WO2014069079A1 - Substrate processing device - Google Patents

Substrate processing device Download PDF

Info

Publication number
WO2014069079A1
WO2014069079A1 PCT/JP2013/072438 JP2013072438W WO2014069079A1 WO 2014069079 A1 WO2014069079 A1 WO 2014069079A1 JP 2013072438 W JP2013072438 W JP 2013072438W WO 2014069079 A1 WO2014069079 A1 WO 2014069079A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphoric acid
substrate
wafer
aqueous solution
storage tank
Prior art date
Application number
PCT/JP2013/072438
Other languages
French (fr)
Japanese (ja)
Inventor
喬 太田
橋詰 彰夫
大輝 日野出
Original Assignee
大日本スクリーン製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本スクリーン製造株式会社 filed Critical 大日本スクリーン製造株式会社
Publication of WO2014069079A1 publication Critical patent/WO2014069079A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • This invention relates to a substrate processing apparatus.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field (Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • substrate semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field (Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • substrate substrate, ceramic substrate, solar cell substrate and the like.
  • the silicon nitride film is selectively removed by supplying a high-temperature phosphoric acid aqueous solution as an etchant to the surface of the substrate on which the silicon nitride film and the silicon oxide film are formed.
  • a phosphoric acid etching process is performed as necessary.
  • a plurality of substrates are immersed in a processing tank in which a high-temperature phosphoric acid aqueous solution is stored for a certain period of time.
  • a batch type substrate processing apparatus in order to perform a uniform etching process, it is necessary to immerse the substrate in a phosphoric acid aqueous solution stored in a processing tank for a certain period or more. Therefore, the same processing time is required regardless of whether a plurality of substrates are processed at once or when a single substrate is processed.
  • a single wafer type substrate processing apparatus can uniformly process a single substrate in a short time.
  • the etching rate (removal amount per unit time) of the silicon nitride film is highest when the temperature of the phosphoric acid aqueous solution supplied to the substrate is near the boiling point.
  • the temperature of the phosphoric acid aqueous solution is lowered before being supplied to the substrate.
  • the etching rate decreases. For this reason, the time required for etching becomes long and the throughput may be lowered, and an improvement in the etching rate is demanded.
  • the phosphoric acid etching it is required not only to increase the etching rate of the silicon nitride film, but also to increase the selectivity of the silicon nitride film (the removal amount of the silicon nitride film / the removal amount of the silicon oxide film).
  • an object of the present invention is to provide a substrate processing apparatus capable of increasing the nitride film etching rate and at the same time keeping the nitride film selectivity high.
  • the present invention provides a storage tank for storing a phosphoric acid aqueous solution, a substrate holding means for holding the substrate in a horizontal posture in a state in which the substrate is immersed in the phosphoric acid aqueous solution in the storage tank, and the substrate holding means
  • a substrate processing apparatus including a heating unit facing a substrate that is formed, and heating means for heating the substrate by heat radiation or heat transfer from the heating unit.
  • the substrate is immersed in the phosphoric acid aqueous solution in the storage tank.
  • the substrate in the immersion state is given heat from the heat generating part by heat conduction, and at the same time, heat is given by heat radiation (heat radiation).
  • heat radiation heat radiation
  • the phosphoric acid aqueous solution in which the substrate is immersed is maintained at the boiling point by the heat from the heat generating part.
  • the boundary where the substrate surface and the phosphoric acid aqueous solution are in contact with each other is extremely hot locally and the phosphoric acid concentration is kept low as a whole.
  • the phosphoric acid aqueous solution in this state can be applied to the nitride film on the surface of the substrate. Thereby, the etching rate can be greatly increased, and at the same time, the selectivity of the nitride film can be kept high.
  • the substrate can be immersed with a small amount of phosphoric acid aqueous solution. Further, since the substrate is in a horizontal posture, generation of convection in the phosphoric acid aqueous solution can be suppressed, and thereby the temperature and phosphoric acid concentration of the phosphoric acid aqueous solution can be kept uniform.
  • the substrate processing apparatus stores water in the storage tank by controlling water supply means for supplying water to the phosphoric acid aqueous solution stored in the storage tank and supply / stop of water supply from the water supply means. It is preferable to include concentration control means for controlling the concentration of the phosphoric acid aqueous solution.
  • the phosphoric acid aqueous solution is maintained in a boiling state by heating of the heat generating portion with respect to the phosphoric acid aqueous solution.
  • the phosphoric acid concentration of the phosphoric acid aqueous solution gradually increases due to evaporation of water contained in the phosphoric acid aqueous solution.
  • the rise in the boiling point of the phosphoric acid aqueous solution further increases the temperature of the phosphoric acid aqueous solution, which may further increase the phosphoric acid concentration of the phosphoric acid aqueous solution.
  • an increase in the phosphoric acid concentration of the phosphoric acid aqueous solution is suppressed by supplying water to the phosphoric acid aqueous solution maintained in a boiling state. That is, the concentration of the phosphoric acid aqueous solution can be controlled by controlling the supply / stop of water supply to the phosphoric acid aqueous solution. As a result, a phosphoric acid aqueous solution whose concentration is appropriately controlled can be supplied to the substrate, and therefore the selectivity of the nitride film can be maintained even higher.
  • the water supply means may include a porous nozzle having a large number of discharge ports for discharging water droplets. Since water droplets are discharged from each of a large number of discharge ports, water can be supplied almost uniformly to the phosphoric acid aqueous solution stored in the storage tank. As a result, the phosphoric acid concentration of the phosphoric acid aqueous solution can be kept uniform. Thereby, the selectivity of the nitride film can be kept uniform over the entire area of the substrate.
  • the water supply means may include a spray nozzle that injects spray-like water into the reservoir.
  • a spray nozzle that injects spray-like water into the reservoir.
  • finer water droplets are supplied to the phosphoric acid aqueous solution stored in the storage tank.
  • Water and phosphoric acid aqueous solution tend to be relatively difficult to mix due to differences in specific gravity, viscosity, and the like.
  • the smaller the droplet size the easier it is to mix, the water and the phosphoric acid aqueous solution can be smoothly mixed by supplying water in a fine droplet state to the phosphoric acid aqueous solution.
  • the heating means heats the substrate held by the substrate holding means from below.
  • the storage tank may have a bottom surface, and the bottom surface of the storage tank may constitute the heat generating portion. Since the bottom surface of the storage tank is a heat generating part, heat can be applied to the substrate immersed in the phosphoric acid aqueous solution in the storage tank by heat radiation or heat conduction from the heat generating part with a simple configuration.
  • the heating means heats the substrate held by the substrate holding means from above.
  • the heating unit may include an infrared lamp, and the infrared lamp may be disposed to face the surface of the substrate held by the substrate holding unit and irradiate infrared rays toward the surface.
  • the substrate holding means has a substrate support portion that supports a substrate in a non-contact state with respect to the storage tank, and the substrate processing apparatus includes a substrate rotation means that rotates the substrate supported by the substrate support portion. Further, it may be included.
  • the substrate can be rotated (for example, spin dry).
  • FIG. 4 is a schematic diagram for explaining the processing example of FIG. 3.
  • FIG. 4B is a schematic diagram for explaining a process following FIG. 4A. It is a schematic diagram for demonstrating the process following FIG. 4B.
  • FIG. 4D is a schematic diagram for explaining a process following FIG. 4C.
  • FIG. 4D is a schematic diagram for explaining a process following FIG. 4D. It is a schematic diagram for demonstrating the process following FIG. 4E.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a substrate processing apparatus 1 according to a first embodiment of the present invention.
  • the substrate processing apparatus 1 has a silicon oxide film (oxide film) and a silicon nitride film (on the surface on the device forming region side of a circular semiconductor wafer W (hereinafter simply referred to as “wafer W”) as an example of a substrate (
  • This is a single wafer type apparatus for performing an etching process on the nitride film.
  • This etching process is a process for selectively etching the nitride film from the surface of the wafer W, and an aqueous phosphoric acid solution is used as an etchant.
  • a substrate processing apparatus 1 includes a storage tank (heating means) 4 for storing a phosphoric acid aqueous solution in a processing chamber 2 partitioned by a partition wall (not shown), and a storage tank 4.
  • a spin chuck 3 that rotates while holding the wafer W horizontally while immersed in an aqueous phosphoric acid solution.
  • a heater 28 is embedded in the storage tank 4, and the bottom surface 29 of the storage tank 4 functions as a heat generating unit for heating the wafer W.
  • the substrate processing apparatus 1 includes a phosphoric acid aqueous solution nozzle 5 for discharging a phosphoric acid aqueous solution onto the surface (upper surface) of the wafer W held on the spin chuck 3, and the wafer W held on the spin chuck 3.
  • the spin chuck 3 includes a cylindrical rotating shaft 11 that extends vertically, a disk-shaped spin base 12 that is attached to the upper end of the rotating shaft 11 in a horizontal posture, and a plurality of spin chucks 3 that are arranged on the spin base 12 at regular intervals, for example. (At least three, for example, six) clamping members (substrate support portions) 13 and a spin motor (substrate rotation means) 14 connected to the rotation shaft 11 are provided.
  • Each clamping member 13 is configured by arranging downwardly a clamping pin 34 for clamping the peripheral edge of the wafer W at the tip of an L-shaped support arm 42 in a side view.
  • the clamping pin drive mechanism 43 is coupled to the plurality of clamping pins 34.
  • the clamping pin drive mechanism 43 has a clamping position where the plurality of clamping pins 34 can be brought into contact with the end surface of the wafer W to clamp the wafer W, and an open position radially outward of the wafer W from the clamping position. Can be led to.
  • the wafer W is firmly held by the spin chuck 3 by holding the holding pins 34 in contact with the peripheral end surface of the wafer W.
  • the rotational driving force of the spin motor 14 is input to the rotation shaft 11, so that the wafer W is rotated around the vertical rotation axis A 1 passing through the center of the wafer W. Rotate.
  • the spin chuck 3 can rotate the wafer W at a maximum rotation speed of 2500 rpm.
  • the phosphoric acid aqueous solution nozzle 5 is, for example, a straight nozzle that discharges a phosphoric acid aqueous solution in a continuous flow state, and is fixedly disposed above the spin chuck 3 with its discharge port directed near the rotation center of the wafer W. ing.
  • the phosphoric acid aqueous solution nozzle 5 is connected to a phosphoric acid supply pipe 16 to which a phosphoric acid aqueous solution having a boiling point (for example, about 140 ° C.) from a phosphoric acid aqueous solution supply source is supplied.
  • a phosphate valve 17 for opening and closing the phosphate supply pipe 16 is interposed in the phosphate supply pipe 16.
  • the phosphoric acid aqueous solution is supplied from the phosphoric acid supply pipe 16 to the phosphoric acid aqueous solution nozzle 5, and when the phosphoric acid valve 17 is closed, the phosphoric acid aqueous solution nozzle 5 is supplied from the phosphoric acid supply pipe 16. The supply of the phosphoric acid aqueous solution to is stopped.
  • the bar nozzle 50 is a nozzle that extends linearly and is held in a horizontal position above the spin chuck 3.
  • the bar nozzle 50 extends along the radial direction of the wafer W held by the spin chuck 3 and passes on the rotation axis A1 of the wafer W.
  • the bar nozzle 50 has a cylindrical nozzle pipe 51 whose tip is closed. The tip of the bar nozzle 50 is closed.
  • Each discharge port 52 includes a small hole that opens in the tube wall of the nozzle pipe 51, and each discharge port 52 communicates with the internal space of the nozzle pipe 51.
  • the plurality of discharge ports 52 have substantially the same size and are arranged with substantially equal density.
  • a first water supply pipe 53 to which water from a water supply source is supplied is connected to the proximal end of the nozzle pipe 51.
  • the inside of the nozzle pipe 51 communicates with the inside of the first water supply pipe 53.
  • the first water supply pipe 53 is provided with a first water valve 54 for opening and closing the first water supply pipe 53.
  • first water valve 54 When the first water valve 54 is opened, water is supplied from the first water supply pipe 53 to the bar nozzle 50, and water is discharged downward from each discharge port 52. Since each discharge port is formed from a small hole, each discharge port 52 drops as a droplet. At this time, the discharge flow rate of water from each discharge port 52 is uniform.
  • the water dripped from each discharge port 52 is poured into the storage tank 4 of the spin chuck 3.
  • the water nozzle 30 is, for example, a straight nozzle that discharges DIW for rinsing in a continuous flow state.
  • the water nozzle 30 is fixedly disposed above the spin chuck 3 with its discharge port directed near the rotation center of the wafer W. Yes.
  • a second water supply pipe 31 to which water from a water supply source is supplied is connected to the water nozzle 30.
  • a second water valve 32 for switching supply / stop of water supply from the water nozzle 30 is interposed in the middle of the second water supply pipe 31.
  • the cup 8 is for processing a phosphoric acid aqueous solution and water after being used for processing the wafer W, and is formed in a bottomed cylindrical container shape.
  • the storage tank 4 has, for example, a substantially cylindrical bottomed container shape, and is formed using ceramic or silicon carbide (SiC).
  • the storage tank 4 is disposed in a horizontal posture between the upper surface of the spin base 12 and the lower surface of the wafer W held by the spin chuck 3.
  • the storage tank 4 includes a horizontally flat circular bottom surface (heat generating portion) 29 and an outer peripheral wall 38 that rises vertically upward from the peripheral edge of the bottom surface 29.
  • the bottom surface 29 of the storage tank 4 and the inner peripheral surface of the outer peripheral wall 38 define a shallow groove storage groove 41 for storing a liquid above the bottom surface 29, and the liquid can be stored above the bottom surface 29. It is like that.
  • the groove depth of the storage groove 41 (the thickness of the liquid stored in the storage groove 41) is set to, for example, about 7 mm within a range of 2 mm to 11 mm.
  • a resistance heater 28 is embedded in the bottom surface 29 of the storage tank 4.
  • Power is supplied to the heater 28 through a power supply line (not shown) that passes through the through hole 24 and the like described below.
  • the storage tank 4 is not configured to be rotatable, and therefore a rotating electrical contact is not required for supplying power to the heater 28. Therefore, compared with the case where the storage tank 4 is rotated, the power supply amount to the storage tank 4 is not limited. Thereby, the wafer W can be heated to a desired high temperature.
  • the heater 28 In the ON state of the heater 28, the heater 28 generates heat by supplying power to the heater 28, the entire storage tank 4 enters a heat generation state, and the entire bottom surface 29 generates heat.
  • the amount of heat generated per unit area of the bottom surface 29 when the heater 28 is on is set uniformly over the entire bottom surface 29.
  • the support rod 25 is inserted in the vertical direction (thickness direction of the spin base 12) along the rotation axis A1 through the through hole 24 penetrating the spin base 12 and the rotation shaft 11 in the vertical direction. It is fixed.
  • the support rod 25 is not in contact with the spin base 12 or the rotating shaft 11 in the through hole 24.
  • the lower end (the other end) of the support rod 25 is fixed to a peripheral member below the spin chuck 3, whereby the support rod 25 is held in a posture.
