WO2014069567A1 - Magnesium oxide powder - Google Patents

Magnesium oxide powder Download PDF

Info

Publication number
WO2014069567A1
WO2014069567A1 PCT/JP2013/079539 JP2013079539W WO2014069567A1 WO 2014069567 A1 WO2014069567 A1 WO 2014069567A1 JP 2013079539 W JP2013079539 W JP 2013079539W WO 2014069567 A1 WO2014069567 A1 WO 2014069567A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
oxide powder
polygonal
particles
powder
Prior art date
Application number
PCT/JP2013/079539
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 裕三
真之 藤本
薫 高崎
誠司 野口
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to CN201380057482.8A priority Critical patent/CN104755424A/en
Priority to KR1020157012825A priority patent/KR102044590B1/en
Priority to JP2014544578A priority patent/JP6199881B2/en
Publication of WO2014069567A1 publication Critical patent/WO2014069567A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/40Particle morphology extending in three dimensions prism-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to magnesium oxide powder.
  • the present invention also relates to a semiconductor package using a resin composition containing the magnesium oxide powder and a cured product of the resin composition containing the magnesium oxide powder as a sealing material.
  • the present invention further relates to a method for producing the magnesium oxide powder.
  • an electrically insulating thermosetting resin such as an epoxy resin and a filler such as magnesium oxide powder or silicon dioxide powder are mixed and kneaded.
  • a cured product of the resin composition obtained in this way is widely used.
  • the amount of heat generated increases as the integration of semiconductor elements increases, the operation speed increases, and the power consumption increases. In order to quickly release the heat generated inside the semiconductor package to the outside, it is desired to increase the thermal conductivity of the sealing material.
  • magnesium oxide powder having high thermal conductivity is used as the filler, and the magnesium oxide powder is highly concentrated in the encapsulant so that a plurality of magnesium oxide particles are in contact with each other.
  • the method of filling with is known. By this method, it is possible to enhance the thermal conductivity of the entire sealing material by transferring heat between the magnesium oxide particles in contact with each other.
  • Magnesium oxide powder is a material having high thermal conductivity as described above, and excellent heat resistance and electrical insulation. For this reason, the magnesium oxide powder is widely used as a filler for resin compositions such as a heat conductive resin composition and an electrically insulating resin composition.
  • resin compositions such as a heat conductive resin composition and an electrically insulating resin composition.
  • a magnesium oxide powder for a filler of a resin composition a primary particle having a rectangular parallelepiped shape and a spherical shape are known.
  • Patent Document 1 describes a magnesium oxide powder in which the primary particles have a cubic shape. This document describes a method for firing a magnesium oxide precursor such as magnesium hydroxide in a closed system in the presence of a predetermined amount of halide ions as a method for producing a cubic magnesium oxide powder having primary particles. Yes.
  • Patent Document 2 describes magnesium oxide powder whose primary particles have a spherical shape. This document describes a method for firing a magnesium hydroxide composition containing a predetermined amount of acetate as a method for producing a magnesium oxide powder having spherical primary particles.
  • a hexahedron is a basic structure as magnesium oxide particles for forming a surface layer provided on the discharge space side of a dielectric layer of a plasma display panel, not for a filler of a resin composition, and each vertex is 14-sided magnesium oxide fine particles having a truncated structure formed by cutting and an octahedron having a basic structure, and 14-sided magnesium oxide fine particles having a truncated surface formed by cutting each apex are obtained.
  • This document states that the particle size of the magnesium oxide fine particles falls within the range of 300 nm to 2 ⁇ m.
  • the tetrahedral magnesium oxide fine particles can be produced by uniformly heat-treating (baking) a high-purity magnesium compound (MgO precursor) in a high-temperature oxygen-containing atmosphere (700 ° C. or higher). .
  • the primary particles have a rectangular parallelepiped shape or a spherical shape.
  • the shape of the primary particles of the rectangular parallelepiped magnesium oxide powder is added to the resin at a high concentration and kneaded, the particles of the magnesium oxide collide with each other during the kneading, so that the corner portions of the particles It is difficult to obtain a cured product of a resin composition in which a plurality of particles are in direct contact with each other because the resin penetrates between the particles due to chipping or cracking of the particles.
  • magnesium oxide powder with a spherical primary particle shape is unlikely to break or crack even when added to a resin at a high concentration and kneaded. The thermal conductivity of is low.
  • an object of the present invention is to oxidize the resin so that the resin can be filled at a high concentration, and when the resin is filled, the particles can be brought into contact with each other with a large contact area to increase the thermal conductivity between the particles. It is to provide magnesium powder. Another object of the present invention is to provide a resin composition and a semiconductor package having high thermal conductivity.
  • the present inventor believes that polygonal magnesium oxide particles having a shape in which at least one of vertices and / or sides of a rectangular parallelepiped is chamfered are chamfered at the corners. It was considered that the corner portions of the particles were not chipped or the particles were not easily broken, and the resin could be filled at a high concentration. In addition, since the polygonal magnesium oxide particles have a flat surface, the contact area between the particles when filled in the resin can be increased compared to the spherical magnesium oxide particles, and thereby We thought that thermal conductivity could be increased. Further, the inventor baked magnesium oxide powder in a closed space in the presence of a halogen element such as chlorine and bromine and elements such as fluorine, strontium, barium, calcium and nickel.
  • a halogen element such as chlorine and bromine and elements such as fluorine, strontium, barium, calcium and nickel.
  • Oxidation containing polygonal magnesium oxide particles having a reduced particle size in the range of 0.5 to 20 ⁇ m, particularly in the range of 2.5 to 20 ⁇ m, and having a shape in which at least one of the vertices and / or sides of the rectangular parallelepiped is chamfered. It has been found that magnesium powder can be obtained.
  • the BET equivalent particle diameter is in the range of 0.5 to 20 ⁇ m
  • the polygonal magnesium oxide particles having a shape in which at least one of the vertices and / or sides of the rectangular parallelepiped is chamfered is 30% or more based on the number. It is in the magnesium oxide powder for the filler of the resin composition contained in an amount of.
  • the BET-equivalent particle diameter is in the range of 2.5 to 20 ⁇ m, and polygonal magnesium oxide particles having a shape in which at least one of vertices and / or sides of a rectangular parallelepiped is chamfered are 30% or more based on the number. There is also magnesium oxide powder contained in the amount.
  • Preferred embodiments of the magnesium oxide powder of the present invention are as follows.
  • the shape of the polygonal magnesium oxide particles is a tetrahedron.
  • the present invention also provides a resin and a polygonal magnesium oxide particle having a BET equivalent particle diameter in the range of 0.5 to 20 ⁇ m and having a shape in which at least one of the top and / or sides of the rectangular parallelepiped is chamfered on a number basis.
  • a resin composition containing magnesium oxide powder contained in an amount of% or more.
  • Preferred embodiments of the resin composition of the present invention are as follows. (1) The ratio of resin to magnesium oxide powder is in the range of 100: 5 to 100: 1000 in terms of volume ratio of resin to magnesium oxide powder. (2) The resin is a thermosetting resin.
  • the present invention further relates to a semiconductor package in which the periphery of a semiconductor element is sealed with a sealing material, and the sealing material has a thermosetting resin and a BET equivalent particle diameter in the range of 0.5 to 20 ⁇ m And a cured product of a resin composition comprising magnesium oxide powder containing polygonal magnesium oxide particles having a shape in which at least one of vertices and / or sides of a rectangular parallelepiped is chamfered in an amount of 30% or more on a number basis. In some cases, a plurality of polygonal magnesium oxide particles are in contact with each other in the cured product.
  • the present invention still further provides magnesium oxide powder in the presence of at least one halogen element selected from the group consisting of chlorine and bromine and at least one element selected from the group consisting of fluorine, strontium, barium, calcium and nickel.
  • the magnesium oxide powder of the present invention can be filled in a resin at a high concentration and has high thermal conductivity between particles when filled in the resin. It can be advantageously used as a filler of a resin composition (and a cured product thereof).
  • the resin composition containing the magnesium oxide powder of the present invention can be advantageously used as a heat conductive resin composition and an electrically insulating resin composition. Since the semiconductor package of the present invention has a high thermal conductivity of the sealing material and heat does not easily accumulate inside the semiconductor package, the safety is high and malfunction due to heat hardly occurs.
  • side of a rectangular parallelepiped was chamfered is manufactured industrially advantageously. be able to.
  • Example 2 is a SEM photograph of the magnesium oxide powder produced in Example 1.
  • Example 1 is a particle size distribution of the magnesium oxide powder produced in Example 1.
  • FIG. 4 is a SEM photograph of the magnesium oxide powder produced in Example 2.
  • 2 is a particle size distribution of magnesium oxide powder produced in Example 2.
  • FIG. 3 is a SEM photograph of the magnesium oxide powder produced in Example 3.
  • 4 is a particle size distribution of the magnesium oxide powder produced in Example 3.
  • 4 is a SEM photograph of magnesium oxide powder produced in Example 4.
  • Example 5 is a SEM photograph of the magnesium oxide powder produced in Example 6.
  • the magnesium oxide powder of the present invention has a BET equivalent particle size (average particle size determined from the BET specific surface area) in the range of 0.5 to 20 ⁇ m.
  • the BET equivalent particle diameter is preferably in the range of 2.5 to 20 ⁇ m, more preferably in the range of 2.5 to 15 ⁇ m.
  • the BET equivalent particle diameter is a value calculated from the following formula (I).
  • the BET conversion particle diameter calculated from the following formula is the average particle diameter in terms of sphere, that is, the average diameter of spherical particles having the same BET specific surface area as that of the magnesium oxide particles contained in the magnesium oxide powder of the present invention. It means length.
  • BET equivalent particle diameter ( ⁇ m) 6 / (S ⁇ ⁇ )...
  • S is the BET specific surface area (m 2 / g) of the magnesium oxide powder
  • is the density (g / cm 3 ) of the magnesium oxide powder.
  • the density of the magnesium oxide powder was 3.58 g / cm 3 .
  • the magnesium oxide powder of the present invention contains polygonal magnesium oxide particles having a shape in which at least one of apexes and / or sides of a rectangular parallelepiped is chamfered.
  • the rectangular parallelepiped includes a cube.
  • polygonal magnesium oxide particles include a hexahedron particle with one vertex or side chamfered in a rectangular parallelepiped, a tetrahedron particle with all eight vertexes of the rectangular parallelepiped chamfered, and eight vertices and 12 in a rectangular parallelepiped.
