WO2014071656A1 - 光模块以及应用于光模块的光器件 - Google Patents

光模块以及应用于光模块的光器件 Download PDF

Info

Publication number
WO2014071656A1
WO2014071656A1 PCT/CN2012/084900 CN2012084900W WO2014071656A1 WO 2014071656 A1 WO2014071656 A1 WO 2014071656A1 CN 2012084900 W CN2012084900 W CN 2012084900W WO 2014071656 A1 WO2014071656 A1 WO 2014071656A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wave band
signal
port
filter
Prior art date
Application number
PCT/CN2012/084900
Other languages
English (en)
French (fr)
Inventor
赵其圣
朱松林
张强
郭勇
薛登山
印永嘉
杨思更
Original Assignee
青岛海信宽带多媒体技术有限公司
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司, 中兴通讯股份有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US14/419,811 priority Critical patent/US9473835B2/en
Publication of WO2014071656A1 publication Critical patent/WO2014071656A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Definitions

  • the present invention relates to optical fiber communication technologies, and in particular, to an optical module and an optical device applied to the optical module. Background technique
  • an ONU optical net unit used in a GPON (Gigabit Passive Optical Network) or an Ethernet Passive Optical Network (Ethernet Passive Optical Network) system based on the triple play technology ) Includes: ONU optical modules and ONU devices connected to them.
  • the internal structure of the ONU optical module in the GPON network used for the triple play is shown in Figure 1. The working principle is as follows:
  • the 1490nm 2.488Gbps continuous downstream optical data signal and the 1550nm RF optical signal transmitted by the central office to the UE are transmitted through the internal 45 of the optical module.
  • the light of 1490 nm is transmitted through the filter S1
  • the reflection of the filter S2 and the transmission of the filter S3 are incident on the laser receiving unit
  • the RF light signal of 1550 nm is reflected by S1 and Transmission of S4, injection into the video detector;
  • the 1310nm 1.2488Gbps burst upstream laser is emitted by the laser transmitting unit as the upstream optical data signal through the transmission of S2 and the transmission of S1, into the ODN (optical feeder network), and transmitted to the central office.
  • the laser receiving unit in the optical module converts the injected optical signal into a corresponding electrical signal, and then outputs it to the ONU system device, and is processed by the ONU system device;
  • the laser transmitting unit in the optical module After receiving the electrical signal sent by the ONU system, the laser transmitting unit in the optical module converts the received electrical signal into a corresponding 1310 nm optical signal for transmitting as an upstream optical data signal.
  • the video detector After receiving the RF optical signal, the video detector converts the optical signal into a corresponding electrical signal, and processes the electrical signal and sends it to the ONU device.
  • the inventors of the present invention have found in practical applications that the structure of the prior art optical module cannot be applied in some optical access network systems; for example, for NG-PON2 (Next Generation- Passive) In the optical network 2) system, if the optical path structure used in the optical module of the prior art is used, the transmission quality of the optical data signal and the radio frequency optical signal cannot be ensured, and the optical path structure used in the optical module of the prior art cannot be used. Applied in the system. Summary of the invention
  • Embodiments of the present invention provide an optical module and an optical device applied to the optical module, which can be widely applied to a plurality of optical access network systems.
  • an optical module including: a laser emitting unit, a laser receiving unit, and a video detector; further comprising: an optical component, the optical component comprising: a small angle filter is disposed a strip pass device F1 comprising a common port, a transmissive port and a reflective port, wherein an optical signal transmitted from the optical fiber connected to the optical module to the F1 via the common port, the optical signal of the first optical band
  • the small angle filter is transmitted from the transmission port to the video detector after transmission, and the optical signals of other wavelength bands are output from the reflection port after being reflected by the small angle filter;
  • a filter F2 for transmitting an optical signal of a second optical wave band emitted by the laser emitting unit to a reflective port of the F1, and reflecting a third optical wave band of the optical signal outputted from the reflective port of the F1 Light signal to the laser receiving unit;
  • the F1 is further configured to reflect, by the small angle filter, an optical signal of a second optical wave band incident on a reflective port thereof to a common port thereof, and output to the optical fiber through a common port thereof;
  • the second optical wave band is an optical wave band of the uplink optical data signal transmitted by the optical module
  • the third optical wave band is an optical wave band of the downlink optical data signal received by the optical module
  • the first optical wave band includes the optical module receiving The optical wave band of the radio frequency signal, but does not include the optical wave band of the upstream optical data signal and the downstream optical data signal.
  • the F2 is plated with an antireflection film of a second light wave band and an antireflection film of a third light wave band;
  • the F2 is specifically disposed between the reflective port of the F1 and the laser emitting unit, and is 45 with the first optical path.
  • a photodiode in the laser receiving unit is disposed on the second optical path;
  • the first optical path refers to an optical path linearly transmitted from the optical signal emitted from the reflective port of the F1
  • the second optical path refers to an optical path in which the optical signal of the third optical wave band is linearly transmitted after being reflected by the F2.
  • optical component further includes:
  • the fourth optical wave band is the optical wave band of the radio frequency signal, located in the first optical wave band, or the first optical wave band is the same as the fourth optical wave band.
  • the filter F2, the filter F3, and the laser in the laser emitting unit, and the light receiving component in the laser receiving unit are packaged in the single-fiber bidirectional photoelectric device BOSA; or, the Fl The filter F2, the filter F3, the filter F4, the laser, the light receiving component, and the video detector are packaged in the same optical device.
  • the small-angle filter is coated with an anti-reflection film of a first optical wave band
  • the F1 is specifically a thin film wavelength division multiplexing FWDM device, or an optical waveguide PLC device;
  • the optical signal transmitted to the F1 via the common port is at 1. -5.
  • the angle is incident on the small angle filter.
  • the laser emitting unit includes: a laser and a driving circuit thereof; wherein the laser is specifically a distributed feedback laser DFB or an electroabsorption modulation laser EML.
  • the laser receiving unit includes: a light receiving component and a limiting amplifier circuit.
  • the light receiving component includes: a photodiode and a transimpedance amplifier TIA.
  • the photodiode is an avalanche photodiode APD.
  • the optical module is an optical network unit ONU optical module, and is applied to an NG-PON2, a Gigabit passive optical network GPON, or an Ethernet passive optical network EPON system.
  • the interface of the optical module includes:
  • a fiber optic interface for connecting the fiber
  • An SMB interface configured to output an electrical signal output by the video detector
  • a pin-type interface for outputting a data electrical signal output by the laser receiving unit, receiving a data electrical signal transmitted to the laser emitting unit, and transmitting other control and status signals.
  • an optical device applied to an optical module comprising: a band pass device F1 provided with a small angle filter, comprising a common port, a transmissive port and a reflective port, from The optical fiber connected to the optical module is transmitted to the optical signal of the F1 via the common port, and the optical signal of the first optical wave band is transmitted from the transmission port to the optical module after being transmitted through the small-angle filter.
  • a filter F2 for transmitting an optical signal of a second optical wave band emitted by the laser emitting unit in the optical module to a reflective port of the F1, and reflecting the optical signal output from the reflective port of the F1 An optical signal of a third optical wave band to a laser receiving unit in the optical module;
  • the F1 is also used to pass the second optical wave band of the reflective port through the small angle filter.
  • the optical signal is reflected to its common port and output to the fiber via its common port.
  • optical device further includes:
  • a filter F4 plated with an antireflection film of a fourth light wave band disposed between the transmissive port of the F1 and the video detector; wherein the fourth optical wave band is a light wave band of the radio frequency signal, located at In the first light wave band, or the first light wave band is the same as the fourth light wave band;
  • the second optical wave band is an optical wave band of the uplink optical data signal transmitted by the optical module
  • the third optical wave band is an optical wave band of the downlink optical data signal received by the optical module
