WO2022201727A1 - Fresnel lens, electronic apparatus, and method for manufacturing fresnel lens - Google Patents

Fresnel lens, electronic apparatus, and method for manufacturing fresnel lens Download PDF

Info

Publication number
WO2022201727A1
WO2022201727A1 PCT/JP2021/048825 JP2021048825W WO2022201727A1 WO 2022201727 A1 WO2022201727 A1 WO 2022201727A1 JP 2021048825 W JP2021048825 W JP 2021048825W WO 2022201727 A1 WO2022201727 A1 WO 2022201727A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresnel lens
lens
zones
optical axis
ring zones
Prior art date
Application number
PCT/JP2021/048825
Other languages
French (fr)
Japanese (ja)
Inventor
光太郎 西村
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023508642A priority Critical patent/JPWO2022201727A1/ja
Publication of WO2022201727A1 publication Critical patent/WO2022201727A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Definitions

  • This technology relates to Fresnel lenses.
  • the present invention relates to a Fresnel lens manufactured by an imprint method, an electronic device, and a method for manufacturing a Fresnel lens.
  • Fresnel lenses have been used for the purpose of reducing lens thickness in various electronic devices.
  • an electronic device has been proposed in which a Fresnel lens and a light guide section for guiding light from the Fresnel lens to a solid-state imaging device are arranged, and the light guide section is adjusted so that each pixel has an angle of view that does not overlap. (See Patent Document 1, for example).
  • the efficiency of using incident light is improved by adjusting the pixels so that they have angles of view that do not overlap.
  • the Fresnel lens is manufactured by the imprint method, there is a possibility that air bubbles may be mixed in, causing an image defect and degrading the image quality of the image data.
  • This technology was created in view of this situation, and aims to improve the image quality of image data in electronic devices that use Fresnel lenses.
  • a first aspect of the present technology includes a lens portion having one of both surfaces that is flat and the other of the two surfaces having a curved surface; , each having a substantially triangular cross-section whose base is a line segment connecting two points on the curved surface, and the perpendicular distance from the plane to the opposite vertex of the base increases as the distance from the optical axis increases.
  • a Fresnel lens with a plurality of large ring zones brings about the effect of suppressing the entrainment of air bubbles.
  • the larger the half angle of view of the Fresnel lens the higher the height from the base to the opposite vertex. This brings about the effect of suppressing the entrainment of air bubbles.
  • the height is h
  • the half angle of view is ⁇
  • the taper angle between one of the two sides of the substantially triangular shape other than the base side and the optical axis is ⁇ .
  • the vertical distances of the plurality of ring zones may be different from each other. This brings about the effect of suppressing the amount of image loss.
  • the plurality of ring zones includes a plurality of inner ring zones having a radius not exceeding a predetermined value and a plurality of outer ring zones having a radius larger than the predetermined value, and the plurality of inner ring zones
  • the zones may have the same vertical distance, and the plurality of outer zones may have different vertical distances. This brings about the effect of suppressing the amount of image loss.
  • the plurality of ring zones have a larger radius than both the pair of first ring zones adjacent to each other and the pair of second rings adjacent to each other.
  • the pair of first zones has the same vertical distance
  • the pair of second zones has the same vertical distance
  • the pair of first zones and the pair of The second ring zone may have a different vertical distance from each other. This brings about the effect of suppressing the amount of image loss.
  • the plurality of annular zones may be formed by fresneling a spherical lens. This brings about the effect of making the lens thinner.
  • the plurality of annular zones may be formed by Fresneling an aspherical lens. This brings about the effect of suppressing the aberration.
  • the Fresnel lens may have negative optical power. This brings about the effect of diffusing the light.
  • the Fresnel lens may have positive optical power. This brings about the effect of condensing the light.
  • the Fresnel lens may have a rectangular shape when viewed from the direction of the optical axis. This has the effect of reducing the size of the Fresnel lens.
  • the shape of the Fresnel lens when viewed from the direction of the optical axis may be a rounded quadrangle. This brings about the effect of improving the peeling resistance.
  • a second aspect of the present technology is a lens portion having a flat surface on one side and a curved surface on the other side, and a lens section formed concentrically around an optical axis and connecting two points on the curved surface.
  • a Fresnel lens comprising a plurality of annular zones each having a substantially triangular cross-section with a line segment as the base, and a vertical distance from the plane to the opposite vertex of the base increases with increasing distance from the optical axis; and the Fresnel lens. and a solid-state imaging device that generates image data by photoelectric conversion of light from a lens. This brings about the effect of improving the image quality of the image data.
  • a predetermined number of pixels may be arranged in a portion of the image plane of the solid-state imaging device that faces the base. This brings about the effect of improving the image quality of the image data.
  • a third aspect of the present technology includes a lens material supplying procedure for supplying a liquid lens material to a predetermined surface, a lens portion having one of both surfaces flat and the other of the two surfaces curved, and an optical axis. Concentric circles are formed around the curved surface, each of which has a substantially triangular cross-section whose base is a line segment connecting two points on the curved surface, and the perpendicular distance from the plane to the opposite vertex of the base is away from the optical axis.
  • the method for manufacturing a Fresnel lens includes a pressing step of pressing a mold having a plurality of ring zones as small as the lens material against the lens material, and a curing step of curing the lens material. This brings about the effect of suppressing the entrainment of air bubbles.
  • the predetermined surface may be a surface on a predetermined substrate before dicing. This brings about the effect of suppressing the entrainment of air bubbles.
  • the predetermined surface may be a surface on a predetermined chip after dicing. This brings about the effect of suppressing the entrainment of air bubbles.
  • the lens material may be a photocurable resin
  • the mold may be transparent, and light having a predetermined wavelength may be irradiated in the curing procedure. This brings about an effect that heat treatment becomes unnecessary.
  • FIG. 1A and 1B are a cross-sectional view and a top view showing a configuration example of a Fresnel lens according to a first embodiment of the present technology; It is a sectional view showing an example of composition of a ring zone part and a lens part in a 1st embodiment of this art. It is a figure for demonstrating the calculation method of the image defect amount in 1st Embodiment of this technique.
  • FIG. 1 is a block diagram showing a schematic configuration example of a vehicle control system;
  • FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit;
  • FIG. 1 is a schematic diagram showing a configuration example of a fingerprint authentication device 700 according to an embodiment of the present technology.
  • the fingerprint authentication device 700 is a device that performs fingerprint authentication, and includes the solid-state imaging device 100 as a fingerprint sensor section for detecting fingerprints. Furthermore, the fingerprint authentication device 700 includes a processing section 702 and a display section 704 .
  • the processing unit 702 is a device that authenticates fingerprints detected by the solid-state imaging device 100, and is implemented by, for example, a personal computer.
  • a display unit 704 is a device for displaying fingerprints and authentication results detected by the solid-state imaging device 100. For example, a CRT (Cathode Ray Tube) display device, a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) ) device or the like.
  • CTR Cathode Ray Tube
  • LCD liquid crystal display
  • OLED Organic Light Emitting Diode
  • the solid-state imaging device 100 captures an image of the fingerprint of the finger 900 under the control of the processing unit 702, and transmits the image data to the processing unit 702 via the signal line. Then, the processing unit 702 compares the received image data with registered information, which is a fingerprint image, registered in the processing unit 702 in advance, and determines whether the authentication is successful or not. Then, the processing unit 702 outputs the authentication result and the captured fingerprint image to the display unit 704 .
  • the solid-state imaging device 100 also includes a cover glass 400 , a Fresnel lens 200 and a solid-state imaging device 300 .
  • the Fresnel lens 200 is arranged below the cover glass 400 with the surface of the cover glass 400 on which fingers 900 are placed as the upper surface, and the solid-state imaging device 300 is arranged below the Fresnel lens 200 .
  • the Fresnel lens 200 has negative optical power. In other words, Fresnel lens 200 functions as a concave lens. The details of the structure of this Fresnel lens 200 will be described later. An optical path of light passing through the Fresnel lens 200 is omitted in the figure.
  • the solid-state imaging device 300 is, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor, which photoelectrically converts light from the Fresnel lens 200 to generate an analog electric signal. is.
  • the generated electrical signal is converted into digital pixel data in the image data using a processing circuit or the like.
  • the fingerprint authentication device 700 may be a device that authenticates not only the fingerprint but also the vein of the user.
  • image data from the solid-state imaging device 100 is used for fingerprint authentication, the configuration is not limited to this.
  • a solid-state imaging device 100 can be provided in the face authentication device, and image data can be used for face authentication.
  • the solid-state imaging device 100 can also be provided in a device (for example, an iris authentication device) other than a device for fingerprint authentication, face authentication, or vein authentication.
  • FIG. 2 is a diagram showing one configuration example of the laminated structure of the solid-state imaging device 300 according to the first embodiment of the present technology.
  • This solid-state imaging device 300 includes a circuit chip 302 and a pixel chip 301 stacked on the circuit chip 302 . These chips are electrically connected, for example, by Cu--Cu bonding. In addition to Cu--Cu bonding, vias and bumps can also be used for connection.
  • a plurality of pixels 310 are arranged in a two-dimensional grid on the pixel chip 301 .
  • an effective area in which effective pixels 310 for example, unshaded pixels
  • Invalid pixels 310 for example, shaded pixels
  • a region surrounded by a dashed line in the figure indicates an effective region.
  • the axis parallel to the rows in which the pixels 310 are arranged is defined as the X axis
  • the axis parallel to the columns in which the pixels 310 are arranged is defined as the Y axis. Let the axis perpendicular to the X-axis and the Y-axis be the Z-axis.
  • the Z axis is an axis parallel to the optical axis.
  • Each pixel 310 generates a pixel signal by photoelectric conversion.
  • the XY plane on which the pixels 310 are arranged corresponds to the image plane of the solid-state imaging device 300 .
  • a drive circuit for driving each pixel 310 and a signal processing circuit for performing predetermined signal processing on pixel signals are arranged.
  • Signal processing performed by the signal processing circuit includes AD (Analog to Digital) conversion processing, CDS (Correlated Double Sampling) processing, and the like.
  • the signal processing circuit generates image data and transmits it to the processing unit 702 .
  • the solid-state imaging device 300 Although two chips are stacked in the solid-state imaging device 300, three or more chips can be stacked. Also, the circuits and elements in the solid-state imaging device 300 can be arranged on one semiconductor chip without stacking.
  • FIG. 3 is a cross-sectional view and a top view showing one configuration example of the Fresnel lens 200 according to the first embodiment of the present technology.
  • a is an example of a cross-sectional view of the Fresnel lens 200 when viewed from the Y-axis direction
  • b is an example of a top view of the Fresnel lens 200 when viewed from the Z-axis direction.
  • one of both surfaces of the Fresnel lens 200 is flat, and the other has a serrated cross section.
  • the Fresnel lens 200 is arranged such that the sawtooth-shaped surface faces the cover glass 400 and the flat surface contacts the image plane of the solid-state imaging device 300 . Assuming that the direction toward the cover glass 400 is the upward direction, the plane is the bottom surface.
  • each of the saw blades is circular when viewed from above, so they are hereinafter referred to as "zones".
  • the upper portion where the annular zone is formed is called “annular zone portion 210", and the lower portion thereof is called “lens portion 220".
  • a plurality of ring zones such as ring zones 211 and 212 are formed in the ring zone portion 210 .
  • the annular zone portion 210 and the lens portion 220 are integrally formed, and are not formed by connecting them with an adhesive or the like.
  • the lower surface of the lens portion 220 is flat as described above.
  • the upper surface of the lens portion 220 is curved.
  • the thickness from the upper surface to the lower surface increases as the distance from the optical axis passing through the center of the lens increases.
  • the dashed-dotted line a in the figure indicates the optical axis.
  • the curved surface of the lens part 220 is, for example, a spherical surface.
  • the lens portion 220 is a concave lens with one spherical surface.
  • each ring zone is a substantially triangular shape with two points on the curved surface of the lens portion 220 as bases.
  • substantially triangular means a figure whose sides are not strictly straight but are close to straight and can be approximated to a triangle. Since the cross section is approximately triangular, each ring zone functions as a prism.
  • the vertical distance H n (in other words, thickness) and This vertical distance Hn is set to a larger value as the annular zone is further away from the optical axis. In other words, the thickness of the Fresnel lens 200 increases with increasing distance from the optical axis.
  • a plurality of ring zones such as ring zones 211 and 212 are formed concentrically around the optical axis when viewed from the Z-axis direction.
  • a black dot in the figure indicates the lens center through which the optical axis passes.
  • a general Fresnel lens has a circular shape when viewed from the optical axis direction, but the effective area of the lower solid-state imaging device 300 is rectangular (square or rectangle). For this reason, the Fresnel lens 200 is also trimmed into a rectangle along the boundary of its effective area. This shape allows the size of the Fresnel lens 200 to be smaller than if it were circular.
  • the lower surface of the lens part 220 is flat, and the upper surface is curved (such as a spherical surface).
  • a plurality of ring zones such as ring zones 211 and 212 are formed concentrically around the optical axis.
  • Each of these annular zones has a substantially triangular cross section whose base is a line segment connecting two points on the curved surface of the lens portion 220 .
  • the vertical distance Hn from the lower surface (flat surface) of the lens portion 220 to the opposite vertex is set to a larger value as the distance from the optical axis increases. For example, if the vertical distance of the innermost zone is H1, the vertical distance of the second innermost zone is H2 , and the vertical distance of the outermost zone is HN , then the distance between them is: formula is established. H 1 ⁇ H 2 ⁇ ... ⁇ H N ... Formula 1
  • Equation 1 the vertical distances of each of the plurality of ring zones are different from each other.
  • Equation 2 the vertical distance of each of the inner zones less than the radius corresponding to H 47 is the same. Also, the respective vertical distances of the outer zones of radius greater than the radius corresponding to H 47 are different from each other.
  • each value of the vertical distance can be set such that the following equation holds.
  • Equation 3 the vertical distances of the first and second zones are the same. Also, the vertical distances of the third and fourth rings, which have larger radii than them, are the same. The first and second vertical distances are different from the third and fourth vertical distances. Thereafter, similarly, the vertical distances of a pair of adjacent ring zones are set to be the same.
  • FIG. 4 is a cross-sectional view showing one configuration example of the annular zone portion 210 and the lens portion 220 according to the first embodiment of the present technology.
  • a spherical surface having a positive curvature K in other words, a spherical surface of a concave lens
  • a thick dotted line in the figure indicates a spherical surface whose curvature K has a positive value.
  • each of the annular zones has a substantially triangular cross section as described above.
  • h be the height from the base of this approximate triangle to the opposite vertex.
  • the height h of each ring zone is set to the same value. In this case, if those zones are formed on a plane, the vertical distance Hn from that plane will be the same value as the height h, and will be the same for all zones.
  • the lens portion 220 has a concave lens shape, and a plurality of annular zones are formed on its curved surface. Therefore, the vertical distance Hn from the lower surface (flat surface) of the lens portion 220 increases as the distance from the optical axis increases. In this way, the Fresnel lens 200 can also be regarded as having a shape in which a general Fresnel lens is formed on a concave lens.
  • the heights h of the plurality of ring zones are the same, they can be set to different values. Even in this case, the shape of the curved surface of the lens portion 220 is adjusted so as to satisfy any one of Equations 1 to 3.
  • FIG. 5 is a diagram for explaining the method of calculating the image loss amount in the first embodiment of the present technology. Attention is paid to a ring zone 211 among the plurality of ring zones. A cross section of the annular zone 211 viewed from the Y-axis direction is substantially triangular, and its vertices are A, B, and C. As shown in FIG. Vertices B and C are points on the curved surface of lens portion 220 . The dashed-dotted line in the figure indicates the curved surface of the lens portion 220 . In addition, although the dashed-dotted line draws an arc macroscopically, since it is microscopically close to a straight line, it is represented by a straight line in the figure.
  • the inner side AC is macroscopically a part of an arc with a curvature K, but is microscopically close to a straight line, so it is represented by a straight line in the figure. Strictly speaking, the side AC is not a straight line, so the cross section of the annular zone 211 is a substantially triangular shape that is close to a triangular shape.
  • the side BC be the base of the approximate triangle.
  • vertex A is the opposite vertex to its base.
  • Side AB corresponds to the outer wall surface farther from the optical axis
  • side AC corresponds to the inner wall surface closer to the optical axis.
  • the side AB is shorter than the side AC.
  • at least one or more predetermined number of pixels are arranged in a portion of the image plane of the solid-state imaging device 300 facing the side BC (bottom side) in the X-axis and Y-axis directions. The same applies to other ring zones. In other words, each ring spans a predetermined number of pixels.
  • the angle of view of the Fresnel lens 200 be 2 ⁇ ( ⁇ is a real number).
  • the angle formed by the optical path of the incident light 501 to the vertex A and the optical axis is the half angle of view ⁇ .
  • the optical path of the incident light 502 to the vertex B is parallel to the incident light 501 .
  • the incident point is determined from the intersection of the optical path of the refracted light starting from the incident point of the light on the spherical surface and the image plane.
  • the horizontal distance x to the intersection of the perpendicular line passing through and the image plane increases toward the outside.
  • the outer horizontal distance x1 is smaller than the horizontal distance x2, as described above.
  • image defect amount is hereinafter referred to as "image defect amount".
  • ⁇ BAD which is the angle between the outer side AB and the optical axis
  • ⁇ BAD which is the angle between the outer side AB and the optical axis
  • the length of the side AD corresponds to the height h described above. Therefore, if the cosine function is cos(), the side AB is h/cos ⁇ .
  • the distance from the vertex A to P2 corresponds to the vertical distance Hn described above.
  • ⁇ BAE is 180°- ⁇ from the exterior angle theorem of a triangle.
  • ⁇ BAE is 180°- ⁇ , so ⁇ IAB is 90°- ⁇ - ⁇ .
  • ⁇ IBA is ⁇ + ⁇ from the formula for the sum of interior angles of a triangle.
  • the length of side AI is also the same value as side FH (ie, M).
  • ⁇ IBA is ⁇ + ⁇ and side AB is h/cos ⁇
  • the unit of h is, for example, micrometers ( ⁇ m)
  • is, for example, degrees.
  • the image loss amount L is defined by the ring zone height h, the half angle of view ⁇ , and the taper angle ⁇ .
  • the taper angle ⁇ usually increases toward the outer side, and as a result, the image loss amount L increases.
  • the half angle of view ⁇ is fixed and the heights h of the annular zones are not uniform, the higher the height h, the larger the image defect amount L becomes.
  • T the permissible value of the image loss amount L for achieving a certain level of accuracy.
  • the height h, the half angle of view ⁇ , and the taper angle ⁇ are set to values that satisfy the following equations for each ring zone. ⁇ h ⁇ sin( ⁇ + ⁇ ) ⁇ /(cos ⁇ cos ⁇ ) ⁇ T Expression 7
  • FIG. 6 is a diagram showing an example of simulation results in the first embodiment of the present technology. As illustrated in the figure, part of the incident light is reflected by the surface of the Fresnel lens 200, and the reflected light is re-reflected by the upper surface of the cover glass 400 (in other words, the display surface). The re-reflected light is re-reflected on the surface of Fresnel lens 200 .
  • FIG. 7 is a diagram showing a parameter setting example in the first embodiment of the present technology.
  • the half angle of view ⁇ was set to 80 degrees
  • the minimum taper angle ⁇ was set to 5 degrees
  • the height h of all ring zones was made uniform to 10 micrometers ( ⁇ m).
  • 57.6 micrometers ( ⁇ m) was calculated as the largest image loss amount.
  • 66 micrometers ( ⁇ m) was calculated as the largest image defect amount for this case 1 .
  • the theoretical value obtained by Equation 6 is close to the simulation result.
  • case 2 the half angle of view ⁇ and the minimum taper angle ⁇ were set to be the same as in case 1, and the height h of all ring zones was adjusted to 30 micrometers ( ⁇ m).
  • 172.8 micrometers ( ⁇ m) was calculated as the largest image loss amount from Equation 6.
  • 177 micrometers ( ⁇ m) was calculated as the largest image defect amount for this case 2 .
  • the theoretical value obtained by Equation 6 is close to the simulation result.
  • case 3 the half angle of view ⁇ and the minimum taper angle ⁇ were the same as in case 1, and the height h of all ring zones was adjusted to 7 micrometers ( ⁇ m).
  • the largest image loss amount was calculated as 40.3 micrometers ( ⁇ m) from Equation 5.
  • the pitch of the fingerprint ridges is 400 micrometers ( ⁇ m).
  • the allowable value T must be set to 40 micrometers ( ⁇ m), which is 1/10 of the pitch, in order to achieve a certain level of accuracy.
  • FIG. 8 is a diagram showing an example of a method for manufacturing the Fresnel lens 200 according to the first embodiment of the present technology.
  • the Fresnel lens 200 manufacturing system applies a liquid lens material 620 to the upper surface of the sensor substrate 610 by spin coating or the like.
  • the sensor substrate 610 is a substrate before being diced into a plurality of chips, and circuits such as pixels are formed on the substrate before forming the Fresnel lens 200 .
  • the lens material 620 for example, a photocurable (ultraviolet curable, etc.) resin (acrylic resin, epoxy resin, etc.) is used. By using a photocurable resin, heat treatment is not required when the resin is cured.
  • the manufacturing system presses (that is, embosses) a transparent mold 630 onto the lens material 620 for each region corresponding to the chip.
  • the transparent mold 630 has a ring zone portion 631 and a lens portion 632, and the ring zone portion 631 is on the lower side during embossing.
  • the lens portion 632 has a convex lens shape with one flat surface and the other curved surface (such as a spherical surface).
  • a plurality of annular zones are formed concentrically around the optical axis in the annular zone portion 631 .
  • Each of these annular zones has a substantially triangular cross section whose base is a line segment connecting two points on the curved surface of the lens portion 632 .
  • the vertical distance (in other words, thickness) from the lower surface (flat surface) of the lens portion 632 to the opposite vertex of the base decreases as the distance from the optical axis increases.
  • connecting the inner wall surfaces of each of the plurality of annular zones forms a spherical surface with a negative curvature K (in other words, the spherical surface of a convex lens).
  • the transparent mold 630 is an example of the mold described in the claims.
  • the manufacturing system irradiates light of a predetermined wavelength (such as ultraviolet light) from above through the transparent mold 630 to harden the lens material 620 .
  • a predetermined wavelength such as ultraviolet light
  • the manufacturing system releases the transparent mold 630 and performs various processes such as dicing.
  • an imprint method a manufacturing method in which a mold is pressed against a resin to form a desired shape.
  • the imprint method can efficiently manufacture the Fresnel lens 200 .
  • FIG. 9 is a diagram showing an example of a manufacturing method for each of the first embodiment and the comparative example of the present technology.
  • a and b in the figure are examples of cross-sectional views before and after embossing of the transparent mold 630 in the first embodiment of the present technology.
  • c and d in the figure are examples of cross-sectional views before and after stamping of the transparent mold 635 in the comparative example.
  • the vertical distance between the annular zones of the transparent mold 630 decreases as the distance from the optical axis increases.
  • the thickness of the transparent mold 630 becomes thinner with increasing distance from the optical axis. Therefore, during embossing, the central portion of the transparent mold 630 first comes into contact with the lens material, and as the downward pressing progresses, the contacting portion spreads from the inside to the outside. Therefore, air can escape to the outside during embossing, and air bubbles can be prevented from entering the lens material (so-called bubble entrapment).
  • a Fresnel lens 200 is formed in which the vertical distance (thickness) of each annular zone increases with increasing distance from the optical axis.
  • the transparent mold 630 since the transparent mold 630 has a structure in which the central portion protrudes, the transparent mold 630 can be easily cleaned, and the occurrence of residue defects can be suppressed. Thereby, the yield can be improved.
  • a transparent mold 635 having the same vertical distance (thickness) of each annular zone is used. With this shape, there is no way for air to escape during embossing. For this reason, there is a risk that bubbles will form, as indicated by d in FIG.
  • the transparent mold 635 of the comparative example is more difficult to clean than the transparent mold 630, residue defects may occur, making it difficult to improve the yield.
  • FIG. 10 is a flow chart showing an example of a method for manufacturing the Fresnel lens 200 according to the first embodiment of the present technology.
  • the manufacturing system applies the liquid lens material 620 to the upper surface of the sensor substrate 610 by spin coating or the like (step S901).
  • the manufacturing system stamps the transparent mold 630 for each area corresponding to the chip (step S902). Then, the manufacturing system irradiates ultraviolet rays or the like to harden the lens material 620 (step S903). Subsequently, the manufacturing system releases the transparent mold 630 (step S904), performs various processes such as dicing, and finishes manufacturing the Fresnel lens 200.
  • FIG. 1 the manufacturing system stamps the transparent mold 630 for each area corresponding to the chip.
  • FIG. 11 is a diagram showing an example of image data according to the first embodiment of the present technology.
  • a is an example of image data when the height h is 10 micrometers ( ⁇ m).
  • b in the figure is an example of image data when the height h is 130 micrometers ( ⁇ m).
  • the width of the circular line increases as the height h increases.
  • the Fresnel lens 200 suppresses image defects due to bubble inclusions and residue defects, so the image quality of image data can be improved more than in the comparative example.
  • FIG. 12 is a top view showing an example of a Fresnel lens in a comparative example.
  • a comparative example there is a possibility that bubble entrapment and residue defects may occur. As a result, image defects occur and the image quality of the image data deteriorates.
  • the Fresnel lens 200 functions as a lens (concave lens) having negative optical power. is difficult.
  • the Fresnel lens 200 of this second embodiment differs from that of the first embodiment in that it has positive optical power.
  • FIG. 13 is a cross-sectional view showing one configuration example of the Fresnel lens 200 according to the second embodiment of the present technology.
  • a spherical surface having a negative curvature K in other words, a spherical surface of a convex lens
  • the solid-state imaging device 100 using the Fresnel lens 200 configured as shown in the figure can be applied to, for example, an observation device for research.
  • the image loss amount L is calculated with the angle between the inner side of the two sides of the substantially triangular shape other than the base side and the optical axis being the taper angle ⁇ .
  • the solid-state imaging device 100 can be applied to a device that observes a sample 904 such as cells mounted on a cover glass 402 from a close position.
  • the solid-state imaging device 100 according to this embodiment can be arranged so as to be in contact with a cover glass 402 on which a sample 904 is mounted.
  • the solid-state imaging device 100 arranged in this manner can function like a microscope without an objective lens, and can observe the sample 904 in detail with a simple configuration.
  • the solid-state imaging device 100 can function as a research or medical observation device such as a lensless microscope for distinguishing, sorting, and separating cells, viruses, and the like.
  • the cover glass 402 is not limited to a glass material, and may be a PET (Poly-Ethylene Terephthalate) resin or the like as long as it is a transparent member.
  • the Fresnel lens 200 since the Fresnel lens 200 has positive optical power, it can be used for a research observation device or the like.
  • the spherical lens is fresneled to form the ring zone portion 210, but it is difficult to suppress aberration with this shape.
  • the Fresnel lens 200 of the third embodiment differs from that of the first embodiment in that the aspherical lens is Fresneled.
  • FIG. 15 is a cross-sectional view showing one configuration example of the Fresnel lens 200 according to the third embodiment of the present technology.
  • the Fresnel lens 200 of the third embodiment differs from that of the first embodiment in that an aspherical lens is Fresnelized to form a ring zone portion 210 .
  • an aspherical lens is Fresnelized to form a ring zone portion 210 .
  • the aspheric surface of the concave lens is formed. Aberration can be suppressed by Fresneling the aspherical lens.
  • the aspherical lens is Fresnel, so aberration can be suppressed.
  • the Fresnel lens 200 is trimmed into a rectangular shape, but in this shape, stress concentrates on the four corners and the Fresnel lens 200 may peel off.
  • the Fresnel lens 200 of the fourth embodiment differs from that of the first embodiment in that it is trimmed into a rounded square.
  • FIG. 16 is a top view showing one configuration example of the Fresnel lens 200 according to the fourth embodiment of the present technology.
  • the Fresnel lens 200 of the fourth embodiment differs from that of the first embodiment in that it is trimmed to form a rounded quadrangle, which is a quadrangle with rounded corners, when viewed from the optical axis direction.
  • the taper angle ⁇ of the Fresnel lens 200 is small and the interval between the ring zones is narrow, making it difficult to obtain effective information during fingerprint authentication. Therefore, even if the four corners are rounded, there is almost no adverse effect on the accuracy of authentication.
  • the shape of the Fresnel lens 200 is a square with rounded corners, so it is possible to improve peeling resistance compared to the case of a rectangular shape.
  • the Fresnel lens 200 is formed before dicing, but it is also possible to form the Fresnel lens 200 for each chip after dicing.
  • the Fresnel lens 200 of the fifth embodiment differs from that of the first embodiment in that the Fresnel lens 200 is formed for each chip after dicing.
  • FIG. 17 is a diagram showing an example of a method of manufacturing the Fresnel lens 200 up to discharging the lens material 620 according to the fifth embodiment of the present technology.
  • the sensor substrate 610 is diced, and various circuits and elements are formed for each chip. Each chip functions as a solid-state imaging device 300 . After that, the steps in the figure are executed.
  • the manufacturing system forms a PF (Print Free) water-repellent film 640 around the effective area on the upper surface of the chip (the solid-state imaging device 300).
  • PF Print Free
  • the manufacturing system dispenses the lens material 620 onto the upper surface of the chip using the dispenser 650 .
  • the lens material 620 is rearranged in a self-organizing manner so that the surface energy is minimized.
  • FIG. 18 is a diagram showing an example of a method of manufacturing the Fresnel lens 200 up to releasing the transparent mold 630 according to the fifth embodiment of the present technology. The process shown in the figure is executed after the lens material 620 is discharged.
  • the manufacturing system presses the transparent mold 630 against the lens material 620 as illustrated in a in the figure.
  • the manufacturing system irradiates light of a predetermined wavelength (ultraviolet rays, etc.) to cure the lens material 620 .
  • a predetermined wavelength ultraviolet rays, etc.
  • the manufacturing system releases the transparent mold 630 and performs various necessary processes.
  • FIG. 19 is a flow chart showing an example of a method for manufacturing the Fresnel lens 200 according to the fifth embodiment of the present technology.
  • the manufacturing system forms a water-repellent film 640 on the top surface of the chip (step S911).
  • the manufacturing system dispenses the lens material 620 onto the top surface of the chip using the dispenser 650 or the like (step S912), and embosses the transparent mold 630 (step S913). Then, the manufacturing system irradiates ultraviolet rays or the like to harden the lens material 620 (step S914). Subsequently, the manufacturing system releases the transparent mold 630 (step S915), performs various processes, and completes the manufacturing of the Fresnel lens 200.
  • FIG. The steps shown in the figure are sequentially executed for each chip. Alternatively, the steps in the figure are executed in parallel for a plurality of chips.
  • the manufacturing method is not limited to this.
  • the lens material 620 can also be applied by spin coating or the like.
  • the manufacturing system applies a lens material 620 to the upper surface of the chip as illustrated in b of the same figure.
  • the lens material 620 is rearranged in a self-organizing manner such that the surface energy is minimized, as illustrated at c in FIG.
  • the lens material 620 is automatically separated by the water-repellent film 640 . After that, the steps illustrated in FIG. 18 are performed.
  • the Fresnel lens 200 is manufactured for each chip after dicing, there is no need to form pixels and the like before dicing.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 21 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 22 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 22 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the solid-state imaging device 100 in FIG. 1 can be applied to the imaging unit 12031 .
  • the technology according to the present disclosure it is possible to obtain a captured image that is easier to see, thereby reducing driver fatigue.
  • the present technology can also have the following configuration.
  • a lens portion having one of both surfaces flat and the other of the two surfaces curved; It is formed concentrically around the optical axis and each has a substantially triangular cross-section whose base is a line segment connecting two points on the curved surface.
  • a Fresnel lens comprising a plurality of annular zones that become larger with increasing distance from the axis.
  • (11) The Fresnel lens according to any one of (1) to (10), wherein the Fresnel lens has a rectangular shape when viewed from the direction of the optical axis.
  • the Fresnel lens according to any one of (1) to (10), wherein the shape of the Fresnel lens when viewed from the direction of the optical axis is a square with rounded corners.
  • a substantially triangular shape formed concentrically around the optical axis with a lens portion having one flat surface on one side and a curved surface on the other side, and a line segment connecting two points on the curved surface as a base.
  • a Fresnel lens comprising a plurality of annular zones each having a cross section of and the vertical distance from the plane to the opposite vertices of the base increases as the distance from the optical axis increases; and a solid-state imaging device that generates image data by photoelectric conversion of light from the Fresnel lens.
  • a lens material supply procedure for supplying a liquid lens material to a predetermined surface; a lens portion having one of its two surfaces flat and the other of said two surfaces curved; an embossing step of pressing a mold against the lens material, each having a plurality of orbicular zones each having a vertical distance from the plane to the opposite vertices of the base that decreases with increasing distance from the optical axis; and a curing step for curing said lens material.
  • the predetermined surface is a surface on a predetermined substrate before dicing.
  • the predetermined surface is a surface on a predetermined chip after dicing.
  • the lens material is a photocurable resin; the mold is transparent, The manufacturing method according to any one of (15) to (17), wherein light of a predetermined wavelength is applied in the curing procedure.
  • REFERENCE SIGNS LIST 100 solid-state imaging device 200 fresnel lens 210, 631 ring zone 211, 212 ring zone 220, 632 lens section 300 solid-state image sensor 301 pixel chip 302 circuit chip 310 pixel 400, 402 cover glass 610 sensor substrate 620 lens material 630, 635 transparent Mold 640 Water-repellent film 650 Dispenser 700 Fingerprint authentication device 702 Processing unit 704 Display unit 900 Finger 904 Sample 12031 Imaging unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

The present invention improves the image quality of image data in an electronic apparatus that uses a Fresnel lens. The Fresnel lens has a lens part and a plurality of ring bands. One of the two surfaces of the lens part is a flat surface, and the other of the two surfaces is a curved surface. The plurality of ring bands are formed in a concentric pattern around the optical axis. Furthermore, each of the plurality of ring bands has a substantially triangular cross section, the base of which is a line segment connecting two points on the curved surface. Additionally, in the plurality of ring bands, the vertical distance from the flat surface to a pair of vertices of the base becomes greater further away from the optical axis.

