WO2014072781A2 - Mouvement d'horlogerie a balancier-spiral - Google Patents

Mouvement d'horlogerie a balancier-spiral Download PDF

Info

Publication number
WO2014072781A2
WO2014072781A2 PCT/IB2013/002355 IB2013002355W WO2014072781A2 WO 2014072781 A2 WO2014072781 A2 WO 2014072781A2 IB 2013002355 W IB2013002355 W IB 2013002355W WO 2014072781 A2 WO2014072781 A2 WO 2014072781A2
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
hairspring
stiffened portion
stiffened
amplitude
Prior art date
Application number
PCT/IB2013/002355
Other languages
English (en)
Other versions
WO2014072781A3 (fr
Inventor
Jean-Luc Bucaille
Original Assignee
Patek Philippe Sa Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe Sa Geneve filed Critical Patek Philippe Sa Geneve
Priority to SG11201501727QA priority Critical patent/SG11201501727QA/en
Priority to EP13812065.4A priority patent/EP2917787B1/fr
Priority to US14/437,065 priority patent/US9323223B2/en
Priority to JP2015540224A priority patent/JP6334548B2/ja
Priority to CN201380056637.6A priority patent/CN104756019B/zh
Publication of WO2014072781A2 publication Critical patent/WO2014072781A2/fr
Publication of WO2014072781A3 publication Critical patent/WO2014072781A3/fr
Priority to HK15109127.0A priority patent/HK1208739A1/xx

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/26Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses

