WO2014072310A1 - Procédé de soudage par diffusion - Google Patents

Procédé de soudage par diffusion Download PDF

Info

Publication number
WO2014072310A1
WO2014072310A1 PCT/EP2013/073103 EP2013073103W WO2014072310A1 WO 2014072310 A1 WO2014072310 A1 WO 2014072310A1 EP 2013073103 W EP2013073103 W EP 2013073103W WO 2014072310 A1 WO2014072310 A1 WO 2014072310A1
Authority
WO
WIPO (PCT)
Prior art keywords
plates
stack
welded
exchanger
alloy
Prior art date
Application number
PCT/EP2013/073103
Other languages
English (en)
Inventor
Laurent CANDILLIER
Thomas MIGNOT
Original Assignee
Société Technique pour l'Energie Atomique TECHNICATOME
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Société Technique pour l'Energie Atomique TECHNICATOME filed Critical Société Technique pour l'Energie Atomique TECHNICATOME
Priority to US14/438,195 priority Critical patent/US20150251271A1/en
Priority to CN201380058155.4A priority patent/CN104781033A/zh
Publication of WO2014072310A1 publication Critical patent/WO2014072310A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof

Definitions

  • the present invention relates to a diffusion bonding method comprising at least the following steps:
  • step b) stacking a plurality of the plates obtained in step a) to obtain a stack (6)
  • step c) diffusion bonding applied to the stack (6) obtained in step b) to obtain a set of welded plates.
  • the method is for example the manufacture of plate heat exchangers.
  • Diffusion welding is a solid phase welding process in which the parts held in contact under a given pressure are brought to a defined temperature for a controlled time. These operating conditions lead to local plastic surface deformations, to an intimate contact and to a migration of atoms between the elements, which thus makes it possible to obtain the continuity of the material.
  • the most conventional solution for performing diffusion welding of a stack of plates is to apply a uni-axial stress on the plates, that is to say along a single axis perpendicular to the plates, in a thermal furnace in which there is a a sufficient level of vacuum.
  • Another solution is to assemble the stack of plates using a hot isostatic compaction furnace.
  • the stack of plates to be assembled is then placed in a sealed and deformable envelope in which there is a sufficient level of vacuum.
  • the compaction furnace provides the necessary heat and the welding stress thanks to the pressurized gas that it contains.
  • the known methods of diffusion welding do not make it possible to weld large plate heat exchangers, for example of a volume greater than 3 ⁇ 3 ⁇ 1 m 3 , without the mechanical characteristics being substantially altered. More specifically, if these known processes are applied to the production of large exchangers, all or part of the following properties of the exchanger obtained are Insufficient: mechanical resistance, corrosion resistance, service life of the assembly.
  • An object of the invention is therefore to provide a method for manufacturing a large plate heat exchanger, the exchanger having a mechanical strength, corrosion resistance and a lifetime of the assembly of good level.
  • the subject of the invention is a process of the type described above, in which:
  • the plates obtained in step a) comprise a two-phase titanium alloy
  • the stack is heated by heating to an assembly temperature comprised between, on the one hand, a minimum temperature allowing a connection between the plates of the set of welded plates and, on the other hand, a maximum temperature beyond which the alloy becomes single-phase, the heating of the stack having a duration of less than a maximum duration of beyond which the alloy of the plates of all the welded plates comprises grains of grain size index strictly less than 6.
  • the method comprises one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • the two-phase titanium alloy comprises TA6V, the two phases being ⁇ -titanium and ⁇ -titanium;
  • the two-phase titanium alloy comprises Ti8Mn or Ti7Al4Mo;
  • the assembly temperature at which the stack is carried is substantially between 700 ° and 950 ° C .
  • the duration of the heating is substantially between 1 hour and 5 hours;
  • step c two consecutive plates of the stack are subjected to a contact pressure of between 10 and 50 bars;
  • step b) the plates obtained in step a) are stacked to obtain a plurality of plate stacks, each stack having dimensions such that it is capable of holding between two parallel planes spaced apart; the other of less than 200 mm, preferably between two parallel planes spaced from each other by a distance of between 100 and 1000 mm; in step c), each stack obtained in step b) is diffusion bonded to obtain a plurality of welded plate assemblies; and in step d), the welded plate assemblies obtained in step c) are assembled; - The method further comprises a step d) for obtaining a plate heat exchanger from the set of welded plates obtained in step c).
  • the invention also relates to a plate heat exchanger comprising a set of metal plates stacked and soldered by diffusion, the exchanger being characterized in that:
  • the set of plates comprises a two-phase titanium alloy
  • the set of welded plates comprises grains having a grain size index greater than or equal to 6.
  • FIGURE is a partial sectional view of a heat exchanger. plates according to the invention.
  • the exchanger 1 comprises primary plates 3 and secondary plates 5 stacked.
  • the alternation of the primary plates 3 and the secondary plates 5 is for example simple, that is to say that each primary plate 3 is located between two secondary plates 5.
  • the primary plates 3 and the secondary plates 5 are for example substantially horizontal.
  • the exchanger 1 advantageously comprises a much higher number of plates.
  • the dimensions of the exchanger 1 are for example greater than 1 m by 3 m horizontally, and the height of the exchanger 1 is greater than 1 m.
  • Each primary plate 3 defines, together with the secondary plate 5 located below it, a plurality of channels 7 for the circulation of a primary fluid.
