JPH1082512A - Fluidized-bed incinerator for waste and incinerating method - Google Patents

Fluidized-bed incinerator for waste and incinerating method

Info

Publication number
JPH1082512A
JPH1082512A JP25768496A JP25768496A JPH1082512A JP H1082512 A JPH1082512 A JP H1082512A JP 25768496 A JP25768496 A JP 25768496A JP 25768496 A JP25768496 A JP 25768496A JP H1082512 A JPH1082512 A JP H1082512A
Authority
JP
Japan
Prior art keywords
chamber
pyrolysis
gas
waste
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25768496A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Okumura
勝良 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP25768496A priority Critical patent/JPH1082512A/en
Publication of JPH1082512A publication Critical patent/JPH1082512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide apparatus and method for extracting generated gas and oil having a composition ratio of a predetermined range and stable properties by satisfying both stable thermal decomposition and burning functions even if waste such as municipal refuse having relatively large change width of the properties is supplied. SOLUTION: A plurality of long vertical thermal decomposition cylinders 2 are stood along an outer wall of a long vertical cylindrical combustion tower 1 formed of a fluidized-bed combustion chamber 11 and a secondary combustion chamber 12. The cylinders 2 are intermittently divided into a waste S supply port 23, a preheating chamber 21, a thermal decomposition chamber 22 and an introducing chamber 23. The introducing chamber communicates with the chamber 11, and correlatively assembles routes for supplying, exhausting, recovering and its controlling heated air A, exhaust gas G1 and product and devices and units and the like. The exhaust gas G1 is mixed with the air A, or solely supplied to the chamber 22. The waste S is thermally decomposed by agitating by conduction heat and gas supply from an outer wall of a combustion furnace to generate gas and the like. The residual thermal decomposition matter R is quantitatively and qualitatively supplied to the chamber 11 and completely burned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は都市ごみなどの廃棄
物を焼却処分する炉装置とその焼却方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace apparatus for incinerating waste such as municipal waste and a method for incinerating the same.

【0002】[0002]

【従来の技術】都市ごみなどの廃棄物の処理について
は、全体のほぼ74%が焼却によって行なわれている
が、単に焼却処理するだけではなく、処理工程で発生す
るガスや油類を抽出して再資源化するための多くの技術
が実施されている。基本的には廃棄物を熱分解して再利
用するのであるが、熱分解の方法としては3通りに大別
され、外熱式、内熱式および熱媒体式があり、それぞれ
の長短が論じられている。
2. Description of the Related Art Although about 74% of the entire waste is treated by incineration, not only incineration but also extraction of gases and oils generated in the treatment process. Many technologies are being implemented for recycling. Basically, waste is thermally decomposed and reused. Thermal decomposition methods are roughly classified into three types: external heating, internal heating, and heating medium. Have been.

【0003】前記の3通りの熱分解方式の何れを選択す
るかについては、被処理物の性状、必要な処理量、回収
できる再資源物などを勘案して総合的に判断するのであ
るが、特に都市ごみなどは性状が一定でなく、形状、サ
イズ、成分、含水量および保有カロリーなど熱分解にお
ける条件が千差万別であり、最も適合しているのは前記
3方式のうちでも熱媒体式とされており、その代表的な
装置として流動床熱分解炉が挙げられる。都市ごみなど
の廃棄物の処理方法は、年々焼却処理のウエイトが高ま
っており、これに対処するには大量処理が可能で熱効率
が高く、処理速度も早い流動床炉方式がきわめて好適で
あることは衆目の一致するところであり、その中でも2
塔式の流動床熱分解炉がよく知られている。砂などを熱
媒体として廃棄物を混入させ、流動床熱分解炉で廃棄物
を熱分解して発生するガスおよび油を抽出し、熱分解物
(残渣)は熱媒体と共に流動床焼却炉に移送して焼却処
理を行なっている。
[0003] Which of the above three types of thermal decomposition methods to select is comprehensively determined in consideration of the properties of the material to be treated, the required amount of treatment, and the recyclable materials that can be recovered. In particular, municipal garbage and the like have irregular properties, and the conditions for thermal decomposition such as shape, size, components, water content and calories are various, and the most suitable is the heat medium among the above three methods. A typical example of such a device is a fluidized bed pyrolysis furnace. The weight of incineration is increasing year by year in the treatment of waste such as municipal solid waste. To cope with this, a fluidized-bed furnace system that can process large quantities, has high thermal efficiency, and has a high processing speed is extremely suitable. Is in agreement with the public eye, and among them, 2
Tower fluidized bed pyrolysis furnaces are well known. Waste is mixed with sand etc. as heat medium, gas and oil generated by pyrolysis of waste in fluidized bed pyrolysis furnace are extracted, and pyrolysis products (residue) are transferred to fluidized bed incinerator together with heat medium. Incineration process.

【0004】しかし、この2塔式の熱分解と燃焼の工程
を連続した機能の焼却炉も、技術的に完成したレベルに
達したとは言えず、たとえば2塔間を連結している熱媒
体循環路における熱媒体と残渣による摩耗や腐食なども
指摘されるが、何よりも安定的に熱分解と燃焼とを両立
させるためには、2塔間の温度差と圧力差を一定範囲内
に制御することが特に必要であり、その条件として定
性、定量の廃棄物の供給を必要とするので、そのための
前処理工程と適合する定量供給装置が求められ、且つ前
記の制御を具現化するための複雑なシステムを必要とす
る。
[0004] However, the incinerator having the function of continuously performing the pyrolysis and combustion processes of the two-column system has not reached the technically completed level. For example, a heating medium connecting the two columns is required. Wear and corrosion caused by the heat medium and residue in the circulation path are pointed out, but above all, in order to stabilize both pyrolysis and combustion, the temperature difference and pressure difference between the two towers are controlled within a certain range. It is particularly necessary to supply qualitative and quantitative waste as its condition, so a quantitative supply device compatible with the pretreatment process is required, and it is necessary to implement the above control. Requires complex systems.

【0005】熱分解と燃焼の機能を並立した従来の改良
技術の一例として図4の特開昭55−162384号公
報を見ると、熱媒体を2塔間に循環させないで、並立す
る2基の炉本体101Aと101Bを一定時間の間隔
で、熱分解作用と燃焼作用の両方の操作が行なえるよう
に交互に運転して都市ゴミなどの廃棄物を熱分解と焼却
を行ない、高発熱量のガスおよび油が得られる熱分解方
法を提示している。この構成であれば熱媒体循環路が無
くなり、2塔間の温度差と圧力差の制御などの複雑な操
作が不必要であり、燃焼のときには炉に空気を供給し、
熱分解のときには空気を供給しない切り換え操作だけで
足りるから、運転管理も制御操作も容易であるとしてい
る。
[0005] As an example of a conventional improved technique having the functions of pyrolysis and combustion at the same time, see Japanese Patent Application Laid-Open No. 55-162384 in FIG. The furnace bodies 101A and 101B are alternately operated at regular intervals so that both the pyrolysis operation and the combustion operation can be performed, thereby thermally decomposing and incinerating waste such as municipal garbage. A pyrolysis process from which gas and oil are obtained is presented. With this configuration, there is no heat medium circulation path, and complicated operations such as control of the temperature difference and pressure difference between the two towers are unnecessary. During combustion, air is supplied to the furnace,
In the case of thermal decomposition, only a switching operation that does not supply air is sufficient, so that operation management and control operation are easy.