Definitions

  • the present invention relates to a clockwork comprising a sprung-balance type oscillator and an escapement, more particularly such a movement whose isochronism is improved.
  • Isochronism is understood to mean the variations of the gait as a function of the oscillation amplitude of the balance and as a function of the position of the watch.
  • the oscillator is disturbed by the escapement, which, in particular in the case of a Swiss lever escapement, induces a delay. Indeed, during the release phase, the oscillator undergoes a resisting torque before the center line, which causes a delay. During the impulse phase, the oscillator 5 undergoes a motor torque first before the center line, which causes an advance, then after the center line, which causes a delay. Overall, the escapement thus produces a delay and this disturbance caused by the escapement is greater at small oscillation amplitudes of the pendulum than at large.
  • the present invention aims to further improve the isochronism of a watch movement and proposes for this purpose a watch movement comprising a balance-balance oscillator and an escapement cooperating with the oscillator, the outer coil of the spiral comprising a portion stiffened, characterized in that the stiffened portion is arranged to at least partially compensate for the variation of the movement of the movement as a function of the oscillation amplitude of the balance due to the exhaust, and in that the spiral further comprises at minus any of the following:
  • the stiffened portion of the outer turn is arranged so that the hairspring produce a clearance, typically an advance, due to the lack of concentricity of the development of the hairspring of at least 2 s / d, or at least 4 s / d, or at least 6 s / d, or at least 8 s / d, at an amplitude of 150 ° with respect to an amplitude of 300 °, at least partially compensating for said variation in operation due to the exhaust.
  • the stiffened portion of the outer turn is closer to the outer end of the hairspring that a theoretical stiffened portion that would make the development of the hairspring substantially perfectly concentric, the thickness and the extent of the portion stiffened may be substantially identical to those of said theoretical stiffened portion.
  • the stiffened portion of the outer turn is less thick than a theoretical stiffened portion that would make the development of the spiral substantially perfectly concentric, the position and the extent of the stiffened portion can be substantially identical to those of said theoretical stiffened portion.
  • the stiffened portion of the outer turn is less extensive than a theoretical stiffened portion that would make the development of the spiral substantially perfectly concentric, the position and the thickness of the stiffened portion can be substantially identical to those of said theoretical stiffened portion.
  • FIG. 1 shows a spiral stiffened outer turn portion of the prior art, a ferrule associated with the spiral being shown schematically by a dotted line;
  • FIG. 2 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the spiral illustrated in FIG. 1, the oscillator of which this spiral is considered to be considered as free, that is to say not subject to the action of an exhaust;
  • FIG. 3 shows global isochronism measurement results obtained on a real movement comprising a spiral as illustrated in FIG. 1;
  • FIG. 4 shows a hairspring of the type of that of FIG. 1, but whose stiffened outer turn portion has been displaced;
  • FIG. 5 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the spiral illustrated in FIG. 4, the oscillator of which this spiral is considered to be considered as free, that is to say not subject to the action of an exhaust;
  • FIG. 6 shows global isochronism measurement results obtained on a real movement comprising a spiral as shown in FIG. 4;
  • FIG. 7 shows a hairspring of the type of Figure 1 but the thickness of the stiffened outer turn portion has been modified
  • FIG. 8 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the spiral illustrated in FIG. 7, the oscillator of which this spiral is considered to be considered as free, that is to say not subjected to the action of an exhaust;
  • Figure 9 shows a hairspring of the type of Figure 1 but the angular extent of the stiffened outer turn portion has been modified
  • FIG. 10 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the spiral illustrated in FIG. 9, the oscillator of which this spiral is considered to be considered as free, that is to say not subject to the action of an exhaust;
  • FIG. 11 shows isochronism curves corresponding to different horizontal and vertical positions of a spiral with a stiffened outer turn portion;
  • - Figure 12 shows the spiral whose isochronism curves are shown in Figure 11;
  • FIG. 13 shows a spiral with a stiffened outer turn portion and a small ferrule diameter constituting an exemplary embodiment of the invention
  • FIG. 14 shows isochronism curves corresponding to different horizontal and vertical positions of the spiral illustrated in FIG. 13;
  • FIG. 15 shows a spiral with a stiffened external turn portion with a small ring diameter and a Grossmann inner curve constituting another embodiment of the invention
  • FIG. 16 shows isochronism curves corresponding to different horizontal and vertical positions of the spiral illustrated in FIG. 15;
  • FIG. 17 shows a spiral with a stiffened outer turn portion, with a small ferrule diameter and with a stiffened inner turn portion constituting yet another embodiment of the invention
  • FIG. 18 shows isochronism curves corresponding to different horizontal and vertical positions of the spiral illustrated in FIG. 17;
  • FIG. 19 schematically shows a movement in which can be integrated a spiral as shown in Figure 13, 15 or 17.
  • FIG. 1 shows a planar hairspring of the type described in patent EP 1473604 for a pendulum-balance oscillator of a watch movement.
  • This spiral indicated by the reference numeral 1, is in the form of an Archimedean spiral and is fixed by its inner end 2 to a ferrule 3 mounted on the balance shaft and by its outer end 4 to a stud (not shown) mounted on a fixed piece of movement such as the rooster.
  • the spiral assembly 1 - ferrule 3 can be made in one piece, in a crystalline material such as silicon or diamond, by a micro-etching technique.
  • the outer coil 5 of the spiral 1 locally comprises a portion 6 of greater thickness e than the rest of the blade forming the spiral.
  • This thickness e which can be variable along the portion 6 as shown, stiffens the portion 6 and thus makes it substantially inactive 5 during the development of the hairspring.
  • the position and the extent of the stiffened portion 6 are chosen so that the center of deformation of the spiral, substantially corresponding to the center of gravity of the portion of the spiral other than the stiffened portion 6, is substantially coincident with the center of rotation O of the spiral and ferrule 3, which coincides with the geometric center of the spiral. In this way, the development of the hairspring is concentric or almost concentric.
  • the stiffened portion 6 ends before the outer end 4 of the spiral. This outer end 4, more precisely an end portion 7 of the outer turn 5 including the stiffened portion 6, is spaced radially outwardly relative to the pattern of the spiral Archimedes to ensure that the penultimate
  • the end portion 7 is in the form of a circular arc of center C.
  • the angular extent ⁇ of the stiffened portion 6 and its angular position a are defined from this center C.
  • the thickness e is measured along a radius starting 5 of this center C.
  • the spiral has 14 turns plus a portion of turn 30 °, the values ⁇ and a are respectively equal to 85.9 ° and 72 ° and the maximum of the thickness e is equal to 88.7 ⁇ m.
  • the thickness e 0 of the blade forming the hairspring (measured along a radius extending from the center of rotation O of the hairspring), with the exception of the stiffened portion 6, is equal to 32.2 ⁇ m.
  • the radius R of the shell 3, or distance between the inner end 2 of the hairspring and the center of rotation O of the hairspring, is defined as being the radius of the circle (shown in dotted lines) of center O and passing through the middle (at half the thickness e 0 ) of the inner end 2 of the spiral. In the example shown, this radius R is equal to 5 565 ⁇ .
  • FIG. 2 is an isochronism diagram obtained with the spiral illustrated in FIG. 1 by numerical simulation. More precisely, the diagram of FIG. 2 is obtained by considering the fixed outer end 4 and the shaft on which are fixed the ferrule 3 and the free balance (that is to say not mounted in bearings). by calculating by finite elements the displacement of the center of rotation of the spiral during oscillations of the balance, then interpolating and integrating the displacement curve as a function of the amplitude of oscillation. Analytical equations connecting the displacement of the center of rotation O of the spring to the step according to the amplitude of oscillation of the balance are proposed for example in the book
  • the step decreases gradually as oscillation amplitude decreases, in all positions of the watch, and there is further a difference in the path between the different vertical positions.
  • a curve was interpolated and the gapping difference between the oscillation amplitude of 150 ° and the amplitude of oscillation of 300 ° was determined. The average of the deviations of all positions
  • the present inventor has observed that the reduction of the gait due to the exhaust could, at least in part, be compensated by modifying the arrangement of the stiffened portion 6, namely for example its position a and / or its extent ⁇ and / or its thickness e, with respect to the arrangement of FIG. 1, which gives the turns of the spiral a perfect or almost perfect concentricity.
  • FIG. 5 shows results of measuring the movement of a movement identical to that on which the measurements of FIG. 3 have been made, but equipped with the spiral illustrated in FIG. 4 instead of that of FIG. 1.
  • Another parameter of the stiffened portion 6 having an influence on isochronism is its thickness e.
  • a small amplitude advance is created with respect to the large oscillation amplitudes of the balance.
  • FIG. 7 shows the hairspring obtained, with its stiffened outer turn portion 5 designated by the reference numeral 6 "
  • FIG. 8 shows the isochronism curve 17 corresponding to such a hairspring.
  • Yet another parameter of the stiffened portion having an influence on isochronism is its extent ⁇ .
  • By decreasing the span ⁇ , a small amplitude advance is created with respect to the large oscillation amplitudes of the balance beam.
  • FIG. 9 shows the hairspring obtained, with its stiffened outer turn portion denoted by the reference numeral 6 "', and FIG. 10 shows the isochronism curve 19 corresponding to such a hairspring.
  • FIG. 11 shows isochronism curves, denoted by J1 to J5, of a spiral whose external turn comprises a stiffened portion arranged to compensate for the variation in travel due to the escapement, as described above.
  • the curve J1 represents the isochronism of the spiral in the horizontal position, that is to say the variations of step due to the non concentric development of the spiral, and is obtained in the same manner as the curves of Figures 2, 5, 8 and 10.
  • the stiffened portion of the outer coil of the spiral is arranged so that the spiral produces a gait of 5.3 s / j at the amplitude of 150 ° with respect to the amplitude of 300 °.
  • the curves J2 to J5 represent the isochronism of the spiral in the four vertical positions VG, VH, VB and VD respectively, and are obtained taking into account both the non-concentric development of the spiral and the effect of the gravity, in other terms by adding up the variations of step due to the non concentric development of the spiral and the gravity.
  • To determine the variation in speed due to gravity, in a given vertical position it is possible to calculate by finite elements the displacement of the center of gravity of the hairspring under the effect of the oscillations of the hairspring (the center of rotation of the hairspring being fixed), then use analytical equations linking this displacement and the position of the balance to the gait as a function of the amplitude.
  • the operating gap between the vertical positions is 3.2 s / d at an oscillation amplitude of the balance of 250 °.
  • the spiral corresponding to the isochronism curves J1 to J5 shown in Figure 11 is shown in Figure 12. It comprises 14 turns.
  • the angular extent and the angular position of its stiffened portion 9 are respectively 60 ° and 75 °.
  • the radius R of its shell, or distance between the inner end of the hairspring and the center of rotation of said hairspring, measured in the same manner as in FIG. 1, is equal to 565 pm. It has been found that by decreasing the radius R to a value R ', the operating gap between the vertical positions was reduced.
  • the radius R ' is advantageously chosen to be less than 400 ⁇ m.
  • FIG. 14 represents the isochronism curves of a spiral (shown in FIG.
  • FIG. 15 shows a hairspring whose ferrule radius R 'is equal to 300 ⁇ m and whose inner turn 10 is shaped according to a Grossmann curve.
  • FIG. 16 it can be seen that the operating gap between the vertical positions for this hairspring is only 0.6 s / d at an amplitude of oscillation of 250 °.
  • the stiffened portion 9 "of the outer turn is arranged so that the hairspring produces a march advance due to the concentricity of the spiral development of 4.2 s / d between the amplitudes of 150 ° and 300 °, to compensate for a delay due to the escape of the same order of magnitude.
  • the hairspring of FIG. 1 the inner stiffened portion 1 having, like the outer stiffened portion 9 "', a greater thickness than the rest of the turns
  • the stiffened portion 9 "'of the outer turn is arranged so that the hairspring produce a march advance due to the lack of concentricity of the hairspring development of 5.4 s / d between the amplitudes. 150 ° and 300 °, to compensate for a run delay due to the escape of the same order of magnitude.
  • a Grossmann curve or a stiffened inner turn portion with a small ferrule radius R ' is particularly advantageous, it should be noted that the Grossmann curve 10 or the stiffened inner turn portion could also be used with a ferrule of larger radius R. Alternatively, a small ferrule radius R ', a Grossmann curve and a stiffened inner turn portion could be combined. In all cases, the stiffened outer turn portion may be arranged according to any of the principles set forth in connection with Figures 4, 7 and 9 or a combination of these principles. Moreover, it goes without saying that one could apply
  • the spirals described above are each intended to be part of an oscillator of a movement-type clockwork movement illustrated in the form of a block diagram in FIG. 19.
  • the movement 12 comprises, in the traditional way, a motor member 13 such as a cylinder, a gear train 14, an escapement 15 and a display 17.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Springs (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Micromachines (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

