WO2014073066A1 - Honeycomb structure and manufacturing method thereof - Google Patents

Honeycomb structure and manufacturing method thereof Download PDF

Info

Publication number
WO2014073066A1
WO2014073066A1 PCT/JP2012/078944 JP2012078944W WO2014073066A1 WO 2014073066 A1 WO2014073066 A1 WO 2014073066A1 JP 2012078944 W JP2012078944 W JP 2012078944W WO 2014073066 A1 WO2014073066 A1 WO 2014073066A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
honeycomb structure
manufacturing
raw material
solution
Prior art date
Application number
PCT/JP2012/078944
Other languages
French (fr)
Japanese (ja)
Inventor
康文 深沢
吉村 健
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2014545499A priority Critical patent/JPWO2014073066A1/en
Priority to PCT/JP2012/078944 priority patent/WO2014073066A1/en
Priority to CN201280076864.0A priority patent/CN104768643A/en
Publication of WO2014073066A1 publication Critical patent/WO2014073066A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Definitions

  • an SCR Selective Catalytic Reduction
  • V 2 O 5 vanadium pentoxide
  • WO 3 tungsten trioxide
  • TiO 2 titanium dioxide
  • the SCR system using the TiO 2 / V 2 O 5 / WO 3 catalyst as described above has the following problems.
  • the NOx purification performance of the TiO 2 / V 2 O 5 / WO 3 catalyst varies depending on the addition amounts of the catalyst species V and W, but becomes an active site when the addition amount and ratio of V and W are not appropriate.
  • V cannot be uniformly dispersed, and a bulk body cannot be formed and used effectively.
  • V forms a bulk body and is deactivated by heat.
  • the cost of the catalyst becomes a problem.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is a honeycomb structure using a TiO 2 / V 2 O 5 / WO 3 catalyst, which has a NOx purification rate and thermal durability.
  • An excellent honeycomb structure and a method for manufacturing the same are provided.
  • the present invention for solving the above problems is as follows.
  • (1) A shape in which a plurality of cells including at least titanium oxide, vanadium oxide, tungsten oxide, and an inorganic binder and extending from one end face to the other end face along the longitudinal direction are partitioned by cell walls.
  • a method for manufacturing a honeycomb structure including a honeycomb unit, Mixing step of mixing titanium oxide, vanadium raw material, tungsten raw material and inorganic binder; Forming the mixed material into a honeycomb shape and obtaining a honeycomb formed body; and A firing step of firing the honeycomb formed body,
  • the vanadium raw material is a solution in which ammonium metavanadate is previously dissolved in an alkaline solution.
  • the inorganic binder is a solid content contained in one or more selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, bentonite and boehmite.
  • the mixing step at least one selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances, and three-dimensional needle-like substances is further mixed.
  • the method for manufacturing a honeycomb structure according to any one of the above.
  • the inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate and aluminum borate
  • the scaly substance is at least one selected from the group consisting of glass, muscovite, alumina and silica
  • the tetrapot-like substance is zinc oxide
  • the three-dimensional acicular material is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate, aluminum borate and boehmite.
  • H 2 -TPR hydrogen-temperature reduction method
  • FIG. 5 is a perspective view showing a honeycomb unit constituting the honeycomb structure of FIG. 4.
  • the method for manufacturing a honeycomb structure of the present invention includes at least a titanium oxide, a vanadium oxide, a tungsten oxide, and an inorganic binder, and a plurality of cells extending from one end face to the other end face along the longitudinal direction.
  • the honeycomb structure of the present invention is a honeycomb structure obtained by the method for manufacturing a honeycomb structure of the present invention, and depends on V per 1 g of the honeycomb structure by a hydrogen-temperature-reduction reduction method (H 2 -TPR).
  • the hydrogen consumption is 0.6 mmol or more.
  • effective V amount the amount of quantifying the amount (hereinafter referred to as “effective V amount”), the NOx purification rate is improved with an increase in the added amount of W, and further the NOx purification rate is increased with an increase in the effective V amount is 0.3 mmol / g or more. It was found to be saturated at.
  • a hydrogen-temperature reduction method H 2 -TPR
  • the hydrogen consumption in this measurement must be 0.6 mmol / g or more.
  • the hydrogen consumption derived from vanadium reduction in the hydrogen-temperature reduction method is 0.6 mmol or more per 1 g of honeycomb structure (effective V amount is 0.3 mmol / g or more), and the W / V addition amount molar ratio is 0.00.
  • the initial NOx purification performance and thermal durability can be improved by increasing the effective V amount in the TiO 2 / V 2 O 5 / WO 3 catalyst. That is, V may be uniformly dispersed so that the bulk body does not exist.
  • the present inventor is a solution in which ammonium metavanadate is previously dissolved in an alkaline solution as the V raw material. It was found that the abundance ratio of V bulk bodies that do not show activity can be reduced by mixing with titanium oxide and tungsten raw materials.
  • V can be attached to the TiO 2 raw material in a sufficiently dispersed state in the solution, the dispersion state of V is higher than that in the case where the TiO 2 raw material and the V raw material are mixed with each other, resulting in a bulk body. Can be prevented.
  • V can be evenly dispersed even after firing, thereby improving NOx purification performance and thermal durability. be able to.
  • a honeycomb structure 10 shown in FIG. 2 includes titanium oxide, vanadium oxide, tungsten oxide, and an inorganic binder, and a plurality of through holes 11a are arranged in parallel in the longitudinal direction with partition walls 11b interposed therebetween.
  • the honeycomb unit 11 is provided.
  • the outer peripheral coat layer 12 is formed on the outer peripheral surface excluding both end surfaces of the honeycomb unit 11.
  • ammonium metavanadate (NH 4 VO 3 ) is preferably used because it is easy to handle.
  • V 2 O 5 is generated by a decomposition reaction such as NH 4 VO 3 ⁇ V 2 O 5 + 2NH 3 + H 2 O and plays a role as a catalyst in the SCR system.
  • the concentration of ammonium metavanadate in the premixed solution is preferably 1 to 25% by mass, more preferably 5 to 15% by mass.
  • the alkaline solution used for the preparation of the premixed solution is preferably at least one selected from a diethanolamine solution, a monoethanolamine solution, a diethylaminoethanol solution, and aqueous ammonia, and among them, a diethanolamine solution is preferable. This is because these solutions do not contain alkali metals or alkaline earth metals that, when added to titanium-vanadium, degrade the NOx purification performance. Moreover, since the boiling point is 500 ° C. or less, it is removed by volatilization when the honeycomb unit is fired. Therefore, when the honeycomb structure is formed, the NOx purification performance is not deteriorated.
  • the concentration of the alkaline component in the alkaline solution is preferably 0.1 to 2 mol / L, and the pH is preferably 7 to 11.
  • the alkaline solution it is preferable to heat to 80 ° C. or higher when ammonium metavanadate is dissolved in the diethanolamine solution. This is because by heating to 80 ° C. or higher, ammonium metavanadate can be sufficiently dissolved, V can be uniformly dispersed, and no bulk body can be present.
  • the heating temperature is more preferably 80 to 95 ° C.
  • titanium oxide it is preferable to use anatase type titanium dioxide having a high specific surface area.
  • Examples of the tungsten raw material include ammonium metatungstate, tungsten oxide, and ammonium paratungstate. Among them, ammonium metatungstate is preferable.
  • the molar ratio (W / V) of vanadium atoms in the vanadium raw material and tungsten atoms in the tungsten raw material is preferably 0.8 to 1.2. This is because the initial NOx purification performance and thermal durability can be improved by setting the W / V addition amount molar ratio in the honeycomb structure to 0.8 to 1.2 as described above.
  • the molar ratio is more preferably 0.9 to 1.1, still more preferably 0.95 to 1.05.
  • the molar ratio of titanium atoms to the total of tungsten atoms and vanadium atoms ((W + V) / Ti) is preferably 0.02 to 0.2, and more preferably 0.05 to 0.1.
  • inorganic fibers In order to improve the strength, it is preferable to add one or more selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances and three-dimensional needle-like substances into the raw material paste.
  • the inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate and aluminum borate, and the scaly substance is glass, muscovite.
  • One or more selected from the group consisting of alumina and silica, the tetrapot-like substance is zinc oxide, and the three-dimensional needle-like substance is alumina, silica, silicon carbide, silica alumina, glass, wallast It is preferably at least one selected from the group consisting of knight, potassium titanate, aluminum borate and boehmite. This is because all of them have high heat resistance, and even when used as a catalyst carrier in an SCR system, there is no melting damage and the effect as a reinforcing material can be maintained.
  • the aspect ratio of the inorganic fiber is preferably 2 to 1000, more preferably 5 to 800, and still more preferably 10 to 500.
  • the aspect ratio of the inorganic fibers contained in the honeycomb unit 11 is less than 2, the effect of improving the strength of the honeycomb unit 11 is reduced.
  • the aspect ratio of the inorganic fibers contained in the honeycomb unit 11 exceeds 1000, the mold is clogged when the honeycomb unit 11 is extruded, or the inorganic fibers break and the strength of the honeycomb unit 11 is increased. The effect of improving the quality is reduced.
  • the tetrapot-like substance means a substance in which the needle-like portion extends three-dimensionally, the needle-like portion preferably has an average needle-like length of 5 to 30 ⁇ m, and the needle-like portion has an average diameter of 0.00. It is preferably 5 to 5.0 ⁇ m.
  • the content of the inorganic fiber, scale-like substance, tetrapot-like substance and three-dimensional needle-like substance is preferably 3 to 50% by mass in the honeycomb unit 11, more preferably 3 to 30% by mass. More preferred is mass%.
  • the content of the inorganic fiber, the scale-like substance, the tetrapot-like substance, and the three-dimensional needle-like substance in the honeycomb structure is less than 3% by mass, the effect of improving the strength of the honeycomb structure becomes small.
  • the content of inorganic fibers, scale-like substances, tetrapot-like substances and three-dimensional needle-like substances in the honeycomb structure exceeds 50% by mass, TiO 2 / V 2 O 5 / WO 3 in the honeycomb structure is obtained.
  • the catalyst content decreases, and the NOx purification performance decreases.
  • the inorganic binder is not particularly limited, but from the viewpoint of maintaining the strength as a honeycomb structure, a solid content contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, bentonite, boehmite and the like is preferable. 2 or more may be used in combination.
  • the content of the inorganic binder is preferably 5 to 30% by mass in the honeycomb unit 11 and more preferably 10 to 20% by mass.
  • the content of the inorganic binder in the honeycomb unit 11 is less than 5% by mass, the strength of the honeycomb structure is lowered.
  • the content of the inorganic binder in the honeycomb structure exceeds 30% by mass, it becomes difficult to extrude the honeycomb formed body.
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like, and two or more kinds may be used in combination.
  • the raw material paste it is preferable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the inorganic binder contained in the outer periphery coating layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is preferable to add as silica sol.
  • the inorganic fiber contained in the outer periphery coat layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
  • the outer peripheral coat layer paste may further contain balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
  • the balloon contained in the outer periphery coating layer paste is not particularly limited, and examples thereof include alumina balloons, glass micro balloons, shirasu balloons, fly ash balloons, mullite balloons, and the like, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • a spherical acrylic particle, a graphite, etc. are mentioned, You may use 2 or more types together.
  • the honeycomb unit 11 to which the outer peripheral coat layer paste has been applied is dried and solidified to produce a columnar honeycomb structure 10.
  • the outer peripheral coat layer paste contains an organic binder, it is preferably degreased.
  • the degreasing conditions can be appropriately selected depending on the type and amount of the organic substance, but it is preferably 20 minutes at 700 ° C.
  • the porosity of the honeycomb unit 11 can be measured using a mercury intrusion method.
  • the honeycomb unit 11 preferably has an opening ratio of a cross section perpendicular to the longitudinal direction of 50 to 75%.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 50%, the TiO 2 / V 2 O 5 / WO 3 catalyst is not effectively used for NOx purification.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 75%, the strength of the honeycomb unit 11 becomes insufficient.
  • the density of the through holes 11a having a cross section perpendicular to the longitudinal direction is preferably 31 to 155 / cm 2 .
  • the density of the through-holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 31 / cm 2 , the TiO 2 / V 2 O 5 / WO 3 catalyst and the exhaust gas are less likely to come into contact with each other, thereby purifying NOx. Performance decreases.
  • the density of the through holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 155 / cm 2 , the pressure loss of the honeycomb structure 10 increases.
  • the thickness of the partition wall 11b of the honeycomb unit 11 is preferably 0.1 to 0.4 mm, and more preferably 0.1 to 0.3 mm.
  • the thickness of the partition wall 11b of the honeycomb unit 11 is less than 0.1 mm, the strength of the honeycomb unit 11 decreases.
  • the thickness of the partition wall 11b of the honeycomb unit 11 exceeds 0.4 mm, the exhaust gas hardly enters the partition wall 11b of the honeycomb unit 11, and the TiO 2 / V 2 O 5 / WO 3 catalyst is NOx. It will not be used effectively for purification.
  • the shape of the honeycomb structure 10 is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape).
  • the shape of the through hole 11a is not limited to a quadrangular prism shape, but may be a triangular prism shape, a hexagonal prism shape, or the like.
  • FIG. 3 shows an example of an exhaust gas purifying apparatus having the honeycomb structure of the present invention.
  • the exhaust gas purification apparatus 100 can be manufactured by canning the metal container (shell) 30 in a state where the holding sealing material 20 is disposed on the outer peripheral portion of the honeycomb structure 10. Further, the exhaust gas purification apparatus 100 includes an injection nozzle that injects ammonia or a compound that decomposes to generate ammonia into a pipe (not shown) on the upstream side of the honeycomb structure 10 with respect to the direction in which the exhaust gas flows. Injecting means (not shown) is provided. As a result, ammonia is added to the exhaust gas flowing through the pipe, so that the NOx contained in the exhaust gas is reduced by the TiO 2 / V 2 O 5 / WO 3 catalyst contained in the honeycomb unit 11.
  • the compound that decomposes to generate ammonia is not particularly limited as long as it can be heated by exhaust gas in the pipe and generate ammonia, but urea water is preferable because of excellent storage stability.
  • the urea water is heated by the exhaust gas in the pipe and hydrolyzes to generate ammonia.
  • FIG. 4 shows another example of the honeycomb structure of the present invention.
  • a plurality of honeycomb units 11 ′ in which a plurality of through holes 11 a are arranged in parallel in the longitudinal direction with a partition wall 11 b therebetween are bonded via an adhesive layer 13.
  • the configuration is the same as that of the honeycomb structure 10.
  • the honeycomb unit 11 ′ preferably has a cross-sectional area of 10 to 200 cm 2 in a cross section perpendicular to the longitudinal direction.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is less than 10 cm 2 , the pressure loss of the honeycomb structure 10 ′ increases.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ exceeds 200 cm 2 , the strength against the thermal stress generated in the honeycomb unit 11 ′ becomes insufficient.
  • honeycomb unit 11 ′ has the same configuration as the honeycomb unit 11 except for the cross-sectional area of the cross section perpendicular to the longitudinal direction.
  • the adhesive layer 13 preferably has a thickness of 0.5 to 2.0 mm.
  • the thickness of the adhesive layer 13 is less than 0.5 mm, the adhesive strength of the honeycomb unit 11 ′ becomes insufficient.
  • the thickness of the adhesive layer 13 exceeds 2.0 mm, the pressure loss of the honeycomb structure 10 ′ increases.
  • honeycomb structure 10 ′ First, in the same manner as the honeycomb structure 10, a quadrangular columnar honeycomb unit 11 ′ is manufactured. Next, an adhesive layer paste is applied to the outer peripheral surface excluding both end faces of the honeycomb unit 11 ′, the honeycomb units 11 ′ are sequentially bonded, and dried and solidified to produce an aggregate of the honeycomb units 11 ′.
  • the adhesive layer paste is not particularly limited, and examples thereof include a mixture of inorganic binder and inorganic particles, a mixture of inorganic binder and inorganic fibers, a mixture of inorganic binder, inorganic particles, and inorganic fibers.
  • the inorganic binder contained in the adhesive layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is preferable to add as silica sol.
  • the inorganic particles contained in the adhesive layer paste are not particularly limited, and examples thereof include carbide particles such as silicon carbide particles, nitride particles such as silicon nitride particles and boron nitride particles, and the like. . Of these, silicon carbide particles are preferred because of their excellent thermal conductivity.
  • the inorganic fiber contained in the adhesive layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
  • the adhesive layer paste may contain an organic binder.
  • the organic binder contained in the adhesive layer paste is not particularly limited, and examples thereof include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose and the like, and two or more kinds may be used in combination.
  • the adhesive layer paste may further contain balloons that are fine hollow spheres of oxide ceramics, a pore-forming agent, and the like.
  • the balloon contained in the adhesive layer paste is not particularly limited, and examples thereof include an alumina balloon, a glass microballoon, a shirasu balloon, a fly ash balloon, and a mullite balloon, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • the pore former contained in the adhesive layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
  • the aggregate of the honeycomb units 11 ′ is cut into a cylindrical shape, the aggregate of the cylindrical honeycomb units 11 ′ is manufactured by polishing as necessary.
  • the honeycomb unit 11 ′ whose cross section perpendicular to the longitudinal direction is formed into a predetermined shape is bonded to the columnar honeycomb unit 11 ′. You may produce the aggregate
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is preferably a sector shape with a central angle of 90 °.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the aggregate of the cylindrical honeycomb unit 11 ′.
  • the outer periphery coat layer paste may be the same as or different from the adhesive layer paste.
  • a columnar honeycomb structure 10 ′ is manufactured by drying and solidifying the aggregate of columnar honeycomb units 11 ′ coated with the outer periphery coating layer paste.
  • an organic binder is contained in the adhesive layer paste and / or the outer peripheral coat layer paste, it is preferable to degrease.
  • the degreasing conditions can be appropriately selected depending on the type and amount of the organic substance, but it is preferably 20 minutes at 700 ° C.
  • outer peripheral coat layer 12 may not be formed in the honeycomb structures 10 and 10 ′.
  • Example 1 210 parts by mass of ammonium metavanadate was added to an 8% diethanolamine aqueous solution prepared with 150 parts by mass of diethanolamine and 1750 parts by mass of ion-exchanged water, and heated to 100 ° C. to dissolve to obtain a premixed solution. Next, 670 parts by mass of ammonium metatungstate (50% solution) as a tungsten raw material and 80 parts by mass of Rhedol O30V as a molding lubricant were added to prepare a solution raw material.
  • the raw material paste 1 was extrusion-molded using an extruder to produce a regular quadrangular prism-shaped honeycomb formed body. Then, after the honeycomb formed body was dried at a drying pressure of 86.7 kPa for 6 minutes using a batch microwave dryer, the honeycomb formed body was put into a muffle furnace, and the temperature was increased to 550 at a heating rate of 1 ° C./min. The temperature was raised to 0 ° C., and the temperature was maintained for 3 hours and fired to produce a honeycomb fired body.
  • the honeycomb unit 11 ′ has a regular quadrangular prism shape with a side of 35 mm and a length of 150 mm, the density of the through holes 11 a is 62 / cm 2 , and the thickness of the partition walls 11 b is 0.28 mm.
  • alumina fiber having an average fiber diameter of 0.5 ⁇ m and an average fiber length of 15 ⁇ m 767 parts of alumina fiber having an average fiber diameter of 0.5 ⁇ m and an average fiber length of 15 ⁇ m, 2500 parts of silica glass, 17 parts of carboxymethylcellulose, 600 parts of silica sol having a solid content of 30% by mass, and 167 parts of polyvinyl alcohol Part, 167 parts of surfactant and 17 parts of alumina balloon were mixed and kneaded to prepare an adhesive layer paste.
  • the adhesive layer paste was applied to the outer peripheral surface excluding both ends of the honeycomb unit 11 ′ so that the thickness of the adhesive layer 13 was 2.0 mm, and 16 honeycomb units 11 ′ were adhered to each other at 150 ° C. Solidified for a minute. Next, a diamond cutter was used to cut into a cylindrical shape so that the cross section perpendicular to the longitudinal direction was substantially point-symmetric, thereby producing an aggregate of honeycomb units 11 ′.
  • the microwave dryer and the hot air dryer are applied. Then, the adhesive layer paste was dried and solidified at 150 ° C. for 10 minutes and degreased at 400 ° C. for 2 hours to prepare a cylindrical honeycomb structure 10 ′ having a diameter of 160 mm and a length of 150 mm.
  • Example 2 In Example 1, a honeycomb structure was manufactured in the same manner as in Example 1 except that the premixed solution was prepared by adding 170 parts by mass of ammonium metavanadate.
  • Example 1 A honeycomb structure was manufactured in the same manner as in Example 1 except that 170 parts by mass of ammonium metavanadate was used as it was instead of the premixed solution as the vanadium raw material in the mixing and kneading of each component of Example 1.
  • NOx purification performance From the honeycomb units produced in Examples 1 and 2 and Comparative Example 1, a square prism-shaped test piece having a side of 30 mm and a length of 40 mm was cut out using a diamond cutter. NOx flowing out from the sample using a catalyst evaluation device (SIGU-2000 / MEXA-6000FT, manufactured by Horiba, Ltd.) while flowing a simulated gas at a space velocity (SV) of 80000 / hr through these test pieces. Measure the outflow amount of NOx, and the formula (NOx inflow amount-NOx outflow amount) / (NOx inflow amount) x 100 The NOx purification rate [%] expressed by The calculation results are shown in Table 1. The constituent components of the simulated gas are 350 ppm of nitrogen monoxide, 350 ppm of ammonia, 14% of oxygen, 10% of water, and nitrogen (balance).
  • Example 2 and Comparative Example 1 show that the amount of effective V is larger in Example 2 although the amount of ammonium metavanadate used as the V raw material is exactly the same. Also from this, the effective V amount can be increased by the manufacturing method of the present invention, and the NOx purification performance can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structural Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is a manufacturing method capable of manufacturing a honeycomb structure which uses a TiO2/V2O5/WO3 catalyst, and which has excellent NOX conversion efficiency and thermal durability. This manufacturing method is of a honeycomb structure which is provided with a honeycomb unit in a shape in which multiple cells are partitioned by cell walls, said cells containing at least titanium oxide, vanadium oxide, tungsten oxide and an inorganic binder and extending in the longitudinal direction from one end surface to the other end surface; this manufacturing method is characterized by involving a mixing step for mixing titanium oxide, a vanadium raw material, a tungsten raw material, and an inorganic binder, a molding step for molding the aforementioned mixed material to obtain a honeycomb molded body, and a firing step for firing the honeycomb molded body, wherein in the mixing step, vanadium raw material is a solution comprising ammonium metavanadate dissolved in advance in an alkaline solution.

