WO2014069738A1 - Melting furnace using anion oxygen - Google Patents

Melting furnace using anion oxygen Download PDF

Info

Publication number
WO2014069738A1
WO2014069738A1 PCT/KR2013/005059 KR2013005059W WO2014069738A1 WO 2014069738 A1 WO2014069738 A1 WO 2014069738A1 KR 2013005059 W KR2013005059 W KR 2013005059W WO 2014069738 A1 WO2014069738 A1 WO 2014069738A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace body
anion oxygen
waste
supply pipes
decomposition gas
Prior art date
Application number
PCT/KR2013/005059
Other languages
French (fr)
Korean (ko)
Inventor
이상진
Original Assignee
주식회사 아신네트웍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아신네트웍스 filed Critical 주식회사 아신네트웍스
Priority to DE112013005254.7T priority Critical patent/DE112013005254T5/en
Priority to CN201380057676.8A priority patent/CN104903648B/en
Priority to US14/440,120 priority patent/US20150308680A1/en
Publication of WO2014069738A1 publication Critical patent/WO2014069738A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50006Combustion chamber walls reflecting radiant energy within the chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/50Intercepting solids by cleaning fluids (washers or scrubbers)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/00001Treating oxidant before combustion, e.g. by adding a catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a melting furnace capable of thermally treating various wastes.
  • Waste treatment methods include reducing the amount of waste generated, recycling the generated waste, and incineration or landfill of non-recyclable waste. In the case of domestic waste, most of the waste depends on landfilling. Direct incineration is mainly used as a method of incineration of waste.
  • An object of the present invention is to provide a melting furnace using anion oxygen that can thermally decompose all wastes into pollution-free, and recycle the decomposed ash remaining after decomposition.
  • the furnace body having an internal space, the waste inlet and the decomposition gas discharge port is formed on the upper surface, at least one ash outlet on the side;
  • An inlet door for opening and closing the waste inlet;
  • An outlet door for opening and closing the ash outlet;
  • a dust collector installed at the decomposition gas outlet and collecting and collecting ash contained in the decomposition gas in the furnace body;
  • a perforated plate disposed to be spaced apart from a bottom surface of the furnace body and having a plurality of through holes penetrated vertically;
  • an anion oxygen supply unit for supplying magnetized anion oxygen toward an upper region of the perforated plate located in the furnace body.
  • the waste is spontaneously decomposed by high-temperature radiant heat using anion oxygen, environmentally friendly waste treatment can be made as compared with the conventional direct incineration method. And, after igniting charcoal or the like, since waste can be thermally decomposed without additionally supplying additional heat source into the furnace body, energy can be saved.
  • the inorganic mineralized ceramics may be used for industrial purposes, and the ash recovered through the dust collector may be used for sterilization, insecticide, fertilizer, etc., and thus may have an effect of resource recycling.
  • FIG. 1 is a perspective view of a melting furnace using anion oxygen according to an embodiment of the present invention.
  • FIG. 2 is a partial front cross-sectional view of FIG. 1.
  • FIG. 3 is a plan cross-sectional view of FIG. 1.
  • FIG. 4 is a diagram for explaining an operation example of the dust collector in FIG. 1.
  • FIG. 1 is a perspective view of a melting furnace using anion oxygen according to an embodiment of the present invention.
  • 2 is a partial front cross-sectional view of FIG. 1.
  • 3 is a plan cross-sectional view of FIG. 1.
  • the melting furnace 100 using anion oxygen is the furnace body 110, the inlet door 120, the outlet door 130, the dust collector 140, the perforated plate 150, and Anion oxygen supply unit 160 is included.
  • the furnace body 110 has an interior space.
  • the furnace body 110 may be formed in a cuboid chamber shape having an internal space.
  • a thermal decomposition process of waste is performed in the internal space of the furnace body 110.
  • the waste inlet 111 and the decomposition gas outlet 112 are formed on the upper surface of the furnace body 110.
  • At least one ash outlet 113 is formed at the side of the furnace body 110.
  • the ash outlets 113 may be formed on each side of the furnace body 110 one by one.
  • the footrest 114 may be installed so that the operator can rise.
  • the furnace body 110 may have a double partition structure having an inner wall 115a and an outer wall 115b.
  • a partition space defined by the inner wall 115a and the outer wall 115b may be filled with a thermal medium, such as water.
  • the water in the partition space may be heated by the heat generated during the thermal decomposition process of the waste in the furnace body 110 and used for hot water or heating or electric power generation.
  • pipes for supplying and discharging water in the partition space may be provided.
  • the partition space may be filled with an insulating material.
  • the inlet door 120 opens and closes the waste inlet 111.
  • waste may be introduced into the furnace body 110 through the opened waste inlet 111.
  • Inlet door 120 may be hinged to the upper surface of the furnace body 110 to be rotated up and down.
  • the inlet door 120 may be locked by the locking mechanism 121 in a state in which the waste inlet 111 is closed.
  • the locking mechanism 121 may include a locking lever 122 rotatably coupled to the furnace body 110 and a pushing block 123 linked to the locking lever 122.
  • the pushing block 123 operates to fix or release the inlet door 120 according to the rotation of the locking lever 122.
  • a shock absorber 124 is installed between the inlet door 120 and the furnace body 110 to cushion the opening and closing operation of the inlet door 120.
  • the outlet door 130 opens and closes the outlet 113 again.
  • the thermally decomposed ash may be discharged from the waste through the opened ash outlet 113.
  • the outlet door 130 may be hinged to the side of the furnace body 110 to be rotated up and down.
  • the outlet door 130 may be locked by the handle type locking mechanism 131 in a state where the outlet 113 is closed.
  • the outlet door 130 may be provided with a thermometer for measuring the temperature in the furnace body (110).
  • the dust collector 140 is installed at the decomposition gas outlet 112.
  • the dust collector 140 collects and collects ash contained in the cracked gas in the furnace body 110. That is, the dust collector 140 purifies and discharges the decomposition gas generated during thermal decomposition of the waste, and recovers ash contained in the decomposition gas.
  • a portion of the decomposition gas inlet 112 from the decomposition gas inlet may be provided with a mesh network for filtration.
  • the perforated plate 150 is disposed spaced apart from the bottom in the furnace body 110.
  • the lower space 116 of the perforated plate 150 may function as a space where the charcoal can be placed.
  • the charcoal may be used for ignition, and may be used to remove moisture in the furnace body 110 during initial use of the melting furnace 110 or to remove moisture of waste introduced into the furnace body 110.
  • the lower space 116 of the perforated plate 150 may be in communication with the outside through the vent pipe 117 installed from the outside of the furnace body 110.
  • the vent pipe 117 may be used to supply air to the lower space 116 of the perforated plate 150 or to clean the lower space 116 of the perforated plate 150 after the thermal decomposition of the waste is completed.
  • the ceramic layer may be disposed on the upper surface of the perforated plate 150.
  • the ceramic layer receives the heat generated during the burning of charcoal to generate far-infrared radiation and supply it as waste.
  • the ceramic layer may receive heat generated during thermal decomposition of the waste to generate far-infrared radiant energy and resupply the waste. Accordingly, thermal decomposition of the waste can be promoted.
  • the ceramic layer may be composed of a ceramic in powder form, or may be configured by recycling the ceramic ash thermally decomposed by the melting furnace 100. The ceramic layer may be omitted.
  • the perforated plate 150 has a structure in which a plurality of through holes penetrated vertically through the plate member.
  • the through holes communicate the lower space 116 of the perforated plate 150 and the upper space of the furnace body 110 located above the perforated plate 150.
  • the through holes may include first through holes 151 and second through holes 152.
  • the first through holes 151 are larger than the second through holes 152, and may be arranged at regular intervals in the center of the perforated plate 150.
  • the second through holes 152 may be arranged at regular intervals between the edge of the perforated plate 150 and the first through holes 151.
  • the first through holes 151 allow the complexed charcoal to be placed in the lower space 116 of the perforated plate 150, respectively.
  • the spark generated during the burning of the char may contact the ceramic plates through the first through holes 151 to heat the ceramic plates.
  • the second through holes 152 may be provided with air permeability between the char and the waste, so that the moisture is removed of the waste by the char, and can supply oxygen for burning charcoal.