【0006】また、1塔2室式で熱分解と燃焼の2機能
を併せ具えた流動床焼却炉の改善策としては、図5の特
開昭52−47923号公報の従来技術があり、都市ゴ
ミなどの廃棄物を無酸素状態の流動化ガスによって熱分
解させる室203と、熱分解後の残渣を酸素含有の流動
化ガスによって燃焼させる室201の2室式の流動床熱
分解炉として、2室を隔てる上下動可能な仕切板202
と各流動床炉の内壁面の接線方向に流動化ガスを噴出さ
せる噴出ノズル204を有するので、仕切板の開度と噴
出ノズルの操作コントロールによって稼働状態を最適に
できるので、高カロリの生成ガスおよび油を得ることが
でき、従来法の2塔式流動床に比較して操作が簡単で、
熱効率が優れているとしている。
As a measure for improving a fluidized bed incinerator having two functions of pyrolysis and combustion in a one-column two-chamber system, there is a conventional technique disclosed in Japanese Patent Application Laid-Open No. 52-47923 in FIG. As a two-chamber fluidized bed pyrolysis furnace, a chamber 203 for pyrolyzing waste such as garbage with an oxygen-free fluidized gas and a chamber 201 for burning the pyrolyzed residue with a fluidized gas containing oxygen. Up and down movable partition plate 202 separating two chambers
And a jet nozzle 204 for jetting fluidized gas in the tangential direction of the inner wall surface of each fluidized-bed furnace, so that the operating state can be optimized by controlling the opening of the partition plate and the operation of the jet nozzle. And oil can be obtained, and the operation is simple compared to the conventional two-column fluidized bed.
It says that the thermal efficiency is excellent.

【0007】[0007]

【発明が解決しようとする課題】都市ゴミなどの廃棄物
を熱分解し、焼却処理をする流動床焼却炉の要件として
は、熱分解温度を一定の範囲内に制御することにより、
有効な生成ガスと油を抽出することができる。さらに熱
分解後の定性な残渣を定量的に焼却炉に投入することで
安定的な燃焼が維持でき燃焼温度の管理がしやすいの
で、有毒ガス発生の防止と完全燃焼が達成できる。この
要件を満たすために流動床焼却炉へ廃棄物を投入する前
工程にて、廃棄物の性状を一定にする装置が必要とな
り、且つ重要なことは流動床熱分解炉へ定性な廃棄物を
定量、連続的に投入することと流動床焼却炉へも熱分解
物を定量の投入を行なうことで安定操業が可能となる。
The requirements of a fluidized-bed incinerator that pyrolyzes waste such as municipal waste and incinerates it include controlling the pyrolysis temperature within a certain range.
Effective product gas and oil can be extracted. Furthermore, by quantitatively charging the qualitative residue after the thermal decomposition into the incinerator, stable combustion can be maintained and the combustion temperature can be easily controlled, thereby preventing toxic gas generation and achieving complete combustion. In order to satisfy this requirement, in the pre-process of charging waste into the fluidized bed incinerator, it is necessary to have a device to make the properties of the waste constant, and it is important that the qualitative waste is sent to the fluidized bed pyrolysis furnace. Stable operation becomes possible by quantitatively and continuously charging the thermal decomposition products into the fluidized bed incinerator.

【0008】しかしながら、この安定操業の前提である
流動層への定性、定量の廃棄物の供給という前提はきわ
めて困難な課題であり、従来技術の何れにおいても解決
したとは言い難い。一般に定型的な2塔式の流動床焼却
炉では、両塔を連結する熱媒体循環路を具え、熱分解と
燃焼の両反応を複雑なシステムによって温度制御と圧力
制御を通じて安定した運転を持続しようとするが、設備
費の高騰とメンテナンスの負担増は免れず、経済的な負
担が意外に大きく加重されることは否定できない。
[0008] However, the premise of supplying qualitative and quantitative waste to the fluidized bed, which is the premise of the stable operation, is a very difficult problem, and it cannot be said that any of the conventional techniques has been solved. In general, a typical two-column fluidized bed incinerator is equipped with a heat medium circuit connecting the two towers to maintain stable operation through both temperature control and pressure control of both reactions of pyrolysis and combustion by a complex system. However, it is inevitable that soaring equipment costs and maintenance burdens are inevitable, and that the economic burden is unexpectedly greatly increased.

【0009】図4に示した従来技術は熱媒体の循環を行
なわないことによって2塔式の課題の解決を目指したも
であるが、熱分解炉と焼却炉の作用を交互に働くように
切り換えることを要旨とするから、それぞれの炉につい
て見れば、両作用が非連続的に行なわれることは本質的
に免れず、運転によって熱分解ガス、チャ、生成油、燃
焼ガスなどが非連続的に発生し、突然炉況が大きく変動
すれば回収する生成ガスの性状と量も大きく変動し、こ
れらを回収して運転用のボイラなどの熱源として再利用
する構成であれば、安定した運転ができなくなる懸念が
高い。不安定な操業は装置自体の故障を誘発する原因と
もなりやすく、特に供給される廃棄物の性状(含水率、
燃焼カロリ、サイズなど)や供給量を一定範囲内に制約
しなければ交互に切り替える機能を達成することは至難
である。さらに、熱分解炉において熱分解温度を一定の
範囲内に保つ方法、且つ焼却炉で安定的な燃焼によって
燃焼温度を一定の範囲内に保つ方法がなければ有効な生
成ガス、油の抽出が不可能であり排ガスについても有毒
ガスの発生に繋がることとなる。
The prior art shown in FIG. 4 aims at solving the problem of the two-column system by not circulating the heat medium, but switches the operation of the pyrolysis furnace and the incinerator so that they work alternately. From the point of view of each furnace, it is essentially unavoidable that both operations are performed discontinuously, and pyrolysis gas, tea, generated oil, combustion gas, etc. If the reactor conditions suddenly fluctuate greatly, the properties and quantity of the generated gas will also fluctuate greatly.If the system is configured to recover and reuse it as a heat source such as a boiler for operation, stable operation can be achieved. There is a high concern that it will disappear. Unstable operations can easily cause equipment failures, especially the nature of the waste supplied (water content,
It is extremely difficult to achieve the function of alternately switching unless the amount of combustion calorie, size, etc.) and supply amount are restricted within a certain range. Further, unless there is a method of keeping the pyrolysis temperature within a certain range in a pyrolysis furnace and a method of keeping the combustion temperature within a certain range by stable combustion in an incinerator, effective extraction of product gas and oil is not possible. It is possible and exhaust gas will also lead to the generation of toxic gas.

【0010】図5に示した従来技術では、供給装置から
投入される廃棄物の性状を、ある条件の基に限定してお
りその条件とは、収集した廃棄物を構成する組成が一定
で、固形燃料程度のサイズにあらかじめ成形、破砕およ
び乾燥する前工程が必要となる。確実に熱分解ができる
流動層を形成できるように廃棄物を予備処理することで
もって、生成ガスの組成率が一定範囲に収り有効な生成
ガスおよび油の抽出が可能となる。しかし、この効果を
実現するためには、熱分解温度を一定範囲内に制御しな
いと前記しているように、廃棄物を構成する組成が一定
であつても生成ガスの組成率が変化して再利用には適さ
ないガスとなり、さらに、運転初期段階においては別ラ
インから酸素を含まない流動化ガスを必要とし、その時
発生する生成ガスは当然の事ながら流動化ガスによって
希釈は免れない。従って運転初期に発生する生成ガスは
排出しなければならないし、さらに一定の熱分解温度範
囲内以外で発生した生成ガスを排出し、有効な生成ガス
のみを抽出する方法を講じなければ目的とする生成ガス
を得ることが出来ない。
In the prior art shown in FIG. 5, the properties of the waste supplied from the supply device are limited to a certain condition, which means that the composition of the collected waste is constant, A pre-process of forming, crushing and drying in advance to the size of a solid fuel is required. By pre-treating the waste so as to form a fluidized bed that can be reliably pyrolyzed, the composition ratio of the produced gas falls within a certain range, and effective extraction of the produced gas and oil becomes possible. However, in order to realize this effect, the composition ratio of the generated gas changes even if the composition of the waste is constant, as described above, unless the pyrolysis temperature is controlled within a certain range. It becomes a gas that is not suitable for reuse, and further requires a fluidizing gas that does not contain oxygen from another line in the initial stage of operation, and the generated gas generated at that time is inevitably diluted by the fluidizing gas. Therefore, the product gas generated in the early stage of operation must be discharged, and if the method of discharging only the product gas generated outside the certain pyrolysis temperature range and extracting only the valid product gas is used, the purpose is aimed. Product gas cannot be obtained.

