするのは、光束制御部材132の成形用金型を複雑な構造にしなくても、金型から成形品を無理なく取り出せるようにするためである。成形品の取り出し方向と交差する方向にスライドする金型構造を採用することが可能であれば、光軸LAに対して傾ける角度の制限をなくすこともできる。また、光束制御部材132を基板120へ実装する際に、光軸LAと第2凸条143の稜線とのなす角を大きく傾けることも可能である。 The second ridge 143 has a ridge line substantially parallel to the optical axis LA of the light emitting element 131 when viewed along a direction (Y-axis direction) in which the two emission surfaces 135 face each other. Approximately parallel means that the angle formed by the optical axis LA of the light emitting element 131 and the ridgeline of the second ridge 143 is 15 ° or less, preferably 0 °, when viewed along the Y-axis direction. .. In this way, the angle formed by the optical axis LA and the ridgeline of the second ridge 143 is minimized so that the molded product can be formed from the mold without having to make the molding mold of the luminous flux control member 132 having a complicated structure. This is so that it can be taken out without difficulty. If it is possible to adopt a mold structure that slides in a direction intersecting the taking-out direction of the molded product, it is possible to eliminate the limitation of the tilt angle with respect to the optical axis LA. Further, when the luminous flux control member 132 is mounted on the substrate 120, it is possible to greatly incline the angle formed by the optical axis LA and the ridgeline of the second convex ridge 143.

第2凸条143における「稜線」とは、前述と同様に、凸条の最も高い部分の線状の連なりを意味し、発光素子131の光軸LAに対して垂直な断面における第2凸条143の頂点を繋げた線をいう。 The "ridge line" in the second ridge 143 means a linear chain of the highest portion of the ridge, as described above, and the second ridge in the cross section perpendicular to the optical axis LA of the light emitting element 131. A line connecting the vertices of 143.

第2凸条143の稜線に垂直な断面において、複数の第2凸条143の中心間距離a(X軸方向の距離)は、同じであってもよいし、同じでなくてもよい。所望の配光を実現しつつ、色ムラを抑制する観点からは、複数の第2凸条143の中心間距離aは、同じであることが好ましい。「複数の第2凸条143の中心間距離a」とは、前述と同様に、第2凸条143の稜線に垂直な断面において、複数の第2凸条143の中心線同士の距離をいう(図13参照)。 In the cross section perpendicular to the ridgeline of the second ridge 143, the distance a (distance in the X-axis direction) between the centers of the plurality of second ridges 143 may or may not be the same. From the viewpoint of suppressing color unevenness while realizing a desired light distribution, it is preferable that the distance a between the centers of the plurality of second ridges 143 is the same. The "distance between the centers of the plurality of second ridges 143 a" means the distance between the center lines of the plurality of second ridges 143 in the cross section perpendicular to the ridgeline of the second ridge 143, as described above. (See FIG. 13).

第2凸条143の稜線に垂直な断面において、複数の第2凸条143の高さb(Y軸方向の長さ)は、同じであってもよいし、同じでなくてもよい。金型加工のし易さの観点からは、複数の第2凸条143の高さbは同じであることが好ましい。「第2凸条143の高さb」とは、前述と同様に、第2凸条143の稜線に垂直な断面において、隣接する2つの第2凸条143の頂点を結ぶ直線と、この2つの第2凸条143の間に形成される凹部とその両側に形成される2つの凹部の谷底を結ぶ直線との距離の半分に相当する長さを意味する(図13参照)。 In the cross section perpendicular to the ridgeline of the second ridge 143, the height b (length in the Y-axis direction) of the plurality of second ridges 143 may or may not be the same. From the viewpoint of ease of mold processing, it is preferable that the height b of the plurality of second ridges 143 is the same. The "height b of the second ridge 143" is the straight line connecting the vertices of the two adjacent second ridges 143 in the cross section perpendicular to the ridgeline of the second ridge 143 and the two thereof, as described above. It means a length corresponding to half of the distance between the concave portion formed between the two second ridges 143 and the straight line connecting the valley bottoms of the two concave portions formed on both sides thereof (see FIG. 13).

第2凸条143の稜線に垂直な断面における、複数の第2凸条143の中心間距離aと高さbの比率は、a:b=1:0~1:0.5であることが好ましい。a:bが上記範囲内であると、出射面135から出射される光の進行方向を僅かに変化させやすいため、所望の配光を実現しつつ、色ムラを抑制しやすい。色ムラの改善効果、金型の加工精度、および光束制御部材132の成形時の転写性を考慮し、複数の第2凸条143の中心間距離aは、0.1mm以上2mm以下であることが好ましい。 The ratio of the distance a between the centers of the plurality of second ridges 143 to the height b in the cross section perpendicular to the ridgeline of the second ridge 143 is a: b = 1: 0 to 1: 0.5. preferable. When a: b is within the above range, the traveling direction of the light emitted from the emission surface 135 is likely to be slightly changed, so that it is easy to suppress color unevenness while realizing a desired light distribution. The distance a between the centers of the plurality of second ridges 143 shall be 0.1 mm or more and 2 mm or less in consideration of the effect of improving color unevenness, the processing accuracy of the mold, and the transferability at the time of molding the luminous flux control member 132. Is preferable.

第2凸条143の稜線に垂直な断面における、第2凸条143の高さbは、表側から裏側に近づくにつれて低くなる(図12AおよびB参照)。すなわち、発光素子131の発光中心から発光素子131の光軸LAに対して小さい角度で出射される光(色ムラへの寄与が大きい光)は、第1内天面133aで入射し、反射面134で反射されて、2つの出射面135の上端部(光束制御部材132の表側)に近い箇所から出射されやすい。そのため、光束制御部材132の表側(反射面134側)に近い第2凸条143の高さbを高くして、出射面135から出射される光の進行方向を変えやすくする。
一方、発光素子131の発光中心から発光素子131の光軸LAに対して大きい角度で出射される光(色ムラへの寄与が少ない光)は、例えば第2内天面133cや第3内天面133d、第4内天面133eまたは内側面133bで入射した後、直接、2つの出射面135の下端部(光束制御部材132の裏側)に到達しやすく、当該出射面135の下端部(光束制御部材132の裏側)に近い箇所から出射されやすい。そのため、光束制御部材132の裏側(底面138側)に近い側の第2凸条143の高さbを低くし、出射面135から出射される光の進行方向は必要以上に変わらないようにすることで、配光特性が損なわれないようにする。それにより、照明装置100の発光面における色ムラを抑制しつつ、発光装置130の配光特性をこれまで以上に損なわれにくくしうる(図12AおよびB参照)。
The height b of the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 decreases from the front side to the back side (see FIGS. 12A and 12B). That is, the light emitted from the light emitting center of the light emitting element 131 at a small angle with respect to the optical axis LA of the light emitting element 131 (light having a large contribution to color unevenness) is incident on the first inner top surface 133a and is a reflection surface. It is reflected by 134 and is likely to be emitted from a position near the upper ends (front side of the light flux control member 132) of the two emission surfaces 135. Therefore, the height b of the second ridge 143 near the front side (reflection surface 134 side) of the luminous flux control member 132 is increased so that the traveling direction of the light emitted from the emission surface 135 can be easily changed.
On the other hand, the light emitted from the light emitting center of the light emitting element 131 at a large angle with respect to the optical axis LA of the light emitting element 131 (light that contributes less to color unevenness) is, for example, the second inner top surface 133c or the third inner sky. After incident on the surface 133d, the fourth inner top surface 133e or the inner side surface 133b, it is easy to reach the lower ends of the two emission surfaces 135 (the back side of the light beam control member 132), and the lower ends (luminous flux) of the emission surface 135 are easily reached. It is easy to emit light from a place near (the back side of the control member 132). Therefore, the height b of the second ridge 143 on the side close to the back side (bottom surface 138 side) of the luminous flux control member 132 is lowered so that the traveling direction of the light emitted from the emission surface 135 does not change more than necessary. This ensures that the light distribution characteristics are not impaired. As a result, the light distribution characteristics of the light emitting device 130 can be less likely to be impaired than before while suppressing color unevenness on the light emitting surface of the lighting device 100 (see FIGS. 12A and 12B).