  • Each primary plate 3 is for example TA6V alloy.
  • Each primary plate 3 is diffusion bonded to the secondary plates 5 located above and below it.
  • Each secondary plate 5 defines, together with the primary plate 3 located below it, a plurality of channels 9 for the circulation of a secondary fluid.
  • the primary plates 3 and the secondary plates 5 have any thickness. According to a particular embodiment, the plates 3, 5 are shaped so that the minimum distance E between the primary fluid and the secondary fluid within the exchanger 1 is between 0.5 mm and 2 mm. The secondary fluid and the primary fluid are intended to exchange heat via the primary plates 3 and the secondary plates 5 of the exchanger 1.
  • the method comprises at least the following four steps.
  • a first step is to obtain the primary plates 3 and the secondary plates 5.
  • the primary plates 3 and the secondary plates 5 have for example the shapes and composition described above.
  • the primary plates 3 and the secondary plates 5 obtained in the first step are stacked, for example as described above, in order to obtain the stack 6 shown in FIG.
  • the stack 6 obtained in the second step is diffusion bonded to obtain a set of welded plates.
  • the stack 6 by simple tests, by carrying the stack 6 to an assembly temperature between, on the one hand, a minimum temperature, the order of the annealing temperature, allowing a connection between the plates 3, 5 of the set of welded plates and, secondly, a maximum temperature beyond which the alloy becomes single phase.
  • the above-mentioned maximum temperature is, for example, the beta transceiver of TA6V alloy minus 20%.
  • the beta transus is about 950 ° C, said maximum temperature is about 930 ° C.
  • the duration of the heating of the stack 6 is adjusted to a value less than a maximum duration beyond which the alloy of the plates of all the welded plates comprises grains having a grain size index greater than or equal to 6.
  • the grain size index is for example defined by ASTM standard E1 12.
  • the stack 6 is brought to an assembly temperature substantially between 700 ⁇ and 930 ⁇ , for example about 900 ° C.
  • This temperature is high enough to allow the primary plates 3 and the secondary plates 5 to bond to each other.
  • the assembly temperature is sufficiently low for the a and ⁇ phases to remain stable, that is to say so that their respective mass fractions in the plates 3, 5 are not substantially modified by the diffusion bonding step .
  • the mass fractions of the a and ⁇ phases do not change substantially.
  • the value of the grain size index of the alloy advantageously amounts to less than 4 units, preferably less than 3 units.
  • the assembly temperature is reached by heating the stack 6.
  • the heating time is substantially between 1 hour and 5 hours, for example about 3 hours.
  • the heating has a sufficiently short duration so that, under the aforementioned temperature conditions, the grains of the set of welded plates have a grain size index greater than or equal to 6.
  • the plates 3, 5 of the stack 6 are subjected to a contact pressure of between 10 and 50 bars, for example about 15 bars.
  • the pressure is applied according to a method known per se, for example using a press (not shown).
  • the pressure exerted is for example vertical.
  • the exchanger 1 is obtained from the set of welded plates resulting from the third step. This is for example to add water boxes for primary and secondary fluids, temperature probes, or other elements known to those skilled in the art to complete a plate heat exchanger.
  • a large plate heat exchanger 1 for example of a volume greater than or equal to 3 ⁇ 1 ⁇ 1 m 3 is easily obtained.
  • the set of welded plates has grains with a grain size index greater than or equal to 6. Thanks to the stability of the phases a and ⁇ of the alloy of the plates 3, 5, the possible appearance of weakening metallurgical phases is limited. Thus, the exchanger 1 has good metallurgical characteristics, including mechanical strength, corrosion resistance and service life.
  • the second method differs in the following characteristics.
  • the plates 3, 5 obtained in the first step are stacked to obtain a plurality of stacks of plates 3, 5.
  • the stacks of said plurality are similar to the stack 6 shown in FIG.
  • Each stack of the plurality has dimensions such that it is capable of holding between two arbitrary parallel planes (not shown) distant from each other. less than 200 mm, preferably between two parallel planes distant from each other by a distance of between 100 mm and 1000 mm.
  • each stack obtained in the second step is diffusion bonded to obtain a plurality of welded plate assemblies.
  • the welding is similar to that described above.
  • the welded plate assemblies obtained in the third step are assembled to obtain the exchanger 1.
  • the second method also makes it possible to obtain even larger exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Procédé de soudage par diffusion comprenant au moins les étapes suivantes: a) obtention de plaques métalliques (3, 5), b) empilement d'une pluralité des plaques (3, 5) obtenues à l'étape a) pour obtenir un empilement (6), et c) soudage par diffusion appliqué à l'empilement obtenu à l'étape b) pour obtenir un ensemble de plaques soudées. Les plaques obtenues à l'étapes a) comprennent un alliage de titane biphasé, et pendant l'étape c), l'empilement est porté par chauffage à une température d'assemblage comprise entre, d'une part, une température minimale permettant une liaison entre les plaques de l'ensemble de plaques soudées et, d'autre part, une température maximale au-delà de laquelle l'alliage devient monophasé, le chauffage de l'empilement présentant une durée inférieure à une durée maximale au-delà de laquelle l'alliage des plaques de l'ensemble des plaques soudées comporte des grains d'indice de taille de grains strictement inférieur à 6. Echangeur de chaleur correspondant.