  • a 26-sided particle in which all of the sides are chamfered can be exemplified.
  • the polygonal magnesium oxide particle is preferably a tetrahedron, and particularly preferably a tetrahedron having all eight vertices of a rectangular parallelepiped chamfered.
  • the polygonal magnesium oxide particles are preferably single crystal particles. Single crystal particles tend to have higher thermal conductivity in the particles than polycrystalline particles.
  • the content of the polygonal magnesium oxide particles is generally 30% or more, preferably 60% or more, more preferably 80% or more, based on the number.
  • the upper limit of the content of polygonal magnesium oxide particles is generally 99%.
  • the magnesium oxide powder of the present invention may contain a halogen element such as chlorine and bromine and an element such as fluorine, strontium, barium, calcium and nickel.
  • a halogen element such as chlorine and bromine
  • an element such as fluorine, strontium, barium, calcium and nickel.
  • the total content of halogen elements such as chlorine and bromine is generally 1 to 500 ppm.
  • the total amount of elements such as fluorine, strontium, barium, calcium and nickel is generally 1 to 500 ppm.
  • Magnesium oxide powder of the present invention magnesium oxide powder, the presence of at least one halogen element selected from the group consisting of chlorine and bromine and at least one element selected from the group consisting of fluorine, strontium, barium, calcium and nickel It can manufacture by the method of baking in the space closed under.
  • the magnesium oxide powder used as a raw material is preferably a magnesium oxide powder having high purity, fineness, and primary particles having a rectangular parallelepiped shape.
  • the purity of the magnesium oxide powder is preferably 99% by mass or more, more preferably 99.9% by mass or more, and particularly preferably 99.95% by mass or more.
  • the particle diameter of the raw material magnesium oxide powder is preferably in the range of 0.02 to 3 ⁇ m in terms of BET equivalent particle diameter.
  • Examples of the magnesium oxide powder having a high purity, fine primary particles and a rectangular parallelepiped shape include a magnesium oxide powder produced by a vapor phase method.
  • the vapor phase method is a method for producing magnesium oxide powder by oxidizing metallic magnesium by bringing vapor of metallic magnesium into contact with an oxygen-containing gas.
  • the magnesium oxide powder is fired in the presence of a halogen element such as chlorine and bromine and an element such as fluorine, strontium, barium, calcium and nickel.
  • a halogen element such as chlorine and bromine and an element such as fluorine, strontium, barium, calcium and nickel.
  • chlorine and bromine have an effect of growing primary particles of magnesium oxide into a rectangular parallelepiped shape
  • fluorine, strontium, barium, calcium and nickel have an effect of chamfering the primary particles of a rectangular parallelepiped shape.
  • a powder of a compound containing these elements and magnesium oxide powder are used as a powder of a compound containing these elements and magnesium oxide powder are used. The method of baking the powder mixture of this can be used.
  • a compound containing two or more of the above elements can be used.
  • the compound containing halogen such as chlorine and bromine include magnesium halide, aluminum halide, strontium halide, barium halide, calcium halide and nickel halide.
  • Strontium halide, barium halide, calcium halide and nickel halide have the effect of growing primary particles of magnesium oxide into a rectangular parallelepiped shape and chamfering the primary particles of the rectangular parallelepiped shape.
  • the fluorine-containing compound include magnesium fluoride, aluminum fluoride, strontium fluoride, barium fluoride, calcium fluoride, and nickel fluoride.
  • Examples of the compound containing strontium, barium, calcium, and nickel include fluoride, chloride, bromide, oxide, nitrate, and sulfate. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type. Examples of the use of these compounds include strontium halide, barium halide, calcium halide and nickel halide alone, strontium halide, barium halide, calcium halide and nickel halide and strontium, barium, calcium and nickel. And a combination of magnesium halide and aluminum halide with magnesium fluoride and aluminum fluoride.
  • the powder of the above compound preferably has a purity of 99% by mass or more.
  • the content of halogen such as chlorine and bromine in the powder mixture is generally in the range of 10 to 10000 mass ppm, preferably in the range of 20 to 5000 mass ppm.
  • the total content of elements such as fluorine, strontium, barium, calcium and nickel is generally in the range of 10 to 100000 ppm by mass, preferably in the range of 20 to 5000 ppm by mass.
  • Calcination of the powder mixture is performed in a closed space.
  • Closed space is a space where halogen elements such as chlorine and bromine and elements such as fluorine, strontium, barium, calcium and nickel are not scattered outside in a short time when the powder mixture is fired.
  • An example of the closed space is a heat-resistant container with a lid.
  • the firing temperature of the powder mixture is generally in the range of 900 to 1500 ° C, preferably in the temperature range of 1000 to 1400 ° C.
  • the firing time is generally in the range of 1 to 100 hours.
  • the resin composition of the present invention contains a resin and the magnesium oxide powder of the present invention.
  • the ratio of the resin and the magnesium oxide powder contained in the resin composition is preferably in the range of 100: 5 to 100: 1000 (resin: magnesium oxide powder) in volume ratio.
  • the ratio of the resin and the magnesium oxide powder is more preferably in the range of 100: 5 to 100: 500 by volume ratio or in the range of 100: 80 to 100: 1000 by volume ratio.
  • thermoplastic resins include polyolefin resins such as polyethylene resins and polypropylene resins, polyester resins such as polyethylene terephthalate resins and polybutylene terephthalate resins, polyamide resins, polyphenylene sulfide resins, and thermoplastic elastomers.
  • thermosetting resins include epoxy resins, silicone resins, phenol resins, polyimide resins, polyurethane resins, melamine resins, and urea resins.
  • the resin composition used as the material for the semiconductor package sealing material is preferably a thermosetting resin composition.
  • the thermosetting resin is preferably an epoxy resin.
  • the thermosetting resin composition containing an epoxy resin preferably contains a curing agent, and preferably further contains a curing accelerator.
  • epoxy resins include various epoxy resins such as bisphenol type, phenol novolac type, cresol novolac type, biphenyl type, triphenylmethane type, and dicyclopentadiene type. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the curing agent is not particularly limited as long as it is a compound that reacts with an epoxy resin, but is preferably a phenol resin.
  • the phenol resin include a phenol novolak resin, a cresol novolak resin, a biphenyl type novolak resin, a naphthol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, and a dicyclopentadiene type phenol resin. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the curing accelerator is preferably a compound that activates the hydroxyl group of the phenol resin.
  • curing accelerators include amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl)
  • amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl)
  • organic phosphorus compounds such as phosphine, diphenylphosphine, and phenylphosphine. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • thermosetting resin composition is, for example, a thermosetting resin and a magnesium oxide powder in a volume ratio in the above range, and further adding a curing agent and a curing accelerator as necessary, and kneading. Can be manufactured.
  • thermosetting resin composition As a method for molding a sealing material using a thermosetting resin composition, a compression molding method, a lamination molding method, a transfer molding method, an injection molding method, a low pressure molding method, a casting method, or the like can be used. .
  • the sealing material molded using the above thermosetting resin composition that is, the cured product of the thermosetting resin composition, is filled with a plurality of polygonal magnesium oxide particles in contact with each other, so that heat conduction is achieved. High nature.
  • Example 1 To 250 g of magnesium oxide powder (BET conversion particle size: 0.2 ⁇ m, purity: 99.98 mass%) produced by a vapor phase method, 0.0200 g of aluminum chloride hexahydrate powder (purity: 99 mass%) Magnesium fluoride powder (purity: 99.1% by mass) 0.0250 g was added and mixed to obtain a powder mixture.
  • the obtained powder mixture is put into a heat-resistant container made of alumina having a capacity of 790 mL, the heat-resistant container is covered, put into an electric furnace, and the temperature in the furnace is increased to 1300 ° C. at a heating rate of 240 ° C./hour. And then calcined at that temperature for 3 hours.
  • the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour.
  • the alumina container was taken out of the electric furnace after cooling, and the powder fired product in the alumina container was recovered.
  • the powder fired product was a magnesium oxide powder.
  • FIG. 1 shows an SEM photograph
  • FIG. 2 shows the measurement result of the particle size distribution.
  • Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle size
  • Table 2 shows the particle sizes of D 10 , D 50 and D 90 in the particle size distribution and the content of additive elements.
  • the method for measuring the particle size distribution and the content of additive elements (chlorine and fluorine) is as described later.
  • the amount of chlorine was measured by the following method. Magnesium oxide powder was put into water and stirred to obtain a dispersion. The obtained dispersion was filtered, and the amount of chlorine in the filtrate was measured by ion chromatography. The amount of fluorine was measured by absorptiometry in a solution prepared by dissolving magnesium oxide powder with hydrochloric acid. For the amount of strontium, the amount of strontium in a solution prepared by dissolving magnesium oxide powder with hydrochloric acid was measured by ICP emission spectrometry.
  • Example 2 The amount of magnesium oxide powder was 270 g, and 0.2700 g of strontium chloride hexahydrate (purity: 99.995 mass%) was used instead of aluminum chloride hexahydrate powder and magnesium fluoride powder.
  • the powder fired product was recovered in the same manner as in Example 1. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
  • FIG. 3 shows an SEM photograph
  • FIG. 4 shows the measurement result of the particle size distribution.
  • Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle size
  • Table 2 shows the particle sizes of D 10 , D 50 and D 90 in the particle size distribution and the content of additive elements.
  • the magnesium oxide powder contains a large number of polygonal magnesium oxide particles. Further, from the particle size distribution data of FIG. 4 and Table 2, it can be seen that the width of the particle size distribution of the magnesium oxide powder is narrow, that is, the particle diameters of the polygonal magnesium oxide particles are uniform.
  • Example 3 Example 1 was used except that 0.5640 g of strontium chloride hexahydrate was used instead of aluminum chloride hexahydrate powder and magnesium fluoride powder, and the furnace temperature was 1400 ° C. The powder fired product was recovered. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
  • FIG. 5 shows an SEM photograph
  • FIG. 6 shows the measurement result of the particle size distribution.
  • Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle size
  • Table 2 shows the particle sizes of D 10 , D 50 and D 90 in the particle size distribution and the content of additive elements.
  • the magnesium oxide powder contains a large number of polygonal magnesium oxide particles. Further, from the particle size distribution data of FIG. 6 and Table 2, it can be seen that the width of the particle size distribution of the magnesium oxide powder is narrow, that is, the particle diameters of the polygonal magnesium oxide particles are uniform.