  • the first optical wave band includes the optical module receiving The optical wave band of the radio frequency signal, but does not include the optical wave band of the uplink optical data signal and the downlink optical data signal
  • the fourth optical wave band is the optical wave band of the radio frequency signal.
  • the small-angle filter is coated with an anti-reflection film of a first optical wave band
  • the F1 is specifically a thin film wavelength division multiplexing FWDM device, or an optical waveguide PLC device;
  • the optical signal transmitted to the F1 via the common port is at 1. -5.
  • the angle is incident on the small angle filter.
  • the band-pass/band-stop device can separate the narrow-band optical signal from the full-band optical signal, so that the RF signal and the data signal with relatively close bands can be better realized.
  • the separation allows the optical module to be applied not only to an optical access network system in which the band of the data signal is far apart from the RF signal band, but also to an optical access network system in which the band of the data signal is closely spaced from the RF signal band. Therefore, it can be applied to more optical access network systems, and has wider application.
  • FIG. 1 is a schematic view showing the internal structure of a prior art optical module
  • FIG. 2 is a schematic structural diagram of an internal structure of an optical module according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the working principle of the band pass device F1 according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of an internal circuit of a laser emitting unit according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of an internal circuit of a laser receiving unit according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of an internal circuit of a video detector according to an embodiment of the present invention.
  • FIG. 7a is a physical diagram of an FWDM device applied in an embodiment of the present invention.
  • FIG. 7b is a schematic diagram of an FWDM applied to an optical module according to an embodiment of the present invention.
  • FIG. 8 is an external view of an optical module package according to an embodiment of the present invention. detailed description
  • module can be, but is not limited to: a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • the inventors of the present invention analyze the reasons why the circuit structure used in the prior art optical module cannot be applied to some optical access network systems: For example, for the NG-PON2 system, the downlink optical data signal in the system is usually ⁇ Using an optical signal with a wavelength of 1595 to 1625 nm, the upstream optical data signal is used.
  • Optical signal of 1530-1540nm wavelength if the structure of the prior art optical module is used in the NG-PON2 system to fuse the RF signal of 1550 ⁇ 1560nm, the filter S1 in the optical module cannot be realized to 1595 ⁇
  • the higher isolation of the optical signal at a wavelength of 1625 nm, a wavelength of 1530 to 1540 nm, and a wavelength of 1550 to 1560 nm causes a phenomenon in which the transmitted data information and the video information cannot be separated and separately resolved.
  • the inventors of the present invention analyzed: Since the RF signal of 1550 ⁇ 1560nm is closely spaced from the optical band of the upstream optical data signal or the downstream optical data signal used in the NG-PON2 system, in fact, the uplink of the wavelength of 1530 ⁇ 1540nm
  • the optical data signal differs from the RF signal of 1550 to 1560 nm by a minimum of 10 nm, which requires 45.
  • the filter S1 is required to complete the reflection of light waves of 1550 to 1560 nm, and the transmission of the other wavelengths of light waves; however, according to the prior art, the coating technology of such a narrow-band light-wave reflection filter cannot be realized, and therefore, the prior art is employed. 45 in the light module. When the filter S1 is split, it is difficult to separate the optical signals in the near-distance band.
  • the optical module of the present invention uses a band pass device provided with a small angle filter to realize band pass of the radio frequency signal and reflection of the optical signal of other bands; Therefore, the separation of the RF signal and the data signal which are relatively close to each other can be realized, so that the optical module can be applied to more optical access network systems, for example, it can be applied to GPON, EPON systems, and NG-. In the PON2 system.
  • band pass refers to the passage of an optical signal of a certain wavelength, and the optical signal above or below the certain wavelength cannot pass.
  • Optical mode of the embodiment of the invention The internal structure of the block is as shown in FIG. 2, and includes: a laser emitting unit 201, a laser receiving unit 202, an optical component 204, a video detector 205, and an MCU (Microprogrammed Control Unit) unit (not shown). .
  • the laser emitting unit 201, the laser receiving unit 202, the MCU unit, and the video detector 205 can respectively use, but are not limited to, a laser emitting unit, a laser receiving unit, an MCU unit, and a video detector commonly used in prior art optical modules. Circuit.
  • the laser transmitting unit 201 is configured to convert the data electrical signal input to the optical module into an uplink optical data signal and transmit the data;
  • the upstream optical data signal transmitted by the laser transmitting unit 201 is coupled via an optical component 204 to an optical fiber connected to the optical interface of the optical module for transmission through the optical fiber.
  • the downstream optical data signal and the radio frequency signal transmitted from the optical fiber to the optical module are incident on the optical component 204 through the optical fiber interface of the optical module, separated by the optical component 204, and then injected into the laser receiving unit 202 and the video detector 205, respectively.
  • the laser receiving unit 202 is configured to receive the downlink optical data signal separated from the optical component 204, and convert the downstream optical data signal into a corresponding data electrical signal for output.
  • the video detector 205 is configured to receive the radio frequency signal separated from the optical component 204, convert the radio frequency signal into an electrical signal, and process the output.
  • the MCU unit is connected to the laser receiving unit 202, the laser emitting unit 201, and the video detector 205 for controlling the laser receiving unit 202, the laser emitting unit 201, and the video detector 205 or the laser receiving unit 202, the laser emitting unit 201, and the video detecting unit.
  • the 205 takes parameters.
  • the MCU unit can also communicate with system devices outside the optical module, receive commands, operate according to received commands, or return corresponding parameters.
  • the optical component 204 specifically includes: a band pass device F1 and a filter F2 provided with a small angle filter;
  • F1 includes three ports, which are common port (COM port), transmissive port (pass port), and reflective port (reflect port).
  • the public port of the F1 is connected to the optical fiber as the optical interface of the optical module, and the optical signal transmitted from the optical fiber to the F1 through the common port, wherein the optical signal of the first optical wave band is output from the transmissive port of the F1 through the transmission of the small angle filter;
  • the optical signals of other bands are output from the reflection port of F1 through the reflection of the small angle filter.
  • the optical wave band of the radio frequency signal is located in the first optical wave band, and the optical wave band of the uplink optical data signal and the downlink optical data signal is located outside the first optical wave band; that is, the first optical wave band includes the optical wave band of the radio frequency signal, but does not include the uplink.
  • the working principle of the small-angle filter in the band-pass device F1 is shown in Figure 3:
  • the optical signal input from the common port of F1, that is, the incident light of the small-angle filter, is incident at a small angle (such as 1.8).
  • the small-angle filter has a band-pass function, and only the light signal of the first light wave band is selected as the transmitted light of the small-angle filter, and the light signal of other wavelengths is reflected by the small-angle filter to become a small-angle filter.
  • the transmitted optical signal of the first optical band is output from the transmissive port of F1, and the reflected optical signal is output by the reflective port of F1.
  • the F1 provided with the small-angle filter realizes the separation of the optical signal of the first optical band from the optical signals of other optical bands.
  • the small-angle filter is coated with an anti-reflection film of the first optical wave band for transmitting the optical signal of the first optical wave band and reflecting the optical signals of other wavelength bands to separate the RF signal and the optical signals of other wavelength bands.
  • the small-angle filter is coated with an AR coating of 1550 to 1560 nm.
  • the 30 dB lower cutoff wavelength is controlled at 1545 nm, and the upper cutoff wavelength is controlled at 1565 nm. The remaining wavelengths are reflected.
  • the angle between the incident light of the small angle filter and the optical axis of the small angle filter may be one. -5.
  • the included angle is 1.8°.