【0011】本発明は以上の課題を解決するために、性
状の変動幅が比較的大きい都市ごみなどの廃棄物が供給
されても、安定した熱分解と燃焼の両機能を満足させ、
且つ組成率が一定範囲内の性状が安定した生成ガスおよ
び油を抽出できる装置と方法の提供を目的とする。
In order to solve the above problems, the present invention satisfies both the functions of stable pyrolysis and combustion even when waste such as municipal solid waste having a relatively large variation in properties is supplied.
Further, it is an object of the present invention to provide an apparatus and a method capable of extracting a product gas and an oil whose composition ratio is within a certain range and whose properties are stable.

【0012】[0012]

【課題を解決するための手段】本発明に係る廃棄物の流
動床焼却炉は、熱分解部と燃焼部を併せ具えた型式に属
し、流動床燃焼室11と二次燃焼室12で形成する縦長
筒状の燃焼塔1の外壁に添って複数の縦長の熱分解筒2
を立設し、該熱分解筒2は廃棄物Sの供給口24、予熱
室21、熱分解室22および投入室23とに断続自在に
分割し、前記流動床燃焼室11へ投入室23が連通する
と共に、加熱空気A、排ガスG1、生成物Pに関わる給
気ライン3、排出ライン4および回収ライン5とその制
御を行なう系路と機器類を相関的に組み込んだことを構
成上の特徴とする。
A fluidized bed incinerator for waste according to the present invention belongs to a type having a pyrolysis section and a combustion section, and is formed by a fluidized bed combustion chamber 11 and a secondary combustion chamber 12. A plurality of vertically elongated pyrolysis tubes 2 are provided along the outer wall of a vertically elongated combustion tower 1.
The pyrolysis tube 2 is divided into a supply port 24 for waste S, a preheating chamber 21, a pyrolysis chamber 22 and a charging chamber 23 so as to be intermittent, and the charging chamber 23 is connected to the fluidized bed combustion chamber 11. In addition to the communication, the air supply line 3, the exhaust line 4, and the recovery line 5 relating to the heated air A, the exhaust gas G1, and the product P, and the correlated system and equipment for controlling them are incorporated in a correlated manner. And

【0013】この基本的な構成に基づいて、雑多な性状
の都市ごみなどの廃棄物が収集された状態で処理場へ搬
入された後の過程を辿ると、廃棄物Sは複数の縦長の熱
分解筒2の供給口24に投与し、適宜に予熱室21へ供
給され、予熱による乾燥によって含水分を蒸発させ、つ
ぎに熱分解室22へ送られて熱分解作用を受け、定性化
した熱分解物Rは投入室23から流動床燃焼室11へ定
量的に送り込んで熱媒体と流動層を形成して燃焼し、さ
らに未燃分は上方の二次燃焼室12にて完全に燃焼す
る。
[0013] Based on this basic configuration, when the waste S such as municipal waste having various properties is collected and transported to the treatment plant in a collected state, the waste S is composed of a plurality of vertically elongated heat. The dope is supplied to the supply port 24 of the decomposition tube 2, is supplied to the preheating chamber 21 as appropriate, evaporates the water content by drying by preheating, and is then sent to the pyrolysis chamber 22 to receive the thermal decomposition action and to qualify the heat. The decomposition products R are quantitatively sent from the charging chamber 23 to the fluidized bed combustion chamber 11 to form a fluidized bed with the heat medium and burn, and the unburned components are completely burned in the upper secondary combustion chamber 12.

【0014】本発明の前記構成の流動床焼却炉による廃
棄物の焼却方法の特徴は、縦長筒状の燃焼塔1内で燃焼
時に発生する排ガスG1と加熱空気Aを分配弁35で混
合し、または排ガスG1単独で該燃焼塔1の外壁に添っ
て立設した複数の熱分解筒2の熱分解室22へ給気し、
燃焼塔の外壁からの伝導熱と給気による攪拌によって熱
分解温度を600〜700℃の範囲に制御して熱分解を
行ない、さらに熱分解物Rを、投入室23に具えている
プッシャ25によって燃焼塔1の流動床燃焼室11へ定
量供給することにあり、燃焼塔1の外壁に添って複数の
熱分解筒を立設していることにより、流動床焼却炉の能
力に適合した被処理物の定量供給が可能となる。つぎに
定量供給によって安定した流動層を形成し、二次燃焼室
12の作用と相俟って残った熱分解物も容易に完全燃焼
することにより有毒ガスの発生を抑制でき、熱分解温度
を一定範囲内に制御して熱分解を行ない廃棄物Sから有
効な生成ガスG2と生成油Oを抽出して再資源化できる
ことが他の従来技術に比較しての特徴であり、このこと
によって課題を解決することができる。
A feature of the method for incinerating waste by the fluidized bed incinerator having the above-mentioned structure according to the present invention is that the exhaust gas G1 generated at the time of combustion in the vertically long cylindrical combustion tower 1 and the heated air A are mixed by the distribution valve 35, Alternatively, the exhaust gas G1 alone is supplied to the pyrolysis chamber 22 of the plurality of pyrolysis cylinders 2 erected along the outer wall of the combustion tower 1,
The thermal decomposition temperature is controlled within the range of 600 to 700 ° C. by the conduction heat from the outer wall of the combustion tower and the agitation by the air supply, and the thermal decomposition is performed. The purpose is to supply a fixed amount to the fluidized bed combustion chamber 11 of the combustion tower 1, and a plurality of pyrolysis tubes are erected along the outer wall of the combustion tower 1, so that the treatment target adapted to the capacity of the fluidized bed incinerator is provided. It is possible to supply a fixed amount of the product. Next, a stable fluidized bed is formed by the quantitative supply, and the remaining pyrolysis products are easily and completely burned in combination with the operation of the secondary combustion chamber 12, whereby generation of toxic gas can be suppressed, and the pyrolysis temperature can be reduced. It is a feature in comparison with other conventional technologies that thermal decomposition can be performed within a certain range and effective product gas G2 and product oil O can be extracted from waste S and recycled. Can be solved.

【0015】[0015]

【発明の実施の形態】以下の構成は、前記基本的構成を
具現化するに当り最も望ましい実施の形態を示すもので
あるが、基本構成が一致する限り他の形態であっても差
し支えないことは言うまでもない。まず、熱分解筒2に
関しては断面がほぼ矩形の縦長の筒体よりなり、上方よ
り供給口24、予熱室21、熱分解室22および底部に
流動床燃焼室11へ熱分解物Rを投入するプッシャ25
を具えた投入室23が、それぞれ水平方向に進退自在に
開閉する扉体26、27および28によって分割され、
該熱分解室22には加熱空気Aおよび/または排気ライ
ン4から回収された排ガスG1を混合した給気ライン3
と、生成ガスG2および生成油Oよりなる生成物Pの回
収ライン5とが接続している。熱分解筒2は縦長筒体の
流動床燃焼塔1の外壁に添って複数配置されている。た
とえば流動床燃焼室が円筒体であれば、その外周を均等
に4〜6等分に分割した位置に立設し、それぞれが独立
した熱分解筒の機能を有している。最初に投与される都
市ごみなどの性状は、ある程度のバラツキが避け難い
が、各熱分解筒内で独立して予熱され熱分解され、それ
ぞれが接続する給気ライン3、排気ライン4および回収
ライン5の制御によって最適の条件となるようにそれぞ
れ個々に反応がコントロールされるから、投入室から流
動床燃焼室へ移る時点では、どの熱分解筒からもほぼ定
性の熱分解物に同化されて流動層へ受け継がれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following configuration shows the most preferred embodiment for realizing the above-mentioned basic configuration, but other configurations may be used as long as the basic configuration matches. Needless to say. First, the thermal decomposition cylinder 2 is formed of a vertically long cylindrical body having a substantially rectangular cross section, and the thermal decomposition product R is introduced into the fluidized bed combustion chamber 11 from above in the supply port 24, the preheating chamber 21, the thermal decomposition chamber 22, and the bottom. Pusher 25
Is divided by doors 26, 27 and 28 which open and close so as to be able to advance and retreat in the horizontal direction, respectively.
In the pyrolysis chamber 22, an air supply line 3 mixed with heated air A and / or exhaust gas G 1 recovered from an exhaust line 4 is provided.
And a recovery line 5 for a product P composed of a product gas G2 and a product oil O. A plurality of pyrolysis cylinders 2 are arranged along the outer wall of the fluidized bed combustion tower 1 which is a vertically long cylindrical body. For example, if the fluidized-bed combustion chamber is a cylindrical body, its outer periphery is set up at positions equally divided into 4 to 6 equal parts, and each has the function of an independent pyrolysis cylinder. The properties of municipal solid waste and the like to be administered first are inevitable to some extent, but are preheated and pyrolyzed independently in each pyrolysis cylinder, and are connected to the supply line 3, exhaust line 4, and recovery line. Since the reactions are individually controlled so that the optimum conditions are obtained by the control of step 5, at the time of transfer from the charging chamber to the fluidized bed combustion chamber, any pyrolysis cylinder is assimilated into almost qualitative pyrolysis products and flows. Passed down to layers.