Description

Procédé de soudage par diffusion
La présente invention concerne un procédé de soudage par diffusion comprenant au moins les étapes suivantes :
a) obtention de plaques métalliques,
b) empilement d'une pluralité des plaques obtenues à l'étape a) pour obtenir un empilement (6), et
c) soudage par diffusion appliqué à l'empilement (6) obtenu à l'étape b) pour obtenir un ensemble de plaques soudées.
Le procédé vise par exemple la fabrication d'échangeurs de chaleur à plaques. Le soudage par diffusion est un procédé de soudage en phase solide dans lequel les pièces maintenues en contact sous une pression donnée sont portées à une température définie pendant un temps contrôlé. Ces conditions opératoires conduisent à des déformations plastiques locales de surface, à un contact intime et à une migration des atomes entre les éléments, ce qui permet d'obtenir ainsi la continuité de la matière.
Ce procédé est particulièrement intéressant, car les plaques assemblées de cette façon sont reliées de façon intime, y compris dans les zones d'échanges thermiques. La continuité de matière en périphérie de l'ensemble de plaques soudées facilite l'usinage ou le soudage de l'ensemble de plaques soudées pour finaliser l'échangeur.
La solution la plus classique pour réaliser un soudage par diffusion d'un empilement de plaques consiste à appliquer une contrainte uni axiale sur les plaques, c'est-à-dire selon un seul axe perpendiculaires aux plaques, dans un four thermique dans lequel règne un niveau de vide suffisant.
Une autre solution consiste à assembler l'empilement de plaques en utilisant un four de compaction isostatique à chaud. L'empilement de plaques à assembler est alors placé dans une enveloppe étanche et déformable dans laquelle règne un niveau de vide suffisant. Le four de compaction apporte la chaleur nécessaire et la contrainte de soudage grâce au gaz sous pression qu'il contient.
De tels procédés permettent d'obtenir des empilements de plaques de dimensions très importantes, par exemple 1 m par 1 m par 3 m.
Toutefois, les procédés connus de soudage par diffusion ne permettent pas de souder des échangeurs à plaques volumineux, par exemple d'un volume supérieur à 3 x 3 x 1 m3, sans que les caractéristiques mécaniques se trouvent sensiblement altérées. Plus précisément, si ces procédés connus sont appliqués à la réalisation d'échangeurs volumineux, tout ou partie des propriétés suivantes de l'échangeur obtenu sont insuffisantes : résistance mécanique, résistance à la corrosion, durée de vie de l'assemblage.
Un but de l'invention est donc de proposer un procédé permettant de fabriquer un échangeur de chaleur à plaques volumineux, l'échangeur possédant une résistance mécanique, une résistance à la corrosion et une durée de vie de l'assemblage de bon niveau.
A cet effet, l'invention a pour objet un procédé du type décrit ci-dessus, dans lequel :
- les plaques obtenues à l'étapes a) comprennent un alliage de titane biphasé, et - pendant l'étape c), l'empilement est porté par chauffage à une température d'assemblage comprise entre, d'une part, une température minimale permettant une liaison entre les plaques de l'ensemble de plaques soudées et, d'autre part, une température maximale au-delà de laquelle l'alliage devient monophasé, le chauffage de l'empilement présentant une durée inférieure à une durée maximale au-delà de laquelle l'alliage des plaques de l'ensemble des plaques soudées comporte des grains d'indice de taille de grains strictement inférieur à 6.
Selon des modes particuliers de réalisation, le procédé comprend l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou selon toutes les combinaisons techniquement possibles :
- à l'étape a), l'alliage de titane biphasé comprend du TA6V, les deux phases étant le titane a et le titane β ;
- à l'étape a), l'alliage de titane biphasé comprend du Ti8Mn ou du Ti7AI4Mo ;
- à l'étape c), la température d'assemblage à laquelle est porté l'empilement est sensiblement comprise entre 700 ^ et 950 °C ;
- à l'étape c), la durée du chauffage est sensiblement comprise entre 1 heure et 5 heures ;
- durant l'étape c), deux plaques consécutives de l'empilement sont soumises à une pression de contact comprise entre 10 et 50 bars ;