Le mouvement d'horlogerie comprend un oscillateur balancier-spiral et un échappement coopérant avec l'oscillateur. La spire extérieure du spiral comprend une portion rigidifiée (9") agencée pour compenser au moins partiellement la variation de la marche du mouvement en fonction de l'amplitude d'oscillation du balancier due à l'échappement. Le spiral comprend en outre au moins l'une des caractéristiques suivantes : a) une distance (R') entre l'extrémité intérieure du spiral et le centre de rotation du spiral inférieure à 400 μηη, b) une courbe Grossmann (10) définie par la spire intérieure du spiral, c) une portion rigidifiée définie par la spire intérieure du spiral.

Description

Mouvement d'horlogerie à balancier-spiral
La présente invention concerne un mouvement d'horlogerie comprenant un oscillateur de type balancier-spiral et un échappement, plus particulièrement un tel 5 mouvement dont l'isochronisme est amélioré. Par isochronisme on entend les variations de la marche en fonction de l'amplitude d'oscillation du balancier et en fonction de la position de la montre.
Pendant les oscillations du balancier d'un oscillateur balancier-spiral traditionnel, le spiral se développe de manière excentrique en raison du fait que î o son centre de gravité n'est pas sur l'axe de l'oscillateur et se déplace. Ce développement excentrique génère des forces de rappel importantes entre les pivots de l'arbre de l'oscillateur et les paliers dans lesquels ils tournent, forces qui en outre varient en fonction de l'amplitude d'oscillation. Ces forces de rappel perturbent les oscillations du balancier et génèrent des variations de marche de
1 5 l'oscillateur en fonction de l'amplitude d'oscillation. Pour remédier à ce problème, la présente demanderesse a proposé dans son brevet EP 1473604 un oscillateur balancier-spiral dont la spire extérieure du spiral comporte une portion rigidifiée agencée pour rendre le développement du spiral concentrique.
On sait cependant que la concentricité du développement d'un spiral n'est 0 pas le seul facteur qui influence l'isochronisme. Monté dans un mouvement, l'oscillateur est perturbé par l'échappement, qui, notamment dans le cas d'un échappement à ancre suisse, induit un retard de marche. En effet, pendant la phase de dégagement, l'oscillateur subit un couple résistant avant la ligne des centres, ce qui provoque un retard. Pendant la phase d'impulsion, l'oscillateur 5 subit un couple moteur d'abord avant la ligne des centres, ce qui provoque une avance, puis après la ligne des centres, ce qui provoque un retard. Globalement, l'échappement produit ainsi un retard de marche et cette perturbation causée par l'échappement est plus grande aux petites amplitudes d'oscillation du balancier qu'aux grandes. Les deux phénomènes mentionnés ci-dessus, développement excentrique du spiral et retard de marche dû à l'échappement, sont indépendants ou quasiment indépendants de la position de la montre. A ces deux phénomènes s'ajoute l'effet de la gravité, qui produit un écart de marche entre les positions horizontale et verticale de la montre, et entre ses différentes positions verticales.
La présente invention vise à améliorer encore l'isochronisme d'un mouvement d'horlogerie et propose à cette fin un mouvement d'horlogerie comprenant un oscillateur balancier-spiral et un échappement coopérant avec l'oscillateur, la spire extérieure du spiral comprenant une portion rigidifiée, caractérisé en ce que la portion rigidifiée est agencée pour compenser au moins partiellement la variation de la marche du mouvement en fonction de l'amplitude d'oscillation du balancier due à l'échappement, et en ce que le spiral comprend en outre au moins l'une des caractéristiques suivantes :
a) une distance entre l'extrémité intérieure du spiral et le centre de rotation du spiral inférieure à 400 μητι, par exemple égale à environ 300 μιη, b) une courbe Grossmann définie par la spire intérieure du spiral, c) une portion rigidifiée définie par la spire intérieure du spiral.
Il a été constaté avec surprise qu'en jouant sur l'agencement de la portion rigidifiée de la spire extérieure du spiral, par exemple sa position, son étendue ou son épaisseur, et qu'en y ajoutant l'une des caractéristiques a), b) et c) ci-dessus, l'isochronisme global du mouvement, tenant compte à la fois de la perturbation due à la non concentricité du spiral, de la perturbation due à l'échappement et de la perturbation due à la gravité, pouvait être nettement amélioré par rapport à l'oscillateur décrit dans le brevet EP 1473604.
Avantageusement, la portion rigidifiée de la spire extérieure est agencée pour que le spiral produise un écart de marche, typiquement une avance de marche, dû au défaut de concentricité du développement du spiral d'au moins 2 s/j, ou d'au moins 4 s/j, ou encore d'au moins 6 s/j, ou encore d'au moins 8 s/j, à une amplitude de 150° par rapport à une amplitude de 300°, compensant au moins partiellement ladite variation de marche due à l'échappement.
Selon un premier mode de réalisation, la portion rigidifiée de la spire extérieure est plus proche de l'extrémité extérieure du spiral qu'une portion rigidifiée théorique qui rendrait le développement du spiral sensiblement parfaitement concentrique, l'épaisseur et l'étendue de la portion rigidifiée pouvant être sensiblement identiques à celles de ladite portion rigidifiée théorique.
Selon un deuxième mode de réalisation, la portion rigidifiée de la spire extérieure est moins épaisse qu'une portion rigidifiée théorique qui rendrait le développement du spiral sensiblement parfaitement concentrique, la position et l'étendue de la portion rigidifiée pouvant être sensiblement identiques à celles de ladite portion rigidifiée théorique.
Selon un troisième mode de réalisation, la portion rigidifiée de la spire extérieure est moins étendue qu'une portion rigidifiée théorique qui rendrait le développement du spiral sensiblement parfaitement concentrique, la position et l'épaisseur de la portion rigidifiée pouvant être sensiblement identiques à celles de ladite portion rigidifiée théorique.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :
- la figure 1 montre un spiral à portion de spire extérieure rigidifiée selon la technique antérieure, une virole associée à ce spiral étant montrée schématiquement par un trait pointillé ;
- la figure 2 montre une courbe d'isochronisme obtenue par simulation numérique des déplacements du centre de rotation du spiral illustré à la figure 1 , l'oscillateur dont fait partie ce spiral étant considéré comme libre, c'est-à-dire non soumis à l'action d'un échappement ; la figure 3 montre des résultats de mesure d'isochronisme global obtenus sur un mouvement réel comportant un spiral tel qu'illustré à la figure 1 ;
la figure 4 montre un spiral du type de celui de la figure 1 mais dont la portion de spire extérieure rigidifiée a été déplacée ;