  • Example 4 Example 1 was used except that 0.8437 g of strontium chloride hexahydrate was used instead of aluminum chloride hexahydrate powder and magnesium fluoride powder, and the furnace temperature was 1400 ° C. The powder fired product was recovered. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
  • the obtained magnesium oxide powder was subjected to SEM observation, and the content of polygonal magnesium oxide particles was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed.
  • FIG. 7 shows an SEM photograph. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle diameter. From the SEM photograph of FIG. 7 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles.
  • Example 5 Example 1 was used except that 0.3817 g of strontium chloride hexahydrate was used instead of aluminum chloride hexahydrate powder and magnesium fluoride powder, and the furnace temperature was 1200 ° C. The powder fired product was recovered. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
  • the obtained magnesium oxide powder was subjected to SEM observation, and the content of polygonal magnesium oxide particles was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed.
  • FIG. 8 shows an SEM photograph. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle diameter. From the SEM photograph of FIG. 8 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles.
  • Example 6 Instead of aluminum chloride hexahydrate powder and magnesium fluoride powder, nickel chloride hexahydrate (purity: 99.95% by mass) 0.1283 g and nickel oxide (purity: 99.99% by mass) 4.1533 g And the fired powder was collected in the same manner as in Example 1 except that the furnace temperature was 1400 ° C. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
  • the obtained magnesium oxide powder was subjected to SEM observation, and the content of polygonal magnesium oxide particles was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed.
  • FIG. 9 shows an SEM photograph. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle diameter. From the SEM photograph of FIG. 9 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a magnesium oxide powder that can be used as a filler for a resin composition in which high electrical insulating and heat conducting properties are desirable. The magnesium oxide powder contains, in terms of the number of particles, at least 30% of polygonal magnesium oxide particles which have BET equivalent particle diameters in the range of 0.5-20µm and which are cuboid bodies in which the vertex and/or one of the sides thereof has a chamfered shape.

Description

酸化マグネシウム粉末Magnesium oxide powder
 本発明は、酸化マグネシウム粉末に関する。本発明はまた、上記酸化マグネシウム粉末を含む樹脂組成物、及び封止材として上記酸化マグネシウム粉末を含む樹脂組成物の硬化物を用いた半導体パッケージにも関する。本発明はさらに、上記酸化マグネシウム粉末の製造方法にも関する。 The present invention relates to magnesium oxide powder. The present invention also relates to a semiconductor package using a resin composition containing the magnesium oxide powder and a cured product of the resin composition containing the magnesium oxide powder as a sealing material. The present invention further relates to a method for producing the magnesium oxide powder.
 半導体パッケージにおいて、半導体素子の周囲を封止するための封止材としては、エポキシ樹脂のような電気絶縁性の熱硬化性樹脂と酸化マグネシウム粉末や二酸化ケイ素粉末などのフィラーとを混合、混練して得た樹脂組成物の硬化物が広く利用されている。半導体パッケージでは、半導体素子の高集積化、動作の高速化、高消費電力化に伴って熱の発生量が増加する。この半導体パッケージの内部にて発生した熱を外部に素早く放出させるために、封止材の熱伝導性を高めることが望まれている。封止材の熱伝導性を高める方法としては、フィラーとして熱伝導性が高い酸化マグネシウム粉末を用い、酸化マグネシウム粒子の複数個が互いに接触するように、封止材中に酸化マグネシウム粉末を高濃度で充填する方法が知られている。この方法により、互いに接触している酸化マグネシウム粒子間で熱を伝えさせることによって、封止材全体としての熱伝導性を高めることが可能となる。 In a semiconductor package, as a sealing material for sealing the periphery of a semiconductor element, an electrically insulating thermosetting resin such as an epoxy resin and a filler such as magnesium oxide powder or silicon dioxide powder are mixed and kneaded. A cured product of the resin composition obtained in this way is widely used. In a semiconductor package, the amount of heat generated increases as the integration of semiconductor elements increases, the operation speed increases, and the power consumption increases. In order to quickly release the heat generated inside the semiconductor package to the outside, it is desired to increase the thermal conductivity of the sealing material. As a method for increasing the thermal conductivity of the encapsulant, magnesium oxide powder having high thermal conductivity is used as the filler, and the magnesium oxide powder is highly concentrated in the encapsulant so that a plurality of magnesium oxide particles are in contact with each other. The method of filling with is known. By this method, it is possible to enhance the thermal conductivity of the entire sealing material by transferring heat between the magnesium oxide particles in contact with each other.
 酸化マグネシウム粉末は、上記のとおり熱伝導性が高く、また耐熱性、電気絶縁性に優れた材料である。このため、酸化マグネシウム粉末は、熱伝導性樹脂組成物及び電気絶縁性樹脂組成物などの樹脂組成物のフィラーとして広く利用されている。このような樹脂組成物のフィラー用の酸化マグネシウム粉末としては、一次粒子の形状が直方体状のものと球状のものとが知られている。 Magnesium oxide powder is a material having high thermal conductivity as described above, and excellent heat resistance and electrical insulation. For this reason, the magnesium oxide powder is widely used as a filler for resin compositions such as a heat conductive resin composition and an electrically insulating resin composition. As such a magnesium oxide powder for a filler of a resin composition, a primary particle having a rectangular parallelepiped shape and a spherical shape are known.
 特許文献1には、一次粒子の形状が立方体状である酸化マグネシウム粉末が記載されている。この文献には、一次粒子が立方体状の酸化マグネシウム粉末の製造方法として、水酸化マグネシウム等の酸化マグネシウム前駆体を、所定量のハロゲン化物イオン存在下にて閉鎖系で焼成する方法が記載されている。 Patent Document 1 describes a magnesium oxide powder in which the primary particles have a cubic shape. This document describes a method for firing a magnesium oxide precursor such as magnesium hydroxide in a closed system in the presence of a predetermined amount of halide ions as a method for producing a cubic magnesium oxide powder having primary particles. Yes.
 特許文献2には、一次粒子の形状が球状の酸化マグネシウム粉末が記載されている。この文献には、一次粒子が球状の酸化マグネシウム粉末の製造方法として、所定量の酢酸塩を含有する水酸化マグネシウム組成物を焼成する方法が記載されている。 Patent Document 2 describes magnesium oxide powder whose primary particles have a spherical shape. This document describes a method for firing a magnesium hydroxide composition containing a predetermined amount of acetate as a method for producing a magnesium oxide powder having spherical primary particles.
 特許文献3には、樹脂組成物のフィラー用ではなく、プラズマディスプレイパネルの誘電体層の放電空間側に設けられる表面層形成用の酸化マグネシウム粒子として、6面体を基本構造とし、その各頂点が切除されたことにより切頂面が形成された14面体の酸化マグネシウム微粒子、及び8面体を基本構造とし、その各頂点が切除されたことにより切頂面が形成された14面体の酸化マグネシウム微粒子が記載されている。この文献には、酸化マグネシウム微粒子の粒子サイズは300nm~2μmの範囲に収まっていると記載されている。この文献によると、上記14面体酸化マグネシウム微粒子は、高純度のマグネシウム化合物(MgO前駆体)を高温の酸素含有雰囲気(700℃以上)で均一に熱処理(焼成)することによって製造できるとされている。 In Patent Document 3, a hexahedron is a basic structure as magnesium oxide particles for forming a surface layer provided on the discharge space side of a dielectric layer of a plasma display panel, not for a filler of a resin composition, and each vertex is 14-sided magnesium oxide fine particles having a truncated structure formed by cutting and an octahedron having a basic structure, and 14-sided magnesium oxide fine particles having a truncated surface formed by cutting each apex are obtained. Are listed. This document states that the particle size of the magnesium oxide fine particles falls within the range of 300 nm to 2 μm. According to this document, the tetrahedral magnesium oxide fine particles can be produced by uniformly heat-treating (baking) a high-purity magnesium compound (MgO precursor) in a high-temperature oxygen-containing atmosphere (700 ° C. or higher). .
特開2008-184366号公報JP 2008-184366 A 特開2009-7215号公報JP 2009-7215 A 特開2008-181903号公報JP 2008-181903 A
 樹脂組成物のフィラー用の酸化マグネシウム粉末としては、一次粒子の形状が直方体状のものと球状のものとが知られている。しかしながら、本発明者の検討によると、一次粒子の形状が直方体状の酸化マグネシウム粉末は、樹脂に高濃度で加えて混練すると、その混練時に酸化マグネシウムの粒子同士が衝突することによって粒子の角部分が欠けたり、粒子が割れたりして、粒子と粒子との間に樹脂が侵入して、複数個の粒子同士が直接接触した樹脂組成物の硬化物を得るのが難しい。一方、一次粒子の形状が球状の酸化マグネシウム粉末は、樹脂に高濃度で加えて混練しても一次粒子が欠けたり、割れたりすることは起こりにくいが、粒子同士の接触面積が小さいため粒子間の熱伝導性が低い。 As the magnesium oxide powder for the filler of the resin composition, it is known that the primary particles have a rectangular parallelepiped shape or a spherical shape. However, according to the inventor's study, when the shape of the primary particles of the rectangular parallelepiped magnesium oxide powder is added to the resin at a high concentration and kneaded, the particles of the magnesium oxide collide with each other during the kneading, so that the corner portions of the particles It is difficult to obtain a cured product of a resin composition in which a plurality of particles are in direct contact with each other because the resin penetrates between the particles due to chipping or cracking of the particles. On the other hand, magnesium oxide powder with a spherical primary particle shape is unlikely to break or crack even when added to a resin at a high concentration and kneaded. The thermal conductivity of is low.
 従って、本発明の目的は、樹脂に高濃度で充填することができ、かつ樹脂に充填したときに粒子同士を大きな接触面積で接触させて、粒子間の熱伝導性を高くすることができる酸化マグネシウム粉末を提供することにある。本発明の目的はまた、熱伝導性の高い樹脂組成物及び半導体パッケージを提供することにもある。 Therefore, an object of the present invention is to oxidize the resin so that the resin can be filled at a high concentration, and when the resin is filled, the particles can be brought into contact with each other with a large contact area to increase the thermal conductivity between the particles. It is to provide magnesium powder. Another object of the present invention is to provide a resin composition and a semiconductor package having high thermal conductivity.