- à l'étape b), les plaques obtenues à l'étape a) sont empilées pour obtenir une pluralité d'empilements de plaques, chaque empilement présentant des dimensions telles qu'il est capable de tenir entre deux plans parallèles distants l'un de l'autre de moins de 200 mm, de préférence entre deux plans parallèles éloignés l'un de l'autre d'une distance comprise entre 100 et 1000 mm ; à l'étape c), chaque empilement obtenu à l'étape b) est soudé par diffusion pour obtenir une pluralité d'ensembles de plaques soudées ; et à l'étape d), les ensembles de plaques soudées obtenus à l'étape c) sont assemblés ; - le procédé comprend en outre une étape d) d'obtention d'un échangeur de chaleur à plaques à partir de l'ensemble de plaques soudées obtenu à l'étape c).
L'invention concerne aussi un échangeur de chaleur à plaques comprenant un ensemble de plaques métalliques empilées et soudées par diffusion, l'échangeur étant caractérisé en ce que :
- l'ensemble de plaques comprend un alliage de titane biphasé, et
- l'ensemble de plaques soudées comporte des grains d'indice de taille de grains supérieur ou égal à 6.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant à la Figure annexée, laquelle est une vue partielle, en coupe, d'un échangeur de chaleur à plaques selon l'invention.
Le procédé qui va être décrit ci-dessous permet d'obtenir un échangeur 1 représenté schématiquement sur la Figure.
L'échangeur 1 comprend des plaques primaires 3 et des plaques secondaires 5 empilées. L'alternance des plaques primaires 3 et des plaques secondaires 5 est par exemple simple, c'est-à-dire que chaque plaque primaire 3 se situe entre deux plaques secondaires 5. Les plaques primaires 3 et les plaques secondaires 5 sont par exemple sensiblement horizontales.
Seules deux plaques 3, 5 de chaque sorte sont représentées sur la Figure. Toutefois, l'échangeur 1 comporte avantageusement un nombre de plaques beaucoup plus élevé. Les dimensions de l'échangeur 1 sont par exemple supérieures à 1 m par 3 m horizontalement, et la hauteur de l'échangeur 1 est supérieure à 1 m.
Chaque plaque primaire 3 définit, conjointement avec la plaque secondaire 5 située en dessous d'elle, une pluralité de canaux 7 pour la circulation d'un fluide primaire.
Chaque plaque primaire 3 est par exemple en alliage TA6V.
Chaque plaque primaire 3 est soudée par diffusion aux plaques secondaires 5 situées au-dessus et en dessous d'elle.
Les plaques secondaires 5 sont avantageusement analogues aux plaques primaires 3 et ne seront pas décrites en détail. Chaque plaque secondaire 5 définit, conjointement avec la plaque primaire 3 située en dessous d'elle, une pluralité de canaux 9 pour la circulation d'un fluide secondaire.
Les plaques primaires 3 et les plaques secondaires 5 présentent une épaisseur quelconque. Selon un mode de réalisation particulier, les plaques 3, 5 sont conformées pour que la distance minimale E entre le fluide primaire et le fluide secondaire au sein de l'échangeur 1 soit comprise entre 0,5 mm et 2 mm. Le fluide secondaire et le fluide primaire sont destinés à échanger de la chaleur via les plaques primaire 3 et les plaques secondaires 5 de l'échangeur 1 .
Un procédé d'obtention de l'échangeur 1 conforme à l'invention va maintenant être décrit. Le procédé comprend au moins les quatre étapes suivantes.
Une première étape consiste à obtenir les plaques primaires 3 et les plaques secondaires 5. Les plaques primaires 3 et les plaques secondaires 5 présentent par exemple les formes et la composition décrites ci-dessus.
Dans une seconde étape, les plaques primaires 3 et les plaques secondaires 5 obtenues à la première étape sont empilées, par exemple comme décrit ci-dessus, afin d'obtenir l'empilement 6 représenté sur la Figure.
Dans une troisième étape, l'empilement 6 obtenu à la seconde étape est soudé par diffusion pour obtenir un ensemble de plaques soudées.
De fait, il est difficile, sans se restreindre, de préciser de manière absolue les conditions de température et de durée de la troisième étape. En effet, ces paramètres dépendent à la fois de la composition et de la géométrie des plaques 3, 5. Les conditions de température et de durée dépendent aussi l'une de l'autre.
L'homme du métier est néanmoins capable de déterminer ces conditions, pour l'empilement 6, par des tests simples, en portant l'empilement 6 à une température d'assemblage comprise entre, d'une part, une température minimale, de l'ordre de la température de recuit, permettant une liaison entre les plaques 3, 5 de l'ensemble de plaques soudées et, d'autre part, une température maximale au-delà de laquelle l'alliage devient monophasé. La température maximale précitée est par exemple le transus bêta de l'alliage TA6V moins 20 ^. Le transus bêta valant environ 950 'Ό, ladite température maximale est d'environ 930 °C.