  • the anion oxygen supply unit 160 supplies magnetized anion oxygen to an upper region of the perforated plate 150 located in the furnace body 110, for example, an upper region of the ceramic layer. At this time, the magnetized anion oxygen has magnetization energy.
  • Anion oxygen having magnetization energy causes the inside of the furnace body 110 to be in a reducing state to generate radiant energy. This radiant energy accelerates the molecular movement of the waste, causing it to self-heat. Accordingly, the waste can be dried by self heating. The dried waste may be pyrolyzed to carbonize and finally mineralized.
  • An example of the operation of the melting furnace 100 having the above-described configuration is as follows.
  • the ignition and dehumidification material such as char, ignited and introduced into the furnace body (110). Thereafter, a ceramic layer may be formed on the upper surface of the perforated plate 150 as necessary. Thereafter, the waste is injected into the furnace body 110 through the waste inlet 111, and then the waste inlet 111 is closed by the inlet door 120.
  • the anion oxygen supply unit 160 supplies magnetized anion oxygen to the waste in the furnace body 110.
  • the anion oxygen having magnetization energy causes the inside of the furnace body 110 to be in a reducing state to generate radiant energy.
  • This radiant energy together with the radiant energy generated by the ceramic layer, promotes the molecular movement of the waste and self-heats. Accordingly, the lower portion of the waste placed in the anion oxygen supply region is dried by self-heating and thermally decomposed to form a carbonized layer.
  • High temperature radiant heat of 400 ° C. or higher is generated in the carbonized layer. Due to such high temperature radiant heat, the carbonized layer is decomposed naturally and mineralized into a ceramic mineral in the form of ash. At this time, the inorganicized part of the waste is reduced in volume to form a ceramic layer made of ceramic inorganic material, and the upper part of the inorganicized part is moved to the anion oxygen supply region in a dry state by radiant heat, and then carbonized in the above-described process. , Weaponized. If this process is repeated, the entire waste can be mineralized. Ceramic mineralized in the form of ash may be discharged through the ash outlet 113 opened by the outlet door 130.
  • the waste after igniting the charcoal, since the waste can be thermally decomposed without additionally supplying a further heat source into the furnace body 110, it may have an energy saving effect.
  • the inorganic mineralized ceramic minerals can be used for industrial purposes, there may be an effect of resource recycling.
  • the decomposition gas generated in the thermal decomposition process of the waste in the furnace body 110 passes through the dust collector 140.
  • the dust collector 140 purifies and discharges the cracked gas and recovers the ash contained in the cracked gas.
  • the recovered ash may be used for the purpose of sterilization, insecticide, fertilizer, etc. as a mineral having efficacy of sterilization, fertilizer and the like.
  • the anion oxygen supply unit 160 may be configured in various ways.
  • the anion oxygen supply unit 160 may include first supply pipes 161, second supply pipes 162, magnetizers 163, and valves 164. Both ends of the first supply pipe 161 are formed to be open.
  • Each of the first supply pipes 161 penetrates the furnace body 110 along the circumference of the furnace body 110.
  • Each of the first supply pipes 161 penetrating the furnace body 110 may be disposed adjacent to the edge of the furnace body 110 to supply magnetized anion oxygen to the edge of the waste in the furnace body 110.
  • the first supply pipes 161 may be arranged in two rows up and down along the circumference of the furnace body 110.
  • the second supply pipe 162 is formed in the form that both ends are opened. One end of each of the second supply pipes 162 is installed through the furnace body 110. Each of the second supply pipes 162 is disposed closer to the center of the furnace body 110 than each one end of the first supply pipes 161 passes through the furnace body 110 so that the second supply pipes 162 are disposed at the center of the waste in the furnace body 110.
  • the magnetized anion oxygen can be smoothly supplied to the side.
  • the second supply pipe 162 is illustrated as being provided in two, it is also possible to provide one or three or more.
  • the magnetizers 163 are respectively installed in the first supply pipes 161.
  • the magnetizers 163 may be installed to surround each circumference of the first supply pipes 161.
  • the magnetizers 163 generate magnetized anion oxygen by magnetizing external air passing through each inside of the first supply pipes 161.
  • the magnetizer 163 may include permanent magnets.
  • the permanent magnets are configured to have an arrangement and magnetic force capable of magnetizing external air passing through the inside of the first supply pipe 161 to generate anion oxygen, and may be disposed around the first supply pipe 161.
  • the magnetizers 163 may be installed in the second supply pipes 162, respectively, to magnetize the external air passing through the respective interiors of the second supply pipes 162 to generate magnetized anion oxygen.
  • the valves 164 are installed in the first and second supply pipes 161 and 162, respectively.
  • the valves 164 regulate the flow rate of magnetized anion oxygen supplied to the furnace body 110 through the first and second supply pipes 161 and 162.
  • the magnetized anion oxygen naturally flows into the furnace body 110 through the first and second supply pipes 161 and 162 during the combustion of charcoal and thermal decomposition of the waste in the furnace body 110.
  • magnetized anion oxygen may be supplied to or blocked by the furnace body 110 through the first and second supply pipes (161, 162).
  • the opening degree of the valves 164 the flow rate of the magnetized anion oxygen is supplied to the furnace body 110 through the first and second supply pipes 161 and 162 may be adjusted.
  • the dust collector 140 may include a first dust collector 141 and a second dust collector 146.
  • the first dust collecting unit 141 receives circulating water by a pump or the like and discharges it through the first discharge hole 142a.
  • the first dust collector 141 injects the circulating water to the cracked gas supplied through the cracked gas outlet 112.
  • the first dust collecting unit 141 may include a nozzle tube 143 having a plurality of nozzles.
  • the nozzle tube 143 may receive the circulating water sent from the pump and inject the circulating water into the decomposition gas in the first dust collecting unit 141 through the nozzles.
  • the ash separated and buoyant on the internal circulating water is recovered to the recovery tank through the first recovery hole 142b located above the first discharge hole 142a. In addition, the remaining cracked gas is exhausted.
  • the ash in the cracked gas falls to the lower portion of the first dust collecting part 141 together with the circulating water, and is separated and supported on the internal circulation water of the first dust collecting part 141.
  • the internal circulating water of the first dust collecting part 141 is discharged through the first discharge hole 142a and then sent back to the first dust collecting part 141 by a pump.
  • the buoyant ash is recovered to a recovery tank (not shown) through the first recovery hole 142b when the ash is raised to the height of the first recovery hole 142b located above the first discharge hole 142a.
  • the remaining cracked gas in the first dust collector 141 is discharged to the second collector 146.
  • the second dust collecting part 146 receives the circulating water and discharges it through the second discharge hole 147a.
  • the second dust collector 146 injects the circulating water to the remaining cracked gas supplied from the first dust collector 141.
  • a nozzle tube 148 similar to the structure described above may be used to inject circulating water into the remaining cracked gas.
  • the second dust collecting part 146 separates and floats the floated ash above the internal circulating water as the circulating water is injected into the residual decomposition gas through the second collecting hole 147b located above the second discharge hole 147a. And the remaining cracked gas is exhausted.
  • the remaining cracked gas falls with the circulating water to the lower portion of the second dust collecting part 146 and is separated and supported on the internal circulating water of the second dust collecting part 146.
  • the internal circulating water of the second dust collecting part 146 is discharged through the second discharge hole 147a and then sent back to the second dust collecting part 146 by a pump.
  • the buoyant ash is raised to the height of the second recovery hole 147b located above the second discharge hole 147a, the ash is recovered to the first dust collecting part 141 through the second recovery hole 147b, and then the first ash is collected.
  • the ash separated from the dust collector 141 is recovered to a recovery tank.
  • the remaining cracked gas in the second dust collecting part 146 is exhausted.
  • the ash contained in the cracked gas in the furnace body 110 may be recovered as much as possible.
  • the ash-filtered gas can be purified to a level that can meet environmental standards and discharged to the atmosphere.
  • one or more additional dust collectors 149 may be provided.
  • the additional dust collector 149 may separate and collect ash from the cracked gas in the same manner as the first and second dust collectors 141 and 146, and may further include filtration means such as a filter medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