 本発明者は、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子は、角部分が面取りされているため、樹脂との混練時に粒子同士が衝突しても、粒子の角部分が欠けたり、粒子が割れたりすることが起こりにくく、樹脂に高濃度で充填することが可能であると考えた。さらに、この多角形酸化マグネシウム粒子は平坦な面を有することから、球状の酸化マグネシウム粒子と比較して、樹脂に充填したときの粒子同士の接触面積を大きくすることができ、これにより粒子間の熱伝導性を高くできると考えた。さらに、本発明者は、酸化マグネシウム粉末を、塩素及び臭素などのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルなどの元素の存在下にて閉じられた空間内で焼成することによって、BET換算粒子径が0.5~20μmの範囲、特には2.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を含有する酸化マグネシウム粉末を得ることができることを見出した。 The present inventor believes that polygonal magnesium oxide particles having a shape in which at least one of vertices and / or sides of a rectangular parallelepiped is chamfered are chamfered at the corners. It was considered that the corner portions of the particles were not chipped or the particles were not easily broken, and the resin could be filled at a high concentration. In addition, since the polygonal magnesium oxide particles have a flat surface, the contact area between the particles when filled in the resin can be increased compared to the spherical magnesium oxide particles, and thereby We thought that thermal conductivity could be increased. Further, the inventor baked magnesium oxide powder in a closed space in the presence of a halogen element such as chlorine and bromine and elements such as fluorine, strontium, barium, calcium and nickel. Oxidation containing polygonal magnesium oxide particles having a reduced particle size in the range of 0.5 to 20 μm, particularly in the range of 2.5 to 20 μm, and having a shape in which at least one of the vertices and / or sides of the rectangular parallelepiped is chamfered. It has been found that magnesium powder can be obtained.
 従って、本発明は、BET換算粒子径が0.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する樹脂組成物のフィラー用の酸化マグネシウム粉末にある。 Therefore, in the present invention, the BET equivalent particle diameter is in the range of 0.5 to 20 μm, and the polygonal magnesium oxide particles having a shape in which at least one of the vertices and / or sides of the rectangular parallelepiped is chamfered is 30% or more based on the number. It is in the magnesium oxide powder for the filler of the resin composition contained in an amount of.
 本発明はまた、BET換算粒子径が2.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する酸化マグネシウム粉末にもある。 In the present invention, the BET-equivalent particle diameter is in the range of 2.5 to 20 μm, and polygonal magnesium oxide particles having a shape in which at least one of vertices and / or sides of a rectangular parallelepiped is chamfered are 30% or more based on the number. There is also magnesium oxide powder contained in the amount.
 上記本発明の酸化マグネシウム粉末の好ましい態様は次の通りである。
(1)多角形酸化マグネシウム粒子の粒子形状が14面体である。
(2)塩素及び臭素からなる群より選ばれる少なくとも一つのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルからなる群より選ばれる少なくとも一つの元素とを含む。
(3)熱伝導性樹脂組成物のフィラー用である。
(4)電気絶縁性樹脂組成物のフィラー用である。
Preferred embodiments of the magnesium oxide powder of the present invention are as follows.
(1) The shape of the polygonal magnesium oxide particles is a tetrahedron.
(2) including at least one halogen element selected from the group consisting of chlorine and bromine and at least one element selected from the group consisting of fluorine, strontium, barium, calcium and nickel.
(3) For filler of heat conductive resin composition.
(4) For fillers of electrically insulating resin compositions.
 本発明はまた、樹脂と、BET換算粒子径が0.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する酸化マグネシウム粉末とを含む樹脂組成物にもある。 The present invention also provides a resin and a polygonal magnesium oxide particle having a BET equivalent particle diameter in the range of 0.5 to 20 μm and having a shape in which at least one of the top and / or sides of the rectangular parallelepiped is chamfered on a number basis. There is also a resin composition containing magnesium oxide powder contained in an amount of% or more.
 上記本発明の樹脂組成物の好ましい態様が次の通りである。
(1)樹脂と酸化マグネシウム粉末の割合が、樹脂と酸化マグネシウム粉末の体積比で100:5~100:1000の範囲にある。
(2)樹脂が熱硬化性樹脂である。
Preferred embodiments of the resin composition of the present invention are as follows.
(1) The ratio of resin to magnesium oxide powder is in the range of 100: 5 to 100: 1000 in terms of volume ratio of resin to magnesium oxide powder.
(2) The resin is a thermosetting resin.
 本発明はさらに、半導体素子の周囲が封止材で封止された半導体パッケージであって、該封止材が、熱硬化性樹脂と、BET換算粒子径が0.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する酸化マグネシウム粉末とを含む樹脂組成物の硬化物であって、該硬化物中にて、多角形酸化マグネシウム粒子の複数個が互いに接触している半導体パッケージにもある。 The present invention further relates to a semiconductor package in which the periphery of a semiconductor element is sealed with a sealing material, and the sealing material has a thermosetting resin and a BET equivalent particle diameter in the range of 0.5 to 20 μm And a cured product of a resin composition comprising magnesium oxide powder containing polygonal magnesium oxide particles having a shape in which at least one of vertices and / or sides of a rectangular parallelepiped is chamfered in an amount of 30% or more on a number basis. In some cases, a plurality of polygonal magnesium oxide particles are in contact with each other in the cured product.
 本発明はさらにまた、酸化マグネシウム粉末を、塩素及び臭素からなる群より選ばれる少なくとも一つのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルからなる群より選ばれる少なくとも一つの元素の存在下にて閉じられた空間内で焼成する、BET換算粒子径が0.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する酸化マグネシウム粉末の製造方法にもある。 The present invention still further provides magnesium oxide powder in the presence of at least one halogen element selected from the group consisting of chlorine and bromine and at least one element selected from the group consisting of fluorine, strontium, barium, calcium and nickel. Number of polygonal magnesium oxide particles that are fired in a closed space and have a BET-equivalent particle diameter in the range of 0.5 to 20 μm and a shape in which at least one of the apex and / or side of the rectangular parallelepiped is chamfered. There is also a method for producing magnesium oxide powder containing 30% or more.
 本発明の酸化マグネシウム粉末は、樹脂に高濃度で充填することができ、かつ樹脂に充填したときの粒子間の熱伝導性が高いことから、電気絶縁性で熱伝導性が高いことが望まれる樹脂組成物(及びその硬化物を含む)のフィラーとして有利に利用することができる。本発明の酸化マグネシウム粉末を含む樹脂組成物は、熱伝導性樹脂組成物及び電気絶縁性樹脂組成物として有利に利用することができる。本発明の半導体パッケージは封止材の熱導電性が高く、半導体パッケージ内部で熱が蓄積しにくいので、安全性が高く、熱による誤作動が起こりにくい。そして、本発明の製造方法を利用することによって、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を多く含有する酸化マグネシウム粉末を工業的に有利に製造することができる。 The magnesium oxide powder of the present invention can be filled in a resin at a high concentration and has high thermal conductivity between particles when filled in the resin. It can be advantageously used as a filler of a resin composition (and a cured product thereof). The resin composition containing the magnesium oxide powder of the present invention can be advantageously used as a heat conductive resin composition and an electrically insulating resin composition. Since the semiconductor package of the present invention has a high thermal conductivity of the sealing material and heat does not easily accumulate inside the semiconductor package, the safety is high and malfunction due to heat hardly occurs. And by using the manufacturing method of this invention, the magnesium oxide powder which contains many polygonal magnesium oxide particles which have the shape where at least one of the vertex and / or edge | side of a rectangular parallelepiped was chamfered is manufactured industrially advantageously. be able to.
実施例1で製造した酸化マグネシウム粉末のSEM写真である。2 is a SEM photograph of the magnesium oxide powder produced in Example 1. 実施例1で製造した酸化マグネシウム粉末の粒度分布である。2 is a particle size distribution of the magnesium oxide powder produced in Example 1. FIG. 実施例2で製造した酸化マグネシウム粉末のSEM写真である。4 is a SEM photograph of the magnesium oxide powder produced in Example 2. 実施例2で製造した酸化マグネシウム粉末の粒度分布である。2 is a particle size distribution of magnesium oxide powder produced in Example 2. FIG. 実施例3で製造した酸化マグネシウム粉末のSEM写真である。3 is a SEM photograph of the magnesium oxide powder produced in Example 3. 実施例3で製造した酸化マグネシウム粉末の粒度分布である。4 is a particle size distribution of the magnesium oxide powder produced in Example 3. 実施例4で製造した酸化マグネシウム粉末のSEM写真である。4 is a SEM photograph of magnesium oxide powder produced in Example 4. 実施例5で製造した酸化マグネシウム粉末のSEM写真である。4 is a SEM photograph of the magnesium oxide powder produced in Example 5. 実施例6で製造した酸化マグネシウム粉末のSEM写真である。4 is a SEM photograph of the magnesium oxide powder produced in Example 6.
 本発明の酸化マグネシウム粉末は、BET換算粒子径(BET比表面積から求めた平均粒子径)が0.5~20μmの範囲にある。BET換算粒子径は2.5~20μmの範囲にあることが好ましく、2.5~15μmの範囲にあることがより好ましい。BET換算粒子径は、下記の式(I)より算出した値である。下記の式より算出されるBET換算粒子径は球形換算の平均粒子径、すなわち本発明の酸化マグネシウム粉末に含まれる酸化マグネシウム粒子のBET比表面積と同一のBET比表面積を有する球状粒子の直径の平均長さを意味する。 The magnesium oxide powder of the present invention has a BET equivalent particle size (average particle size determined from the BET specific surface area) in the range of 0.5 to 20 μm. The BET equivalent particle diameter is preferably in the range of 2.5 to 20 μm, more preferably in the range of 2.5 to 15 μm. The BET equivalent particle diameter is a value calculated from the following formula (I). The BET conversion particle diameter calculated from the following formula is the average particle diameter in terms of sphere, that is, the average diameter of spherical particles having the same BET specific surface area as that of the magnesium oxide particles contained in the magnesium oxide powder of the present invention. It means length.
 BET換算粒子径(μm)=6/(S×ρ)・・・・式(I)
 但し、式(I)中、Sは酸化マグネシウム粉末のBET比表面積(m2/g)、ρは酸化マグネシウム粉末の密度(g/cm3)である。但し、本発明では、酸化マグネシウム粉末の密度は、3.58g/cm3とした。
BET equivalent particle diameter (μm) = 6 / (S × ρ)... Formula (I)
In the formula (I), S is the BET specific surface area (m 2 / g) of the magnesium oxide powder, and ρ is the density (g / cm 3 ) of the magnesium oxide powder. However, in the present invention, the density of the magnesium oxide powder was 3.58 g / cm 3 .