la figure 5 montre une courbe d'isochronisme obtenue par simulation numérique des déplacements du centre de rotation du spiral illustré à la figure 4, l'oscillateur dont fait partie ce spiral étant considéré comme libre, c'est-à-dire non soumis à l'action d'un échappement ;
la figure 6 montre des résultats de mesure d'isochronisme global obtenus sur un mouvement réel comportant un spiral tel qu'illustré à la figure 4 ;
la figure 7 montre un spiral du type de celui de la figure 1 mais dont l'épaisseur de la portion de spire extérieure rigidifiée a été modifiée ; la figure 8 montre une courbe d'isochronisme obtenue par simulation numérique des déplacements du centre de rotation du spiral illustré à la figure 7, l'oscillateur dont fait partie ce spiral étant considéré comme libre, c'est-à-dire non soumis à l'action d'un échappement ;
la figure 9 montre un spiral du type de celui de la figure 1 mais dont l'étendue angulaire de la portion de spire extérieure rigidifiée a été modifiée ;
la figure 10 montre une courbe d'isochronisme obtenue par simulation numérique des déplacements du centre de rotation du spiral illustré à la figure 9, l'oscillateur dont fait partie ce spiral étant considéré comme libre, c'est-à-dire non soumis à l'action d'un échappement ;
la figure 11 montre des courbes d'isochronisme correspondant à différentes positions horizontale et verticales d'un spiral à portion de spire extérieure rigidifiée ; - la figure 12 montre le spiral dont les courbes d'isochronisme sont représentées à la figure 11 ;
- la figure 13 montre un spiral à portion de spire extérieure rigidifiée et à petit diamètre de virole constituant un exemple de réalisation de l'invention ;
- la figure 14 montre des courbes d'isochronisme correspondant à différentes positions horizontale et verticales du spiral illustré à la figure 13 ;
- la figure 15 montre un spiral à portion de spire extérieure rigidifiée, à petit diamètre de virole et à courbe intérieure Grossmann constituant un autre exemple de réalisation de l'invention ;
- la figure 16 montre des courbes d'isochronisme correspondant à différentes positions horizontale et verticales du spiral illustré à la figure 15 ;
- la figure 17 montre un spiral à portion de spire extérieure rigidifiée, à petit diamètre de virole et à portion de spire intérieure rigidifiée constituant encore un autre exemple de réalisation de l'invention ;
- la figure 18 montre des courbes d'isochronisme correspondant à différentes positions horizontale et verticales du spiral illustré à la figure 17 ;
- la figure 19 montre schématiquement un mouvement dans lequel peut être intégré un spiral tel qu'illustré à la figure 13, 15 ou 17.
La figure 1 montre un spiral plan du type de celui décrit dans le brevet EP 1473604, pour un oscillateur balancier-spiral d'un mouvement d'horlogerie. Ce spiral, désigné par le repère 1 , est en forme de spirale d'Archimède et est fixé par son extrémité intérieure 2 à une virole 3 montée sur l'arbre du balancier et par son extrémité extérieure 4 à un piton (non représenté) monté sur une pièce fixe du mouvement telle que le coq. L'ensemble spiral 1 - virole 3 peut être réalisé en une seule pièce, dans une matière cristalline telle que le silicium ou le diamant, par une technique de micro-gravure. La spire extérieure 5 du spiral 1 comporte localement une portion 6 de plus grande épaisseur e que le reste de la lame formant le spiral. Cette épaisseur e, qui peut être variable le long de la portion 6 comme représenté, rigidifie la portion 6 et la rend ainsi sensiblement inactive 5 pendant le développement du spiral. La position et l'étendue de la portion rigidifiée 6 sont choisies pour que le centre de déformation du spiral, correspondant sensiblement au centre de gravité de la partie du spiral autre que la portion rigidifiée 6, soit sensiblement confondu avec le centre de rotation O du spiral et de la virole 3, qui coïncide avec le centre géométrique du spiral. De la î o sorte, le développement du spiral est concentrique ou quasi concentrique. En pratique, la portion rigidifiée 6 se termine avant l'extrémité extérieure 4 du spiral. Cette extrémité extérieure 4, plus précisément une partie terminale 7 de la spire extérieure 5 incluant la portion rigidifiée 6, est écartée radialement vers l'extérieur par rapport au tracé de la spirale d'Archimède pour garantir que l'avant-dernière
15 spire 8 reste libre radialement, c'est-à-dire ne touche aucun élément tel que le piton, la spire extérieure ou une goupille de raquette, pendant le fonctionnement du mouvement. L'écart entre la partie terminale 7 et l'avant-dernière spire 8 doit être supérieur à celui d'un spiral traditionnel, car du fait du développement concentrique du spiral, l'avant-dernière spire 8 se déplace radialement davantage 0 vers le piton lors de l'expansion du spiral. La partie terminale 7 est en forme d'arc de cercle de centre C. L'étendue angulaire Θ de la portion rigidifiée 6 et sa position angulaire a (définie par exemple par la position angulaire du centre de la portion rigidifiée 6 par rapport à la position angulaire de l'extrémité extérieure 4) sont définies depuis ce centre C. L'épaisseur e est mesurée le long d'un rayon partant 5 de ce centre C. Dans l'exemple représenté, le spiral a 14 spires plus une portion de spire s'étendant sur 30°, les valeurs Θ et a sont respectivement égales à 85,9° et 72° et le maximum de l'épaisseur e est égal à 88,7 pm. L'épaisseur e0 de la lame formant le spiral (mesurée selon un rayon partant du centre de rotation O du spiral), à l'exception de la portion rigidifiée 6, est égale à 32,2 pm. Le rayon R de la virole 3, ou distance entre l'extrémité intérieure 2 du spiral et le centre de rotation O du spiral, est défini comme étant le rayon du cercle (montré en pointillés) de centre O et passant par le milieu (à la moitié de l'épaisseur e0) de l'extrémité intérieure 2 du spiral. Dans l'exemple représenté, ce rayon R est égal à 5 565 μηη.
La figure 2 est un diagramme d'isochronisme obtenu avec le spiral illustré à la figure 1 par simulation numérique. Plus précisément, le diagramme de la figure 2 est obtenu en considérant l'extrémité extérieure 4 fixe et l'arbre sur lequel sont fixés la virole 3 et le balancier libre (c'est-à-dire non monté dans des paliers), î o en calculant par éléments finis le déplacement du centre de rotation O du spiral lors des oscillations du balancier, puis en interpolant et intégrant la courbe de déplacement en fonction de l'amplitude d'oscillation. Des équations analytiques reliant le déplacement du centre de rotation O du spiral à la marche en fonction de l'amplitude d'oscillation du balancier sont proposées par exemple dans l'ouvrage
15 « Traité de construction horlogère » de M. Vermot, P. Bovay, D. Prongué et S.