  • the storage tank 4 is not supported by the spin chuck 3, the storage tank 4 is stationary (non-rotating state) without rotating even when the wafer W is rotating.
  • the support rod 25 is a hollow shaft, and a water supply path 61 for flowing water such as DIW (deionized water) is formed therein.
  • the water supply path 61 communicates with a lower discharge port 62 that opens at the bottom surface 29 of the storage tank 4.
  • the lower discharge port 62 faces the center of the lower surface of the wafer W held by the spin chuck 3.
  • a water supply pipe 63 to which water is supplied from a water supply source is connected to the water supply path 61.
  • the water supply pipe 63 is provided with a water valve 64 for opening and closing the water supply pipe 63.
  • the water valve 64 When the water valve 64 is opened, water is supplied from the water supply pipe 63 to the lower discharge port 62 through the water supply path 61. Thereby, water is discharged from the lower discharge port 62.
  • An elevating mechanism 27 for elevating the storage tank 4 is coupled to the support rod 25.
  • the storage tank 4 is lifted and lowered by the lifting mechanism 27 while maintaining a horizontal posture.
  • the elevating mechanism 27 is constituted by, for example, a ball screw or a motor.
  • the storage tank 4 has a lower position where the lower surface is close to the upper surface of the spin base 12 (a separation position where the lower surface is separated from the wafer W; see FIG. 4A and the like), and an upper surface of the storage tank 4 is the wafer W Are moved up and down with respect to an upper position (a proximity position close to the wafer W; see FIG. 4D and the like) opposed to the lower surface of the wafer W with a small interval W1.
  • interval of the storage tank 4 and the wafer W can be changed.
  • annular groove 37 is formed on the peripheral edge of the bottom surface 29 of the storage tank 4 to accommodate the pin 34 of the clamping member 13 when the storage tank 4 is in the upper position described below.
  • the annular groove 37 has an annular shape with the rotation axis A1 as the center so that the pin 34 of the clamping member 13 can be accommodated during rotation of the spin chuck 3 (spin base 12).
  • the groove depth of the annular groove 37 is set to such a depth that the holding pin 34 and the bottom wall of the annular groove 37 do not interfere when the storage tank 4 is in the upper position described below.
  • the groove width of the annular groove 37 is set wider than the outer diameter of the holding pin 34.
  • the annular groove 37 and the outer peripheral wall 38 are provided adjacent to the inside and outside. That is, the outer peripheral surface of the annular groove 37 and the inner peripheral surface of the outer peripheral wall 38 are continuous to form a vertical surface.
  • the wafer W held by the holding member 13 with the surface facing upward is immersed by the liquid stored in the storage groove 41. Is done. That is, the liquid level of the liquid stored in the storage groove 41 is located above the surface of the wafer W, and as a result, the entire surface of the wafer W is covered with the liquid stored in the storage groove 41.
  • FIG. 2 is a block diagram showing an electrical configuration of the substrate processing apparatus 1.
  • the substrate processing apparatus 1 includes a control unit (temperature control means) 40 including a microcomputer.
  • the controller 40 controls on / off of the heater 28 by switching between energization / disconnection of the heater 28.
  • the control unit 40 controls operations of the spin motor 14, the pinching pin drive mechanism 43, the lifting mechanism 27, and the like.
  • the control unit 40 also controls the opening / closing operations of the phosphoric acid valve 17, the first water valve 54, the second water valve 32, and the like.
  • FIG. 3 is a process diagram for explaining a processing example of the phosphoric acid etching process executed by the substrate processing apparatus 1.
  • 4A to 4F are schematic views for explaining this processing example.
  • the controller 40 turns on the heater 28 (driving state).
  • the bottom surface 29 is in a heat generating state.
  • the control unit 40 opens the phosphoric acid valve 17 and discharges a phosphoric acid aqueous solution having a high boiling point close to the boiling point from the phosphoric acid aqueous solution nozzle 5, and the phosphoric acid aqueous solution is stored in the storage groove 41 of the storage tank 4 in the lower position. Accumulate on.
  • the control unit 40 closes the phosphoric acid valve 17.
  • the phosphoric acid aqueous solution is heated by the bottom surface 29 in an exothermic state, and the phosphoric acid aqueous solution is heated to a boiling point (for example, about 140 ° C.) and then maintained in a boiling state.
  • a boiling point for example, about 140 ° C.
  • water contained in the phosphoric acid aqueous solution evaporates, and the phosphoric acid concentration of the phosphoric acid aqueous solution gradually increases.
  • the control unit 40 opens the first water valve 54 and drops water droplets from the discharge ports 52 of the bar nozzle 50.
  • the liquid droplets dropped from each discharge port 52 are supplied to the phosphoric acid aqueous solution in the storage tank 4. Since water droplets are discharged from each of the large number of discharge ports 52, water is supplied almost uniformly to the phosphoric acid aqueous solution stored in the storage tank 4.
  • By supplying water to the phosphoric acid aqueous solution in the boiling state an increase in the phosphoric acid concentration of the phosphoric acid aqueous solution in the storage tank 4 is suppressed.
  • the supply of water to the phosphoric acid aqueous solution is performed prior to the loading of the wafer W.
  • the controller 40 adjusts the amount of water supplied to the phosphoric acid aqueous solution in the storage tank 4 by opening and closing the first water valve 54 and switching supply / stop of supply from the bar nozzle 50. Since the water is supplied for adjusting the phosphoric acid concentration of the phosphoric acid aqueous solution, the flow rate of the phosphoric acid aqueous solution supplied from the bar nozzle 50 is sufficient. By supplying such water, the phosphoric acid concentration and temperature of the phosphoric acid aqueous solution in the storage tank 4 are controlled to be constant at a predetermined phosphoric acid concentration (81% as an example) and temperature (about 140 ° C. as an example), respectively.
  • the phosphoric acid concentration and temperature of the phosphoric acid aqueous solution in the storage tank 4 are controlled to be constant at a predetermined phosphoric acid concentration (81% as an example) and temperature (about 140 ° C. as an example), respectively.
  • a transfer robot (not shown) is controlled in a state where the temperature of the phosphoric acid aqueous solution and the phosphoric acid concentration in the storage tank 4 are controlled to the intended temperature and concentration, respectively, and an unprocessed wafer W is placed in the processing chamber 2. Is brought in. A silicon nitride film and a silicon oxide film are formed on the surface of the unprocessed wafer W.
  • the loaded wafer W is arranged at a predetermined delivery position facing the bottom surface 29 of the storage tank 4, and the control unit 40 drives the clamping pin drive mechanism 43 to move the plurality of clamping pins 34 from the open position to the clamping position. Lead.
  • the loaded wafer W is held by the spin chuck 3 with its surface facing upward. In the state where the wafer W is at the delivery position, the distance between the lower surface and the bottom surface 29 of the wafer W is, for example, about 50 mm.
  • the control unit 40 controls the elevating mechanism 27 to raise the storage tank 4 to the upper position.
  • the wafer W is immersed in the phosphoric acid aqueous solution in the storage tank 4.
  • the liquid level of the phosphoric acid aqueous solution in the storage tank 4 is located above the surface of the wafer W, and as a result, the entire surface of the wafer W is covered with the phosphoric acid aqueous solution.
  • a phosphoric acid etching process is performed on the surface of the wafer W (step S1). The phosphoric acid etching process is performed until a predetermined etching time elapses.
  • the interval W1 between the lower surface of the wafer W and the bottom surface 29 of the storage tank 4 is set to about 3 mm, for example.
  • the liquid level of the phosphoric acid aqueous solution is located approximately 3 mm above the wafer W.
  • the thickness of the wafer W is, for example, 0.775 mm.
  • the interval W1 can be set as appropriate within a range of 0.3 to 3 mm.
  • the wafer W held by the spin chuck 3 is heated from the bottom surface 29 of the storage tank 4 by thermal radiation. Since the bottom surface 29 and the lower surface of the wafer W are parallel with the storage tank 4 in the upper position, the amount of heat per unit area given to the wafer W from the storage tank 4 is substantially uniform over the entire area of the wafer W. It is.
  • water is appropriately supplied to the phosphoric acid aqueous solution in the storage tank 4 during the phosphoric acid etching step.
  • the controller 40 opens the first water valve 54 and drops water droplets from the discharge ports 52 of the bar nozzle 50. Since water droplets are discharged from each of the large number of discharge ports 52, water is supplied almost uniformly to the phosphoric acid aqueous solution stored in the storage tank 4. Thereby, the phosphoric acid concentration and temperature of the phosphoric acid aqueous solution in the storage tank 4 are controlled to a predetermined phosphoric acid concentration (81% as an example) and temperature (about 140 ° C. as an example), respectively.
  • the control unit 40 controls the spin motor 14 to rotate the wafer W at a predetermined low speed (for example, in the range of 10 to 300 rpm). As the wafer W rotates, the phosphoric acid aqueous solution stored in the storage groove 41 is agitated. Thereby, the phosphoric acid concentration and temperature of the phosphoric acid aqueous solution are uniformly distributed.
  • FIG. 5 is a diagram showing heating of the wafer W by the bottom surface 29 of the storage tank 4.
  • the bottom surface 29 of the storage tank 4 and the lower surface of the wafer W are almost opposed to each other. Further, the interval W1 between the bottom surface 29 of the storage tank 4 and the lower surface of the wafer W is set to, for example, about 3 mm within a range of 0.3 to 3 mm, for example. Therefore, the wafer W is given heat from the bottom surface 29 of the storage tank 4 by heat conduction and heat by radiation. Thereby, it is considered that the temperature of the wafer W is raised to about 160 ° C.
  • FIG. 6 is a graph showing the relationship between the phosphoric acid concentration (H 3 PO 4 concentration) in the phosphoric acid aqueous solution and the boiling point (boiling point) of the phosphoric acid aqueous solution.
  • the curve in FIG. 6 shows a saturation concentration curve, and the region below the curve is a region where a phosphoric acid aqueous solution can exist (H 3 PO 4 existence region).
  • an aqueous phosphoric acid solution having a concentration of 81% has a boiling point of about 140 ° C.
  • an aqueous phosphoric acid solution having a concentration of 81% does not rise to 140 ° C. or higher in the liquid phase.
  • the maximum concentration of the phosphoric acid aqueous solution having a temperature of 160 ° C. is about 86%. Therefore, in a phosphoric acid aqueous solution having a temperature of 160 ° C., the concentration does not decrease below about 86% in a normal state.
  • FIG. 7 is a graph showing the relationship between the phosphoric acid concentration in the phosphoric acid aqueous solution, the temperature of the phosphoric acid aqueous solution, and the etching rate of the silicon nitride film.
  • the solid line indicates the etching rate when the silicon nitride film is etched using an aqueous phosphoric acid solution having temperatures of 150 ° C., 160 ° C., and 170 ° C.
  • the boiling point of phosphoric acid aqueous solution is shown with the broken line.
  • the etching rate is highest when the temperature of the phosphoric acid aqueous solution is 170 ° C., and the etching rate when the temperature of the phosphoric acid aqueous solution is 160 ° C. is second. high. Therefore, if the phosphoric acid concentration is constant, the higher the temperature of the phosphoric acid aqueous solution, the higher the etching rate.
  • the etching rate decreases as the phosphoric acid concentration increases.
  • the temperature of the phosphoric acid aqueous solution is 160 ° C and 170 ° C. Therefore, if the temperature of the phosphoric acid aqueous solution is constant, the lower the phosphoric acid concentration, the higher the etching rate.
  • the temperature of the phosphoric acid aqueous solution is 140 ° C.
  • the state of the phosphoric acid aqueous solution in the storage tank 4 in the phosphoric acid etching process will be described with reference to FIGS.
  • a phosphoric acid aqueous solution whose concentration is adjusted to 81% is stored.
  • the boiling point of this phosphoric acid aqueous solution is about 140 ° C.
  • the phosphoric acid aqueous solution stored in the storage tank 4 is heated by the bottom surface 29 of the storage tank 4 and maintains the boiling point of about 140 ° C.
  • the wafer W is heated to about 160 ° C. by heating from the bottom surface 29 of the storage tank 4.
  • a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached.
  • a high temperature state of about 160 ° C. is realized at the boundary where the surface of the wafer W and the phosphoric acid aqueous solution are in contact with each other.
  • the etching rate of the silicon nitride film can be greatly increased, and at the same time, the selectivity of the silicon nitride film can be kept high.
  • control unit 40 controls the lifting mechanism 27 to lower the storage tank 4 as shown in FIG. 4F. Lower to position. Thereby, the heating of the wafer W by the bottom surface 29 of the storage tank 4 is completed.
  • control unit 40 controls the spin motor 14 to increase the rotation speed of the wafer W to a predetermined rinse processing speed (in the range of 300 to 1500 rpm, for example, 1000 rpm), and opens the second water valve 32, DIW is supplied from the discharge port of the water nozzle 30 toward the vicinity of the rotation center of the wafer W (step S2: rinsing step).
  • the DIW supplied to the surface of the wafer W receives centrifugal force due to the rotation of the wafer W and flows on the surface of the wafer W toward the periphery of the wafer W. Thereby, the phosphoric acid aqueous solution adhering to the surface of the wafer W is washed away by DIW.
  • storage tank cleaning is performed to clean the inner wall surface of the storage tank 4 (the bottom surface 29, the wall surface of the annular groove 37, and the inner peripheral surface of the outer peripheral wall 38) with water.
  • the control unit 40 opens the water valve 64 and discharges water from the lower discharge port 62.
  • the water discharged from the lower discharge port 62 is stored in the storage groove 41 of the storage tank 4.
  • the discharge of water from the lower discharge port 62 is continued even after the storage groove 41 overflows. Thereby, the phosphoric acid aqueous solution adhering to the inner wall surface of the storage tank 4 is washed away with water.
  • the second water valve 32 is closed and the supply of DIW to the surface of the wafer W is stopped.
  • the water supply valve 64 is closed together with the DIW supply stop, and the supply of water to the storage tank 41 is stopped.
  • control unit 40 drives the spin motor 14 to increase the rotation speed of the wafer W to a predetermined high rotation speed (for example, 1500 to 2500 rpm), and shakes off the DIW adhering to the wafer W to be dried.
  • Spin drying is performed (step S3).
  • the DIW adhering to the wafer W is removed by spin drying in step S3.
  • the control unit 40 drives the spin motor 14 to stop the rotation of the spin chuck 3.
  • the control unit 40 drives the holding pin driving mechanism 43 to guide the plurality of holding pins 34 from the holding position to the open position, and the processed wafer W is delivered to the transfer robot.
  • the wafer W is unloaded from the processing chamber 2 by the transfer robot.
  • the wafer W is heated to about 160 ° C. by heating the wafer W by the bottom surface 29 of the storage tank 4.
  • a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached.
  • the phosphoric acid aqueous solution at the boundary with the surface of the wafer W is in a state where the phosphoric acid concentration is maintained at a very high temperature and a low phosphoric acid concentration (the temperature is about 160 ° C. and the concentration is about 81%, A state in which the acid concentration is kept low).