【0016】この場合、配管系統について言えば、給気
ライン3は一端が熱分解室22の下方両側面で均等に開
口する多数のノズル29へ連通し、分岐した他の一端は
前記流動床燃焼室11の底部である炉床14を貫通する
多数の噴出口15を具えた空気箱13へ連通しおり、ま
た、排気ライン4は燃焼塔1の頂部開口部16に連結し
てサイクロン41、熱交換機42を経由して分配弁35
で別に送気された加熱空気Aと合流する再利用の系路4
3と、前記分配弁35以前で分岐して集塵装置44を経
由して放出する系路45とよりなり、回収ライン5は、
熱交換機51、気液分離機52、ガス濃度検出計53を
経て分配弁54で有効な生成ガスG2を回収する系路5
5と、不用なガスを排出する系路57よりなる構成が望
ましい実施の形態である。
In this case, regarding the piping system, one end of the air supply line 3 communicates with a number of nozzles 29 which are uniformly opened on both lower sides of the pyrolysis chamber 22, and the other end of the branch is connected to the fluidized bed combustion. It communicates with an air box 13 having a large number of outlets 15 which penetrate a hearth 14 which is the bottom of the chamber 11, and the exhaust line 4 is connected to a top opening 16 of the combustion tower 1 and a cyclone 41, a heat exchanger Distribution valve 35 via 42
Of reuse 4 which merges with the heated air A sent separately
3 and a system line 45 that branches off before the distribution valve 35 and discharges through the dust collecting device 44.
A system 5 for recovering an effective product gas G2 at a distribution valve 54 via a heat exchanger 51, a gas-liquid separator 52, and a gas concentration detector 53.
5 and a system 57 for discharging unnecessary gas is a preferred embodiment.

【0017】前記のガス配管系統の構成によって、二次
燃焼室12で完全燃焼した後に炉頂から回収した排出ガ
スから砂などの熱媒体を分離して排ガスG1とするが、
運転初期段階にあっては、該排ガスG1の発生量が少な
いため、別ラインから導入した加熱空気Aと排ガスG1
を分配弁35で混合して熱分解室22に給気し、流動床
燃焼室11の運転進行に伴って漸次、前記加熱空気Aの
混合量を減少して排ガスG1の量を増大し、加熱空気A
によって生成ガスG2が希釈するのを防止し、且つ熱分
解室22での熱分解温度を600〜700℃に制御し
て、その範囲内で発生した生成ガスを有効な生成ガスG
2として回収し、前記温度以外の温度範囲を検出したと
きに限り、自動的に生成ガスを別配管へ排出して、生成
ガスG2を構成する各種ガス成分の構成比率(組成率)
を常に一定範囲内に維持することにより、品質の安定し
たの生成ガスG2が得られるので再資源化が可能とな
る。
According to the configuration of the gas piping system described above, a heating medium such as sand is separated from exhaust gas collected from the furnace top after complete combustion in the secondary combustion chamber 12 to obtain an exhaust gas G1.
In the initial stage of operation, since the amount of the exhaust gas G1 generated is small, the heated air A introduced from another line and the exhaust gas G1
Is supplied to the pyrolysis chamber 22 by the distribution valve 35, and as the operation of the fluidized bed combustion chamber 11 progresses, the mixing amount of the heating air A is gradually decreased to increase the amount of the exhaust gas G1, Air A
Thus, the generated gas G2 is prevented from being diluted, and the pyrolysis temperature in the pyrolysis chamber 22 is controlled at 600 to 700 ° C., and the generated gas generated within the range is converted into the effective generated gas G.
2, and only when a temperature range other than the above temperature is detected, the generated gas is automatically discharged to another pipe, and the composition ratio (composition ratio) of various gas components constituting the generated gas G2
Is always kept within a certain range, so that the product gas G2 of stable quality can be obtained, so that the resource can be recycled.

【0018】[0018]

【実施例】図1は本発明の流動床焼却炉の縦断正面図お
よび運転時の制御に係る系統図であり、図2(A)は図
1のM−M矢視断面図、図2(B)は図1のN−N矢視
断面図を示す。図2(C)は熱分解室22に給気するノ
ズル部を拡大した断面図であり、図3は廃棄物Sが予熱
から流動床燃焼室に到達するまでの過程を表わす概略図
で(A)から(F)へ進行することを示す。
1 is a longitudinal sectional front view of a fluidized bed incinerator according to the present invention and a system diagram relating to control during operation. FIG. 2A is a sectional view taken along the line MM of FIG. B) is a cross-sectional view taken along the line NN of FIG. FIG. 2C is an enlarged cross-sectional view of a nozzle portion that supplies air to the pyrolysis chamber 22, and FIG. 3 is a schematic diagram illustrating a process from the preheating of the waste S to the fluidized bed combustion chamber (A). ) To (F).

【0019】図1において流動床焼却炉の中心に立設す
る筒状の燃焼塔1の外壁17に添って上方より供給口2
4、予熱室21、熱分解室22および投入室23を1ユ
ニットとして複数の熱分解筒2が立設する。その形態は
図2(A)(B)のように、たとえば燃焼塔1の外壁1
7の外周を6等分して5つのユニットを配設し、残りの
1分割部に熱媒体(たとえば珪砂)やチャなどの給排装
置6に使用するスペースに充てている。廃棄物Sが熱分
解筒2の頂部に設けた供給口24から予熱室21に供給
され、一定時間経過して流動床燃焼塔1の外壁17の伝
導熱によって該廃棄物Sが乾燥した後、熱分解室22へ
移行する。熱分解室は既にノズル29から噴出する加熱
空気Aによって昇温しており、且つこの噴出によって熱
分解室内の廃棄物は攪拌されながら噴出ガスの保有する
熱量や、流動床燃焼室および二次燃焼室の外壁の伝導熱
によって熱分解し、一定時間が経過した後、熱分解物
(残渣)は投入室23へ移行し、さらにプッシャ25が
作動して流動床燃焼室11の流動層内へ投入され、熱媒
体の珪砂に混入して急速に燃焼し、さらに燃焼ガスは上
昇して二次燃焼室12で完全燃焼する。
In FIG. 1, a supply port 2 is provided from above along an outer wall 17 of a cylindrical combustion tower 1 erected at the center of a fluidized bed incinerator.
4. A plurality of pyrolysis tubes 2 are erected with the preheating chamber 21, the pyrolysis chamber 22, and the charging chamber 23 as one unit. The form is, for example, as shown in FIGS.
The outer periphery of 7 is divided into six equal parts, and five units are arranged, and the remaining one divided portion is used for a space used for the supply / discharge device 6 such as a heat medium (for example, silica sand) or tea. The waste S is supplied to the preheating chamber 21 from a supply port 24 provided at the top of the pyrolysis tube 2, and after a certain period of time, the waste S is dried by conduction heat of the outer wall 17 of the fluidized-bed combustion tower 1. The process moves to the pyrolysis chamber 22. The temperature of the pyrolysis chamber has already been raised by the heated air A spouted from the nozzle 29, and the wastes in the pyrolysis chamber are agitated by the spout, while the amount of heat held by the spouted gas, the fluidized bed combustion chamber and the secondary combustion After a certain period of time, the thermal decomposition product (residue) is transferred to the input chamber 23, and the pusher 25 is operated to input the thermal decomposition product (residue) into the fluidized bed of the fluidized bed combustion chamber 11. Then, it is mixed with the silica sand of the heat medium and burns rapidly, and the combustion gas further rises and completely burns in the secondary combustion chamber 12.