 本発明の酸化マグネシウム粉末は、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状の多角形酸化マグネシウム粒子を含有する。本発明において、直方体は立方体を含む。多角形酸化マグネシウム粒子の例としては、直方体の1個の頂点もしくは辺が面取りされた7面体粒子、直方体の8個の頂点の全てが面取りされた14面体粒子、直方体の8個の頂点と12個の辺の全てが面取りされた26面体粒子を挙げることができる。多角形酸化マグネシウム粒子は14面体であることが好ましく、直方体の8個の頂点の全てが面取りされた14面体であることが特に好ましい。多角形酸化マグネシウム粒子は、単結晶粒子であることが好ましい。単結晶粒子は多結晶粒子と比較して粒子内での熱伝導性が高い傾向がある。 The magnesium oxide powder of the present invention contains polygonal magnesium oxide particles having a shape in which at least one of apexes and / or sides of a rectangular parallelepiped is chamfered. In the present invention, the rectangular parallelepiped includes a cube. Examples of polygonal magnesium oxide particles include a hexahedron particle with one vertex or side chamfered in a rectangular parallelepiped, a tetrahedron particle with all eight vertexes of the rectangular parallelepiped chamfered, and eight vertices and 12 in a rectangular parallelepiped. A 26-sided particle in which all of the sides are chamfered can be exemplified. The polygonal magnesium oxide particle is preferably a tetrahedron, and particularly preferably a tetrahedron having all eight vertices of a rectangular parallelepiped chamfered. The polygonal magnesium oxide particles are preferably single crystal particles. Single crystal particles tend to have higher thermal conductivity in the particles than polycrystalline particles.
 本発明の酸化マグネシウム粉末において、多角形酸化マグネシウム粒子の含有量は個数基準で、一般に30%以上、好ましくは60%以上、より好ましくは80%以上である。多角形酸化マグネシウム粒子の含有量の上限は、一般に99%である。本発明において、多角形酸化マグネシウム粒子の個数基準の含有量は次のようにして求めた値である。酸化マグネシウム粉末のSEM(走査型電子顕微鏡)の画像から無作為に少なくとも100個以上の粒子を抽出し、抽出した各粒子について粒子形状を観察して多角形酸化マグネシウム粒子の個数を計測する。多角形酸化マグネシウム粒子の個数(B)と抽出した粒子の個数(A)から下記の式(II)より多角形酸化マグネシウム粒子の個数基準の含有量を算出する。
 含有量(%)=100×個数(B)/個数(A)・・・・式(II)
In the magnesium oxide powder of the present invention, the content of the polygonal magnesium oxide particles is generally 30% or more, preferably 60% or more, more preferably 80% or more, based on the number. The upper limit of the content of polygonal magnesium oxide particles is generally 99%. In the present invention, the content based on the number of polygonal magnesium oxide particles is a value determined as follows. At least 100 or more particles are randomly extracted from an SEM (scanning electron microscope) image of the magnesium oxide powder, and the number of polygonal magnesium oxide particles is measured by observing the particle shape of each extracted particle. From the number (B) of polygonal magnesium oxide particles and the number (A) of extracted particles, the content based on the number of polygonal magnesium oxide particles is calculated from the following formula (II).
Content (%) = 100 × number (B) / number (A)... Formula (II)
 本発明の酸化マグネシウム粉末は、塩素及び臭素などのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルなどの元素とを含んでいてもよい。塩素及び臭素などのハロゲン元素の含有量は、合計量で一般には1~500ppmである。フッ素、ストロンチウム、バリウム、カルシウム及びニッケルなどの元素は、合計量で一般には1~500ppmである。 The magnesium oxide powder of the present invention may contain a halogen element such as chlorine and bromine and an element such as fluorine, strontium, barium, calcium and nickel. The total content of halogen elements such as chlorine and bromine is generally 1 to 500 ppm. The total amount of elements such as fluorine, strontium, barium, calcium and nickel is generally 1 to 500 ppm.
 次に、本発明の酸化マグネシウム粉末の製造方法について説明する。本発明の酸化マグネシウム粉末は、酸化マグネシウム粉末を、塩素及び臭素からなる群より選ばれる少なくとも一つのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルからなる群より選ばれる少なくとも一つの元素の存在下にて閉じられた空間内で焼成する方法によって製造することができる。 Next, a method for producing the magnesium oxide powder of the present invention will be described. Magnesium oxide powder of the present invention, magnesium oxide powder, the presence of at least one halogen element selected from the group consisting of chlorine and bromine and at least one element selected from the group consisting of fluorine, strontium, barium, calcium and nickel It can manufacture by the method of baking in the space closed under.
 原料として用いる酸化マグネシウム粉末は、純度が高く、微細でかつ一次粒子が直方体形状の酸化マグネシウム粉末であることが好ましい。酸化マグネシウム粉末の純度は99質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.95質量%以上であることが特に好ましい。原料の酸化マグネシウム粉末の粒子径は、BET換算粒子径で0.02~3μmの範囲にあることが好ましい。純度が高く、微細でかつ一次粒子が直方体形状の酸化マグネシウム粉末としては、気相法により製造された酸化マグネシウム粉末を挙げることができる。気相法とは、金属マグネシウムの蒸気と酸素含有気体とを接触させることによって、金属マグネシウムを酸化させて酸化マグネシウム粉末を製造する方法である。 The magnesium oxide powder used as a raw material is preferably a magnesium oxide powder having high purity, fineness, and primary particles having a rectangular parallelepiped shape. The purity of the magnesium oxide powder is preferably 99% by mass or more, more preferably 99.9% by mass or more, and particularly preferably 99.95% by mass or more. The particle diameter of the raw material magnesium oxide powder is preferably in the range of 0.02 to 3 μm in terms of BET equivalent particle diameter. Examples of the magnesium oxide powder having a high purity, fine primary particles and a rectangular parallelepiped shape include a magnesium oxide powder produced by a vapor phase method. The vapor phase method is a method for producing magnesium oxide powder by oxidizing metallic magnesium by bringing vapor of metallic magnesium into contact with an oxygen-containing gas.
 本発明では、酸化マグネシウム粉末を、塩素及び臭素などのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルなどの元素の存在下にて焼成する。塩素及び臭素は、酸化マグネシウムの一次粒子を直方体形状に成長させる効果があり、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルは、直方体形状の一次粒子を面取りする効果があると理解される。酸化マグネシウム粉末を、塩素及び臭素などのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルなどの元素の存在下にて焼成する方法としては、それらの元素を含む化合物の粉末と酸化マグネシウム粉末との粉末混合物を焼成する方法を用いることができる。化合物としては、上記の元素を二種以上含む化合物を用いることができる。塩素及び臭素などのハロゲンを含む化合物としては、ハロゲン化マグネシウム、ハロゲン化アルミニウム、ハロゲン化ストロンチウム、ハロゲン化バリウム、ハロゲン化カルシウム及びハロゲン化ニッケルを挙げることができる。ハロゲン化ストロンチウム、ハロゲン化バリウム、ハロゲン化カルシウム及びハロゲン化ニッケルは、酸化マグネシウムの一次粒子を直方体形状に成長させるとともに、直方体形状の一次粒子を面取りする効果がある。フッ素を含有する化合物としては、フッ化マグネシウム、フッ化アルミニウム、フッ化ストロンチウム、フッ化バリウム、フッ化カルシウム及びフッ化ニッケルを挙げることができる。ストロンチウム、バリウム、カルシウム及びニッケルを含む化合物としては、フッ化物、塩化物、臭化物、酸化物、硝酸塩、硫酸塩を挙げることができる。これら化合物は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。これら化合物の使用例としては、ハロゲン化ストロンチウム、ハロゲン化バリウム、ハロゲン化カルシウム及びハロゲン化ニッケルの単独使用、ハロゲン化ストロンチウム、ハロゲン化バリウム、ハロゲン化カルシウム及びハロゲン化ニッケルとストロンチウム、バリウム、カルシウム及びニッケルの酸化物もしくはフッ化物との組み合わせの使用、ハロゲン化マグネシウム及びハロゲン化アルミニウムとフッ化マグネシウム及びフッ化アルミニウムとの組み合わせの使用を挙げることができる。上記化合物の粉末は、純度が99質量%以上であることが好ましい。 In the present invention, the magnesium oxide powder is fired in the presence of a halogen element such as chlorine and bromine and an element such as fluorine, strontium, barium, calcium and nickel. It is understood that chlorine and bromine have an effect of growing primary particles of magnesium oxide into a rectangular parallelepiped shape, and fluorine, strontium, barium, calcium and nickel have an effect of chamfering the primary particles of a rectangular parallelepiped shape. As a method for firing magnesium oxide powder in the presence of halogen elements such as chlorine and bromine and elements such as fluorine, strontium, barium, calcium and nickel, a powder of a compound containing these elements and magnesium oxide powder are used. The method of baking the powder mixture of this can be used. As the compound, a compound containing two or more of the above elements can be used. Examples of the compound containing halogen such as chlorine and bromine include magnesium halide, aluminum halide, strontium halide, barium halide, calcium halide and nickel halide. Strontium halide, barium halide, calcium halide and nickel halide have the effect of growing primary particles of magnesium oxide into a rectangular parallelepiped shape and chamfering the primary particles of the rectangular parallelepiped shape. Examples of the fluorine-containing compound include magnesium fluoride, aluminum fluoride, strontium fluoride, barium fluoride, calcium fluoride, and nickel fluoride. Examples of the compound containing strontium, barium, calcium, and nickel include fluoride, chloride, bromide, oxide, nitrate, and sulfate. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type. Examples of the use of these compounds include strontium halide, barium halide, calcium halide and nickel halide alone, strontium halide, barium halide, calcium halide and nickel halide and strontium, barium, calcium and nickel. And a combination of magnesium halide and aluminum halide with magnesium fluoride and aluminum fluoride. The powder of the above compound preferably has a purity of 99% by mass or more.
 粉末混合物の塩素及び臭素などのハロゲンの含有量は、合計で一般には10~10000質量ppmの範囲、好ましくは20~5000質量ppmの範囲である。フッ素、ストロンチウム、バリウム、カルシウム及びニッケルなどの元素の含有量は、合計で一般には10~100000質量ppmの範囲、好ましくは20~5000質量ppmの範囲である。 The content of halogen such as chlorine and bromine in the powder mixture is generally in the range of 10 to 10000 mass ppm, preferably in the range of 20 to 5000 mass ppm. The total content of elements such as fluorine, strontium, barium, calcium and nickel is generally in the range of 10 to 100000 ppm by mass, preferably in the range of 20 to 5000 ppm by mass.