Description

フレネルレンズ、電子機器、および、フレネルレンズの製造方法Fresnel lens, electronic device, and method for manufacturing Fresnel lens
 本技術は、フレネルレンズに関する。詳しくは、インプリント法により製造したフレネルレンズ、電子機器、および、フレネルレンズの製造方法に関する。 This technology relates to Fresnel lenses. Specifically, the present invention relates to a Fresnel lens manufactured by an imprint method, an electronic device, and a method for manufacturing a Fresnel lens.
 従来より、様々な電子機器においてレンズの厚みを減らす目的でフレネルレンズが用いられている。例えば、フレネルレンズと、そのフレネルレンズからの光を固体撮像素子に導く導光部とを配置し、画素のそれぞれが重複しない画角を持つように導光部を調整した電子機器が提案されている(例えば、特許文献1参照。)。 Conventionally, Fresnel lenses have been used for the purpose of reducing lens thickness in various electronic devices. For example, an electronic device has been proposed in which a Fresnel lens and a light guide section for guiding light from the Fresnel lens to a solid-state imaging device are arranged, and the light guide section is adjusted so that each pixel has an angle of view that does not overlap. (See Patent Document 1, for example).
特開2019-220941号公報JP 2019-220941 A
 上述の従来技術では、画素のそれぞれが重複しない画角を持つように調整することにより、入射光の利用効率の向上を図っている。しかしながら、上述の電子機器では、フレネルレンズをインプリント法により製造した際に、気泡の混入により画像欠陥が生じて画像データの画質が低下するおそれがある。 In the conventional technology described above, the efficiency of using incident light is improved by adjusting the pixels so that they have angles of view that do not overlap. However, in the electronic device described above, when the Fresnel lens is manufactured by the imprint method, there is a possibility that air bubbles may be mixed in, causing an image defect and degrading the image quality of the image data.
 本技術はこのような状況に鑑みて生み出されたものであり、フレネルレンズを用いる電子機器において、画像データの画質を向上させることを目的とする。 This technology was created in view of this situation, and aims to improve the image quality of image data in electronic devices that use Fresnel lenses.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、両面の一方が平面であり、上記両面の他方が曲面であるレンズ部と、光軸の周囲に同心円状に形成され、上記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、上記平面から上記底辺の対頂点までの垂直距離は上記光軸から離れるほど大きい複数の輪帯とを具備するフレネルレンズである。これにより、気泡の混入が抑制されるという作用をもたらす。 The present technology has been made to solve the above-described problems, and a first aspect of the present technology includes a lens portion having one of both surfaces that is flat and the other of the two surfaces having a curved surface; , each having a substantially triangular cross-section whose base is a line segment connecting two points on the curved surface, and the perpendicular distance from the plane to the opposite vertex of the base increases as the distance from the optical axis increases. A Fresnel lens with a plurality of large ring zones. This brings about the effect of suppressing the entrainment of air bubbles.
 また、この第1の側面において、上記フレネルレンズの半画角が大きいほど上記底辺から対頂点までの高さは高くてもよい。これにより、気泡の混入が抑制されるという作用をもたらす。 Further, in the first aspect, the larger the half angle of view of the Fresnel lens, the higher the height from the base to the opposite vertex. This brings about the effect of suppressing the entrainment of air bubbles.
 また、この第1の側面において、上記高さをhとし、上記半画角をαとし、上記略三角形の上記底辺以外の2辺の一方と上記光軸とのなすテーパー角をβとし、所定の許容値をTとすると、上記α、上記βおよび上記Tの間に次の関係式が成立してもよい。これにより、画像欠損量が抑制されるという作用をもたらす。
  {h×sin(α+β)}/(cоsβcоsα)<T
Further, in the first side surface, the height is h, the half angle of view is α, and the taper angle between one of the two sides of the substantially triangular shape other than the base side and the optical axis is β. Assuming that the allowable value of is T, the following relational expression may be established between α, β and T. This brings about the effect of suppressing the amount of image loss.
{h×sin(α+β)}/(cosβcosα)<T
 また、この第1の側面において、上記複数の輪帯のそれぞれの上記垂直距離は互いに異なってもよい。これにより、画像欠損量が抑制されるという作用をもたらす。 Also, in this first aspect, the vertical distances of the plurality of ring zones may be different from each other. This brings about the effect of suppressing the amount of image loss.
 また、この第1の側面において、上記複数の輪帯は、半径が所定値を超えない複数の内側輪帯と、半径が上記所定値より大きい複数の外側輪帯とを含み、上記複数の内側輪帯は、上記垂直距離が同一であり、上記複数の外側輪帯は、上記垂直距離が互いに異なってもよい。これにより、画像欠損量が抑制されるという作用をもたらす。 Further, in the first aspect, the plurality of ring zones includes a plurality of inner ring zones having a radius not exceeding a predetermined value and a plurality of outer ring zones having a radius larger than the predetermined value, and the plurality of inner ring zones The zones may have the same vertical distance, and the plurality of outer zones may have different vertical distances. This brings about the effect of suppressing the amount of image loss.
 また、この第1の側面において、上記複数の輪帯は、互いに隣接する一対の第1輪帯と、上記一対の第1輪帯の両方よりも半径が大きく、互いに隣接する一対の第2輪帯とを含み、上記一対の第1輪帯は、上記垂直距離が同一であり、上記一対の第2輪帯は、上記垂直距離が同一であり、上記一対の第1輪帯と上記一対の第2輪帯とは、互いに上記垂直距離が異なってもよい。これにより、画像欠損量が抑制されるという作用をもたらす。 Further, in the first aspect, the plurality of ring zones have a larger radius than both the pair of first ring zones adjacent to each other and the pair of second rings adjacent to each other. The pair of first zones has the same vertical distance, the pair of second zones has the same vertical distance, and the pair of first zones and the pair of The second ring zone may have a different vertical distance from each other. This brings about the effect of suppressing the amount of image loss.
 また、この第1の側面において、上記複数の輪帯は球面レンズのフレネル化により形成されたものであってもよい。これにより、レンズが薄くなるという作用をもたらす。 Further, in the first aspect, the plurality of annular zones may be formed by fresneling a spherical lens. This brings about the effect of making the lens thinner.
 また、この第1の側面において、上記複数の輪帯は非球面レンズのフレネル化により形成されたものであってもよい。これにより、収差が抑制されるという作用をもたらす。 Further, in the first aspect, the plurality of annular zones may be formed by Fresneling an aspherical lens. This brings about the effect of suppressing the aberration.
 また、この第1の側面において、上記フレネルレンズは、負の光学的パワーを有してもよい。これにより、光が拡散されるという作用をもたらす。 Also, in this first aspect, the Fresnel lens may have negative optical power. This brings about the effect of diffusing the light.
 また、この第1の側面において、上記フレネルレンズは、正の光学的パワーを有してもよい。これにより、光が集光されるという作用をもたらす。 Also, in this first aspect, the Fresnel lens may have positive optical power. This brings about the effect of condensing the light.
 また、この第1の側面において、上記光軸の方向から見た際の上記フレネルレンズの形状は矩形であってもよい。これにより、フレネルレンズのサイズが小さくなるという作用をもたらす。 Further, in this first aspect, the Fresnel lens may have a rectangular shape when viewed from the direction of the optical axis. This has the effect of reducing the size of the Fresnel lens.
 また、この第1の側面において、上記光軸の方向から見た際の上記フレネルレンズの形状は角丸四角形であってもよい。これにより、剥離耐性が向上するという作用をもたらす。 Further, in this first aspect, the shape of the Fresnel lens when viewed from the direction of the optical axis may be a rounded quadrangle. This brings about the effect of improving the peeling resistance.
 また、本技術の第2の側面は、両面の一方が平面であり、上記両面の他方が曲面であるレンズ部と、光軸の周囲に同心円状に形成され、上記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、上記平面から上記底辺の対頂点までの垂直距離は上記光軸から離れるほど大きくなる複数の輪帯とを備えるフレネルレンズと、上記フレネルレンズからの光に対する光電変換により画像データを生成する固体撮像素子とを具備する電子機器である。これにより、画像データの画質が向上するという作用をもたらす。 In addition, a second aspect of the present technology is a lens portion having a flat surface on one side and a curved surface on the other side, and a lens section formed concentrically around an optical axis and connecting two points on the curved surface. a Fresnel lens comprising a plurality of annular zones each having a substantially triangular cross-section with a line segment as the base, and a vertical distance from the plane to the opposite vertex of the base increases with increasing distance from the optical axis; and the Fresnel lens. and a solid-state imaging device that generates image data by photoelectric conversion of light from a lens. This brings about the effect of improving the image quality of the image data.
 また、この第2の側面において、上記固体撮像素子の像面のうち上記底辺に対向する部分には、所定数の画素が配列されてもよい。これにより、画像データの画質が向上するという作用をもたらす。 Further, in the second aspect, a predetermined number of pixels may be arranged in a portion of the image plane of the solid-state imaging device that faces the base. This brings about the effect of improving the image quality of the image data.
 また、本技術の第3の側面は、所定面に液状のレンズ材を供給するレンズ材供給手順と、両面の一方が平面であり、上記両面の他方が曲面であるレンズ部と、光軸の周囲に同心円状に形成され、上記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、上記平面から上記底辺の対頂点までの垂直距離は上記光軸から離れるほど小さい複数の輪帯とを備えるモールドを上記レンズ材に押し付ける型押し手順と、上記レンズ材を硬化させる硬化手順とを具備するフレネルレンズの製造方法である。これにより、気泡の混入が抑制されるという作用をもたらす。 A third aspect of the present technology includes a lens material supplying procedure for supplying a liquid lens material to a predetermined surface, a lens portion having one of both surfaces flat and the other of the two surfaces curved, and an optical axis. Concentric circles are formed around the curved surface, each of which has a substantially triangular cross-section whose base is a line segment connecting two points on the curved surface, and the perpendicular distance from the plane to the opposite vertex of the base is away from the optical axis. The method for manufacturing a Fresnel lens includes a pressing step of pressing a mold having a plurality of ring zones as small as the lens material against the lens material, and a curing step of curing the lens material. This brings about the effect of suppressing the entrainment of air bubbles.
 また、この第3の側面において、上記所定面は、ダイシング前の所定の基板上の面であってもよい。これにより、気泡の混入が抑制されるという作用をもたらす。 Further, in the third aspect, the predetermined surface may be a surface on a predetermined substrate before dicing. This brings about the effect of suppressing the entrainment of air bubbles.
 また、この第3の側面において、上記所定面は、ダイシング後の所定のチップ上の面であってもよい。これにより、気泡の混入が抑制されるという作用をもたらす。 Further, in the third aspect, the predetermined surface may be a surface on a predetermined chip after dicing. This brings about the effect of suppressing the entrainment of air bubbles.
 また、この第3の側面において、上記レンズ材は、光硬化性の樹脂であり、上記モールドは透明であり、上記硬化手順において所定波長の光を照射してもよい。これにより、熱処理が不要になるという作用をもたらす。 Further, in the third aspect, the lens material may be a photocurable resin, the mold may be transparent, and light having a predetermined wavelength may be irradiated in the curing procedure. This brings about an effect that heat treatment becomes unnecessary.
本技術の第1の実施の形態における指紋認証装置の一構成例を示す模式図である。It is a mimetic diagram showing an example of composition of a fingerprint authentication device in a 1st embodiment of this art. 本技術の第1の実施の形態における固体撮像素子の積層構造の一構成例を示す図である。It is a figure which shows one structural example of the laminated structure of the solid-state image sensor in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるフレネルレンズの一構成例を示す断面図および上面図である。1A and 1B are a cross-sectional view and a top view showing a configuration example of a Fresnel lens according to a first embodiment of the present technology; 本技術の第1の実施の形態における輪帯部およびレンズ部の一構成例を示す断面図である。It is a sectional view showing an example of composition of a ring zone part and a lens part in a 1st embodiment of this art. 本技術の第1の実施の形態における画像欠損量の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the image defect amount in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるシミュレーション結果の一例を示す図である。It is a figure showing an example of a simulation result in a 1st embodiment of this art. 本技術の第1の実施の形態におけるパラメータの設定例を示す図である。It is a figure showing an example of a parameter setting in a 1st embodiment of this art. 本技術の第1の実施の形態におけるフレネルレンズの製造方法の一例を示す図である。It is a figure showing an example of a manufacturing method of a Fresnel lens in a 1st embodiment of this art. 本技術の第1の実施の形態と比較例とのそれぞれの製造方法の一例を示す図である。It is a figure which shows an example of each manufacturing method of 1st Embodiment of this technique, and a comparative example. 本技術の第1の実施の形態におけるフレネルレンズの製造方法の一例を示すフローチャートである。It is a flow chart which shows an example of a manufacturing method of a Fresnel lens in a 1st embodiment of this art. 本技術の第1の実施の形態における画像データの一例を示す図である。It is a figure showing an example of image data in a 1st embodiment of this art. 比較例におけるフレネルレンズの一例を示す上面図である。It is a top view which shows an example of the Fresnel lens in a comparative example. 本技術の第2の実施の形態におけるフレネルレンズの一構成例を示す断面図である。It is a sectional view showing an example of composition of a Fresnel lens in a 2nd embodiment of this art. 本技術の第2の実施の形態における研究用観察装置の一構成例を示す模式図である。It is a mimetic diagram showing one example of composition of an observation device for research in a 2nd embodiment of this art. 本技術の第3の実施の形態におけるフレネルレンズの一構成例を示す断面図である。It is a sectional view showing an example of composition of a Fresnel lens in a 3rd embodiment of this art. 本技術の第4の実施の形態におけるフレネルレンズの一構成例を示す上面図である。It is a top view showing one example of composition of a Fresnel lens in a 4th embodiment of this art. 本技術の第5の実施の形態におけるレンズ材の吐出までのフレネルレンズの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the Fresnel lens until discharge of a lens material in 5th Embodiment of this technique. 本技術の第5の実施の形態における透明モールドの離型までのフレネルレンズの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the Fresnel lens to mold release of a transparent mold in 5th Embodiment of this technique. 本技術の第5の実施の形態におけるフレネルレンズの製造方法の一例を示すフローチャートである。It is a flow chart which shows an example of a manufacturing method of a Fresnel lens in a 5th embodiment of this art. 本技術の第5の実施の形態におけるレンズ材の塗布までのフレネルレンズの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the Fresnel lens until the application|coating of the lens material in 5th Embodiment of this technique. 車両制御システムの概略的な構成例を示すブロック図である。1 is a block diagram showing a schematic configuration example of a vehicle control system; FIG. 撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit;
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(フレネルレンズの垂直距離を外側ほど大きくする例)
 2.第2の実施の形態(正の光学的パワーを有するフレネルレンズの垂直距離を外側ほど大きくする例)
 3.第3の実施の形態(非球面のレンズ部を含むフレネルレンズの垂直距離を外側ほど大きくする例)
 4.第4の実施の形態(角丸四角形のフレネルレンズの垂直距離を外側ほど大きくする例)
 5.第5の実施の形態(チップごとに、垂直距離が外側ほど大きいフレネルレンズを製造する例)
 6.移動体への応用例
Hereinafter, a form for carrying out the present technology (hereinafter referred to as an embodiment) will be described. Explanation will be given in the following order.
1. First Embodiment (Example in which the vertical distance of the Fresnel lens is increased toward the outside)
2. Second embodiment (an example in which the vertical distance of a Fresnel lens having positive optical power is increased toward the outside)
3. Third Embodiment (Example in which the vertical distance of a Fresnel lens including an aspherical lens portion is increased toward the outside)
4. Fourth embodiment (an example in which the vertical distance of a rounded square Fresnel lens is increased toward the outside)
5. Fifth Embodiment (Example of manufacturing a Fresnel lens whose vertical distance is larger toward the outer side for each chip)
6. Example of application to mobile objects
 <1.第1の実施の形態>
 [指紋認証装置の構成例]
 図1は、本技術の実施の形態における指紋認証装置700の一構成例を示す模式図である。当該指紋認証装置700は、指紋認証を行う装置であり、指紋を検出する指紋センサ部として、固体撮像装置100を含む。さらに、指紋認証装置700は、処理部702や表示部704を含む。処理部702は、固体撮像装置100によって検出された指紋に対して認証を行う装置であり、例えば、パーソナルコンピュータによって実現される。また、表示部704は、固体撮像装置100によって検出された指紋や認証結果を表示する装置であり、例えば、CRT(Cathode Ray Tube)ディスプレイ装置、液晶ディスプレイ(LCD)装置、OLED(Organic Light Emitting  Diode)装置等により実現される。
<1. First Embodiment>
[Configuration example of fingerprint authentication device]
FIG. 1 is a schematic diagram showing a configuration example of a fingerprint authentication device 700 according to an embodiment of the present technology. The fingerprint authentication device 700 is a device that performs fingerprint authentication, and includes the solid-state imaging device 100 as a fingerprint sensor section for detecting fingerprints. Furthermore, the fingerprint authentication device 700 includes a processing section 702 and a display section 704 . The processing unit 702 is a device that authenticates fingerprints detected by the solid-state imaging device 100, and is implemented by, for example, a personal computer. A display unit 704 is a device for displaying fingerprints and authentication results detected by the solid-state imaging device 100. For example, a CRT (Cathode Ray Tube) display device, a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) ) device or the like.