【0020】なお、運転の起動の段階では流動床燃焼室
11に対しては、助燃バーナ18を働かせて投入室から
押し込まれた熱分解物を燃焼するが、投入が始まって3
0分経過すればバーナを停止して熱分解物の自燃によっ
て完全に燃焼する。流動床燃焼室11へは、加熱装置3
1によって200〜250℃に昇温された加熱空気Aが
バルブ32によって給気量を調整して空気室13へ送り
込まれ、さらに炉床14を貫通する噴出口15から噴出
し、熱媒体と熱分解物がバブリングを起こして500〜
700℃で焼却するが、既に熱分解をして定性化した残
渣であるから容易に完全燃焼し、未燃ガスは二次燃焼室
12に達して完全に燃焼する。
At the start-up stage of the operation, the pyrolysis products pushed from the charging chamber are burned into the fluidized-bed combustion chamber 11 by operating the auxiliary burner 18, but the charging is started.
After 0 minutes, the burner is stopped and the pyrolysis product is completely burned by self-combustion. The heating device 3 is connected to the fluidized bed combustion chamber 11.
1, the heated air A heated to 200 to 250 ° C. is supplied to the air chamber 13 by adjusting the air supply amount by the valve 32, and is jetted from the jet port 15 penetrating through the hearth 14, and the heat medium and the heat Decomposed matter causes bubbling 500 ~
Although it is incinerated at 700 ° C., since it is a residue that has already been thermally decomposed and qualified, it is easily completely burned, and the unburned gas reaches the secondary combustion chamber 12 and is completely burned.

【0021】固形分の給排装置6について例示すると、
鉄分など流動床燃焼室内の不燃物Kは炉底の排出管61
からスクリュ排出機62によって取り出し、選別装置6
3で不燃物Kを分離排出する。熱媒体Bは系路64を経
由してブロワ65による空気輸送によって燃焼塔1の戻
入口66にリターンして再利用し、本来の熱媒体供給装
置67からの補充量を節減する経済効果を発揮する。な
お、流動層内での燃焼作用で未燃のチャCが残った場合
も、熱媒体Bと共に系路64を経由する空気輸送に乗っ
て戻入口66から炉内へ戻り、二次燃焼室12内で完全
燃焼を行なう。
The solid content supply / discharge device 6 is exemplified as follows.
The incombustible material K in the fluidized-bed combustion chamber such as iron is discharged to the discharge pipe 61 at the bottom of the furnace.
From the separator 6 by a screw discharger 62
At 3, the incombustibles K are separated and discharged. The heat medium B returns to the return port 66 of the combustion tower 1 by pneumatic transportation via the system path 64 by the blower 65 and is reused, thereby exhibiting the economic effect of reducing the original replenishment amount from the heat medium supply device 67. I do. Even when unburned char C remains due to the combustion action in the fluidized bed, the unburned char C is returned to the furnace from the return port 66 by air transport together with the heat medium B via the system passage 64, and the secondary combustion chamber 12 Complete combustion is performed within.

【0022】既に述べたように定性化した残渣は、焼却
室11で完全燃焼し発生するガスのほとんども完全燃焼
が達成できるが、しかし、微量に残る未燃ガスについて
は二次燃焼室22で約900℃を保持して完全燃焼させ
ることによって有毒ガスの発生を抑止している。しかし
温度が1000℃以上になるとNOX発生の虞れが出て
くるので冷却水Wを噴霧する噴水口19を設け、図示し
ない温度検知装置および制御盤と連動して公害発生を防
止するように図っている。
As described above, the qualified residue is completely burned in the incineration chamber 11 and almost all of the generated gas can be completely burned. However, a small amount of unburned gas remains in the secondary combustion chamber 22. The generation of toxic gas is suppressed by completely burning at about 900 ° C. However, since the temperature comes out is the possibility of comprising the NO X occurs more than 1000 ° C. provided fountain port 19 for spraying cooling water W, in conjunction with the temperature sensing unit and a control panel (not shown) to prevent air pollution I'm trying.

【0023】配管系統とその制御回路は本発明の実施
上、重要な要素である。給気ライン3について説明すれ
ば、加熱装置31を経由した加熱空気Aは系路33と系
路34に分岐し、系路33の加熱空気はバルブ32によ
って適量に調整されて流動床燃焼室11の空気箱13に
至る。系路34の加熱空気Aは分配弁35に達して排気
ライン4の再利用の系路43と合流する。分配弁35で
炉況に対応した最適の混合割合に調整された加熱空気A
と排ガスG1とは、加熱装置36によって再度加熱さ
れ、系路30から図2(C)のように熱分解室22の底
部近くへノズル29から噴出して予熱された廃棄物を加
熱、攪拌して熱分解を行なう。この熱分解室22の熱分
解作用で発生した生成ガスは回収ライン5の系路50か
ら回収され、熱交換機51で約350℃に降温された
後、気液分離機52において生成ガスG2と生成油Oに
分離回収される。
The piping system and its control circuit are important elements for implementing the present invention. To explain the air supply line 3, the heated air A passing through the heating device 31 is branched into a system path 33 and a system path 34, and the heated air in the system path 33 is adjusted to an appropriate amount by a valve 32 and the fluidized bed combustion chamber 11 To the air box 13. The heated air A in the system 34 reaches the distribution valve 35 and merges with the system 43 for recycling the exhaust line 4. The heated air A adjusted to the optimum mixing ratio corresponding to the furnace condition by the distribution valve 35
The exhaust gas G1 is heated again by the heating device 36, and is discharged from the nozzle 30 to the vicinity of the bottom of the pyrolysis chamber 22 from the system 30 as shown in FIG. To perform thermal decomposition. The product gas generated by the thermal decomposition action of the thermal decomposition chamber 22 is recovered from the system line 50 of the recovery line 5, cooled down to about 350 ° C. by the heat exchanger 51, and then generated by the gas-liquid separator 52 together with the product gas G 2. Separated and collected in oil O.

【0024】運転の初期段階で系路34から供給される
加熱空気Aは、分配弁35を経て加熱装置36により約
650℃に昇温され熱分解に供されるが、運転の進行と
共に二次燃焼室12で完全燃焼した排ガスG1が頂部開
口部16から系路40に誘導され、サイクロン41で熱
媒体Bと排ガスG1に分離され、排ガスG1は熱交換器4
2によって約400℃に降温されて分配弁35に達す
る。熱分解、燃焼の進行と共に分配弁35における排ガ
スG1の給気量を増加して熱分解室22で発生する生成
ガスG2に占める空気量を漸次抑制しつつ進行させる。
加熱空気Aを給気している状況にあっては、原則的に分
配弁54にて排出系路57から生成ガスを排出し、加熱
空気Aの給気を停止し排ガスG1の給気のみとなった時
点で分配弁54の切り換えで系路55から生成ガスG2
を取り出す。しかし、加熱空気Aの給気量を減少してい
る状態でガス濃度検出計53によって許容ガス濃度を検
知した時点で、分配弁54を切り換えて系路55から生
成ガスG2を取り出し歩留りを向上させると共に、生成
ガスの希釈を防止して有効性を図ってる。
The heating air A supplied from the system 34 at the initial stage of the operation is heated to about 650 ° C. by the heating device 36 through the distribution valve 35 and subjected to thermal decomposition. The exhaust gas G1 completely burned in the combustion chamber 12 is guided from the top opening 16 to the system path 40, separated into the heat medium B and the exhaust gas G1 by the cyclone 41, and the exhaust gas G1 is
The temperature is lowered to about 400 ° C. by 2 and reaches the distribution valve 35. As the pyrolysis and combustion progress, the supply amount of the exhaust gas G1 in the distribution valve 35 is increased to gradually advance the amount of air in the generated gas G2 generated in the pyrolysis chamber 22 while proceeding.
In a situation where the heated air A is supplied, the generated gas is discharged from the discharge line 57 by the distribution valve 54 in principle, the supply of the heated air A is stopped, and only the supply of the exhaust gas G1 is performed. When the distribution valve 54 is switched, the generated gas G2
Take out. However, when the allowable gas concentration is detected by the gas concentration detector 53 while the supply amount of the heated air A is decreasing, the distribution valve 54 is switched to take out the generated gas G2 from the system path 55 to improve the yield. At the same time, effectiveness is achieved by preventing dilution of the produced gas.