La durée du chauffage de l'empilement 6 est ajustée à une valeur inférieure à une durée maximale au-delà de laquelle l'alliage des plaques de l'ensemble des plaques soudées comporte des grains possédant un indice de taille de grains supérieur ou égal à 6.
L'indice de taille de grains est par exemple défini par la norme ASTM E1 12.
A titre d'exemple, l'empilement 6 est porté à une température d'assemblage sensiblement comprise entre 700 ^ et 930 ^, par exemple environ 900 °C. Cette température est suffisamment élevée pour permettre aux plaques primaires 3 et aux plaques secondaires 5 de se lier les unes aux autres. La température d'assemblage est suffisamment basse pour que les phases a et β restent stables, c'est-à-dire pour que leurs fractions massiques respectives dans les plaques 3, 5 ne soient pas sensiblement modifiées par l'étape de soudage par diffusion. Par « pas sensiblement modifiées », on entend par exemple que les fractions massiques des phases a et β ne changent pratiquement pas.
Entre le début et la fin de la troisième étape, la valeur de l'indice de taille de grains de l'alliage s'élève avantageusement de moins de 4 unités, préférablement de moins de 3 unités.
La température d'assemblage est atteinte grâce à un chauffage de l'empilement 6. La durée du chauffage est sensiblement comprise entre 1 heure et 5 heures, par exemple environ 3 heures. Ainsi, le chauffage présente une durée suffisamment courte pour que, dans les conditions de température précitées, les grains de l'ensemble de plaques soudées possèdent un indice de taille de grains supérieur ou égal à 6.
Avantageusement, durant la troisième étape, les plaques 3, 5 de l'empilement 6 sont soumises à une pression de contact comprise entre 10 et 50 bars, par exemple environ 15 bars. La pression est appliquée selon une méthode connue en soi, par exemple à l'aide d'une presse (non représentée). La pression exercée est par exemple verticale.
Dans une quatrième étape, l'échangeur 1 est obtenu à partir de l'ensemble de plaques soudées résultant de la troisième étape. Il s'agit par exemple d'ajouter des boîtes à eau pour les fluides primaire et secondaire, des sondes de température, ou d'autres éléments connus de l'homme du métier pour compléter un échangeur à plaques.
Grâce aux caractéristiques du procédé décrites ci-dessus, un échangeur à plaques 1 volumineux, par exemple d'un volume supérieur ou égal à 3 x 1 x 1 m3 est aisément obtenu. L'ensemble de plaques soudées possède des grains d'indice de taille de grains supérieur ou égal à 6. Grâce à la stabilité des phases a et β de l'alliage des plaques 3, 5, l'apparition éventuelle de phases métallurgiques fragilisantes est limitée. Ainsi, l'échangeur 1 possède de bonnes caractéristiques métallurgiques, notamment de résistance mécanique, de résistance à la corrosion et de durée de vie.
On va maintenant décrire brièvement un second procédé selon l'invention constituant une variante du procédé décrit ci-dessus. Le second procédé est analogue au procédé décrit ci-dessus et permet d'obtenir l'échangeur 1 tel que décrit ci-dessus. Les étapes ou caractéristiques analogues ne seront pas décrites à nouveau.
Le second procédé diffère par les caractéristiques suivantes.
Durant la seconde étape, les plaques 3, 5 obtenues à la première étape sont empilées pour obtenir une pluralité d'empilements de plaques 3, 5. Les empilements de ladite pluralité sont analogues à l'empilement 6 représenté sur la Figure.
Chaque empilement de la pluralité présente des dimensions telles qu'il est capable de tenir entre deux plans parallèles arbitraires (non représentés) distants l'un de l'autre de moins de 200 mm, de préférence entre deux plans parallèles éloignés l'un de l'autre d'une distance comprise entre 100 mm et 1000 mm.
Dans la troisième étape, chaque empilement obtenu à la seconde étape est soudé par diffusion pour obtenir une pluralité d'ensembles de plaques soudées. Le soudage est analogue à celui décrit ci-dessus.
Dans la quatrième étape, les ensembles de plaques soudées obtenus à la troisième étape sont assemblés pour obtenir l'échangeur 1 .
Outre les avantages déjà mentionnés ci-dessus, le second procédé permet en outre d'obtenir des échangeurs encore plus volumineux.