 粉末混合物の焼成は、閉じられた空間内で行う。閉じられた空間とは、粉末混合物の焼成時に、塩素及び臭素などのハロゲン元素や、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルなどの元素が、短時間で外部に飛散しないように閉じられている空間をいう。閉じられた空間内の例としては、蓋をした耐熱性容器内を挙げることができる。酸化マグネシウム粉末を塩素及び臭素などのハロゲン元素や、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルなどの元素の存在下で閉じられた空間内で焼成することによって、酸化マグネシウムの一次粒子が、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形状に粒成長する。 Calcination of the powder mixture is performed in a closed space. Closed space is a space where halogen elements such as chlorine and bromine and elements such as fluorine, strontium, barium, calcium and nickel are not scattered outside in a short time when the powder mixture is fired. Say. An example of the closed space is a heat-resistant container with a lid. By firing magnesium oxide powder in a closed space in the presence of halogen elements such as chlorine and bromine, and elements such as fluorine, strontium, barium, calcium and nickel, the primary particles of magnesium oxide become the top of a rectangular parallelepiped. And / or grain growth into a polygonal shape having a shape in which at least one of sides is chamfered.
 粉末混合物の焼成温度は、一般には900~1500℃の範囲、好ましくは1000~1400℃の温度範囲である。焼成時間は、一般には1~100時間の範囲である。 The firing temperature of the powder mixture is generally in the range of 900 to 1500 ° C, preferably in the temperature range of 1000 to 1400 ° C. The firing time is generally in the range of 1 to 100 hours.
 次に、本発明の樹脂組成物について説明する。本発明の樹脂組成物は、樹脂と上記本発明の酸化マグネシウム粉末とを含む。樹脂組成物に含まれる樹脂と酸化マグネシウム粉末の割合は、体積比で100:5~100:1000(樹脂:酸化マグネシウム粉末)の範囲にあることが好ましい。樹脂と酸化マグネシウム粉末の割合は、体積比で100:5~100:500の範囲にあるか、体積比で100:80~100:1000の範囲にあることがより好ましい。 Next, the resin composition of the present invention will be described. The resin composition of the present invention contains a resin and the magnesium oxide powder of the present invention. The ratio of the resin and the magnesium oxide powder contained in the resin composition is preferably in the range of 100: 5 to 100: 1000 (resin: magnesium oxide powder) in volume ratio. The ratio of the resin and the magnesium oxide powder is more preferably in the range of 100: 5 to 100: 500 by volume ratio or in the range of 100: 80 to 100: 1000 by volume ratio.
 樹脂は、熱可塑性樹脂及び熱硬化性樹脂のいずれも使用できる。熱可塑性樹脂の例としては、ポリエチレン樹脂及びポリプロピレン樹脂などのポリオレフィン樹脂、ポリエチレンテレフタレート樹脂及びポリブチレンテレフタレート樹脂などのポリエステル樹脂、ポリアミド樹脂、ポリフェニレンスルフィド樹脂そして熱可塑性エラストマーを挙げることができる。熱硬化性樹脂の例としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂そしてユリア樹脂を挙げることができる。 As the resin, either a thermoplastic resin or a thermosetting resin can be used. Examples of thermoplastic resins include polyolefin resins such as polyethylene resins and polypropylene resins, polyester resins such as polyethylene terephthalate resins and polybutylene terephthalate resins, polyamide resins, polyphenylene sulfide resins, and thermoplastic elastomers. Examples of thermosetting resins include epoxy resins, silicone resins, phenol resins, polyimide resins, polyurethane resins, melamine resins, and urea resins.
 半導体パッケージの封止材の材料として用いる樹脂組成物は、熱硬化性樹脂の組成物であることが好ましい。熱硬化性樹脂はエポキシ樹脂であることが好ましい。エポキシ樹脂を含む熱硬化性樹脂組成物は硬化剤を含むことが好ましく、さらに硬化促進剤を含むことが好ましい。 The resin composition used as the material for the semiconductor package sealing material is preferably a thermosetting resin composition. The thermosetting resin is preferably an epoxy resin. The thermosetting resin composition containing an epoxy resin preferably contains a curing agent, and preferably further contains a curing accelerator.
 エポキシ樹脂の例としては、ビスフェノール型、フェノールノボラック型、クレゾールノボラック型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型などの各種のエポキシ樹脂を挙げることができる。これらは一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。 Examples of epoxy resins include various epoxy resins such as bisphenol type, phenol novolac type, cresol novolac type, biphenyl type, triphenylmethane type, and dicyclopentadiene type. These may be used individually by 1 type, and may be used in combination of 2 or more types.
 硬化剤は、エポキシ樹脂と反応する化合物であれば特に制限はないが、フェノール樹脂であることが好ましい。フェノール樹脂の例としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビフェニル型ノボラック樹脂、ナフトールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂を挙げることができる。これらは一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。 The curing agent is not particularly limited as long as it is a compound that reacts with an epoxy resin, but is preferably a phenol resin. Examples of the phenol resin include a phenol novolak resin, a cresol novolak resin, a biphenyl type novolak resin, a naphthol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, and a dicyclopentadiene type phenol resin. These may be used individually by 1 type, and may be used in combination of 2 or more types.
 硬化促進剤は、フェノール樹脂の水酸基を活性化する化合物であることが好ましい。硬化促進剤の例としては、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどのアミン化合物、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機リン化合物を挙げることができる。これらは一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。 The curing accelerator is preferably a compound that activates the hydroxyl group of the phenol resin. Examples of curing accelerators include amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) Examples include organic phosphorus compounds such as phosphine, diphenylphosphine, and phenylphosphine. These may be used individually by 1 type, and may be used in combination of 2 or more types.
 熱硬化性樹脂組成物は、例えば、熱硬化性樹脂と酸化マグネシウム粉末とを体積比で上記の範囲となる割合にて、さらに必要に応じて硬化剤及び硬化促進剤を加えて混合し、混練することによって製造することができる。 The thermosetting resin composition is, for example, a thermosetting resin and a magnesium oxide powder in a volume ratio in the above range, and further adding a curing agent and a curing accelerator as necessary, and kneading. Can be manufactured.
 熱硬化性樹脂組成物を用いて封止材を成形する方法としては、圧縮成形法、積層成形法、トランスファ成形法、射出成形法、低圧成形法、注型法などの方法を用いることができる。上記の熱硬化性樹脂組成物を用いて成形した封止材、すなわち熱硬化性樹脂組成物の硬化物は、多角形酸化マグネシウム粒子の複数個が互いに接触した状態で充填されているため熱伝導性が高い。 As a method for molding a sealing material using a thermosetting resin composition, a compression molding method, a lamination molding method, a transfer molding method, an injection molding method, a low pressure molding method, a casting method, or the like can be used. . The sealing material molded using the above thermosetting resin composition, that is, the cured product of the thermosetting resin composition, is filled with a plurality of polygonal magnesium oxide particles in contact with each other, so that heat conduction is achieved. High nature.
[実施例1]
 気相法によって製造された酸化マグネシウム粉末(BET換算粒子径:0.2μm、純度:99.98質量%)250gに、塩化アルミニウム・六水和物粉末(純度:99質量%)0.0200gとフッ化マグネシウム粉末(純度:99.1質量%)0.0250gとを加えて混合して粉末混合物を得た。得られた粉末混合物を容量790mLのアルミナ製の耐熱性容器に投入し、耐熱性容器に蓋をして、電気炉に入れ、240℃/時間の昇温速度で炉内温度を1300℃まで上昇させ、次いで該温度で3時間加熱焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。冷却後の電気炉からアルミナ製容器を取り出し、アルミナ製容器内の粉末焼成物を回収した。得られた粉末焼成物のX線回折を測定した結果、粉末焼成物は酸化マグネシウム粉末であることが確認された。
[Example 1]
To 250 g of magnesium oxide powder (BET conversion particle size: 0.2 μm, purity: 99.98 mass%) produced by a vapor phase method, 0.0200 g of aluminum chloride hexahydrate powder (purity: 99 mass%) Magnesium fluoride powder (purity: 99.1% by mass) 0.0250 g was added and mixed to obtain a powder mixture. The obtained powder mixture is put into a heat-resistant container made of alumina having a capacity of 790 mL, the heat-resistant container is covered, put into an electric furnace, and the temperature in the furnace is increased to 1300 ° C. at a heating rate of 240 ° C./hour. And then calcined at that temperature for 3 hours. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The alumina container was taken out of the electric furnace after cooling, and the powder fired product in the alumina container was recovered. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
 得られた酸化マグネシウム粉末について、SEM観察を行い、多角形酸化マグネシウム粒子の含有量を測定した。また、BET比表面積を測定してBET換算粒子径を算出した。さらに、粒度分布と添加元素量(塩素とフッ素)とを測定した。図1にSEM写真を、図2に粒度分布の測定結果を示す。また、表1に多角形酸化マグネシウム粒子の含有量とBET換算粒子径とを示し、表2に粒度分布のD10、D50及びD90の粒子径と添加元素の含有量とを示す。なお、粒度分布と添加元素(塩素とフッ素)の含有量の測定方法は、後述の通りである。 About the obtained magnesium oxide powder, SEM observation was performed and content of the polygonal magnesium oxide particle was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed. Further, the particle size distribution and the amount of added elements (chlorine and fluorine) were measured. FIG. 1 shows an SEM photograph, and FIG. 2 shows the measurement result of the particle size distribution. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle size, and Table 2 shows the particle sizes of D 10 , D 50 and D 90 in the particle size distribution and the content of additive elements. The method for measuring the particle size distribution and the content of additive elements (chlorine and fluorine) is as described later.
 図1のSEM写真と表1の多角形酸化マグネシウム粒子含有量のデータから、酸化マグネシウム粉末は多角形酸化マグネシウム粒子を多数含有していることが分かる。また、図2と表2の粒度分布のデータから、酸化マグネシウム粉末は粒度分布の幅が狭いこと、すなわち多角形酸化マグネシウム粒子の粒子径が揃っていることが分かる。 From the SEM photograph of FIG. 1 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles. 2 and Table 2 show that the particle size distribution of the magnesium oxide powder is narrow, that is, the particle diameters of the polygonal magnesium oxide particles are uniform.