A waste melting furnace comprises: a furnace main body; an injection hole door; a discharge hole door; a dust collector; a punched plate; and an anion oxygen supply unit. The furnace main body has a waste injection hole and a cracked gas discharge hole which are formed in the top surface thereof and at least one ash discharge hole which is formed in a side surface. The injection hole door opens or closes the waste injection hole. The discharge hole door opens or closes the ash discharge hole. The dust collector is arranged in the cracked gas discharge hole and collects ashes which are contained in the cracked gas in the furnace main body so as to recover the same. The punched plate is disposed at a distance from the bottom surface of the furnace main body in the furnace main body. The anion oxygen supply unit supplies magnetized anion oxygen towards the upper side area of the punched plate which is disposed in the furnace main body.

Description

음이온 산소를 이용한 용융로Melting Furnace Using Anionic Oxygen
본 발명은 각종 폐기물을 열 분해시켜 처리할 수 있는 용융로에 관한 것이다.The present invention relates to a melting furnace capable of thermally treating various wastes.
최근 산업의 고도화와 생활수준의 향상으로 인하여, 다양한 형태의 폐기물이 급속히 증가하면서 폐기물 처리방안에 관심이 집중되고 있다. 폐기물의 처리방법으로는 폐기물의 발생량을 줄이는 방법, 발생된 폐기물을 재활용하는 방법, 재활용할 수 없는 폐기물에 대해서는 소각시키거나 매립하는 방법이 있다. 국내 폐기물의 경우, 대부분의 폐기물을 매립에 의존하고 있는 실정이다. 폐기물을 소각해서 처리하는 방식으로는 직접소각방식이 주로 이용되고 있다.Recently, due to the advancement of the industry and the improvement of living standards, various types of wastes are rapidly increasing, and attention is being focused on waste treatment methods. Waste treatment methods include reducing the amount of waste generated, recycling the generated waste, and incineration or landfill of non-recyclable waste. In the case of domestic waste, most of the waste depends on landfilling. Direct incineration is mainly used as a method of incineration of waste.
그런데, 직접소각방식의 경우, 폐기물 연소 후 심각한 환경문제로 대두되고 있는 다이옥신(Dioxine), 퓨란(Furan) 등의 맹독성 유해물질을 발생시키는 단점이 있다. 따라서, 유해물질을 처리하기 위한 설비 등의 추가로 인한 부담이 가중될 수 있다. 또한, 폐기물 연소를 위한 외부 열원으로 경유 등의 화석연료를 연소시켜 얻어진 에너지 등을 별도로 사용하게 되므로, 자원 낭비가 될 수 있다.However, in the case of the direct incineration method, there is a drawback of generating toxic harmful substances such as dioxine, furan, etc., which are emerging as serious environmental problems after waste combustion. Therefore, the burden due to the addition of a facility for treating harmful substances may be increased. In addition, since the energy obtained by burning fossil fuel such as diesel oil is separately used as an external heat source for waste combustion, it may be a waste of resources.
본 발명의 과제는 모든 폐기물을 무공해로 열 분해시킬 수 있고, 분해되고 남은 분해재를 재활용할 수 있는 음이온 산소를 이용한 용융로를 제공함에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a melting furnace using anion oxygen that can thermally decompose all wastes into pollution-free, and recycle the decomposed ash remaining after decomposition.
상기의 과제를 달성하기 위한 본 발명에 따른 음이온 산소를 이용한 용융로는, 내부 공간을 갖고, 상면에 폐기물 투입구와 분해가스 배출구가 형성되며, 측면에 적어도 하나의 재(ash) 배출구가 형성된 노 본체; 상기 폐기물 투입구를 개폐하는 투입구 도어; 상기 재 배출구를 개폐하는 배출구 도어; 상기 분해가스 배출구에 설치되며, 상기 노 본체 내의 분해가스 중에 함유된 재를 모아서 회수하는 집진기; 상기 노 본체 내의 저면으로부터 이격되어 배치되고, 상하로 관통된 통공이 다수 형성된 타공 판; 및 상기 노 본체 내에 위치한 상기 타공 판의 상측 영역 쪽으로 자화된 음이온 산소를 공급하는 음이온 산소 공급부;를 포함한다.Furnace using anion oxygen according to the present invention for achieving the above object, the furnace body having an internal space, the waste inlet and the decomposition gas discharge port is formed on the upper surface, at least one ash outlet on the side; An inlet door for opening and closing the waste inlet; An outlet door for opening and closing the ash outlet; A dust collector installed at the decomposition gas outlet and collecting and collecting ash contained in the decomposition gas in the furnace body; A perforated plate disposed to be spaced apart from a bottom surface of the furnace body and having a plurality of through holes penetrated vertically; And an anion oxygen supply unit for supplying magnetized anion oxygen toward an upper region of the perforated plate located in the furnace body.
본 발명에 따르면, 음이온 산소를 이용한 고온의 복사열에 의해 폐기물을 자연 분해시키므로, 종래의 직접소각방식에 비해 친환경적인 폐기물 처리가 이루어질 수 있다. 그리고, 숯 등을 착화시킨 이후, 별도로 추가적인 열원이 노 본체 내로 공급되지 않고도 폐기물이 열 분해될 수 있으므로, 에너지가 절감될 수 있다. 또한, 무기화된 세라믹 무기질은 산업용 등으로 사용될 수 있고, 집진기를 거쳐 회수된 재는 살균, 살충, 비료 등의 용도로 이용될 수 있으므로, 자원 재활용의 효과가 있을 수 있다.According to the present invention, since the waste is spontaneously decomposed by high-temperature radiant heat using anion oxygen, environmentally friendly waste treatment can be made as compared with the conventional direct incineration method. And, after igniting charcoal or the like, since waste can be thermally decomposed without additionally supplying additional heat source into the furnace body, energy can be saved. In addition, the inorganic mineralized ceramics may be used for industrial purposes, and the ash recovered through the dust collector may be used for sterilization, insecticide, fertilizer, etc., and thus may have an effect of resource recycling.
도 1은 본 발명의 일 실시예에 따른 음이온 산소를 이용한 용융로에 대한 사시도이다.1 is a perspective view of a melting furnace using anion oxygen according to an embodiment of the present invention.
도 2는 도 1에 대한 부분 정단면도이다.2 is a partial front cross-sectional view of FIG. 1.
도 3은 도 1에 대한 평단면도이다.3 is a plan cross-sectional view of FIG. 1.
도 4는 도 1에 있어서, 집진기의 작용 예를 설명하기 위한 도면이다.FIG. 4 is a diagram for explaining an operation example of the dust collector in FIG. 1.
이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 음이온 산소를 이용한 용융로에 대한 사시도이다. 도 2는 도 1에 대한 부분 정단면도이다. 도 3은 도 1에 대한 평단면도이다.1 is a perspective view of a melting furnace using anion oxygen according to an embodiment of the present invention. 2 is a partial front cross-sectional view of FIG. 1. 3 is a plan cross-sectional view of FIG. 1.
도 1 내지 도 3을 참조하면, 음이온 산소를 이용한 용융로(100)는 노 본체(110)와, 투입구 도어(120), 배출구 도어(130), 집진기(140)와, 타공 판(150), 및 음이온 산소 공급부(160)를 포함한다.1 to 3, the melting furnace 100 using anion oxygen is the furnace body 110, the inlet door 120, the outlet door 130, the dust collector 140, the perforated plate 150, and Anion oxygen supply unit 160 is included.
노 본체(110)는 내부 공간을 갖는다. 예컨대, 노 본체(110)는 내부 공간을 갖는 직육면체 챔버 형상으로 이루어질 수 있다. 노 본체(110)의 내부 공간에서는 폐기물의 열 분해 공정이 수행된다. 노 본체(110)의 상면에는 폐기물 투입구(111)와 분해가스 배출구(112)가 형성된다. 노 본체(110)의 측면에는 적어도 하나의 재(ash) 배출구(113)가 형성된다. 예컨대, 재 배출구(113)는 노 본체(110)의 양쪽 측면에 하나씩 형성될 수 있다. 노 본체(110)의 측면 중앙에는 작업자가 올라설 수 있게 발판(114)이 설치될 수도 있다.The furnace body 110 has an interior space. For example, the furnace body 110 may be formed in a cuboid chamber shape having an internal space. In the internal space of the furnace body 110, a thermal decomposition process of waste is performed. The waste inlet 111 and the decomposition gas outlet 112 are formed on the upper surface of the furnace body 110. At least one ash outlet 113 is formed at the side of the furnace body 110. For example, the ash outlets 113 may be formed on each side of the furnace body 110 one by one. In the center of the side of the furnace body 110, the footrest 114 may be installed so that the operator can rise.
노 본체(110)는 내벽(115a)과 외벽(115b)을 갖는 이중 격벽 구조로 이루어질 수 있다. 내벽(115a)과 외벽(115b)에 의해 한정된 격벽 공간에는 열 매체, 예컨대 물을 채워둘 수 있다. 격벽 공간 내의 물은 노 본체(110) 내에서 폐기물의 열 분해 과정시 발생된 열에 의해 가열되어, 온수 또는 난방 또는 전력 발전 등에 이용될 수 있다. 이 경우, 격벽 공간 내의 물을 공급 및 배출하기 위한 관들이 마련될 수 있다. 다른 예로, 격벽 공간에는 단열 물질이 채워질 수도 있다.The furnace body 110 may have a double partition structure having an inner wall 115a and an outer wall 115b. A partition space defined by the inner wall 115a and the outer wall 115b may be filled with a thermal medium, such as water. The water in the partition space may be heated by the heat generated during the thermal decomposition process of the waste in the furnace body 110 and used for hot water or heating or electric power generation. In this case, pipes for supplying and discharging water in the partition space may be provided. As another example, the partition space may be filled with an insulating material.