 詳細には、固体撮像装置100は、処理部702からの制御に従って、手指900の指紋を撮像し、画像データを、信号線を介して処理部702へ送信する。そして、処理部702は、受信した画像データと、予め処理部702に登録された、指紋の画像である登録情報とを比較して、認証の成否を判定する。そして、処理部702は、認証結果や撮像した指紋の画像を表示部704に出力する。 Specifically, the solid-state imaging device 100 captures an image of the fingerprint of the finger 900 under the control of the processing unit 702, and transmits the image data to the processing unit 702 via the signal line. Then, the processing unit 702 compares the received image data with registered information, which is a fingerprint image, registered in the processing unit 702 in advance, and determines whether the authentication is successful or not. Then, the processing unit 702 outputs the authentication result and the captured fingerprint image to the display unit 704 .
 また、固体撮像装置100は、カバーガラス400、フレネルレンズ200および固体撮像素子300を備える。カバーガラス400の手指900を載せるための面を上面として、カバーガラス400の下方にフレネルレンズ200が配置され、そのフレネルレンズ200の下方に固体撮像素子300が配置される。 The solid-state imaging device 100 also includes a cover glass 400 , a Fresnel lens 200 and a solid-state imaging device 300 . The Fresnel lens 200 is arranged below the cover glass 400 with the surface of the cover glass 400 on which fingers 900 are placed as the upper surface, and the solid-state imaging device 300 is arranged below the Fresnel lens 200 .
 フレネルレンズ200は、負の光学的パワーを有する。言い換えれば、フレネルレンズ200は、凹レンズとして機能する。このフレネルレンズ200の構造の詳細については後述する。なお、フレネルレンズ200を通過する光の光路は、同図において省略されている。 The Fresnel lens 200 has negative optical power. In other words, Fresnel lens 200 functions as a concave lens. The details of the structure of this Fresnel lens 200 will be described later. An optical path of light passing through the Fresnel lens 200 is omitted in the figure.
 固体撮像素子300は、例えば、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal‐Oxide‐Semiconductor)イメージセンサであり、フレネルレンズ200からの光を光電変換してアナログの電気信号を生成するものである。生成した電気信号は、処理回路等を用いて、画像データにおけるデジタルの画素データに変換される。 The solid-state imaging device 300 is, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor, which photoelectrically converts light from the Fresnel lens 200 to generate an analog electric signal. is. The generated electrical signal is converted into digital pixel data in the image data using a processing circuit or the like.
 なお、上記指紋認証装置700は、指紋の認証だけでなく、ユーザの静脈を認証する装置であってもよい。 It should be noted that the fingerprint authentication device 700 may be a device that authenticates not only the fingerprint but also the vein of the user.
 また、固体撮像装置100からの画像データを指紋認証に用いているが、この構成に限定されない。顔認証装置内に固体撮像装置100を設け、画像データを顔認証に用いることもできる。指紋認証、顔認証や静脈認証の装置以外の装置(例えば、虹彩認証装置)内に固体撮像装置100を設けることもできる。 Also, although image data from the solid-state imaging device 100 is used for fingerprint authentication, the configuration is not limited to this. A solid-state imaging device 100 can be provided in the face authentication device, and image data can be used for face authentication. The solid-state imaging device 100 can also be provided in a device (for example, an iris authentication device) other than a device for fingerprint authentication, face authentication, or vein authentication.
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子300の積層構造の一構成例を示す図である。この固体撮像素子300は、回路チップ302と、その回路チップ302に積層された画素チップ301とを備える。これらのチップは、例えば、Cu-Cu接合により電気的に接続される。なお、Cu-Cu接合の他、ビアやバンプにより接続することもできる。
[Configuration example of solid-state imaging device]
FIG. 2 is a diagram showing one configuration example of the laminated structure of the solid-state imaging device 300 according to the first embodiment of the present technology. This solid-state imaging device 300 includes a circuit chip 302 and a pixel chip 301 stacked on the circuit chip 302 . These chips are electrically connected, for example, by Cu--Cu bonding. In addition to Cu--Cu bonding, vias and bumps can also be used for connection.
 画素チップ301には、複数の画素310が二次元格子状に配列される。この画素チップ301において、有効な画素310(例えば、遮光されていない画素)が配列された有効領域は矩形である。有効領域以外には、無効な画素310(例えば、遮光された画素)が配列される。同図において一点鎖線で囲まれた領域は、有効領域を示す。以下、画素310を配列した行に平行な軸をX軸とし、画素310を配列した列に平行な軸をY軸とする。X軸およびY軸に垂直な軸をZ軸とする。Z軸は、光軸に平行な軸となる。画素310のそれぞれは、光電変換により画素信号を生成する。画素310を配列したX-Y平面は、固体撮像素子300の像面に該当する。 A plurality of pixels 310 are arranged in a two-dimensional grid on the pixel chip 301 . In this pixel chip 301, an effective area in which effective pixels 310 (for example, unshaded pixels) are arranged is rectangular. Invalid pixels 310 (for example, shaded pixels) are arranged in areas other than the valid area. A region surrounded by a dashed line in the figure indicates an effective region. Hereinafter, the axis parallel to the rows in which the pixels 310 are arranged is defined as the X axis, and the axis parallel to the columns in which the pixels 310 are arranged is defined as the Y axis. Let the axis perpendicular to the X-axis and the Y-axis be the Z-axis. The Z axis is an axis parallel to the optical axis. Each pixel 310 generates a pixel signal by photoelectric conversion. The XY plane on which the pixels 310 are arranged corresponds to the image plane of the solid-state imaging device 300 .
 回路チップ302には、画素310のそれぞれを駆動する駆動回路や、画素信号に対して所定の信号処理を行う信号処理回路が配置される。信号処理回路が行う信号処理としては、AD(Analog to Digital)変換処理や、CDS(Correlated Double Sampling)処理などが挙げられる。信号処理回路は、画像データを生成して処理部702へ送信する。 In the circuit chip 302, a drive circuit for driving each pixel 310 and a signal processing circuit for performing predetermined signal processing on pixel signals are arranged. Signal processing performed by the signal processing circuit includes AD (Analog to Digital) conversion processing, CDS (Correlated Double Sampling) processing, and the like. The signal processing circuit generates image data and transmits it to the processing unit 702 .
 なお、固体撮像素子300において、2チップを積層しているが、3チップ以上を積層することもできる。また、積層せずに、1つの半導体チップに固体撮像素子300内の回路や素子を配置することもできる。 Although two chips are stacked in the solid-state imaging device 300, three or more chips can be stacked. Also, the circuits and elements in the solid-state imaging device 300 can be arranged on one semiconductor chip without stacking.
 [フレネルレンズの構成例]
 図3は、本技術の第1の実施の形態におけるフレネルレンズ200の一構成例を示す断面図および上面図である。同図におけるaは、Y軸方向から見た際のフレネルレンズ200の断面図の一例であり、同図におけるbは、Z軸方向から見た際のフレネルレンズ200の上面図の一例である。
[Configuration example of Fresnel lens]
FIG. 3 is a cross-sectional view and a top view showing one configuration example of the Fresnel lens 200 according to the first embodiment of the present technology. In the figure, a is an example of a cross-sectional view of the Fresnel lens 200 when viewed from the Y-axis direction, and b is an example of a top view of the Fresnel lens 200 when viewed from the Z-axis direction.
 同図におけるaに例示するように、フレネルレンズ200の両面の一方は平面であり、他方の断面はのこぎり状である。フレネルレンズ200は、断面がのこぎり状の面が、カバーガラス400に対向し、平面が固体撮像素子300の像面に接するように配置される。カバーガラス400への方向を上方向とすると、平面が下面となる。 As illustrated in a in the figure, one of both surfaces of the Fresnel lens 200 is flat, and the other has a serrated cross section. The Fresnel lens 200 is arranged such that the sawtooth-shaped surface faces the cover glass 400 and the flat surface contacts the image plane of the solid-state imaging device 300 . Assuming that the direction toward the cover glass 400 is the upward direction, the plane is the bottom surface.
 上面において、のこぎりの刃のそれぞれは、上方から見て円状であるため、これらを以下、「輪帯」と称する。また、フレネルレンズ200のうち、輪帯が形成される上部を「輪帯部210」と称し、その下部を「レンズ部220」と称する。輪帯部210には、輪帯211および212などの複数の輪帯が形成される。同図におけるaの点線の曲線は、輪帯部210とレンズ部220との境界を示す。ただし、これらの輪帯部210およびレンズ部220は、一体となって形成されたものであり、接着剤などにより接続して形成されたものではない。  On the upper surface, each of the saw blades is circular when viewed from above, so they are hereinafter referred to as "zones". Further, in the Fresnel lens 200, the upper portion where the annular zone is formed is called "annular zone portion 210", and the lower portion thereof is called "lens portion 220". A plurality of ring zones such as ring zones 211 and 212 are formed in the ring zone portion 210 . A dotted curve indicated by a in FIG. However, the annular zone portion 210 and the lens portion 220 are integrally formed, and are not formed by connecting them with an adhesive or the like.
 レンズ部220の下面は、前述したように平面である。一方、レンズ部220の上面は、曲面である。上面から下面までの厚みは、レンズの中心を通る光軸からの距離が遠いほど厚くなる。同図におけるaの一点鎖線は、光軸を示す。また、レンズ部220の曲面は、例えば、球面である。言い換えれば、レンズ部220は、一方の面が球面の凹レンズである。 The lower surface of the lens portion 220 is flat as described above. On the other hand, the upper surface of the lens portion 220 is curved. The thickness from the upper surface to the lower surface increases as the distance from the optical axis passing through the center of the lens increases. The dashed-dotted line a in the figure indicates the optical axis. Moreover, the curved surface of the lens part 220 is, for example, a spherical surface. In other words, the lens portion 220 is a concave lens with one spherical surface.
 また、輪帯部210において、輪帯のそれぞれの断面形状は、レンズ部220の曲面上の2点を底辺とする略三角形である。ここで、「略三角形」は、辺の一部が厳密には直線でないが直線に近く、三角形に近似することができる図形を意味する。断面が略三角形であるため、輪帯のそれぞれは、プリズムとして機能する。 In addition, in the ring zone portion 210 , the cross-sectional shape of each ring zone is a substantially triangular shape with two points on the curved surface of the lens portion 220 as bases. Here, the term "substantially triangular" means a figure whose sides are not strictly straight but are close to straight and can be approximated to a triangle. Since the cross section is approximately triangular, each ring zone functions as a prism.
 中心からn(nは、整数)番目の輪帯において、略三角形の底辺に対する対頂点と、レンズ部220の下面(すなわち、平面)との間の距離を垂直距離H(言い換えれば、厚み)とする。この垂直距離Hは、輪帯が光軸から離れるほど大きな値に設定される。言い換えれば、フレネルレンズ200の厚みは、光軸から離れるほど厚くなる。 In the n-th ring zone (n is an integer) from the center, the vertical distance H n (in other words, thickness) and This vertical distance Hn is set to a larger value as the annular zone is further away from the optical axis. In other words, the thickness of the Fresnel lens 200 increases with increasing distance from the optical axis.
 また、同図におけるbに例示するように、輪帯211および212などの複数の輪帯は、Z軸方向から見て、光軸の周囲に同心円状に形成される。同図における黒丸は、光軸の通るレンズ中心を示す。一般的なフレネルレンズは、光軸方向から見て円形であるが、下方の固体撮像素子300の有効領域は矩形(正方形や長方形)である。このため、その有効領域の境界に沿ってフレネルレンズ200も矩形にトリミングされている。この形状により、円形の場合よりもフレネルレンズ200のサイズを小さくすることができる。 Also, as illustrated in b in the figure, a plurality of ring zones such as ring zones 211 and 212 are formed concentrically around the optical axis when viewed from the Z-axis direction. A black dot in the figure indicates the lens center through which the optical axis passes. A general Fresnel lens has a circular shape when viewed from the optical axis direction, but the effective area of the lower solid-state imaging device 300 is rectangular (square or rectangle). For this reason, the Fresnel lens 200 is also trimmed into a rectangle along the boundary of its effective area. This shape allows the size of the Fresnel lens 200 to be smaller than if it were circular.
 まとめると、レンズ部220の下面は平面であり、上面は曲面(球面など)である。また、輪帯211および212などの複数の輪帯は光軸の周囲に同心円状に形成される。これらの輪帯のそれぞれは、レンズ部220の曲面上の2点を結ぶ線分を底辺とする略三角形の断面を有する。 In summary, the lower surface of the lens part 220 is flat, and the upper surface is curved (such as a spherical surface). A plurality of ring zones such as ring zones 211 and 212 are formed concentrically around the optical axis. Each of these annular zones has a substantially triangular cross section whose base is a line segment connecting two points on the curved surface of the lens portion 220 .
 また、レンズ部220の下面(平面)から対頂点までの垂直距離Hは、光軸から離れるほど大きな値に設定される。例えば、最も内側の輪帯の垂直距離をHとし、内側から2番目の輪帯の垂直距離をHとし、最も外側の輪帯の垂直距離をHとすると、これらの間には次の式が成立する。
  H<H<・・・・<H             ・・・式1
Also, the vertical distance Hn from the lower surface (flat surface) of the lens portion 220 to the opposite vertex is set to a larger value as the distance from the optical axis increases. For example, if the vertical distance of the innermost zone is H1, the vertical distance of the second innermost zone is H2 , and the vertical distance of the outermost zone is HN , then the distance between them is: formula is established.
H 1 <H 2 <...<H N ... Formula 1
 式1に例示するように、複数の輪帯のそれぞれの垂直距離は互いに異なる。 As exemplified in Equation 1, the vertical distances of each of the plurality of ring zones are different from each other.
 なお、輪帯のそれぞれの垂直距離の間の関係は、式1に限定されない。例えば、次の式のように、途中から垂直距離が徐々に高くなるように設定することもできる。
  H=H=・・・=H47<H48<H49<・・・<H・・・式2
Note that the relationship between the respective vertical distances of the ring zones is not limited to Equation 1. For example, as shown in the following formula, the vertical distance can be set to gradually increase from the middle.
H1=H2 = ...= H47 < H48 < H49 <...< HN ... Formula 2
 式2において、H47に対応する半径以下の内側の輪帯のそれぞれの垂直距離は同一である。また、H47に対応する半径より大きな半径の外側の輪帯のそれぞれの垂直距離は互いに異なる。 In Equation 2, the vertical distance of each of the inner zones less than the radius corresponding to H 47 is the same. Also, the respective vertical distances of the outer zones of radius greater than the radius corresponding to H 47 are different from each other.
 あるいは、次の式が成立するように、垂直距離のそれぞれの値を設定することもできる。
  H=H<H=H<・・・HN-1=H      ・・・式3
Alternatively, each value of the vertical distance can be set such that the following equation holds.
H 1 =H 2 <H 3 =H 4 < H N−1 =H N Equation 3
 式3において、1番目および2番目の輪帯のそれぞれの垂直距離は同一である。また、それらよりも半径の大きな3番目および4番目の輪帯のそれぞれの垂直距離は同一である。1番目および2番目の垂直距離と、3番目および4番目の垂直距離とは互いに異なる。以下、同様に、隣接する一対の輪帯のそれぞれの垂直距離は同一に設定される。 In Equation 3, the vertical distances of the first and second zones are the same. Also, the vertical distances of the third and fourth rings, which have larger radii than them, are the same. The first and second vertical distances are different from the third and fourth vertical distances. Thereafter, similarly, the vertical distances of a pair of adjacent ring zones are set to be the same.
 同図に例示するように、垂直距離Hを光軸から離れるほど大きな値にすることにより、後述する製造方法によりフレネルレンズ200を製造する際に、気泡が混入しにくくなる。 As illustrated in the figure, by increasing the vertical distance Hn as the distance from the optical axis increases, air bubbles are less likely to enter when the Fresnel lens 200 is manufactured by the manufacturing method described later.
 図4は、本技術の第1の実施の形態における輪帯部210およびレンズ部220の一構成例を示す断面図である。輪帯部210内の複数の輪帯を上方に平行移動させて内側の壁面を繋げると、曲率Kが正の値となる球面(言い換えれば、凹レンズの球面)が形成される。同図における太い点線は、曲率Kが正の値の球面を示す。 FIG. 4 is a cross-sectional view showing one configuration example of the annular zone portion 210 and the lens portion 220 according to the first embodiment of the present technology. When a plurality of ring zones in the ring zone portion 210 are translated upward and the inner wall surfaces are connected, a spherical surface having a positive curvature K (in other words, a spherical surface of a concave lens) is formed. A thick dotted line in the figure indicates a spherical surface whose curvature K has a positive value.
 また、輪帯のそれぞれは、前述したように略三角形の断面を有する。この略三角形の底辺から対頂点までの高さをhとする。複数の輪帯のそれぞれの高さhは、例えば、同一の値に設定される。この場合、仮に、それらの輪帯を平面上に形成すると、その平面からの垂直距離Hは、高さhと同じ値になり、全ての輪帯で同一になる。 Moreover, each of the annular zones has a substantially triangular cross section as described above. Let h be the height from the base of this approximate triangle to the opposite vertex. For example, the height h of each ring zone is set to the same value. In this case, if those zones are formed on a plane, the vertical distance Hn from that plane will be the same value as the height h, and will be the same for all zones.