[粒度分布の測定方法]
 酸化マグネシウム粉末0.5gを50mLのIPA(イソプロピルアルコール)に投入し、3分間超音波分散処理して、多角形酸化マグネシウム粒子の分散液を調製した。この分散液中の多角形酸化マグネシウム粒子の粒度分布を、マイクロトラックHRA(日機装株式会社製)を用いて、レーザー回折散乱法により測定した。
[Measurement method of particle size distribution]
0.5 g of magnesium oxide powder was put into 50 mL of IPA (isopropyl alcohol) and subjected to ultrasonic dispersion treatment for 3 minutes to prepare a dispersion of polygonal magnesium oxide particles. The particle size distribution of the polygonal magnesium oxide particles in this dispersion was measured by a laser diffraction scattering method using Microtrac HRA (manufactured by Nikkiso Co., Ltd.).
[添加元素の含有量の測定方法]
 塩素量は、次の方法により測定した。酸化マグネシウム粉末を水に投入し、撹拌して、分散液を得た。得られた分散液をろ過し、ろ液中の塩素量をイオンクロマトグラフ法で測定した。
 フッ素量は、酸化マグネシウム粉末を塩酸で溶解して調製した溶液中のフッ素量を吸光光度法で測定した。
 ストロンチウム量は、酸化マグネシウム粉末を塩酸で溶解して調製した溶液中のストロンチウム量をICP発光分光分析法で測定した。
[Measurement method of content of additive element]
The amount of chlorine was measured by the following method. Magnesium oxide powder was put into water and stirred to obtain a dispersion. The obtained dispersion was filtered, and the amount of chlorine in the filtrate was measured by ion chromatography.
The amount of fluorine was measured by absorptiometry in a solution prepared by dissolving magnesium oxide powder with hydrochloric acid.
For the amount of strontium, the amount of strontium in a solution prepared by dissolving magnesium oxide powder with hydrochloric acid was measured by ICP emission spectrometry.
[実施例2]
 酸化マグネシウム粉末の量を270gとし、塩化アルミニウム・六水和物粉末とフッ化マグネシウム粉末の代わりに塩化ストロンチウム・六水和物(純度:99.995質量%)0.2700gを用いたこと以外は、実施例1と同様にして粉末焼成物を回収した。得られた粉末焼成物のX線回折を測定した結果、粉末焼成物は酸化マグネシウム粉末であることが確認された。
[Example 2]
The amount of magnesium oxide powder was 270 g, and 0.2700 g of strontium chloride hexahydrate (purity: 99.995 mass%) was used instead of aluminum chloride hexahydrate powder and magnesium fluoride powder. The powder fired product was recovered in the same manner as in Example 1. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
 得られた酸化マグネシウム粉末について、SEM観察を行い、多角形酸化マグネシウム粒子の含有量を測定した。また、BET比表面積を測定してBET換算粒子径を算出した。さらに、粒度分布と添加元素(塩素とストロンチウム)の含有量を測定した。図3にSEM写真を、図4に粒度分布の測定結果を示す。また、表1に多角形酸化マグネシウム粒子の含有量とBET換算粒子径とを示し、表2に粒度分布のD10、D50及びD90の粒子径と添加元素の含有量とを示す。 About the obtained magnesium oxide powder, SEM observation was performed and content of the polygonal magnesium oxide particle was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed. Furthermore, the particle size distribution and the content of additive elements (chlorine and strontium) were measured. FIG. 3 shows an SEM photograph, and FIG. 4 shows the measurement result of the particle size distribution. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle size, and Table 2 shows the particle sizes of D 10 , D 50 and D 90 in the particle size distribution and the content of additive elements.
 図3のSEM写真と表1の多角形酸化マグネシウム粒子含有量のデータから、酸化マグネシウム粉末は多角形酸化マグネシウム粒子を多数含有していることが分かる。また、図4と表2の粒度分布のデータから、酸化マグネシウム粉末は粒度分布の幅が狭いこと、すなわち多角形酸化マグネシウム粒子の粒子径が揃っていることが分かる。 From the SEM photograph in FIG. 3 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles. Further, from the particle size distribution data of FIG. 4 and Table 2, it can be seen that the width of the particle size distribution of the magnesium oxide powder is narrow, that is, the particle diameters of the polygonal magnesium oxide particles are uniform.
[実施例3]
 塩化アルミニウム・六水和物粉末とフッ化マグネシウム粉末の代わりに塩化ストロンチウム・六水和物0.5640gを用いたこと、そして炉内温度を1400℃としたこと以外は、実施例1と同様にして粉末焼成物を回収した。得られた粉末焼成物のX線回折を測定した結果、粉末焼成物は酸化マグネシウム粉末であることが確認された。
[Example 3]
Example 1 was used except that 0.5640 g of strontium chloride hexahydrate was used instead of aluminum chloride hexahydrate powder and magnesium fluoride powder, and the furnace temperature was 1400 ° C. The powder fired product was recovered. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
 得られた酸化マグネシウム粉末について、SEM観察を行い、多角形酸化マグネシウム粒子の含有量を測定した。また、BET比表面積を測定してBET換算粒子径を算出した。さらに、粒度分布と添加元素(塩素とストロンチウム)の含有量を測定した。図5にSEM写真を、図6に粒度分布の測定結果を示す。また、表1に多角形酸化マグネシウム粒子の含有量とBET換算粒子径とを示し、表2に粒度分布のD10、D50及びD90の粒子径と添加元素の含有量とを示す。 About the obtained magnesium oxide powder, SEM observation was performed and content of the polygonal magnesium oxide particle was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed. Furthermore, the particle size distribution and the content of additive elements (chlorine and strontium) were measured. FIG. 5 shows an SEM photograph, and FIG. 6 shows the measurement result of the particle size distribution. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle size, and Table 2 shows the particle sizes of D 10 , D 50 and D 90 in the particle size distribution and the content of additive elements.
 図5のSEM写真と表1の多角形酸化マグネシウム粒子含有量のデータから、酸化マグネシウム粉末は多角形酸化マグネシウム粒子を多数含有していることが分かる。また、図6と表2の粒度分布のデータから、酸化マグネシウム粉末は粒度分布の幅が狭いこと、すなわち多角形酸化マグネシウム粒子の粒子径が揃っていることが分かる。 From the SEM photograph of FIG. 5 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles. Further, from the particle size distribution data of FIG. 6 and Table 2, it can be seen that the width of the particle size distribution of the magnesium oxide powder is narrow, that is, the particle diameters of the polygonal magnesium oxide particles are uniform.
[実施例4]
 塩化アルミニウム・六水和物粉末とフッ化マグネシウム粉末の代わりに塩化ストロンチウム・六水和物0.8437gを用いたこと、そして炉内温度を1400℃としたこと以外は、実施例1と同様にして粉末焼成物を回収した。得られた粉末焼成物のX線回折を測定した結果、粉末焼成物は酸化マグネシウム粉末であることが確認された。
[Example 4]
Example 1 was used except that 0.8437 g of strontium chloride hexahydrate was used instead of aluminum chloride hexahydrate powder and magnesium fluoride powder, and the furnace temperature was 1400 ° C. The powder fired product was recovered. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
 得られた酸化マグネシウム粉末について、SEM観察を行い、多角形酸化マグネシウム粒子の含有量を測定した。また、BET比表面積を測定してBET換算粒子径を算出した。図7にSEM写真を示す。また、表1に多角形酸化マグネシウム粒子の含有量とBET換算粒子径とを示す。図7のSEM写真と表1の多角形酸化マグネシウム粒子含有量のデータから、酸化マグネシウム粉末は多角形酸化マグネシウム粒子を多数含有していることが分かる。 The obtained magnesium oxide powder was subjected to SEM observation, and the content of polygonal magnesium oxide particles was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed. FIG. 7 shows an SEM photograph. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle diameter. From the SEM photograph of FIG. 7 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles.
[実施例5]
 塩化アルミニウム・六水和物粉末とフッ化マグネシウム粉末の代わりに塩化ストロンチウム・六水和物0.3817gを用いたこと、そして炉内温度を1200℃としたこと以外は、実施例1と同様にして粉末焼成物を回収した。得られた粉末焼成物のX線回折を測定した結果、粉末焼成物は酸化マグネシウム粉末であることが確認された。
[Example 5]
Example 1 was used except that 0.3817 g of strontium chloride hexahydrate was used instead of aluminum chloride hexahydrate powder and magnesium fluoride powder, and the furnace temperature was 1200 ° C. The powder fired product was recovered. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
 得られた酸化マグネシウム粉末について、SEM観察を行い、多角形酸化マグネシウム粒子の含有量を測定した。また、BET比表面積を測定してBET換算粒子径を算出した。図8にSEM写真を示す。また、表1に多角形酸化マグネシウム粒子の含有量とBET換算粒子径とを示す。図8のSEM写真と表1の多角形酸化マグネシウム粒子含有量のデータから、酸化マグネシウム粉末は多角形酸化マグネシウム粒子を多数含有していることが分かる。 The obtained magnesium oxide powder was subjected to SEM observation, and the content of polygonal magnesium oxide particles was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed. FIG. 8 shows an SEM photograph. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle diameter. From the SEM photograph of FIG. 8 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles.
[実施例6]
 塩化アルミニウム・六水和物粉末とフッ化マグネシウム粉末の代わりに塩化ニッケル・六水和物(純度:99.95質量%)0.1283gと酸化ニッケル(純度:99.99質量%)4.1533gとを用いたこと、そして炉内温度を1400℃としたこと以外は、実施例1と同様にして粉末焼成物を回収した。得られた粉末焼成物のX線回折を測定した結果、粉末焼成物は酸化マグネシウム粉末であることが確認された。
[Example 6]
Instead of aluminum chloride hexahydrate powder and magnesium fluoride powder, nickel chloride hexahydrate (purity: 99.95% by mass) 0.1283 g and nickel oxide (purity: 99.99% by mass) 4.1533 g And the fired powder was collected in the same manner as in Example 1 except that the furnace temperature was 1400 ° C. As a result of measuring the X-ray diffraction of the obtained powder fired product, it was confirmed that the powder fired product was a magnesium oxide powder.