투입구 도어(120)는 폐기물 투입구(111)를 개폐한다. 투입구 도어(120)의 개방시, 개방된 폐기물 투입구(111)를 통해 노 본체(110) 내로 폐기물을 투입할 수 있다. 투입구 도어(120)는 상하로 회전 가능하게 노 본체(110)의 상면에 힌지 결합될 수 있다. 투입구 도어(120)는 폐기물 투입구(111)를 폐쇄한 상태에서 잠금 기구(121)에 의해 잠금 처리될 수 있다. The inlet door 120 opens and closes the waste inlet 111. When the inlet door 120 is opened, waste may be introduced into the furnace body 110 through the opened waste inlet 111. Inlet door 120 may be hinged to the upper surface of the furnace body 110 to be rotated up and down. The inlet door 120 may be locked by the locking mechanism 121 in a state in which the waste inlet 111 is closed.
잠금 기구(121)는 노 본체(110)에 회전 가능하게 결합된 잠금 레버(122)와, 잠금 레버(122)에 링크 결합된 푸싱 블록(123)을 포함할 수 있다. 푸싱 블록(123)은 잠금 레버(122)의 회전 동작에 따라 투입구 도어(120)를 고정 또는 해제시키도록 동작한다. 투입구 도어(120)와 노 본체(110) 사이에는 쇼크업소버(shock absorber, 124)가 설치되어, 투입구 도어(120)의 개폐 동작시 완충시킬 수 있다. The locking mechanism 121 may include a locking lever 122 rotatably coupled to the furnace body 110 and a pushing block 123 linked to the locking lever 122. The pushing block 123 operates to fix or release the inlet door 120 according to the rotation of the locking lever 122. A shock absorber 124 is installed between the inlet door 120 and the furnace body 110 to cushion the opening and closing operation of the inlet door 120.
배출구 도어(130)는 재 배출구(113)를 개폐한다. 배출구 도어(130)의 개방시, 개방된 재 배출구(113)를 통해 폐기물로부터 열 분해된 재를 배출할 수 있다. 배출구 도어(130)는 상하로 회전 가능하게 노 본체(110)의 측면에 힌지 결합될 수 있다. 배출구 도어(130)는 재 배출구(113)를 폐쇄한 상태에서 핸들 타입의 잠금 기구(131)에 의해 잠금 처리될 수 있다. 배출구 도어(130)에는 노 본체(110) 내의 온도를 측정하기 위한 온도계가 설치될 수 있다. The outlet door 130 opens and closes the outlet 113 again. When the outlet door 130 is opened, the thermally decomposed ash may be discharged from the waste through the opened ash outlet 113. The outlet door 130 may be hinged to the side of the furnace body 110 to be rotated up and down. The outlet door 130 may be locked by the handle type locking mechanism 131 in a state where the outlet 113 is closed. The outlet door 130 may be provided with a thermometer for measuring the temperature in the furnace body (110).
집진기(140)는 분해가스 배출구(112)에 설치된다. 집진기(140)는 노 본체(110) 내의 분해가스 중에 함유된 재를 모아서 회수한다. 즉, 집진기(140)는 폐기물의 열 분해시 발생된 분해가스를 정화시켜 배출하는 한편, 분해가스 중에 함유된 재를 회수시킨다. 분해가스 배출구(112)에서 분해가스가 유입되는 부위에는 여과를 위한 메쉬망 등이 설치될 수 있다. The dust collector 140 is installed at the decomposition gas outlet 112. The dust collector 140 collects and collects ash contained in the cracked gas in the furnace body 110. That is, the dust collector 140 purifies and discharges the decomposition gas generated during thermal decomposition of the waste, and recovers ash contained in the decomposition gas. A portion of the decomposition gas inlet 112 from the decomposition gas inlet may be provided with a mesh network for filtration.
타공 판(150)은 노 본체(110) 내의 저면으로부터 이격되어 배치된다. 타공 판(150)의 하측 공간(116)은 숯이 놓일 수 있는 공간으로 기능할 수 있다. 여기서, 숯은 착화에 이용되는 한편, 용융로(110) 초기 사용시 노 본체(110) 내의 습기를 제거하거나, 노 본체(110) 내로 투입된 폐기물의 습기를 제거하기 위해 이용될 수 있다. 숯 외에 볏짚 등이 이용되는 것도 물론 가능하다. 타공 판(150)의 하측 공간(116)은 노 본체(110)의 외부로부터 설치된 통기 관(117)을 통해 외부와 연통될 수 있다. 통기 관(117)은 타공 판(150)의 하측 공간(116)으로 공기를 공급하거나, 폐기물의 열 분해 완료 후 타공 판(150)의 하측 공간(116)을 청소하기 위해 이용될 수 있다. The perforated plate 150 is disposed spaced apart from the bottom in the furnace body 110. The lower space 116 of the perforated plate 150 may function as a space where the charcoal can be placed. Here, the charcoal may be used for ignition, and may be used to remove moisture in the furnace body 110 during initial use of the melting furnace 110 or to remove moisture of waste introduced into the furnace body 110. In addition to charcoal, it is also possible to use rice straw. The lower space 116 of the perforated plate 150 may be in communication with the outside through the vent pipe 117 installed from the outside of the furnace body 110. The vent pipe 117 may be used to supply air to the lower space 116 of the perforated plate 150 or to clean the lower space 116 of the perforated plate 150 after the thermal decomposition of the waste is completed.
타공 판(150)의 상면에는 세라믹층이 배치될 수 있다. 세라믹층은 숯 연소시 발생된 열을 전달받아 원적외선 복사 에너지를 발생시켜 폐기물로 공급할 수 있다. 또한, 세라믹층은 폐기물의 열 분해시 발생된 열을 전달받아 원적외선 복사 에너지를 발생시켜 폐기물로 재공급할 수 있다. 이에 따라, 폐기물의 열 분해가 촉진될 수 있다. 세라믹층은 분말형태의 세라믹으로 구성되거나, 용융로(100)에 의해 열 분해된 세라믹 재가 재활용되어 구성될 수 있다. 세라믹층은 생략되는 것도 가능하다. The ceramic layer may be disposed on the upper surface of the perforated plate 150. The ceramic layer receives the heat generated during the burning of charcoal to generate far-infrared radiation and supply it as waste. In addition, the ceramic layer may receive heat generated during thermal decomposition of the waste to generate far-infrared radiant energy and resupply the waste. Accordingly, thermal decomposition of the waste can be promoted. The ceramic layer may be composed of a ceramic in powder form, or may be configured by recycling the ceramic ash thermally decomposed by the melting furnace 100. The ceramic layer may be omitted.
타공 판(150)은 판상 부재에 상하로 관통된 통공이 다수 형성된 구조로 이루어진다. 통공들은 타공 판(150)의 하측 공간(116)과 타공 판(150)의 상측에 위치한 노 본체(110)의 상부 공간을 연통시킨다. The perforated plate 150 has a structure in which a plurality of through holes penetrated vertically through the plate member. The through holes communicate the lower space 116 of the perforated plate 150 and the upper space of the furnace body 110 located above the perforated plate 150.
예컨대, 통공들은 제1 통공(151)들과 제2 통공(152)들을 포함할 수 있다. 제1 통공(151)들은 제2 통공(152)들보다 크며, 타공 판(150)의 중앙에서 일정 간격으로 배열될 수 있다. 제2 통공(152)들은 타공 판(150)의 가장자리와 제1 통공(151)들 사이에서 일정 간격으로 배열될 수 있다. For example, the through holes may include first through holes 151 and second through holes 152. The first through holes 151 are larger than the second through holes 152, and may be arranged at regular intervals in the center of the perforated plate 150. The second through holes 152 may be arranged at regular intervals between the edge of the perforated plate 150 and the first through holes 151.
제1 통공(151)들은 착화된 숯들이 각각 타공 판(150)의 하측 공간(116)에 놓일 수 있게 한다. 또한, 숯의 연소시 발생된 불꽃이 제1 통공(151)들을 통해 세라믹 판들에 닿아 세라믹 판들을 가열시킬 수 있다. 제2 통공(152)들은 숯과 폐기물 간에 통기성을 부여함으로써, 숯에 의해 폐기물의 습기 제거가 이루어지게 하고, 숯 연소를 위한 산소를 공급할 수 있다.The first through holes 151 allow the complexed charcoal to be placed in the lower space 116 of the perforated plate 150, respectively. In addition, the spark generated during the burning of the char may contact the ceramic plates through the first through holes 151 to heat the ceramic plates. The second through holes 152 may be provided with air permeability between the char and the waste, so that the moisture is removed of the waste by the char, and can supply oxygen for burning charcoal.
음이온 산소 공급부(160)는 노 본체(110) 내에 위치한 타공 판(150)의 상측 영역 쪽, 예컨대 세라믹층의 상측 영역으로 자화된 음이온 산소를 공급한다. 이때, 자화된 음이온 산소는 자화 에너지를 갖는다. 자화 에너지를 갖는 음이온 산소는 노 본체(110) 내를 환원 상태가 되게 해서 복사 에너지를 생성한다. 이러한 복사 에너지는 폐기물의 분자운동을 촉진해서 자체 발열시킨다. 이에 따라, 폐기물은 자체 발열에 의해 건조될 수 있다. 건조된 폐기물은 열 분해되어 탄화 후, 최종적으로 무기화될 수 있다.The anion oxygen supply unit 160 supplies magnetized anion oxygen to an upper region of the perforated plate 150 located in the furnace body 110, for example, an upper region of the ceramic layer. At this time, the magnetized anion oxygen has magnetization energy. Anion oxygen having magnetization energy causes the inside of the furnace body 110 to be in a reducing state to generate radiant energy. This radiant energy accelerates the molecular movement of the waste, causing it to self-heat. Accordingly, the waste can be dried by self heating. The dried waste may be pyrolyzed to carbonize and finally mineralized.