  • the filter F2 is disposed between the reflection port of F1 and the laser emitting unit 201 at an angle of 45° with the first optical path; the first optical path refers to an optical path that is linearly transmitted from the optical signal emitted from the reflective port of F1, and is also an optical path. The optical path of the optical signal into the reflective port of F1.
  • the filter F2 is coated with an antireflection film of a second optical wave band and an antireflection film of a third optical wave band; wherein the second optical wave band is a light wave band of the upstream optical data signal, and the third optical wave band is a light wave of the downstream optical data signal Band.
  • the filter F2 is configured to transmit the upstream optical data signal and reflect the downstream optical data signal. Specifically, the filter F2 transmits the optical signal of the second optical wave band emitted by the laser emitting unit to the reflective port of the F1, and reflects the third optical wave band of the optical signal output from the reflective port of the F1. The light signal is sent to the laser receiving unit.
  • the upstream optical data signal of the second optical wave band emitted by the laser emitting unit 201 is transmitted through the filter F2, from the reflective port of F1 to F1, and reflected by the small-angle filter in F1.
  • the function is output from the public port of F1 to the optical fiber for transmission;
  • the downstream optical data signal of the third optical wave band of the optical signal emitted from the reflective port of F1 is reflected by the filter F2 and emitted at an angle of 90° to the original optical path, and then injected into the laser receiving unit 202; specifically, the laser
  • the photodiode of the receiving unit 202 for receiving the optical signal for detecting the third optical wave band is disposed on the second optical path; wherein the second optical path refers to the filtering of the downstream optical data signal (ie, the optical signal of the third optical wave band)
  • the optical path of the straight line transmitted after the sheet F2 is reflected; is emitted from the reflection port of F1
  • the downstream optical data signal is reflected by the filter F2 and then incident on the laser receiving unit 202 along the second optical path.
  • the laser receiving unit 202 converts the received optical signal into a corresponding electrical signal output.
  • optical component 204 may further include: a filter F3 and a filter F4.
  • the filter F3 is disposed between the filter F2 and the laser receiving unit 202, and is perpendicular to the second optical path; the filter F3 is coated with an antireflection film of the third optical wave band, which can prevent the optical signals of other wavelengths from being inserted into the laser.
  • the receiving unit 202 simultaneously increases the optical path isolation.
  • the filter F4 is disposed between the transmissive port of F1 and the video detector 205 and is perpendicular to the third optical path; the third optical path refers to the optical path of the laser linearly transmitted from the transmissive port of F1.
  • the filter F4 is coated with an antireflection coating of the fourth wavelength band to prevent other wavelengths of optical signals from being incident on the video detector 205.
  • the fourth optical wave band is the optical wave band of the radio frequency signal, and is located in the first optical wave band, or the first optical wave band is the same as the fourth optical wave band; that is, the first optical wave band may be the same as the fourth optical wave band, or may be the fourth The light wave band is slightly wider.
  • the small-angle filter in F1 can separate the narrow-band optical signal from the full-band optical signal, the separation of the RF signal and the data signal with relatively close bands can be better realized, so that the optical module can be applied not only.
  • the optical signal network can also be applied to the optical access network system in which the band of the data signal is closely spaced from the RF signal band, so that the optical module of the present invention can It is applied to more optical access network systems and has wider application.
  • the internal circuit of the laser emitting unit 201 described above is as shown in FIG. 4, and includes: a laser and a driving circuit thereof.
  • the driving circuit of the laser emitting unit 201 drives the laser emitting light source in the laser to emit the laser light of the second optical wave band as the upstream optical data signal according to the received data electrical signal.
  • the driving circuit may be a direct modulation laser driver, the laser may be a distributed feedback laser (DFB); or the driving circuit is an externally modulated laser driver, and the laser is an electroabsorption modulation laser (EML).
  • DFB distributed feedback laser
  • EML electroabsorption modulation laser
  • the laser receiving unit 202 includes: a light receiving component and a limiting amplifier circuit; and the light receiving component generally includes: a photodiode, a transimpedance amplifier TIA.
  • the photodiode outputs a corresponding response current to the TIA after detecting the downstream optical data signal, and the TIA outputs a corresponding differential electrical signal; the differential signal is sent to the limiting amplifier circuit, and the limiting amplifier circuit limits the differential signal to amplify the differential signal. , output the corresponding data electrical signal.
  • the electrical signal output by the limiting amplifier circuit is usually a differential electrical signal.
  • the photodiode in the laser receiving unit 202 is an APD (Avalanche Photo Diode). As shown in FIG.
  • the video detector 205 includes: a photodetector and a radio frequency chip; after detecting the radio frequency signal, the photodetector converts the radio frequency signal into an electrical signal and sends the signal to the radio frequency chip; the radio frequency chip performs the received electrical signal. Output after processing.
  • the above-mentioned band-pass device F1 may specifically be an FWDM (Thin Film Wavelength Division Multiplexing) device as shown in FIG. 7a or a PLC (Optical Waveguide) device to separate the RF signal from the data signal.
  • FWDM Thin Film Wavelength Division Multiplexing
  • PLC Optical Waveguide
  • a specific solution for packaging the above optical component may be that the filters F2, F3, the laser in the laser emitting unit 201, and the light receiving component in the laser receiving unit 202 may be packaged in BOSA (Bidirectional Optical Subassembly Assemble) , single fiber bidirectional optoelectronic device);
  • BOSA Bidirectional Optical Subassembly Assemble
  • Figure 7b shows a specific application of the FWDM with a small angle filter in the optical module: the reflective end of the FWDM is connected to the fiber interface of the BOSA in the optical module through the optical fiber; the small angle filter is placed close to The position of the transmitting end of the FWDM; the common end of the FWDM serves as the optical fiber interface of the optical module; the transmitting end of the FWDM is integrated with the video detector 205 to directly output the processed radio frequency electrical signal.
  • Another specific solution for packaging the above optical components is to package the above-mentioned F1, filters F2, F3, F4, laser, light receiving component and video detector 205 in the same optical device.
  • Figure 8 shows the package of the optical module of the present invention.
  • the external interface of the packaged optical module includes: a fiber optic interface, a pin-type interface, and an SMB (Small Moimtained assembly B) type (RF type connection) head).
  • SMB Small Moimtained assembly B
  • RF type connection RF type connection
  • the optical fiber interface of the optical module is used to connect the optical fiber, and the optical signal transmitted from the optical fiber is received into the optical module through the optical fiber interface of the optical module; the optical signal transmitted by the optical module is transmitted to the optical fiber through the optical fiber interface.
  • the SMB interface of the optical module is used to output an electrical signal output by the video detector 205.
  • the pin interface of the optical module is for outputting the data electrical signal output by the laser receiving unit 202, receiving the data electrical signal transmitted to the laser emitting unit 201, and transmitting other control and status signals.
  • Tx transmitter State indication Asserts illumination indication. When the laser is on
  • Normal Option 2 Normal.
  • the second optical wave band is specifically a light wave band of 1530 to 1540 nm
  • the third light wave band is specifically a light wave band of 1595 to 1625 nm.
  • the optical module of the present invention may specifically be an ONU optical module.
  • a narrowband optical signal can be used due to the use of a band pass/band stop device.
  • the signal is separated from the optical signal of the full band, so that the separation of the RF signal and the data signal with relatively close bands can be better realized, so that the optical module can be applied not only to the light of the data signal band and the RF signal band.
  • the access network system it can also be applied to an optical access network system in which the band of the data signal is closely spaced from the RF signal band, so that it can be applied to more optical access network systems, and has wider application. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Communication System (AREA)