Dordor, édité par les Presses polytechniques et universitaires romandes, 2011. En abscisses du diagramme de la figure 2 est portée l'amplitude d'oscillation du balancier exprimée en degrés par rapport à la position d'équilibre et en ordonnées est portée la marche en secondes par jour. Ce diagramme représente ainsi la 0 variation de marche du spiral due au défaut de concentricité du développement du spiral. Cette variation de marche s'applique de la même manière dans toutes les positions de la montre. Comme on peut le voir à la figure 2, l'écart de marche entre une amplitude d'oscillation de 150° et une amplitude d'oscillation de 300° avec le spiral illustré à la figure 1 est de l'ordre de 1 s/j, ce qui est excellent. 5 Toutefois, ce diagramme ne tient pas compte des perturbations dues à l'échappement ni des perturbations dues à la gravité.
Des mesures ont été faites sur vingt mouvements de conception identique équipés du spiral tel qu'illustré à la figure 1 et d'un échappement à ancre suisse traditionnel. Pour chaque mouvement, dans chacune de six positions différentes (VH : verticale haute, VG : verticale gauche, VB : verticale basse, VD : verticale droite, HB : horizontale basse et HH : horizontale haute), la marche du mouvement a été mesurée pendant la décharge de son ressort moteur et les mesures ont été reportées dans un graphe. A titre d'exemple, le graphe obtenu 5 pour l'un de ces mouvements est montré à la figure 3. En ordonnées est portée la marche en s/j et en abscisses l'amplitude d'oscillation du balancier, qui diminue progressivement entre l'état complètement remonté et l'état dévidé du ressort moteur du mouvement en raison de la diminution de la force du ressort moteur. Comme on peut le voir, la marche diminue progressivement au fur et à mesure î o que l'amplitude d'oscillation diminue, ceci dans toutes les positions de la montre, et il existe en outre un écart de marche entre les différentes positions verticales. Pour chaque position de chaque mouvement une courbe a été interpolée et l'écart de marche entre l'amplitude d'oscillation de 150° et l'amplitude d'oscillation de 300° a été déterminée. La moyenne des écarts de marche sur toutes les positions
15 et tous les mouvements a été d'environ 6,7 s/j entre lesdites amplitudes. En d'autres termes, la marche à 150° a été en moyenne inférieure d'environ 6,7 s/j à la marche à 300°. Cette diminution de la marche, ou retard aux petites amplitudes par rapport aux grandes amplitudes, est essentiellement due à l'échappement.
Le présent inventeur a observé que la diminution de la marche due à 0 l'échappement pouvait, en partie au moins, être compensée en modifiant l'agencement de la portion rigidifiée 6, à savoir par exemple sa position a et/ou son étendue Θ et/ou son épaisseur e, par rapport à l'agencement de la figure 1 qui confère aux spires du spiral une concentricité parfaite ou quasi-parfaite.
Il a notamment été découvert qu'un paramètre de la portion rigidifiée 6
25 ayant une influence particulière sur l'isochronisme est sa position a. En déplaçant la portion rigidifiée 6 vers l'extrémité extérieure 4 du spiral, on crée une avance de marche aux petites amplitudes par rapport aux grandes amplitudes d'oscillation du balancier. Ainsi, un écart de marche d'environ 6,7 s/j, mais de signe opposé par rapport à l'écart de marche mesuré moyen susmentionné, peut être obtenu entre les amplitudes de 150° et de 300° en déplaçant la portion rigidifiée 6 à la position a' = 62° et en conservant constantes les autres caractéristiques de la portion rigidifiée 6 (étendue, épaisseur). La variation de la marche due à l'échappement peut ainsi être sensiblement entièrement compensée. La figure 4 montre le nouveau spiral obtenu, avec sa portion de spire extérieure rigidifiée désignée par le repère 6'. Le déplacement de la portion rigidifiée 6 modifie bien entendu le développement du spiral, qui n'est plus aussi concentrique. Mais, d'une part, cette modification est faible, le spiral se développant encore de manière plus concentrique qu'un spiral traditionnel (c'est-à-dire un spiral sans portion rigidifiée), et, d'autre part, cette modification contribue à améliorer l'isochronisme global du mouvement, le défaut de concentricité créé servant à compenser un autre défaut. Dans le diagramme de la figure 5 a été dessinée la courbe d'isochronisme 14 du spiral illustré à la figure 4, obtenue selon la même méthode qu'à la figure 2. On voit que l'augmentation de la marche entre l'amplitude de 300° et l'amplitude de 150° est sensiblement linéaire et de pente inverse de la pente de la variation de la marche due à l'échappement. On a également reporté sur cette figure 5 la courbe d'isochronisme 11 du spiral illustré à la figure 1 à titre de comparaison. A la figure 6 sont représentés des résultats de mesure de la marche d'un mouvement identique à celui sur lequel les mesures de la figure 3 ont été effectuées, mais équipé du spiral illustré à la figure 4 au lieu de celui de la figure 1. Ces résultats montrent que la variation de la marche a été significativement réduite par le déplacement de la portion rigidifiée à la position α', en particulier dans la plage d'amplitudes allant de 180° à 300° où l'allure générale du graphe est plate.
Un autre paramètre de la portion rigidifiée 6 ayant une influence sur l'isochronisme est son épaisseur e. En diminuant l'épaisseur e, on crée une avance de marche aux petites amplitudes par rapport aux grandes amplitudes d'oscillation du balancier. Ainsi, par exemple, un écart de marche d'environ 6,4 s/j, mais de signe opposé par rapport à l'écart de marche mesuré moyen mentionné en relation avec la figure 3, peut être obtenu entre les amplitudes de 150° et de 300° en diminuant le maximum de l'épaisseur e de la portion rigidifiée 6 (et le reste de l'épaisseur en proportion) à la valeur e' = 44,2 pm et en conservant constantes les autres caractéristiques de la portion rigidifiée (position, étendue). La figure 7 montre le spiral obtenu, avec sa portion de spire extérieure rigidifiée 5 désignée par le repère 6", et la figure 8 montre la courbe d'isochronisme 17 correspondant à un tel spiral.
Encore un autre paramètre de la portion rigidifiée ayant une influence sur l'isochronisme est son étendue Θ. En diminuant l'étendue Θ, on crée une avance de marche aux petites amplitudes par rapport aux grandes amplitudes d'oscillation î o du balancier. Ainsi, par exemple, un écart de marche d'environ 6,9 s/j, mais de signe opposé par rapport à l'écart de marche mesuré moyen mentionné en relation avec la figure 3, peut être obtenu entre les amplitudes de 150° et de 300° en diminuant l'étendue angulaire Θ de la portion rigidifiée à la valeur θ' = 43,9° et en conservant constantes les autres caractéristiques de la portion rigidifiée
15 (position, épaisseur ou maximum d'épaisseur). La figure 9 montre le spiral obtenu, avec sa portion de spire extérieure rigidifiée désignée par le repère 6"', et la figure 10 montre la courbe d'isochronisme 19 correspondant à un tel spiral.