전술한 구성을 갖는 용융로(100)의 작용 예를 설명하면 다음과 같다.An example of the operation of the melting furnace 100 having the above-described configuration is as follows.
먼저, 숯 등과 같은 착화 및 습기제거 물질을 착화시켜 노 본체(110) 내에 투입한다. 이후, 필요에 따라 타공 판(150)의 상면에 세라믹층을 형성해둘 수 있다. 이후, 폐기물 투입구(111)를 통해 노 본체(110) 내에 폐기물을 투입한 다음, 폐기물 투입구(111)를 투입구 도어(120)로 닫는다. First, the ignition and dehumidification material such as char, ignited and introduced into the furnace body (110). Thereafter, a ceramic layer may be formed on the upper surface of the perforated plate 150 as necessary. Thereafter, the waste is injected into the furnace body 110 through the waste inlet 111, and then the waste inlet 111 is closed by the inlet door 120.
그러면, 숯의 연소시 발생된 열이 세라믹층으로 전달되면서 원적외선 복사 에너지가 생성되어 폐기물로 전달된다. 이와 함께, 음이온 산소 공급부(160)에 의해 노 본체(110) 내의 폐기물로 자화된 음이온 산소를 공급한다. 그러면, 자화 에너지를 갖는 음이온 산소는 노 본체(110) 내를 환원 상태가 되게 해서 복사 에너지를 생성한다. 이 복사 에너지는 세라믹층에 의해 발생된 복사 에너지와 함께 폐기물의 분자운동을 촉진해서 자체 발열시킨다. 이에 따라, 음이온 산소 공급 영역에 놓인 폐기물의 하측 부위는 자체 발열에 의해 건조된 후, 열 분해되어 탄화층을 형성하게 된다. Then, the heat generated during the combustion of the char is transferred to the ceramic layer and far infrared radiation is generated and transferred to the waste. At the same time, the anion oxygen supply unit 160 supplies magnetized anion oxygen to the waste in the furnace body 110. Then, the anion oxygen having magnetization energy causes the inside of the furnace body 110 to be in a reducing state to generate radiant energy. This radiant energy, together with the radiant energy generated by the ceramic layer, promotes the molecular movement of the waste and self-heats. Accordingly, the lower portion of the waste placed in the anion oxygen supply region is dried by self-heating and thermally decomposed to form a carbonized layer.
탄화층에서 400℃ 이상의 고온 복사열이 발생된다. 이러한 고온 복사열에 의해 탄화층은 자연 분해되어 재 형태의 세라믹 무기질로 무기화된다. 이때, 폐기물에서 무기화된 부분은 부피가 줄어들어 세라믹 무기질에 의한 세라믹층을 형성하게 되며, 무기화된 부분의 위 부분은 복사열에 의해 건조된 상태로 음이온 산소 공급 영역으로 이동된 후, 전술한 과정으로 탄화, 무기화된다. 이러한 과정을 반복하게 되면, 폐기물 전체가 무기화될 수 있다. 재 형태로 무기화된 세라믹 무기질은 배출구 도어(130)에 의해 개방된 재 배출구(113)를 통해 배출될 수 있다. High temperature radiant heat of 400 ° C. or higher is generated in the carbonized layer. Due to such high temperature radiant heat, the carbonized layer is decomposed naturally and mineralized into a ceramic mineral in the form of ash. At this time, the inorganicized part of the waste is reduced in volume to form a ceramic layer made of ceramic inorganic material, and the upper part of the inorganicized part is moved to the anion oxygen supply region in a dry state by radiant heat, and then carbonized in the above-described process. , Weaponized. If this process is repeated, the entire waste can be mineralized. Ceramic mineralized in the form of ash may be discharged through the ash outlet 113 opened by the outlet door 130.
이와 같이, 음이온 산소를 이용한 고온의 복사열에 의해 폐기물을 자연 분해시키므로, 종래의 직접소각방식에서 불완전연소에 의한 다이옥신 등의 유해독성물질이 발생하는 것에 비해, 극소량의 유해독성물질이 발생될 수 있다. 이러한 극소량의 유해독성물질을 포함한 분해가스는 집진기(140)를 거치면서 환경 기준을 충족할 수 있는 수준으로 정화되어 대기 중으로 배출될 수 있으므로, 친환경적인 폐기물 처리가 이루어질 수 있다. As such, since the waste is spontaneously decomposed by high-temperature radiant heat using anion oxygen, a very small amount of harmful toxic substances may be generated as compared with the generation of harmful toxic substances such as dioxins due to incomplete combustion in the conventional direct incineration method. . Decomposed gas containing such a very small amount of harmful toxic substances can be purified and discharged into the atmosphere to meet the environmental standards through the dust collector 140, it can be environmentally friendly waste treatment.
그리고, 숯을 착화시킨 이후, 별도로 추가적인 열원이 노 본체(110) 내로 공급되지 않고도 폐기물이 열 분해될 수 있으므로, 에너지 절감 효과가 있을 수 있다. 또한, 무기화된 세라믹 무기질은 산업용 등으로 사용될 수 있으므로, 자원 재활용의 효과가 있을 수 있다. Then, after igniting the charcoal, since the waste can be thermally decomposed without additionally supplying a further heat source into the furnace body 110, it may have an energy saving effect. In addition, since the inorganic mineralized ceramic minerals can be used for industrial purposes, there may be an effect of resource recycling.
한편, 노 본체(110) 내에서 폐기물의 열 분해 과정에서 생성된 분해가스는 집진기(140)를 통과하게 된다. 집진기(140)는 분해가스를 정화시켜 배출하는 한편, 분해가스 중에 함유된 재를 회수시킨다. 여기서, 회수된 재는 살균, 비료 등의 효능을 갖는 무기질로써 살균, 살충, 비료 등의 용도로 이용될 수 있다. On the other hand, the decomposition gas generated in the thermal decomposition process of the waste in the furnace body 110 passes through the dust collector 140. The dust collector 140 purifies and discharges the cracked gas and recovers the ash contained in the cracked gas. Here, the recovered ash may be used for the purpose of sterilization, insecticide, fertilizer, etc. as a mineral having efficacy of sterilization, fertilizer and the like.
음이온 산소 공급부(160)는 다양하게 구성될 수 있다. 일 예로, 음이온 산소 공급부(160)는 제1 공급관(161)들과, 제2 공급관(162)들과, 자화기(163)들, 및 밸브(164)들을 포함할 수 있다. 제1 공급관(161)들은 양단부가 각각 개구된 형태로 이루어진다. 제1 공급관(161)들은 노 본체(110)의 둘레를 따라 각 일단부가 노 본체(110)를 관통해서 설치된다. 제1 공급관(161)들은 노 본체(110)를 관통한 각 일단부가 노 본체(110) 내의 가장자리에 인접하게 배치되어, 노 본체(110) 내의 폐기물의 가장자리 쪽에 자화된 음이온 산소를 공급할 수 있다. 제1 공급관(161)들은 노 본체(110)의 둘레를 따라 상하 2열로 배치될 수 있다. The anion oxygen supply unit 160 may be configured in various ways. For example, the anion oxygen supply unit 160 may include first supply pipes 161, second supply pipes 162, magnetizers 163, and valves 164. Both ends of the first supply pipe 161 are formed to be open. Each of the first supply pipes 161 penetrates the furnace body 110 along the circumference of the furnace body 110. Each of the first supply pipes 161 penetrating the furnace body 110 may be disposed adjacent to the edge of the furnace body 110 to supply magnetized anion oxygen to the edge of the waste in the furnace body 110. The first supply pipes 161 may be arranged in two rows up and down along the circumference of the furnace body 110.
제2 공급관(162)들은 양단부가 각각 개구된 형태로 이루어진다. 제2 공급관(162)들은 각 일단부가 노 본체(110)를 관통해서 설치된다. 제2 공급관(162)들은 노 본체(110)를 관통한 각 일단부가 제1 공급관(161)들의 각 일단부보다 노 본체(110)의 중앙에 가깝게 배치되어, 노 본체(110) 내의 폐기물의 중앙 쪽에 자화된 음이온 산소를 원활히 공급할 수 있다. 제2 공급관(162)은 2개로 구비된 것으로 예시되어 있으나, 1개 또는 3개 이상으로 구비되는 것도 물론 가능하다.The second supply pipe 162 is formed in the form that both ends are opened. One end of each of the second supply pipes 162 is installed through the furnace body 110. Each of the second supply pipes 162 is disposed closer to the center of the furnace body 110 than each one end of the first supply pipes 161 passes through the furnace body 110 so that the second supply pipes 162 are disposed at the center of the waste in the furnace body 110. The magnetized anion oxygen can be smoothly supplied to the side. Although the second supply pipe 162 is illustrated as being provided in two, it is also possible to provide one or three or more.
자화기(163)들은 제1 공급관(161)들에 각각 설치된다. 자화기(163)들은 제1 공급관(161)들의 각 둘레를 감싸도록 설치될 수 있다. 자화기(163)들은 제1 공급관(161)들의 각 내부를 통과하는 외부 공기를 자화시켜 자화된 음이온 산소를 발생시킨다. 자화기(163)는 영구자석들을 포함할 수 있다. 영구자석들은 제1 공급관(161)의 내부를 통과하는 외부 공기를 자화시켜 음이온 산소를 발생시킬 수 있는 배열 형태 및 자력을 갖도록 구성되어, 제1 공급관(161)의 둘레에 배치될 수 있다. 이와 마찬가지로, 자화기(163)들은 제2 공급관(162)들에 각각 설치되어, 제2 공급관(162)들의 각 내부를 통과하는 외부 공기를 자화시켜 자화된 음이온 산소를 발생시킬 수 있다. The magnetizers 163 are respectively installed in the first supply pipes 161. The magnetizers 163 may be installed to surround each circumference of the first supply pipes 161. The magnetizers 163 generate magnetized anion oxygen by magnetizing external air passing through each inside of the first supply pipes 161. The magnetizer 163 may include permanent magnets. The permanent magnets are configured to have an arrangement and magnetic force capable of magnetizing external air passing through the inside of the first supply pipe 161 to generate anion oxygen, and may be disposed around the first supply pipe 161. Similarly, the magnetizers 163 may be installed in the second supply pipes 162, respectively, to magnetize the external air passing through the respective interiors of the second supply pipes 162 to generate magnetized anion oxygen.