Abstract

一种光模块以及应用于光模块的光器件,光模块包括:激光发射单元(201)、激光接收单元(202)、视频探测器(205)、光组件(204),光组件(204)包括:设置有小角度滤光片的带通器件F1;从F1的公共端口传输到F1的光信号中,第一光波波段的光信号经小角度滤光片的透射从其透射端口输出到视频探测器(205);其它波段的光信号经小角度滤光片的反射从其反射端口输出;滤光片F2,用于透射由激光发射单元(201)发射的光信号,反射从F1的反射端口输出的、激光接收单元(202)接收的光信号。由于采用小角度滤光片,可以将窄带的光信号从全波段的光信号中分离出来,较好地实现波段相隔较近的射频信号与数据信号的分离,使得光模块可以应用到更多的光接入网系统中。

Description

光模块以及应用于光模块的光器件
技术领域
本发明涉及光纤通信技术, 尤其涉及一种光模块以及应用于光模块的光 器件。 背景技术
随着用户对高清 IPTV ( Internet Protocol Televi sion, 网络电視 )、视频监控 等高带宽业务需求的不断增长, 可以同时传输数据信息和视频信息的、 基于 三网融合技术的光接入网,特别是在光纤到楼 ( FTTB )和光纤到节点 ( FTTN ) 场景, 在带宽、 业务支撑能力以及接入节点设备功能和性能等方面都面临更 高的要求。
目前, 基于三网融合技术的 GPON ( Gigabit Passive Optical Network , 吉 比特无源光网络)或 ΕΡΟΝ ( Ethernet Passive Optical Network, 以太网无源光 网络) 系统中应用的 ONU ( optical net unit, 光网络单元 ) 包括: ONU光模块 和与之相连的 ONU 统设备。 用于三网融合的 GPON 网络中的 ONU光模块内 部结构如图 1所示, 其工作原理如下:
由中心局传送给用户端的 1490nm的 2.488Gbps的连续下行光数据信号和 1550nm的射频光信号, 经过光模块内部的 45。 滤光片 S1的分光后, 1490nm的 光经滤光片 S1的透射, 滤光片 S2的反射和滤光片 S3的透射, 射入激光接收单 元; 1550nm的射频光信号经 S 1的反射和 S4的透射, 射入视频探测器;
1310nm的 1.2488Gbps的突发上行发射激光由激光发射单元发出, 作为上 行光数据信号经过 S2的透射和 S1的透射, 进入 ODN (光馈线网络), 传送到中 心局。
光模块中的激光接收单元将射入的光信号转换为相应的电信号后, 输出 到 ONU 统设备, 由 ONU 统设备进行处理;
光模块中的激光发射单元接收到 ONU 统设备发送的电信号后, 将接收 的电信号转换为相应的 1310nm的光信号作为上行光数据信号进行发射。
视频探测器接收射频光信号后, 将光信号转换为相应的电信号, 并对电 信号进行处理后发送给 ONU 统设备。
然而, 本发明的发明人在实际应用中发现, 现有技术的光模块的结构在 有些光接入网系统中无法应用;例如,对于 NG-PON2 ( Next Generation- Passive Optical Network 2 ) 系统, 若釆用现有技术的光模块所釆用的光路结构, 则无 法保证光数据信号和射频光信号的传输质量, 导致现有技术的光模块所釆用 的光路结构无法应用在该系统中。 发明内容
本发明的实施例提供了一种光模块以及应用于光模块的光器件, 可以广 泛应用于多种光接入网系统中。
根据本发明的一个方面, 提供了一种光模块, 包括: 激光发射单元、 激 光接收单元、 视频探测器; 其特征在于, 还包括: 光组件, 所述光组件包括: 设置有小角度滤光片的带通器件 F1 , 其包括公共端口、 透射端口和反射 端口,从与所述光模块相连的光纤经所述公共端口传输到所述 F1的光信号中, 第一光波波段的光信号经所述小角度滤光片的透射后从所述透射端口输出到 所述视频探测器, 其它波段的光信号经所述小角度滤光片的反射后从所述反 射端口输出;
滤光片 F2, 用于透射由所述激光发射单元发射的第二光波波段的光信号 到所述 F1的反射端口, 并反射从所述 F1的反射端口输出的光信号中的第三 光波波段的光信号到所述激光接收单元;
所述 F1还用于通过所述小角度滤光片将射入其反射端口的第二光波波段 的光信号反射到其公共端口 , 经其公共端口输出到所述光纤;
其中, 第二光波波段为所述光模块发射的上行光数据信号的光波波段, 第三光波波段为所述光模块接收的下行光数据信号的光波波段, 第一光波波 段包括所述光模块接收的射频信号的光波波段, 但不包括所述上行光数据信 号以及下行光数据信号的光波波段。
其中, 所述 F2镀有第二光波波段的增透膜和第三光波波段的增反膜; 以 及
所述 F2具体设置于所述 F1的反射端口与激光发射单元之间, 与第一光 路成 45。角, 所述激光接收单元中的光电二极管设置于第二光路上;
其中, 第一光路指的是从所述 F1的反射端口射出的光信号直线传输的光 路,第二光路指的是第三光波波段的光信号经所述 F2反射后直线传输的光路。
进一步, 所述光组件还包括:
镀有第三光波波段的增透膜的滤光片 F3 ,其设置于所述 F2与所述激光接 收单元之间;
镀有第四光波波段的增透膜的滤光片 F4,其设置于所述 F1的透射端口与 所述视频探测器之间; 其中, 第四光波波段为所述射频信号的光波波段, 位 于第一光波波段中, 或第一光波波段与第四光波波段相同。
其中, 所述滤光片 F 2、 滤光片 F3 , 以及所述激光发射单元中的激光器、 所述激光接收单元中的光接收组件封装于单纤双向光电器件 BOSA中;或者, 所述 Fl、 滤光片 F2、 滤光片 F3、 滤光片 F4、 激光器、 光接收组件和所 述视频探测器封装于同一光器件中。
其中, 所述小角度滤光片镀有第一光波波段的增透膜, 所述 F1具体为薄 膜波分复用 FWDM器件, 或者光波导 PLC器件; 以及
所述经所述公共端口传输到所述 F1 的光信号以 1。-5。的角度入射所述小 角度滤光片。
其中, 所述激光发射单元包括: 激光器及其驱动电路; 其中, 所述激光 器具体为分布反馈式激光器 DFB, 或者电吸收调制激光器 EML。
所述激光接收单元包括: 光接收组件和限幅放大电路。
所述光接收组件包括: 光电二极管和跨阻放大器 TIA。
所述光电二极管为雪崩光电二极管 APD。
较佳地, 所述光模块为光网络单元 ONU光模块, 应用于 NG-PON2、 吉 比特无源光网络 GPON、 或以太网无源光网络 EPON系统中。
所述光模块的接口包括:
光纤接口, 用于连接所述光纤;
SMB接口, 用于输出所述视频探测器输出的电信号;
插针式接口, 用于输出所述激光接收单元输出的数据电信号, 接收传送 给所述激光发射单元的数据电信号, 以及传输其它控制、 状态信号。
根据本发明的另一个方面, 提供了一种应用于光模块的光器件, 包括: 设置有小角度滤光片的带通器件 F1 , 其包括公共端口、 透射端口和反射 端口,从与所述光模块相连的光纤经所述公共端口传输到所述 F1的光信号中, 第一光波波段的光信号经所述小角度滤光片的透射后从所述透射端口输出到 所述光模块中的视频探测器; 其它波段的光信号经所述小角度滤光片的反射 后从所述反射端口输出;
滤光片 F2, 用于透射由所述光模块中的激光发射单元发射的第二光波波 段的光信号到所述 F1的反射端口, 并反射从所述 F1的反射端口输出的光信 号中的第三光波波段的光信号到所述光模块中的激光接收单元;
所述 F1还用于通过所述小角度滤光片将射入其反射端口的第二光波波段 的光信号反射到其公共端口, 经其公共端口输出到所述光纤。
进一步, 所述光器件还包括:
镀有第三光波波段的增透膜的滤光片 F3 ,其设置于所述 F2与所述激光接 收单元之间;
镀有第四光波波段的增透膜的滤光片 F4,其设置于所述 F1的透射端口与 所述视频探测器之间; 其中, 第四光波波段为所述射频信号的光波波段, 位 于第一光波波段中, 或第一光波波段与第四光波波段相同;