 しかしながら、前述したように、レンズ部220は凹レンズの形状を有し、その曲面に、複数の輪帯が形成される。このため、レンズ部220の下面(平面)からの垂直距離Hは、光軸から遠いほど大きくなる。このように、フレネルレンズ200は、凹レンズ上に、一般的なフレネルレンズを形成した形状と捉えることもできる。 However, as described above, the lens portion 220 has a concave lens shape, and a plurality of annular zones are formed on its curved surface. Therefore, the vertical distance Hn from the lower surface (flat surface) of the lens portion 220 increases as the distance from the optical axis increases. In this way, the Fresnel lens 200 can also be regarded as having a shape in which a general Fresnel lens is formed on a concave lens.
 なお、複数の輪帯のそれぞれの高さhを同一としているが、これらを互いに異なる値にすることもできる。この場合であっても、式1から式3のいずれかを満たすように、レンズ部220の曲面の形状が調整される。 It should be noted that although the heights h of the plurality of ring zones are the same, they can be set to different values. Even in this case, the shape of the curved surface of the lens portion 220 is adjusted so as to satisfy any one of Equations 1 to 3.
 図5は、本技術の第1の実施の形態における画像欠損量の算出方法を説明するための図である。複数の輪帯のうち、ある輪帯211に着目する。この輪帯211をY軸方向から見た断面は、略三角形であり、その頂点をA、B、Cとする。頂点BおよびCは、レンズ部220の曲面上の点である。同図における一点鎖線は、レンズ部220の曲面を示す。なお、一点鎖線は、巨視的には弧を描いているが、微視的には直線に近いため、同図では直線により表されている。また、内側の辺ACは、巨視的には曲率Kの弧の一部であるが、微視的には直線に近いため、同図では、直線により表されている。辺ACが厳密には直線でないため、輪帯211の断面は、三角形に近い略三角形となる。 FIG. 5 is a diagram for explaining the method of calculating the image loss amount in the first embodiment of the present technology. Attention is paid to a ring zone 211 among the plurality of ring zones. A cross section of the annular zone 211 viewed from the Y-axis direction is substantially triangular, and its vertices are A, B, and C. As shown in FIG. Vertices B and C are points on the curved surface of lens portion 220 . The dashed-dotted line in the figure indicates the curved surface of the lens portion 220 . In addition, although the dashed-dotted line draws an arc macroscopically, since it is microscopically close to a straight line, it is represented by a straight line in the figure. Also, the inner side AC is macroscopically a part of an arc with a curvature K, but is microscopically close to a straight line, so it is represented by a straight line in the figure. Strictly speaking, the side AC is not a straight line, so the cross section of the annular zone 211 is a substantially triangular shape that is close to a triangular shape.
 辺BCを略三角形の底辺とする。この場合、頂点Aは、その底辺に対する対頂点となる。また、辺ABは、光軸から遠い方の外側の壁面に該当し、辺ACは、光軸に近い方の内側の壁面に該当する。内側の壁面を連続させると凹レンズの球面となる場合、辺ACより辺ABの方が短くなる。また、X軸やY軸の方向において、固体撮像素子300の像面のうち、辺BC(底辺)に対向する部分には、少なくとも1つ以上の所定数の画素が配列される。他の輪帯についても同様である。言い換えれば、輪帯のそれぞれは、所定数の画素を跨ぐ。 Let the side BC be the base of the approximate triangle. In this case, vertex A is the opposite vertex to its base. Side AB corresponds to the outer wall surface farther from the optical axis, and side AC corresponds to the inner wall surface closer to the optical axis. When the inner wall surface is continuous to form a spherical surface of a concave lens, the side AB is shorter than the side AC. In addition, at least one or more predetermined number of pixels are arranged in a portion of the image plane of the solid-state imaging device 300 facing the side BC (bottom side) in the X-axis and Y-axis directions. The same applies to other ring zones. In other words, each ring spans a predetermined number of pixels.
 次に、辺ABの周囲に着目する。頂点Aから固体撮像素子300の像面に引いた垂線と、その像面の交点をP2とし、その垂線と辺BCとの交点をDとする。また、頂点Bから像面に引いた垂線と像面との交点をP0とする。 Next, focus on the area around side AB. Let P2 be the intersection of a perpendicular drawn from vertex A to the image plane of the solid-state imaging device 300 and the image plane, and D be the intersection of the perpendicular and side BC. Also, let P0 be the intersection of a perpendicular line drawn from the vertex B to the image plane and the image plane.
 また、フレネルレンズ200の画角を2α(αは実数)とする。この場合、頂点Aへの入射光501の光路と、光軸とのなす角度は半画角αとなる。また、頂点Bへの入射光502の光路は、入射光501と平行である。 Also, let the angle of view of the Fresnel lens 200 be 2α (α is a real number). In this case, the angle formed by the optical path of the incident light 501 to the vertex A and the optical axis is the half angle of view α. Also, the optical path of the incident light 502 to the vertex B is parallel to the incident light 501 .
 空気の屈折率を約1とし、フレネルレンズ200の屈折率を1より大きな値(1.5など)とすると、フレネルの法則により、入射光501および502のそれぞれの一部は、αより小さな屈折角度で屈折する。入射光502に対応する屈折光504の光路と像面との交点をP1とし、入射光501に対応する屈折光503の光路と像面との交点をP3とする。P0からP1までの水平距離をx1とし、P2からP3までの水平距離をx2とすると、x1はx2よりも小さくなる。 Assuming that the refractive index of air is about 1 and the refractive index of Fresnel lens 200 is greater than 1 (such as 1.5), Fresnel's law dictates that a portion of each of incident light 501 and 502 will be refracted less than α. Bend at an angle. Let P1 be the intersection of the optical path of the refracted light 504 corresponding to the incident light 502 and the image plane, and let P3 be the intersection of the optical path of the refracted light 503 corresponding to the incident light 501 and the image plane. Assuming that the horizontal distance from P0 to P1 is x1 and the horizontal distance from P2 to P3 is x2, x1 is smaller than x2.
 ここで、仮にフレネルレンズ200の上面がのこぎり状でなく、凹レンズの球面であれば、その球面上の光の入射点を起点とする屈折光の光路と像面との交点から、その入射点を通る垂線と像面との交点までの水平距離xは、外側ほど大きくなる。しかし、フレネルレンズ200の上面はのこぎり状であるため、上述のように、外側の水平距離x1の方が水平距離x2より小さくなる。この結果、画像データにおいて、輪帯に沿って円状の線が生じる。この線の幅を以下、「画像欠損量」と称する。この画像欠損量を算出する方法について考える。 Here, if the upper surface of the Fresnel lens 200 is not serrated but is a spherical surface of a concave lens, the incident point is determined from the intersection of the optical path of the refracted light starting from the incident point of the light on the spherical surface and the image plane. The horizontal distance x to the intersection of the perpendicular line passing through and the image plane increases toward the outside. However, since the top surface of the Fresnel lens 200 is serrated, the outer horizontal distance x1 is smaller than the horizontal distance x2, as described above. As a result, in the image data, a circular line is generated along the annular zone. The width of this line is hereinafter referred to as "image defect amount". Consider a method for calculating this image loss amount.
 線分ADを上方に延長し、その延長線上の所定の点をEとする。Eを通過し、X軸に平行な直線と入射光501の光路との交点をFとし、その直線と入射光502の光路との交点をGとする。辺FGの長さLが、画像欠損量に該当する。また、点Fから、入射光502の光路に引いた垂線と、その光路との交点をHとする。 Extend the line segment AD upward, and let E be a predetermined point on the extension line. Let F be the point of intersection of a straight line passing through E and parallel to the X axis and the optical path of the incident light 501 , and let G be the point of intersection of the straight line and the optical path of the incident light 502 . The length L of the side FG corresponds to the amount of image loss. Also, let H be the intersection of a perpendicular line drawn from the point F to the optical path of the incident light 502 and the optical path.
 ∠EFAは、三角形の内角の和の公式より、90°-αである。入射光501、502は、平行であるため、∠FGHも90°-αである。したがって、辺FHの長さMは、次の式により表すことができる。
  M=L×sin(90°-α)          ・・・式4
上式において、sin()は、正弦関数を示す。また、M、Lの単位は、例えば、マイクロメートル(μm)であり、αの単位は、例えば、度である。
∠EFA is 90°-α from the formula for the sum of interior angles of a triangle. Since the incident lights 501 and 502 are parallel, ∠FGH is also 90°-α. Therefore, the length M of the side FH can be expressed by the following equation.
M=L×sin(90°−α) Equation 4
In the above equation, sin() denotes a sine function. Also, the units of M and L are, for example, micrometers (μm), and the unit of α is, for example, degrees.
 一方、外側の辺ABと光軸とのなす角度である∠BADをテーパー角βとする。また、辺ADの長さが、前述の高さhに該当する。このため、余弦関数をcоs()とすると、辺ABは、h/cоsβとなる。なお、頂点AからP2までの距離は、前述の垂直距離Hに該当する。 On the other hand, ∠BAD, which is the angle between the outer side AB and the optical axis, is defined as the taper angle β. Also, the length of the side AD corresponds to the height h described above. Therefore, if the cosine function is cos(), the side AB is h/cosβ. The distance from the vertex A to P2 corresponds to the vertical distance Hn described above.
 また、∠BAEは、三角形の外角の定理より、180°-βとなる。ここで、頂点Aから入射光502の光路に引いた垂線と、その光路との交点をIとすると、∠BAEが180°-βであるため、∠IABは、90°-α-βとなる。∠IABが90°-α-βであるため、三角形の内角の和の公式より、∠IBAは、α+βとなる。入射光501、502は平行であるため、辺AIの長さも辺FHと同じ値(すなわち、M)である。∠IBAがα+βで、辺ABがh/cоsβであるため、Mは、次の式により表すことができる。
  M=h×sin(α+β)/cоsβ       ・・・式5
上式において、hの単位は、例えば、マイクロメートル(μm)であり、βの単位は、例えば、度である。
Also, ∠BAE is 180°-β from the exterior angle theorem of a triangle. Here, if the perpendicular drawn from the vertex A to the optical path of the incident light 502 and the intersection point with the optical path are I, ∠BAE is 180°-β, so ∠IAB is 90°-α-β. . Since ∠IAB is 90°-α-β, ∠IBA is α+β from the formula for the sum of interior angles of a triangle. Since the incident lights 501 and 502 are parallel, the length of side AI is also the same value as side FH (ie, M). Since ∠IBA is α+β and side AB is h/cosβ, M can be expressed by the following equation.
M=h×sin(α+β)/cosβ Equation 5
In the above formula, the unit of h is, for example, micrometers (μm), and the unit of β is, for example, degrees.
 式4および式5からMを消去して変形すると、次の式が得られる。
  {h×sin(α+β)}/(cоsβcоsα)=L・・・式6
Eliminating M from Equations 4 and 5 and transforming them yields the following equations.
{h×sin(α+β)}/(cosβcosα)=L Equation 6
 式6より、画像欠損量Lは、輪帯の高さh、半画角α、および、テーパー角βによって規定される。半画角αを固定値とし、輪帯のそれぞれの高さhを同一に揃えた場合、通常、外側ほどテーパー角βが大きくなり、その結果、画像欠損量Lが大きくなる。また、半画角αを固定値とし、輪帯のそれぞれの高さhを同一に揃えない場合、高さhが高いほど、画像欠損量Lが大きくなる。 From Equation 6, the image loss amount L is defined by the ring zone height h, the half angle of view α, and the taper angle β. When the half angle of view α is a fixed value and the heights h of the ring zones are the same, the taper angle β usually increases toward the outer side, and as a result, the image loss amount L increases. Further, when the half angle of view α is fixed and the heights h of the annular zones are not uniform, the higher the height h, the larger the image defect amount L becomes.
 そして、画像欠損量Lが大きいほど、画像データの画質が低下し、指紋認証などを行う際の精度が低下する。精度を一定以上にするための画像欠損量Lの許容値をTとする。この場合、輪帯のそれぞれについて、高さh、半画角α、および、テーパー角βは、次の式を満たす値に設定される。
  {h×sin(α+β)}/(cоsβcоsα)<T・・・式7
As the image loss amount L increases, the image quality of the image data deteriorates, and the accuracy of performing fingerprint authentication or the like decreases. Let T be the permissible value of the image loss amount L for achieving a certain level of accuracy. In this case, the height h, the half angle of view α, and the taper angle β are set to values that satisfy the following equations for each ring zone.
{h×sin(α+β)}/(cosβcosα)<T Expression 7
 式7を満たすため、半画角αが大きいほど、高さhを高くすることが好ましい。 In order to satisfy Expression 7, it is preferable to increase the height h as the half angle of view α increases.
 図6は、本技術の第1の実施の形態におけるシミュレーション結果の一例を示す図である。同図に例示するように、入射光の一部は、フレネルレンズ200の表面で反射し、その反射光は、カバーガラス400の上面(言い換えれば、ディスプレー表面)で再反射する。再反射した光は、フレネルレンズ200の表面で再反射する。 FIG. 6 is a diagram showing an example of simulation results in the first embodiment of the present technology. As illustrated in the figure, part of the incident light is reflected by the surface of the Fresnel lens 200, and the reflected light is re-reflected by the upper surface of the cover glass 400 (in other words, the display surface). The re-reflected light is re-reflected on the surface of Fresnel lens 200 .
 図7は、本技術の第1の実施の形態におけるパラメータの設定例を示す図である。ケース1において、半画角αを80度とし、最小のテーパー角βを5度とし、全ての輪帯の高さhを10マイクロメーター(μm)に揃えた。このケース1では、式6より、最も大きな画像欠損量として、57.6マイクロメートル(μm)が算出された。また、このケース1について、シミュレーションの結果、最も大きな画像欠損量として、66マイクロメートル(μm)が算出された。式6による理論値は、シミュレーション結果に近い値となっている。 FIG. 7 is a diagram showing a parameter setting example in the first embodiment of the present technology. In Case 1, the half angle of view α was set to 80 degrees, the minimum taper angle β was set to 5 degrees, and the height h of all ring zones was made uniform to 10 micrometers (μm). In this case 1, from Equation 6, 57.6 micrometers (μm) was calculated as the largest image loss amount. As a result of simulation, 66 micrometers (μm) was calculated as the largest image defect amount for this case 1 . The theoretical value obtained by Equation 6 is close to the simulation result.
 また、ケース2において、半画角αと最小のテーパー角βとをケース1と同一にし、全ての輪帯の高さhを30マイクロメーター(μm)に揃えた。このケース2では、式6より、最も大きな画像欠損量として、172.8マイクロメートル(μm)が算出された。また、このケース2について、シミュレーションの結果、最も大きな画像欠損量として、177マイクロメートル(μm)が算出された。式6による理論値は、シミュレーション結果に近い値となっている。 Also, in case 2, the half angle of view α and the minimum taper angle β were set to be the same as in case 1, and the height h of all ring zones was adjusted to 30 micrometers (μm). In this case 2, 172.8 micrometers (μm) was calculated as the largest image loss amount from Equation 6. As a result of the simulation, 177 micrometers (μm) was calculated as the largest image defect amount for this case 2 . The theoretical value obtained by Equation 6 is close to the simulation result.
 また、ケース3において、半画角αと最小のテーパー角βとをケース1と同一にし、全ての輪帯の高さhを7マイクロメーター(μm)に揃えた。このケース3では、式5より、最も大きな画像欠損量として、40.3マイクロメートル(μm)が算出された。 Also, in case 3, the half angle of view α and the minimum taper angle β were the same as in case 1, and the height h of all ring zones was adjusted to 7 micrometers (μm). In Case 3, the largest image loss amount was calculated as 40.3 micrometers (μm) from Equation 5.
 例えば、指紋認証に固体撮像装置100を用いる場合を想定する。一般に指紋の凹凸のピッチは、400マイクロメートル(μm)である。一定以上の精度を実現するのに、そのピッチの1/10である40マイクロメートル(μm)を許容値Tとして設定する必要があるものとする。この場合、ケース1乃至3の算出結果より、高さhを7マイクロメーター(μm)未満とすることが望ましい。 For example, assume a case where the solid-state imaging device 100 is used for fingerprint authentication. Generally, the pitch of the fingerprint ridges is 400 micrometers (μm). Assume that the allowable value T must be set to 40 micrometers (μm), which is 1/10 of the pitch, in order to achieve a certain level of accuracy. In this case, from the calculation results of Cases 1 to 3, it is desirable to set the height h to less than 7 micrometers (μm).
 なお、ケース1乃至3では、高さhのみを調整しているが、式7を満たすために高さhの代わりに、半画角αやテーパー角βを調整することもできる。また、高さh、半画角αおよびテーパー角βのうち2つ以上を調整することもできる。 In cases 1 to 3, only the height h is adjusted, but instead of the height h, the half angle of view α and the taper angle β can also be adjusted in order to satisfy Equation 7. Also, two or more of the height h, the half angle of view α, and the taper angle β can be adjusted.
 [フレネルレンズの製造方法]
 図8は、本技術の第1の実施の形態におけるフレネルレンズ200の製造方法の一例を示す図である。同図におけるaに例示するように、フレネルレンズ200の製造システムは、スピンコート法などにより、センサー基板610の上面に液状のレンズ材620を塗布する。ここで、センサー基板610は、複数のチップにダイシングする前の基板であり、フレネルレンズ200の形成前に、基板上に画素などの回路が形成される。また、レンズ材620として、例えば、光硬化性(紫外線硬化性など)の樹脂(アクリル樹脂やエポキシ樹脂など)が用いられる。光硬化性の樹脂を用いることにより、樹脂を硬化させる際に熱処理が不要となる。
[Manufacturing method of Fresnel lens]
FIG. 8 is a diagram showing an example of a method for manufacturing the Fresnel lens 200 according to the first embodiment of the present technology. As illustrated in a in the figure, the Fresnel lens 200 manufacturing system applies a liquid lens material 620 to the upper surface of the sensor substrate 610 by spin coating or the like. Here, the sensor substrate 610 is a substrate before being diced into a plurality of chips, and circuits such as pixels are formed on the substrate before forming the Fresnel lens 200 . As the lens material 620, for example, a photocurable (ultraviolet curable, etc.) resin (acrylic resin, epoxy resin, etc.) is used. By using a photocurable resin, heat treatment is not required when the resin is cured.