밸브(164)들은 제1,2 공급관(161)(162)들에 각각 설치된다. 밸브(164)들은 제1,2 공급관(161)(162)들을 통해 노 본체(110)로 공급되는 자화된 음이온 산소의 유량을 조절한다. 자화된 음이온 산소는 노 본체(110) 내에서 숯의 연소와 폐기물의 열 분해 과정에서 제1,2 공급관(161)(162)들을 통해 노 본체(110) 내로 자연스레 유입되는데, 밸브(164)들의 각 개폐 여부에 따라, 자화된 음이온 산소가 제1,2 공급관(161)(162)들을 통해 노 본체(110)로 공급 또는 차단될 수 있다. 또한, 밸브(164)들의 각 개도 조절에 의해, 자화된 음이온 산소가 제1,2 공급관(161)(162)들을 통해 노 본체(110)로 공급되는 유량이 조절될 수 있다. The valves 164 are installed in the first and second supply pipes 161 and 162, respectively. The valves 164 regulate the flow rate of magnetized anion oxygen supplied to the furnace body 110 through the first and second supply pipes 161 and 162. The magnetized anion oxygen naturally flows into the furnace body 110 through the first and second supply pipes 161 and 162 during the combustion of charcoal and thermal decomposition of the waste in the furnace body 110. Depending on whether each of the opening and closing, magnetized anion oxygen may be supplied to or blocked by the furnace body 110 through the first and second supply pipes (161, 162). In addition, by adjusting the opening degree of the valves 164, the flow rate of the magnetized anion oxygen is supplied to the furnace body 110 through the first and second supply pipes 161 and 162 may be adjusted.
집진기(140)는 제1 집진부(141) 및 제2 집진부(146)를 포함할 수 있다. The dust collector 140 may include a first dust collector 141 and a second dust collector 146.
도 4를 참조해서 설명하면, 제1 집진부(141)는 펌프 등에 의해 순환수를 공급받아 제1 배출 홀(142a)을 통해 배출한다. 제1 집진부(141)는 분해가스 배출구(112)를 통해 공급받은 분해가스에 순환수를 분사한다. 예컨대, 제1 집진부(141)는 다수의 노즐들을 구비한 노즐 관체(143)를 포함할 수 있다. 노즐 관체(143)는 펌프로부터 송출된 순환수를 공급받아 노즐들을 통해 제1 집진부(141) 내의 분해가스로 순환수를 분사할 수 있다. Referring to FIG. 4, the first dust collecting unit 141 receives circulating water by a pump or the like and discharges it through the first discharge hole 142a. The first dust collector 141 injects the circulating water to the cracked gas supplied through the cracked gas outlet 112. For example, the first dust collecting unit 141 may include a nozzle tube 143 having a plurality of nozzles. The nozzle tube 143 may receive the circulating water sent from the pump and inject the circulating water into the decomposition gas in the first dust collecting unit 141 through the nozzles.
제1 집진부(141)는 분해가스로 순환수를 분사함에 따라, 내부 순환수 위에 분리되어 부양된 재를 제1 배출 홀(142a)보다 상측에 위치한 제1 회수 홀(142b)을 통해 회수조로 회수시킴과 아울러 잔존 분해가스를 배기한다. As the first dust collecting part 141 injects the circulating water to the decomposition gas, the ash separated and buoyant on the internal circulating water is recovered to the recovery tank through the first recovery hole 142b located above the first discharge hole 142a. In addition, the remaining cracked gas is exhausted.
즉, 분해가스 중 재는 순환수와 함께 제1 집진부(141)의 하부로 낙하되며, 제1 집진부(141)의 내부 순환수 위에 분리되어 부양된다. 제1 집진부(141)의 내부 순환수는 제1 배출 홀(142a)을 통해 배출된 후 펌프에 의해 제1 집진부(141)로 다시 송출된다. 부양된 재는 제1 배출 홀(142a)보다 상측에 위치한 제1 회수 홀(142b)의 높이까지 상승하게 되면, 제1 회수 홀(142b)을 통해 회수조(미도시)로 회수된다. 제1 집진부(141) 내의 잔존 분해가스는 제2 집전부(146)로 배출된다. That is, the ash in the cracked gas falls to the lower portion of the first dust collecting part 141 together with the circulating water, and is separated and supported on the internal circulation water of the first dust collecting part 141. The internal circulating water of the first dust collecting part 141 is discharged through the first discharge hole 142a and then sent back to the first dust collecting part 141 by a pump. The buoyant ash is recovered to a recovery tank (not shown) through the first recovery hole 142b when the ash is raised to the height of the first recovery hole 142b located above the first discharge hole 142a. The remaining cracked gas in the first dust collector 141 is discharged to the second collector 146.
제2 집진부(146)는 순환수를 공급받아 제2 배출 홀(147a)을 통해 배출한다. 제2 집진부(146)는 제1 집진부(141)로부터 공급받은 잔존 분해가스에 순환수를 분사한다. 잔존 분해가스에 순환수를 분사하기 위해 전술한 구조와 유사한 노즐 관체(148)가 이용될 수 있다. The second dust collecting part 146 receives the circulating water and discharges it through the second discharge hole 147a. The second dust collector 146 injects the circulating water to the remaining cracked gas supplied from the first dust collector 141. A nozzle tube 148 similar to the structure described above may be used to inject circulating water into the remaining cracked gas.
제2 집진부(146)는 잔존 분해가스로 순환수를 분사함에 따라 내부 순환수 위에 분리되어 부양된 재를 제2 배출 홀(147a)보다 상측에 위치한 제2 회수 홀(147b)을 통해 제1 집진부(141)로 회수시킴과 아울러 잔존 분해가스를 배기한다. The second dust collecting part 146 separates and floats the floated ash above the internal circulating water as the circulating water is injected into the residual decomposition gas through the second collecting hole 147b located above the second discharge hole 147a. And the remaining cracked gas is exhausted.
즉, 잔존 분해가스 중 재는 순환수와 함께 제2 집진부(146)의 하부로 낙하되며, 제2 집진부(146)의 내부 순환수 위에 분리되어 부양된다. 제2 집진부(146)의 내부 순환수는 제2 배출 홀(147a)을 통해 배출된 후 펌프에 의해 제2 집진부(146)로 다시 송출된다. 부양된 재는 제2 배출 홀(147a)보다 상측에 위치한 제2 회수 홀(147b)의 높이까지 상승하게 되면, 제2 회수 홀(147b)을 통해 제1 집진부(141)로 회수된 후, 제1 집진부(141)에서 분리된 재와 함께 회수조로 회수된다. 제2 집진부(146) 내의 잔존 분해가스는 배기된다. That is, the remaining cracked gas falls with the circulating water to the lower portion of the second dust collecting part 146 and is separated and supported on the internal circulating water of the second dust collecting part 146. The internal circulating water of the second dust collecting part 146 is discharged through the second discharge hole 147a and then sent back to the second dust collecting part 146 by a pump. When the buoyant ash is raised to the height of the second recovery hole 147b located above the second discharge hole 147a, the ash is recovered to the first dust collecting part 141 through the second recovery hole 147b, and then the first ash is collected. The ash separated from the dust collector 141 is recovered to a recovery tank. The remaining cracked gas in the second dust collecting part 146 is exhausted.
이와 같이, 노 본체(110) 내에 발생된 분해가스는 제1,2 집진부(141)(146)를 거치게 되므로, 노 본체(110) 내의 분해가스에 함유된 재는 최대한 걸러져서 회수될 수 있다. 그리고, 재가 걸러진 가스는 환경 기준을 충족할 수 있는 수준으로 정화되어 대기 중으로 배출될 수 있다. As such, since the cracked gas generated in the furnace body 110 passes through the first and second dust collectors 141 and 146, the ash contained in the cracked gas in the furnace body 110 may be recovered as much as possible. In addition, the ash-filtered gas can be purified to a level that can meet environmental standards and discharged to the atmosphere.
제2 집진부(146)로부터 배기되는 잔존 분해가스를 더 정화시키기 위해, 도 1에 도시된 바와 같이, 하나 이상의 추가적인 집진부(149)가 마련될 수 있다. 추가적인 집진부(149)는 제1,2 집진부(141)(146)와 동일한 방식으로 분해가스로부터 재를 분리해서 수거할 수 있으며, 여과재 등과 같은 여과 수단을 더 포함하여 구성될 수도 있다. In order to further purify the residual cracked gas exhausted from the second dust collector 146, as shown in FIG. 1, one or more additional dust collectors 149 may be provided. The additional dust collector 149 may separate and collect ash from the cracked gas in the same manner as the first and second dust collectors 141 and 146, and may further include filtration means such as a filter medium.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Could be. Accordingly, the true scope of protection of the invention should be defined only by the appended claims.