Dans des variantes, on pourra bien entendu combiner les principes exposés ci-dessus, c'est-à-dire modifier au moins deux des paramètres a, e et Θ. 0 En référence de nouveau à la figure 6, on constate que la modification apportée à la portion rigidifiée a un effet de compensation de la variation de marche due à l'échappement, mais qu'elle n'a pas ou peu d'effet sur l'écart de marche entre les différentes positions verticales de la montre. Ceci est valable quel(s) que soi(en)t le(s) paramètre(s) a, e, Θ que l'on choisit de modifier. La figure 5 11 représente des courbes d'isochronisme, désignées par J1 à J5, d'un spiral dont la spire externe comporte une portion rigidifiée agencée pour compenser la variation de marche due à l'échappement, comme décrit ci-dessus. La courbe J1 représente l'isochronisme du spiral en position horizontale, c'est-à-dire les variations de marche dues au développement non concentrique du spiral, et est obtenue de la même manière que les courbes des figures 2, 5, 8 et 10. Comme on peut le voir, la portion rigidifiée de la spire extérieure du spiral est agencée pour que le spiral produise une avance de marche de 5,3 s/j à l'amplitude de 150° par rapport à l'amplitude de 300°. Les courbes J2 à J5 représentent l'isochronisme du spiral dans les quatre positions verticales VG, VH, VB et VD respectivement, et sont obtenues en tenant compte à la fois du développement non concentrique du spiral et de l'effet de la gravité, en d'autres termes en additionnant les variations de marche dues au développement non concentrique du spiral et à la gravité. Pour déterminer la variation de marche due à la gravité, dans une position verticale donnée, on peut calculer par éléments finis le déplacement du centre de gravité du spiral sous l'effet des oscillations du spiral (le centre de rotation du spiral étant fixe), puis utiliser des équations analytiques reliant ce déplacement et la position du spiral à la marche en fonction de l'amplitude. De telles équations analytiques sont proposées par exemple dans l'ouvrage précité « Traité de construction horlogère ». L'effet statique d'affaissement des spires dû à la gravité est négligé dans la présente invention, de même que l'effet du balourd du balancier, ce balourd pouvant être minimisé par des moyens connus.
On constate à la figure 11 que l'écart de marche entre les positions verticales est de 3,2 s/j à une amplitude d'oscillation du balancier de 250°. Pour diminuer cet écart de marche, il est proposé selon la présente invention de modifier la partie intérieure du spiral, à savoir la distance entre l'extrémité intérieure du spiral et le centre de rotation du spiral et/ou la forme de la spire intérieure.
Le spiral correspondant aux courbes d'isochronisme J1 à J5 représentées à la figure 11 est montré à la figure 12. Il comprend 14 spires. L'étendue angulaire et la position angulaire de sa portion rigidifiée 9 (mesurées de la même manière que pour les spiraux des figures 1 , 4, 7 et 9) sont respectivement de 60° et de 75°. Le rayon R de sa virole, ou distance entre l'extrémité intérieure du spiral et le centre de rotation dudit spiral, mesuré de la même manière qu'à la figure 1 , est égal à 565 pm. Il a été constaté qu'en diminuant le rayon R à une valeur R', l'écart de marche entre les positions verticales était réduit. Le rayon R' est avantageusement choisi inférieur à 400 pm. La figure 14 représente les courbes d'isochronisme d'un spiral (illustré à la figure 13) similaire à celui de la figure 12 mais ayant un rayon de virole R' égal à 300 pm (et un pas et une épaisseur de spire adaptés en conséquence). Comme cela apparaît sur la figure 14, l'écart de marche entre les positions verticales à une amplitude de 250° est de 1 ,1 s/j, donc bien inférieur aux 3,2 s/j du spiral de la figure 12. Toutefois, pour obtenir une avance de marche entre les amplitudes d'oscillation de 150° et de 300° comparable à celle du spiral de la figure 12, la portion rigidifiée, désignée par 9', doit être adaptée. A la figure 13, l'étendue angulaire et la position angulaire de la portion rigidifiée 9' sont ainsi de 50° et de 75° respectivement.
Une autre manière de diminuer l'écart de marche entre les positions verticales est de conformer la spire intérieure du spiral selon une courbe Grossmann ou de rigidifier une portion de la spire intérieure. Une telle modification de la spire intérieure peut même être combinée à la diminution du rayon R de la virole pour réduire encore davantage l'écart de marche. Ainsi, la figure 15 montre un spiral dont le rayon de virole R' est égal à 300 pm et dont la spire intérieure 10 est conformée selon une courbe Grossmann. A la figure 16, on peut voir que l'écart de marche entre les positions verticales pour ce spiral est de seulement 0,6 s/j à une amplitude d'oscillation de 250°. De façon comparable, un spiral à portion rigidifiée 11 sur la spire intérieure tel que représenté à la figure 17 (la portion rigidifiée intérieure 1 ayant, comme la portion rigidifiée extérieure 9"', une plus grande épaisseur que le reste des spires) permettra l'obtention d'un écart de marche entre les positions verticales de 0,6 s/j à une amplitude d'oscillation de 250° (figure 18). Dans le cas du spiral de la figure 15, la portion rigidifiée 9" de la spire extérieure est agencée pour que le spiral produise une avance de marche due au défaut de concentricité du développement du spiral de 4,2 s/j entre les amplitudes de 150° et 300°, pour compenser un retard de marche dû à l'échappement de même ordre de grandeur. Dans le cas du spiral de la figure 17, la portion rigidifiée 9"' de la spire extérieure est agencée pour que le spiral produise une avance de marche due au défaut de concentricité du développement du spiral de 5,4 s/j entre les amplitudes de 150° et 300°, pour compenser un retard 5 de marche dû à l'échappement de même ordre de grandeur.
Bien que la combinaison d'une courbe Grossmann ou d'une portion de spire intérieure rigidifiée avec un petit rayon de virole R' soit particulièrement avantageuse, on notera que la courbe Grossmann 10 ou la portion de spire intérieure rigidifiée pourrait aussi être utilisée avec une virole de plus grand î o rayon R. On pourrait aussi combiner un petit rayon de virole R', une courbe Grossmann et une portion de spire intérieure rigidifiée. Dans tous les cas, la portion de spire extérieure rigidifiée pourra être agencée selon l'un quelconque des principes exposés en relation avec les figures 4, 7 et 9 ou selon une combinaison de ces principes. Par ailleurs, il va de soi que l'on pourrait appliquer
1 5 lesdits principes à un mouvement dont l'échappement produirait une avance de marche au lieu d'un retard de marche. Pour compenser une telle avance de marche on pourrait ainsi, par exemple, éloigner la portion de spire extérieure rigidifiée de l'extrémité extérieure du spiral ou augmenter l'étendue angulaire de la portion de spire extérieure rigidifiée.
0 Les spiraux décrits ci-dessus sont chacun destinés à faire partie d'un oscillateur d'un mouvement horloger du type du mouvement 12 illustré sous la forme d'un bloc-diagramme à la figure 19. Outre l'oscillateur, désigné par 16, le mouvement 12 comprend, de manière traditionnelle, un organe moteur 13 tel qu'un barillet, un rouage 14, un échappement 15 et un affichage 17.