第2凸条143の稜線に垂直な断面における、第2凸条143の高さbは、表側から裏側へ向かうにつれて、直線的に低くなってもよいし、曲線的に低くなってもよい。直線的に低くなるとは、前述と同様に、第2凸条143の稜線の傾きが、第2凸条143の稜線方向の位置によらず一定であることを意味し;曲線的に低くなるとは、第2凸条143の稜線の傾きが、第2凸条143の稜線方向の位置によって変化することを意味する。なお、第2凸条143の稜線の傾きは、具体的には、第2凸条143の稜線を含む断面における稜線の傾きをいう。第2凸条143の稜線を含む断面における稜線が曲線である場合、各位置における稜線の傾きは、当該各位置における曲線の接線の傾きをいう。本実施の形態では、第2凸条143の高さbは、表側から裏側に向かうにつれて、直線的に低くなっている。 The height b of the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 may be linearly lowered or curvedly lowered from the front side to the back side. As described above, linearly lowering means that the inclination of the ridgeline of the second ridge 143 is constant regardless of the position of the second ridge 143 in the ridgeline direction; , Means that the inclination of the ridgeline of the second ridge 143 changes depending on the position of the second ridge 143 in the ridgeline direction. The inclination of the ridgeline of the second ridge 143 specifically means the inclination of the ridgeline in the cross section including the ridgeline of the second ridge 143. When the ridgeline in the cross section including the ridgeline of the second ridge 143 is a curve, the slope of the ridgeline at each position means the slope of the tangent line of the curve at each position. In the present embodiment, the height b of the second ridge 143 is linearly lowered from the front side to the back side.

第2凸条143の高さbが裏側に近づくにつれて低くなる領域は、第2凸条143の稜線方向の全部であってもよいし、一部であってもよい。本実施の形態では、第2凸条143の高さbが裏側に近づくにつれて低くなる領域は、第2凸条143の稜線方向の全部である。 The region where the height b of the second ridge 143 becomes lower as it approaches the back side may be the entire region in the ridgeline direction of the second ridge 143, or may be a part of the height b. In the present embodiment, the region where the height b of the second ridge 143 becomes lower as it approaches the back side is the entire region of the second ridge 143 in the ridgeline direction.

(作用)
本実施の形態の光束制御部材132では、2つの出射面135には、発光素子131の光軸LA(Z軸方向)と略平行な稜線を有する複数の第2凸条143が配置されている(図11D参照)。また、第2凸条143の稜線に垂直な断面における、第2凸条143の高さは、表側から裏側に近づくにつれて低くなっている(図12AおよびB参照)。それにより、発光素子131の発光中心から発光素子131の光軸LAに対して小さい角度で出射された光(色ムラへの寄与が大きい光)は、第1内天面133aで入射した後、反射面134で反射されて、出射面135の上端部付近(光束制御部材132の表側)に到達しやすい。出射面135の上端部付近(光束制御部材132の表側)に到達した光は、(高さが高い)第2凸条143によって光の進行方向が適度に変えられるため、光拡散板150の特定の領域に集中して到達しないようにすることができる。
一方、発光素子131の発光中心から発光素子131の光軸LAに対して大きい角度(色ムラへの寄与が少ない光)で出射された光は、内側面133bなどで入射した後、出射面135の下端部付近(光束制御部材132の裏側)に到達しやすい。出射面135の下端部付近(光束制御部材132の裏側)に到達した光は、(高さが低い)第2凸条143によって光の進行方向が必要以上には変わらないため、配光特性が損なわれにくい。
それにより、照明装置100の発光面における色ムラを抑制しつつ、発光素子131から出射された光の配光特性をこれまで以上に損なわないようにすることができる。
(Action)
In the luminous flux control member 132 of the present embodiment, a plurality of second ridges 143 having ridges substantially parallel to the optical axis LA (Z-axis direction) of the light emitting element 131 are arranged on the two emission surfaces 135. (See FIG. 11D). Further, the height of the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 decreases from the front side to the back side (see FIGS. 12A and 12B). As a result, the light emitted from the light emitting center of the light emitting element 131 at a small angle with respect to the optical axis LA of the light emitting element 131 (light having a large contribution to color unevenness) is incident on the first inner top surface 133a and then is incident. It is reflected by the reflecting surface 134 and easily reaches the vicinity of the upper end portion of the emitting surface 135 (the front side of the light flux control member 132). The light that has reached the vicinity of the upper end of the emission surface 135 (the front side of the luminous flux control member 132) is appropriately changed in the traveling direction by the second ridge 143 (which has a high height), so that the light diffusing plate 150 is specified. It is possible to concentrate on the area of and prevent it from reaching.
On the other hand, the light emitted from the light emitting center of the light emitting element 131 at a large angle (light having a small contribution to color unevenness) with respect to the optical axis LA of the light emitting element 131 is incident on the inner surface 133b or the like and then emitted from the light emitting surface 135. It is easy to reach the vicinity of the lower end of the light beam (the back side of the luminous flux control member 132). The light that reaches the vicinity of the lower end of the emission surface 135 (the back side of the luminous flux control member 132) has a light distribution characteristic because the traveling direction of the light does not change more than necessary due to the (low height) second ridge 143. Hard to be damaged.
As a result, it is possible to suppress color unevenness on the light emitting surface of the lighting device 100 and prevent the light distribution characteristics of the light emitted from the light emitting element 131 from being impaired more than ever.

なお、上記実施の形態2では、第2凸条143の稜線に垂直な断面において、第2凸条143の幅(X軸方向の大きさ)が、第2凸条143の稜線方向で一定である例を示したが(図11D、12AおよびB参照)、これに限定されず、一定でなくてもよい。すなわち、第2凸条143の稜線に垂直な断面における、第2凸条143の幅(X軸方向の大きさ)は、A-A線断面と、B-B線断面とで異なっていてもよい。 In the second embodiment, the width (size in the X-axis direction) of the second ridge 143 is constant in the ridge direction of the second ridge 143 in the cross section perpendicular to the ridge line of the second ridge 143. An example is shown (see FIGS. 11D, 12A and B), but is not limited to this and may not be constant. That is, even if the width (size in the X-axis direction) of the second ridge 143 in the cross section perpendicular to the ridge line of the second ridge 143 is different between the AA line cross section and the BB line cross section. good.

図13A~Cは、第2凸条143の稜線に垂直な断面における、出射面135の断面形状の変形例を示す図である。図13A~Cに示されるように、第2凸条143の稜線に垂直な断面において、第2凸条143の幅c(X軸方向の大きさ)は、裏側に近づくにつれて小さくなってもよい。それにより、高さが一定の場合と同様の効果が得られる。なお、第2凸条143の稜線に垂直な断面における、複数の第2凸条143の中心間距離aは一定である(図13A~C参照)。 13A to 13C are views showing an example of deformation of the cross-sectional shape of the exit surface 135 in the cross section perpendicular to the ridgeline of the second ridge 143. As shown in FIGS. 13A to 13C, in the cross section perpendicular to the ridgeline of the second ridge 143, the width c (size in the X-axis direction) of the second ridge 143 may become smaller as it approaches the back side. .. As a result, the same effect as when the height is constant can be obtained. The distance a between the centers of the plurality of second ridges 143 in the cross section perpendicular to the ridgeline of the second ridge 143 is constant (see FIGS. 13A to 13C).

なお、上記実施の形態2では、第2凸条143の稜線に垂直な断面における、第2凸条143の断面形状が、図12AおよびBに示されるような三角形である例を示したが、これに限定されない。 In the second embodiment, an example is shown in which the cross-sectional shape of the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 is a triangle as shown in FIGS. 12A and 12B. Not limited to this.

図14A~Fは、第2凸条143の稜線に垂直な断面における、出射面135の断面形状の変形例を示す図である。すなわち、第2凸条143の稜線に垂直な断面における、第2凸条143の断面形状は、波形であってもよいし(図14A~B参照)、半円形または半楕円形であってもよい(図14C~F参照)。 14A to 14F are views showing a modified example of the cross-sectional shape of the exit surface 135 in the cross section perpendicular to the ridgeline of the second ridge 143. That is, the cross-sectional shape of the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 may be corrugated (see FIGS. 14A to 14B), semicircular or semi-elliptical. Good (see FIGS. 14C to 14F).

(シミュレーション2)
本実施の形態に係る光束制御部材B-1(図11A~D、12AおよびB)またはB-2(図13A~C)を用いた照明装置100の、光拡散板150上における照度分布と色度Y値を解析した。
また、比較のため、出射面135が凸条を有しない以外は光束制御部材B-1またはB-2と同様である光束制御部材(比較1)を用いた照明装置、およびZ軸方向における第2凸条の高さを一定とした以外は光束制御部材B-1またはB-2と同様である光束制御部材(比較2)を用いた照明装置の、光拡散板上における色度Y値と照度分布も、それぞれ解析した。
(Simulation 2)
Illuminance distribution and color on the light diffusing plate 150 of the lighting device 100 using the light flux control members B-1 (FIGS. 11A to D, 12A and B) or B-2 (FIGS. 13A to 13C) according to the present embodiment. The degree Y value was analyzed.
Further, for comparison, a lighting device using a luminous flux control member (comparison 1) which is the same as the luminous flux control member B-1 or B-2 except that the emission surface 135 does not have a ridge, and a second in the Z-axis direction. 2 The chromaticity Y value on the light diffusing plate of the lighting device using the luminous flux control member (Comparison 2), which is the same as the luminous flux control member B-1 or B-2 except that the height of the ridges is constant. The illuminance distribution was also analyzed.