  • the etching rate of the silicon nitride film can be greatly increased, and at the same time, the selectivity of the silicon nitride film can be kept high.
  • FIG. 8 is a diagram schematically showing the configuration of the substrate processing apparatus 101 according to the second embodiment of the present invention.
  • parts corresponding to those shown in the first embodiment are denoted by the same reference numerals as those in FIGS. 1 to 7, and description thereof is omitted.
  • the substrate processing apparatus 101 is different from the substrate processing apparatus 1 according to the first embodiment in that, as a water supply unit for supplying water, instead of the bar nozzle 50, water droplets are ejected in a spray form (spraying).
  • the spray nozzle 102 is employed.
  • a third water supply pipe 103 to which water from a water supply source is supplied is connected to the spray nozzle 102.
  • a third water valve 104 for opening and closing the third water supply pipe 103 is interposed in the third water supply pipe 103. When the third water valve 104 is opened, water is supplied from the third water supply pipe 103 to the spray nozzle 102, and water droplets are ejected (sprayed) from the spray nozzle 102 downward.
  • the water droplets discharged from the spray nozzle 102 are finer (smaller) than the water droplets discharged from the bar nozzle of the first embodiment described above.
  • water droplets are ejected in a spray form from the spray nozzle 102, so that water can be supplied almost uniformly to the phosphoric acid aqueous solution stored in the storage tank 4, As a result, the phosphoric acid concentration of the phosphoric acid aqueous solution can be kept uniform.
  • finer water droplets are supplied from the spray nozzle 102 to the phosphoric acid aqueous solution.
  • Water and phosphoric acid aqueous solution tend to be relatively difficult to mix due to differences in specific gravity, viscosity, and the like.
  • the smaller the droplet size the easier it is to mix, the water and the phosphoric acid aqueous solution can be smoothly mixed by supplying water in a fine droplet state to the phosphoric acid aqueous solution.
  • FIG. 8 shows a case where only one spray nozzle 102 is provided, water can also be discharged from a plurality of spray nozzles at different positions in the left-right direction.
  • FIG. 9 is a diagram schematically showing the configuration of the substrate processing apparatus 201 according to the third embodiment of the present invention.
  • parts corresponding to those shown in the first embodiment are denoted by the same reference numerals as those in FIGS. 1 to 7, and description thereof is omitted.
  • the difference between the substrate processing apparatus 201 and the substrate processing apparatus 1 according to the first embodiment is that a non-heating type storage tank 204 is adopted as the storage tank.
  • the substrate processing apparatus 1 is also different from the substrate processing apparatus 1 in that a heater head 203 for heating the surface of the wafer W is provided above the spin chuck 3.
  • the storage tank 204 is formed using, for example, ceramic, SiC, or heat resistant resin.
  • the configuration of the storage tank 204 is the same as that of the storage tank 4 shown in FIG. 1 except that the heater 28 (see FIG. 1) is not embedded and does not function as a heating means. That is, the storage tank 204 is arranged in a horizontal posture and is moved up and down while maintaining the horizontal posture.
  • the elevating mechanism (see FIG. 1) 27 By driving the elevating mechanism (see FIG. 1) 27, the storage tank 204 has a lower position where the lower surface thereof is close to the upper surface of the spin base 12, and the bottom surface 29 of the storage tank 204 has a minute interval W 1 on the lower surface of the wafer W. It is moved up and down between the upper positions arranged opposite to each other. Thereby, the interval between the storage tank 204 and the wafer W can be changed.
  • a storage groove 41 for storing liquid is defined above the bottom surface 29 by the bottom surface 29 of the storage tank 204 and the inner peripheral surface of the outer peripheral wall 38.
  • the wafer W facing upward is immersed by the liquid stored in the storage groove 41. That is, the entire surface of the wafer W is covered with the liquid stored in the storage groove 41. Even when the wafer W is rotating, the storage groove 41 is not rotated but is stationary (non-rotating state).
  • the heater head 203 has a disk shape having a diameter equivalent to that of the wafer W, and is formed using, for example, ceramic.
  • the heater head 203 is held in a horizontal posture from above by a holder 205.
  • a resistance heater 208 is embedded in the heater head 203.
  • the heater head 203 has a lower surface (heat generating portion) 209 made of a horizontal flat surface.
  • the lower surface 209 of the heater head 203 is disposed to face the entire surface of the wafer W held by the spin chuck 3.
  • the heater 208 generates heat by supplying power to the heater 208, and the entire lower surface 209 generates heat.
  • the heat generation amount per unit area of the lower surface 209 when the heater 28 is on is set to be uniform.
  • the heater 205 is coupled to the holder 205 for raising and lowering the heater head 203.
  • the heater lifting mechanism 206 is electrically connected to the control unit 40 (see FIG. 2).
  • the phosphoric acid aqueous solution is stored in the storage groove 41 of the storage tank 204, as in the first embodiment (see FIG. 4A). Thereafter, an unprocessed wafer W is loaded into the processing chamber 2, and the wafer W is held on the spin chuck 3 (the holding member 13) with the surface thereof facing upward.
  • the control unit 40 controls the elevating mechanism 27 (see FIG. 1) to raise the storage tank 204 to the upper position.
  • the wafer W is immersed in the phosphoric acid aqueous solution in the storage tank 204.
  • the liquid level of the phosphoric acid aqueous solution in the storage tank 204 is located above the surface of the wafer W, and as a result, the entire surface of the wafer W is covered with the phosphoric acid aqueous solution.
  • the surface of the wafer W is subjected to phosphoric acid etching (corresponding to step S1 in FIG. 3).
  • control unit 40 controls the heater lifting mechanism 206 to lower the heater head 203 to a close position where the lower surface 209 of the heater head 203 is close to the surface (upper surface) of the wafer W.
  • the distance between the surface (upper surface) of the wafer W and the lower surface 209 of the heater head 203 is set to about 2 mm, for example.
  • the wafer W held by the spin chuck 3 is heated from the lower surface 209 of the heater head 203 by heat radiation. Since the lower surface 209 of the heater head 203 and the surface of the wafer W are parallel to each other, the amount of heat per unit area given from the heater head 203 to the wafer W is substantially uniform over the entire area of the wafer W. Due to the heating by the heater head 203, the temperature of the wafer W is raised to a temperature slightly higher than the liquid temperature of the phosphoric acid aqueous solution (expected to be about 160 ° C.) and maintained at that temperature.
  • the wafer W immersed in the phosphoric acid aqueous solution in the storage tank 204 is heated using the heater head 203 disposed close to the wafer W. Therefore, the wafer W can be heated satisfactorily without adopting a complicated configuration such as incorporating a heater in the storage tank 204.
  • FIG. 10 is a diagram schematically showing the configuration of a substrate processing apparatus 301 according to the fourth embodiment of the present invention.
  • parts corresponding to the parts shown in the third embodiment are denoted by the same reference numerals as in FIGS. 1 to 7 and FIG. 9, and description thereof is omitted.
  • the substrate processing apparatus 301 is different from the substrate processing apparatus 201 according to the third embodiment in that an infrared heater (heating) is used instead of the heater head 203 as a heater for heating the surface of the wafer W. Means) 303 is provided.
  • the infrared heater 303 has a circular shape in a plan view having a smaller diameter than the wafer W (for example, about 1/5 to 1/10 of the diameter of the wafer W), and the surface of the wafer W held by the spin chuck 3 is Oppositely arranged above.
  • the infrared heater 303 incorporates an infrared lamp 304 having an infrared irradiation surface (heat generating portion) 304A on the lower surface.
  • the infrared irradiation surface 304 ⁇ / b> A faces the surface of the wafer W over substantially the entire area, and the infrared irradiation surface 304 ⁇ / b> A faces the surface of the wafer W.
  • the infrared lamp 38 is configured by accommodating a filament in a quartz pipe. As the infrared lamp 38, a short, medium and long wavelength infrared heater represented by a halogen lamp and a carbon heater can be adopted.
  • the holder 205 is coupled with a heater swing mechanism 306 for swinging the infrared heater 303 about a predetermined vertical swing axis provided outside the surface of the wafer W.
  • the infrared heater 303 has an arc-shaped trajectory that intersects the rotation direction of the wafer W between the rotation center (on the rotation axis A ⁇ b> 1) and the peripheral edge of the surface of the wafer W. It is provided to be movable so as to draw.
  • the heater elevating mechanism 206 is controlled, and the infrared heater 303 is lowered to a close position where the infrared irradiation surface 304A is close to the surface (upper surface) of the wafer W. It is done.
  • the distance between the surface (upper surface) of the wafer W and the infrared irradiation surface 304A of the infrared heater 303 is set to about 10 mm, for example.
  • the infrared irradiation surface 304 ⁇ / b> A of the infrared heater 303 in the close position does not come into contact with the phosphoric acid aqueous solution in the storage tank 204.
  • the wafer W held by the spin chuck 3 is heated by thermal radiation from the infrared irradiation surface 304A of the infrared heater 303. Due to the heating by the infrared heater 303, the temperature of the wafer W is raised to a slightly higher temperature than the liquid temperature of the phosphoric acid aqueous solution (expected to be about 160 ° C.) and maintained at this temperature. In this state, a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached.
  • the heater elevating mechanism 206 is controlled so that the infrared heater 303 is largely retracted upward from the proximity position, whereby the heating of the wafer W by the infrared heater 303 is stopped.
  • the infrared heater 303 When the infrared heater 303 irradiates infrared rays, the infrared heater 303 is scanned between the rotation center of the wafer W and the periphery of the wafer W, or the infrared heater 303 is moved to the rotation center of the wafer W. It is placed stationary above the position excluding. Since the wafer W rotates about the rotation axis A ⁇ b> 1, almost the entire area of the wafer W can be heated by irradiation with infrared rays from the infrared heater 303.
  • the wafer W immersed in the phosphoric acid aqueous solution in the storage tank 204 is heated using the infrared heater 303 disposed close to the wafer W. Therefore, the wafer W can be heated satisfactorily without adopting a complicated configuration such as incorporating a heater in the storage tank 204.
  • the infrared heater 303 capable of giving a large amount of heat is provided as a heating means, the wafer W can be heated while adopting a simple configuration as the heating means.
  • the diameter of the infrared heater 303 can be formed to the same diameter as the wafer W.
  • the infrared heater 303 is provided so that the lower surface of the infrared heater 303 faces the entire surface of the wafer W.
  • FIG. 11 is a diagram schematically showing a configuration of a substrate processing apparatus 401 according to the fifth embodiment of the present invention.
  • parts corresponding to those shown in the first embodiment are denoted by the same reference numerals as those in FIGS. 1 to 7, and description thereof is omitted.
  • the substrate processing apparatus 401 includes a substrate holding table 402 as substrate holding means for holding the wafer W.
  • the substrate holder 402 is used in place of the spin chuck 3 of the first embodiment.
  • the substrate holder 402 includes a storage tank 404 (heating means) for storing a phosphoric acid aqueous solution.
  • the storage tank 404 has, for example, a substantially cylindrical bottomed container shape, and is formed using ceramic or silicon carbide (SiC).
  • the storage tank 404 includes a bottom surface portion 409A having a horizontally flat circular bottom surface 409, and an outer peripheral wall 408 that rises vertically upward from the peripheral edge of the bottom surface 409.
  • a storage groove 405 for storing liquid is defined above the bottom surface 29 by the bottom surface 409 of the storage tank 404 and the inner peripheral surface of the outer peripheral wall 408, so that the liquid can be stored above the bottom surface 409.
  • the groove depth of the storage groove 405 (the thickness of the liquid stored in the storage groove 41) is set to, for example, about 7 mm within the range of 2 mm to 11 mm.
  • a resistance heater 406 is embedded in the bottom surface portion 409 ⁇ / b> A of the storage tank 404.
  • the heater 406 In the ON state of the heater 406, the heater 406 generates heat by supplying power to the heater 406, and the entire storage tank 404 is heated. As a result, the entire bottom surface 409 generates heat. In the entire area of the bottom surface 409, the heat generation amount per unit area of the bottom surface 409 when the heater 406 is on is set to be uniform.
  • a plurality of (for example, three) lift pins 403 that move the wafer W up and down relative to the storage tank 404 are provided in association with the storage tank 404.
  • the plurality of lift pins 403 are inserted through a through hole 412 formed vertically through the bottom surface portion 409A of the storage tank 404, and are provided so as to be movable up and down with respect to the bottom surface 409 of the storage tank 404.
  • Each lift pin 403 is supported by a common support member 410.
  • a lift pin elevating mechanism 411 including a cylinder is coupled to the support member 410.
  • the lift pin lifting mechanism 411 includes a plurality of lift pins 403 between a position where the tips of the plurality of lift pins 403 protrude above the substrate holding table 402 and a position where the tips of the plurality of lift pins 403 retract below the substrate holding table 402.
  • the book lift pins 403 are moved up and down integrally.
  • the lift pin lifting mechanism 411 is controlled so that the tips of the plurality of lift pins 403 protrude above the substrate holding table 402. Then, an unprocessed wafer W is loaded, and this wafer W is placed on the tips of a plurality of lift pins 403. At this time, the lift pin raising / lowering mechanism 411 is controlled, the plurality of lift pins 403 are lowered, and the wafer W is transferred from the plurality of lift pins 403 to the substrate holding table 402. As a result, the wafer W is placed on the bottom surface 409 of the storage tank 404 with the surface thereof facing upward. In this state, the lower surface of the wafer W is in contact with the bottom surface 409 of the storage tank 404. Further, in this state, each through hole 412 is closed by the wafer W.
  • the phosphoric acid aqueous solution is stored in the storage groove 405 of the storage tank 404. Since the through hole 412 is blocked by the wafer W, the phosphoric acid aqueous solution does not leak from the storage groove 405. Then, the wafer W is immersed in the phosphoric acid aqueous solution in the storage tank 404. At this time, the liquid level of the phosphoric acid aqueous solution in the storage tank 404 is located above the surface of the wafer W, and as a result, the entire surface of the wafer W is covered with the phosphoric acid aqueous solution. By immersing the wafer W in the phosphoric acid aqueous solution, the surface of the wafer W is subjected to phosphoric acid etching (corresponding to step S1 in FIG. 3).
  • the wafer W held on the substrate holding table 402 is heated by heat conduction from the storage tank 404. Due to heating by the storage tank 404, the temperature of the wafer W is raised to about 200 ° C. and maintained. In this state, a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached.
  • the temperature of the wafer W is raised to about 200 ° C. by heating the wafer W by heat conduction in the bottom surface 409 of the storage tank 404.
  • a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached.
  • the etching rate of the silicon nitride film can be greatly increased, and at the same time, the selectivity of the silicon nitride film can be kept high.
  • a lift pin 403A having a seal portion 420 for sealing the through hole 412 may be employed instead of each lift pin 403 as indicated by a broken line in FIG.
  • the seal portion 420 is provided at the tip (upper end) of the lift pin 403A and has a truncated cone shape whose diameter increases toward the upper side.
  • the opening end of the through hole 412 has a tapered surface 421 formed of a conical surface whose diameter increases toward the upper side.