Description

ハニカム構造体及びその製造方法Honeycomb structure and manufacturing method thereof
 本発明は、排ガス中の窒素酸化物(NOx)を除去する脱硝触媒たるハニカム構造体及びその製造方法に関する。 The present invention relates to a honeycomb structure which is a denitration catalyst for removing nitrogen oxide (NOx) in exhaust gas and a method for manufacturing the honeycomb structure.
 排ガス中のNOxを浄化するためのシステムとして、アンモニアを用いてNOxを窒素と水に還元するSCR(Selective Catalytic Reduction)システムが知られている。このSCRシステムに用いられる触媒として、五酸化バナジウム(V)が高い脱硝性能を有することが知られており、二酸化チタン(TiO)にVや三酸化タングステン(WO)を担持した材料が用いられている。そして、このような、チタン酸化物にV,WOを担持した触媒(以下、「TiO/V/WO触媒」とも呼ぶ。)としては、例えば、特許文献1に開示されている。 As a system for purifying NOx in exhaust gas, an SCR (Selective Catalytic Reduction) system that uses ammonia to reduce NOx to nitrogen and water is known. As a catalyst used in this SCR system, vanadium pentoxide (V 2 O 5 ) is known to have high denitration performance, and V 2 O 5 and tungsten trioxide (WO 3 ) are added to titanium dioxide (TiO 2 ). Is used. Such a catalyst in which V 2 O 5 and WO 3 are supported on titanium oxide (hereinafter also referred to as “TiO 2 / V 2 O 5 / WO 3 catalyst”) is disclosed in, for example, Patent Document 1. It is disclosed.
特開2005-21780号公報Japanese Patent Laid-Open No. 2005-21780
 しかしながら、上記のようなTiO/V/WO触媒を用いたSCRシステムでは以下の問題を有する。
 TiO/V/WO触媒におけるNOx浄化性能は触媒種であるVとWの添加量に依存し変化するが、VとWの添加量・割合が適当でない場合、活性点となるVが均一に分散できず、バルク体を形成し有効に使用することが出来ない。さらに熱によってもVがバルク体を形成し失活する等の問題がある。また、VおよびWの添加量を多くする場合には触媒のコスト面も問題となる。
However, the SCR system using the TiO 2 / V 2 O 5 / WO 3 catalyst as described above has the following problems.
The NOx purification performance of the TiO 2 / V 2 O 5 / WO 3 catalyst varies depending on the addition amounts of the catalyst species V and W, but becomes an active site when the addition amount and ratio of V and W are not appropriate. V cannot be uniformly dispersed, and a bulk body cannot be formed and used effectively. Furthermore, there is a problem that V forms a bulk body and is deactivated by heat. Further, when the amount of addition of V and W is increased, the cost of the catalyst becomes a problem.
 本発明は、上記従来の問題点に鑑みてなされたものであり、その目的は、TiO/V/WO触媒を用いたハニカム構造体であって、NOx浄化率及び熱耐久性に優れたハニカム構造体及びその製造方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object thereof is a honeycomb structure using a TiO 2 / V 2 O 5 / WO 3 catalyst, which has a NOx purification rate and thermal durability. An excellent honeycomb structure and a method for manufacturing the same are provided.
 前記課題を解決する本発明は以下の通りである。
(1)チタン酸化物、バナジウム酸化物、タングステン酸化物及び無機バインダを少なくとも含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルが、セル壁によって区画された形状のハニカムユニットを備えたハニカム構造体の製造方法であって、
 チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを混合する混合工程と、
 混合した前記材料をハニカム状に成形し、ハニカム成形体を得る成形工程と、
 前記ハニカム成形体を焼成する焼成工程と、を含み、
 前記混合工程において、前記バナジウム原料がメタバナジン酸アンモニウムを予めアルカリ性溶液に溶解した溶液であることを特徴とするハニカム構造体の製造方法。
The present invention for solving the above problems is as follows.
(1) A shape in which a plurality of cells including at least titanium oxide, vanadium oxide, tungsten oxide, and an inorganic binder and extending from one end face to the other end face along the longitudinal direction are partitioned by cell walls. A method for manufacturing a honeycomb structure including a honeycomb unit,
Mixing step of mixing titanium oxide, vanadium raw material, tungsten raw material and inorganic binder;
Forming the mixed material into a honeycomb shape and obtaining a honeycomb formed body; and
A firing step of firing the honeycomb formed body,
In the mixing step, the vanadium raw material is a solution in which ammonium metavanadate is previously dissolved in an alkaline solution.
(2)前記アルカリ性溶液が、ジエタノールアミン溶液、モノエタノールアミン溶液、ジエチルアミノエタノール溶液、およびアンモニア水から選ばれる1種以上であることを特徴とする前記(1)に記載のハニカム構造体の製造方法。 (2) The method for manufacturing a honeycomb structure according to (1), wherein the alkaline solution is at least one selected from a diethanolamine solution, a monoethanolamine solution, a diethylaminoethanol solution, and aqueous ammonia.
(3)前記アルカリ性溶液がジエタノールアミン溶液であって、前記メタバナジン酸アンモニウムをジエタノールアミン溶液に溶解させる際に、80℃以上に加熱することを特徴とする前記(2)に記載のハニカム構造体の製造方法。 (3) The method for manufacturing a honeycomb structure according to (2), wherein the alkaline solution is a diethanolamine solution, and when the ammonium metavanadate is dissolved in the diethanolamine solution, the alkaline solution is heated to 80 ° C. or higher. .
(4)前記バナジウム原料中のバナジウム原子、及び前記タングステン原料中のタングステン原子のモル比(W/V)が0.8~1.2であることを特徴とする前記(1)~(3)のいずれかに記載のハニカム構造体の製造方法。 (4) The above (1) to (3), wherein the molar ratio (W / V) of vanadium atoms in the vanadium raw material and tungsten atoms in the tungsten raw material is 0.8 to 1.2. A method for manufacturing a honeycomb structure according to any one of the above.
(5)前記無機バインダが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベントナイト及びベーマイトからなる群より選択される一種以上に含まれる固形分であることを特徴とする前記(1)~(4)のいずれかに記載のハニカム構造体の製造方法。 (5) The inorganic binder is a solid content contained in one or more selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, bentonite and boehmite. (4) The method for manufacturing a honeycomb structure according to any one of (4).
(6)前記混合工程において、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに混合することを特徴とする前記(1)~(5)のいずれかに記載のハニカム構造体の製造方法。 (6) In the mixing step, at least one selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances, and three-dimensional needle-like substances is further mixed. The method for manufacturing a honeycomb structure according to any one of the above.
(7)前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、
 前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、
 前記テトラポット状物質は、酸化亜鉛であり、
 前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることを特徴とする前記(6)に記載のハニカム構造体の製造方法。
(7) The inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate and aluminum borate,
The scaly substance is at least one selected from the group consisting of glass, muscovite, alumina and silica,
The tetrapot-like substance is zinc oxide,
The three-dimensional acicular material is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate, aluminum borate and boehmite. A method for manufacturing a honeycomb structured body according to (6).
(8)前記(1)~(7)のいずれか1項に記載のハニカム構造体の製造方法により得られるハニカム構造体であって、
 水素-昇温還元法(H-TPR)によるハニカム構造体1gあたりのバナジウムによる水素消費量が0.6mmol以上であり、W/V添加量モル比が0.8~1.2であることを特徴とするハニカム構造体。
(8) A honeycomb structure obtained by the method for manufacturing a honeycomb structure according to any one of (1) to (7),
Hydrogen consumption by vanadium per 1 g of honeycomb structure by the hydrogen-temperature reduction method (H 2 -TPR) is 0.6 mmol or more, and the molar ratio of W / V addition amount is 0.8 to 1.2. A honeycomb structure characterized by the above.
 本発明によれば、TiO/V/WO触媒を用いたハニカム構造体であって、NOx浄化率及び熱耐久性に優れたハニカム構造体及びその製造方法を提供することができる。 According to the present invention, a honeycomb structure using a TiO 2 / V 2 O 5 / WO 3 catalyst, a honeycomb structure excellent in NOx purification rate and thermal durability, and a method for manufacturing the honeycomb structure can be provided. .
TiO/V/WO触媒のNOx浄化サイクルを示す図である。Is a diagram showing a NOx purification cycle TiO 2 / V 2 O 5 / WO 3 catalyst. 本発明のハニカム構造体の一例を示す斜視図である。It is a perspective view which shows an example of the honeycomb structure of this invention. 本発明のハニカム構造体を有する排ガス浄化装置の一例を示す断面図である。It is sectional drawing which shows an example of the exhaust gas purification apparatus which has a honeycomb structure of this invention. 本発明のハニカム構造体の他の例を示す斜視図である。It is a perspective view which shows the other example of the honeycomb structure of this invention. 図4のハニカム構造体を構成するハニカムユニットを示す斜視図である。FIG. 5 is a perspective view showing a honeycomb unit constituting the honeycomb structure of FIG. 4.
 本発明のハニカム構造体の製造方法は、チタン酸化物、バナジウム酸化物、タングステン酸化物及び無機バインダを少なくとも含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルが、セル壁によって区画された形状のハニカムユニットを備えたハニカム構造体の製造方法であって、チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを混合する混合工程と、混合した前記材料をハニカム状に成形し、ハニカム成形体を得る成形工程と、前記ハニカム成形体を焼成する焼成工程と、を含み、前記混合工程において、前記バナジウム原料がメタバナジン酸アンモニウムを予めアルカリ性溶液に溶解した溶液であることを特徴としている。
 また、本発明のハニカム構造体は、本発明のハニカム構造体の製造方法により得られるハニカム構造体であって、水素-昇温還元法(H-TPR)によるハニカム構造体1gあたりのVによる水素消費量が0.6mmol以上であることを特徴としている。
The method for manufacturing a honeycomb structure of the present invention includes at least a titanium oxide, a vanadium oxide, a tungsten oxide, and an inorganic binder, and a plurality of cells extending from one end face to the other end face along the longitudinal direction. A manufacturing method of a honeycomb structure including a honeycomb unit having a shape defined by cell walls, a mixing step of mixing a titanium oxide, a vanadium raw material, a tungsten raw material, and an inorganic binder, and the mixed material into a honeycomb shape A forming step of forming a honeycomb formed body and a firing step of firing the honeycomb formed body, and in the mixing step, the vanadium raw material is a solution in which ammonium metavanadate is previously dissolved in an alkaline solution. It is a feature.
Further, the honeycomb structure of the present invention is a honeycomb structure obtained by the method for manufacturing a honeycomb structure of the present invention, and depends on V per 1 g of the honeycomb structure by a hydrogen-temperature-reduction reduction method (H 2 -TPR). The hydrogen consumption is 0.6 mmol or more.
 TiO/V/WO触媒に於けるSCR反応は、図1に示すようにTiO上でのV(5価⇔4価)の酸化還元反応により進行することから、TiO上のV(5価)の量を増加させることにより反応性は向上する。TiO上のV(5価)の量を増加させるためには、TiO上でWをVと結合させV-O-Wとすればよく、これによりVの分散状態を維持し、且つ熱によってVがバルク化し失活するのを防ぐことが出来る。すなわち、TiO上でWをVと結合させV-O-Wとすることで、TiO上の5価のVイオンの量を常に多い状態に保つことが出来る。そして、TiO上でVを5価のイオンとして全て有効に使用するためには、TiO上におけるVとWを少なくともモル比1:1となるように結合させる必要があると考えられる。 In SCR reaction TiO 2 / V 2 O 5 / WO 3 catalyst, since it proceeds by the redox reaction of V (5 valence ⇔4 valence) of on TiO 2 as shown in FIG. 1, TiO 2 above The reactivity is improved by increasing the amount of V (pentavalent). To increase the amount of V on TiO 2 (5-valent) may Tosureba V-O-W is coupled with V and W on TiO 2, thereby maintaining the dispersed state of V, and heat Can prevent V from being bulked and deactivated. That is, by combining W with V on TiO 2 to form VO—W, the amount of pentavalent V ions on TiO 2 can always be kept large. Then, in order to all effectively use the V on TiO 2 as a pentavalent ion, at least a molar ratio of V and W on the TiO 2 1: it is considered necessary to bond such that the 1.
 本発明者は、自動車排ガスの一般的な条件である250℃、SV(空間速度)60000hr-1、NO/NOx=0の時に、Vの分散状態、すなわち反応に寄与するV(5価)の量(以下、「有効V量」と呼ぶ。)を定量した結果、W添加量の増加に伴い向上すること、さらに有効V量の増加に伴いNOx浄化率は向上し0.3mmol/g以上で飽和することを見出した。
 ここで、有効V量導出の手法としては、水素-昇温還元法(H-TPR)を用いる。そして、ハニカム構造体1gあたりの有効V量0.3mmol以上を満たすためには、5価バナジウム還元由来ピーク(350~580℃)から計算される水素消費量と、それに伴うバナジウム価数変化の関係より、本測定における水素消費量は0.6mmol/g以上でなければならない。