光束制御部材B-1およびB-2の出射面135のパラメータを、以下のように設定した。その他の共通パラメータは、シミュレーション1と同様とした。 The parameters of the emission surface 135 of the luminous flux control members B-1 and B-2 were set as follows. Other common parameters were the same as in Simulation 1.

<出射面135のパラメータ>
第2凸条143の稜線に垂直な断面における、第2凸条143を有する出射面135の形状は、三角形とした。また、第2凸条143の稜線に垂直な断面における、複数の第2凸条143の中心間距離aおよび高さbは、以下のように設定した。
・光束制御部材B-1
中心間距離a:高さb=1:0.13(A-A線断面)
中心間距離a=750μm、高さb=100μm
出射面135のZ軸方向の高さh(図11D参照)=3.9mm
第2凸条143の高さbは、Z軸方向に底面138に近づくにつれて徐々に低くなり、B-B線断面における高さbが0μmに近づくように設定した。
・光束制御部材B-2
中心間距離a:高さb=1:0.15(A-A線断面)
中心間距離a=750μm、高さb=110μm
出射面135のZ軸方向の高さh(図11D参照)=3.9mm
第2凸条143の高さbは、Z軸方向に底面138に近づくにつれて徐々に低くなり、B-B線断面における高さbが0μmに近づくように設定した。また、第2凸条143の幅も、Z軸方向に底面138に近づくにつれて徐々に小さくなり、B-B線断面における幅が0μmに近づくように設定した。
<Parameter of the exit surface 135>
The shape of the exit surface 135 having the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 is a triangle. Further, the distance a and the height b between the centers of the plurality of second ridges 143 in the cross section perpendicular to the ridgeline of the second ridge 143 are set as follows.
-Luminous flux control member B-1
Distance between centers a: Height b = 1: 0.13 (A-A line cross section)
Center-to-center distance a = 750 μm, height b = 100 μm
Height h of the exit surface 135 in the Z-axis direction (see FIG. 11D) = 3.9 mm
The height b of the second ridge 143 gradually decreased as it approached the bottom surface 138 in the Z-axis direction, and the height b in the BB line cross section was set to approach 0 μm.
・ Luminous flux control member B-2
Distance between centers a: Height b = 1: 0.15 (A-A line cross section)
Center-to-center distance a = 750 μm, height b = 110 μm
Height h of the exit surface 135 in the Z-axis direction (see FIG. 11D) = 3.9 mm
The height b of the second ridge 143 gradually decreased as it approached the bottom surface 138 in the Z-axis direction, and the height b in the BB line cross section was set to approach 0 μm. Further, the width of the second ridge 143 was also set so as to gradually decrease as it approached the bottom surface 138 in the Z-axis direction, and the width in the BB line cross section approached 0 μm.

図15Aは、本実施の形態に係る照明装置の光拡散板上における照度分布の解析結果と、比較用の照明装置の光拡散板上における照度分布の解析結果とを示すグラフである。図15Aの横軸は、光拡散板150における、発光素子131の光軸LAからの距離d2(Y軸方向の距離;mm)を示し、縦軸は、光拡散板150における各距離での最大照度を1としたときの相対照度を示している。
図15Bは、本実施の形態に係る照明装置の光拡散板上における色度Y値の解析結果と、比較用の照明装置の光拡散板上における色度Y値の解析結果とを示すグラフである。図15Bの横軸は、光拡散板150における、発光素子131の光軸LAからの距離d2(Y軸方向の距離;mm)を示し、縦軸は、光拡散板150における色度Y値を示している。
FIG. 15A is a graph showing the analysis result of the illuminance distribution on the light diffusing plate of the lighting device according to the present embodiment and the analysis result of the illuminance distribution on the light diffusing plate of the comparative lighting device. The horizontal axis of FIG. 15A indicates the distance d2 (distance in the Y-axis direction; mm) of the light emitting element 131 from the optical axis LA of the light diffusing plate 150, and the vertical axis represents the maximum distance of the light diffusing plate 150 at each distance. The relative illuminance when the illuminance is 1 is shown.
FIG. 15B is a graph showing the analysis result of the chromaticity Y value on the light diffusing plate of the lighting device according to the present embodiment and the analysis result of the chromaticity Y value on the light diffusing plate of the lighting device for comparison. be. The horizontal axis of FIG. 15B shows the distance d2 (distance in the Y-axis direction; mm) of the light emitting element 131 from the optical axis LA of the light diffusing plate 150, and the vertical axis shows the chromaticity Y value of the light diffusing plate 150. Shows.

図15Aに示されるように、本実施の形態に係る光束制御部材B-1またはB-2を用いた照明装置の照度分布は、Y軸方向における光の拡がりが、比較用の光束制御部材(比較1)を用いた照明装置の照度分布と比較して大きくは損なわれておらず、配光特性を概ね維持できていることがわかる。また、Y軸方向における光の拡がりが、比較用の光束制御部材(比較2)を用いた照明装置の照度分布よりも広く、(比較2と比べると)配光特性が損なわれにくいことがわかる。 As shown in FIG. 15A, in the illuminance distribution of the lighting device using the light flux control member B-1 or B-2 according to the present embodiment, the spread of light in the Y-axis direction is the light flux control member for comparison. Compared with the illuminance distribution of the lighting device using the comparison 1), it is not significantly impaired, and it can be seen that the light distribution characteristics can be generally maintained. Further, it can be seen that the spread of light in the Y-axis direction is wider than the illuminance distribution of the lighting device using the light flux control member for comparison (Comparison 2), and the light distribution characteristics are not easily impaired (compared to Comparison 2). ..

また、図15Bに示されるように、比較用の光束制御部材を用いた照明装置(比較1)は、発光素子131の光軸LAからの距離d2が40mm付近の谷底部とそれと隣接する頂部(図15Bの矢印参照)との色度差が大きく、青味がかった色ムラが生じるのに対し、本実施の形態に係る光束制御部材B-1またはB-2を用いた照明装置100は、発光素子131の光軸LAからの距離d2が40mm付近の谷底部とそれと隣接する頂部との色度差が小さく、色ムラが低減されていることがわかる。また、本実施の形態に係る光束制御部材B-1またはB-2を用いた照明装置100は、比較2と同等の色ムラ低減効果が得られることもわかる。 Further, as shown in FIG. 15B, in the lighting device (comparison 1) using the light flux control member for comparison, the valley bottom portion where the distance d2 from the optical axis LA of the light emitting element 131 is around 40 mm and the top portion adjacent to the valley bottom portion (comparison 1). The lighting device 100 using the luminous flux control member B-1 or B-2 according to the present embodiment has a large difference in chromaticity from the arrow in FIG. 15B) and causes bluish color unevenness. It can be seen that the difference in chromaticity between the valley bottom portion where the distance d2 of the light emitting element 131 from the optical axis LA is around 40 mm and the top portion adjacent thereto is small, and the color unevenness is reduced. It can also be seen that the lighting device 100 using the luminous flux control member B-1 or B-2 according to the present embodiment can obtain the same color unevenness reduction effect as in Comparison 2.

これらのことから、本実施の形態に係る光束制御部材を用いた照明装置は、配光特性を良好に維持しつつ、照明装置100の発光面における色ムラを十分に抑制できることがわかる。 From these facts, it can be seen that the lighting device using the luminous flux control member according to the present embodiment can sufficiently suppress color unevenness on the light emitting surface of the lighting device 100 while maintaining good light distribution characteristics.

(効果)
以上のように、本実施の形態に係る光束制御部材132は、2つの出射面135に複数の第2凸条143が配置されており、かつ第2凸条143の高さが表側から裏側へ向かうにつれて低くなっている。それにより、発光素子131から出射された光のうち、特に発光素子131の光軸LAに対して小さい角度で出射された光(色ムラへの寄与が大きい光)の出射方向を適度に変えつつ、それ以外の光(色ムラへの寄与が少ない光)の出射方向は必要以上に変えないため、所望の配光特性を維持しつつ、色ムラを抑制することができる。
(effect)
As described above, in the luminous flux control member 132 according to the present embodiment, a plurality of second ridges 143 are arranged on the two emission surfaces 135, and the height of the second ridges 143 increases from the front side to the back side. It is getting lower as you go. As a result, among the light emitted from the light emitting element 131, the light emitted at a small angle with respect to the optical axis LA of the light emitting element 131 (light having a large contribution to color unevenness) is appropriately changed. Since the emission direction of other light (light that contributes less to color unevenness) is not changed more than necessary, it is possible to suppress color unevenness while maintaining the desired light distribution characteristics.