其中, 第二光波波段为所述光模块发射的上行光数据信号的光波波段, 第三光波波段为所述光模块接收的下行光数据信号的光波波段, 第一光波波 段包括所述光模块接收的射频信号的光波波段, 但不包括所述上行光数据信 号以及下行光数据信号的光波波段; 第四光波波段为所述射频信号的光波波 段。
其中, 所述小角度滤光片镀有第一光波波段的增透膜, 所述 F1具体为薄 膜波分复用 FWDM器件, 或者光波导 PLC器件; 以及
所述经所述公共端口传输到所述 F1 的光信号以 1。-5。的角度入射所述小 角度滤光片。
发明实施例提供的光模块中由于釆用带通 /带阻器件, 可以将窄带的光信 号从全波段的光信号中分离出来, 所以可以较好地实现波段相隔较近的射频 信号与数据信号的分离, 使得光模块不仅可以应用于数据信号的波段与射频 信号波段相隔较远的光接入网系统中, 也可应用于数据信号的波段与射频信 号波段相隔较近的光接入网系统中, 从而可以应用到更多的光接入网系统中, 具有更为广泛的应用性。
附图说明
图 1为现有技术的光模块内部结构示意图;
图 2为本发明实施例的光模块内部结构示意图;
图 3为本发明实施例的带通器件 F1的工作原理示意图;
图 4为本发明实施例的激光发射单元的内部电路框图;
图 5为本发明实施例的激光接收单元的内部电路框图;
图 6为本发明实施例的视频探测器的内部电路框图;
图 7a为本发明实施例中应用的 FWDM器件的实物图;
图 7b为本发明实施例的 FWDM应用于光模块中的示意图;
图 8为本发明实施例的光模块封装外观图。 具体实施方式
为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图并举 出优选实施例, 对本发明进一步详细说明。 然而, 需要说明的是, 说明书中 列出的许多细节仅仅是为了使读者对本发明的一个或多个方面有一个透彻的 本申请使用的 "模块"、 "系统" 等术语旨在包括与计算机相关的实体, 例如但不限于硬件、 固件、 软硬件组合、 软件或者执行中的软件。 例如, 模 块可以是, 但并不仅限于: 处理器上运行的进程、 处理器、 对象、 可执行程 序、 执行的线程、 程序和 /或计算机。
本发明的发明人对现有技术的光模块所釆用的电路结构无法应用在某些 光接入网系统的原因进行分析: 例如, 对于 NG-PON2系统, 该系统中下行光 数据信号通常釆用 1595〜1625nm波长的光信号, 上行光数据信号釆用
1530-1540nm波长的光信号; 若在 NG-PON2系统中釆用现有技术的光模块的 结构来融合 1550〜1560nm的射频信号,则会出现光模块中的滤光片 S1无法实现 对 1595〜 1625nm波长、 1530〜 1540nm波长以及 1550〜 1560nm波长的光信号的较 高的隔离度, 也就造成传输的数据信息与视频信息无法 4艮好的隔离、 分别解 析的现象。
本发明的发明人进行分析: 由于 1550〜1560nm的射频信号与 NG-PON2系 统中釆用的上行光数据信号、 或下行光数据信号的光波段相隔很近, 事实上, 1530〜1540nm波长的上行光数据信号与 1550〜1560nm的射频信号最小仅相差 10nm, 这样就要求 45。 滤光片 S1要完成 1550〜1560nm的光波的反射, 其余波 长光波的透射; 然而, 按照现有的技术, 无法实现如此窄带光波反射的滤光 片的镀膜技术, 因此, 在釆用现有技术的光模块中的 45。 滤光片 S1进行分光 时, 较难实现相隔较近的波段的光信号的分离。
基于上述对现有技术的光模块的分析, 本发明的光模块中釆用一种设置 有小角度滤光片的带通器件, 可以实现射频信号的带通, 其它波段的光信号 的反射; 从而可以实现波段相隔较近的射频信号与数据信号的分离, 使得光 模块可以应用到更多的光接入网系统中, 例如, 既可应用于 GPON、 EPON系 统中, 又可应用于 NG-PON2系统中。 本发明中, "带通" 指的是对一定波长 的光信号使其通过, 而对于高于该一定波长或者低于该一定波长的光信号无 法通过。
下面结合附图详细说明本发明实施例的技术方案。 本发明实施例的光模 块的内部结构如图 2所示, 包括: 激光发射单元 201、 激光接收单元 202、 光 组件 204、 视频探测器 205、 以及 MCU ( Microprogrammed Control Unit, 微 程序控制器)单元(图中未标)。
激光发射单元 201、 激光接收单元 202、 MCU单元、 视频探测器 205可 以分别釆用 (但不限于)现有技术的光模块中常用的激光发射单元、 激光接 收单元、 MCU单元、 视频探测器的电路。
激光发射单元 201 用以将输入到本光模块的数据电信号转换为上行光数 据信号后发射;
激光发射单元 201发射的上行光数据信号经光组件 204耦合到与光模块 的光纤接口相连的光纤中, 通过光纤进行传输。
从光纤传输到光模块的下行光数据信号和射频信号经光模块的光纤接口 射入到光组件 204 , 经光组件 204分离后, 分别射入到激光接收单元 202和视 频探测器 205。
激光接收单元 202用以接收从光组件 204中分离出来的下行光数据信号, 并将下行光数据信号转换为相应的数据电信号后输出。
视频探测器 205用以接收从光组件 204中分离出来的射频信号, 将射频 信号转换为电信号并进行处理后输出。
MCU单元与激光接收单元 202、 激光发射单元 201 以及视频探测器 205 相连, 用于控制激光接收单元 202、激光发射单元 201以及视频探测器 205或 从激光接收单元 202、激光发射单元 201以及视频探测器 205获取参数。 MCU 单元还可与光模块外的系统设备通信, 接收指令, 根据接收的指令进行操作 或返回相应的参数。
光组件 204中具体包括:设置有小角度滤光片的带通器件 F1和滤光片 F2;
F1包括三个端口 ,分别为公共端口 ( COM端口)、透射端口 ( Pass端口)、 反射端口 ( Reflect端口)。
F1 的公共端口作为光模块的光纤接口与光纤相连, 从光纤通过公共端口 传输到 F1的光信号, 其中第一光波波段的光信号经小角度滤光片的透射作用 从 F1 的透射端口输出; 其它波段的光信号经小角度滤光片的反射作用从 F1 的反射端口输出。
其中, 射频信号的光波波段位于第一光波波段中, 上行光数据信号以及 下行光数据信号的光波波段位于第一光波波段之外; 即第一光波波段包括射 频信号的光波波段, 但不包括上行光数据信号以及下行光数据信号的光波波 段。
带通器件 Fl 中的小角度滤光片的工作原理如图 3所示: 从 F1的公共端 口输入的光信号, 即小角度滤光片的入射光, 以小角度(比如 1.8。)射入所述 小角度滤光片。 小角度滤光片具有带通功能, 只选择第一光波波段的光信号 作为小角度滤光片的透射光透射通过, 其它波长的光信号则被小角度滤光片 反射, 成为小角度滤光片的反射光。 透射的第一光波波段的光信号从 F1的透 射端口输出, 反射的光信号由 F1的反射端口输出。 这样, 设置有小角度滤光 片的 F1实现了第一光波波段的光信号与其它光波波段的光信号的分离。
具体地, 小角度滤光片镀有第一光波波段的增透膜, 用以透射第一光波 波段的光信号, 反射其它波段的光信号, 以分离射频信号与其它波段的光信 号。 例如, 对于 1550〜1560nm的射频信号, 小角度滤光片镀有 1550〜1560nm 的增透膜, 其 30dB 下限截止波长控制在 1545nm, 上限截止波长控制在 1565nm。 其余波长反射。
小角度滤光片的入射光与小角度滤光片的光轴之间的夹角可以在 1。-5。之 间, 较佳地, 夹角为 1.8°。
滤光片 F2设置于 F1的反射端口与激光发射单元 201之间, 其与第一光 路成 45°角;第一光路指的是从 F1的反射端口射出的光信号直线传输的光路, 也是射入 F1的反射端口的光信号的光路。