 次に、同図におけるbに例示するように、製造システムは、チップに対応する領域ごとに、レンズ材620に透明モールド630を押し付ける(すなわち、型押しする)。ここで、透明モールド630は、輪帯部631およびレンズ部632を備え、型押しの際は、輪帯部631が下側となる。 Next, as illustrated in b in the figure, the manufacturing system presses (that is, embosses) a transparent mold 630 onto the lens material 620 for each region corresponding to the chip. Here, the transparent mold 630 has a ring zone portion 631 and a lens portion 632, and the ring zone portion 631 is on the lower side during embossing.
 レンズ部632は、一方が平面で、他方が曲面(球面など)の凸レンズの形状を有する。輪帯部631には、複数の輪帯が光軸の周囲に同心円状に形成される。これらの輪帯のそれぞれは、レンズ部632の曲面上の2点を結ぶ線分を底辺とする略三角形の断面を有する。また、レンズ部632の下面(平面)から底辺の対頂点までの垂直距離(言い換えれば、厚み)は、光軸から離れるほど小さい。また、複数の輪帯のそれぞれの内側の壁面を繋げると、曲率Kが負の値となる球面(言い換えれば、凸レンズの球面)が形成される。なお、透明モールド630は、特許請求の範囲に記載のモールドの一例である。 The lens portion 632 has a convex lens shape with one flat surface and the other curved surface (such as a spherical surface). A plurality of annular zones are formed concentrically around the optical axis in the annular zone portion 631 . Each of these annular zones has a substantially triangular cross section whose base is a line segment connecting two points on the curved surface of the lens portion 632 . Also, the vertical distance (in other words, thickness) from the lower surface (flat surface) of the lens portion 632 to the opposite vertex of the base decreases as the distance from the optical axis increases. Also, connecting the inner wall surfaces of each of the plurality of annular zones forms a spherical surface with a negative curvature K (in other words, the spherical surface of a convex lens). In addition, the transparent mold 630 is an example of the mold described in the claims.
 そして、同図におけるcに例示するように、製造システムは、透明モールド630を介して所定波長の光(紫外線など)を上方から照射し、レンズ材620を硬化させる。 Then, as exemplified by c in the figure, the manufacturing system irradiates light of a predetermined wavelength (such as ultraviolet light) from above through the transparent mold 630 to harden the lens material 620 .
 続いて同図におけるdに例示するように、製造システムは、透明モールド630を離型し、ダイシングなどの各種の工程を行う。 Subsequently, as illustrated in d in the figure, the manufacturing system releases the transparent mold 630 and performs various processes such as dicing.
 同図に例示したように、モールドを樹脂に押し付けて所望の形状を形成する製造方法は、インプリント法と呼ばれる。インプリント法により、フレネルレンズ200を効率的に製造することができる。 As shown in the figure, a manufacturing method in which a mold is pressed against a resin to form a desired shape is called an imprint method. The imprint method can efficiently manufacture the Fresnel lens 200 .
 図9は、本技術の第1の実施の形態と比較例とのそれぞれの製造方法の一例を示す図である。同図におけるaおよびbは、本技術の第1の実施の形態における透明モールド630の型押し前後の断面図の一例である。同図におけるcおよびdは、比較例における透明モールド635の型押し前後の断面図の一例である。 FIG. 9 is a diagram showing an example of a manufacturing method for each of the first embodiment and the comparative example of the present technology. a and b in the figure are examples of cross-sectional views before and after embossing of the transparent mold 630 in the first embodiment of the present technology. c and d in the figure are examples of cross-sectional views before and after stamping of the transparent mold 635 in the comparative example.
 同図におけるaに例示するように、透明モールド630の輪帯のそれぞれの垂直距離は光軸から離れるほど小さい。言い換えれば、透明モールド630の厚みは、光軸から離れるほど薄い。このため、型押しの際に、透明モールド630の中央部が最初にレンズ材に接し、下方への押し付けが進むにつれて、接する部分が内側から外側へ広がっていく。このため、型押しの際に空気を外部に逃がすことができ、レンズ材への気泡の混入(いわゆる、泡がみ)を抑制することができる。 As exemplified by a in the figure, the vertical distance between the annular zones of the transparent mold 630 decreases as the distance from the optical axis increases. In other words, the thickness of the transparent mold 630 becomes thinner with increasing distance from the optical axis. Therefore, during embossing, the central portion of the transparent mold 630 first comes into contact with the lens material, and as the downward pressing progresses, the contacting portion spreads from the inside to the outside. Therefore, air can escape to the outside during embossing, and air bubbles can be prevented from entering the lens material (so-called bubble entrapment).
 そして、同図におけるbに例示するように、輪帯のそれぞれの垂直距離(厚み)が、光軸から離れるほど大きくなるフレネルレンズ200が形成される。 Then, as exemplified by b in the figure, a Fresnel lens 200 is formed in which the vertical distance (thickness) of each annular zone increases with increasing distance from the optical axis.
 また、透明モールド630の中央部が出っ張る構造であるため、透明モールド630を洗浄しやすくなり、残渣欠陥の発生を抑制することができる。これにより、歩留まりを向上させることができる。 In addition, since the transparent mold 630 has a structure in which the central portion protrudes, the transparent mold 630 can be easily cleaned, and the occurrence of residue defects can be suppressed. Thereby, the yield can be improved.
 ここで、輪帯のそれぞれの垂直距離(厚み)が同一のフレネルレンズを比較例として想定する。 Here, a Fresnel lens in which the vertical distance (thickness) of each ring zone is the same is assumed as a comparative example.
 同図におけるcに例示するように、比較例のフレネルレンズを製造する際は、輪帯のそれぞれの垂直距離(厚み)が同一の透明モールド635が用いられる。この形状では、型押しの際に、空気の逃げ道が無くなってしまう。このため、同図におけるdに例示するように、泡がみが生じるおそれがある。 As illustrated in c in the figure, when manufacturing the Fresnel lens of the comparative example, a transparent mold 635 having the same vertical distance (thickness) of each annular zone is used. With this shape, there is no way for air to escape during embossing. For this reason, there is a risk that bubbles will form, as indicated by d in FIG.
 また、比較例の透明モールド635では、透明モールド630よりも洗浄しにくいため、残渣欠陥が生じるおそれがあり、歩留まりの向上が困難である。 In addition, since the transparent mold 635 of the comparative example is more difficult to clean than the transparent mold 630, residue defects may occur, making it difficult to improve the yield.
 図10は、本技術の第1の実施の形態におけるフレネルレンズ200の製造方法の一例を示すフローチャートである。製造システムは、スピンコート法などにより、センサー基板610の上面に液状のレンズ材620を塗布する(ステップS901)。 FIG. 10 is a flow chart showing an example of a method for manufacturing the Fresnel lens 200 according to the first embodiment of the present technology. The manufacturing system applies the liquid lens material 620 to the upper surface of the sensor substrate 610 by spin coating or the like (step S901).
 次に、製造システムは、チップに対応する領域ごとに、透明モールド630の型押しを行う(ステップS902)。そして、製造システムは、紫外線などを照射し、レンズ材620を硬化させる(ステップS903)。続いて製造システムは、透明モールド630を離型し(ステップS904)、ダイシングなどの各種の工程を行ってフレネルレンズ200の製造を終了する。 Next, the manufacturing system stamps the transparent mold 630 for each area corresponding to the chip (step S902). Then, the manufacturing system irradiates ultraviolet rays or the like to harden the lens material 620 (step S903). Subsequently, the manufacturing system releases the transparent mold 630 (step S904), performs various processes such as dicing, and finishes manufacturing the Fresnel lens 200. FIG.
 図11は、本技術の第1の実施の形態における画像データの一例を示す図である。同図におけるaは、高さhを10マイクロメートル(μm)とした際の画像データの一例である。同図におけるbは、高さhを130マイクロメートル(μm)とした際の画像データの一例である。 FIG. 11 is a diagram showing an example of image data according to the first embodiment of the present technology. In the figure, a is an example of image data when the height h is 10 micrometers (μm). b in the figure is an example of image data when the height h is 130 micrometers (μm).
 同図におけるaおよびbに例示するように、高さhが高くなると、円状の線の幅(すなわち、画像欠損量)が大きくなる。 As illustrated by a and b in the figure, the width of the circular line (that is, the amount of image loss) increases as the height h increases.
 また、前述したように、フレネルレンズ200では、泡がみや残渣欠陥による画像欠陥が抑制されるため、比較例よりも画像データの画質を向上させることができる。 In addition, as described above, the Fresnel lens 200 suppresses image defects due to bubble inclusions and residue defects, so the image quality of image data can be improved more than in the comparative example.
 図12は、比較例におけるフレネルレンズの一例を示す上面図である。同図に例示するように、比較例では、泡がみや残渣欠陥が生じるおそれがある。このため、画像欠陥が生じて画像データの画質が低下する。 FIG. 12 is a top view showing an example of a Fresnel lens in a comparative example. As exemplified in the figure, in the comparative example, there is a possibility that bubble entrapment and residue defects may occur. As a result, image defects occur and the image quality of the image data deteriorates.
 このように、本技術の第1の実施の形態では、光軸から離れるほど垂直距離が大きくなる複数の輪帯をフレネルレンズ200に形成するため、インプリント法により製造する際に気泡の混入(泡がみ)を抑制することができる。これにより、画像データの画質を向上させることができる。 As described above, in the first embodiment of the present technology, since a plurality of ring zones having a vertical distance that increases with increasing distance from the optical axis is formed in the Fresnel lens 200, air bubbles are mixed ( foam) can be suppressed. Thereby, the image quality of image data can be improved.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、フレネルレンズ200は、負の光学的パワーを有するレンズ(凹レンズ)として機能していたが、この構成では、正の光学的パワーが要求される用途への適用が困難である。この第2の実施の形態のフレネルレンズ200は、正の光学的パワーを有する点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the Fresnel lens 200 functions as a lens (concave lens) having negative optical power. is difficult. The Fresnel lens 200 of this second embodiment differs from that of the first embodiment in that it has positive optical power.
 図13は、本技術の第2の実施の形態におけるフレネルレンズ200の一構成例を示す断面図である。この第2の実施の形態のフレネルレンズ200における複数の輪帯を上方に平行移動させて内側の壁面を繋げると、曲率Kが負の値となる球面(言い換えれば、凸レンズの球面)が形成される。このため、フレネルレンズ200は、正の光学的パワーを有する。同図の構成のフレネルレンズ200を用いた固体撮像装置100は、例えば、研究用観察装置に適用することができる。 FIG. 13 is a cross-sectional view showing one configuration example of the Fresnel lens 200 according to the second embodiment of the present technology. When the plurality of annular zones in the Fresnel lens 200 of the second embodiment are translated upward and the inner wall surfaces are connected, a spherical surface having a negative curvature K (in other words, a spherical surface of a convex lens) is formed. be. Therefore, the Fresnel lens 200 has positive optical power. The solid-state imaging device 100 using the Fresnel lens 200 configured as shown in the figure can be applied to, for example, an observation device for research.
 なお、第2の実施の形態においては、略三角形の底辺以外の2辺のうち内側の辺と光軸とのなす角度をテーパー角βとして、画像欠損量Lが演算される。 Note that in the second embodiment, the image loss amount L is calculated with the angle between the inner side of the two sides of the substantially triangular shape other than the base side and the optical axis being the taper angle β.
 図14を参照して、固体撮像装置100を細胞等の試料904の研究用観察装置に適用した場合を説明する。詳細には、本実施形態に係る固体撮像装置100は、カバーガラス402に搭載した細胞等の試料904を近接した位置から観察する装置に適用することができる。同図に示すように、本実施形態に係る固体撮像装置100は、試料904を搭載するカバーガラス402と接するように配置することができる。このように配置された固体撮像装置100は、対物レンズを有しない顕微鏡のように機能することができ、簡単な構成ながら、試料904を詳細に観察することができる。言い換えると、例えば、上記固体撮像装置100は、細胞やウイルス等を判別、選別、分離するためのレンズレス顕微鏡等の研究用又は医療用観察装置として機能することができる。なお、当該カバーガラス402は、ガラス材に限定されるものではなく、透明な部材であれば、PET(Poly-Ethylene  Terephthalate)樹脂等であってもよい。 A case where the solid-state imaging device 100 is applied to a research observation device for a sample 904 such as cells will be described with reference to FIG. Specifically, the solid-state imaging device 100 according to this embodiment can be applied to a device that observes a sample 904 such as cells mounted on a cover glass 402 from a close position. As shown in the figure, the solid-state imaging device 100 according to this embodiment can be arranged so as to be in contact with a cover glass 402 on which a sample 904 is mounted. The solid-state imaging device 100 arranged in this manner can function like a microscope without an objective lens, and can observe the sample 904 in detail with a simple configuration. In other words, for example, the solid-state imaging device 100 can function as a research or medical observation device such as a lensless microscope for distinguishing, sorting, and separating cells, viruses, and the like. Note that the cover glass 402 is not limited to a glass material, and may be a PET (Poly-Ethylene Terephthalate) resin or the like as long as it is a transparent member.
 このように、本技術の第2の実施の形態によれば、フレネルレンズ200が正の光学的パワーを有するため、研究用観察装置などに用いることができる。 Thus, according to the second embodiment of the present technology, since the Fresnel lens 200 has positive optical power, it can be used for a research observation device or the like.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、球面レンズをフレネル化して輪帯部210としていたが、この形状では、収差の抑制が困難である。この第3の実施の形態のフレネルレンズ200は非球面レンズをフレネル化した点において第1の実施の形態と異なる。
<3. Third Embodiment>
In the above-described first embodiment, the spherical lens is fresneled to form the ring zone portion 210, but it is difficult to suppress aberration with this shape. The Fresnel lens 200 of the third embodiment differs from that of the first embodiment in that the aspherical lens is Fresneled.
 図15は、本技術の第3の実施の形態におけるフレネルレンズ200の一構成例を示す断面図である。この第3の実施の形態のフレネルレンズ200は、非球面レンズをフレネル化して輪帯部210とした点において第1の実施の形態と異なる。輪帯部210の複数の輪帯を上方に平行移動させて壁面を繋げると、凹レンズの非球面が形成される。非球面レンズをフレネル化することにより、収差を抑制することができる。 FIG. 15 is a cross-sectional view showing one configuration example of the Fresnel lens 200 according to the third embodiment of the present technology. The Fresnel lens 200 of the third embodiment differs from that of the first embodiment in that an aspherical lens is Fresnelized to form a ring zone portion 210 . When the plurality of ring zones of the ring zone portion 210 are moved upward in parallel to connect the wall surfaces, the aspheric surface of the concave lens is formed. Aberration can be suppressed by Fresneling the aspherical lens.
 なお、第3の実施の形態に、第2の実施の形態を適用することができる。 Note that the second embodiment can be applied to the third embodiment.
 このように、本技術の第3の実施の形態によれば、非球面レンズをフレネル化したため、収差を抑制することができる。 As described above, according to the third embodiment of the present technology, the aspherical lens is Fresnel, so aberration can be suppressed.
 <4.第4の実施の形態>
 上述の第1の実施の形態では、フレネルレンズ200を矩形にトリミングしていたが、この形状では、四隅に応力が集中してフレネルレンズ200が剥離するおそれがある。この第4の実施の形態のフレネルレンズ200は、角丸四角形にトリミングした点において第1の実施の形態と異なる。
<4. Fourth Embodiment>
In the above-described first embodiment, the Fresnel lens 200 is trimmed into a rectangular shape, but in this shape, stress concentrates on the four corners and the Fresnel lens 200 may peel off. The Fresnel lens 200 of the fourth embodiment differs from that of the first embodiment in that it is trimmed into a rounded square.
 図16は、本技術の第4の実施の形態におけるフレネルレンズ200の一構成例を示す上面図である。この第4の実施の形態のフレネルレンズ200は、光軸方向から見て、四隅を丸めた四角形である角丸四角形となるようにトリミングされている点において第1の実施の形態と異なる。 FIG. 16 is a top view showing one configuration example of the Fresnel lens 200 according to the fourth embodiment of the present technology. The Fresnel lens 200 of the fourth embodiment differs from that of the first embodiment in that it is trimmed to form a rounded quadrangle, which is a quadrangle with rounded corners, when viewed from the optical axis direction.
 なお、四隅の部分は、フレネルレンズ200のテーパー角βが小さくなり、輪帯の間隔が狭くなるため、指紋認証などの際に有効な情報を得ることが困難である。このため、四隅を丸めても認証の精度への悪影響は殆ど生じない。 At the four corners, the taper angle β of the Fresnel lens 200 is small and the interval between the ring zones is narrow, making it difficult to obtain effective information during fingerprint authentication. Therefore, even if the four corners are rounded, there is almost no adverse effect on the accuracy of authentication.
 同図に例示するように角丸四角形とすることにより、四隅への応力集中を抑制し、フレネルレンズ200の剥離耐性を向上させることができる。 As illustrated in the figure, by forming a square with rounded corners, stress concentration on the four corners can be suppressed, and peeling resistance of the Fresnel lens 200 can be improved.
 なお、第4の実施の形態に、第2や第3の実施の形態を適用することができる。 It should be noted that the second and third embodiments can be applied to the fourth embodiment.
 このように、本技術の第4の実施の形態によれば、フレネルレンズ200の形状を角丸四角形にしたため、矩形の場合と比較して剥離耐性を向上させることができる。 Thus, according to the fourth embodiment of the present technology, the shape of the Fresnel lens 200 is a square with rounded corners, so it is possible to improve peeling resistance compared to the case of a rectangular shape.
 <5.第5の実施の形態>
 上述の第1の実施の形態では、ダイシング前にフレネルレンズ200を形成していたが、ダイシング後にチップごとにフレネルレンズ200を形成することもできる。この第5の実施の形態のフレネルレンズ200は、ダイシング後にチップごとにフレネルレンズ200を形成する点において第1の実施の形態と異なる。
<5. Fifth Embodiment>