Claims

REVENDICATIONS
1 . - Procédé de soudage par diffusion comprenant au moins les étapes suivantes : a) obtention de plaques métalliques (3, 5) comprenant un alliage de titane biphasé,
b) empilement d'une pluralité des plaques (3, 5) obtenues à l'étape a) pour obtenir un empilement (6), et
c) soudage par diffusion appliqué à l'empilement (6) obtenu à l'étape b) pour obtenir un ensemble de plaques soudées,
caractérisé en ce que, pendant l'étape c), l'empilement (6) est porté par chauffage à une température d'assemblage comprise entre, d'une part, une température minimale permettant une liaison entre les plaques (3, 5) de l'ensemble de plaques soudées et, d'autre part, une température maximale au-delà de laquelle l'alliage devient monophasé, le chauffage de l'empilement (6) présentant une durée inférieure à une durée maximale au-delà de laquelle l'alliage des plaques (3, 5) de l'ensemble des plaques soudées comporte des grains d'indice de taille de grains strictement inférieur à 6.
2. - Procédé selon la revendication 1 , caractérisé en ce qu'il comprend en outre une étape d) d'obtention d'un échangeur de chaleur (1 ) à partir de l'ensemble de plaques soudées obtenu à l'étape c),
3.- Procédé selon la revendication 2, dans lequel les dimensions de l'échangeur
(1 ) sont supérieures à 1 m par 3 m horizontalement, et la hauteur de l'échangeur (1 ) est supérieure à 1 m.
4. - Procédé selon la revendication 2 ou 3, dans lequel les plaques (3, 5) sont conformées pour que la distance minimale (E) entre un fluide primaire et un fluide secondaire au sein de l'échangeur (1 ) soit comprise entre 0,5 mm et 2 mm.
5. - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, à l'étape a), l'alliage de titane biphasé comprend du TA6V, les deux phases étant le titane a et le titane β.
6. - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, à l'étape a), l'alliage de titane biphasé comprend du Ti8Mn ou du Ti7AI4Mo.
7. - Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, à l'étape c), la température d'assemblage à laquelle est porté l'empilement (6) est sensiblement comprise entre 700 ^ et 950 °C.
8. - Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que, à l'étape c), la durée du chauffage est sensiblement comprise entre 1 heure et 5 heures.
9. - Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que, durant l'étape c), deux plaques (3, 5) consécutives de l'empilement (6) sont soumises à une pression de contact comprise entre 10 et 50 bars.
10. - Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que :
- à l'étape b), les plaques (3, 5) obtenues à l'étape a) sont empilées pour obtenir une pluralité d'empilements de plaques, chaque empilement présentant des dimensions telles qu'il est capable de tenir entre deux plans parallèles distants l'un de l'autre de moins de 200 mm, de préférence entre deux plans parallèles éloignés l'un de l'autre d'une distance comprise entre 100 et 1000 mm,
- à l'étape c), chaque empilement obtenu à l'étape b) est soudé par diffusion pour obtenir une pluralité d'ensembles de plaques soudées, et
- à l'étape d), les ensembles de plaques soudées obtenus à l'étape c) sont assemblés.
1 1 .- Echangeur de chaleur (1 ) à plaques comprenant un ensemble de plaques métalliques (3, 5) empilées et soudées par diffusion, l'échangeur (1 ) étant caractérisé en ce que :
- l'ensemble de plaques (3, 5) comprend un alliage de titane biphasé, et
- l'ensemble de plaques soudées comporte des grains d'indice de taille de grains supérieur ou égal à 6.
PCT/EP2013/073103 2012-11-08 2013-11-06 Procédé de soudage par diffusion WO2014072310A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/438,195 US20150251271A1 (en) 2012-11-08 2013-11-06 Diffusion welding method
CN201380058155.4A CN104781033A (zh) 2012-11-08 2013-11-06 扩散焊接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1203004A FR2997644B1 (fr) 2012-11-08 2012-11-08 Procede de soudage par diffusion
FR12/03004 2012-11-08

Publications (1)

Publication Number Publication Date
WO2014072310A1 true WO2014072310A1 (fr) 2014-05-15

Family

ID=47902020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/073103 WO2014072310A1 (fr) 2012-11-08 2013-11-06 Procédé de soudage par diffusion

Country Status (4)

Country Link
US (1) US20150251271A1 (fr)
CN (1) CN104781033A (fr)
FR (1) FR2997644B1 (fr)
WO (1) WO2014072310A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735831B (zh) * 2016-12-16 2019-03-01 中航力源液压股份有限公司 一种球瓶结构的扩散焊接方法
CN113894401A (zh) * 2021-10-20 2022-01-07 宁波江丰电子材料股份有限公司 一种超高纯铜靶材组件低温扩散焊接的方法
CN116690127B (zh) * 2023-08-07 2023-11-03 陕西长羽航空装备股份有限公司 一种双金属复合材料过渡接头的焊接成型方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024369A (en) * 1989-05-05 1991-06-18 The United States Of America As Represented By The Secretary Of The Air Force Method to produce superplastically formed titanium alloy components
JPH04100682A (ja) * 1990-08-15 1992-04-02 Mitsubishi Heavy Ind Ltd α+β型チタン合金の拡散接合法
WO2008106613A2 (fr) * 2007-02-28 2008-09-04 Waters Investments Limited Appareil de chromatographie en phase liquide ayant des composants titane liés par diffusion