【0025】流動床燃焼室と熱分解筒における熱分解、
燃焼が完全な定常状態に入れば、分配弁35の制御によ
って加熱空気Aの供給を停止し、生成ガスの希釈を防止
し、熱分解室22に供給する排ガスG1の量は発生量に
比べると少量で足りるから、流量調整分配弁46によっ
て一部を系路43を介して熱分解室に供給するが、残り
は分岐して集塵装置44を通過して煤塵を取り除き、放
出用の系路45からクリーンガスとして大気中に放出す
る。
Pyrolysis in a fluidized bed combustion chamber and a pyrolysis column,
When the combustion enters a completely steady state, the supply of the heated air A is stopped by controlling the distribution valve 35 to prevent dilution of the generated gas, and the amount of the exhaust gas G1 supplied to the pyrolysis chamber 22 is smaller than the amount generated. Since a small amount is sufficient, a part is supplied to the pyrolysis chamber via the flow path 43 by the flow control distribution valve 46, but the rest branches off and passes through the dust collector 44 to remove dust, and the discharge path is provided. From 45, it is released into the atmosphere as a clean gas.

【0026】給気ライン4において分配弁35から系路
30を経て熱分解室22に至る間の圧力が異常に上昇し
たときは圧力検出計37が検知して排気ライン4の流量
調整分配弁46に指令して放出系路45へ排出し安全を
図る。
When the pressure between the distribution valve 35 and the pyrolysis chamber 22 via the system line 30 in the air supply line 4 rises abnormally, the pressure detector 37 detects the pressure and detects the flow rate of the exhaust line 4. To discharge to the discharge line 45 for safety.

【0027】熱分解室22内で熱分解作用が進行し生成
ガスを回収しているとき、熱分解温度によって排出ガス
を構成するガス成分の組成率が変化するから、熱分解室
22の反応温度を検出する温度検出器56で検出し、6
00〜700℃の温度範囲内の運転時に回収する生成ガ
スだけを分配弁54から系路55へ誘導して生成ガスG
2として取り出して再利用に供し、この温度範囲から外
れて生成したガスは別系路57から取り出して有効な生
成ガスG2と区分する。しかし、この系路57から回収
したガスも流動床燃焼室の燃料として十分に利用でき
る。
When the pyrolysis action proceeds in the pyrolysis chamber 22 and the product gas is collected, the composition ratio of the gas component constituting the exhaust gas changes depending on the pyrolysis temperature. Is detected by the temperature detector 56 which detects
Only the product gas to be recovered during operation within the temperature range of 00 to 700 ° C. is guided from the distribution valve 54 to the system path 55 to generate the product gas G.
The gas generated outside the temperature range is taken out from the system 57 and separated from the effective gas G2. However, the gas recovered from the system 57 can also be sufficiently used as fuel in the fluidized bed combustion chamber.

【0028】排気ライン4に介装した熱交換器42の排
熱は、ブロワ48で送気して給気ライン3の加熱装置3
6の熱源として利用し、回収ライン5の熱交換機51の
排熱についても再利用に供し、さらに気液分離器52で
分離した生成油Oについても、流動床焼却炉の燃料とし
て再使用に供する。
The exhaust heat of the heat exchanger 42 interposed in the exhaust line 4 is sent by a blower 48 to the heating device 3 of the air supply line 3.
6, the waste heat of the heat exchanger 51 of the recovery line 5 is also reused, and the generated oil O separated by the gas-liquid separator 52 is also reused as a fuel for the fluidized bed incinerator. .

【0029】図3各図は廃棄物の熱分解の態様を示した
ものであり、各熱分解筒2の供給口24に供給された廃
棄物S1は図(A)のように、第一の扉体26が開かれ
ると予熱室21内へ投入され、図(B)のように扉体2
6が閉じて室内に閉じ込められ、この時点で熱分解室2
2へは系路30から高熱の気体が供給されて熱分解室の
温度は上昇している。一定時間経過後、図(C)のよう
に熱分解室22の上部の第二の扉体27が開いて予熱
し、乾燥した廃棄物S1が熱分解室内に投入される。熱
分解室22内ではノズルからの高熱ガスの噴出と外壁7
からの伝導熱によって廃棄物が熱分解を始め、この段階
で図(D)のように第一の扉体26が開いて次の廃棄物
S2が予熱室21内へ投入され予熱が併行する。十分に
熱分解が進んだ一定時間経過後、図(E)のように第三
の扉体28を開いて熱分解物R(廃棄物S1の熱分解後
の残渣)を最下段の投入室23へ移送し、ただちに扉体
28を閉じる。図(F)では投入室23内の熱分解物R
は、プッシャ25によって流動床燃焼室11へ供給され
ると同時に、熱分解室22へは予熱の終了した次の廃棄
物S2が移行してきた状態を示し、このようなサイクル
によって運転が継続される。従って供給口24、予熱室
21、熱分解室22および投入室23を1ユニットとし
て複数設けて各ユニットが順次稼働することにより予
熱、熱分解、焼却と連続的(1ユニットのみでは断続的
となる。)に進行するので安定的操業ができ、流動床部
に熱分解した残渣を流動床焼却炉の能力に適合した定量
投入が可能となる。
FIG. 3 is a diagram showing the mode of thermal decomposition of waste, and the waste S1 supplied to the supply port 24 of each pyrolysis cylinder 2 is the first waste as shown in FIG. When the door 26 is opened, it is thrown into the preheating chamber 21 and the door 2 is opened as shown in FIG.
6 is closed and confined in the room.
2 is supplied with a high-heat gas from the system path 30, and the temperature of the thermal decomposition chamber is rising. After a certain period of time, the second door 27 at the top of the pyrolysis chamber 22 is opened and preheated as shown in FIG. 4C, and the dried waste S1 is introduced into the pyrolysis chamber. In the pyrolysis chamber 22, high-temperature gas is ejected from the nozzle and the outer wall 7
The waste starts to be thermally decomposed by the heat of conduction from the first stage. At this stage, the first door 26 is opened and the next waste S2 is thrown into the preheating chamber 21 at the same time as shown in FIG. After a lapse of a certain period of time when the thermal decomposition has sufficiently proceeded, the third door 28 is opened as shown in FIG. 8E, and the thermal decomposition product R (residue after the thermal decomposition of the waste S1) is introduced into the lowermost charging chamber 23. And the door 28 is closed immediately. In FIG. (F), the thermal decomposition product R in the charging chamber 23 is shown.
Indicates a state in which the next waste S2 after preheating has been transferred to the thermal decomposition chamber 22 at the same time as being supplied to the fluidized bed combustion chamber 11 by the pusher 25, and the operation is continued by such a cycle. . Therefore, a plurality of supply ports 24, a preheating chamber 21, a thermal decomposition chamber 22, and a charging chamber 23 are provided as one unit, and the respective units are sequentially operated, so that preheating, thermal decomposition, and incineration are continuous (intermittent if only one unit is used). )), Stable operation can be performed, and the amount of the pyrolyzed residue in the fluidized bed can be metered into the fluidized bed incinerator according to the capacity of the incinerator.

【0030】[0030]

【発明の効果】本発明は以上に述べた通り、熱分解と燃
焼の二つの機能を連携して廃棄物の完全焼却を行なう流
動床焼却炉に関し、従来技術でも困難を極めている都市
ごみなど性状が一定でない廃棄物の処理において、これ
らの廃棄物を能率的に大量処理する道を開発した効果が
ある。この発明の構成において従来の方式との相違点
は、流動床燃焼室の外壁に接して複数立設した筒状の熱
分解筒に、廃棄物を投入して予熱と熱分解を事前に行な
い、都市ごみなどの廃棄物をほぼ定性な熱分解物(残
渣)に同化した後に、中央の流動床燃焼室内に定量的に
投入することができるので、安定した流動層を形成して
該熱分解物を完全燃焼に導くという基本理念に基づく点
である。
As described above, the present invention relates to a fluidized bed incinerator for performing complete incineration of waste by linking the two functions of pyrolysis and combustion. This has the effect of developing a way to efficiently treat large amounts of these wastes in the treatment of wastes that are not constant. In the configuration of the present invention, the difference from the conventional method is that a plurality of tubular pyrolysis cylinders that are erected in contact with the outer wall of the fluidized bed combustion chamber are subjected to preheating and pyrolysis in advance by inputting waste, After assimilating waste such as municipal solid waste into almost qualitative pyrolysis products (residues), it can be quantitatively injected into the central fluidized bed combustion chamber, so that a stable fluidized bed is formed and the pyrolysis products are formed. Is based on the basic philosophy of leading to complete combustion.