 以上のことから、水素-昇温還元法におけるバナジウム還元由来の水素消費量をハニカム構造体1gあたり0.6mmol以上(有効V量0.3mmol/g以上)、W/V添加量モル比0.8~1.2とすることで、初期のNOx浄化性能と熱耐久性を向上させることができる。
The present inventor found that V is a dispersed state of V, that is, V (pentavalent) that contributes to the reaction at 250 ° C., SV (space velocity) 60000 hr −1 , NO 2 / NOx = 0, which are general conditions of automobile exhaust gas. As a result of quantifying the amount (hereinafter referred to as “effective V amount”), the NOx purification rate is improved with an increase in the added amount of W, and further the NOx purification rate is increased with an increase in the effective V amount is 0.3 mmol / g or more. It was found to be saturated at.
Here, a hydrogen-temperature reduction method (H 2 -TPR) is used as a method for deriving the effective V amount. In order to satisfy the effective V amount of 0.3 mmol or more per 1 g of the honeycomb structure, the relationship between the hydrogen consumption calculated from the pentavalent vanadium reduction peak (350 to 580 ° C.) and the accompanying vanadium valence change. Therefore, the hydrogen consumption in this measurement must be 0.6 mmol / g or more.
From the above, the hydrogen consumption derived from vanadium reduction in the hydrogen-temperature reduction method is 0.6 mmol or more per 1 g of honeycomb structure (effective V amount is 0.3 mmol / g or more), and the W / V addition amount molar ratio is 0.00. By setting the ratio to 8 to 1.2, the initial NOx purification performance and thermal durability can be improved.
 以上の通り、TiO/V/WO触媒において有効V量を向上させることで、初期のNOx浄化性能と熱耐久性を向上させることができる。つまり、Vを均一に分散し、バルク体が存在しないようにすればよいが、本発明者は、各原料を混合する混合工程において、V原料として、メタバナジン酸アンモニウムを予めアルカリ性溶液に溶解した溶液を用い、チタン酸化物及びタングステン原料などと混合することで、活性を示さないVバルク体の存在比率を低減可能であることを見出した。つまり、Vが溶液に十分に分散した状態で、TiO原料に付着させることができるため、TiO原料とV原料を固体同士で混合するよりもVの分散状態が高く、バルク体となることを防ぐことができるのである。焼成前に、予めTiO上にV原料が均一に分散した状態を形成しておくことで、焼成後においてもVを均一に分散させることができ、ひいてはNOx浄化性能と熱耐久性を向上させることができる。 As described above, the initial NOx purification performance and thermal durability can be improved by increasing the effective V amount in the TiO 2 / V 2 O 5 / WO 3 catalyst. That is, V may be uniformly dispersed so that the bulk body does not exist. However, in the mixing step of mixing each raw material, the present inventor is a solution in which ammonium metavanadate is previously dissolved in an alkaline solution as the V raw material. It was found that the abundance ratio of V bulk bodies that do not show activity can be reduced by mixing with titanium oxide and tungsten raw materials. In other words, since V can be attached to the TiO 2 raw material in a sufficiently dispersed state in the solution, the dispersion state of V is higher than that in the case where the TiO 2 raw material and the V raw material are mixed with each other, resulting in a bulk body. Can be prevented. By forming a state in which the V raw material is uniformly dispersed on TiO 2 in advance before firing, V can be evenly dispersed even after firing, thereby improving NOx purification performance and thermal durability. be able to.
 以下に、本発明のハニカム構造体の製造方法について説明するに当たり、まず当該ハニカム構造体の一例を図2を参照して説明する。
 図2に示すハニカム構造体10は、チタン酸化物、バナジウム酸化物、タングステン酸化物、及び無機バインダとを含み、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設されている単一のハニカムユニット11を有する。また、ハニカムユニット11の両端面を除く外周面に外周コート層12が形成されている。
 このようなハニカム構造体を製造する本発明の製造方法の各工程について以下に説明する。
Hereinafter, in describing the method for manufacturing a honeycomb structure of the present invention, an example of the honeycomb structure will be described with reference to FIG.
A honeycomb structure 10 shown in FIG. 2 includes titanium oxide, vanadium oxide, tungsten oxide, and an inorganic binder, and a plurality of through holes 11a are arranged in parallel in the longitudinal direction with partition walls 11b interposed therebetween. The honeycomb unit 11 is provided. Further, the outer peripheral coat layer 12 is formed on the outer peripheral surface excluding both end surfaces of the honeycomb unit 11.
Each step of the production method of the present invention for producing such a honeycomb structure will be described below.
[混合工程]
 本工程においては、チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを含み、必要に応じて、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上を混合して原料ペーストを調製する。
 そして、上述の通り、バナジウム原料としては、メタバナジン酸アンモニウムを予めアルカリ性溶液に溶解した溶液(以下、「予混合溶液」とも呼ぶ。)を用いる。つまり、原料ペーストを調製するに当たり、全原料を一度に混合するのではなく、バナジウム原料のみについては、別途上記予混合溶液を調製し、その後、その予混合溶液を他の成分と混合するのである。
 より具体的には、本工程は、以下の(1)、(2)の順に実行される。
(1)メタバナジン酸アンモニウムをアルカリ性溶液に溶解した予混合溶液を調製する。
(2)予混合溶液と、少なくとも、チタン酸化物、タングステン原料及び無機バインダとを混合する。
[Mixing process]
In this step, a titanium oxide, a vanadium raw material, a tungsten raw material, and an inorganic binder are included. The raw material paste is prepared by mixing the above.
As described above, as the vanadium raw material, a solution in which ammonium metavanadate is previously dissolved in an alkaline solution (hereinafter also referred to as “premixed solution”) is used. In other words, in preparing the raw material paste, instead of mixing all the raw materials at once, for the vanadium raw material only, the above premixed solution is prepared separately, and then the premixed solution is mixed with other components. .
More specifically, this process is performed in the order of the following (1) and (2).
(1) A premixed solution in which ammonium metavanadate is dissolved in an alkaline solution is prepared.
(2) A premixed solution and at least a titanium oxide, a tungsten raw material, and an inorganic binder are mixed.
 本発明においては、メタバナジン酸アンモニウム(NHVO)は、取り扱いが容易であることから好適に使用される。そして、NHVO→V+2NH+HOといった分解反応によって、Vを生成し、SCRシステムにおける触媒としての役割を果たす。 In the present invention, ammonium metavanadate (NH 4 VO 3 ) is preferably used because it is easy to handle. Then, V 2 O 5 is generated by a decomposition reaction such as NH 4 VO 3 → V 2 O 5 + 2NH 3 + H 2 O and plays a role as a catalyst in the SCR system.
 予混合溶液中のメタバナジン酸アンモニウムの濃度は、1~25質量%とすることが好ましく、5~15質量%とすることがより好ましい。 The concentration of ammonium metavanadate in the premixed solution is preferably 1 to 25% by mass, more preferably 5 to 15% by mass.
 予混合溶液の調製に用いるアルカリ性溶液としては、ジエタノールアミン溶液、モノエタノールアミン溶液、ジエチルアミノエタノール溶液、およびアンモニア水から選ばれる1種以上であることが好ましく、中でも、ジエタノールアミン溶液が好ましい。なぜなら、これらの溶液は、チタン-バナジウムに添加するとNOxの浄化性能を低下させてしまうアルカリ金属やアルカリ土類金属を含まない。また、沸点が500℃以下であるため、ハニカムユニットの焼成時に揮発により除去される。そのため、ハニカム構造体とした時に、NOx浄化性能を低下させることがないためである。 The alkaline solution used for the preparation of the premixed solution is preferably at least one selected from a diethanolamine solution, a monoethanolamine solution, a diethylaminoethanol solution, and aqueous ammonia, and among them, a diethanolamine solution is preferable. This is because these solutions do not contain alkali metals or alkaline earth metals that, when added to titanium-vanadium, degrade the NOx purification performance. Moreover, since the boiling point is 500 ° C. or less, it is removed by volatilization when the honeycomb unit is fired. Therefore, when the honeycomb structure is formed, the NOx purification performance is not deteriorated.
 また、アルカリ性溶液中のアルカリ性成分の濃度は、0.1~2mol/Lとすることが好ましく、pHは7~11とすることが好ましい。 The concentration of the alkaline component in the alkaline solution is preferably 0.1 to 2 mol / L, and the pH is preferably 7 to 11.
 アルカリ性溶液としてジエタノールアミン溶液を用いる場合において、メタバナジン酸アンモニウムをジエタノールアミン溶液に溶解させる際に、80℃以上に加熱することが好ましい。80℃以上に加熱することで、メタバナジン酸アンモニウムを十分に溶解させ、Vを均一に分散し、バルク体が存在しないようにできるためである。当該加熱温度は、80~95℃がより好ましい。 In the case of using a diethanolamine solution as the alkaline solution, it is preferable to heat to 80 ° C. or higher when ammonium metavanadate is dissolved in the diethanolamine solution. This is because by heating to 80 ° C. or higher, ammonium metavanadate can be sufficiently dissolved, V can be uniformly dispersed, and no bulk body can be present. The heating temperature is more preferably 80 to 95 ° C.
 チタン酸化物としては、比表面積が高いアナターゼ型の二酸化チタンを用いることが好ましい。 As the titanium oxide, it is preferable to use anatase type titanium dioxide having a high specific surface area.
 タングステン原料としては、メタタングステン酸アンモニウム、酸化タングステン、パラタングステン酸アンモニウム等が挙げられ、中でも、メタタングステン酸アンモニウムが好ましい。 Examples of the tungsten raw material include ammonium metatungstate, tungsten oxide, and ammonium paratungstate. Among them, ammonium metatungstate is preferable.
 原料ペースト中、前記バナジウム原料中のバナジウム原子、及び前記タングステン原料中のタングステン原子のモル比(W/V)は0.8~1.2とすることが好ましい。上述したとおり、ハニカム構造体におけるW/V添加量モル比0.8~1.2とすることで、初期のNOx浄化性能と熱耐久性を向上させることができるためである。当該モル比は、より好ましくは0.9~1.1であり、さらに好ましくは0.95~1.05である。
 また、タングステン原子及びバナジウム原子の合計に対するチタン原子のモル比((W+V)/Ti)は、0.02~0.2が好ましく、0.05~0.1がより好ましい。
In the raw material paste, the molar ratio (W / V) of vanadium atoms in the vanadium raw material and tungsten atoms in the tungsten raw material is preferably 0.8 to 1.2. This is because the initial NOx purification performance and thermal durability can be improved by setting the W / V addition amount molar ratio in the honeycomb structure to 0.8 to 1.2 as described above. The molar ratio is more preferably 0.9 to 1.1, still more preferably 0.95 to 1.05.
The molar ratio of titanium atoms to the total of tungsten atoms and vanadium atoms ((W + V) / Ti) is preferably 0.02 to 0.2, and more preferably 0.05 to 0.1.
 強度を向上させるために、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上を原料ペースト中に添加することが好ましい。 In order to improve the strength, it is preferable to add one or more selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances and three-dimensional needle-like substances into the raw material paste.
 前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、前記テトラポット状物質は、酸化亜鉛であり、前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることが好ましい。
 いずれも耐熱性が高く、SCRシステムにおける触媒担体として使用した時でも、溶損などがなく、補強材としての効果を持続することができるためである。
The inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate and aluminum borate, and the scaly substance is glass, muscovite. One or more selected from the group consisting of alumina and silica, the tetrapot-like substance is zinc oxide, and the three-dimensional needle-like substance is alumina, silica, silicon carbide, silica alumina, glass, wallast It is preferably at least one selected from the group consisting of knight, potassium titanate, aluminum borate and boehmite.
This is because all of them have high heat resistance, and even when used as a catalyst carrier in an SCR system, there is no melting damage and the effect as a reinforcing material can be maintained.