In the first embodiment described above, the Fresnel lens 200 is formed before dicing, but it is also possible to form the Fresnel lens 200 for each chip after dicing. The Fresnel lens 200 of the fifth embodiment differs from that of the first embodiment in that the Fresnel lens 200 is formed for each chip after dicing.
 図17は、本技術の第5の実施の形態におけるレンズ材620の吐出までのフレネルレンズ200の製造方法の一例を示す図である。センサー基板610はダイシングされ、チップごとに各種の回路や素子が形成される。それぞれのチップは、固体撮像素子300として機能する。この後に同図の工程が実行される。 FIG. 17 is a diagram showing an example of a method of manufacturing the Fresnel lens 200 up to discharging the lens material 620 according to the fifth embodiment of the present technology. The sensor substrate 610 is diced, and various circuits and elements are formed for each chip. Each chip functions as a solid-state imaging device 300 . After that, the steps in the figure are executed.
 同図におけるaに例示するように、製造システムは、チップ(固体撮像素子300)の上面において、有効領域の周囲にPF(Print Free)の撥水膜640を形成する。 As illustrated in a in the figure, the manufacturing system forms a PF (Print Free) water-repellent film 640 around the effective area on the upper surface of the chip (the solid-state imaging device 300).
 次に、同図におけるbに例示するように、製造システムは、ディスペンサー650により、チップの上面にレンズ材620を吐出する。 Next, as illustrated in b in the figure, the manufacturing system dispenses the lens material 620 onto the upper surface of the chip using the dispenser 650 .
 同図におけるcに例示するように、レンズ材620は、表面エネルギーが最小となるように、自己組織的に再配置される。 As illustrated in c in the figure, the lens material 620 is rearranged in a self-organizing manner so that the surface energy is minimized.
 図18は、本技術の第5の実施の形態における透明モールド630の離型までのフレネルレンズ200の製造方法の一例を示す図である。同図の工程は、レンズ材620の吐出後に実行される。 FIG. 18 is a diagram showing an example of a method of manufacturing the Fresnel lens 200 up to releasing the transparent mold 630 according to the fifth embodiment of the present technology. The process shown in the figure is executed after the lens material 620 is discharged.
 同図におけるaに例示するように、製造システムは、レンズ材620に透明モールド630を押し付ける。 The manufacturing system presses the transparent mold 630 against the lens material 620 as illustrated in a in the figure.
 そして、同図におけるbに例示するように、製造システムは、所定波長の光(紫外線など)を照射し、レンズ材620を硬化させる。 Then, as illustrated in b in the figure, the manufacturing system irradiates light of a predetermined wavelength (ultraviolet rays, etc.) to cure the lens material 620 .
 続いて同図におけるcに例示するように、製造システムは、透明モールド630を離型し、必要な各種の工程を行う。 Subsequently, as illustrated in c in the figure, the manufacturing system releases the transparent mold 630 and performs various necessary processes.
 図17や図18に例示したように、ダイシング後にチップごとにフレネルレンズ200を製造することにより、ダイシング前に、画素などの回路をセンサー基板610に形成しておく必要がなくなる。 As illustrated in FIGS. 17 and 18, by manufacturing the Fresnel lens 200 for each chip after dicing, it becomes unnecessary to form circuits such as pixels on the sensor substrate 610 before dicing.
 図19は、本技術の第5の実施の形態におけるフレネルレンズ200の製造方法の一例を示すフローチャートである。製造システムは、チップの上面において、撥水膜640を形成する(ステップS911)。 FIG. 19 is a flow chart showing an example of a method for manufacturing the Fresnel lens 200 according to the fifth embodiment of the present technology. The manufacturing system forms a water-repellent film 640 on the top surface of the chip (step S911).
 次に、製造システムは、ディスペンサー650などにより、チップの上面にレンズ材620を吐出し(ステップS912)、透明モールド630の型押しを行う(ステップS913)。そして、製造システムは、紫外線などを照射し、レンズ材620を硬化させる(ステップS914)。続いて製造システムは、透明モールド630を離型し(ステップS915)、各種の工程を行ってフレネルレンズ200の製造を終了する。同図の工程は、チップごとに順に実行される。あるいは複数のチップについて並列に同図の工程が実行される。 Next, the manufacturing system dispenses the lens material 620 onto the top surface of the chip using the dispenser 650 or the like (step S912), and embosses the transparent mold 630 (step S913). Then, the manufacturing system irradiates ultraviolet rays or the like to harden the lens material 620 (step S914). Subsequently, the manufacturing system releases the transparent mold 630 (step S915), performs various processes, and completes the manufacturing of the Fresnel lens 200. FIG. The steps shown in the figure are sequentially executed for each chip. Alternatively, the steps in the figure are executed in parallel for a plurality of chips.
 なお、図17では、ディスペンサー650によりレンズ材620を供給していたが、この製造方法に限定されない。図20に例示するように、レンズ材620をスピンコート法などにより塗布することもできる。この場合、同図におけるaに例示するように、撥水膜640を形成した後に、製造システムは、同図におけるbに例示するようにチップの上面にレンズ材620を塗布する。レンズ材620は、同図におけるcに例示するように、表面エネルギーが最小となるように、自己組織的に再配置される。また、撥水膜640により、レンズ材620は自動的に分離される。この後に図18に例示した工程が行われる。 Although the lens material 620 is supplied by the dispenser 650 in FIG. 17, the manufacturing method is not limited to this. As illustrated in FIG. 20, the lens material 620 can also be applied by spin coating or the like. In this case, after forming the water-repellent film 640 as illustrated in a of the figure, the manufacturing system applies a lens material 620 to the upper surface of the chip as illustrated in b of the same figure. The lens material 620 is rearranged in a self-organizing manner such that the surface energy is minimized, as illustrated at c in FIG. Also, the lens material 620 is automatically separated by the water-repellent film 640 . After that, the steps illustrated in FIG. 18 are performed.
 なお、第5の実施の形態に、第2、第3や第4の実施の形態を適用することもできる。 It should be noted that the second, third and fourth embodiments can also be applied to the fifth embodiment.
 このように、本技術の第5の実施の形態によれば、ダイシング後において、チップごとにフレネルレンズ200を製造するため、ダイシング前に画素などを形成しておく必要がなくなる。 As described above, according to the fifth embodiment of the present technology, since the Fresnel lens 200 is manufactured for each chip after dicing, there is no need to form pixels and the like before dicing.
 <6.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<6. Example of application to moving objects>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
 図21は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 21 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図21に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 A vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 21, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050. Also, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed. For example, the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 . The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information. Also, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. The in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit. A control command can be output to 12010 . For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図21の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 21, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図22は、撮像部12031の設置位置の例を示す図である。 FIG. 22 is a diagram showing an example of the installation position of the imaging unit 12031. FIG.
 図22では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 22, the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example. An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 . Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 . An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 . The imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図22には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 22 shows an example of the imaging range of the imaging units 12101 to 12104. FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 . Such recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. This is done by a procedure that determines When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、例えば、図1の固体撮像装置100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, for example, the solid-state imaging device 100 in FIG. 1 can be applied to the imaging unit 12031 . By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to obtain a captured image that is easier to see, thereby reducing driver fatigue.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 It should be noted that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention in the scope of claims have corresponding relationships. Similarly, the matters specifying the invention in the scope of claims and the matters in the embodiments of the present technology with the same names have corresponding relationships. However, the present technology is not limited to the embodiments, and can be embodied by various modifications to the embodiments without departing from the scope of the present technology.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in this specification are only examples and are not limited, and other effects may also occur.
 なお、本技術は以下のような構成もとることができる。
(1)両面の一方が平面であり、前記両面の他方が曲面であるレンズ部と、
 光軸の周囲に同心円状に形成され、前記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、前記平面から前記底辺の対頂点までの垂直距離は前記光軸から離れるほど大きい複数の輪帯と
を具備するフレネルレンズ。
(2)前記フレネルレンズの半画角が大きいほど前記底辺から対頂点までの高さは高くなる
前記(1)記載のフレネルレンズ。
(3)前記高さをhとし、前記半画角をαとし、前記略三角形の前記底辺以外の2辺の一方と前記光軸とのなすテーパー角をβとし、所定の許容値をTとすると、前記α、前記βおよび前記Tの間に次の関係式が成立する前記(2)記載のフレネルレンズ。
  {h×sin(α+β)}/(cоsβcоsα)<T
(4)前記複数の輪帯のそれぞれの前記垂直距離は互いに異なる前記(1)から(3)のいずれかに記載のフレネルレンズ。
(5)前記複数の輪帯は、
 半径が所定値を超えない複数の内側輪帯と、
 半径が前記所定値より大きい複数の外側輪帯と
を含み、
 前記複数の内側輪帯は、前記垂直距離が同一であり、
 前記複数の外側輪帯は、前記垂直距離が互いに異なる
前記(1)から(3)のいずれかに記載のフレネルレンズ。
(6)前記複数の輪帯は、
 互いに隣接する一対の第1輪帯と、
 前記一対の第1輪帯の両方よりも半径が大きく、互いに隣接する一対の第2輪帯と
を含み、
 前記一対の第1輪帯は、前記垂直距離が同一であり、
 前記一対の第2輪帯は、前記垂直距離が同一であり、
 前記一対の第1輪帯と前記一対の第2輪帯とは、互いに前記垂直距離が異なる
前記(1)から(3)のいずれかに記載のフレネルレンズ。
(7)前記複数の輪帯は球面レンズのフレネル化により形成されたものである前記(1)から(6)のいずれかに記載のフレネルレンズ。
(8)前記複数の輪帯は非球面レンズのフレネル化により形成されたものである前記(1)から(6)のいずれかに記載のフレネルレンズ。
(9)前記フレネルレンズは、負の光学的パワーを有する前記(1)から(8)のいずれかに記載のフレネルレンズ。
(10)前記フレネルレンズは、正の光学的パワーを有する前記(1)から(8)のいずれかに記載のフレネルレンズ。
(11)前記光軸の方向から見た際の前記フレネルレンズの形状は矩形である前記(1)から(10)のいずれかに記載のフレネルレンズ。
(12)前記光軸の方向から見た際の前記フレネルレンズの形状は角丸四角形である前記(1)から(10)のいずれかに記載のフレネルレンズ。
(13)両面の一方が平面であり、前記両面の他方が曲面であるレンズ部と、光軸の周囲に同心円状に形成され、前記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、前記平面から前記底辺の対頂点までの垂直距離は前記光軸から離れるほど大きくなる複数の輪帯とを備えるフレネルレンズと、
 前記フレネルレンズからの光に対する光電変換により画像データを生成する固体撮像素子と
を具備する電子機器。
(14)前記固体撮像素子の像面のうち前記底辺に対向する部分には、所定数の画素が配列される
前記(13)記載の電子機器。
(15)所定面に液状のレンズ材を供給するレンズ材供給手順と、
 両面の一方が平面であり、前記両面の他方が曲面であるレンズ部と、光軸の周囲に同心円状に形成され、前記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、前記平面から前記底辺の対頂点までの垂直距離は前記光軸から離れるほど小さい複数の輪帯とを備えるモールドを前記レンズ材に押し付ける型押し手順と、
 前記レンズ材を硬化させる硬化手順と
を具備するフレネルレンズの製造方法。
(16)前記所定面は、ダイシング前の所定の基板上の面である
前記(15)記載の製造方法。
(17)前記所定面は、ダイシング後の所定のチップ上の面である
前記(15)記載の製造方法。
(18)前記レンズ材は、光硬化性の樹脂であり、
 前記モールドは透明であり、
 前記硬化手順において所定波長の光を照射する
前記(15)から(17)のいずれかに記載の製造方法。
Note that the present technology can also have the following configuration.
(1) a lens portion having one of both surfaces flat and the other of the two surfaces curved;
It is formed concentrically around the optical axis and each has a substantially triangular cross-section whose base is a line segment connecting two points on the curved surface. A Fresnel lens comprising a plurality of annular zones that become larger with increasing distance from the axis.
(2) The Fresnel lens according to (1), wherein the larger the half angle of view of the Fresnel lens, the higher the height from the base to the opposite vertex.
(3) Let h be the height, α be the half angle of view, β be the taper angle between one of the two sides of the substantially triangular shape other than the base and the optical axis, and T be the predetermined allowable value. The Fresnel lens according to (2) above, in which the following relational expression holds between α, β and T.
{h×sin(α+β)}/(cosβcosα)<T
(4) The Fresnel lens according to any one of (1) to (3), wherein the vertical distances of the plurality of ring zones are different from each other.
(5) the plurality of ring zones,
a plurality of inner ring zones whose radii do not exceed a predetermined value;
A plurality of outer ring zones having a radius larger than the predetermined value,
The plurality of inner ring zones have the same vertical distance,
The Fresnel lens according to any one of (1) to (3), wherein the plurality of outer annular zones have different vertical distances.
(6) the plurality of ring zones,
a pair of first ring zones adjacent to each other;
A pair of second ring zones adjacent to each other and having a larger radius than both of the pair of first ring zones,
The pair of first ring zones have the same vertical distance,
The pair of second ring zones have the same vertical distance,
The Fresnel lens according to any one of (1) to (3), wherein the pair of first ring zones and the pair of second ring zones have different vertical distances from each other.
(7) The Fresnel lens according to any one of (1) to (6), wherein the plurality of annular zones are formed by Fresneling a spherical lens.
(8) The Fresnel lens according to any one of (1) to (6), wherein the plurality of annular zones are formed by Fresneling an aspherical lens.
(9) The Fresnel lens according to any one of (1) to (8), which has negative optical power.
(10) The Fresnel lens according to any one of (1) to (8), which has positive optical power.
(11) The Fresnel lens according to any one of (1) to (10), wherein the Fresnel lens has a rectangular shape when viewed from the direction of the optical axis.
(12) The Fresnel lens according to any one of (1) to (10), wherein the shape of the Fresnel lens when viewed from the direction of the optical axis is a square with rounded corners.
(13) A substantially triangular shape formed concentrically around the optical axis with a lens portion having one flat surface on one side and a curved surface on the other side, and a line segment connecting two points on the curved surface as a base. a Fresnel lens comprising a plurality of annular zones each having a cross section of and the vertical distance from the plane to the opposite vertices of the base increases as the distance from the optical axis increases;
and a solid-state imaging device that generates image data by photoelectric conversion of light from the Fresnel lens.
(14) The electronic device according to (13), wherein a predetermined number of pixels are arranged in a portion of the image plane of the solid-state imaging device that faces the base.
(15) a lens material supply procedure for supplying a liquid lens material to a predetermined surface;
a lens portion having one of its two surfaces flat and the other of said two surfaces curved; an embossing step of pressing a mold against the lens material, each having a plurality of orbicular zones each having a vertical distance from the plane to the opposite vertices of the base that decreases with increasing distance from the optical axis;
and a curing step for curing said lens material.
(16) The manufacturing method according to (15), wherein the predetermined surface is a surface on a predetermined substrate before dicing.
(17) The manufacturing method according to (15), wherein the predetermined surface is a surface on a predetermined chip after dicing.
(18) the lens material is a photocurable resin;
the mold is transparent,
The manufacturing method according to any one of (15) to (17), wherein light of a predetermined wavelength is applied in the curing procedure.
 100 固体撮像装置
 200 フレネルレンズ
 210、631 輪帯部
 211、212 輪帯
 220、632 レンズ部
 300 固体撮像素子
 301 画素チップ
 302 回路チップ
 310 画素
 400、402 カバーガラス
 610 センサー基板
 620 レンズ材
 630、635 透明モールド
 640 撥水膜
 650 ディスペンサー
 700 指紋認証装置
 702 処理部
 704 表示部
 900 手指
 904 試料
 12031 撮像部
REFERENCE SIGNS LIST 100 solid-state imaging device 200 fresnel lens 210, 631 ring zone 211, 212 ring zone 220, 632 lens section 300 solid-state image sensor 301 pixel chip 302 circuit chip 310 pixel 400, 402 cover glass 610 sensor substrate 620 lens material 630, 635 transparent Mold 640 Water-repellent film 650 Dispenser 700 Fingerprint authentication device 702 Processing unit 704 Display unit 900 Finger 904 Sample 12031 Imaging unit