[実施の形態3]
(光束制御部材の構成)
次に、図16を参照して、実施の形態3に係る光束制御部材132について説明する。図16A~Dは、実施の形態3に係る光束制御部材の構成を示す図である。図16Aは、光束制御部材132の平面図であり、図16Bは、図16Aの16B-16B線の断面図であり、図16Cは、底面図であり、図16Dは、側面図である。図17Aは、図16Cの第1内天面133aのA-A線断面図であり、図17Bは、図16Cの第1内天面133aのB-B線断面図である。本実施の形態に係る光束制御部材132は、2つの出射面135および2つの反射面134にもそれぞれ第2凸条143および第3凸条144をさらに設けた点で、実施の形態1に係る光束制御部材132と異なる。そこで、実施の形態1に係る光束制御部材132と同じ構成要素については同一の符番を付して、その説明を省略する。
[Embodiment 3]
(Structure of luminous flux control member)
Next, the luminous flux control member 132 according to the third embodiment will be described with reference to FIG. 16A to 16D are views showing the configuration of the luminous flux control member according to the third embodiment. 16A is a plan view of the luminous flux control member 132, FIG. 16B is a cross-sectional view taken along the line 16B-16B of FIG. 16A, FIG. 16C is a bottom view, and FIG. 16D is a side view. 17A is a sectional view taken along line AA of the first inner top surface 133a of FIG. 16C, and FIG. 17B is a sectional view taken along line BB of the first inner top surface 133a of FIG. 16C. The light flux control member 132 according to the present embodiment is related to the first embodiment in that the two emission surfaces 135 and the two reflection surfaces 134 are further provided with the second ridges 143 and the third ridges 144, respectively. It is different from the luminous flux control member 132. Therefore, the same components as those of the luminous flux control member 132 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

本実施の形態に係る光束制御部材132では、2つの出射面135に、複数の第2凸条143がさらに配置されている(図16D参照)。第2凸条143の稜線に垂直な断面における高さbは、Z軸方向において一定であってもよいし、底面138に近づくにつれて低くなってもよい。本実施の形態では、第2凸条143の稜線に垂直な断面における高さbは、Z軸方向において一定である。 In the luminous flux control member 132 according to the present embodiment, a plurality of second ridges 143 are further arranged on the two emission surfaces 135 (see FIG. 16D). The height b in the cross section perpendicular to the ridgeline of the second ridge 143 may be constant in the Z-axis direction, or may decrease as it approaches the bottom surface 138. In the present embodiment, the height b in the cross section perpendicular to the ridgeline of the second ridge 143 is constant in the Z-axis direction.

第2凸条143の稜線に垂直な断面において、光束制御部材132の出射面135の断面形状は、式(1)を満たすように設定されうる。
hy=b×cos(2πdx/a)・・・式(1)
(a:複数の第2凸条143の中心間距離(mm)、
b:第2凸条143の高さ(mm)、
dx:出射面135における中心からの距離(X軸方向の距離;mm)、
hy:出射面135の基準面からの高さ(Y軸方向の高さ;mm))
In the cross section perpendicular to the ridgeline of the second ridge 143, the cross-sectional shape of the emission surface 135 of the luminous flux control member 132 may be set to satisfy the equation (1).
hy = b × cos (2πdx / a) ・ ・ ・ Equation (1)
(A: Distance between centers (mm) of a plurality of second ridges 143,
b: Height (mm) of the second ridge 143,
dx: Distance from the center on the exit surface 135 (distance in the X-axis direction; mm),
hy: Height of the exit surface 135 from the reference surface (height in the Y-axis direction; mm))

第2凸条143の稜線に垂直な断面における、複数の第2凸条143の中心間距離aと高さbの比率は、a:b=2:1~13:1であることが好ましい。a:bが上記範囲内であると、2つの出射面135から出射される光を散乱させるのではなく、進行方向を僅かに変化させることができるため、所望の配光を実現しつつ、色ムラを抑制しやすい。中でも、色ムラを抑制できるだけでなく、照度分布をより改善できる点から、複数の第2凸条143の中心間距離aと高さbの比率は、a:b=5:1~11:1であることがより好ましく、a:b=5:1~10:1であることがさらに好ましい。 The ratio of the distance a between the centers of the plurality of second ridges 143 to the height b in the cross section perpendicular to the ridgeline of the second ridge 143 is preferably a: b = 2: 1 to 13: 1. When a: b is within the above range, the light emitted from the two emission surfaces 135 can be slightly changed instead of being scattered, so that the desired light distribution can be achieved and the color can be changed. It is easy to suppress unevenness. Above all, the ratio of the distance a between the centers of the plurality of second ridges 143 and the height b is a: b = 5: 1 to 11: 1 from the viewpoint that not only the color unevenness can be suppressed but also the illuminance distribution can be further improved. It is more preferable that a: b = 5: 1 to 10: 1.

第2凸条143の稜線に垂直な断面において、複数の第2凸条143の中心間距離aは、特に制限されないが、色ムラの抑制効果が得られやすい観点などから、例えば0.125mm以上4.000mm以下であることが好ましい。中でも、複数の第2凸条143の中心間距離aと高さbの比率がa:b=5:1~10:1であるとき、複数の第2凸条143の中心間距離aは、0.125mm超2.000mm以下であることがより好ましい。 In the cross section perpendicular to the ridgeline of the second ridge 143, the distance a between the centers of the plurality of second ridges 143 is not particularly limited, but from the viewpoint of easily obtaining the effect of suppressing color unevenness, for example, 0.125 mm or more. It is preferably 4.000 mm or less. Above all, when the ratio of the center-to-center distance a and the height b of the plurality of second ridges 143 is a: b = 5: 1 to 10: 1, the center-to-center distance a of the plurality of second ridges 143 is determined. It is more preferably more than 0.125 mm and 2.000 mm or less.

本実施の形態に係る光束制御部材132では、2つの反射面134のうち少なくとも一部、好ましくは第1内天面133aで入射した光が到達する領域に、複数の第3凸条144がさらに配置されている(図16AおよびB参照)。 In the luminous flux control member 132 according to the present embodiment, a plurality of third ridges 144 are further formed in a region where light incident on at least a part of the two reflecting surfaces 134, preferably the first inner top surface 133a, reaches. Arranged (see FIGS. 16A and 16B).

2つの反射面134において第1内天面133aで入射した光が到達する領域とは、例えば、2つの反射面134における、発光素子131の光軸LAの近傍の領域である(図16A参照)。第3凸条144は、発光素子131の光軸LAに沿って見たときに(Z軸方向に沿って見たときに)、その稜線が2つの出射面135が対向する方向(または第1凸条142の稜線)に対して略垂直となるように形成されている。略垂直とは、具体的には、2つの出射面135が対向する方向(または第1凸条142の稜線)と第3凸条144の稜線とのなす角度が90±5°以下、好ましくは90°であることをいう。 The region reached by the light incident on the first inner top surface 133a on the two reflecting surfaces 134 is, for example, a region on the two reflecting surfaces 134 in the vicinity of the optical axis LA of the light emitting element 131 (see FIG. 16A). .. When the third ridge 144 is viewed along the optical axis LA of the light emitting element 131 (when viewed along the Z-axis direction), the ridgeline thereof is in the direction in which the two exit surfaces 135 face each other (or the first). It is formed so as to be substantially perpendicular to the ridgeline of the ridge 142). Specifically, "substantially vertical" means that the angle between the direction in which the two emitting surfaces 135 face each other (or the ridgeline of the first ridge 142) and the ridgeline of the third ridge 144 is 90 ± 5 ° or less, preferably 90 ± 5 ° or less. It means that it is 90 °.

複数の第3凸条144は、発光素子131の光軸LAに沿って見たときに(Z軸方向に沿って見たときに)、その稜線が第1凸条142の稜線に対して略垂直となるように形成されている。 When the plurality of third ridges 144 are viewed along the optical axis LA of the light emitting element 131 (when viewed along the Z-axis direction), the ridgeline thereof is substantially relative to the ridgeline of the first ridge 142. It is formed so as to be vertical.

第3凸条144における「稜線」とは、前述と同様に、凸条の最も高い部分を繋げた線状の連なりを意味し、発光素子131の光軸LAを含み、かつY軸方向に平行な断面における第3凸条144の頂点を繋げた線をいう。複数の第3凸条144は、Z軸方向に沿って見たときに、その稜線がX軸方向に略平行となるように配置されてもよいし(図16A参照)、光軸LAを囲む円環状の一部となるように配置されてもよい(不図示)。 As described above, the "ridge line" in the third ridge 144 means a linear chain connecting the highest portions of the ridges, includes the optical axis LA of the light emitting element 131, and is parallel to the Y-axis direction. A line connecting the vertices of the third ridge 144 in a cross section. The plurality of third ridges 144 may be arranged so that their ridges are substantially parallel to the X-axis direction when viewed along the Z-axis direction (see FIG. 16A), or surround the optical axis LA. It may be arranged so as to be a part of an annular shape (not shown).

第3凸条144の稜線に垂直な断面(発光素子131の光軸LAを含み、かつY軸方向に平行な断面)において、第3凸条144の断面形状は、特に制限されず、波形であってもよいし、三角形であってもよいし、矩形(台形を含む)であってもよい。 In the cross section perpendicular to the ridgeline of the third ridge 144 (the cross section including the optical axis LA of the light emitting element 131 and parallel to the Y-axis direction), the cross-sectional shape of the third ridge 144 is not particularly limited and is a waveform. It may be a triangle, a rectangle (including a trapezoid), or a rectangle.