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906008A (en) * 1953-05-27 1959-09-29 Gen Motors Corp Brazing of titanium members
US3106773A (en) * 1961-06-07 1963-10-15 Westinghouse Electric Corp Process for bonding zirconium and alloys thereof
US3417461A (en) * 1965-12-15 1968-12-24 Northrop Corp Thin-film diffusion brazing of titanium members utilizing copper intermediates
US4043498A (en) * 1974-02-11 1977-08-23 Tre Corporation Method of plastic flow diffusion bonding
US4197978A (en) * 1978-06-29 1980-04-15 The Boeing Company Method of making an integral structural member
US4331284A (en) * 1980-03-14 1982-05-25 Rockwell International Corporation Method of making diffusion bonded and superplastically formed structures
US4406393A (en) * 1981-03-23 1983-09-27 Rockwell International Corporation Method of making filamentary reinforced metallic structures
US4429824A (en) * 1981-09-17 1984-02-07 Rohr Industries, Inc. Delta-alpha bond/superplastic forming method of fabricating titanium structures and the structures resulting therefrom
US4408833A (en) * 1982-01-13 1983-10-11 The United States Of America As Represented By The Secretary Of The Air Force Hot pressed and diffusion bonded laser mirror heat exchanger
JPS58196187A (ja) * 1982-05-10 1983-11-15 Mitsubishi Heavy Ind Ltd 拡散接合方法
US4500033A (en) * 1982-09-30 1985-02-19 Rockwell International Corporation Method for expelling entrapped air from reactive metallic layups prior to diffusion bonding
US4499156A (en) * 1983-03-22 1985-02-12 The United States Of America As Represented By The Secretary Of The Air Force Titanium metal-matrix composites
US4934579A (en) * 1987-12-04 1990-06-19 Compressor Components Textron Inc. Attachment of dissimilar metals
DE3914774A1 (de) * 1989-05-05 1990-11-08 Mtu Muenchen Gmbh Waermetauscher
US5199632A (en) * 1989-06-30 1993-04-06 Hitachi. Ltd. Railway car body structures and methods of making them
US4982893A (en) * 1989-08-15 1991-01-08 Allied-Signal Inc. Diffusion bonding of titanium alloys with hydrogen-assisted phase transformation
US5070607A (en) * 1989-08-25 1991-12-10 Rolls-Royce Plc Heat exchange and methods of manufacture thereof
US5287918A (en) * 1990-06-06 1994-02-22 Rolls-Royce Plc Heat exchangers
US4978054A (en) * 1990-07-03 1990-12-18 The United States Of America As Represented By The Secretary Of The Navy Diffusion bonding process for aluminum and aluminum alloys
US5505256A (en) * 1991-02-19 1996-04-09 Rolls-Royce Plc Heat exchangers and methods of manufacture thereof
US5269058A (en) * 1992-12-16 1993-12-14 General Electric Company Design and processing method for manufacturing hollow airfoils
EP0667640A3 (fr) * 1994-01-14 1997-05-14 Brush Wellman Produit à multicouches laminé et procédé de fabrication associé.
US5630890A (en) * 1995-01-30 1997-05-20 General Electric Company Manufacture of fatigue-resistant hollow articles
FR2754478B1 (fr) * 1996-10-16 1998-11-20 Snecma Procede de fabrication d'une aube creuse de turbomachine
GB9716288D0 (en) * 1997-08-02 1997-10-08 Rolls Laval Heat Exchangers Li Improvements in or relating to heat exchanger manufacture
US6149051A (en) * 1997-08-07 2000-11-21 Alliedsignal Inc. Braze titanium
FR2784616B1 (fr) * 1998-10-15 2000-11-17 Snecma Procede d'obtention de pieces metalliques minces, legeres et rigides
DE19912541C1 (de) * 1999-03-19 2000-10-26 Karlsruhe Forschzent Verfahren zum Abtöten schädlicher Mikroorganismen in Flüssigkeiten durch kurzzeitiges Hocherhitzen
WO2004022869A2 (fr) * 2002-09-03 2004-03-18 University Of Virginia Patent Foundation Procede de production de structures sandwich a ame en treillis et structures associees
US7419086B2 (en) * 2003-07-14 2008-09-02 Honeywell International Inc. Low cost brazes for titanium
US7533794B2 (en) * 2004-03-31 2009-05-19 The Boring Company Superplastic forming and diffusion bonding of fine grain titanium
US7850058B2 (en) * 2004-03-31 2010-12-14 The Boeing Company Superplastic forming of titanium assemblies
RU2291019C2 (ru) * 2005-03-23 2007-01-10 Институт проблем сверхпластичности металлов РАН Способ изготовления изделия путем сверхпластической формовки и диффузионной сварки
CN100462196C (zh) * 2006-02-27 2009-02-18 北京亚太空间钛业有限公司 一种多层钛合金薄板组合连接方法
JP2007268555A (ja) * 2006-03-30 2007-10-18 Xenesys Inc 熱交換器製造方法
JP4921831B2 (ja) * 2006-04-05 2012-04-25 株式会社神戸製鋼所 ウォータージェットによる溝加工方法、熱交換器部材および熱交換器
JP2007285682A (ja) * 2006-04-20 2007-11-01 Xenesys Inc 熱交換器製造方法
US8087143B2 (en) * 2007-06-20 2012-01-03 Exothermics, Inc. Method for producing armor through metallic encapsulation of a ceramic core
CN101176946B (zh) * 2007-11-28 2012-11-07 哈尔滨工业大学 一种真空扩散连接TiAl金属间化合物的方法
WO2011119922A1 (fr) * 2010-03-26 2011-09-29 Waters Technologies Corporation Appareil de chromatographie possédant des composants liés par diffusion et à surface modifiée
US20120261104A1 (en) * 2011-04-12 2012-10-18 Altex Technologies Corporation Microchannel Heat Exchangers and Reactors
US20140231055A1 (en) * 2011-09-06 2014-08-21 Vacuum Process Engineering, Inc. Heat Exchanger Produced from Laminar Elements
CN102350588B (zh) * 2011-09-22 2013-06-26 航天材料及工艺研究所 一种热等静压扩散焊的隔离方法
FR2989158B1 (fr) * 2012-04-04 2014-04-18 Commissariat Energie Atomique Procede de realisation d'un module d'echangeur de chaleur a au moins deux circuits de circulation de fluide.
FR3005499B1 (fr) * 2013-05-10 2015-06-05 Commissariat Energie Atomique Procede de realisation d'un module d'echangeur de chaleur a au moins deux circuits de circulation de fluide.
JP6173829B2 (ja) * 2013-08-12 2017-08-02 三菱重工業株式会社 TiAl接合体及びTiAl接合体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024369A (en) * 1989-05-05 1991-06-18 The United States Of America As Represented By The Secretary Of The Air Force Method to produce superplastically formed titanium alloy components
JPH04100682A (ja) * 1990-08-15 1992-04-02 Mitsubishi Heavy Ind Ltd α+β型チタン合金の拡散接合法
WO2008106613A2 (fr) * 2007-02-28 2008-09-04 Waters Investments Limited Appareil de chromatographie en phase liquide ayant des composants titane liés par diffusion