Claims (18)

  1.  両面の一方が平面であり、前記両面の他方が曲面であるレンズ部と、
     光軸の周囲に同心円状に形成され、前記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、前記平面から前記底辺の対頂点までの垂直距離は前記光軸から離れるほど大きい複数の輪帯と
    を具備するフレネルレンズ。
    a lens portion having one of both surfaces flat and the other of the two surfaces curved;
    It is formed concentrically around the optical axis and each has a substantially triangular cross-section whose base is a line segment connecting two points on the curved surface. A Fresnel lens comprising a plurality of annular zones that become larger with increasing distance from the axis.
  2.  前記フレネルレンズの半画角が大きいほど前記底辺から対頂点までの高さは高くなる
    請求項1記載のフレネルレンズ。
    2. The Fresnel lens according to claim 1, wherein the larger the half angle of view of the Fresnel lens, the higher the height from the base to the opposite vertex.
  3.  前記高さをhとし、前記半画角をαとし、前記略三角形の前記底辺以外の2辺の一方と前記光軸とのなすテーパー角をβとし、所定の許容値をTとすると、前記α、前記βおよび前記Tの間に次の関係式が成立する請求項2記載のフレネルレンズ。
      {h×sin(α+β)}/(cоsβcоsα)<T
    Let h be the height, α be the half angle of view, β be the taper angle between one of the two sides of the substantially triangular shape other than the base and the optical axis, and T be the predetermined allowable value. 3. The Fresnel lens according to claim 2, wherein the following relational expression holds among α, β and T.
    {h×sin(α+β)}/(cosβcosα)<T
  4.  前記複数の輪帯のそれぞれの前記垂直距離は互いに異なる請求項1記載のフレネルレンズ。 The Fresnel lens according to claim 1, wherein the vertical distances of the plurality of annular zones are different from each other.
  5.  前記複数の輪帯は、
     半径が所定値を超えない複数の内側輪帯と、
     半径が前記所定値より大きい複数の外側輪帯と
    を含み、
     前記複数の内側輪帯は、前記垂直距離が同一であり、
     前記複数の外側輪帯は、前記垂直距離が互いに異なる
    請求項1記載のフレネルレンズ。
    The plurality of annular zones are
    a plurality of inner ring zones whose radii do not exceed a predetermined value;
    A plurality of outer ring zones having a radius larger than the predetermined value,
    The plurality of inner ring zones have the same vertical distance,
    2. The Fresnel lens according to claim 1, wherein the plurality of outer ring zones have different vertical distances.
  6.  前記複数の輪帯は、
     互いに隣接する一対の第1輪帯と、
     前記一対の第1輪帯の両方よりも半径が大きく、互いに隣接する一対の第2輪帯と
    を含み、
     前記一対の第1輪帯は、前記垂直距離が同一であり、
     前記一対の第2輪帯は、前記垂直距離が同一であり、
     前記一対の第1輪帯と前記一対の第2輪帯とは、互いに前記垂直距離が異なる
    請求項1記載のフレネルレンズ。
    The plurality of annular zones are
    a pair of first ring zones adjacent to each other;
    A pair of second ring zones adjacent to each other and having a larger radius than both of the pair of first ring zones,
    The pair of first ring zones have the same vertical distance,
    The pair of second ring zones have the same vertical distance,
    2. The Fresnel lens according to claim 1, wherein the pair of first ring zones and the pair of second ring zones have different vertical distances from each other.
  7.  前記複数の輪帯は球面レンズのフレネル化により形成されたものである請求項1記載のフレネルレンズ。 The Fresnel lens according to claim 1, wherein the plurality of annular zones are formed by fresneling a spherical lens.
  8.  前記複数の輪帯は非球面レンズのフレネル化により形成されたものである請求項1記載のフレネルレンズ。 The Fresnel lens according to claim 1, wherein the plurality of annular zones are formed by Fresneling an aspherical lens.
  9.  前記フレネルレンズは、負の光学的パワーを有する請求項1記載のフレネルレンズ。 The Fresnel lens according to claim 1, wherein said Fresnel lens has negative optical power.
  10.  前記フレネルレンズは、正の光学的パワーを有する請求項1記載のフレネルレンズ。 The Fresnel lens according to claim 1, wherein said Fresnel lens has a positive optical power.
  11.  前記光軸の方向から見た際の前記フレネルレンズの形状は矩形である請求項1記載のフレネルレンズ。 The Fresnel lens according to claim 1, wherein the Fresnel lens has a rectangular shape when viewed from the direction of the optical axis.
  12.  前記光軸の方向から見た際の前記フレネルレンズの形状は角丸四角形である請求項1記載のフレネルレンズ。 The Fresnel lens according to claim 1, wherein the shape of the Fresnel lens when viewed from the direction of the optical axis is a rounded quadrilateral.
  13.  両面の一方が平面であり、前記両面の他方が曲面であるレンズ部と、光軸の周囲に同心円状に形成され、前記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、前記平面から前記底辺の対頂点までの垂直距離は前記光軸から離れるほど大きくなる複数の輪帯とを備えるフレネルレンズと、
     前記フレネルレンズからの光に対する光電変換により画像データを生成する固体撮像素子と
    を具備する電子機器。
    a lens portion having one of its two surfaces flat and the other of said two surfaces curved; a Fresnel lens comprising a plurality of ring zones, each of which has a plurality of ring zones in which the vertical distance from the plane to the opposite vertex of the base increases as the distance from the optical axis increases;
    and a solid-state imaging device that generates image data by photoelectric conversion of light from the Fresnel lens.
  14.  前記固体撮像素子の像面のうち前記底辺に対向する部分には、所定数の画素が配列される
    請求項13記載の電子機器。
    14. The electronic device according to claim 13, wherein a predetermined number of pixels are arranged on a portion of the image plane of the solid-state imaging device that faces the base.
  15.  所定面に液状のレンズ材を供給するレンズ材供給手順と、
     両面の一方が平面であり、前記両面の他方が曲面であるレンズ部と、光軸の周囲に同心円状に形成され、前記曲面上の2点を結ぶ線分を底辺とする略三角形の断面をそれぞれが有し、前記平面から前記底辺の対頂点までの垂直距離は前記光軸から離れるほど小さい複数の輪帯とを備えるモールドを前記レンズ材に押し付ける型押し手順と、
     前記レンズ材を硬化させる硬化手順と
    を具備するフレネルレンズの製造方法。
    a lens material supply procedure for supplying a liquid lens material to a predetermined surface;
    a lens portion having one of its two surfaces flat and the other of said two surfaces curved; an embossing step of pressing a mold against the lens material, each having a plurality of orbicular zones each having a vertical distance from the plane to the opposite vertices of the base that decreases with increasing distance from the optical axis;
    and a curing step for curing said lens material.
  16.  前記所定面は、ダイシング前の所定の基板上の面である
    請求項15記載の製造方法。
    16. The manufacturing method according to claim 15, wherein said predetermined surface is a surface on a predetermined substrate before dicing.
  17.  前記所定面は、ダイシング後の所定のチップ上の面である
    請求項15記載の製造方法。
    16. The manufacturing method according to claim 15, wherein said predetermined surface is a surface on a predetermined chip after dicing.
  18.  前記レンズ材は、光硬化性の樹脂であり、
     前記モールドは透明であり、
     前記硬化手順において所定波長の光を照射する
    請求項15記載の製造方法。
    The lens material is a photocurable resin,
    the mold is transparent,
    16. The manufacturing method according to claim 15, wherein light of a predetermined wavelength is applied in said curing step.
PCT/JP2021/048825 2021-03-23 2021-12-28 Fresnel lens, electronic apparatus, and method for manufacturing fresnel lens WO2022201727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508642A JPWO2022201727A1 (en) 2021-03-23 2021-12-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-048617 2021-03-23
JP2021048617 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022201727A1 true WO2022201727A1 (en) 2022-09-29