  • the seal part 420 of the lift pin 403A is accommodated in the opening end of the through hole 412 in a state where the lift pin 403A is in the retreat position where it is retracted below the wafer W. In this state, the outer peripheral surface of the seal portion 420 contacts the tapered surface 421, and the seal portion 420 seals (closes) the through hole 412. Since the through hole 412 is sealed by the seal portion 420 of the lift pin 403A, leakage of the phosphoric acid aqueous solution from the storage groove 405 can be prevented more reliably.
  • the second embodiment and the fifth embodiment can be combined. That is, in the second embodiment, instead of the bar nozzle 50 (see FIG. 1), a spray nozzle 102 that discharges (sprays) water droplets in a spray form may be employed.
  • FIG. 8 shows a case where only one spray nozzle 102 is provided, but water can also be discharged from a plurality of spray nozzles at different positions in the left-right direction. .
  • DIW has been described as an example of water supplied to the phosphoric acid aqueous solution in the storage tank 4, 404, but carbonated water is used as the water supplied to the phosphoric acid aqueous solution.
  • Electrolytic ion water, ozone water, reduced water (hydrogen water), magnetic water, etc. may be employed.
  • the case where the storage tanks 4, 404 are provided with the heater function has been described.
  • the storage tanks 4, 404 and the heaters may be separated.
  • a configuration in which the heater is heated from below the storage tanks 4, 404 may be used.
  • the heater head 203 is formed to have a diameter sufficiently smaller than the diameter of the wafer W, and the heater head 203 is placed on the surface of the wafer W while the heater head 203 in the on state is opposed to the surface of the wafer W. You may make it move along a surface.
  • the infrared heater 303 is formed to have a diameter sufficiently smaller than the diameter of the wafer W, and the infrared heater 303 is placed on the surface of the wafer W while the infrared heater 303 in the on state is opposed to the surface of the wafer W. You may make it move along a surface.

Abstract

A substrate processing device comprises: a storage tank for storing a phosphoric acid aqueous solution; a substrate support means for supporting a substrate immersed in the phosphoric acid aqueous solution horizontally in the storage tank; and a heating means, having a heater arranged opposite the substrate which is supported by the substrate support means, for heating the substrate with radiant heat or transmitted heat from the heater.

Description

基板処理装置Substrate processing equipment
 この発明は、基板処理装置に関する。処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 This invention relates to a substrate processing apparatus. Examples of substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field (Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks. Substrate, ceramic substrate, solar cell substrate and the like.
 半導体装置や液晶表示装置などの製造工程では、シリコン窒化膜とシリコン酸化膜とが形成された基板の表面にエッチング液としての高温のリン酸水溶液を供給して、シリコン窒化膜を選択的に除去するリン酸エッチング処理が必要に応じて行われる。 In the manufacturing process of semiconductor devices and liquid crystal display devices, the silicon nitride film is selectively removed by supplying a high-temperature phosphoric acid aqueous solution as an etchant to the surface of the substrate on which the silicon nitride film and the silicon oxide film are formed. A phosphoric acid etching process is performed as necessary.
 複数枚の基板を一括して処理するバッチ式の基板処理装置では、高温のリン酸水溶液が貯留された処理槽に複数枚の基板が一定時間浸漬される。 In a batch-type substrate processing apparatus that processes a plurality of substrates at once, a plurality of substrates are immersed in a processing tank in which a high-temperature phosphoric acid aqueous solution is stored for a certain period of time.
特開2007-258405号公報JP 2007-258405 A
 バッチ式の基板処理装置では、均一なエッチング処理を行うために、処理槽に貯留されたリン酸水溶液に基板を一定間以上浸漬させる必要がある。したがって、複数枚の基板を一括して処理する場合でも、一枚の基板を処理する場合でも同じ処理時間が必要である。 In a batch type substrate processing apparatus, in order to perform a uniform etching process, it is necessary to immerse the substrate in a phosphoric acid aqueous solution stored in a processing tank for a certain period or more. Therefore, the same processing time is required regardless of whether a plurality of substrates are processed at once or when a single substrate is processed.
 一方、枚葉式の基板処理装置では、一枚の基板を短時間で均一に処理することができる。 On the other hand, a single wafer type substrate processing apparatus can uniformly process a single substrate in a short time.
 シリコン窒化膜のエッチングレート(単位時間当たりの除去量)は、基板に供給されたリン酸水溶液の温度が沸点付近のときに最も高い。しかしながら、枚葉式の基板処理装置では、リン酸水溶液の温度をタンク内で沸点付近に調節したとしても、基板に供給されるまでの間にリン酸水溶液の温度が低下するから、シリコン窒化膜のエッチングレートが低下する。このため、エッチングに要する時間が長くなり、スループットが低下するおそれがあり、エッチングレートの向上が求められている。 The etching rate (removal amount per unit time) of the silicon nitride film is highest when the temperature of the phosphoric acid aqueous solution supplied to the substrate is near the boiling point. However, in the single wafer processing apparatus, even if the temperature of the phosphoric acid aqueous solution is adjusted to the vicinity of the boiling point in the tank, the temperature of the phosphoric acid aqueous solution is lowered before being supplied to the substrate. The etching rate decreases. For this reason, the time required for etching becomes long and the throughput may be lowered, and an improvement in the etching rate is demanded.
 また、リン酸エッチングでは、シリコン窒化膜のエッチングレートを高めることだけでなく、シリコン窒化膜の選択比(シリコン窒化膜の除去量/シリコン酸化膜の除去量)を高めることも求められている。 In addition, in the phosphoric acid etching, it is required not only to increase the etching rate of the silicon nitride film, but also to increase the selectivity of the silicon nitride film (the removal amount of the silicon nitride film / the removal amount of the silicon oxide film).
 そこで、この発明の目的は、窒化膜のエッチングレートを高めつつ、同時に窒化膜の選択比を高く保つことができる基板処理装置を提供することである。 Therefore, an object of the present invention is to provide a substrate processing apparatus capable of increasing the nitride film etching rate and at the same time keeping the nitride film selectivity high.
 この発明は、リン酸水溶液を貯留する貯留槽と、前記貯留槽内のリン酸水溶液に基板を浸漬させた状態で、当該基板を水平姿勢に保持する基板保持手段と、前記基板保持手段に保持されている基板と対向する発熱部を有し、当該基板を、前記発熱部からの熱輻射または熱伝達により加熱する加熱手段とを含む、基板処理装置を提供する。 The present invention provides a storage tank for storing a phosphoric acid aqueous solution, a substrate holding means for holding the substrate in a horizontal posture in a state in which the substrate is immersed in the phosphoric acid aqueous solution in the storage tank, and the substrate holding means There is provided a substrate processing apparatus including a heating unit facing a substrate that is formed, and heating means for heating the substrate by heat radiation or heat transfer from the heating unit.
 この構成によれば、貯留槽内のリン酸水溶液に基板が浸漬される。浸漬状態にある基板に、熱伝導によって発熱部からの熱が与えられると同時に、熱輻射(熱ふく射)によって熱が与えられる。一方、基板を浸漬しているリン酸水溶液は、発熱部からの熱により沸点に維持されている。 According to this configuration, the substrate is immersed in the phosphoric acid aqueous solution in the storage tank. The substrate in the immersion state is given heat from the heat generating part by heat conduction, and at the same time, heat is given by heat radiation (heat radiation). On the other hand, the phosphoric acid aqueous solution in which the substrate is immersed is maintained at the boiling point by the heat from the heat generating part.
 ここで、基板がリン酸水溶液の沸点以上に加熱されている場合、基板表面とリン酸水溶液とが接する境界では、局所的には極めて高温で、かつ全体としてリン酸濃度が低く維持された状態を実現することができ、その状態のリン酸水溶液を、基板の表面の窒化膜に作用させることができる。これにより、エッチングレートを非常に高めることができ、同時に窒化膜の選択比を高く維持することができる。 Here, when the substrate is heated to the boiling point or higher of the phosphoric acid aqueous solution, the boundary where the substrate surface and the phosphoric acid aqueous solution are in contact with each other is extremely hot locally and the phosphoric acid concentration is kept low as a whole. The phosphoric acid aqueous solution in this state can be applied to the nitride film on the surface of the substrate. Thereby, the etching rate can be greatly increased, and at the same time, the selectivity of the nitride film can be kept high.
 また、基板を水平姿勢に保持させつつ、その基板を、貯留槽内のリン酸水溶液に浸漬させることにより、少ない液量のリン酸水溶液で基板の浸漬を実現することができる。また、基板が水平姿勢であるために、リン酸水溶液での対流の発生等を抑制することができ、これにより、リン酸水溶液の温度やリン酸濃度を均一に保つことができる。 Also, by immersing the substrate in the phosphoric acid aqueous solution in the storage tank while holding the substrate in a horizontal position, the substrate can be immersed with a small amount of phosphoric acid aqueous solution. Further, since the substrate is in a horizontal posture, generation of convection in the phosphoric acid aqueous solution can be suppressed, and thereby the temperature and phosphoric acid concentration of the phosphoric acid aqueous solution can be kept uniform.
 前記基板処理装置は、前記貯留槽に貯留されているリン酸水溶液に水を供給する水供給手段と、前記水供給手段からの水の供給/供給停止を制御することにより、前記貯留槽に貯留されているリン酸水溶液の濃度を制御する濃度制御手段とを含むことが好ましい。 The substrate processing apparatus stores water in the storage tank by controlling water supply means for supplying water to the phosphoric acid aqueous solution stored in the storage tank and supply / stop of water supply from the water supply means. It is preferable to include concentration control means for controlling the concentration of the phosphoric acid aqueous solution.
 リン酸水溶液に対する発熱部の加熱により、リン酸水溶液は沸騰状態に維持されている。リン酸水溶液が沸騰状態にあると、リン酸水溶液に含まれる水の蒸発により、リン酸水溶液のリン酸濃度が徐々に濃くなる。その結果、リン酸水溶液の沸点の上昇により、リン酸水溶液の液温がさらに上昇し、リン酸水溶液のリン酸濃度がさらに高くなってしまうおそれがある。 The phosphoric acid aqueous solution is maintained in a boiling state by heating of the heat generating portion with respect to the phosphoric acid aqueous solution. When the phosphoric acid aqueous solution is in a boiling state, the phosphoric acid concentration of the phosphoric acid aqueous solution gradually increases due to evaporation of water contained in the phosphoric acid aqueous solution. As a result, the rise in the boiling point of the phosphoric acid aqueous solution further increases the temperature of the phosphoric acid aqueous solution, which may further increase the phosphoric acid concentration of the phosphoric acid aqueous solution.
 前記の構成によれば、沸騰状態に維持されているリン酸水溶液に対する水の供給により、リン酸水溶液のリン酸濃度の上昇が抑制される。すなわち、リン酸水溶液に対する水の供給/供給停止を制御することにより、リン酸水溶液の濃度を制御することができる。これにより、適度に濃度制御されたリン酸水溶液を基板に供給することができ、ゆえに、窒化膜の選択比をより一層高く維持することができる。 According to the above configuration, an increase in the phosphoric acid concentration of the phosphoric acid aqueous solution is suppressed by supplying water to the phosphoric acid aqueous solution maintained in a boiling state. That is, the concentration of the phosphoric acid aqueous solution can be controlled by controlling the supply / stop of water supply to the phosphoric acid aqueous solution. As a result, a phosphoric acid aqueous solution whose concentration is appropriately controlled can be supplied to the substrate, and therefore the selectivity of the nitride film can be maintained even higher.
 前記水供給手段は、水の液滴を吐出する多数の吐出口を有する多孔ノズルを含んでいてもよい。多数の吐出口のそれぞれから水の液滴が吐出されるので、貯留槽に貯留されているリン酸水溶液に、ほぼ均一に水を供給することができる。その結果、リン酸水溶液のリン酸濃度を均一に保つことができる。これにより、窒化膜の選択比を、基板の全域で一様に保つことができる。 The water supply means may include a porous nozzle having a large number of discharge ports for discharging water droplets. Since water droplets are discharged from each of a large number of discharge ports, water can be supplied almost uniformly to the phosphoric acid aqueous solution stored in the storage tank. As a result, the phosphoric acid concentration of the phosphoric acid aqueous solution can be kept uniform. Thereby, the selectivity of the nitride film can be kept uniform over the entire area of the substrate.
 また、前記水供給手段は、前記貯留部にスプレー状の水を噴射するスプレーノズルを含んでいてもよい。スプレー状の水を噴射することにより、貯留槽に貯留されているリン酸水溶液に、より細かい水の液滴が供給される。水とリン酸水溶液とは、それらの比重や粘度等の相違のために、比較的混ざりにくい傾向にある。しかしながら、液滴の大きさが細かければ細かいほど混ざり易いので、細かい液滴の状態の水をリン酸水溶液に供給することにより、水とリン酸水溶液とをスムーズに混合させることができる。 Further, the water supply means may include a spray nozzle that injects spray-like water into the reservoir. By spraying spray-like water, finer water droplets are supplied to the phosphoric acid aqueous solution stored in the storage tank. Water and phosphoric acid aqueous solution tend to be relatively difficult to mix due to differences in specific gravity, viscosity, and the like. However, since the smaller the droplet size, the easier it is to mix, the water and the phosphoric acid aqueous solution can be smoothly mixed by supplying water in a fine droplet state to the phosphoric acid aqueous solution.
 この発明の一実施形態では、前記加熱手段は、前記基板保持手段に保持されている基板を、下方側から加熱する。 In one embodiment of the present invention, the heating means heats the substrate held by the substrate holding means from below.
 この場合、前記貯留槽は底面を有し、前記貯留槽の前記底面が前記発熱部を構成していてもよい。貯留槽の底面が発熱部であるので、貯留槽内のリン酸水溶液に浸漬されている基板に対し、簡単な構成で、発熱部から熱輻射または熱伝導により熱を与えることができる。 In this case, the storage tank may have a bottom surface, and the bottom surface of the storage tank may constitute the heat generating portion. Since the bottom surface of the storage tank is a heat generating part, heat can be applied to the substrate immersed in the phosphoric acid aqueous solution in the storage tank by heat radiation or heat conduction from the heat generating part with a simple configuration.
 この発明の他の実施形態では、前記加熱手段は、前記基板保持手段に保持されている基板を、上方側から加熱する。前記加熱手段は赤外線ランプを有し、前記赤外線ランプは、前記基板保持手段に保持されている基板の表面に対向配置されて、当該表面に向けて赤外線を照射してもよい。 In another embodiment of the present invention, the heating means heats the substrate held by the substrate holding means from above. The heating unit may include an infrared lamp, and the infrared lamp may be disposed to face the surface of the substrate held by the substrate holding unit and irradiate infrared rays toward the surface.
 前記基板保持手段は、前記貯留槽に対して非接触状態で、基板を支持する基板支持部を有し、前記基板処理装置は、前記基板支持部に支持された基板を回転させる基板回転手段をさらに含んでいてもよい。 The substrate holding means has a substrate support portion that supports a substrate in a non-contact state with respect to the storage tank, and the substrate processing apparatus includes a substrate rotation means that rotates the substrate supported by the substrate support portion. Further, it may be included.