第3凸条144の稜線に垂直な断面において、複数の第3凸条144の中心間距離a(Y軸方向の距離)は、同じであってもよいし、同じでなくてもよい。例えば、第3凸条144の稜線に垂直な断面において、発光素子131の光軸LAからY軸方向に離れるにつれて、複数の第3凸条144の中心間距離aが徐々に小さくなっていてもよい。複数の第3凸条144の中心間距離aとは、前述と同様に、発光素子131の光軸LAを含み、かつY軸方向に平行な断面において、隣接する2つの第3凸条144の中心線同士の距離をいう。 In the cross section perpendicular to the ridgeline of the third ridge 144, the distance a (distance in the Y-axis direction) between the centers of the plurality of third ridges 144 may or may not be the same. For example, in a cross section perpendicular to the ridgeline of the third ridge 144, even if the distance a between the centers of the plurality of third ridges 144 gradually decreases as the light emitting element 131 moves away from the optical axis LA in the Y-axis direction. good. The center-to-center distance a of the plurality of third ridges 144 includes the optical axis LA of the light emitting element 131 and is adjacent to the two third ridges 144 in a cross section parallel to the Y-axis direction. The distance between the center lines.

第3凸条144の稜線に垂直な断面において、複数の第3凸条144の高さb(Z軸方向の長さ)は、同じであってもよいし、同じでなくてもよい。例えば、第3凸条144の稜線に垂直な断面(発光素子131の光軸LAを含み、かつY軸方向に平行な断面)において、発光素子131の光軸LAからY軸方向に離れるにつれて、第3凸条144の高さbが、徐々に小さくなっていてもよい。「第3凸条144の高さb」とは、第3凸条144の稜線に垂直な断面において、隣接する2つの第3凸条144の頂点を結ぶ直線と、この2つの第3凸条144の間に形成される凹部とその両側に形成される2つの凹部の谷底を結ぶ直線との距離の半分に相当する長さを意味する。 In the cross section perpendicular to the ridgeline of the third ridge 144, the height b (length in the Z-axis direction) of the plurality of third ridges 144 may or may not be the same. For example, in a cross section perpendicular to the ridgeline of the third ridge 144 (a cross section including the optical axis LA of the light emitting element 131 and parallel to the Y-axis direction), as the distance from the optical axis LA of the light emitting element 131 increases in the Y-axis direction, The height b of the third ridge 144 may be gradually reduced. The "height b of the third ridge 144" is a straight line connecting the vertices of two adjacent third ridges 144 in a cross section perpendicular to the ridgeline of the third ridge 144, and the two third ridges. It means a length corresponding to half of the distance between the recess formed between 144 and the straight line connecting the valley bottoms of the two recesses formed on both sides thereof.

(作用)
本実施の形態の光束制御部材132では、第1内天面133aには、Y軸方向と略平行な稜線を有する複数の第1凸条142が配置され(図16C参照)、2つの反射面134には、X軸方向と略平行な稜線を有する複数の第3凸条144が配置され(図16A参照)、かつ2つの出射面135には、Z軸方向と略平行な稜線を有する複数の第2凸条143が配置されている(図16D参照)。それにより、発光素子131の発光中心から発光素子131の光軸LAに対して小さい角度で出射された光は、入射面133の第1凸条142、反射面134の第3凸条144、および出射面135の第2凸条143でそれぞれ光の進行方向がそれぞれ適度に変えられるため、光拡散板150の特定の領域に集中して到達しないようにすることができる。
(Action)
In the light beam control member 132 of the present embodiment, a plurality of first ridges 142 having ridges substantially parallel to the Y-axis direction are arranged on the first inner top surface 133a (see FIG. 16C), and two reflecting surfaces. A plurality of third ridges 144 having a ridge line substantially parallel to the X-axis direction are arranged on the 134 (see FIG. 16A), and a plurality of ridge lines having a ridge line substantially parallel to the Z-axis direction are arranged on the two exit surfaces 135. The second ridge 143 of the above is arranged (see FIG. 16D). As a result, the light emitted from the light emitting center of the light emitting element 131 at a small angle with respect to the optical axis LA of the light emitting element 131 is the first ridge 142 of the incident surface 133, the third ridge 144 of the reflecting surface 134, and the light. Since the traveling directions of the light are appropriately changed by the second protrusions 143 of the emission surface 135, it is possible to prevent the light diffusing plate 150 from concentrating and reaching a specific region.

(シミュレーション3)
本実施の形態に係る光束制御部材C-1(図16A~D、図17AおよびB)またはC-2(C-1の第1内天面133aの形状を図8A~Cに変更したもの)(図16A、BおよびD、図8A~C)を用いた照明装置100の、光拡散板150上における照度分布と色度Y値を解析した。
また、比較のため、第1内天面133aが凸条を有しない以外は光束制御部材C-1またはC-2と同様である光束制御部材(比較)を用いた照明装置の、光拡散板上における照度分布と色度Y値も解析した。
(Simulation 3)
Luminous flux control member C-1 (FIGS. 16A to D, FIGS. 17A and B) or C-2 (the shape of the first inner top surface 133a of C-1 is changed to FIGS. 8A to 8C) according to the present embodiment. The illuminance distribution and the chromaticity Y value on the light diffusing plate 150 of the lighting device 100 using (FIGS. 16A, B and D, FIGS. 8A to 8C) were analyzed.
Further, for comparison, the light diffusing plate of the lighting device using the light flux control member (comparison) which is the same as the light flux control member C-1 or C-2 except that the first inner top surface 133a does not have a protrusion. The illuminance distribution and chromaticity Y value above were also analyzed.

光束制御部材C-1(図16A~D、図17AおよびB)およびC-2(図16A、BおよびD、図8A~C)において、2つの反射面134のパラメータおよび2つの出射面135のパラメータは、それぞれ以下のように設定した。その他、第1内天面133aのパラメータおよび共通パラメータは、シミュレーション1と同様に設定した。 In the luminous flux control members C-1 (FIGS. 16A to D, FIGS. 17A and B) and C-2 (FIGS. 16A, B and D, FIGS. 8A to 8C), the parameters of the two reflecting surfaces 134 and the two emitting surfaces 135. The parameters were set as follows. In addition, the parameters and common parameters of the first inner top surface 133a were set in the same manner as in Simulation 1.

<反射面134のパラメータ>
第3凸条144の稜線に垂直な断面における、第3凸条144を有する反射面134の形状は、以下のように設定した。
<Parameter of reflective surface 134>
The shape of the reflective surface 134 having the third ridge 144 in the cross section perpendicular to the ridge of the third ridge 144 was set as follows.

図18Aは、第3凸条144の稜線に垂直な断面における、光束制御部材C-1またはC-2の反射面134の断面形状を示すグラフである。図18Bは、第3凸条144の稜線に垂直な断面において、第3凸条144を有する図17A~Dの光束制御部材C-1またはC-2の反射面134の断面形状の解析結果から、第3凸条144を有しない以外は光束制御部材C-1またはC-2と同様の光束制御部材の反射面134の断面形状の解析結果を差し引いた結果(Δh1;mm)を示すグラフである。 FIG. 18A is a graph showing the cross-sectional shape of the reflective surface 134 of the luminous flux control member C-1 or C-2 in the cross section perpendicular to the ridgeline of the third ridge 144. FIG. 18B is from the analysis result of the cross-sectional shape of the reflecting surface 134 of the light flux control members C-1 or C-2 of FIGS. 17A to 17D having the third ridge 144 in the cross section perpendicular to the ridgeline of the third ridge 144. , A graph showing the result (Δh1; mm) obtained by subtracting the analysis result of the cross-sectional shape of the reflective surface 134 of the luminous flux control member similar to the luminous flux control member C-1 or C-2 except that the third convex groove 144 is not provided. be.