【0031】経済的側面から見れば、熱分解筒の各段階
が流動床燃焼室、二次燃焼室の外壁に接してその燃焼熱
を伝達され有効に予熱と熱分解の熱源として利用し、さ
らに燃焼塔の焼却能力と熱分解筒の諸作用の反応熱とを
設計の段階で計画的に整合させ、最適の運転条件を実行
するように諸系路を関連付けて制御できるから、熱効率
を最高レベルにまで向上することができる。さらに生成
ガスと生成油よりなる生成物の品質を一定の高いレベル
に維持し、これを再資源化することによってランニング
コストとメンテナンスコストを低減することが可能であ
り、各自治体が直面する都市ごみの大量処理という重要
な課題を解決して社会的に貢献する。
From an economic point of view, each stage of the pyrolysis cylinder is in contact with the outer walls of the fluidized bed combustion chamber and the secondary combustion chamber, and the combustion heat is transferred and effectively used as a heat source for preheating and pyrolysis. At the design stage, the incineration capacity of the combustion tower and the reaction heat of various actions of the pyrolysis cylinder are systematically matched at the design stage, and various paths can be linked and controlled so as to execute optimal operating conditions. Can be improved. Furthermore, it is possible to maintain the quality of the product consisting of product gas and product oil at a certain high level and to reduce the running cost and maintenance cost by recycling it. To contribute to society by solving the important issue of mass processing of wastewater.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す縦断正面図と制御の系
統図である。
FIG. 1 is a vertical sectional front view and a control system diagram showing an embodiment of the present invention.

【図2】図1のM−M断面図(A)、同N−N断面図
(B)、およびノズル部分の拡大断面図(C)である。
FIG. 2 is an MM cross-sectional view (A), an NN cross-sectional view (B), and an enlarged cross-sectional view (C) of a nozzle portion in FIG.

【図3】(A)〜(F)によって熱分解筒におけるサイ
クルを示す。
FIGS. 3A to 3F show a cycle in a pyrolysis tube.

【図4】従来技術の縦断正面図である。FIG. 4 is a vertical sectional front view of a conventional technique.

【図5】別の従来技術の縦断正面図である。FIG. 5 is a vertical sectional front view of another prior art.

【符号の説明】[Explanation of symbols]

1 燃焼塔 2 熱分解筒 3 給気ライン 4 排気ライン 5 回収ライン 6 給排装置(固形物) 11 流動床燃焼室 12 二次燃焼室 13 空気箱 14 炉床 21 予熱室 22 熱分解室 23 投入室 24 供給口 25 プッシャ 26,27,28 扉体 31 加熱装置 32 バルブ 35 分配弁 41 サイクロン 42 熱交換器 43 系路(再利用) 44 集塵装置 45 系路(放出) 51 熱交換器 52 気液分離器 53 ガス濃度検出計 54 分配弁 55 系路 (回収) A 加熱空気 G1 排ガス P 生成物 G2 生成ガス O 生成油 B 熱媒体 R 熱分解物(残渣) K 不燃物 W 冷却水 C チャ DESCRIPTION OF SYMBOLS 1 Combustion tower 2 Pyrolysis cylinder 3 Supply line 4 Exhaust line 5 Recovery line 6 Supply / discharge device (solid matter) 11 Fluidized bed combustion chamber 12 Secondary combustion chamber 13 Air box 14 Hearth 21 Preheating chamber 22 Pyrolysis chamber 23 Input Room 24 Supply port 25 Pusher 26,27,28 Door 31 Heating device 32 Valve 35 Distribution valve 41 Cyclone 42 Heat exchanger 43 System (reuse) 44 Dust collector 45 System (discharge) 51 Heat exchanger 52 Gas Liquid separator 53 Gas concentration detector 54 Distribution valve 55 System (recovery) A Heated air G1 Exhaust gas P Product G2 Product gas O Product oil B Heat medium R Thermal decomposition product (residue) K Incombustible material W Cooling water C