 この構成によれば、基板に対して回転処理(たとえばスピンドライ)を施すことができる。 According to this configuration, the substrate can be rotated (for example, spin dry).
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
本発明の第1実施形態に係る基板処理装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the substrate processing apparatus which concerns on 1st Embodiment of this invention. 図1に示す基板処理装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the substrate processing apparatus shown in FIG. 図1に示す基板処理装置によって実行されるリン酸エッチング処理の処理例について説明するための工程図である。It is process drawing for demonstrating the process example of the phosphoric acid etching process performed by the substrate processing apparatus shown in FIG. 図3の処理例を説明するための模式的な図である。FIG. 4 is a schematic diagram for explaining the processing example of FIG. 3. 図4Aに続く工程を説明するための模式的な図である。FIG. 4B is a schematic diagram for explaining a process following FIG. 4A. 図4Bに続く工程を説明するための模式的な図である。It is a schematic diagram for demonstrating the process following FIG. 4B. 図4Cに続く工程を説明するための模式的な図である。FIG. 4D is a schematic diagram for explaining a process following FIG. 4C. 図4Dに続く工程を説明するための模式的な図である。FIG. 4D is a schematic diagram for explaining a process following FIG. 4D. 図4Eに続く工程を説明するための模式的な図である。It is a schematic diagram for demonstrating the process following FIG. 4E. 貯留槽の底面によるウエハの加熱を示す図である。It is a figure which shows the heating of the wafer by the bottom face of a storage tank. リン酸水溶液におけるリン酸濃度と、リン酸水溶液の沸点との関係を示すグラフである。It is a graph which shows the relationship between the phosphoric acid concentration in phosphoric acid aqueous solution, and the boiling point of phosphoric acid aqueous solution. リン酸水溶液におけるリン酸濃度およびリン酸水溶液の温度と、シリコン窒化膜のエッチングレートとの関係を示すグラフである。It is a graph which shows the relationship between the phosphoric acid concentration in phosphoric acid aqueous solution, the temperature of phosphoric acid aqueous solution, and the etching rate of a silicon nitride film. 本発明の第2実施形態に係る基板処理装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the substrate processing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る基板処理装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the substrate processing apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る基板処理装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the substrate processing apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る基板処理装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the substrate processing apparatus which concerns on 5th Embodiment of this invention.
 図1は、本発明の第1実施形態に係る基板処理装置1の構成を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a configuration of a substrate processing apparatus 1 according to a first embodiment of the present invention.
 この基板処理装置1は、基板の一例としての円形の半導体ウエハW(以下、単に「ウエハW」という)におけるデバイス形成領域側の表面に対して、シリコン酸化膜(酸化膜)およびシリコン窒化膜(窒化膜)のエッチング処理を施すための枚葉型の装置である。このエッチング処理は、ウエハWの表面から、窒化膜を選択的にエッチングするための処理であり、エッチング液としてリン酸水溶液が用いられる。 The substrate processing apparatus 1 has a silicon oxide film (oxide film) and a silicon nitride film (on the surface on the device forming region side of a circular semiconductor wafer W (hereinafter simply referred to as “wafer W”) as an example of a substrate ( This is a single wafer type apparatus for performing an etching process on the nitride film. This etching process is a process for selectively etching the nitride film from the surface of the wafer W, and an aqueous phosphoric acid solution is used as an etchant.
 図1に示すように、基板処理装置1は、隔壁(図示しない)により区画された処理室2内に、リン酸水溶液を貯留するための貯留槽(加熱手段)4と、貯留槽4内にリン酸水溶液に浸漬させた状態で、ウエハWを水平に保持して回転させるスピンチャック3とを備えている。貯留槽4はヒータ28が埋設されており、貯留槽4の底面29がウエハWを加熱するための発熱部として機能する。また、基板処理装置1は、スピンチャック3に保持されているウエハWの表面(上面)にリン酸水溶液を吐出するためのリン酸水溶液ノズル5と、スピンチャック3に保持されているウエハWの表面に水の液滴を滴下させるためのバーノズル(多孔ノズル)50と、スピンチャック3に保持されているウエハWの表面に水を吐出するための水ノズル30と、スピンチャック3を収容するカップ8とを備えている。 As shown in FIG. 1, a substrate processing apparatus 1 includes a storage tank (heating means) 4 for storing a phosphoric acid aqueous solution in a processing chamber 2 partitioned by a partition wall (not shown), and a storage tank 4. A spin chuck 3 that rotates while holding the wafer W horizontally while immersed in an aqueous phosphoric acid solution. A heater 28 is embedded in the storage tank 4, and the bottom surface 29 of the storage tank 4 functions as a heat generating unit for heating the wafer W. Further, the substrate processing apparatus 1 includes a phosphoric acid aqueous solution nozzle 5 for discharging a phosphoric acid aqueous solution onto the surface (upper surface) of the wafer W held on the spin chuck 3, and the wafer W held on the spin chuck 3. A bar nozzle (perforated nozzle) 50 for dropping water droplets on the surface, a water nozzle 30 for discharging water onto the surface of the wafer W held on the spin chuck 3, and a cup containing the spin chuck 3 8 and.
 スピンチャック3として、たとえば挟持式のものが採用されている。スピンチャック3は、鉛直に延びる筒状の回転軸11と、回転軸11の上端に水平姿勢に取り付けられた円板状のスピンベース12と、スピンベース12にたとえば等間隔で配置された複数個(少なくとも3個。たとえば6個)の挟持部材(基板支持部)13と、回転軸11に連結されたスピンモータ(基板回転手段)14とを備えている。 For example, a pinch type is used as the spin chuck 3. The spin chuck 3 includes a cylindrical rotating shaft 11 that extends vertically, a disk-shaped spin base 12 that is attached to the upper end of the rotating shaft 11 in a horizontal posture, and a plurality of spin chucks 3 that are arranged on the spin base 12 at regular intervals, for example. (At least three, for example, six) clamping members (substrate support portions) 13 and a spin motor (substrate rotation means) 14 connected to the rotation shaft 11 are provided.
 各挟持部材13は、側面視L形の支持アーム42の先端に、ウエハWの周縁部を挟持するための挟持ピン34を下向きに配設して構成されている。 Each clamping member 13 is configured by arranging downwardly a clamping pin 34 for clamping the peripheral edge of the wafer W at the tip of an L-shaped support arm 42 in a side view.
 複数の挟持ピン34には、挟持ピン駆動機構43が結合されている。挟持ピン駆動機構43は、複数の挟持ピン34を、ウエハWの端面と当接してウエハWを挟持することができる挟持位置と、この挟持位置よりもウエハWの径方向外方の開放位置とに導くことができるようになっている。スピンチャック3は、各挟持ピン34をウエハWの周端面に接触させて挟持することにより、ウエハWがスピンチャック3に強固に保持される。ウエハWが複数個の挟持部材13に保持された状態で、スピンモータ14の回転駆動力が回転軸11に入力されることにより、ウエハWの中心を通る鉛直な回転軸線A1まわりにウエハWが回転する。スピンチャック3はウエハWを、最大2500rpmの回転速度で回転させることができる。 The clamping pin drive mechanism 43 is coupled to the plurality of clamping pins 34. The clamping pin drive mechanism 43 has a clamping position where the plurality of clamping pins 34 can be brought into contact with the end surface of the wafer W to clamp the wafer W, and an open position radially outward of the wafer W from the clamping position. Can be led to. In the spin chuck 3, the wafer W is firmly held by the spin chuck 3 by holding the holding pins 34 in contact with the peripheral end surface of the wafer W. In a state where the wafer W is held by the plurality of clamping members 13, the rotational driving force of the spin motor 14 is input to the rotation shaft 11, so that the wafer W is rotated around the vertical rotation axis A 1 passing through the center of the wafer W. Rotate. The spin chuck 3 can rotate the wafer W at a maximum rotation speed of 2500 rpm.
 リン酸水溶液ノズル5は、たとえば、連続流の状態でリン酸水溶液を吐出するストレートノズルであり、スピンチャック3の上方で、その吐出口をウエハWの回転中心付近に向けて固定的に配置されている。リン酸水溶液ノズル5には、リン酸水溶液供給源からの沸点(たとえば約140℃)近くのリン酸水溶液が供給されるリン酸供給管16が接続されている。リン酸供給管16には、リン酸供給管16を開閉するためのリン酸バルブ17が介装されている。リン酸バルブ17が開かれると、リン酸供給管16からリン酸水溶液ノズル5にリン酸水溶液が供給され、また、リン酸バルブ17が閉じられると、リン酸供給管16からリン酸水溶液ノズル5へのリン酸水溶液の供給が停止される。 The phosphoric acid aqueous solution nozzle 5 is, for example, a straight nozzle that discharges a phosphoric acid aqueous solution in a continuous flow state, and is fixedly disposed above the spin chuck 3 with its discharge port directed near the rotation center of the wafer W. ing. The phosphoric acid aqueous solution nozzle 5 is connected to a phosphoric acid supply pipe 16 to which a phosphoric acid aqueous solution having a boiling point (for example, about 140 ° C.) from a phosphoric acid aqueous solution supply source is supplied. A phosphate valve 17 for opening and closing the phosphate supply pipe 16 is interposed in the phosphate supply pipe 16. When the phosphoric acid valve 17 is opened, the phosphoric acid aqueous solution is supplied from the phosphoric acid supply pipe 16 to the phosphoric acid aqueous solution nozzle 5, and when the phosphoric acid valve 17 is closed, the phosphoric acid aqueous solution nozzle 5 is supplied from the phosphoric acid supply pipe 16. The supply of the phosphoric acid aqueous solution to is stopped.
 バーノズル50は直線状に延びるノズルであって、スピンチャック3の上方で水平姿勢に保持されている。バーノズル50は、スピンチャック3に保持されたウエハWの半径方向に沿って延び、かつ当該ウエハWの回転軸線A1上を通っている。バーノズル50は、先端が閉塞された円筒状のノズル配管51を有している。バーノズル50の先端は、閉塞されている。 The bar nozzle 50 is a nozzle that extends linearly and is held in a horizontal position above the spin chuck 3. The bar nozzle 50 extends along the radial direction of the wafer W held by the spin chuck 3 and passes on the rotation axis A1 of the wafer W. The bar nozzle 50 has a cylindrical nozzle pipe 51 whose tip is closed. The tip of the bar nozzle 50 is closed.
 ノズル配管51の周面の下端縁には、水の液滴を滴下するための多数の吐出口52が、一列または複数列に並んで形成されている。各吐出口52はノズル配管51の管壁に開口する小孔からなり、各吐出口52はノズル配管51の内部空間と連通している。これら複数の吐出口52はほぼ同じ大きさを有し、ほぼ等密度で配置されている。 At the lower end edge of the peripheral surface of the nozzle pipe 51, a large number of discharge ports 52 for dropping water droplets are formed in a line or a plurality of lines. Each discharge port 52 includes a small hole that opens in the tube wall of the nozzle pipe 51, and each discharge port 52 communicates with the internal space of the nozzle pipe 51. The plurality of discharge ports 52 have substantially the same size and are arranged with substantially equal density.
 ノズル配管51の基端には、水供給源からの水が供給される第1水供給管53が接続されている。ノズル配管51の内部が第1水供給管53の内部と連通している。第1水供給管53には、第1水供給管53を開閉するための第1水バルブ54が介装されている。第1水バルブ54が開かれると、第1水供給管53からバーノズル50に水が供給され、各吐出口52から水が下方に向けて吐出される。各吐出口が小孔より形成されているので、各吐出口52は液滴となって滴下する。このとき、各吐出口52からの水の吐出流量は均一である。各吐出口52から滴下された水は、スピンチャック3の貯留槽4に降り注がれる。 A first water supply pipe 53 to which water from a water supply source is supplied is connected to the proximal end of the nozzle pipe 51. The inside of the nozzle pipe 51 communicates with the inside of the first water supply pipe 53. The first water supply pipe 53 is provided with a first water valve 54 for opening and closing the first water supply pipe 53. When the first water valve 54 is opened, water is supplied from the first water supply pipe 53 to the bar nozzle 50, and water is discharged downward from each discharge port 52. Since each discharge port is formed from a small hole, each discharge port 52 drops as a droplet. At this time, the discharge flow rate of water from each discharge port 52 is uniform. The water dripped from each discharge port 52 is poured into the storage tank 4 of the spin chuck 3.
 水ノズル30は、たとえば、連続流の状態でリンス用のDIWを吐出するストレートノズルであり、スピンチャック3の上方で、その吐出口をウエハWの回転中心付近に向けて固定的に配置されている。水ノズル30には、水供給源からの水が供給される第2水供給管31が接続されている。第2水供給管31の途中部には、水ノズル30からの水の供給/供給停止を切り換えるための第2水バルブ32が介装されている。 The water nozzle 30 is, for example, a straight nozzle that discharges DIW for rinsing in a continuous flow state. The water nozzle 30 is fixedly disposed above the spin chuck 3 with its discharge port directed near the rotation center of the wafer W. Yes. A second water supply pipe 31 to which water from a water supply source is supplied is connected to the water nozzle 30. A second water valve 32 for switching supply / stop of water supply from the water nozzle 30 is interposed in the middle of the second water supply pipe 31.
 カップ8は、ウエハWの処理に用いられた後のリン酸水溶液や水を処理するためのものであり、有底円筒容器状に形成されている。 The cup 8 is for processing a phosphoric acid aqueous solution and water after being used for processing the wafer W, and is formed in a bottomed cylindrical container shape.
 貯留槽4は、たとえば略円筒の有底容器状をなし、セラミックや炭化ケイ素(SiC)を用いて形成されている。貯留槽4は、スピンベース12の上面と、スピンチャック3に保持されるウエハWの下面との間に水平姿勢で配置されている。貯留槽4は、水平平坦な円形の底面(発熱部)29と、底面29の周縁部から鉛直上方に立ち上がる外周壁38とを備えている。貯留槽4の底面29と外周壁38の内周面とによって、底面29の上方に液を溜めるための浅溝の貯留溝41が区画されており、底面29の上方に液を溜めることができるようになっている。貯留溝41の溝深さ(貯留溝41に溜められる液の厚み)は、2mm~11mmの範囲内でたとえば約7mmに設定されている。貯留槽4の底面29の内部には、抵抗式のヒータ28が埋設されている。 The storage tank 4 has, for example, a substantially cylindrical bottomed container shape, and is formed using ceramic or silicon carbide (SiC). The storage tank 4 is disposed in a horizontal posture between the upper surface of the spin base 12 and the lower surface of the wafer W held by the spin chuck 3. The storage tank 4 includes a horizontally flat circular bottom surface (heat generating portion) 29 and an outer peripheral wall 38 that rises vertically upward from the peripheral edge of the bottom surface 29. The bottom surface 29 of the storage tank 4 and the inner peripheral surface of the outer peripheral wall 38 define a shallow groove storage groove 41 for storing a liquid above the bottom surface 29, and the liquid can be stored above the bottom surface 29. It is like that. The groove depth of the storage groove 41 (the thickness of the liquid stored in the storage groove 41) is set to, for example, about 7 mm within a range of 2 mm to 11 mm. A resistance heater 28 is embedded in the bottom surface 29 of the storage tank 4.