図18AおよびBの横軸は、発光素子131の光軸LAからの距離d2(Y軸方向の距離;mm)を示している。図18Aの縦軸は、反射面134の、発光素子131の光軸LAが交わる点に対する底面138からの高さh1(Z軸方向の高さ;mm)を示している。図18Bの縦軸は、第3凸条144を有する光束制御部材C-1またはC-2の反射面134の断面形状から、第3凸条144を有しない光束制御部材の反射面134の断面形状を差し引いた差Δh1(Z軸方向の高さ;mm)を示している。
a:第3凸条144の中心間距離(mm)
b:第3凸条144の高さ(Z軸方向の長さ;mm)
第3凸条144の中心間距離a:高さb=20:1
第3凸条144の中心間距離a=500μm、高さb=25μm
The horizontal axis of FIGS. 18A and 18B shows the distance d2 (distance in the Y-axis direction; mm) of the light emitting element 131 from the optical axis LA. The vertical axis of FIG. 18A shows the height h1 (height in the Z-axis direction; mm) of the reflecting surface 134 from the bottom surface 138 with respect to the point where the optical axis LA of the light emitting element 131 intersects. The vertical axis of FIG. 18B is a cross section of the reflecting surface 134 of the light flux control member having no third ridge 144 from the cross-sectional shape of the reflecting surface 134 of the light flux controlling member C-1 or C-2 having the third ridge 144. The difference Δh1 (height in the Z-axis direction; mm) obtained by subtracting the shape is shown.
a: Distance between centers of the third ridge 144 (mm)
b: Height of the third ridge 144 (length in the Z-axis direction; mm)
Distance between centers of third ridge 144 a: height b = 20: 1
Distance a = 500 μm, height b = 25 μm between the centers of the third ridge 144

<出射面135のパラメータ>
第2凸条143の稜線に垂直な断面における、第2凸条143を有する出射面135の形状は、前述の式(1)を満たすように設定した。また、第2凸条143の稜線に垂直な断面における、複数の第2凸条143の中心間距離aおよび高さbは、以下のように設定した。なお、第2凸条143の高さbは、稜線方向で一定とした。
中心間距離a:高さb=7.5:1(A-A線、B-B線断面共通)
中心間距離a=750μm、高さb=100μm
<Parameter of the exit surface 135>
The shape of the exit surface 135 having the second ridge 143 in the cross section perpendicular to the ridgeline of the second ridge 143 was set so as to satisfy the above-mentioned equation (1). Further, the distance a and the height b between the centers of the plurality of second ridges 143 in the cross section perpendicular to the ridgeline of the second ridge 143 are set as follows. The height b of the second ridge 143 was set to be constant in the ridgeline direction.
Distance between centers a: Height b = 7.5: 1 (common to AA line and BB line cross section)
Center-to-center distance a = 750 μm, height b = 100 μm

図19Aは、本実施の形態に係る照明装置の光拡散板上における照度分布の解析結果と、比較用の照明装置の光拡散板上における照度分布の解析結果とを示すグラフである。図19Aの横軸は、光拡散板150における、発光素子131の光軸LAからの距離d2(Y軸方向の距離;mm)を示し、縦軸は、光拡散板150における各距離での最大照度を1としたときの相対照度を示している。
図19Bは、本実施の形態に係る照明装置の光拡散板上における色度Y値の解析結果と、比較用の照明装置の光拡散板上における色度Y値の解析結果とを示すグラフである。図19Bの横軸は、光拡散板150における、発光素子131の光軸LAからの距離d2(Y軸方向の距離;mm)を示し、縦軸は、光拡散板150における色度Y値を示している。
FIG. 19A is a graph showing the analysis result of the illuminance distribution on the light diffusing plate of the lighting device according to the present embodiment and the analysis result of the illuminance distribution on the light diffusing plate of the comparative lighting device. The horizontal axis of FIG. 19A indicates the distance d2 (distance in the Y-axis direction; mm) of the light emitting element 131 from the optical axis LA of the light diffusing plate 150, and the vertical axis represents the maximum distance of the light diffusing plate 150 at each distance. The relative illuminance when the illuminance is 1 is shown.
FIG. 19B is a graph showing the analysis result of the chromaticity Y value on the light diffusing plate of the lighting device according to the present embodiment and the analysis result of the chromaticity Y value on the light diffusing plate of the lighting device for comparison. be. The horizontal axis of FIG. 19B shows the distance d2 (distance in the Y-axis direction; mm) of the light emitting element 131 from the optical axis LA of the light diffusing plate 150, and the vertical axis shows the chromaticity Y value of the light diffusing plate 150. Shows.

図19Aに示されるように、本実施の形態に係る光束制御部材C-1またはC-2を用いた照明装置の照度分布は、Y軸方向における光の拡がりが、比較用の光束制御部材を用いた照明装置と同等であり、配光特性を高度に維持していることもわかる。 As shown in FIG. 19A, the illuminance distribution of the lighting device using the light flux control member C-1 or C-2 according to the present embodiment shows that the spread of light in the Y-axis direction is a light flux control member for comparison. It can be seen that it is equivalent to the lighting device used and maintains a high degree of light distribution characteristics.

また、図19Bに示されるように、比較用の光束制御部材を用いた照明装置は、発光素子131の光軸LAからの距離d2が40mm付近の谷底部とそれと隣接する頂部(図19Bの矢印参照)との色度差が大きく、青味がかった色ムラが生じるのに対し、光束制御部材C-1またはC-2を用いた照明装置100は、発光素子131の光軸LAからの距離d2が40mm付近の谷底部とそれと隣接する頂部との色度差が小さく、色ムラが特に低減されていることがわかる。 Further, as shown in FIG. 19B, in the lighting device using the light flux control member for comparison, the valley bottom portion where the distance d2 of the light emitting element 131 from the optical axis LA is around 40 mm and the apex adjacent thereto (arrow in FIG. 19B). The difference in chromaticity from (see) is large and bluish color unevenness occurs, whereas the lighting device 100 using the luminous flux control member C-1 or C-2 is the distance from the optical axis LA of the light emitting element 131. It can be seen that the difference in chromaticity between the valley bottom where d2 is around 40 mm and the apex adjacent to it is small, and the color unevenness is particularly reduced.

これらのことから、本実施の形態に係る光束制御部材を用いた照明装置は、配光特性を高度に維持しつつ、照明装置100の発光面における色ムラを十分に抑制できることがわかる。 From these facts, it can be seen that the lighting device using the luminous flux control member according to the present embodiment can sufficiently suppress color unevenness on the light emitting surface of the lighting device 100 while maintaining a high degree of light distribution characteristics.

(効果)
以上のように、本実施の形態に係る光束制御部材132は、第1内天面133aに複数の第1凸条142が配置され、2つの出射面135に複数の第2凸条143が配置され、かつ2つの反射面134に複数の第3凸条144が配置されている。それにより、(第1内天面133a、出射面135、および反射面134のいずれか一つのみに凸条を有する場合よりも)発光素子131から出射された光のうち、特に発光素子131の光軸LAに対して小さい角度で出射された光(色ムラの寄与が大きい光)の出射方向をさらに変えやすくしつつ、それ以外の光(色ムラへの寄与が少ない光)の出射方向は必要以上に変えないため、所望の配光特性を維持しつつ、色ムラを抑制することができる。
(effect)
As described above, in the light flux control member 132 according to the present embodiment, a plurality of first ridges 142 are arranged on the first inner top surface 133a, and a plurality of second ridges 143 are arranged on the two exit surfaces 135. And a plurality of third protrusions 144 are arranged on the two reflecting surfaces 134. As a result, among the light emitted from the light emitting element 131 (rather than having a ridge on only one of the first inner top surface 133a, the emitting surface 135, and the reflecting surface 134), particularly the light emitting element 131. While making it easier to change the emission direction of light emitted at a small angle with respect to the optical axis LA (light with a large contribution to color unevenness), the emission direction of other light (light with a small contribution to color unevenness) is Since it is not changed more than necessary, it is possible to suppress color unevenness while maintaining the desired light distribution characteristics.

[変形例]
なお、実施の形態1および3では、光束制御部材132において、複数の第1凸条142が、第1内天面133aのみに設けられる例を示したが、これに限定されず、第1内天面133a以外の第2内天面133c、第3内天面133d、第4内天面133eの少なくとも1つにさらに設けられてもよい。同様に、実施の形態2および3では、複数の第2凸条143が、出射面135の全面にそれぞれ設けられる例を示したが、これに限定されず、出射面135の一部のみに設けられてもよい。
[Modification example]
In the first and third embodiments, in the luminous flux control member 132, a plurality of first ridges 142 are provided only on the first inner top surface 133a, but the present invention is not limited to this, and the first inner surface is not limited to this. It may be further provided on at least one of the second inner top surface 133c, the third inner top surface 133d, and the fourth inner top surface 133e other than the top surface 133a. Similarly, in embodiments 2 and 3, a plurality of second ridges 143 are provided on the entire surface of the exit surface 135, but the present invention is not limited to this, and the second ridges 143 are provided only on a part of the exit surface 135. May be

また、実施の形態1~3では、光束制御部材132において、複数の第1凸条142(または第2凸条143)が、平面である第1内天面133a(または出射面135)に設けられる例を示したが、これに限定されず、曲面(例えば凹面)である第1内天面133a(または出射面135)に設けられてもよい。 Further, in the first to third embodiments, in the luminous flux control member 132, a plurality of first ridges 142 (or second ridges 143) are provided on the flat first inner top surface 133a (or emission surface 135). However, the present invention is not limited to this, and may be provided on the first inner top surface 133a (or exit surface 135) which is a curved surface (for example, a concave surface).