 前記無機繊維のアスペクト比は、2~1000であることが好ましく、5~800がより好ましく、10~500がさらに好ましい。ハニカムユニット11に含まれる無機繊維のアスペクト比が2未満であると、ハニカムユニット11の強度を向上させる効果が小さくなる。一方、ハニカムユニット11に含まれる無機繊維のアスペクト比が1000を超えると、ハニカムユニット11を押出成形する際に金型に目詰まり等が発生したり、無機繊維が折れて、ハニカムユニット11の強度を向上させる効果が小さくなったりする。 The aspect ratio of the inorganic fiber is preferably 2 to 1000, more preferably 5 to 800, and still more preferably 10 to 500. When the aspect ratio of the inorganic fibers contained in the honeycomb unit 11 is less than 2, the effect of improving the strength of the honeycomb unit 11 is reduced. On the other hand, when the aspect ratio of the inorganic fibers contained in the honeycomb unit 11 exceeds 1000, the mold is clogged when the honeycomb unit 11 is extruded, or the inorganic fibers break and the strength of the honeycomb unit 11 is increased. The effect of improving the quality is reduced.
 前記鱗片状物質は、平たい物質を意味し、厚さが0.2~5.0μmであることが好ましく、最大長さが10~160μmであることが好ましく、厚さに対する最大長さの比が3~250であることが好ましい。 The scaly substance means a flat substance, preferably having a thickness of 0.2 to 5.0 μm, preferably having a maximum length of 10 to 160 μm, and having a ratio of the maximum length to the thickness. It is preferably 3 to 250.
 前記テトラポット状物質は、針状部が三次元に延びている物質を意味し、針状部の平均針状長さが5~30μmであることが好ましく、針状部の平均径が0.5~5.0μmであることが好ましい。 The tetrapot-like substance means a substance in which the needle-like portion extends three-dimensionally, the needle-like portion preferably has an average needle-like length of 5 to 30 μm, and the needle-like portion has an average diameter of 0.00. It is preferably 5 to 5.0 μm.
 前記三次元針状物質は、針状部同士がそれぞれの針状部の中央付近でガラス等の無機化合物により結合されている物質を意味し、針状部の平均針状長さが5~30μmであることが好ましく、針状部の平均径が0.5~5.0μmであることが好ましい。 The three-dimensional acicular substance means a substance in which the acicular parts are bonded by an inorganic compound such as glass near the center of each acicular part, and the average acicular length of the acicular parts is 5 to 30 μm. The average diameter of the needle-like part is preferably 0.5 to 5.0 μm.
 また、三次元針状物質は、複数の針状部が三次元に連なっていてもよく、針状部の直径が0.1~5.0μmであることが好ましく、長さが0.3~30.0μmであることが好ましく、直径に対する長さの比が1.4~50.0であることが好ましい。 The three-dimensional acicular substance may have a plurality of acicular portions that are three-dimensionally connected, and preferably has a needle-like diameter of 0.1 to 5.0 μm and a length of 0.3 to It is preferably 30.0 μm, and the ratio of length to diameter is preferably 1.4 to 50.0.
 無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量は、ハニカムユニット11中、3~50質量%であることが好ましく、3~30質量%がより好ましく、5~20質量%がさらに好ましい。ハニカム構造体中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量が3質量%未満であると、ハニカム構造体の強度を向上させる効果が小さくなる。一方、ハニカム構造体中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量が50質量%を超えると、ハニカム構造体中のTiO/V/WO触媒の含有量が低下して、NOxの浄化性能が低下する。 The content of the inorganic fiber, scale-like substance, tetrapot-like substance and three-dimensional needle-like substance is preferably 3 to 50% by mass in the honeycomb unit 11, more preferably 3 to 30% by mass. More preferred is mass%. When the content of the inorganic fiber, the scale-like substance, the tetrapot-like substance, and the three-dimensional needle-like substance in the honeycomb structure is less than 3% by mass, the effect of improving the strength of the honeycomb structure becomes small. On the other hand, when the content of inorganic fibers, scale-like substances, tetrapot-like substances and three-dimensional needle-like substances in the honeycomb structure exceeds 50% by mass, TiO 2 / V 2 O 5 / WO 3 in the honeycomb structure is obtained. The catalyst content decreases, and the NOx purification performance decreases.
 前記無機バインダとしては、特に限定されないが、ハニカム構造体としての強度を保つという観点から、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベントナイト、ベーマイト等に含まれる固形分が好適なものとして挙げられ、二種以上併用してもよい。 The inorganic binder is not particularly limited, but from the viewpoint of maintaining the strength as a honeycomb structure, a solid content contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, bentonite, boehmite and the like is preferable. 2 or more may be used in combination.
 無機バインダの含有量は、ハニカムユニット11中、5~30質量%であることが好ましく、10~20質量%がより好ましい。ハニカムユニット11中の無機バインダの含有量が5質量%未満であると、ハニカム構造体の強度が低下する。一方、ハニカム構造体中の無機バインダの含有量が30質量%を超えると、ハニカム成形体を押出成形することが困難になる。 The content of the inorganic binder is preferably 5 to 30% by mass in the honeycomb unit 11 and more preferably 10 to 20% by mass. When the content of the inorganic binder in the honeycomb unit 11 is less than 5% by mass, the strength of the honeycomb structure is lowered. On the other hand, when the content of the inorganic binder in the honeycomb structure exceeds 30% by mass, it becomes difficult to extrude the honeycomb formed body.
 また、原料ペーストには、有機バインダ、分散媒、成形助剤等を、必要に応じて、適宜添加してもよい。 In addition, an organic binder, a dispersion medium, a molding aid and the like may be appropriately added to the raw material paste as necessary.
 有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。なお、有機バインダの添加量は、チタン酸化物、バナジウム酸化物、タングステン酸化物、無機バインダ、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の総質量に対して、1~10%であることが好ましい。 The organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin, and two or more kinds may be used in combination. Note that the amount of the organic binder added is from 1 to the total mass of titanium oxide, vanadium oxide, tungsten oxide, inorganic binder, inorganic fiber, scaly substance, tetrapot-like substance, and three-dimensional acicular substance. 10% is preferable.
 分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。 The dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like.
 成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。 The molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like, and two or more kinds may be used in combination.
 原料ペーストを調製する際には、混合混練することが好ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。 When preparing the raw material paste, it is preferable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
[成形工程]
 本工程においては、混合工程で得られた原料ペーストを用いて押出成形し、複数の貫通孔が隔壁を隔てて長手方向に並設されている円柱状のハニカム成形体を作製する。
[Molding process]
In this step, extrusion molding is performed using the raw material paste obtained in the mixing step, and a cylindrical honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween is produced.
 ハニカム成形体を作製した後、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥する。 After producing the honeycomb formed body, the honeycomb formed body is dried using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, or a freeze dryer.
[焼成工程]
 焼成工程においては、以上のようにして得られたハニカム成形体を焼成する。焼成温度は、450 ~750℃でとすることが好ましく、550~650℃であることが好ましい。
 焼成時間は、焼成が完結するまでの時間を適宜設定すればよく、例えば、1~5時間とすることができる。
[Baking process]
In the firing step, the honeycomb formed body obtained as described above is fired. The firing temperature is preferably 450 to 750 ° C., and more preferably 550 to 650 ° C.
The firing time may be set as appropriate until the firing is completed, and may be 1 to 5 hours, for example.
[その他の工程]
 以上の焼成工程の後に、外周コート層を形成する工程など、その他の工程を設けることができる。
 外周コート層を形成する工程においては、円柱状のハニカムユニット11の両端面を除く外周面に外周コート層用ペーストを塗布する。
[Other processes]
Other steps such as a step of forming an outer peripheral coat layer can be provided after the above baking step.
In the step of forming the outer peripheral coat layer, the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the columnar honeycomb unit 11.
 外周コート層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。 Although it does not specifically limit as a paste for outer periphery coating layers, The mixture of an inorganic binder and an inorganic particle, the mixture of an inorganic binder and an inorganic fiber, the mixture of an inorganic binder, an inorganic particle, and an inorganic fiber etc. are mentioned.
 外周コート層用ペーストに含まれる無機バインダは、特に限定されないが、シリカゾル、アルミナゾル等として添加されており、二種以上併用してもよい。中でも、シリカゾルとして添加されていることが好ましい。 The inorganic binder contained in the outer periphery coating layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is preferable to add as silica sol.
 外周コート層用ペーストに含まれる無機粒子としては、特に限定されないが、炭化ケイ素粒子等の炭化物粒子、窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子等が挙げられ、二種以上併用してもよい。中でも、熱伝導性に優れることから、炭化ケイ素粒子が好ましい。 The inorganic particles contained in the outer periphery coating layer paste are not particularly limited, but may include carbide particles such as silicon carbide particles, nitride particles such as silicon nitride particles and boron nitride particles, and the like. Good. Of these, silicon carbide particles are preferred because of their excellent thermal conductivity.
 外周コート層用ペーストに含まれる無機繊維としては、特に限定されないが、シリカアルミナ繊維、ムライト繊維、アルミナ繊維、シリカ繊維等が挙げられ、二種以上併用してもよい。中でも、アルミナ繊維が好ましい。 The inorganic fiber contained in the outer periphery coat layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
 外周コート層用ペーストは、有機バインダをさらに含んでいてもよい。 The outer periphery coating layer paste may further contain an organic binder.
 外周コート層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。 Although it does not specifically limit as an organic binder contained in the paste for outer periphery coating layers, Polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, etc. are mentioned, You may use 2 or more types together.
 外周コート層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔剤等をさらに含んでいてもよい。 The outer peripheral coat layer paste may further contain balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
 外周コート層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが好ましい。 The balloon contained in the outer periphery coating layer paste is not particularly limited, and examples thereof include alumina balloons, glass micro balloons, shirasu balloons, fly ash balloons, mullite balloons, and the like, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
 外周コート層用ペーストに含まれる造孔剤としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。 Although it does not specifically limit as a pore making material contained in the paste for outer periphery coating layers, A spherical acrylic particle, a graphite, etc. are mentioned, You may use 2 or more types together.
 次に、外周コート層用ペーストが塗布されたハニカムユニット11を乾燥固化し、円柱状のハニカム構造体10を作製する。このとき、外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができるが、700℃で20分間であることが好ましい。 Next, the honeycomb unit 11 to which the outer peripheral coat layer paste has been applied is dried and solidified to produce a columnar honeycomb structure 10. At this time, when the outer peripheral coat layer paste contains an organic binder, it is preferably degreased. The degreasing conditions can be appropriately selected depending on the type and amount of the organic substance, but it is preferably 20 minutes at 700 ° C.
 以上のようにして作製されるハニカムユニット11は、気孔率が30~60%であることが好ましい。ハニカムユニット11の気孔率が30%未満であると、ハニカムユニット11の隔壁11bの内部まで排ガスが侵入しにくくなって、TiO/V/WO触媒がNOxの浄化に有効に利用されなくなる。一方、ハニカムユニット11の気孔率が60%を超えると、ハニカムユニット11の強度が不十分となる。 The honeycomb unit 11 manufactured as described above preferably has a porosity of 30 to 60%. If the porosity of the honeycomb unit 11 is less than 30%, the exhaust gas hardly enters the partition walls 11b of the honeycomb unit 11, and the TiO 2 / V 2 O 5 / WO 3 catalyst is effectively used for NOx purification. It will not be done. On the other hand, when the porosity of the honeycomb unit 11 exceeds 60%, the strength of the honeycomb unit 11 becomes insufficient.