 次に述べる貫通穴24等を挿通する給電線(図示しない)を介してヒータ28に対する給電が行われている。貯留槽4は回転可能な構成ではなく、したがって、ヒータ28への給電のために回転電気接点が不要である。そのため、貯留槽4を回転させる場合と比較して、貯留槽4への給電量が制限されない。これにより、ウエハWを所望の高温まで加熱することが可能である。 Power is supplied to the heater 28 through a power supply line (not shown) that passes through the through hole 24 and the like described below. The storage tank 4 is not configured to be rotatable, and therefore a rotating electrical contact is not required for supplying power to the heater 28. Therefore, compared with the case where the storage tank 4 is rotated, the power supply amount to the storage tank 4 is not limited. Thereby, the wafer W can be heated to a desired high temperature.
 ヒータ28のオン状態では、ヒータ28への給電により当該ヒータ28が発熱し、貯留槽4全体が発熱状態になり、底面29全域が発熱する。ヒータ28のオン状態における底面29の単位面積当たりの発熱量は、底面29の全域で均一に設定されている。 In the ON state of the heater 28, the heater 28 generates heat by supplying power to the heater 28, the entire storage tank 4 enters a heat generation state, and the entire bottom surface 29 generates heat. The amount of heat generated per unit area of the bottom surface 29 when the heater 28 is on is set uniformly over the entire bottom surface 29.
 支持ロッド25は、スピンベース12および回転軸11を上下方向に貫通する貫通穴24を回転軸線A1に沿って鉛直方向(スピンベース12の厚み方向)に挿通し、その上端が、貯留槽4に固定されている。支持ロッド25は貫通穴24においてスピンベース12または回転軸11と接触していない。支持ロッド25の下端(他端)は、スピンチャック3の下方の周辺部材に固定され、これにより、支持ロッド25が姿勢保持されている。このように、貯留槽4がスピンチャック3に支持されていないので、ウエハWの回転中であっても、貯留槽4は回転せずに静止(非回転状態)している。 The support rod 25 is inserted in the vertical direction (thickness direction of the spin base 12) along the rotation axis A1 through the through hole 24 penetrating the spin base 12 and the rotation shaft 11 in the vertical direction. It is fixed. The support rod 25 is not in contact with the spin base 12 or the rotating shaft 11 in the through hole 24. The lower end (the other end) of the support rod 25 is fixed to a peripheral member below the spin chuck 3, whereby the support rod 25 is held in a posture. As described above, since the storage tank 4 is not supported by the spin chuck 3, the storage tank 4 is stationary (non-rotating state) without rotating even when the wafer W is rotating.
 支持ロッド25は中空軸であり、その内部には、DIW(脱イオン水)等の水が流通するための水供給路61が形成されている。水供給路61は、貯留槽4の底面29で開口する下吐出口62に連通している。下吐出口62は、スピンチャック3に保持されるウエハWの下面中心に対向している。 The support rod 25 is a hollow shaft, and a water supply path 61 for flowing water such as DIW (deionized water) is formed therein. The water supply path 61 communicates with a lower discharge port 62 that opens at the bottom surface 29 of the storage tank 4. The lower discharge port 62 faces the center of the lower surface of the wafer W held by the spin chuck 3.
 水供給路61には、水供給源から水が供給される水下供給管63が接続されている。水下供給管63には、この水下供給管63を開閉するための水下バルブ64が介装されている。水下バルブ64が開かれると、水下供給管63から水供給路61を介して下吐出口62に水が供給される。これにより、下吐出口62から水が吐出される。 A water supply pipe 63 to which water is supplied from a water supply source is connected to the water supply path 61. The water supply pipe 63 is provided with a water valve 64 for opening and closing the water supply pipe 63. When the water valve 64 is opened, water is supplied from the water supply pipe 63 to the lower discharge port 62 through the water supply path 61. Thereby, water is discharged from the lower discharge port 62.
 支持ロッド25には、貯留槽4を昇降させるための昇降機構27が結合されている。貯留槽4は、昇降機構27により水平姿勢を維持したまま昇降される。昇降機構27は、たとえばボールねじやモータによって構成されている。昇降機構27の駆動により、貯留槽4は、その下面がスピンベース12の上面に近接する下位置(ウエハWから離反する離反位置。図4A等参照)と、貯留槽4の上面が、ウエハWの下面に微小な間隔W1を隔てて対向配置される上位置(ウエハWに近接する近接位置。図4D等参照)との間で昇降させられる。これにより、貯留槽4とウエハWとの間隔を変更させることが可能である。 An elevating mechanism 27 for elevating the storage tank 4 is coupled to the support rod 25. The storage tank 4 is lifted and lowered by the lifting mechanism 27 while maintaining a horizontal posture. The elevating mechanism 27 is constituted by, for example, a ball screw or a motor. By driving the elevating mechanism 27, the storage tank 4 has a lower position where the lower surface is close to the upper surface of the spin base 12 (a separation position where the lower surface is separated from the wafer W; see FIG. 4A and the like), and an upper surface of the storage tank 4 is the wafer W Are moved up and down with respect to an upper position (a proximity position close to the wafer W; see FIG. 4D and the like) opposed to the lower surface of the wafer W with a small interval W1. Thereby, the space | interval of the storage tank 4 and the wafer W can be changed.
 貯留槽4の底面29の周縁部には、貯留槽4が次に述べる上位置にあるときに、挟持部材13の挟持ピン34を収容するための環状溝37が形成されている。環状溝37は、スピンチャック3(スピンベース12)の回転中に挟持部材13の挟持ピン34を収容できるように、回転軸線A1を中心とする円環状をなしている。環状溝37の溝深さは、貯留槽4が次に述べる上位置にあるときに、挟持ピン34と環状溝37の底壁とが干渉しない程度の深さに設定されている。また、環状溝37の溝幅は、挟持ピン34の外径よりも広く設定されている。また、図1では、環状溝37と外周壁38とが内外に隣接して設けられている。すなわち、環状溝37の外周面と外周壁38の内周面とが連続し、鉛直面をなしている。 An annular groove 37 is formed on the peripheral edge of the bottom surface 29 of the storage tank 4 to accommodate the pin 34 of the clamping member 13 when the storage tank 4 is in the upper position described below. The annular groove 37 has an annular shape with the rotation axis A1 as the center so that the pin 34 of the clamping member 13 can be accommodated during rotation of the spin chuck 3 (spin base 12). The groove depth of the annular groove 37 is set to such a depth that the holding pin 34 and the bottom wall of the annular groove 37 do not interfere when the storage tank 4 is in the upper position described below. Further, the groove width of the annular groove 37 is set wider than the outer diameter of the holding pin 34. Moreover, in FIG. 1, the annular groove 37 and the outer peripheral wall 38 are provided adjacent to the inside and outside. That is, the outer peripheral surface of the annular groove 37 and the inner peripheral surface of the outer peripheral wall 38 are continuous to form a vertical surface.
 貯留槽4が上位置にあり、かつ貯留溝41に液が満たされた状態では、貯留溝41に溜められている液によって、表面を上向きの状態で挟持部材13に挟持されたウエハWが浸漬される。つまり、貯留溝41に溜められている液の液面がウエハWの表面よりも上方に位置し、その結果、貯留溝41に溜められている液によってウエハWの表面の全域が覆われる。 When the storage tank 4 is in the upper position and the storage groove 41 is filled with the liquid, the wafer W held by the holding member 13 with the surface facing upward is immersed by the liquid stored in the storage groove 41. Is done. That is, the liquid level of the liquid stored in the storage groove 41 is located above the surface of the wafer W, and as a result, the entire surface of the wafer W is covered with the liquid stored in the storage groove 41.
 図2は、基板処理装置1の電気的構成を示すブロック図である。 FIG. 2 is a block diagram showing an electrical configuration of the substrate processing apparatus 1.
 基板処理装置1は、マイクロコンピュータを含む構成の制御部(温度制御手段)40を備えている。制御部40は、ヒータ28への通電/切断の切換えにより、ヒータ28のオン/オフを制御する。また、制御部40は、スピンモータ14、挟持ピン駆動機構43、昇降機構27等の動作を制御する。また、制御部40は、リン酸バルブ17、第1水バルブ54、第2水バルブ32等の開閉動作を制御する。 The substrate processing apparatus 1 includes a control unit (temperature control means) 40 including a microcomputer. The controller 40 controls on / off of the heater 28 by switching between energization / disconnection of the heater 28. The control unit 40 controls operations of the spin motor 14, the pinching pin drive mechanism 43, the lifting mechanism 27, and the like. The control unit 40 also controls the opening / closing operations of the phosphoric acid valve 17, the first water valve 54, the second water valve 32, and the like.
 図3は、基板処理装置1によって実行されるリン酸エッチング処理の処理例について説明するための工程図である。図4A~図4Fは、この処理例について説明するための模式的な図である。 FIG. 3 is a process diagram for explaining a processing example of the phosphoric acid etching process executed by the substrate processing apparatus 1. 4A to 4F are schematic views for explaining this processing example.
 以下では、図1~図4Fを参照して、リン酸エッチング処理の処理例について説明する。 Hereinafter, an example of the phosphoric acid etching process will be described with reference to FIGS. 1 to 4F.
 図4Aに示すように、ウエハWの搬入に先立って、制御部40はヒータ28をオン(駆動状態)にしておく。ヒータ28のオン状態では底面29が発熱状態にある。また、制御部40は、リン酸バルブ17を開いて、リン酸水溶液ノズル5から沸点に近い高温のリン酸水溶液を吐出し、そのリン酸水溶液を、下位置にある貯留槽4の貯留溝41に溜める。リン酸水溶液が貯留溝41に満たされると、制御部40はリン酸バルブ17を閉じる。発熱状態にある底面29によってリン酸水溶液が加熱され、リン酸水溶液は沸点(たとえば約140℃)まで昇温させられ、その後沸騰状態に維持される。加熱状態の維持により、リン酸水溶液に含まれる水が蒸発して、リン酸水溶液のリン酸濃度が徐々に濃くなる。 As shown in FIG. 4A, prior to the loading of the wafer W, the controller 40 turns on the heater 28 (driving state). When the heater 28 is on, the bottom surface 29 is in a heat generating state. The control unit 40 opens the phosphoric acid valve 17 and discharges a phosphoric acid aqueous solution having a high boiling point close to the boiling point from the phosphoric acid aqueous solution nozzle 5, and the phosphoric acid aqueous solution is stored in the storage groove 41 of the storage tank 4 in the lower position. Accumulate on. When the phosphoric acid aqueous solution is filled in the storage groove 41, the control unit 40 closes the phosphoric acid valve 17. The phosphoric acid aqueous solution is heated by the bottom surface 29 in an exothermic state, and the phosphoric acid aqueous solution is heated to a boiling point (for example, about 140 ° C.) and then maintained in a boiling state. By maintaining the heating state, water contained in the phosphoric acid aqueous solution evaporates, and the phosphoric acid concentration of the phosphoric acid aqueous solution gradually increases.
 次いで、図4Bに示すように、制御部40は、第1水バルブ54を開いて、バーノズル50の各吐出口52から水の液滴を滴下する。各吐出口52から滴下される液滴は、貯留槽4内のリン酸水溶液に供給される。多数の吐出口52のそれぞれから水の液滴が吐出されるので、貯留槽4に貯留されているリン酸水溶液に、ほぼ均一に水が供給される。沸騰状態にあるリン酸水溶液に水を供給することにより、貯留槽4内のリン酸水溶液のリン酸濃度の上昇が抑制される。リン酸水溶液への水の供給は、ウエハWの搬入に先立って行われる。 Next, as shown in FIG. 4B, the control unit 40 opens the first water valve 54 and drops water droplets from the discharge ports 52 of the bar nozzle 50. The liquid droplets dropped from each discharge port 52 are supplied to the phosphoric acid aqueous solution in the storage tank 4. Since water droplets are discharged from each of the large number of discharge ports 52, water is supplied almost uniformly to the phosphoric acid aqueous solution stored in the storage tank 4. By supplying water to the phosphoric acid aqueous solution in the boiling state, an increase in the phosphoric acid concentration of the phosphoric acid aqueous solution in the storage tank 4 is suppressed. The supply of water to the phosphoric acid aqueous solution is performed prior to the loading of the wafer W.
 制御部40は第1水バルブ54を開閉して、バーノズル50からの供給/供給停止を切り換えることにより、貯留槽4内のリン酸水溶液に供給する水の量を調節する。リン酸水溶液のリン酸濃度の調整のための水供給であるので、バーノズル50から供給されるリン酸水溶液の流量は小流量で足りる。このような水の供給により、貯留槽4内のリン酸水溶液のリン酸濃度および温度が、それぞれ予め定めるリン酸濃度(一例として81%)および温度(一例として約140℃)に一定に制御される。 The controller 40 adjusts the amount of water supplied to the phosphoric acid aqueous solution in the storage tank 4 by opening and closing the first water valve 54 and switching supply / stop of supply from the bar nozzle 50. Since the water is supplied for adjusting the phosphoric acid concentration of the phosphoric acid aqueous solution, the flow rate of the phosphoric acid aqueous solution supplied from the bar nozzle 50 is sufficient. By supplying such water, the phosphoric acid concentration and temperature of the phosphoric acid aqueous solution in the storage tank 4 are controlled to be constant at a predetermined phosphoric acid concentration (81% as an example) and temperature (about 140 ° C. as an example), respectively. The
 貯留槽4内のリン酸水溶液の温度およびリン酸濃度がそれぞれ所期の温度および濃度に制御された状態で、搬送ロボット(図示しない)が制御されて、処理室2内に未処理のウエハWが搬入される。未処理のウエハWの表面にはシリコン窒化膜およびシリコン酸化膜が形成されている。搬入されたウエハWは、貯留槽4の底面29に対向する所定の受渡位置に配置され、制御部40は挟持ピン駆動機構43を駆動して、複数の挟持ピン34を開放位置から挟持位置に導く。これにより、図4Cに示すように、搬入されたウエハWは、その表面を上方に向けた状態でスピンチャック3に保持される。なお、ウエハWが受渡位置にある状態で、ウエハWの下面と底面29との間隔がたとえば50mm程度とされている。 A transfer robot (not shown) is controlled in a state where the temperature of the phosphoric acid aqueous solution and the phosphoric acid concentration in the storage tank 4 are controlled to the intended temperature and concentration, respectively, and an unprocessed wafer W is placed in the processing chamber 2. Is brought in. A silicon nitride film and a silicon oxide film are formed on the surface of the unprocessed wafer W. The loaded wafer W is arranged at a predetermined delivery position facing the bottom surface 29 of the storage tank 4, and the control unit 40 drives the clamping pin drive mechanism 43 to move the plurality of clamping pins 34 from the open position to the clamping position. Lead. As a result, as shown in FIG. 4C, the loaded wafer W is held by the spin chuck 3 with its surface facing upward. In the state where the wafer W is at the delivery position, the distance between the lower surface and the bottom surface 29 of the wafer W is, for example, about 50 mm.