Claims (3)

  1. 내부 공간을 갖고, 상면에 폐기물 투입구와 분해가스 배출구가 형성되며, 측면에 적어도 하나의 재(ash) 배출구가 형성된 노 본체;A furnace body having an inner space, a waste inlet and a decomposition gas outlet are formed on an upper surface thereof, and at least one ash outlet is formed on a side surface thereof;
    상기 폐기물 투입구를 개폐하는 투입구 도어;An inlet door for opening and closing the waste inlet;
    상기 재 배출구를 개폐하는 배출구 도어;An outlet door for opening and closing the ash outlet;
    상기 분해가스 배출구에 설치되며, 상기 노 본체 내의 분해가스 중에 함유된 재를 모아서 회수하는 집진기;A dust collector installed at the decomposition gas outlet and collecting and collecting ash contained in the decomposition gas in the furnace body;
    상기 노 본체 내의 저면으로부터 이격되어 배치되고, 상하로 관통된 통공이 다수 형성된 타공 판; 및A perforated plate disposed to be spaced apart from a bottom surface of the furnace body and having a plurality of through holes penetrated vertically; And
    상기 노 본체 내에 위치한 상기 타공 판의 상측 영역 쪽으로 자화된 음이온 산소를 공급하는 음이온 산소 공급부;를 포함하는 음이온 산소를 이용한 용융로.And anion oxygen supply unit for supplying magnetized anion oxygen toward an upper region of the perforated plate located in the furnace main body.
  2. 제1항에 있어서, The method of claim 1,
    상기 음이온 산소 공급부는, The anion oxygen supply unit,
    양단부가 각각 개구되고, 상기 노 본체의 둘레를 따라 각 일단부가 상기 노 본체를 관통해서 설치되며, 상기 노 본체를 관통한 각 일단부가 상기 노 본체 내의 가장자리에 인접하게 배치된 제1 공급관들; First supply pipes each of which is open at both ends, one end of each of which passes through the furnace body along a circumference of the furnace body, and one end of the furnace body disposed adjacent to an edge in the furnace body;
    양단부가 각각 개구되고, 각 일단부가 상기 노 본체를 관통해서 설치되며, 상기 노 본체를 관통한 각 일단부가 상기 제1 공급관들의 각 일단부보다 상기 노 본체의 중앙에 가깝게 배치된 제2 공급관들;Second supply pipes each of which is open at both ends, one end of each of which penetrates the furnace body, and each one end of the furnace body is disposed closer to the center of the furnace body than each one of the first supply pipes;
    상기 제1,2 공급관들에 각각 설치되며, 상기 제1,2 공급관들의 각 내부를 통과하는 공기를 자화시켜 자화된 음이온 산소를 발생시키는 자화기들; 및Magnetizers installed in the first and second supply pipes, respectively, to magnetize air passing through each of the first and second supply pipes to generate magnetized anion oxygen; And
    상기 제1,2 공급관들에 각각 설치되며, 상기 제1,2 공급관들을 통해 상기 노 본체로 공급되는 음이온 산소의 유량을 조절하는 밸브들;을 포함하는 것을 특징으로 하는 음이온 산소를 이용한 용융로.Melting furnace using anion oxygen, characterized in that it comprises a; is installed in the first, second supply pipes, respectively, valves for adjusting the flow rate of anion oxygen supplied to the furnace body through the first, second supply pipes.
  3. 제1항에 있어서, The method of claim 1,
    상기 집진기는, The dust collector,
    순환수를 공급받아 제1 배출 홀을 통해 배출하며, 상기 분해가스 배출구를 통해 공급받은 분해가스에 순환수를 분사함에 따라 내부 순환수 위에 분리되어 부양된 재를 상기 제1 배출 홀보다 상측에 위치한 제1 회수 홀을 통해 회수조로 회수시킴과 아울러 잔존 분해가스를 배기하는 제1 집진부; 및Receiving the circulating water is discharged through the first discharge hole, the circulating water is injected into the decomposition gas supplied through the decomposition gas discharge port is separated above the internal circulating water and located on the upper side than the first discharge hole A first dust collecting part for recovering the recovery tank through the first recovery hole and exhausting the remaining decomposition gas; And
    순환수를 공급받아 제2 배출 홀을 통해 배출하며, 상기 제1 집진부로부터 공급받은 잔존 분해가스에 순환수를 분사함에 따라 내부 순환수 위에 분리되어 부양된 재를 상기 제2 배출 홀보다 상측에 위치한 제2 회수 홀을 통해 상기 제1 집진부로 회수시킴과 아울러 잔존 분해가스를 배기하는 제2 집진부;를 포함하는 것을 특징으로 하는 음이온 산소를 이용한 용융로.The circulating water is supplied and discharged through the second discharge hole, and the ash separated from the internal circulating water is disposed above the second discharge hole as the circulating water is injected into the residual decomposition gas supplied from the first dust collecting unit. And a second dust collecting part for recovering the first dust collecting part through a second recovery hole and exhausting the remaining decomposition gas.
PCT/KR2013/005059 2012-11-02 2013-06-10 Melting furnace using anion oxygen WO2014069738A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013005254.7T DE112013005254T5 (en) 2012-11-02 2013-06-10 Melting furnace with use of oxygen-containing anions
CN201380057676.8A CN104903648B (en) 2012-11-02 2013-06-10 Melting furnace using anion oxygen
US14/440,120 US20150308680A1 (en) 2012-11-02 2013-06-10 Melting furnace using anion oxygen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0123565 2012-11-02
KR1020120123565A KR101427337B1 (en) 2012-11-02 2012-11-02 Melting furnace using negative ion oxygen