 得られた酸化マグネシウム粉末について、SEM観察を行い、多角形酸化マグネシウム粒子の含有量を測定した。また、BET比表面積を測定してBET換算粒子径を算出した。図9にSEM写真を示す。また、表1に多角形酸化マグネシウム粒子の含有量とBET換算粒子径とを示す。図9のSEM写真と表1の多角形酸化マグネシウム粒子含有量のデータから、酸化マグネシウム粉末は多角形酸化マグネシウム粒子を多数含有していることが分かる。 The obtained magnesium oxide powder was subjected to SEM observation, and the content of polygonal magnesium oxide particles was measured. Moreover, the BET specific surface area was measured and the BET conversion particle diameter was computed. FIG. 9 shows an SEM photograph. Table 1 shows the content of polygonal magnesium oxide particles and the BET equivalent particle diameter. From the SEM photograph of FIG. 9 and the polygonal magnesium oxide particle content data in Table 1, it can be seen that the magnesium oxide powder contains a large number of polygonal magnesium oxide particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  BET換算粒子径が0.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する樹脂組成物のフィラー用の酸化マグネシウム粉末。 Contains polygonal magnesium oxide particles having a BET equivalent particle diameter in the range of 0.5 to 20 μm and having a shape in which at least one of vertices and / or sides of a rectangular parallelepiped is chamfered in an amount of 30% or more based on the number. Magnesium oxide powder for filler of resin composition.
  2.  多角形酸化マグネシウム粒子の粒子形状が14面体である請求項1に記載の酸化マグネシウム粉末。 The magnesium oxide powder according to claim 1, wherein the polygonal magnesium oxide particles have a tetrahedral shape.
  3.  塩素及び臭素からなる群より選ばれる少なくとも一つのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルからなる群より選ばれる少なくとも一つの元素とを含む請求項1もしくは2に記載の酸化マグネシウム粉末。 3. The magnesium oxide powder according to claim 1, comprising at least one halogen element selected from the group consisting of chlorine and bromine and at least one element selected from the group consisting of fluorine, strontium, barium, calcium and nickel.
  4.  樹脂と、BET換算粒子径が0.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する酸化マグネシウム粉末とを含む樹脂組成物。 The amount of resin and polygonal magnesium oxide particles having a BET equivalent particle diameter in the range of 0.5 to 20 μm and having a shape in which at least one of the vertex and / or side of the rectangular parallelepiped is chamfered is 30% or more based on the number. And a magnesium oxide powder.
  5.  樹脂と酸化マグネシウム粉末の割合が、体積比で100:5~100:1000の範囲にある請求項4に記載の樹脂組成物。 5. The resin composition according to claim 4, wherein the ratio of the resin and the magnesium oxide powder is in the range of 100: 5 to 100: 1000 by volume ratio.
  6.  樹脂が熱硬化性樹脂である請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the resin is a thermosetting resin.
  7.  半導体素子の周囲が封止材で封止された半導体パッケージであって、該封止材が、熱硬化性樹脂と、BET換算粒子径が0.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する酸化マグネシウム粉末とを含む樹脂組成物の硬化物であって、該硬化物中にて、多角形酸化マグネシウム粒子の複数個が互いに接触している半導体パッケージ。 A semiconductor package in which a periphery of a semiconductor element is sealed with a sealing material, the sealing material having a thermosetting resin and a BET equivalent particle diameter in a range of 0.5 to 20 μm, A cured product of a resin composition comprising magnesium oxide powder containing polygonal magnesium oxide particles having a shape with at least one side chamfered in a quantity basis of 30% or more, the cured product A semiconductor package in which a plurality of polygonal magnesium oxide particles are in contact with each other.
  8.  BET換算粒子径が2.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する酸化マグネシウム粉末。 Contains polygonal magnesium oxide particles having a BET equivalent particle diameter in the range of 2.5 to 20 μm and having a shape in which at least one of vertices and / or sides of a rectangular parallelepiped is chamfered in an amount of 30% or more based on the number. Magnesium oxide powder.
  9.  多角形酸化マグネシウム粒子の粒子形状が14面体である請求項8に記載の酸化マグネシウム粉末。 The magnesium oxide powder according to claim 8, wherein the polygonal magnesium oxide particles have a tetrahedral shape.
  10.  塩素及び臭素からなる群より選ばれる少なくとも一つのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルからなる群より選ばれる少なくとも一つの元素とを含む請求項8もしくは9に記載の酸化マグネシウム粉末。 The magnesium oxide powder according to claim 8 or 9, comprising at least one halogen element selected from the group consisting of chlorine and bromine, and at least one element selected from the group consisting of fluorine, strontium, barium, calcium and nickel.
  11.  酸化マグネシウム粉末を、塩素及び臭素からなる群より選ばれる少なくとも一つのハロゲン元素と、フッ素、ストロンチウム、バリウム、カルシウム及びニッケルからなる群より選ばれる少なくとも一つの元素の存在下にて閉じられた空間内で焼成する、BET換算粒子径が0.5~20μmの範囲にあり、直方体の頂点及び/又は辺の少なくとも一つが面取りされた形状を有する多角形酸化マグネシウム粒子を個数基準で30%以上の量にて含有する酸化マグネシウム粉末の製造方法。 Magnesium oxide powder in a closed space in the presence of at least one halogen element selected from the group consisting of chlorine and bromine and at least one element selected from the group consisting of fluorine, strontium, barium, calcium and nickel 30% or more of polygonal magnesium oxide particles having a BET-equivalent particle diameter in the range of 0.5 to 20 μm and having a shape in which at least one of the top and / or sides of the rectangular parallelepiped is chamfered. The manufacturing method of the magnesium oxide powder contained in.
PCT/JP2013/079539 2012-10-31 2013-10-31 Magnesium oxide powder WO2014069567A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380057482.8A CN104755424A (en) 2012-10-31 2013-10-31 Magnesium oxide powder
KR1020157012825A KR102044590B1 (en) 2012-10-31 2013-10-31 Magnesium oxide powder
JP2014544578A JP6199881B2 (en) 2012-10-31 2013-10-31 Magnesium oxide powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-240850 2012-10-31
JP2012240850 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014069567A1 true WO2014069567A1 (en) 2014-05-08

Family

ID=50627465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079539 WO2014069567A1 (en) 2012-10-31 2013-10-31 Magnesium oxide powder

Country Status (4)

Country Link
JP (1) JP6199881B2 (en)
KR (1) KR102044590B1 (en)
CN (1) CN104755424A (en)
WO (1) WO2014069567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066262A (en) * 2015-09-30 2017-04-06 宇部興産株式会社 Magnesium oxide dispersion liquid and resin composition using the same
JP2021075630A (en) * 2019-11-08 2021-05-20 パナソニックIpマネジメント株式会社 Thermally conductive silicone composition and thermally conductive silicone material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507214B1 (en) * 2017-12-01 2019-04-24 宇部マテリアルズ株式会社 MAGNESIUM OXIDE POWDER, METHOD FOR PRODUCING THE SAME, THERMAL CONDUCTIVE RESIN COMPOSITION, THERMAL CONDUCTIVE GREASE, AND THERMAL CONDUCTIVE PAINT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187613A (en) * 1993-08-11 1995-07-25 Sumitomo Chem Co Ltd Metal oxide power and its production
JP2008181903A (en) * 2006-05-31 2008-08-07 Matsushita Electric Ind Co Ltd Plasma display panel
JP2008239475A (en) * 2007-03-01 2008-10-09 Ube Material Industries Ltd Chlorine-containing magnesium oxide powder
JP2012072004A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016935B2 (en) 2007-01-30 2012-09-05 タテホ化学工業株式会社 Cubic magnesium oxide powder and process for producing the same
JP5125258B2 (en) 2007-06-29 2013-01-23 堺化学工業株式会社 Spherical magnesium oxide particles and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187613A (en) * 1993-08-11 1995-07-25 Sumitomo Chem Co Ltd Metal oxide power and its production
JP2008181903A (en) * 2006-05-31 2008-08-07 Matsushita Electric Ind Co Ltd Plasma display panel
JP2008239475A (en) * 2007-03-01 2008-10-09 Ube Material Industries Ltd Chlorine-containing magnesium oxide powder
JP2012072004A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066262A (en) * 2015-09-30 2017-04-06 宇部興産株式会社 Magnesium oxide dispersion liquid and resin composition using the same
JP2021075630A (en) * 2019-11-08 2021-05-20 パナソニックIpマネジメント株式会社 Thermally conductive silicone composition and thermally conductive silicone material

Also Published As

Publication number Publication date
KR20150076193A (en) 2015-07-06
JP6199881B2 (en) 2017-09-20
KR102044590B1 (en) 2019-11-13
CN104755424A (en) 2015-07-01
JPWO2014069567A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
CN106848389B (en) Composite solid electrolyte
JP6203212B2 (en) Use of BaAl2O4 and / or BaAl12O19 in the production of ceramic materials
TWI597312B (en) Coated magnesia powder and its manufacturing method
KR101709203B1 (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP6199881B2 (en) Magnesium oxide powder
TWI636958B (en) Low soda alpha alumina powder with excellent viscosity characteristics and preparation method thereof
KR101933142B1 (en) Magnesium oxide, thermally conductive filler, thermally conductive resin composition comprising same, and method for producing magnesium oxide
CN112912447A (en) Magnesium oxide, method for producing same, highly thermally conductive magnesium oxide composition, and magnesium oxide ceramic using same
JPH10237311A (en) Alumina-charged resin or rubber composition
WO2014077165A1 (en) Magnesium hydroxide particle and resin composition containing same
US9828538B2 (en) Thermally conductive filler and thermally conductive resin composition containing same
WO2016147862A1 (en) Magnesium oxide powder, resin composition including same, and method for producing magnesium oxide powder
KR102434453B1 (en) Method for preparing globular alumina powder and heat-dissipating composite comprising globular alumina powder prepared by method thereof
KR20240139888A (en) Method for producing spherical alumina powder
WO2024190205A1 (en) Magnesium oxide particle fused body and method for producing same
JP2015193493A (en) High density alumina and manufacturing method thereof
WO2019017435A1 (en) Silicate compound microparticles and method for producing same
KR102701676B1 (en) Preparation method of aluminium nitride powder
JP2016145152A (en) Thermally conductive filler
KR101462768B1 (en) Method for separating of Mg compound from dolomite
JP2023059538A (en) Spherical magnesium oxide, manufacturing method thereof, resin filler and resin composition
CN114620704A (en) Material for improving battery safety and preparation method and application thereof
JP2020164957A (en) Sputtering target and manufacturing method of sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157012825

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13851509

Country of ref document: EP

Kind code of ref document: A1