Claims

REVENDICATIONS
1. Mouvement d'horlogerie comprenant un oscillateur balancier-spiral (16) et un échappement (15) coopérant avec l'oscillateur (16), la spire extérieure du spiral comprenant une portion rigidifiée (9' ; 9" ; 9"'), caractérisé en ce que la portion rigidifiée (9' ; 9" ; 9"') est agencée pour compenser au moins partiellement la variation de la marche du mouvement en fonction de l'amplitude d'oscillation du balancier due à l'échappement, et en ce que le spiral comprend en outre au moins l'une des caractéristiques suivantes :
a) une distance (R') entre l'extrémité intérieure du spiral et le centre de rotation du spiral inférieure à 400 pm,
b) une courbe Grossmann (10) définie par la spire intérieure du spiral,
c) une portion rigidifiée (11 ) définie par la spire intérieure du spiral.
2. Mouvement d'horlogerie selon la revendication 1 , caractérisé en ce que la portion rigidifiée (9' ; 9" ; 9"') de la spire extérieure est agencée pour que le spiral produise un écart de marche dû au défaut de concentricité du développement du spiral d'au moins 2 s/j à une amplitude de 150° par rapport à une amplitude de 300°, compensant au moins partiellement ladite variation de marche due à l'échappement.
3. Mouvement d'horlogerie selon la revendication 2, caractérisé en ce que la portion rigidifiée (9' ; 9" ; 9"') de la spire extérieure est agencée pour que le spiral produise un écart de marche dû au défaut de concentricité du développement du spiral d'au moins 4 s/j à une amplitude de 150° par rapport à une amplitude de 300°, compensant au moins partiellement ladite variation de marche due à l'échappement.
4. Mouvement d'horlogerie selon la revendication 3, caractérisé en ce que la portion rigidifiée (9' ; 9" ; 9"') de la spire extérieure est agencée pour que le spirai produise un écart de marche dû au défaut de concentricité du développement du spiral d'au moins 6 s/j à une amplitude de 150° par rapport à une amplitude de 300°, compensant au moins partiellement ladite variation de marche due à l'échappement.
5. Mouvement d'horlogerie selon la revendication 4, caractérisé en ce que la portion rigidifiée (9' ; 9" ; 9"') de la spire extérieure est agencée pour que le spiral produise un écart de marche dû au défaut de concentricité du développement du spiral d'au moins 8 s/j à une amplitude de 150° par rapport à une amplitude de 300°, compensant au moins partiellement ladite variation de marche due à l'échappement.
6. Mouvement d'horlogerie selon l'une quelconque des revendications 1 à
5, caractérisé en ce que ledit écart de marche est une avance de marche.
7. Mouvement d'horlogerie selon l'une quelconque des revendications 1 à
6, caractérisé en ce que la portion rigidifiée (6') de la spire extérieure est plus proche de l'extrémité extérieure (4) du spiral qu'une portion rigidifiée théorique (6) qui rendrait le développement du spiral sensiblement parfaitement concentrique.
8. Mouvement d'horlogerie selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la portion rigidifiée (6") de la spire extérieure est moins épaisse qu'une portion rigidifiée théorique (6) qui rendrait le développement du spiral sensiblement parfaitement concentrique.
9. Mouvement d'horlogerie selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la portion rigidifiée (6"') de la spire extérieure est moins étendue qu'une portion rigidifiée théorique (6) qui rendrait le développement du spiral sensiblement parfaitement concentrique.
10. Mouvement d'horlogerie selon la revendication 7, caractérisé en ce que l'épaisseur (e) et l'étendue (Θ) de la portion rigidifiée (6') de la spire extérieure sont sensiblement identiques à celles de ladite portion rigidifiée théorique (6). . Mouvement d'horlogerie selon la revendication 8, caractérisé en ce que la position (a) et l'étendue (Θ) de la portion rigidifiée (6") de la spire extérieure sont sensiblement identiques à celles de ladite portion rigidifiée théorique (6).
12. Mouvement d'horlogerie selon la revendication 9, caractérisé en ce que la position (a) et l'épaisseur (e) de la portion rigidifiée (6"') de la spire extérieure sont sensiblement identiques à celles de ladite portion rigidifiée théorique (6).
13. Mouvement d'horlogerie selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le spiral comporte la caractéristique a).
14. Mouvement d'horlogerie selon la revendication 13, caractérisé en ce que ladite distance (R') est d'environ 300 μητ
15. Mouvement d'horlogerie selon la revendication 13 ou 14, caractérisé en ce que le spiral comporte en outre la caractéristique b).
16. Mouvement d'horlogerie selon l'une quelconque des revendications 13 à 15, caractérisé en ce que le spiral comporte en outre la caractéristique c).
PCT/IB2013/002355 2012-11-07 2013-10-22 Mouvement d'horlogerie a balancier-spiral WO2014072781A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201501727QA SG11201501727QA (en) 2012-11-07 2013-10-22 Clock movement having a balance and a hairspring
EP13812065.4A EP2917787B1 (fr) 2012-11-07 2013-10-22 Mouvement d'horlogerie a balancier-spiral
US14/437,065 US9323223B2 (en) 2012-11-07 2013-10-22 Timepiece movement with a balance and hairspring
JP2015540224A JP6334548B2 (ja) 2012-11-07 2013-10-22 テンプ及びヒゲゼンマイを備えた時計ムーブメント
CN201380056637.6A CN104756019B (zh) 2012-11-07 2013-10-22 具有平衡摆轮和游丝的计时器机芯
HK15109127.0A HK1208739A1 (en) 2012-11-07 2015-09-17 Clock movement having a balance and a hairspring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH02282/12 2012-11-07
CH02282/12A CH707165B1 (fr) 2012-11-07 2012-11-07 Mouvement d'horlogerie à balancier-spiral.