 スピンチャック3にウエハWが保持されると、図4Dに示すように、制御部40は昇降機構27を制御して、貯留槽4を上位置まで上昇させる。貯留槽4が上位置にある状態では、貯留槽4のリン酸水溶液中にウエハWが浸漬される。このとき、貯留槽4のリン酸水溶液の液面がウエハWの表面よりも上方に位置し、その結果、リン酸水溶液によってウエハWの表面の全域が覆われる。リン酸水溶液へのウエハWの浸漬によって、ウエハWの表面にリン酸エッチング処理が施される(ステップS1)。リン酸エッチング処理は、予め定めるエッチング時間が経過するまで実行される。 When the wafer W is held on the spin chuck 3, as shown in FIG. 4D, the control unit 40 controls the elevating mechanism 27 to raise the storage tank 4 to the upper position. In a state where the storage tank 4 is in the upper position, the wafer W is immersed in the phosphoric acid aqueous solution in the storage tank 4. At this time, the liquid level of the phosphoric acid aqueous solution in the storage tank 4 is located above the surface of the wafer W, and as a result, the entire surface of the wafer W is covered with the phosphoric acid aqueous solution. By immersing the wafer W in the phosphoric acid aqueous solution, a phosphoric acid etching process is performed on the surface of the wafer W (step S1). The phosphoric acid etching process is performed until a predetermined etching time elapses.
 貯留槽4が上位置にある状態で、ウエハWの下面と貯留槽4の底面29との間隔W1は、たとえば3mm程度に設定されている。この状態で、ウエハWの約3mm上方に、リン酸水溶液の液面が位置している。なお、ウエハWの厚みは、たとえば0.775mmである。なお、間隔W1は0.3~3mmの範囲内で適宜設定できる。 With the storage tank 4 in the upper position, the interval W1 between the lower surface of the wafer W and the bottom surface 29 of the storage tank 4 is set to about 3 mm, for example. In this state, the liquid level of the phosphoric acid aqueous solution is located approximately 3 mm above the wafer W. Note that the thickness of the wafer W is, for example, 0.775 mm. The interval W1 can be set as appropriate within a range of 0.3 to 3 mm.
 ウエハWの下面と貯留槽4の底面29とが接近しているので、スピンチャック3に保持されているウエハWは、貯留槽4の底面29から熱輻射により加熱される。貯留槽4が上位置にある状態で、底面29とウエハWの下面とが平行をなしているので、ウエハWに貯留槽4から与えられる単位面積当たりの熱量は、ウエハWの全域においてほぼ均一である。 Since the lower surface of the wafer W and the bottom surface 29 of the storage tank 4 are close to each other, the wafer W held by the spin chuck 3 is heated from the bottom surface 29 of the storage tank 4 by thermal radiation. Since the bottom surface 29 and the lower surface of the wafer W are parallel with the storage tank 4 in the upper position, the amount of heat per unit area given to the wafer W from the storage tank 4 is substantially uniform over the entire area of the wafer W. It is.
 また、図4Eに示すように、リン酸エッチング工程中には、適宜、貯留槽4のリン酸水溶液に水が供給される。制御部40は、第1水バルブ54を開いて、バーノズル50の各吐出口52から水の液滴を滴下する。多数の吐出口52のそれぞれから水の液滴が吐出されるので、貯留槽4に貯留されているリン酸水溶液に、ほぼ均一に水が供給される。これにより、貯留槽4内のリン酸水溶液のリン酸濃度および温度が、それぞれ予め定めるリン酸濃度(一例として81%)および温度(一例として約140℃)に一定に制御される。 Further, as shown in FIG. 4E, water is appropriately supplied to the phosphoric acid aqueous solution in the storage tank 4 during the phosphoric acid etching step. The controller 40 opens the first water valve 54 and drops water droplets from the discharge ports 52 of the bar nozzle 50. Since water droplets are discharged from each of the large number of discharge ports 52, water is supplied almost uniformly to the phosphoric acid aqueous solution stored in the storage tank 4. Thereby, the phosphoric acid concentration and temperature of the phosphoric acid aqueous solution in the storage tank 4 are controlled to a predetermined phosphoric acid concentration (81% as an example) and temperature (about 140 ° C. as an example), respectively.
 さらに、リン酸エッチング工程では、制御部40はスピンモータ14を制御して、ウエハWを予め定める低速度(たとえば10~300rpmの範囲)で回転させる。ウエハWの回転により、貯留溝41に溜められたリン酸水溶液が撹拌される。これにより、リン酸水溶液のリン酸濃度および温度が均一に分布するようになる。 Further, in the phosphoric acid etching step, the control unit 40 controls the spin motor 14 to rotate the wafer W at a predetermined low speed (for example, in the range of 10 to 300 rpm). As the wafer W rotates, the phosphoric acid aqueous solution stored in the storage groove 41 is agitated. Thereby, the phosphoric acid concentration and temperature of the phosphoric acid aqueous solution are uniformly distributed.
 図5は、貯留槽4の底面29によるウエハWの加熱を示す図である。 FIG. 5 is a diagram showing heating of the wafer W by the bottom surface 29 of the storage tank 4.
 前述のように、貯留槽4の底面29とウエハWの下面のほぼ全面に対向している。また、貯留槽4の底面29と、ウエハWの下面との間隔W1は、たとえば0.3~3mmの範囲でたとえば3mm程度に設定されている。したがって、ウエハWは、貯留槽4の底面29からの熱が熱伝導によって与えられるとともに、熱輻射によって熱が与えられる。これにより、ウエハWが160℃程度まで昇温していると考えられる。 As described above, the bottom surface 29 of the storage tank 4 and the lower surface of the wafer W are almost opposed to each other. Further, the interval W1 between the bottom surface 29 of the storage tank 4 and the lower surface of the wafer W is set to, for example, about 3 mm within a range of 0.3 to 3 mm, for example. Therefore, the wafer W is given heat from the bottom surface 29 of the storage tank 4 by heat conduction and heat by radiation. Thereby, it is considered that the temperature of the wafer W is raised to about 160 ° C.
 図6は、リン酸水溶液におけるリン酸濃度(HPO4 concentration)と、リン酸水溶液の沸点(沸騰点;Boiling Point)との関係を示すグラフである。図6中の曲線は飽和濃度曲線を示し、当該曲線よりも下方の領域は、リン酸水溶液が存在可能な領域(HPO existence region)である。 FIG. 6 is a graph showing the relationship between the phosphoric acid concentration (H 3 PO 4 concentration) in the phosphoric acid aqueous solution and the boiling point (boiling point) of the phosphoric acid aqueous solution. The curve in FIG. 6 shows a saturation concentration curve, and the region below the curve is a region where a phosphoric acid aqueous solution can exist (H 3 PO 4 existence region).
 図6に示すように、リン酸水溶液におけるリン酸濃度が高くなるにつれて、リン酸水溶液の沸点が高くなっている。たとえば81%の濃度を有するリン酸水溶液では、その沸点が約140℃である。通常、81%の濃度のリン酸水溶液は、液相において、140℃以上に昇温しない。 As shown in FIG. 6, as the phosphoric acid concentration in the phosphoric acid aqueous solution increases, the boiling point of the phosphoric acid aqueous solution increases. For example, an aqueous phosphoric acid solution having a concentration of 81% has a boiling point of about 140 ° C. Usually, an aqueous phosphoric acid solution having a concentration of 81% does not rise to 140 ° C. or higher in the liquid phase.
 一方、160℃の温度を有するリン酸水溶液の最大濃度は約86%である。したがって、160℃の温度を有するリン酸水溶液において、その濃度が約86%未満になることは通常の状態では発生しない。 On the other hand, the maximum concentration of the phosphoric acid aqueous solution having a temperature of 160 ° C. is about 86%. Therefore, in a phosphoric acid aqueous solution having a temperature of 160 ° C., the concentration does not decrease below about 86% in a normal state.
 図7は、リン酸水溶液におけるリン酸濃度およびリン酸水溶液の温度とシリコン窒化膜のエッチングレートとの関係を示すグラフである。図7では、150℃、160℃および170℃の温度を有するリン酸水溶液を用いてシリコン窒化膜をエッチングしたときのエッチングレートを実線で示している。また、図7では、リン酸水溶液の沸点を破線で示している。 FIG. 7 is a graph showing the relationship between the phosphoric acid concentration in the phosphoric acid aqueous solution, the temperature of the phosphoric acid aqueous solution, and the etching rate of the silicon nitride film. In FIG. 7, the solid line indicates the etching rate when the silicon nitride film is etched using an aqueous phosphoric acid solution having temperatures of 150 ° C., 160 ° C., and 170 ° C. Moreover, in FIG. 7, the boiling point of phosphoric acid aqueous solution is shown with the broken line.
 図7に示すように、リン酸濃度が一定であれば、リン酸水溶液の温度が170℃のときのエッチングレートが最も高く、リン酸水溶液の温度が160℃のときのエッチングレートが二番目に高い。したがって、リン酸濃度が一定であれば、リン酸水溶液の温度が高いほどエッチングレートが高い。 As shown in FIG. 7, when the phosphoric acid concentration is constant, the etching rate is highest when the temperature of the phosphoric acid aqueous solution is 170 ° C., and the etching rate when the temperature of the phosphoric acid aqueous solution is 160 ° C. is second. high. Therefore, if the phosphoric acid concentration is constant, the higher the temperature of the phosphoric acid aqueous solution, the higher the etching rate.
 一方、リン酸水溶液の温度が150℃のとき、エッチングレートは、リン酸濃度の増加に伴って減少する。リン酸水溶液の温度が160℃および170℃のときについても同様である。したがって、リン酸水溶液の温度が一定であれば、リン酸濃度が低いほどエッチングレートが高い。また、図示はしていないが、リン酸水溶液の温度が140℃のときについても同様である。 On the other hand, when the temperature of the phosphoric acid aqueous solution is 150 ° C., the etching rate decreases as the phosphoric acid concentration increases. The same applies when the temperature of the phosphoric acid aqueous solution is 160 ° C and 170 ° C. Therefore, if the temperature of the phosphoric acid aqueous solution is constant, the lower the phosphoric acid concentration, the higher the etching rate. Although not shown, the same is true when the temperature of the phosphoric acid aqueous solution is 140 ° C.
 図5~図7を併せて参照して、リン酸エッチング工程における貯留槽4内のリン酸水溶液の状態について説明する。貯留槽4には、81%に濃度調節されたリン酸水溶液が貯留されている。このリン酸水溶液の沸点は約140℃である。貯留槽4に貯留されたリン酸水溶液は、貯留槽4の底面29によって加熱され、沸点である約140℃の状態を維持している。 The state of the phosphoric acid aqueous solution in the storage tank 4 in the phosphoric acid etching process will be described with reference to FIGS. In the storage tank 4, a phosphoric acid aqueous solution whose concentration is adjusted to 81% is stored. The boiling point of this phosphoric acid aqueous solution is about 140 ° C. The phosphoric acid aqueous solution stored in the storage tank 4 is heated by the bottom surface 29 of the storage tank 4 and maintains the boiling point of about 140 ° C.
 貯留槽4の底面29による加熱により、ウエハWは約160℃に昇温される。この状態で、ウエハW表面との境界部分のリン酸水溶液に、ウエハWの表面に近づくほど高くなる温度勾配が形成される。その結果、ウエハW表面とリン酸水溶液とが接する境界では、たとえば約160℃の高温状態が実現される。 The wafer W is heated to about 160 ° C. by heating from the bottom surface 29 of the storage tank 4. In this state, a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached. As a result, a high temperature state of about 160 ° C. is realized at the boundary where the surface of the wafer W and the phosphoric acid aqueous solution are in contact with each other.
 換言すると、ウエハW表面とリン酸水溶液とが接する境界では、局所的には極めて高温で、かつリン酸濃度が低く維持された状態を実現することができる。具体的には、当該境界において、温度が約160℃で濃度が約81%という、通常では存在しない高温低濃度の状態を実現することができる(この状態におけるシリコン窒化膜のエッチングレートおよびシリコン窒化膜の選択比の一例を「実施例」として図7中に示す)。この状態のリン酸水溶液が、ウエハWの表面のシリコン窒化膜に作用するから、シリコン窒化膜のエッチングレートを非常に高めることができ、同時にシリコン窒化膜の選択比を高く維持することができる。 In other words, at the boundary where the surface of the wafer W and the phosphoric acid aqueous solution are in contact with each other, it is possible to realize a state where the temperature is locally extremely high and the phosphoric acid concentration is kept low. Specifically, a high temperature and low concentration state that does not normally exist can be realized at a temperature of about 160 ° C. and a concentration of about 81% at the boundary (the silicon nitride film etching rate and silicon nitridation in this state). An example of the selectivity of the membrane is shown in FIG. Since the phosphoric acid aqueous solution in this state acts on the silicon nitride film on the surface of the wafer W, the etching rate of the silicon nitride film can be greatly increased, and at the same time, the selectivity of the silicon nitride film can be kept high.
 ところで、ウエハWのリン酸水溶液に対する浸漬開始から、予め定めるエッチング時間が経過すると、図4Fに示すように、制御部40は、制御部40は昇降機構27を制御して、貯留槽4を下位置まで下降させる。これにより、貯留槽4の底面29によるウエハWの加熱は終了する。 By the way, when a predetermined etching time has elapsed from the start of immersion of the wafer W in the phosphoric acid aqueous solution, the control unit 40 controls the lifting mechanism 27 to lower the storage tank 4 as shown in FIG. 4F. Lower to position. Thereby, the heating of the wafer W by the bottom surface 29 of the storage tank 4 is completed.
 次いで、制御部40は、スピンモータ14を制御して、ウエハWの回転速度を所定のリンス処理速度(300~1500rpmの範囲で、たとえば1000rpm)に上げるとともに、第2水バルブ32を開いて、水ノズル30の吐出口からウエハWの回転中心付近に向けてDIWを供給する(ステップS2:リンス工程)。ウエハWの表面に供給されたDIWは、ウエハWの回転による遠心力を受けて、ウエハWの表面上をウエハWの周縁に向けて流れる。これにより、ウエハWの表面に付着しているリン酸水溶液がDIWによって洗い流される。 Next, the control unit 40 controls the spin motor 14 to increase the rotation speed of the wafer W to a predetermined rinse processing speed (in the range of 300 to 1500 rpm, for example, 1000 rpm), and opens the second water valve 32, DIW is supplied from the discharge port of the water nozzle 30 toward the vicinity of the rotation center of the wafer W (step S2: rinsing step). The DIW supplied to the surface of the wafer W receives centrifugal force due to the rotation of the wafer W and flows on the surface of the wafer W toward the periphery of the wafer W. Thereby, the phosphoric acid aqueous solution adhering to the surface of the wafer W is washed away by DIW.