 なお、ハニカムユニット11の気孔率は、水銀圧入法を用いて測定することができる。 Note that the porosity of the honeycomb unit 11 can be measured using a mercury intrusion method.
 ハニカムユニット11は、長手方向に垂直な断面の開口率が50~75%であることが好ましい。ハニカムユニット11の長手方向に垂直な断面の開口率が50%未満であると、TiO/V/WO触媒がNOxの浄化に有効に利用されなくなる。一方、ハニカムユニット11の長手方向に垂直な断面の開口率が75%を超えると、ハニカムユニット11の強度が不十分となる。 The honeycomb unit 11 preferably has an opening ratio of a cross section perpendicular to the longitudinal direction of 50 to 75%. When the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 50%, the TiO 2 / V 2 O 5 / WO 3 catalyst is not effectively used for NOx purification. On the other hand, if the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 75%, the strength of the honeycomb unit 11 becomes insufficient.
 ハニカムユニット11は、長手方向に垂直な断面の貫通孔11aの密度が31~155個/cmであることが好ましい。ハニカムユニット11の長手方向に垂直な断面の貫通孔11aの密度が31個/cm未満であると、TiO/V/WO触媒と排ガスが接触しにくくなって、NOxの浄化性能が低下する。一方、ハニカムユニット11の長手方向に垂直な断面の貫通孔11aの密度が155個/cmを超えると、ハニカム構造体10の圧力損失が増大する。 In the honeycomb unit 11, the density of the through holes 11a having a cross section perpendicular to the longitudinal direction is preferably 31 to 155 / cm 2 . When the density of the through-holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 31 / cm 2 , the TiO 2 / V 2 O 5 / WO 3 catalyst and the exhaust gas are less likely to come into contact with each other, thereby purifying NOx. Performance decreases. On the other hand, when the density of the through holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 155 / cm 2 , the pressure loss of the honeycomb structure 10 increases.
 ハニカムユニット11の隔壁11bの厚さは、0.1~0.4mmであることが好ましく、0.1~0.3mmがより好ましい。ハニカムユニット11の隔壁11bの厚さが0.1mm未満であると、ハニカムユニット11の強度が低下する。一方、ハニカムユニット11の隔壁11bの厚さが0.4mmを超えると、ハニカムユニット11の隔壁11bの内部まで排ガスが侵入しにくくなって、TiO/V/WO触媒がNOxの浄化に有効に利用されなくなる。 The thickness of the partition wall 11b of the honeycomb unit 11 is preferably 0.1 to 0.4 mm, and more preferably 0.1 to 0.3 mm. When the thickness of the partition wall 11b of the honeycomb unit 11 is less than 0.1 mm, the strength of the honeycomb unit 11 decreases. On the other hand, when the thickness of the partition wall 11b of the honeycomb unit 11 exceeds 0.4 mm, the exhaust gas hardly enters the partition wall 11b of the honeycomb unit 11, and the TiO 2 / V 2 O 5 / WO 3 catalyst is NOx. It will not be used effectively for purification.
 外周コート層12は、厚さが0.1~2.0mmであることが好ましい。外周コート層12の厚さが0.1mm未満であると、ハニカム構造体10の強度を向上させる効果が不十分になる。一方、外周コート層12の厚さが2.0mmを超えると、ハニカム構造体10の単位体積当たりのTiO/V/WO触媒の含有量が低下して、NOxの浄化性能が低下する。 The outer peripheral coat layer 12 preferably has a thickness of 0.1 to 2.0 mm. When the thickness of the outer peripheral coat layer 12 is less than 0.1 mm, the effect of improving the strength of the honeycomb structure 10 becomes insufficient. On the other hand, when the thickness of the outer peripheral coat layer 12 exceeds 2.0 mm, the content of the TiO 2 / V 2 O 5 / WO 3 catalyst per unit volume of the honeycomb structure 10 is reduced, and the NOx purification performance is improved. descend.
 ハニカム構造体10の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。 The shape of the honeycomb structure 10 is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape).
 貫通孔11aの形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。 The shape of the through hole 11a is not limited to a quadrangular prism shape, but may be a triangular prism shape, a hexagonal prism shape, or the like.
 図3に、本発明のハニカム構造体を有する排ガス浄化装置の一例を示す。排ガス浄化装置100は、ハニカム構体10の外周部に保持シール材20を配置した状態で、金属容器(シェル)30にキャニングすることにより作製することができる。また、排ガス浄化装置100には、排ガスが流れる方向に対して、ハニカム構造体10の上流側の配管(不図示)内に、アンモニア又は分解してアンモニアを発生させる化合物を噴射する噴射ノズル等の噴射手段(不図示)が設けられている。これにより、配管を流れる排ガス中にアンモニアが添加されるため、ハニカムユニット11に含まれるTiO/V/WO触媒により、排ガス中に含まれるNOxが還元される。 FIG. 3 shows an example of an exhaust gas purifying apparatus having the honeycomb structure of the present invention. The exhaust gas purification apparatus 100 can be manufactured by canning the metal container (shell) 30 in a state where the holding sealing material 20 is disposed on the outer peripheral portion of the honeycomb structure 10. Further, the exhaust gas purification apparatus 100 includes an injection nozzle that injects ammonia or a compound that decomposes to generate ammonia into a pipe (not shown) on the upstream side of the honeycomb structure 10 with respect to the direction in which the exhaust gas flows. Injecting means (not shown) is provided. As a result, ammonia is added to the exhaust gas flowing through the pipe, so that the NOx contained in the exhaust gas is reduced by the TiO 2 / V 2 O 5 / WO 3 catalyst contained in the honeycomb unit 11.
 分解してアンモニアを発生させる化合物としては、配管内で排ガスにより加熱されて、アンモニアを発生させることが可能であれば、特に限定されないが、貯蔵安定性に優れるため、尿素水が好ましい。 The compound that decomposes to generate ammonia is not particularly limited as long as it can be heated by exhaust gas in the pipe and generate ammonia, but urea water is preferable because of excellent storage stability.
 尿素水は、配管内で排ガスにより加熱されて、加水分解し、アンモニアが発生する。  The urea water is heated by the exhaust gas in the pipe and hydrolyzes to generate ammonia. *
 図4に、本発明のハニカム構造体の他の例を示す。なお、ハニカム構造体10'は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設されているハニカムユニット11'(図5参照)が接着層13を介して複数個接着されている以外は、ハニカム構造体10と同一の構成である。 FIG. 4 shows another example of the honeycomb structure of the present invention. In the honeycomb structure 10 ′, a plurality of honeycomb units 11 ′ (see FIG. 5) in which a plurality of through holes 11 a are arranged in parallel in the longitudinal direction with a partition wall 11 b therebetween are bonded via an adhesive layer 13. Other than this, the configuration is the same as that of the honeycomb structure 10.
 ハニカムユニット11'は、長手方向に垂直な断面の断面積が10~200cmであることが好ましい。ハニカムユニット11'の長手方向に垂直な断面の断面積が10cm未満であると、ハニカム構造体10'の圧力損失が増大する。一方、ハニカムユニット11'の長手方向に垂直な断面の断面積が200cmを超えると、ハニカムユニット11'に発生する熱応力に対する強度が不十分になる。 The honeycomb unit 11 ′ preferably has a cross-sectional area of 10 to 200 cm 2 in a cross section perpendicular to the longitudinal direction. When the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is less than 10 cm 2 , the pressure loss of the honeycomb structure 10 ′ increases. On the other hand, when the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ exceeds 200 cm 2 , the strength against the thermal stress generated in the honeycomb unit 11 ′ becomes insufficient.
 なお、ハニカムユニット11'は、長手方向に垂直な断面の断面積以外は、ハニカムユニット11と同一の構成である。 Note that the honeycomb unit 11 ′ has the same configuration as the honeycomb unit 11 except for the cross-sectional area of the cross section perpendicular to the longitudinal direction.
 接着層13は、厚さが0.5~2.0mmであることが好ましい。接着層13の厚さが0.5mm未満であると、ハニカムユニット11'の接着強度が不十分になる。一方、接着層13の厚さが2.0mmを超えると、ハニカム構造体10'の圧力損失が増大する。 The adhesive layer 13 preferably has a thickness of 0.5 to 2.0 mm. When the thickness of the adhesive layer 13 is less than 0.5 mm, the adhesive strength of the honeycomb unit 11 ′ becomes insufficient. On the other hand, when the thickness of the adhesive layer 13 exceeds 2.0 mm, the pressure loss of the honeycomb structure 10 ′ increases.
 次に、ハニカム構造体10'の製造方法の一例について説明する。まず、ハニカム構造体10と同様にして、四角柱状のハニカムユニット11'を作製する。次に、ハニカムユニット11'の両端面を除く外周面に接着層用ペーストを塗布して、ハニカムユニット11'を順次接着させ、乾燥固化することにより、ハニカムユニット11'の集合体を作製する。 Next, an example of a method for manufacturing the honeycomb structure 10 ′ will be described. First, in the same manner as the honeycomb structure 10, a quadrangular columnar honeycomb unit 11 ′ is manufactured. Next, an adhesive layer paste is applied to the outer peripheral surface excluding both end faces of the honeycomb unit 11 ′, the honeycomb units 11 ′ are sequentially bonded, and dried and solidified to produce an aggregate of the honeycomb units 11 ′.
 接着層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。 The adhesive layer paste is not particularly limited, and examples thereof include a mixture of inorganic binder and inorganic particles, a mixture of inorganic binder and inorganic fibers, a mixture of inorganic binder, inorganic particles, and inorganic fibers.
 接着層用ペーストに含まれる無機バインダは、特に限定されないが、シリカゾル、アルミナゾル等として添加されており、二種以上併用してもよい。中でも、シリカゾルとして添加されていることが好ましい。 The inorganic binder contained in the adhesive layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is preferable to add as silica sol.
 接着層用ペーストに含まれる無機粒子としては、特に限定されないが、炭化ケイ素粒子等の炭化物粒子、窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子等が挙げられ、二種以上併用してもよい。中でも、熱伝導性に優れることから、炭化ケイ素粒子が好ましい。 The inorganic particles contained in the adhesive layer paste are not particularly limited, and examples thereof include carbide particles such as silicon carbide particles, nitride particles such as silicon nitride particles and boron nitride particles, and the like. . Of these, silicon carbide particles are preferred because of their excellent thermal conductivity.
 接着層用ペーストに含まれる無機繊維としては、特に限定されないが、シリカアルミナ繊維、ムライト繊維、アルミナ繊維、シリカ繊維等が挙げられ、二種以上併用してもよい。中でも、アルミナ繊維が好ましい。 The inorganic fiber contained in the adhesive layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
 また、接着層用ペーストは、有機バインダを含んでいてもよい。 Further, the adhesive layer paste may contain an organic binder.
 接着層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。 The organic binder contained in the adhesive layer paste is not particularly limited, and examples thereof include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose and the like, and two or more kinds may be used in combination.
 接着層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔剤等をさらに含んでいてもよい。 The adhesive layer paste may further contain balloons that are fine hollow spheres of oxide ceramics, a pore-forming agent, and the like.
 接着層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが好ましい。 The balloon contained in the adhesive layer paste is not particularly limited, and examples thereof include an alumina balloon, a glass microballoon, a shirasu balloon, a fly ash balloon, and a mullite balloon, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
 接着層用ペーストに含まれる造孔剤としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。 The pore former contained in the adhesive layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
 次に、ハニカムユニット11'の集合体を円柱状に切削加工した後、必要に応じて、研磨することにより、円柱状のハニカムユニット11'の集合体を作製する。 Next, after the aggregate of the honeycomb units 11 ′ is cut into a cylindrical shape, the aggregate of the cylindrical honeycomb units 11 ′ is manufactured by polishing as necessary.
 なお、ハニカムユニット11'の集合体を円柱状に切削加工する代わりに、長手方向に垂直な断面が所定の形状に成形されているハニカムユニット11'を接着させて、円柱状のハニカムユニット11'の集合体を作製してもよい。このとき、ハニカムユニット11'の長手方向に垂直な断面の形状は、中心角が90°の扇形であることが好ましい。 Instead of cutting the aggregate of the honeycomb units 11 ′ into a columnar shape, the honeycomb unit 11 ′ whose cross section perpendicular to the longitudinal direction is formed into a predetermined shape is bonded to the columnar honeycomb unit 11 ′. You may produce the aggregate | assembly of. At this time, the shape of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is preferably a sector shape with a central angle of 90 °.