滤光片 F2镀有第二光波波段的增透膜和第三光波波段的增反膜; 其中, 第二光波波段为上行光数据信号的光波波段, 第三光波波段为下行光数据信 号的光波波段。 滤光片 F2用以透射上行光数据信号, 反射下行光数据信号。 具体地, 滤光片 F2透射由所述激光发射单元发射的第二光波波段的光信号到 所述 F1的反射端口, 并反射从所述 F1的反射端口输出的光信号中的第三光 波波段的光信号到所述激光接收单元。
也就是说, 由激光发射单元 201发射的第二光波波段的上行光数据信号, 经滤光片 F2的透射, 从 F1的反射端口射入到 F1 , 经 F1 中的小角度滤光片 的反射作用从 F1的公共端口输出到光纤进行传输;
从 F1的反射端口射出的光信号中的第三光波波段的下行光数据信号, 经 滤光片 F2的反射, 与其原光路成 90°角射出后, 射入激光接收单元 202; 具 体地, 激光接收单元 202 中用以接收探测第三光波波段的光信号的光电二极 管设置于第二光路上; 其中, 第二光路指的是下行光数据信号 (即第三光波 波段的光信号)经滤光片 F2反射后直线传输的光路; 从 F1的反射端口射出 的下行光数据信号, 经滤光片 F2 的反射后, 沿第二光路射入激光接收单元 202。 激光接收单元 202接收 F2反射的第三光波波段的光信号后, 将接收的 光信号转换为相应的电信号输出。
进一步, 光组件 204中还可包括: 滤光片 F3和滤光片 F4。
滤光片 F3设置于滤光片 F2与激光接收单元 202之间, 其与第二光路垂 直; 滤光片 F3镀有第三光波波段的增透膜, 可以防止其它波长的光信号串入 激光接收单元 202, 同时提高光路隔离度。
滤光片 F4设置于 F1的透射端口与视频探测器 205之间, 与第三光路垂 直; 第三光路指的是从 F1的透射端口射出的激光直线传输的光路。滤光片 F4 镀有第四光波波段的增透膜, 可以防止其它波长的光信号串入视频探测器 205。 第四光波波段为射频信号的光波波段, 位于第一光波波段中, 或第一光 波波段与第四光波波段相同; 即上述的第一光波波段可以与第四光波波段相 同, 也可以比第四光波波段稍宽。
由于 F1中的小角度滤光片可以将窄带的光信号从全波段的光信号中分离 出来, 所以可以较好地实现波段相隔较近的射频信号与数据信号的分离, 使 得光模块不仅可以应用于数据信号的波段与射频信号波段相隔较远的光接入 网系统中, 也可应用于数据信号的波段与射频信号波段相隔较近的光接入网 系统中, 从而本发明的光模块可以应用到更多的光接入网系统中, 具有更为 广泛的应用性。
上述的激光发射单元 201的内部电路如图 4所示, 包括: 激光器及其驱 动电路。 激光发射单元 201 的驱动电路接收到数据电信号后, 根据接收的数 据电信号驱动激光器中的激光发射光源发射第二光波波段的激光作为上行光 数据信号。 具体地, 驱动电路可以是直调激光驱动器, 激光器可以是分布反 馈式激光器(DFB ); 或者, 驱动电路是外调激光驱动器, 激光器是电吸收调 制激光器(EML )。
上述的激光接收单元 202如图 5所示, 包括: 光接收组件和限幅放大电 路; 光接收组件通常包括: 光电二极管、 跨阻放大器 TIA。 光电二极管在探 测到下行光数据信号后输出相应的响应电流到 TIA, TIA则输出相应的差分电 信号; 该差分信号被送到限幅放大电路, 限幅放大电路将该差分信号进行限 幅放大, 输出相应的数据电信号。 限幅放大电路输出的电信号通常为差分电 信号。 较佳地, 激光接收单元 202中的光电二极管为 APD ( Avalanche Photo Diode, 雪崩光电二极管)。 上述的视频探测器 205如图 6所示, 包括: 光电探测器和射频芯片; 光 电探测器在探测到射频信号后将其转换为电信号后发送给射频芯片; 射频芯 片对接收的电信号进行处理后输出。
上述的带通器件 F1具体可以是如图 7a所示的 FWDM (薄膜波分复用) 器件, 也可以是 PLC (光波导) 器件, 以实现射频信号与数据信号的分离。 小角度滤光片具体如何设置在 FWDM或 PLC中为本领域技术人员所熟知, 此处不再赘述。
在实际应用中, 一种封装上述光组件的具体方案可以是, 滤光片 F2、 F3、 激光发射单元 201 中的激光器、 激光接收单元 202中的光接收组件可以封装 在 BOSA ( Bidirectional Optical Subassembly Assemble, 单纤双向光电器件 ) 中;
图 7b则示出了设置有小角度滤光片的 FWDM在光模块中的一种具体应 用: FWDM的反射端通过光纤与光模块中的 BOSA的光纤接口相通; 小角度 滤光片设置在靠近 FWDM的透射端的位置处; FWDM的公共端作为光模块 的光纤接口; FWDM的透射端与视频探测器 205集成在一起, 直接输出处理 后的射频电信号。
另一种封装上述光组件的具体方案则是将上述的 Fl、滤光片 F2、 F3、 F4、 激光器、 光接收组件和视频探测器 205封装在同一个光器件中。
图 8示出了本发明的光模块的封装, 封装后的光模块对外的接口包括: 光纤接口、 插针式接口、 SMB ( Small Moimtained assembly B, —种射频连接 头的类型)接口 (射频连接头)。
光模块的光纤接口用于连接光纤, 接收从光纤传输过来的光信号经光模 块的光纤接口射入光模块; 光模块发射的光信号经光纤接口向光纤传输。
光模块的 SMB接口用于输出视频探测器 205输出的电信号。
光模块的插针式接口用于输出激光接收单元 202输出的数据电信号, 接 收传送给激光发射单元 201的数据电信号, 以及传输其它控制、 状态信号。
下表 1列出了光模块的插针式接口中各管脚的定义:
表 1
管脚 标识
英文描述 ( Description ) 中文描述
( pin ) ( Symbol )
1 GND Case Ground 模块地
2 VEER Receiver Ground 接收端地引脚 3 VcCR Receiver 3.3V DC Supply 接收端电源引脚
4 x SD Receiver Signal Detect 接收信号告警探测 接收端数据同向端输
5 Rx DATA (+) Rx Data Output (Non Inverted)
接收端数据反向端输
6 Rx DATA (-) x Data Output (Inverted)
突发发射使能, 同向
Transmitter Burst Mode Enable Non
7 Tx_BEN (+) 端, LVPECL电平输入
Inverted LVPECL Input 突发发射使能, 反向
Transmitter Burst Mode Enable Inverted
8 Tx_BEN (-) 端, LVPECL电平输入
LVPECL Input
9 VEET Transmitter Ground 发射端地引脚
Transmitter Tx DATA Non-Inverted发射端数据同向端输
10 Tx DATA (+)
LVPECL Input 入
11 VEET Transmitter Ground 发射端地引脚
Transmitter Tx DATA Inverted LVPECL发射端数据反向端输
12 Tx DATA (-)
Input 入
13 VCCT Transmitter 3.3V DC Supply 发射端 3.3V电源
14 SDA I2C Serial Data I/O 串口通信线: 数据
15 SCL I2C Serial Clock 串口通信线: 时钟
Tx transmitter State indication, Asserts发光指示。当激光器开
16 TX indication
high When Transmitter ON 启时为高
17 VDD Video 12V DC Supply 视频 12V电源供电
18 NC Not Connected. 空接
Reset input, Low for reset, High for复位信号。 氐复位, 高