Publications (2)

Publication Number Publication Date
WO2014072781A2 true WO2014072781A2 (fr) 2014-05-15
WO2014072781A3 WO2014072781A3 (fr) 2014-06-26

Family

ID=49880836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/002355 WO2014072781A2 (fr) 2012-11-07 2013-10-22 Mouvement d'horlogerie a balancier-spiral

Country Status (8)

Country Link
US (1) US9323223B2 (fr)
EP (1) EP2917787B1 (fr)
JP (1) JP6334548B2 (fr)
CN (1) CN104756019B (fr)
CH (1) CH707165B1 (fr)
HK (1) HK1208739A1 (fr)
SG (1) SG11201501727QA (fr)
WO (1) WO2014072781A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163148A1 (fr) 2016-03-23 2017-09-28 Patek Philippe Sa Geneve Oscillateur balancier-spiral pour piece d'horlogerie
EP3913441A1 (fr) 2020-05-22 2021-11-24 Patek Philippe SA Genève Oscillateur pour pièce d'horlogerie

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098669A1 (fr) * 2014-03-05 2016-11-30 Nivarox-FAR S.A. Spiral destiné à être serré par une rondelle élastique
EP3159748B1 (fr) * 2015-10-22 2018-12-12 ETA SA Manufacture Horlogère Suisse Spiral a encombrement reduit a section variable
CN110308635B (zh) * 2018-03-20 2022-03-01 精工电子有限公司 复位弹簧、轮系机构、钟表用机芯和机械式钟表
JP7476768B2 (ja) * 2020-11-13 2024-05-01 セイコーエプソン株式会社 テンプ、ムーブメント、機械式時計およびテンプの製造方法
EP4293428A1 (fr) 2022-06-14 2023-12-20 Patek Philippe SA Genève Spiral pour résonateur horloger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473604A1 (fr) 2003-04-29 2004-11-03 Patek Philippe S.A. Organe de régulation à balancier et spiral plan pour mouvement d'horlogerie

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH327796A (fr) * 1954-02-22 1958-02-15 Horlogerie Suisse S A Asuag Spiral plat
EP1445670A1 (fr) * 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication
DE602004020982D1 (de) 2004-07-02 2009-06-18 Nivarox Sa tion
EP2151722B8 (fr) * 2008-07-29 2021-03-31 Rolex Sa Spiral pour résonateur balancier-spiral
CH701783B1 (fr) * 2009-09-07 2015-01-30 Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S A Ressort spiral de mouvement de montre.
CH701846B8 (fr) * 2009-09-21 2015-06-15 Rolex Sa Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral.
DE102009048733A1 (de) * 2009-10-08 2011-04-14 Konrad Damasko Spiralfeder für mechanische Schwingungssysteme von Uhren
EP2687917A3 (fr) * 2012-07-17 2018-01-24 Master Dynamic Limited Ressort spiral de pièce d'horlogerie et conception dudit ressort pour la concentricité

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473604A1 (fr) 2003-04-29 2004-11-03 Patek Philippe S.A. Organe de régulation à balancier et spiral plan pour mouvement d'horlogerie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. VERMOT; P. BOVAY; D. PRONGUÉ; S. DORDOR: "Traité de construction horlogère", 2011, PRESSES POLYTECHNIQUES ET UNIVERSITAIRES ROMANDES

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163148A1 (fr) 2016-03-23 2017-09-28 Patek Philippe Sa Geneve Oscillateur balancier-spiral pour piece d'horlogerie
US11249440B2 (en) 2016-03-23 2022-02-15 Patek Philippe Sa Geneve Balance-hairspring oscillator for a timepiece
EP3913441A1 (fr) 2020-05-22 2021-11-24 Patek Philippe SA Genève Oscillateur pour pièce d'horlogerie

Also Published As

Publication number Publication date
HK1208739A1 (en) 2016-03-11
EP2917787B1 (fr) 2020-08-19
WO2014072781A3 (fr) 2014-06-26
US9323223B2 (en) 2016-04-26
JP6334548B2 (ja) 2018-05-30
CH707165A2 (fr) 2014-05-15
EP2917787A2 (fr) 2015-09-16
SG11201501727QA (en) 2015-04-29
JP2015533423A (ja) 2015-11-24
CN104756019A (zh) 2015-07-01
US20150248113A1 (en) 2015-09-03
CH707165B1 (fr) 2016-12-30
CN104756019B (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
EP2917787B1 (fr) Mouvement d'horlogerie a balancier-spiral
EP2363762B1 (fr) Pièce d'horlogerie comportant un mouvement mécanique à haute fréquence
EP2104006B1 (fr) Double spiral monobloc et son procédé de fabrication
EP2613206B1 (fr) Spiral à deux ressort-spiraux à isochronisme amélioré
WO2008080570A2 (fr) Oscillateur mecanique pour une piece d'horlogerie
WO2009115463A1 (fr) Organe régulateur monobloc et son procédé de fabrication
EP4009115A1 (fr) Ressort-spiral pour mécanisme résonateur d horlogerie muni de moyens d'ajustement de la rigidité
WO2014016094A1 (fr) Balancier-spiral d'horlogerie
EP2753985B1 (fr) Mouvement d'horlogerie à balancier-spiral
WO2011006617A1 (fr) Tourbillon a roue d'echappement fixe
EP2690506A1 (fr) Spiral d'horlogerie anti-galop
CH700747A1 (fr) Oscillateur mécanique pour mouvement horloger.
EP2631721A1 (fr) Composants horlogers en titane revêtus de diamant
EP2771743B1 (fr) Oscillateur de mouvement horloger
CH713409A2 (fr) Balancier-spiral du type thermocompensé, mouvement et pièce d'horlogerie.
EP2309345B1 (fr) Procédé de réalisation de mouvements horlogers fonctionnant à des fréquences différentes
EP3234701B1 (fr) Oscillateur pour mouvement horloger
CH710866A2 (fr) Balancier-spiral auto-compensé pour mouvement horloger.
CH702799B1 (fr) Pièce d'horlogerie comportant un mouvement mécanique à haute fréquence.
CH706543B1 (fr) Mécanisme d'échappement d'horlogerie comportant des moyens de découplage entre le pignon et la roue d'échappement.
EP3391154B1 (fr) Système oscillant pour montre
EP2515185A1 (fr) Moteur à moment de force constant
CH718113A2 (fr) Ressort-spiral pour mécanisme résonateur d'horlogerie muni de moyens d'ajustement de la rigidité.
CH704239A2 (fr) Mobile d'horlogerie à guidage périphérique.
CH712265B1 (fr) Mouvement d'horlogerie et pièce d'horlogerie comportant un tel mouvement.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812065

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013812065

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14437065

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015540224

Country of ref document: JP

Kind code of ref document: A