 次に、円柱状のハニカムユニット11'の集合体の両端面を除く外周面に外周コート層用ペーストを塗布する。 Next, the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the aggregate of the cylindrical honeycomb unit 11 ′.
 外周コート層用ペーストは、接着層用ペーストと同一であってもよいし、異なっていてもよい。 The outer periphery coat layer paste may be the same as or different from the adhesive layer paste.
 次に、外周コート層用ペーストが塗布された円柱状のハニカムユニット11'の集合体を乾燥固化することにより、円柱状のハニカム構造体10'を作製する。このとき、接着層用ペースト及び/又は外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができるが、700℃で20分間であることが好ましい。 Next, a columnar honeycomb structure 10 ′ is manufactured by drying and solidifying the aggregate of columnar honeycomb units 11 ′ coated with the outer periphery coating layer paste. At this time, when an organic binder is contained in the adhesive layer paste and / or the outer peripheral coat layer paste, it is preferable to degrease. The degreasing conditions can be appropriately selected depending on the type and amount of the organic substance, but it is preferably 20 minutes at 700 ° C.
 なお、ハニカム構造体10及び10'は、外周コート層12が形成されていなくてもよい。 Note that the outer peripheral coat layer 12 may not be formed in the honeycomb structures 10 and 10 ′.
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[実施例1]
 メタバナジン酸アンモニウム210質量部を、ジエタノールアミン150質量部とイオン交換水1750質量部で調製した8%ジエタノールアミン水溶液中に添加し100℃に加熱して溶解し予混合溶液を得た。次いでタングステン原料としてメタタングステン酸アンモニウム(50%溶液)を670質量部、成形潤滑剤としてレオドールO30Vを80質量部添加し溶液原料を調製した。
 次いで、酸化チタン3910質量部、アルミナバインダー300質量部、ワラストナイトファイバー170質量部、成形助剤としてメチルセルロース300質量部を混合した後、上記溶液原料を添加し混合・混練を行い原料ペースト1を調製した。バナジウム原料中のバナジウム原子、及びタングステン原料中のタングステン原子のモル比(W/V)は0.8であった。
[Example 1]
210 parts by mass of ammonium metavanadate was added to an 8% diethanolamine aqueous solution prepared with 150 parts by mass of diethanolamine and 1750 parts by mass of ion-exchanged water, and heated to 100 ° C. to dissolve to obtain a premixed solution. Next, 670 parts by mass of ammonium metatungstate (50% solution) as a tungsten raw material and 80 parts by mass of Rhedol O30V as a molding lubricant were added to prepare a solution raw material.
Next, 3910 parts by mass of titanium oxide, 300 parts by mass of alumina binder, 170 parts by mass of wollastonite fiber, and 300 parts by mass of methylcellulose as a molding aid were mixed, and then the above raw materials of the solution were added and mixed and kneaded to obtain a raw material paste 1 Prepared. The molar ratio (W / V) of vanadium atoms in the vanadium raw material and tungsten atoms in the tungsten raw material was 0.8.
 次に、押出成形機を用いて、原料ペースト1を押出成形して、正四角柱状のハニカム成形体を作製した。そして、バッチマイクロ波乾燥機を用いてハニカム成形体を、乾燥圧力86.7kPaにて6分間で乾燥させた後、ハニカム成形体をマッフル炉に投入し、昇温速度1℃/分にて550℃まで昇温し、その温度を3時間保持して焼成し、ハニカム焼成体を作製した。
 ハニカムユニット11'は、一辺が35mm、長さが150mmの正四角柱状であり、貫通孔11aの密度が62個/cm、隔壁11bの厚さが0.28mmであった。
Next, the raw material paste 1 was extrusion-molded using an extruder to produce a regular quadrangular prism-shaped honeycomb formed body. Then, after the honeycomb formed body was dried at a drying pressure of 86.7 kPa for 6 minutes using a batch microwave dryer, the honeycomb formed body was put into a muffle furnace, and the temperature was increased to 550 at a heating rate of 1 ° C./min. The temperature was raised to 0 ° C., and the temperature was maintained for 3 hours and fired to produce a honeycomb fired body.
The honeycomb unit 11 ′ has a regular quadrangular prism shape with a side of 35 mm and a length of 150 mm, the density of the through holes 11 a is 62 / cm 2 , and the thickness of the partition walls 11 b is 0.28 mm.
 次に、平均繊維径が0.5μm、平均繊維長が15μmのアルミナ繊維を767部、シリカガラスを2500部、カルボキシメチルセルロースを17部、固形分30質量%のシリカゾルを600部、ポリビニルアルコールを167部、界面活性剤を167部及びアルミナバルーンを17部、混合混練して、接着層用ペーストを作製した。 Next, 767 parts of alumina fiber having an average fiber diameter of 0.5 μm and an average fiber length of 15 μm, 2500 parts of silica glass, 17 parts of carboxymethylcellulose, 600 parts of silica sol having a solid content of 30% by mass, and 167 parts of polyvinyl alcohol Part, 167 parts of surfactant and 17 parts of alumina balloon were mixed and kneaded to prepare an adhesive layer paste.
 ハニカムユニット11'の両端部を除く外周面に、接着層13の厚さが2.0mmになるように接着層用ペーストを塗布して、ハニカムユニット11'を16個接着させ、150℃で10分間乾燥固化した。次に、ダイヤモンドカッターを用いて、長手方向に垂直な断面が略点対称になるように円柱状に切削加工して、ハニカムユニット11'の集合体を作製した。 The adhesive layer paste was applied to the outer peripheral surface excluding both ends of the honeycomb unit 11 ′ so that the thickness of the adhesive layer 13 was 2.0 mm, and 16 honeycomb units 11 ′ were adhered to each other at 150 ° C. Solidified for a minute. Next, a diamond cutter was used to cut into a cylindrical shape so that the cross section perpendicular to the longitudinal direction was substantially point-symmetric, thereby producing an aggregate of honeycomb units 11 ′.
 さらに、ハニカムユニット11'の集合体の両端部を除く外周面に、外周コート層12の厚さが1.0mmになるように接着層用ペーストを塗布した後、マイクロ波乾燥機及び熱風乾燥機を用いて、接着層用ペーストを150℃で10分間乾燥固化し、400℃で2時間脱脂して、直径が160mm、長さが150mmの円柱状のハニカム構造体10'を作製した。 Furthermore, after applying the adhesive layer paste to the outer peripheral surface excluding both ends of the aggregate of the honeycomb unit 11 ′ so that the outer peripheral coat layer 12 has a thickness of 1.0 mm, the microwave dryer and the hot air dryer are applied. Then, the adhesive layer paste was dried and solidified at 150 ° C. for 10 minutes and degreased at 400 ° C. for 2 hours to prepare a cylindrical honeycomb structure 10 ′ having a diameter of 160 mm and a length of 150 mm.
[実施例2]
 実施例1において、メタバナジン酸アンモニウムの添加量を170質量部として予混合溶液を調製したこと以外は実施例1と同様にしてハニカム構造体を作製した。
[Example 2]
In Example 1, a honeycomb structure was manufactured in the same manner as in Example 1 except that the premixed solution was prepared by adding 170 parts by mass of ammonium metavanadate.
[比較例1]
 実施例1の各成分の混合混練において、バナジウム原料としての予混合溶液の代わりに、メタバナジン酸アンモニウム170質量部をそのまま用いたこと以外は実施例1と同様にしてハニカム構造体を作製した。
[Comparative Example 1]
A honeycomb structure was manufactured in the same manner as in Example 1 except that 170 parts by mass of ammonium metavanadate was used as it was instead of the premixed solution as the vanadium raw material in the mixing and kneading of each component of Example 1.
[有効V量]
 実施例1及び2、比較例1で作製したハニカムユニットを粉砕して粉末状とし、以下の手順にてH-TPR測定を行った。測定結果たる水素消費量の1/2を有効V量とした。結果を表1に示す。
(1)前処理として、Heを50cm/分の流量で炉内に導入して、100℃から昇温速度10℃/分で500℃まで昇温し、その温度を1時間保持した。次いで、100℃まで降温した。
(2)次に、H:5.04%、Ar;94.96%の混合ガスを30cm/分の流量で炉内に導入して、100℃から昇温速度10℃/分で700℃まで昇温し、その温度を20分間保持した。次いで、Heを50cm/分の流量で炉内に導入して100℃まで降温した。
[Effective V amount]
The honeycomb units produced in Examples 1 and 2 and Comparative Example 1 were pulverized into powder and H 2 -TPR measurement was performed according to the following procedure. The effective V amount was half of the hydrogen consumption as the measurement result. The results are shown in Table 1.
(1) As a pretreatment, He was introduced into the furnace at a flow rate of 50 cm 3 / min, the temperature was raised from 100 ° C. to 500 ° C. at a heating rate of 10 ° C./min, and the temperature was maintained for 1 hour. Next, the temperature was lowered to 100 ° C.
(2) Next, a mixed gas of H 2 : 5.04%, Ar; 94.96% was introduced into the furnace at a flow rate of 30 cm 3 / min. The temperature was raised to 0 ° C. and the temperature was maintained for 20 minutes. Next, He was introduced into the furnace at a flow rate of 50 cm 3 / min and the temperature was lowered to 100 ° C.
[NOxの浄化性能]
 実施例1及び2、比較例1で作製したハニカムユニットから、ダイヤモンドカッターを用いて、一辺が30mm、長さが40mmの正四角柱状の試験片を切り出した。これらの試験片に、200℃の模擬ガスを空間速度(SV)80000/hrで流しながら、触媒評価装置(堀場製作所社製、SIGU-2000/MEXA-6000FT)を用いて、試料から流出するNOxの流出量を測定し、式
 (NOxの流入量-NOxの流出量)/(NOxの流入量)×100
で表されるNOxの浄化率[%]を算出した。算出結果を表1に示す。なお、模擬ガスの構成成分は、一酸化窒素350ppm、アンモニア350ppm、酸素14%、水10%、窒素(balance)である。
[NOx purification performance]
From the honeycomb units produced in Examples 1 and 2 and Comparative Example 1, a square prism-shaped test piece having a side of 30 mm and a length of 40 mm was cut out using a diamond cutter. NOx flowing out from the sample using a catalyst evaluation device (SIGU-2000 / MEXA-6000FT, manufactured by Horiba, Ltd.) while flowing a simulated gas at a space velocity (SV) of 80000 / hr through these test pieces. Measure the outflow amount of NOx, and the formula (NOx inflow amount-NOx outflow amount) / (NOx inflow amount) x 100
The NOx purification rate [%] expressed by The calculation results are shown in Table 1. The constituent components of the simulated gas are 350 ppm of nitrogen monoxide, 350 ppm of ammonia, 14% of oxygen, 10% of water, and nitrogen (balance).
[熱耐久性]
 実施例1及び2、比較例1で作製したハニカムユニットから、ダイヤモンドカッターを用いて、一辺が30mm、長さが40mmの正四角柱状の試験片を切り出した。これらの試験片に、触媒耐久装置(堀場製作所社製、SIGU-1000)を用いて550℃で100時間熱処理をし、上記NOx浄化率測定条件にて性能評価を実施した。
 熱処理時の模擬ガス条件は酸素20%、水10%、窒素(balance)、流量1L/分である。
[Thermal durability]
From the honeycomb units produced in Examples 1 and 2 and Comparative Example 1, a square prism-shaped test piece having a side of 30 mm and a length of 40 mm was cut out using a diamond cutter. These test pieces were heat-treated at 550 ° C. for 100 hours using a catalyst endurance device (manufactured by Horiba, Ltd., SIGU-1000), and performance evaluation was performed under the above NOx purification rate measurement conditions.
The simulated gas conditions during the heat treatment are 20% oxygen, 10% water, nitrogen, and a flow rate of 1 L / min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1及び2のハニカム構造体は、比較例1のハニカム構造体と比較して、有効V量が多く、熱耐久前後のNOx浄化性能をともに満足できる結果が得られたことが分かる。特に、実施例2及び比較例1は、V原料としてのメタバナジン酸アンモニウムの使用量を全く同としたにもかかわらず、有効V量は実施例2の方が多いことが分かる。このことからも、本発明の製造方法により、有効V量を増加させることができ、ひいてはNOx浄化性能を向上させることができる。 As shown in Table 1, the honeycomb structures of Examples 1 and 2 had a larger amount of effective V than the honeycomb structure of Comparative Example 1, and obtained results that could satisfy both NOx purification performance before and after thermal durability. I understand. In particular, Example 2 and Comparative Example 1 show that the amount of effective V is larger in Example 2 although the amount of ammonium metavanadate used as the V raw material is exactly the same. Also from this, the effective V amount can be increased by the manufacturing method of the present invention, and the NOx purification performance can be improved.
 10、10'  ハニカム構造体
 11、11'  ハニカムユニット
 11a  貫通孔
 11b  隔壁
 12  外周コート層
 13  接着層
 20  保持シール材
 30  金属容器
 100  排ガス浄化装置
DESCRIPTION OF SYMBOLS 10, 10 'Honeycomb structure 11, 11' Honeycomb unit 11a Through- hole 11b Partition 12 Outer periphery coating layer 13 Adhesive layer 20 Holding sealing material 30 Metal container 100 Exhaust gas purification apparatus