また、実施の形態1~3では、光束制御部材132において、凹部139の内面形状が、エッジを含む面である例を示したが、これに限定されず、半球状や半楕円体状などのように、エッジを含まない曲面であってもよい。その場合、第1内天面133a、第2内天面133c、第3内天面133d、第4内天面133eおよび内側面133bは、連続的に形成されうる。 Further, in the first to third embodiments, in the light flux control member 132, an example in which the inner surface shape of the concave portion 139 is a surface including an edge is shown, but the present invention is not limited to this, and a hemispherical shape, a semi-elliptical shape, or the like is shown. As such, it may be a curved surface that does not include edges. In that case, the first inner top surface 133a, the second inner top surface 133c, the third inner top surface 133d, the fourth inner top surface 133e, and the inner side surface 133b can be continuously formed.

また、実施の形態1~3では、光束制御部材132において、凹部139の内面形状が、第1内天面133a(内天面)および2つの内側面133b以外に、2つの第2内天面133c、2つの第3内天面133d、および2つの第4内天面133eをさらに有する例を示したが、これに限定されず、2つの第2内天面133c、2つの第3内天面133d、および2つの第4内天面133eの1以上は、省略されてもよい。 Further, in the first to third embodiments, in the luminous flux control member 132, the inner surface shape of the recess 139 has two second inner top surfaces in addition to the first inner top surface 133a (inner top surface) and the two inner surface 133b. An example of having 133c, two third inner surface 133d, and two fourth inner surface 133e is shown, but the present invention is not limited to this, and two second inner surface 133c and two third inner surface are shown. One or more of the surface 133d and the two fourth inner top surfaces 133e may be omitted.

また、実施の形態1~3では、光束制御部材132の、発光素子131の光軸LAを含み、かつY軸方向に平行な断面において、2つの出射面135が、発光素子131の光軸LAに略平行である(傾斜していない)例を示したが、これに限定されず、発光素子131の光軸LAに対して僅かに傾斜していてもよい。例えば、発光素子131の光軸LAを含み、かつY軸方向に平行な断面において、出射面135は、Z軸に沿って発光素子131から離れるにつれて、金型から成形品を取り出す際のハンドリング性が損なわれないような金型構造とすることが可能な場合は、発光素子131の光軸LAから遠ざかるように傾斜していてもよい。それにより、出射面135から上方向(光拡散板150へ向かう方向)へ屈折して出射する光が減少するため、照度分布や色分布の均一化を一層図りやすくなる。発光素子131の光軸LAを含み、かつY軸方向に平行な断面における、出射面135の、発光素子131の光軸LAに対する傾斜角は、例えば10°以下としうる。 Further, in the first to third embodiments, in the light beam control member 132 including the optical axis LA of the light emitting element 131 and in a cross section parallel to the Y-axis direction, the two emission surfaces 135 have the optical axis LA of the light emitting element 131. However, the present invention is not limited to this, and may be slightly inclined with respect to the optical axis LA of the light emitting element 131. For example, in a cross section including the optical axis LA of the light emitting element 131 and parallel to the Y-axis direction, the emission surface 135 has a handleability when taking out a molded product from the mold as it moves away from the light emitting element 131 along the Z axis. If it is possible to form a mold structure so as not to damage the light emitting element 131, the light emitting element 131 may be inclined so as to be away from the optical axis LA. As a result, the amount of light refracted upward (direction toward the light diffusing plate 150) emitted from the exit surface 135 is reduced, so that it becomes easier to make the illuminance distribution and the color distribution uniform. The tilt angle of the emission surface 135 with respect to the optical axis LA of the light emitting element 131 in the cross section including the optical axis LA of the light emitting element 131 and parallel to the Y-axis direction can be, for example, 10 ° or less.

また、実施の形態1~3では、照明装置100において、複数の発光装置130を一列に配置する例を示したが、これに限定されず、二列以上の複数列に配置してもよい。 Further, in the first to third embodiments, in the lighting device 100, an example in which a plurality of light emitting devices 130 are arranged in one row is shown, but the present invention is not limited to this, and the lighting device 100 may be arranged in a plurality of rows or more.

また、実施の形態1~3では、照明装置100において、基板120が、発光装置130ごとに複数配置され、各基板120同士をケーブル140で電気的に接続する例を示したが、これに限定されず、1つの基板120上に、複数の発光装置130を配置してもよい。その場合、ケーブル140およびコーキング材141は不要である。 Further, in the first to third embodiments, in the lighting device 100, a plurality of boards 120 are arranged for each light emitting device 130, and each board 120 is electrically connected to each other by a cable 140, but the present invention is limited to this. Instead, a plurality of light emitting devices 130 may be arranged on one substrate 120. In that case, the cable 140 and the caulking material 141 are unnecessary.

また、実施の形態1~3では、照明装置100において、筐体110が、底板と、4つの側板と、(少なくとも一部に開口部が設けられた)天板とを有する箱状体である例を示したが、これに限定されず、少なくとも底板を有していればよく、側板と天板は省略してもよい。 Further, in the first to third embodiments, in the lighting device 100, the housing 110 is a box-shaped body having a bottom plate, four side plates, and a top plate (at least partially provided with an opening). An example is shown, but the present invention is not limited to this, and at least the bottom plate may be provided, and the side plate and the top plate may be omitted.

図20は、変形例に係る照明装置の構成を示す部分拡大斜視図である。図20に示されるように、筐体110の天板と側板を省略し、筐体110の底板を光拡散板150だけで覆ってもよい。 FIG. 20 is a partially enlarged perspective view showing the configuration of the lighting device according to the modified example. As shown in FIG. 20, the top plate and the side plate of the housing 110 may be omitted, and the bottom plate of the housing 110 may be covered only with the light diffusing plate 150.

また、実施の形態1~3では、照明装置100が、チャンネル文字看板である例を示したが、これに限定されず、ライン照明などであってもよい。 Further, in the first to third embodiments, the lighting device 100 is an example of a channel character signboard, but the present invention is not limited to this, and line lighting or the like may be used.

本発明に係る光束制御部材を有する照明装置は、例えば、看板(特にチャンネル文字看板)、ライン照明、一般照明などに適用することができる。 The lighting device having the luminous flux control member according to the present invention can be applied to, for example, a signboard (particularly a channel character signboard), line lighting, general lighting, and the like.

100 照明装置
110 筐体
120 基板
130 発光装置
131 発光素子
132 光束制御部材
133 入射面
133a 内天面(第1内天面)
133b 内側面
133c 第2内天面
133d 第3内天面
133e 第4内天面
134 反射面
135 出射面
136 鍔部
137 脚部
138 底面
139 凹部
140 ケーブル
141 コーキング材
142 第1凸条
143 第2凸条
144 第3凸条
150 光拡散板
CA 中心軸
LA 光軸
100 Lighting device 110 Housing 120 Board 130 Light emitting device 131 Light emitting element 132 Luminous flux control member 133 Incident surface 133a Inner top surface (first inner top surface)
133b Inner side surface 133c 2nd inner top surface 133d 3rd inner top surface 133e 4th inner top surface 134 Reflective surface 135 Exit surface 136 Crossguard 137 Legs 138 Bottom bottom 139 Recessed 140 Cable 141 Coking material 142 1st convex strip 143 2nd Convex 144 3rd Convex 150 Light Diffusing Plate CA Central Axis LA Optical Axis

Claims (11)