19 Reset
normal Option 2: 正常。
20 GND Case Ground 模块地
21 RF GND RF Ground
射频地,射频输出,射
22 RF OUT RF Output
频地
23 RF GND RF Ground 若本发明的光模块是应用于 NG-PON2系统中,则上述的第二光波波段具 体为 1530〜1540nm的光波波段,第三光波波段具体为 1595〜1625nm的光波波 段。 本发明的光模块具体可以是 ONU光模块。
发明实施例提供的光模块中由于釆用带通 /带阻器件, 可以将窄带的光信 号从全波段的光信号中分离出来, 所以可以较好地实现波段相隔较近的射频 信号与数据信号的分离, 使得光模块不仅可以应用于数据信号的波段与射频 信号波段相隔较远的光接入网系统中, 也可应用于数据信号的波段与射频信 号波段相隔较近的光接入网系统中, 从而可以应用到更多的光接入网系统中, 具有更为广泛的应用性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算机可读 取存储介质中, 如: ROM/RAM、 磁碟、 光盘等。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润 饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种光模块, 包括: 激光发射单元、 激光接收单元、 视频探测器; 其 特征在于, 还包括: 光组件, 所述光组件包括:
设置有小角度滤光片的带通器件 F1 , 其包括公共端口、 透射端口和反射 端口,从与所述光模块相连的光纤经所述公共端口传输到所述 F1的光信号中, 第一光波波段的光信号经所述小角度滤光片的透射后从所述透射端口输出到 所述视频探测器, 其它波段的光信号经所述小角度滤光片的反射后从所述反 射端口输出;
滤光片 F2, 用于透射由所述激光发射单元发射的第二光波波段的光信号 到所述 F1的反射端口, 并反射从所述 F1的反射端口输出的光信号中的第三 光波波段的光信号到所述激光接收单元;
所述 F1还用于通过所述小角度滤光片将射入其反射端口的第二光波波段 的光信号反射到其公共端口 , 经其公共端口输出到所述光纤;
其中, 第二光波波段为所述光模块发射的上行光数据信号的光波波段, 第三光波波段为所述光模块接收的下行光数据信号的光波波段, 第一光波波 段包括所述光模块接收的射频信号的光波波段, 但不包括所述上行光数据信 号以及下行光数据信号的光波波段。
2. 如权利要求 1所述的光模块, 其特征在于, 所述 F2镀有第二光波波 段的增透膜和第三光波波段的增反膜; 以及
所述 F2具体设置于所述 F1的反射端口与激光发射单元之间, 与第一光 路成 45。角, 所述激光接收单元中的光电二极管设置于第二光路上;
其中, 第一光路指的是从所述 F1的反射端口射出的光信号直线传输的光 路,第二光路指的是第三光波波段的光信号经所述 F2反射后直线传输的光路。
3. 如权利要求 2所述的光模块, 其特征在于, 所述光组件还包括: 镀有第三光波波段的增透膜的滤光片 F3 ,其设置于所述 F2与所述激光接 收单元之间;
镀有第四光波波段的增透膜的滤光片 F4,其设置于所述 F1的透射端口与 所述视频探测器之间; 其中, 第四光波波段为所述射频信号的光波波段, 位 于第一光波波段中, 或第一光波波段与第四光波波段相同。
4. 如权利要求 3所述的光模块, 其特征在于,
所述滤光片 F 2、 滤光片 F3 , 以及所述激光发射单元中的激光器、 所述激 光接收单元中的光接收组件封装于单纤双向光电器件 BOSA中; 或者,
所述 Fl、 滤光片 F2、 滤光片 F3、 滤光片 F4、 激光器、 光接收组件和所 述视频探测器封装于同一光器件中。
5. 如权利要求 1-4任一所述的光模块, 其特征在于, 所述小角度滤光片 镀有第一光波波段的增透膜, 所述 F1具体为薄膜波分复用 FWDM器件, 或 者光波导 PLC器件; 以及
所述经所述公共端口传输到所述 F1 的光信号以 1。-5。的角度入射所述小 角度滤光片。
6. 如权利要求 1-4任一所述的光模块, 其特征在于, 所述激光发射单元 包括:激光器及其驱动电路;其中,所述激光器具体为分布反馈式激光器 DFB, 或者电吸收调制激光器 EML。
7. 如权利要求 1-4任一所述的光模块, 其中, 所述激光接收单元包括: 光接收组件和限幅放大电路。
8. 如权利要求 4所述的光模块, 其中, 所述光接收组件包括: 光电二极 管和跨阻放大器 TIA。
9. 如权利要求 8所述的光模块, 其中, 所述光电二极管为雪崩光电二极 管 APD。
10. 如权利要求 1-4任一所述的光模块, 所述光模块为光网络单元 ONU 光模块, 应用于 NG-PON2、 吉比特无源光网络 GPON、 或以太网无源光网络 EPON系统中。
11. 如权利要求 1-4任一所述的光模块, 其特征在于, 所述光模块的接口 包括:
光纤接口, 用于连接所述光纤; SMB接口, 用于输出所述视频探测器输出的电信号;
插针式接口, 用于输出所述激光接收单元输出的数据电信号, 接收传送 给所述激光发射单元的数据电信号, 以及传输其它控制、 状态信号。
12. 一种应用于光模块的光器件, 包括:
设置有小角度滤光片的带通器件 F1 , 其包括公共端口、 透射端口和反射 端口,从与所述光模块相连的光纤经所述公共端口传输到所述 F1的光信号中, 第一光波波段的光信号经所述小角度滤光片的透射后从所述透射端口输出到 所述光模块中的视频探测器; 其它波段的光信号经所述小角度滤光片的反射 后从所述反射端口输出;
滤光片 F2, 用于透射由所述光模块中的激光发射单元发射的第二光波波 段的光信号到所述 F1的反射端口, 并反射从所述 F1的反射端口输出的光信 号中的第三光波波段的光信号到所述光模块中的激光接收单元;
所述 F1还用于通过所述小角度滤光片将射入其反射端口的第二光波波段 的光信号反射到其公共端口 , 经其公共端口输出到所述光纤。
13. 如权利要求 12所述的光器件, 还包括:
镀有第三光波波段的增透膜的滤光片 F3 ,其设置于所述 F2与所述激光接 收单元之间;
镀有第四光波波段的增透膜的滤光片 F4,其设置于所述 F1的透射端口与 所述视频探测器之间; 其中, 第四光波波段为所述射频信号的光波波段, 位 于第一光波波段中, 或第一光波波段与第四光波波段相同;
其中, 第二光波波段为所述光模块发射的上行光数据信号的光波波段, 第三光波波段为所述光模块接收的下行光数据信号的光波波段, 第一光波波 段包括所述光模块接收的射频信号的光波波段, 但不包括所述上行光数据信 号以及下行光数据信号的光波波段; 第四光波波段为所述射频信号的光波波 段。
14. 如权利要求 13所述的光器件, 其中, 所述小角度滤光片镀有第一光 波波段的增透膜,所述 F1具体为薄膜波分复用 FWDM器件,或者光波导 PLC 器件; 以及
所述经所述公共端口传输到所述 F1 的光信号以 1。-5。的角度入射所述小 角度滤光片。
PCT/CN2012/084900 2012-11-08 2012-11-20 光模块以及应用于光模块的光器件 WO2014071656A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/419,811 US9473835B2 (en) 2012-11-08 2012-11-20 Optical module and optical device applicable to optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210444187.5A CN103051382B (zh) 2012-11-08 2012-11-08 光模块以及应用于光模块的光器件
CN201210444187.5 2012-11-08