Claims (8)

  1.  チタン酸化物、バナジウム酸化物、タングステン酸化物及び無機バインダを少なくとも含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルが、セル壁によって区画された形状のハニカムユニットを備えたハニカム構造体の製造方法であって、
     チタン酸化物、バナジウム原料、タングステン原料及び無機バインダを混合する混合工程と、
     混合した前記材料をハニカム状に成形し、ハニカム成形体を得る成形工程と、
     前記ハニカム成形体を焼成する焼成工程と、を含み、
     前記混合工程において、前記バナジウム原料がメタバナジン酸アンモニウムを予めアルカリ性溶液に溶解した溶液であることを特徴とするハニカム構造体の製造方法。
    A honeycomb unit having a shape in which a plurality of cells including at least a titanium oxide, a vanadium oxide, a tungsten oxide, and an inorganic binder and extending from one end surface to the other end surface along a longitudinal direction are partitioned by cell walls. A method for manufacturing a provided honeycomb structure,
    Mixing step of mixing titanium oxide, vanadium raw material, tungsten raw material and inorganic binder;
    Forming the mixed material into a honeycomb shape and obtaining a honeycomb formed body; and
    A firing step of firing the honeycomb formed body,
    In the mixing step, the vanadium raw material is a solution in which ammonium metavanadate is previously dissolved in an alkaline solution.
  2.  前記アルカリ性溶液が、ジエタノールアミン溶液、モノエタノールアミン溶液、ジエチルアミノエタノール溶液、およびアンモニア水から選ばれる1種以上であることを特徴とする請求項1に記載のハニカム構造体の製造方法。 The method for manufacturing a honeycomb structure according to claim 1, wherein the alkaline solution is at least one selected from a diethanolamine solution, a monoethanolamine solution, a diethylaminoethanol solution, and aqueous ammonia.
  3.  前記アルカリ性溶液がジエタノールアミン溶液であって、前記メタバナジン酸アンモニウムをジエタノールアミン溶液に溶解させる際に、80℃以上に加熱することを特徴とする請求項2に記載のハニカム構造体の製造方法。 The method for manufacturing a honeycomb structure according to claim 2, wherein the alkaline solution is a diethanolamine solution, and the ammonium metavanadate is heated to 80 ° C or higher when dissolved in the diethanolamine solution.
  4.  前記バナジウム原料中のバナジウム原子、及び前記タングステン原料中のタングステン原子のモル比(W/V)が0.8~1.2であることを特徴とする請求項1~3のいずれか1項に記載のハニカム構造体の製造方法。 4. The molar ratio (W / V) of vanadium atoms in the vanadium raw material and tungsten atoms in the tungsten raw material is 0.8 to 1.2. The manufacturing method of the honeycomb structure as described.
  5.  前記無機バインダが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベントナイト及びベーマイトからなる群より選択される一種以上に含まれる固形分であることを特徴とする請求項1~4のいずれか1項に記載のハニカム構造体の製造方法。 The inorganic binder is a solid content contained in one or more selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, bentonite and boehmite. 2. A method for manufacturing a honeycomb structured body according to item 1.
  6.  前記混合工程において、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに混合することを特徴とする請求項1~5のいずれか1項に記載のハニカム構造体の製造方法。 6. The mixing process according to claim 1, wherein in the mixing step, at least one selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances and three-dimensional needle-like substances is further mixed. A method for manufacturing a honeycomb structured body according to claim 1.
  7.  前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、
     前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、
     前記テトラポット状物質は、酸化亜鉛であり、
     前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、ワラストナイト、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることを特徴とする請求項6に記載のハニカム構造体の製造方法。
    The inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate and aluminum borate,
    The scaly substance is at least one selected from the group consisting of glass, muscovite, alumina and silica,
    The tetrapot-like substance is zinc oxide,
    The three-dimensional acicular material is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, wollastonite, potassium titanate, aluminum borate and boehmite. Item 7. A method for manufacturing a honeycomb structured body according to Item 6.
  8.  請求項1~7のいずれか1項に記載のハニカム構造体の製造方法により得られるハニカム構造体であって、
     水素-昇温還元法(H-TPR)によるハニカム構造体1gあたりのバナジウムによる水素消費量が0.6mmol以上であり、W/V添加量モル比が0.8~1.2であることを特徴とするハニカム構造体。
    A honeycomb structure obtained by the method for manufacturing a honeycomb structure according to any one of claims 1 to 7,
    Hydrogen consumption by vanadium per 1 g of honeycomb structure by the hydrogen-temperature reduction method (H 2 -TPR) is 0.6 mmol or more, and the molar ratio of W / V addition amount is 0.8 to 1.2. A honeycomb structure characterized by the above.
PCT/JP2012/078944 2012-11-08 2012-11-08 Honeycomb structure and manufacturing method thereof WO2014073066A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014545499A JPWO2014073066A1 (en) 2012-11-08 2012-11-08 Honeycomb structure and manufacturing method thereof
PCT/JP2012/078944 WO2014073066A1 (en) 2012-11-08 2012-11-08 Honeycomb structure and manufacturing method thereof
CN201280076864.0A CN104768643A (en) 2012-11-08 2012-11-08 Honeycomb structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078944 WO2014073066A1 (en) 2012-11-08 2012-11-08 Honeycomb structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014073066A1 true WO2014073066A1 (en) 2014-05-15