発光素子から出射された光の配光を制御するための光束制御部材であって、
裏側に配置された凹部の内面であって、発光素子から出射された光を入射する入射面と、
表側に配置され、前記入射面で入射した光の一部を、前記発光素子の光軸と略垂直であり、かつ互いに反対向きである2つの方向にそれぞれ反射させる2つの反射面と、
前記2つの反射面を挟んで互いに対向して配置され、前記2つの反射面で反射された光をそれぞれ外部に出射させる2つの出射面と、
を有し、
前記入射面は、前記凹部の内天面と、前記凹部の内天面を挟み、かつ前記2つの出射面が対向する方向に配置された2つの内側面とを有し、
前記内天面には、前記発光素子の光軸に沿って見たときに、前記2つの出射面が対向する方向と略平行な稜線を有する複数の第1凸条が配置されており、
前記第1凸条の稜線と垂直な断面における前記第1凸条の高さは、前記2つの出射面に近づくにつれて低くなる、
光束制御部材。
A luminous flux control member for controlling the light distribution of light emitted from a light emitting element.
The inner surface of the recess arranged on the back side, the incident surface on which the light emitted from the light emitting element is incident, and the incident surface.
Two reflecting surfaces arranged on the front side and reflecting a part of the light incident on the incident surface in two directions substantially perpendicular to the optical axis of the light emitting element and opposite to each other.
Two emitting surfaces that are arranged so as to face each other with the two reflecting surfaces interposed therebetween and emit light reflected by the two reflecting surfaces to the outside, respectively.
Have,
The incident surface has an inner surface of the recess and two inner surfaces that sandwich the inner surface of the recess and are arranged in a direction in which the two exit surfaces face each other.
On the inner surface, a plurality of first ridges having ridges substantially parallel to the directions in which the two emission surfaces face each other when viewed along the optical axis of the light emitting element are arranged.
The height of the first ridge in the cross section perpendicular to the ridgeline of the first ridge decreases as it approaches the two emission planes.
Luminous flux control member.
発光素子から出射された光の配光を制御するための光束制御部材であって、
裏側に配置された凹部の内面であって、発光素子から出射された光を入射する入射面と、
表側に配置され、前記入射面で入射した光の一部を、前記発光素子の光軸と略垂直であり、かつ互いに反対向きである2つの方向にそれぞれ反射させる2つの反射面と、
前記2つの反射面を挟んで互いに対向して配置され、前記2つの反射面で反射された光をそれぞれ外部に出射させる2つの出射面と、
を有し、
前記2つの出射面のそれぞれには、前記2つの出射面が対向する方向に沿って見たときに、前記発光素子の光軸と略平行な稜線を有する複数の第2凸条が配置されており、
前記第2凸条の稜線と垂直な断面における前記第2凸条の高さは、裏側に近づくにつれて低くなる、
光束制御部材。
A luminous flux control member for controlling the light distribution of light emitted from a light emitting element.
The inner surface of the recess arranged on the back side, the incident surface on which the light emitted from the light emitting element is incident, and the incident surface.
Two reflecting surfaces arranged on the front side and reflecting a part of the light incident on the incident surface in two directions substantially perpendicular to the optical axis of the light emitting element and opposite to each other.
Two emitting surfaces that are arranged so as to face each other with the two reflecting surfaces interposed therebetween and emit light reflected by the two reflecting surfaces to the outside, respectively.
Have,
A plurality of second ridges having a ridge line substantially parallel to the optical axis of the light emitting element are arranged on each of the two emission surfaces when viewed along the directions in which the two emission surfaces face each other. Ori,
The height of the second ridge in the cross section perpendicular to the ridgeline of the second ridge decreases as it approaches the back side.
Luminous flux control member.
前記2つの出射面のそれぞれには、前記2つの出射面が対向する方向に沿って見たときに、前記発光素子の光軸と略平行な稜線を有する複数の第2凸条が配置されており、
前記第2凸条の稜線と垂直な断面における前記第2凸条の高さは、裏側に近づくにつれて低くなる、
請求項1に記載の光束制御部材。
A plurality of second ridges having a ridge line substantially parallel to the optical axis of the light emitting element are arranged on each of the two emission surfaces when viewed along the directions in which the two emission surfaces face each other. Ori,
The height of the second ridge in the cross section perpendicular to the ridgeline of the second ridge decreases as it approaches the back side.
The luminous flux control member according to claim 1.
前記2つの反射面のそれぞれの少なくとも一部には、前記発光素子の光軸に沿って見たときに、前記2つの出射面が対向する方向と略垂直な稜線を有する複数の第3凸条が配置されている、
請求項1~3のいずれか一項に記載の光束制御部材。
At least a part of each of the two reflecting surfaces has a plurality of third protrusions having ridges substantially perpendicular to the direction in which the two emitting surfaces face each other when viewed along the optical axis of the light emitting element. Is placed,
The luminous flux control member according to any one of claims 1 to 3.
前記第1凸条の稜線方向において、前記第1凸条の稜線の傾きは一定である、
請求項1に記載の光束制御部材。
In the direction of the ridgeline of the first ridge, the inclination of the ridgeline of the first ridge is constant.
The luminous flux control member according to claim 1.
前記第2凸条の稜線方向において、前記第2凸条の稜線の傾きは一定である、
請求項2に記載の光束制御部材。
In the direction of the ridgeline of the second ridge, the inclination of the ridgeline of the second ridge is constant.
The luminous flux control member according to claim 2.
前記第1凸条の稜線に垂直な断面における、前記第1凸条の幅は、前記出射面に近づくにつれて小さくなる、
請求項1に記載の光束制御部材。
The width of the first ridge in the cross section perpendicular to the ridge of the first ridge becomes smaller as it approaches the exit surface.
The luminous flux control member according to claim 1.
前記第2凸条の稜線に垂直な断面における、前記第2凸条の幅は、裏側へ近づくにつれて小さくなる、
請求項2に記載の光束制御部材。
The width of the second ridge in the cross section perpendicular to the ridge of the second ridge becomes smaller as it approaches the back side.
The luminous flux control member according to claim 2.
発光素子と、
前記入射面が、前記発光素子と対向するように配置された、請求項1~8のいずれか一項に記載の光束制御部材と、
を有する、発光装置。
With a light emitting element
The luminous flux control member according to any one of claims 1 to 8, wherein the incident surface is arranged so as to face the light emitting element.
A light emitting device.
前記入射面には、前記発光素子の発光中心から前記発光素子の光軸に対して少なくとも0°以上10°以下の角度で出射された光が入射する、
請求項9に記載の発光装置。
Light emitted from the light emitting center of the light emitting element at an angle of at least 0 ° or more and 10 ° or less with respect to the optical axis of the light emitting element is incident on the incident surface.
The light emitting device according to claim 9.
複数の請求項9または10に記載の発光装置と、
前記発光装置から出射された光を拡散させつつ透過させる光拡散板と、
を有する、照明装置。
The light emitting device according to claim 9 or 10, and the light emitting device.
A light diffusing plate that diffuses and transmits the light emitted from the light emitting device,
Has a lighting device.
JP2018193551A 2018-10-12 2018-10-12 Luminous flux control member, light emitting device and lighting device Active JP7093712B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018193551A JP7093712B2 (en) 2018-10-12 2018-10-12 Luminous flux control member, light emitting device and lighting device
PCT/JP2019/040030 WO2020075807A1 (en) 2018-10-12 2019-10-10 Luminous flux controlling member, light-emitting device, and lighting device
CN201980066929.5A CN112823259A (en) 2018-10-12 2019-10-10 Light flux controlling member, light emitting device, and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193551A JP7093712B2 (en) 2018-10-12 2018-10-12 Luminous flux control member, light emitting device and lighting device

Publications (2)

Publication Number Publication Date
JP2020061330A JP2020061330A (en) 2020-04-16
JP7093712B2 true JP7093712B2 (en) 2022-06-30

Family

ID=70164620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193551A Active JP7093712B2 (en) 2018-10-12 2018-10-12 Luminous flux control member, light emitting device and lighting device

Country Status (3)

Country Link
JP (1) JP7093712B2 (en)
CN (1) CN112823259A (en)
WO (1) WO2020075807A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073158A1 (en) 2012-11-07 2014-05-15 株式会社エンプラス Luminous flux control member, light emitting device, illumination device and molding die
WO2018066418A1 (en) 2016-10-04 2018-04-12 株式会社エンプラス Light bundle control member, light emitting device, and illuminating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145278A (en) * 2018-02-19 2019-08-29 株式会社エンプラス Luminous flux control member, light emitting device, and illumination device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073158A1 (en) 2012-11-07 2014-05-15 株式会社エンプラス Luminous flux control member, light emitting device, illumination device and molding die
WO2018066418A1 (en) 2016-10-04 2018-04-12 株式会社エンプラス Light bundle control member, light emitting device, and illuminating device

Also Published As

Publication number Publication date
CN112823259A (en) 2021-05-18
WO2020075807A1 (en) 2020-04-16
JP2020061330A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP4863357B2 (en) Light emitting device, surface light source device, display device, and light flux controlling member
EP2276076B1 (en) Light emitting unit with lens
US7841739B2 (en) Total internal reflection side emitting coupling device
US9134007B2 (en) Light source device
TWI607471B (en) Backlight module
US10520163B2 (en) Light bundle control member, light emitting device, and illuminating device
US10216298B2 (en) Light module and illuminant mouse pad
TWI537523B (en) Optical lens and lighting element using the same
US10634296B2 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
CN107893974B (en) Light flux controlling member, light emitting device, and lighting device
US10400988B2 (en) Light emitting module and light emitting apparatus
JP7093712B2 (en) Luminous flux control member, light emitting device and lighting device
JP6101537B2 (en) Surface illumination device and vehicle emblem using the same
WO2019160137A1 (en) Luminous flux control member, light emission device, and illumination device
US10145532B2 (en) Light emitting device package and backlight unit including the same
JP7197375B2 (en) lighting equipment
CN111316034A (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP6751452B2 (en) Area lighting device
WO2020196244A1 (en) Luminous-flux control member, light emission device, and illumination device
WO2019039366A1 (en) Light emitting device, surface light source device, and luminous flux control member
JP2015212792A (en) Luminous flux control member, light-emitting device, surface light source device, and display device
JP2015204224A (en) Light distribution control member, lighting device and camera flash module
WO2017038758A1 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
KR20160146392A (en) Light source module and plane light source device
JP2015201281A (en) Light distribution control member and lighting device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190617

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7093712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150