Publications (1)

Publication Number Publication Date
WO2014071656A1 true WO2014071656A1 (zh) 2014-05-15

Family

ID=48063896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084900 WO2014071656A1 (zh) 2012-11-08 2012-11-20 光模块以及应用于光模块的光器件

Country Status (3)

Country Link
US (1) US9473835B2 (zh)
CN (2) CN103051382B (zh)
WO (1) WO2014071656A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301711A (zh) * 2015-11-23 2016-02-03 上海伟钊光学科技股份有限公司 单纤四向组件及其滤光片配置方法
CN106888066B (zh) * 2015-12-15 2019-05-03 中国电信股份有限公司 波长选择方法和器件、光模块、光线路终端和无源光网络
CN107024744A (zh) * 2016-01-29 2017-08-08 青岛海信宽带多媒体技术有限公司 一种光模块及波长监控方法
CN105652395A (zh) * 2016-04-01 2016-06-08 成都聚芯光科通信设备有限责任公司 一种多波长光收发组件
CN106353861B (zh) * 2016-10-31 2019-07-19 成都优博创通信技术股份有限公司 一种基于pon系统的密集型波分复用光收发组件
EP3678305B1 (en) * 2017-09-30 2023-11-01 Huawei Technologies Co., Ltd. Optical device apparatus comprising an electro-absorption modulated laser
CN109600169A (zh) * 2018-11-28 2019-04-09 青岛海信宽带多媒体技术有限公司 一种视频接收光模块及光网络单元
CN113285756B (zh) * 2021-07-22 2021-10-22 西安奇芯光电科技有限公司 Plc芯片、单纤双向光组件、光模块及工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215368A (ja) * 2000-02-04 2001-08-10 Japan Aviation Electronics Industry Ltd 光送受信モジュール
US6684012B2 (en) * 2000-09-13 2004-01-27 Nec Corporation Optical communication module and process for producing the same
CN1617000A (zh) * 2003-11-11 2005-05-18 三星电子株式会社 双向光三工器
US7290942B2 (en) * 2003-01-24 2007-11-06 Sumitomo Electric Industries, Ltd. Optical transceiver modules
CN101900858A (zh) * 2005-09-20 2010-12-01 财团法人工业技术研究院 双向光收发次模块
CN101995618A (zh) * 2009-08-24 2011-03-30 阿尔卑斯电气株式会社 光通信模块

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29508660U1 (de) * 1995-05-24 1996-09-19 Bosch Gmbh Robert Optische Sende- und Empfangsanordnung
US5917626A (en) * 1997-02-14 1999-06-29 Dicon Fiberotics, Inc. Tunable filter for use in wavelength division multiplexer and demultiplexer
US6084994A (en) * 1998-04-02 2000-07-04 Oplink Communications, Inc. Tunable, low back-reflection wavelength division multiplexer
WO2000052864A2 (en) * 1999-02-23 2000-09-08 Optical Coating Laboratory, Inc. Hybrid wavelength selective optical router and switch
JP3680738B2 (ja) * 2001-01-24 2005-08-10 日本電気株式会社 波長多重光通信モジュール
JP2005049821A (ja) * 2003-07-11 2005-02-24 Omron Corp 光合分波器、光集積回路及びそれらを用いた光送受信器
TWM241892U (en) * 2003-10-03 2004-08-21 Foci Fiber Optic Communication A silicon optical bench based bi-directional transceiver module
US8085824B2 (en) * 2007-05-31 2011-12-27 Finisar Corporation Optimization of laser parameters to achieve desired performance
US8287192B2 (en) * 2008-11-13 2012-10-16 Finisar Corporation Optical network unit transceiver
WO2010140185A1 (ja) * 2009-06-01 2010-12-09 三菱電機株式会社 光送受信モジュール及び光送受信モジュールの製造方法
US9160450B2 (en) * 2011-09-23 2015-10-13 Te Connectivity Nederland B.V. Multi-channel transceiver
US8805191B2 (en) * 2011-09-29 2014-08-12 Applied Optoelectronics, Inc. Optical transceiver including optical fiber coupling assembly to increase usable channel wavelengths
US20130294766A1 (en) * 2012-05-05 2013-11-07 Sifotonics Technologies Co., Ltd. Dark Current Cancellation For Optical Power Monitoring In Optical Transceivers
CN102662219A (zh) * 2012-05-09 2012-09-12 上海波汇通信科技有限公司 一种用于多波长信号传输的光发射器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215368A (ja) * 2000-02-04 2001-08-10 Japan Aviation Electronics Industry Ltd 光送受信モジュール
US6684012B2 (en) * 2000-09-13 2004-01-27 Nec Corporation Optical communication module and process for producing the same
US7290942B2 (en) * 2003-01-24 2007-11-06 Sumitomo Electric Industries, Ltd. Optical transceiver modules
CN1617000A (zh) * 2003-11-11 2005-05-18 三星电子株式会社 双向光三工器
CN101900858A (zh) * 2005-09-20 2010-12-01 财团法人工业技术研究院 双向光收发次模块
CN101995618A (zh) * 2009-08-24 2011-03-30 阿尔卑斯电气株式会社 光通信模块

Also Published As

Publication number Publication date
US9473835B2 (en) 2016-10-18
CN105099557A (zh) 2015-11-25
CN103051382A (zh) 2013-04-17
CN103051382B (zh) 2015-08-12
US20150350754A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
WO2014071656A1 (zh) 光模块以及应用于光模块的光器件
US10171179B2 (en) Optical module and optical line terminal device
WO2021004387A1 (zh) 一种tosa、bosa、光模块以及光网络设备
US9191118B2 (en) Bidirectional optical data communications module
US6951426B2 (en) Pad architecture for backwards compatibility for bi-directional transceiver module
CN102364364B (zh) 单波长单纤双向光收发模块组件
CN107360481B (zh) 光组件和光线路终端
EP4242711A3 (en) Optical receiving component, combined transceiver component, combined optical module, olt, and pon system
US20160248534A1 (en) Method for processing optical signal, optical module and optical line terminal
US20130084070A1 (en) Optical transceiver including optical fiber coupling assembly to increase usable channel wavelengths
US9225423B1 (en) Optical engines and optical cable assemblies capable of low-speed and high-speed optical communication
CN103152103A (zh) 光模块及其cdr芯片的速率模式自适应调整方法
US10419116B2 (en) Transceiver to transceiver digital optical commands
CN103986524B (zh) 一种单纤双向光模块、通信设备及连接错误检测方法
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
KR101530655B1 (ko) 단일의 바이 패스용 광 스위치를 구비한 광신호 송수신 네트워크 단말장치 및 그를 포함하는 단일 광섬유 라인 광 네트워크 이더넷 시스템
CN203133335U (zh) 四端口olt光收发一体模块
WO2014176865A1 (zh) 一种光模块及其制备方法
US20230275672A1 (en) Electronic device and method for tuning wavelenth in optical network
JP2010204636A (ja) 3方向光学装置
CN116346238A (zh) 一种50g无源光纤网络接收端组件
US10411823B2 (en) Optical transmitter and optical receiver
RU2667711C1 (ru) Система мониторинга оптических кабельных соединений
CN217034327U (zh) 单纤三向光器件和光调制解调器
WO2021114986A1 (zh) 一种5g前传的高速收发模块及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14419811

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887996

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12887996

Country of ref document: EP

Kind code of ref document: A1