Family

ID=50684204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078944 WO2014073066A1 (en) 2012-11-08 2012-11-08 Honeycomb structure and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JPWO2014073066A1 (en)
CN (1) CN104768643A (en)
WO (1) WO2014073066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110665495A (en) * 2019-10-14 2020-01-10 成都东方凯特瑞环保催化剂有限责任公司 Honeycomb catalyst adhesive system and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341665A (en) * 2017-12-09 2018-07-31 湖北神雾热能技术有限公司 A kind of low-temperature catalyzed denitration of rare-earth-based, accumulation of heat one composite ceramic material
CN112996763A (en) * 2018-08-31 2021-06-18 康宁股份有限公司 Method for producing honeycombed body with inorganic filter deposit
MX2021002442A (en) 2018-08-31 2021-09-21 Corning Inc Methods of making honeycomb bodies having inorganic filtration deposits.
CN115041208B (en) * 2022-05-17 2024-02-23 大连理工大学 Forming method of honeycomb boron nitride and application of honeycomb boron nitride in oxidative dehydrogenation of low-carbon alkane
CN118080021B (en) * 2024-04-23 2024-08-06 广东银牛环境信息科技有限公司 Ultralow-temperature denitration catalyst and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290250A (en) * 1989-02-28 1990-11-30 Degussa Ag Catalyst for selectively reducing nitrogen oxide with ammonia
JPH05244A (en) * 1991-01-29 1993-01-08 Mitsubishi Heavy Ind Ltd Catalyst for removing nitrogen oxide
JP2000189756A (en) * 1998-10-23 2000-07-11 Mitsubishi Chemicals Corp Treatment of combustion waste gas
JP2003053147A (en) * 2001-08-22 2003-02-25 Nkk Corp Removing method of organic chlorine compound and nitrogen oxide
JP2004000943A (en) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
JP2008516757A (en) * 2004-10-19 2008-05-22 ミレニアム インオーガニック ケミカルズ、 インコーポレイテッド Nitrogen oxide removal catalyst of metal oxide supported on highly active titania

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441287C (en) * 2002-04-18 2008-12-10 触媒化成工业株式会社 Titania powder for honeycomb waste gas treating catalyst, and waste gas treating catalyst
CN101676024A (en) * 2008-09-17 2010-03-24 晶锐瓷业(北京)有限公司 Faviform ammonia-method selective-catalytic-reduction denitrified catalyst and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290250A (en) * 1989-02-28 1990-11-30 Degussa Ag Catalyst for selectively reducing nitrogen oxide with ammonia
JPH05244A (en) * 1991-01-29 1993-01-08 Mitsubishi Heavy Ind Ltd Catalyst for removing nitrogen oxide
JP2000189756A (en) * 1998-10-23 2000-07-11 Mitsubishi Chemicals Corp Treatment of combustion waste gas
JP2003053147A (en) * 2001-08-22 2003-02-25 Nkk Corp Removing method of organic chlorine compound and nitrogen oxide
JP2004000943A (en) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
JP2008516757A (en) * 2004-10-19 2008-05-22 ミレニアム インオーガニック ケミカルズ、 インコーポレイテッド Nitrogen oxide removal catalyst of metal oxide supported on highly active titania

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110665495A (en) * 2019-10-14 2020-01-10 成都东方凯特瑞环保催化剂有限责任公司 Honeycomb catalyst adhesive system and preparation method thereof

Also Published As

Publication number Publication date
JPWO2014073066A1 (en) 2016-09-08
CN104768643A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2014073066A1 (en) Honeycomb structure and manufacturing method thereof
WO2009141895A1 (en) Exhaust gas purification apparatus
WO2011061841A1 (en) Honeycomb structure and exhaust gas purification apparatus
WO2009141885A1 (en) Honeycomb structure
JP5317959B2 (en) Honeycomb structure
JP5560158B2 (en) Honeycomb structure and exhaust gas purification device
WO2011061836A1 (en) Honeycomb structure and exhaust gas purification apparatus
WO2009141886A1 (en) Honeycomb structure
KR101117499B1 (en) Honeycomb structure
JP2011125849A (en) Honeycomb, and apparatus for cleaning exhaust
WO2009141894A1 (en) Honeycomb structure
JP5873562B2 (en) Honeycomb structure
JP5746061B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
WO2011061839A1 (en) Honeycomb structure and exhaust gas purification apparatus
JP2011125846A (en) Honeycomb structure and apparatus for cleaning exhaust gas
JP2010000499A (en) Honeycomb structure
JP2010279849A (en) Honeycomb structure
WO2013024545A1 (en) Composite particle, honeycomb structure, method for producing same, and exhaust gas purification device
WO2013024547A1 (en) Honeycomb structure, method for producing same, exhaust gas purification device, and silicoaluminophosphate particles
JP5902826B2 (en) Honeycomb structure and manufacturing method thereof
WO2014073067A1 (en) Honeycomb structure
US8685331B2 (en) Honeycomb structural body and exhaust gas conversion apparatus
JP5563952B2 (en) Honeycomb structure and exhaust gas purification device
JP2010227923A (en) Honeycomb structure
JP5175797B2 (en) Honeycomb structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888129

Country of ref document: EP

Kind code of ref document: A1