Also Published As

Publication number Publication date
FR2997644B1 (fr) 2015-05-15
US20150251271A1 (en) 2015-09-10
FR2997644A1 (fr) 2014-05-09
CN104781033A (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
Chen et al. Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys
JP6139657B2 (ja) 接合部をロウ付けするための配合物、中間産物、組立中間産物、及び産物のロウ付け方法
WO2014072310A1 (fr) Procédé de soudage par diffusion
TWI360583B (fr)
EP3113902B1 (fr) Tôle de brasage à placages multiples
US8394215B2 (en) Dual process nickel alloy crack repair
CN106180186B (zh) 轻质高强度钛镁钛真空轧制复合材料
CN102335792B (zh) 碳钢与氧化锆陶瓷的连接方法
CN102350553B (zh) 一种高体积含量陶瓷增强铝基复合材料的焊接方法
CN102218594A (zh) 钼合金与铜合金的低温扩散焊接方法
EP1681113B1 (fr) Presse de forgeage du type à matrices chaudes et moyen d'isolation thermique pour la presse
CN105798449A (zh) 一种采用复合金属箔扩散连接高铌TiAl合金的方法
EP2280799B1 (fr) Procédé de fabrication d'un échangeur de chaleur utilisant une cale pour le maintien des passages d'échangeurs à plaques et ailettes brasés
JP2006514160A (ja) スパッタターゲットの製造方法
EP2271456B1 (fr) Procédé de fabrication d'un échangeur de chaleur à plaques utilisant un ensemble de cales ayant une forme sensiblement polygonale ou elliptique
CN104446592A (zh) 一种陶瓷与陶瓷或陶瓷与金属的大面积连接方法
CN101992331A (zh) 超级镍叠层材料与Cr18-Ni8不锈钢的真空钎焊工艺
WO2013014369A1 (fr) Procede d'assemblage d'une coque titane et d'une coque alliage resistant au feu titane
EP3307121B1 (fr) Plan de cuisson à inertie
Rahman et al. Effects Of Wetting Time On Properties Of Steel-Aluminium Brazed Joint
TWI356046B (fr)
FR2556990A1 (fr) Procede pour la fabrication par pressage d'elements revetus de pieces de construction ou d'elements prefabriques a parois de configuration complexe
FR3035808A1 (fr) Procede de fabrication d'une piece a partir d'elements fabriques par mise en forme d'un melange de poudre de metal ou de ceramique et d'au moins un liant
WO2023222982A1 (fr) Conducteur électrique rigide comportant des éléments raccordés entre eux par soudage tig, procédé de fabrication et utilisation d'un tel conducteur électrique
FR2978077A1 (fr) Assemblage d'une coque titane et d'une coque alliage resistant au feu titane par compression isostatique a chaud

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438195

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788959

Country of ref document: EP

Kind code of ref document: A1