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱分解部と燃焼部を併せ具えた流動床焼
却炉において、流動床燃焼室11と二次燃焼室12で形
成する縦長筒状の燃焼塔1の外壁17に添って複数の縦
長の熱分解筒2を立設し、該熱分解筒2は廃棄物Sの供
給口24、予熱室21、熱分解室22および投入室23
とに断続自在に分割し、前記流動床燃焼室11へ投入室
23が連通し、加熱空気A、排ガスG1および生成物P
に関わる給気ライン3、排気ライン4および回収ライン
5の系路と機器類を相関的に組み込んだことを特徴とす
る廃棄物の流動床焼却炉。
In a fluidized bed incinerator having a pyrolysis section and a combustion section, a plurality of combustion chambers 11 and a secondary combustion chamber 12 are provided with a plurality of longitudinally extending combustion towers 1 along an outer wall 17. A vertically long pyrolysis tube 2 is erected, and the pyrolysis tube 2 is provided with a waste S supply port 24, a preheating chamber 21, a pyrolysis chamber 22, and a charging chamber 23.
The charging chamber 23 communicates with the fluidized-bed combustion chamber 11, and the heated air A, the exhaust gas G1, and the product P
A fluidized bed incinerator for waste, wherein the systems and equipment of the air supply line 3, exhaust line 4, and recovery line 5 relating to the above are incorporated in a correlated manner.
【請求項2】 請求項1において熱分解筒2は、断面が
ほぼ矩形で縦長の筒体よりなり、上方から前記供給口2
4、予熱室21、熱分解室22および底部に流動床燃焼
室11へ熱分解物Rを投入するプッシャ25を具えた投
入室23が、それぞれ水平方向に進退自在に開閉する扉
体26、27および28によって分割し、該熱分解室2
2には加熱空気Aおよび/または排気ライン4より回収
した排ガスG1の給気ライン3と、生成ガスG2および生
成油Oよりなる生成物Pの回収ライン5とが接続してい
ることを特徴とする廃棄物の流動床焼却炉。
2. The pyrolysis cylinder 2 according to claim 1, wherein the pyrolysis cylinder 2 is formed of a vertically long cylinder having a substantially rectangular cross section, and the supply port 2 is formed from above.
4. A preheating chamber 21, a pyrolysis chamber 22, and a loading chamber 23 provided with a pusher 25 at the bottom for feeding the pyrolysis product R into the fluidized bed combustion chamber 11, respectively, and doors 26 and 27 which open and close so as to be able to advance and retreat in the horizontal direction, respectively. And 28, the pyrolysis chamber 2
2, a supply line 3 for the heated air A and / or the exhaust gas G1 recovered from the exhaust line 4 and a recovery line 5 for a product P composed of the generated gas G2 and the generated oil O are connected. Fluidized bed incinerator of waste.
【請求項3】 請求項1において給気ライン3は、一端
が熱分解室22の下方両側面で均等に開口する多数のノ
ズル29へ連通し、分岐した他の一端は前記流動床燃焼
室11の底部である炉床14を貫通する多数の噴出口1
5を具えた空気箱13へ連通していることを特徴とする
廃棄物の流動床焼却炉。
3. An air supply line 3 according to claim 1, wherein one end communicates with a number of nozzles 29 which are evenly opened on both lower sides of the thermal decomposition chamber 22, and the other end branched off is a fluidized bed combustion chamber 11 Of multiple jets 1 penetrating the hearth 14 at the bottom of the
A fluidized bed incinerator for waste, characterized in that it communicates with an air box (13) equipped with a waste gas (5).
【請求項4】 請求項1において排気ライン4は、燃焼
塔1の頂部開口部16に連結してサイクロン41、熱交
換器42を経由して分配弁35で別に送気されて来た加
熱空気Aと合流する再利用の系路43と、前記分配弁3
5以前で分岐して集塵装置44を経由する放出用の系路
45とよりなることを特徴とする廃棄物の流動床焼却
炉。
4. The exhaust air line according to claim 1, wherein the exhaust air line is connected to the top opening 16 of the combustion tower 1 and heated air separately supplied by a distribution valve 35 via a cyclone 41 and a heat exchanger 42. A and a re-use line 43 which merges with the distribution valve 3
5. A fluidized bed incinerator for waste, comprising: a discharge line 45 that branches off before 5 through a dust collector 44.
【請求項5】 請求項1において回収ライン5は、熱交
換器51、気液分離器52、ガス濃度検出計53を経て
分配弁54で分離した有効な生成ガスG2を回収する系
路55と、排出系路57よりなることを特徴とする廃棄
物の流動床焼却炉。
5. The system according to claim 1, wherein the recovery line includes a system path for recovering an effective product gas separated by a distribution valve through a heat exchanger, a gas-liquid separator and a gas concentration detector. A fluidized bed incinerator for waste, comprising: a discharge system 57;
【請求項6】 縦長筒状の燃焼塔1内で燃焼時に発生す
る排ガスG1と加熱空気Aを混合し、該燃焼塔1の外壁
に添って立設した複数の熱分解筒2の熱分解室22へ給
気し、前記外壁からの伝導熱と給気により廃棄物Sを加
熱、攪拌により熱分解を推進し、熱分解処理後の定性化
した熱分解物Rを燃焼塔1内の流動床燃焼室11へ定量
的に投入して二次燃焼室12の作用と相俟って効果的に
燃焼し、都市ごみなどの該廃棄物Sから有効な生成ガス
G2と生成油Oを抽出して再利用することを特徴とする
流動床焼却炉による焼却方法。
6. A pyrolysis chamber of a plurality of pyrolysis tubes (2), which are mixed with exhaust gas (G1) generated during combustion in a vertically long cylindrical combustion tower (1) and heated air (A) and stand upright along the outer wall of the combustion tower (1). 22, the waste S is heated by the conduction heat from the outer wall and the supply air, and thermal decomposition is promoted by stirring, and the qualitative thermal decomposition product R after the thermal decomposition treatment is fluidized bed in the combustion tower 1. It is injected quantitatively into the combustion chamber 11 and burns effectively in combination with the operation of the secondary combustion chamber 12 to extract effective product gas G2 and product oil O from the waste S such as municipal waste. An incineration method using a fluidized bed incinerator characterized by reuse.
【請求項7】 請求項6において二次燃焼室12にて完
全燃焼した後に発生した排出ガスから砂などの熱媒体を
分離して排ガスG1とし、別ラインから導入された加熱
空気Aを熱分解室22の炉況に最適の条件となるように
分配弁35で混合して前記熱分解室22に給気し、流動
床燃焼室11の運転進行に伴って前記加熱空気Aの混合
量を減少して排ガスG1の量を増加して給気し、生成ガ
スG2中の空気含有量を低下させ希釈を防止して回収す
ることを特徴とする流動床焼却炉による焼却方法。
7. An exhaust gas G1 by separating a heat medium such as sand from exhaust gas generated after complete combustion in the secondary combustion chamber 12 in the secondary combustion chamber 12, and thermally decomposing heated air A introduced from another line. The mixture is supplied to the pyrolysis chamber 22 by mixing with the distribution valve 35 so that the condition becomes optimum for the furnace condition of the chamber 22, and the mixing amount of the heated air A is reduced as the operation of the fluidized bed combustion chamber 11 proceeds. A method for incineration with a fluidized bed incinerator, characterized in that the amount of exhaust gas G1 is increased to supply air, and the content of air in the generated gas G2 is reduced to prevent dilution and recovery.
【請求項8】 請求項7において熱分解室22の熱分解
温度を600〜700℃に制御し、その範囲内で発生し
た生成ガスを抽出し、前記温度範囲以外の温度を検出す
れば自動的に生成ガスを排出系路57へ排出し、常に生
成ガスの組成率を一定範囲内に保つことによって有効な
生成ガスG2を系路55から回収して再利用に供するこ
とを特徴とする流動床焼却炉による焼却方法。
8. The method according to claim 7, wherein the pyrolysis temperature of the pyrolysis chamber 22 is controlled at 600 to 700 ° C., the generated gas generated within the range is extracted, and if a temperature outside the temperature range is detected, the temperature is automatically adjusted. A fluidized bed characterized by recovering an effective product gas G2 from the system 55 and reusing it by keeping the composition ratio of the product gas within a certain range at all times by discharging the product gas to a discharge system 57. Incineration method by incinerator.
JP25768496A 1996-09-05 1996-09-05 Fluidized-bed incinerator for waste and incinerating method Pending JPH1082512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25768496A JPH1082512A (en) 1996-09-05 1996-09-05 Fluidized-bed incinerator for waste and incinerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25768496A JPH1082512A (en) 1996-09-05 1996-09-05 Fluidized-bed incinerator for waste and incinerating method

Publications (1)

Publication Number Publication Date
JPH1082512A true JPH1082512A (en) 1998-03-31

Family

ID=17309678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25768496A Pending JPH1082512A (en) 1996-09-05 1996-09-05 Fluidized-bed incinerator for waste and incinerating method

Country Status (1)

Country Link
JP (1) JPH1082512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256884A (en) * 2001-02-26 2002-09-11 Tsukishima Kikai Co Ltd Power system for thermal decomposition and gasification of sewage sludge
JP2007283157A (en) * 2006-04-12 2007-11-01 Ihi Corp Fluidized bed reactor
WO2014069738A1 (en) * 2012-11-02 2014-05-08 주식회사 아신네트웍스 Melting furnace using anion oxygen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256884A (en) * 2001-02-26 2002-09-11 Tsukishima Kikai Co Ltd Power system for thermal decomposition and gasification of sewage sludge
JP2007283157A (en) * 2006-04-12 2007-11-01 Ihi Corp Fluidized bed reactor
WO2014069738A1 (en) * 2012-11-02 2014-05-08 주식회사 아신네트웍스 Melting furnace using anion oxygen

Similar Documents

Publication Publication Date Title
CA2377774C (en) A method and an apparatus for the pyrolysis and gasification of organic substances or mixtures of organic substances
US4658736A (en) Incineration of combustible waste materials
JP4426150B2 (en) Reactor and method for gasifying and melting materials
CN1759941B (en) New type heating and fusing method and equipment for dealing with flying ash generated by burning garbage
KR101156195B1 (en) Pyrolysis apparatus using molten metal
US8671855B2 (en) Apparatus for treating waste
US3722433A (en) Method and apparatus for waste incineration
US20140356256A1 (en) Pyrolysis apparatus using liquid metal
JPH06507232A (en) Method of melting incineration residue into slag
KR101685033B1 (en) Waste processing system for a printed circuit board
JPH1082512A (en) Fluidized-bed incinerator for waste and incinerating method
KR20060064141A (en) Recycling system of sewage sluge using thermal decomposition
KR100639643B1 (en) Multi recycling equipment of waste using exhaust heat and method thereof
CN113751471B (en) Multi-fuel coupled system and method for online melting treatment of hazardous waste incineration fly ash
JPH11159718A (en) Device and method for combustion
CN214693826U (en) Sludge pyrolysis carbonization process system
CN115215527A (en) Sludge low-temperature drying and gasification melting coupling treatment process and system
DE4210926A1 (en) Demountable modular pyrolysis installation - for purificn. of organics-contaminated earth, with heat recovery and exhaust gas scrubbing
KR100311904B1 (en) Method and system for incinerating garbage by high temperature thermal decomposition action of gas amplified plasma
KR200178486Y1 (en) Drying melting process for waste and sludge
KR960011951B1 (en) Incineration method and incinerator system
KR102656341B1 (en) Pyrolysis apparatus for waste
KR102511333B1 (en) Pyrolysis system for waste and pyrolysis method using the same
KR102560428B1 (en) Devices for pyrolysis emulsifying the continuous injection of waste synthetic resins and flammable wastes
CN114857588B (en) Waste pyrolysis treatment system and method