Publications (1)

Publication Number Publication Date
WO2014069738A1 true WO2014069738A1 (en) 2014-05-08

Family

ID=50627612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005059 WO2014069738A1 (en) 2012-11-02 2013-06-10 Melting furnace using anion oxygen

Country Status (5)

Country Link
US (1) US20150308680A1 (en)
KR (1) KR101427337B1 (en)
CN (1) CN104903648B (en)
DE (1) DE112013005254T5 (en)
WO (1) WO2014069738A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157032B (en) * 2015-09-15 2017-06-06 鑫源昊(北京)环保能源科技有限公司 Magnetization cracking device
CN108105775A (en) * 2017-12-28 2018-06-01 昆明泊银科技有限公司 New and effective house refuse environmental protection magnetization incinerator apptss
CN109681883A (en) * 2018-12-26 2019-04-26 上海固类特企业管理有限责任公司 Magnetize Low Temperature Heat Treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082512A (en) * 1996-09-05 1998-03-31 Kurimoto Ltd Fluidized-bed incinerator for waste and incinerating method
KR19990078939A (en) * 1999-08-21 1999-11-05 송권규 Gas Reforming Combustional Incinerator
KR20030008950A (en) * 2001-07-21 2003-01-29 김성수 An incinerator
KR20030018535A (en) * 2001-08-30 2003-03-06 박원달 Dust separator and incinerator using the separator
KR20070039999A (en) * 2005-10-11 2007-04-16 주식회사 아이디어이츠 Exhaust purification apparatus of burning heat recycling chamber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983234A (en) * 1958-11-19 1961-05-09 Dravo Corp Incinerator and ash removal and gas scrubbing apparatus therefor
GB2150854B (en) * 1983-12-06 1987-09-16 Coal Ind Hot gas generation
US5548611A (en) * 1993-05-19 1996-08-20 Schuller International, Inc. Method for the melting, combustion or incineration of materials and apparatus therefor
CN2259403Y (en) * 1996-06-26 1997-08-13 朱显敏 Biomass negative-oxygen high-temp pyrolyzing gasification furnace
US6768087B2 (en) * 2001-04-02 2004-07-27 Masaichi Kikuchi Small ion-decomposing melting furnace
CN101306796B (en) * 2008-07-01 2010-10-27 周开根 Plasma gasification equipment for changing garbage raw material to be syngas of high heat value
CN102644923A (en) * 2012-05-15 2012-08-22 北京环卫集团环境研究发展有限公司 Household garbage and burning fly ash joint-disposal method and equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082512A (en) * 1996-09-05 1998-03-31 Kurimoto Ltd Fluidized-bed incinerator for waste and incinerating method
KR19990078939A (en) * 1999-08-21 1999-11-05 송권규 Gas Reforming Combustional Incinerator
KR20030008950A (en) * 2001-07-21 2003-01-29 김성수 An incinerator
KR20030018535A (en) * 2001-08-30 2003-03-06 박원달 Dust separator and incinerator using the separator
KR20070039999A (en) * 2005-10-11 2007-04-16 주식회사 아이디어이츠 Exhaust purification apparatus of burning heat recycling chamber

Also Published As

Publication number Publication date
KR20140056998A (en) 2014-05-12
DE112013005254T5 (en) 2015-10-08
CN104903648A (en) 2015-09-09
CN104903648B (en) 2017-03-01
US20150308680A1 (en) 2015-10-29
KR101427337B1 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
KR100846897B1 (en) Pyrolysis system for combustible waste disposal and method using the same
KR101762092B1 (en) Incinerator for low temperature decomposition of flammable waste
WO2014069738A1 (en) Melting furnace using anion oxygen
JP2008202845A (en) Combustible treatment equipment
KR100861800B1 (en) Trash burner
CN204276505U (en) A kind of debirs process magnetization degradation furnace
CN101195765B (en) Hot furnace
CN211255815U (en) Small cabinet type garbage low-temperature pyrolysis system
KR20170104122A (en) a low-temperature thermal decomposition incinerator controlled by a magnetic field-dependent impact ionization process
KR20170017492A (en) Apparatus for treating medical waste
CN207049929U (en) A kind of novel waste heat utilizes type incinerator
KR101044841B1 (en) Combustible waste disposal system using carbonizing furnace
CN211502804U (en) Continuous high-efficient green hazardous waste burns non-shrend processing apparatus of waste residue
CN107676790A (en) A kind of pyrolysis oven sets energy ball, tail gas tower sets magnetic field and electrostatic device pyrolysis device for life refuse
CN210921409U (en) Low-temperature pyrolysis, oxygen isolation, carbonization and secondary combustion integrated device for household garbage
CN210891659U (en) Dry pyrolysis incineration power generation system for municipal solid waste
KR101416679B1 (en) Carbonization device using high frequency for food waste and industrial waste
CN110173701B (en) Waste gas pyrolysis purification device
KR101472923B1 (en) Waste heat recovery boiler system
CN203923094U (en) Solid waste gasification process thermoelectricity integrated system
CN106352344A (en) Magnetized rubbish pyrolysis station
JP2020175347A (en) Organic matter decomposer
CN110822447A (en) Continuous high-efficient green hazardous waste burns non-shrend processing apparatus of waste residue
CN217032070U (en) Combustion chamber flue gas discharging device for rotary kiln
KR102603590B1 (en) Waste incineration and treatment equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440120

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130052547

Country of ref document: DE

Ref document number: 112013005254

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201503207

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13851974

Country of ref document: EP

Kind code of ref document: A1