Family

ID=83396814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048825 WO2022201727A1 (en) 2021-03-23 2021-12-28 Fresnel lens, electronic apparatus, and method for manufacturing fresnel lens

Country Status (2)

Country Link
JP (1) JPWO2022201727A1 (en)
WO (1) WO2022201727A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122601A (en) * 1984-11-19 1986-06-10 Canon Inc Fresnel lens
JP2005140813A (en) * 2003-11-04 2005-06-02 Toppan Printing Co Ltd Fresnel lens sheet
JP2007328117A (en) * 2006-06-07 2007-12-20 Sony Corp Lenticular lens sheet and its manufacturing method, transmission type screen, and rear projection type image display device
WO2013024836A1 (en) * 2011-08-12 2013-02-21 シチズン電子株式会社 Lens member and light-emitting device using same
US20130051029A1 (en) * 2011-08-24 2013-02-28 Minebea Co., Ltd. Illuminator using a combination of pseudo-white led and lens sheet
JP2014112173A (en) * 2012-11-07 2014-06-19 Enplas Corp Luminous flux control member, light-emitting device, illuminating device, and molding die
US20150062404A1 (en) * 2013-09-04 2015-03-05 Himax Technologies Limited Image-capturing lens and device using the same
JP2018119147A (en) * 2018-02-14 2018-08-02 株式会社ダイセル Optical component and optical device including the same
JP2018161862A (en) * 2017-03-27 2018-10-18 株式会社ダイセル Method for producing resin molded product and method for producing optical component
JP2020013106A (en) * 2018-07-09 2020-01-23 ソニー株式会社 Ocular lens and display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122601A (en) * 1984-11-19 1986-06-10 Canon Inc Fresnel lens
JP2005140813A (en) * 2003-11-04 2005-06-02 Toppan Printing Co Ltd Fresnel lens sheet
JP2007328117A (en) * 2006-06-07 2007-12-20 Sony Corp Lenticular lens sheet and its manufacturing method, transmission type screen, and rear projection type image display device
WO2013024836A1 (en) * 2011-08-12 2013-02-21 シチズン電子株式会社 Lens member and light-emitting device using same
US20130051029A1 (en) * 2011-08-24 2013-02-28 Minebea Co., Ltd. Illuminator using a combination of pseudo-white led and lens sheet
JP2014112173A (en) * 2012-11-07 2014-06-19 Enplas Corp Luminous flux control member, light-emitting device, illuminating device, and molding die
US20150062404A1 (en) * 2013-09-04 2015-03-05 Himax Technologies Limited Image-capturing lens and device using the same
JP2018161862A (en) * 2017-03-27 2018-10-18 株式会社ダイセル Method for producing resin molded product and method for producing optical component
JP2018119147A (en) * 2018-02-14 2018-08-02 株式会社ダイセル Optical component and optical device including the same
JP2020013106A (en) * 2018-07-09 2020-01-23 ソニー株式会社 Ocular lens and display device

Also Published As

Publication number Publication date
JPWO2022201727A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP7326154B2 (en) Imaging element and imaging device
KR102508561B1 (en) Laminated lens structures, camera modules, and electronic devices
WO2018139254A1 (en) Camera module, method of producing the same, and electronic device
TWI786307B (en) Mobile vehicle assist system and braking control method thereof
CN109716524B (en) Imaging element package and camera module
JP2018117027A (en) Solid-state imaging element, electronic device, and method for manufacturing solid-state imaging element
JP7321834B2 (en) Lighting device and ranging module
KR20190107678A (en) Camera module and manufacturing method thereof, and electronic device
JP2018026378A (en) Solid state imaging device and manufacturing method, and electronic apparatus
US20230107566A1 (en) Imaging unit, method for manufacturing the same, and electronic apparatus
WO2022201727A1 (en) Fresnel lens, electronic apparatus, and method for manufacturing fresnel lens
US20190344516A1 (en) Lens module, method of producing lens module, imaging device, and electronic device
US11469518B2 (en) Array antenna, solid-state imaging device, and electronic apparatus
WO2021220840A1 (en) Optical device
EP3971947A1 (en) Semiconductor package, semiconductor package manufacturing method, and electronic device
US20230114890A1 (en) Lens optical system, light receiving device, and distance measuring system
US11579369B2 (en) Optical communication connector, optical communication cable, and electronic device
JP7499242B2 (en) Semiconductor package and electronic device
US20220173358A1 (en) Display device, electronic device, and method for manufacturing display device
WO2021145261A1 (en) Light-receiving device and electronic system
WO2021044703A1 (en) Semiconductor package, electronic device, and method for manufacturing semiconductor package
WO2024057709A1 (en) Semiconductor package and electronic device
US20230375800A1 (en) Semiconductor device and optical structure body
WO2019142661A1 (en) Imaging element, manufacturing method, and electronic equipment
JP2023058116A (en) night vision camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933317

Country of ref document: EP

Kind code of ref document: A1