 また、このリンス工程と並行して、貯留槽4の内壁面(底面29、環状溝37の壁面および外周壁38の内周面)を水で洗浄する貯留槽洗浄が実行される。この貯留槽洗浄では、制御部40は、水下バルブ64を開いて、下吐出口62から水を吐出する。下吐出口62から吐出される水は、貯留槽4の貯留溝41に溜められる。下吐出口62からの水の吐出は、貯留溝41が溢れた後も続行される。これにより、貯留槽4の内壁面に付着していたリン酸水溶液が水で洗い流される。 In parallel with this rinsing step, storage tank cleaning is performed to clean the inner wall surface of the storage tank 4 (the bottom surface 29, the wall surface of the annular groove 37, and the inner peripheral surface of the outer peripheral wall 38) with water. In this storage tank cleaning, the control unit 40 opens the water valve 64 and discharges water from the lower discharge port 62. The water discharged from the lower discharge port 62 is stored in the storage groove 41 of the storage tank 4. The discharge of water from the lower discharge port 62 is continued even after the storage groove 41 overflows. Thereby, the phosphoric acid aqueous solution adhering to the inner wall surface of the storage tank 4 is washed away with water.
 DIWの供給が所定のリンス時間にわたって続けられると、第2水バルブ32が閉じられて、ウエハWの表面へのDIWの供給が停止される。また、DIWの供給停止に併せて、水下バルブ64が閉じられて、貯留槽41への水の供給が停止される。 When the DIW supply is continued for a predetermined rinse time, the second water valve 32 is closed and the supply of DIW to the surface of the wafer W is stopped. In addition, the water supply valve 64 is closed together with the DIW supply stop, and the supply of water to the storage tank 41 is stopped.
 その後、制御部40は、スピンモータ14を駆動して、ウエハWの回転速度を所定の高回転速度(たとえば1500~2500rpm)に上げて、ウエハWに付着しているDIWを振り切って乾燥されるスピンドライが行われる(ステップS3)。ステップS3のスピンドライによって、ウエハWに付着しているDIWが除去される。 Thereafter, the control unit 40 drives the spin motor 14 to increase the rotation speed of the wafer W to a predetermined high rotation speed (for example, 1500 to 2500 rpm), and shakes off the DIW adhering to the wafer W to be dried. Spin drying is performed (step S3). The DIW adhering to the wafer W is removed by spin drying in step S3.
 スピンドライが予め定めるスピンドライ時間にわたって行われると、制御部40は、スピンモータ14を駆動して、スピンチャック3の回転を停止させる。これにより、1枚のウエハWに対するレジスト除去処理が終了する。その後、制御部40は挟持ピン駆動機構43を駆動して、複数の挟持ピン34を挟持位置から開放位置に導き、処理済みのウエハWが搬送ロボットに受け渡される。搬送ロボットによってウエハWが処理室2から搬出される。 When the spin dry is performed for a predetermined spin dry time, the control unit 40 drives the spin motor 14 to stop the rotation of the spin chuck 3. Thus, the resist removal process for one wafer W is completed. Thereafter, the control unit 40 drives the holding pin driving mechanism 43 to guide the plurality of holding pins 34 from the holding position to the open position, and the processed wafer W is delivered to the transfer robot. The wafer W is unloaded from the processing chamber 2 by the transfer robot.
 以上によりこの実施形態によれば、貯留槽4の底面29によるウエハWへの加熱により、ウエハWが約160℃に昇温される。この状態で、ウエハW表面との境界部分のリン酸水溶液に、ウエハWの表面に近づくほど高くなる温度勾配が形成される。その結果、ウエハWの表面との境界部分におけるリン酸水溶液において、極めて高温で、かつリン酸濃度が低く維持された状態(温度が約160℃で濃度が約81%という、高温で、かつリン酸濃度が低く維持された状態)を実現することができる。この状態のリン酸水溶液が、ウエハWの表面のシリコン窒化膜に作用するから、シリコン窒化膜のエッチングレートを非常に高めることができ、同時にシリコン窒化膜の選択比を高く維持することができる。 As described above, according to this embodiment, the wafer W is heated to about 160 ° C. by heating the wafer W by the bottom surface 29 of the storage tank 4. In this state, a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached. As a result, the phosphoric acid aqueous solution at the boundary with the surface of the wafer W is in a state where the phosphoric acid concentration is maintained at a very high temperature and a low phosphoric acid concentration (the temperature is about 160 ° C. and the concentration is about 81%, A state in which the acid concentration is kept low). Since the phosphoric acid aqueous solution in this state acts on the silicon nitride film on the surface of the wafer W, the etching rate of the silicon nitride film can be greatly increased, and at the same time, the selectivity of the silicon nitride film can be kept high.
 図8は、本発明の第2実施形態に係る基板処理装置101の構成を模式的に示す図である。図8において、第1実施形態に示された各部に対応する部分には、図1~図7の場合と同一の参照符号を付して示し、説明を省略する。 FIG. 8 is a diagram schematically showing the configuration of the substrate processing apparatus 101 according to the second embodiment of the present invention. In FIG. 8, parts corresponding to those shown in the first embodiment are denoted by the same reference numerals as those in FIGS. 1 to 7, and description thereof is omitted.
 基板処理装置101が、第1実施形態に係る基板処理装置1と相違する点は、水を供給するための水供給手段として、バーノズル50に代えて、水の液滴をスプレー状に吐出(噴霧)するスプレーノズル102を採用した点である。スプレーノズル102には、水供給源からの水が供給される第3水供給管103が接続されている。第3水供給管103には、第3水供給管103を開閉するための第3水バルブ104が介装されている。第3水バルブ104が開かれると、第3水供給管103からスプレーノズル102に水が供給され、スプレーノズル102から下方に向けて水の液滴がスプレー状に吐出(噴霧)される。スプレーノズル102から吐出される水の液滴は、前述の第1実施形態のバーノズルから吐出される水の液滴よりも細かい(小さい)。 The substrate processing apparatus 101 is different from the substrate processing apparatus 1 according to the first embodiment in that, as a water supply unit for supplying water, instead of the bar nozzle 50, water droplets are ejected in a spray form (spraying). The spray nozzle 102 is employed. A third water supply pipe 103 to which water from a water supply source is supplied is connected to the spray nozzle 102. A third water valve 104 for opening and closing the third water supply pipe 103 is interposed in the third water supply pipe 103. When the third water valve 104 is opened, water is supplied from the third water supply pipe 103 to the spray nozzle 102, and water droplets are ejected (sprayed) from the spray nozzle 102 downward. The water droplets discharged from the spray nozzle 102 are finer (smaller) than the water droplets discharged from the bar nozzle of the first embodiment described above.
 第2実施形態によれば、スプレーノズル102からスプレー状に水の液滴が吐出されるので、貯留槽4に貯留されているリン酸水溶液に、ほぼ均一に水を供給することができ、その結果、リン酸水溶液のリン酸濃度を均一に保つことができる。 According to the second embodiment, water droplets are ejected in a spray form from the spray nozzle 102, so that water can be supplied almost uniformly to the phosphoric acid aqueous solution stored in the storage tank 4, As a result, the phosphoric acid concentration of the phosphoric acid aqueous solution can be kept uniform.
 また、スプレーノズル102からリン酸水溶液に対し、より細かい水の液滴が供給される。水とリン酸水溶液とは、それらの比重や粘度等の相違のために、比較的混ざりにくい傾向にある。しかしながら、液滴の大きさが細かければ細かいほど混ざり易いので、細かい液滴の状態の水をリン酸水溶液に供給することにより、水とリン酸水溶液とをスムーズに混合させることができる。 Further, finer water droplets are supplied from the spray nozzle 102 to the phosphoric acid aqueous solution. Water and phosphoric acid aqueous solution tend to be relatively difficult to mix due to differences in specific gravity, viscosity, and the like. However, since the smaller the droplet size, the easier it is to mix, the water and the phosphoric acid aqueous solution can be smoothly mixed by supplying water in a fine droplet state to the phosphoric acid aqueous solution.
 なお、図8では、スプレーノズル102を1つだけ設ける場合を示しているが、左右方向に関しそれぞれ異なる位置にある複数のスプレーノズルから、水をスプレー状に吐出することもできる。 Although FIG. 8 shows a case where only one spray nozzle 102 is provided, water can also be discharged from a plurality of spray nozzles at different positions in the left-right direction.
 図9は、本発明の第3実施形態に係る基板処理装置201の構成を模式的に示す図である。図9において、第1実施形態に示された各部に対応する部分には、図1~図7の場合と同一の参照符号を付して示し、説明を省略する。 FIG. 9 is a diagram schematically showing the configuration of the substrate processing apparatus 201 according to the third embodiment of the present invention. In FIG. 9, parts corresponding to those shown in the first embodiment are denoted by the same reference numerals as those in FIGS. 1 to 7, and description thereof is omitted.
 基板処理装置201が、第1実施形態に係る基板処理装置1と相違する点は、貯留槽として、非加熱型の貯留槽204を採用した点である。また、スピンチャック3の上方に、ウエハWの表面を加熱するためのヒータヘッド203を設けた点も、基板処理装置1と相違している。 The difference between the substrate processing apparatus 201 and the substrate processing apparatus 1 according to the first embodiment is that a non-heating type storage tank 204 is adopted as the storage tank. The substrate processing apparatus 1 is also different from the substrate processing apparatus 1 in that a heater head 203 for heating the surface of the wafer W is provided above the spin chuck 3.
 貯留槽204は、たとえば、セラミックやSiC、耐熱樹脂を用いて形成されている。貯留槽204の構成は、ヒータ28(図1参照)が埋設されておらず加熱手段として機能しない点を除いて、図1に示す貯留槽4と共通の構成である。つまり、貯留槽204は水平姿勢で配置され、その水平姿勢を維持したまま昇降される。昇降機構(図1参照)27の駆動により、貯留槽204は、その下面がスピンベース12の上面に近接する下位置と、貯留槽204の底面29が、ウエハWの下面に微小な間隔W1を隔てて対向配置される上位置との間で昇降させられる。これにより、貯留槽204とウエハWとの間隔を変更することが可能である。 The storage tank 204 is formed using, for example, ceramic, SiC, or heat resistant resin. The configuration of the storage tank 204 is the same as that of the storage tank 4 shown in FIG. 1 except that the heater 28 (see FIG. 1) is not embedded and does not function as a heating means. That is, the storage tank 204 is arranged in a horizontal posture and is moved up and down while maintaining the horizontal posture. By driving the elevating mechanism (see FIG. 1) 27, the storage tank 204 has a lower position where the lower surface thereof is close to the upper surface of the spin base 12, and the bottom surface 29 of the storage tank 204 has a minute interval W 1 on the lower surface of the wafer W. It is moved up and down between the upper positions arranged opposite to each other. Thereby, the interval between the storage tank 204 and the wafer W can be changed.
 貯留槽204の底面29と外周壁38の内周面とによって、底面29の上方に液を溜めるための貯留溝41が区画されている。貯留槽204が上位置にある状態で、かつ貯留溝41に液が満たされた状態では、貯留溝41に溜められている液によって、表面上向きのウエハWが浸漬される。つまり、貯留溝41に溜められている液によってウエハWの表面の全域が覆われる。また、ウエハWの回転中であっても、貯留溝41は回転せずに静止(非回転状態)している。 A storage groove 41 for storing liquid is defined above the bottom surface 29 by the bottom surface 29 of the storage tank 204 and the inner peripheral surface of the outer peripheral wall 38. In a state where the storage tank 204 is in the upper position and the storage groove 41 is filled with the liquid, the wafer W facing upward is immersed by the liquid stored in the storage groove 41. That is, the entire surface of the wafer W is covered with the liquid stored in the storage groove 41. Even when the wafer W is rotating, the storage groove 41 is not rotated but is stationary (non-rotating state).
 ヒータヘッド203は、ウエハWと同等の径を有する円板状をなし、たとえばセラミック等を用いて形成されている。ヒータヘッド203は、ホルダ205によって上方から、水平姿勢で保持されている。ヒータヘッド203の内部には、抵抗式のヒータ208が埋設されている。ヒータヘッド203は、水平平坦面からなる下面(発熱部)209を有している。ヒータヘッド203の下面209は、スピンチャック3に保持されているウエハWの表面の全域に対向配置されている。ヒータ208のオン状態では、ヒータ208への給電により当該ヒータ208が発熱し、下面209全域が発熱する。下面209の全域において、ヒータ28のオン状態における下面209の単位面積当たりの発熱量は均一に設定されている。 The heater head 203 has a disk shape having a diameter equivalent to that of the wafer W, and is formed using, for example, ceramic. The heater head 203 is held in a horizontal posture from above by a holder 205. A resistance heater 208 is embedded in the heater head 203. The heater head 203 has a lower surface (heat generating portion) 209 made of a horizontal flat surface. The lower surface 209 of the heater head 203 is disposed to face the entire surface of the wafer W held by the spin chuck 3. In the ON state of the heater 208, the heater 208 generates heat by supplying power to the heater 208, and the entire lower surface 209 generates heat. In the entire area of the lower surface 209, the heat generation amount per unit area of the lower surface 209 when the heater 28 is on is set to be uniform.
 ホルダ205には、ヒータヘッド203を昇降させるためのヒータ昇降機構206が結合されている。ヒータ昇降機構206は制御部40(図2参照)に電気的に接続されている。 The heater 205 is coupled to the holder 205 for raising and lowering the heater head 203. The heater lifting mechanism 206 is electrically connected to the control unit 40 (see FIG. 2).
 このような基板処理装置201で実行されるリン酸エッチング処理では、第1実施形態と同様に(図4A参照)、貯留槽204の貯留溝41にリン酸水溶液が溜められる。その後、処理室2内に未処理のウエハWが搬入され、スピンチャック3(の挟持部材13)にウエハWが、その表面を上方に向けた状態に保持される。 In the phosphoric acid etching process executed by the substrate processing apparatus 201, the phosphoric acid aqueous solution is stored in the storage groove 41 of the storage tank 204, as in the first embodiment (see FIG. 4A). Thereafter, an unprocessed wafer W is loaded into the processing chamber 2, and the wafer W is held on the spin chuck 3 (the holding member 13) with the surface thereof facing upward.
 スピンチャック3にウエハWが保持されると、制御部40は昇降機構27(図1参照)を制御して、貯留槽204を上位置まで上昇させる。貯留槽204が上位置にある状態では、貯留槽204のリン酸水溶液中にウエハWが浸漬される。このとき、貯留槽204のリン酸水溶液の液面がウエハWの表面よりも上方に位置し、その結果、リン酸水溶液によってウエハWの表面の全域が覆われる。リン酸水溶液へのウエハWの浸漬によって、ウエハWの表面にリン酸エッチング処理が施される(図3のステップS1に相当)。 When the wafer W is held on the spin chuck 3, the control unit 40 controls the elevating mechanism 27 (see FIG. 1) to raise the storage tank 204 to the upper position. In a state where the storage tank 204 is in the upper position, the wafer W is immersed in the phosphoric acid aqueous solution in the storage tank 204. At this time, the liquid level of the phosphoric acid aqueous solution in the storage tank 204 is located above the surface of the wafer W, and as a result, the entire surface of the wafer W is covered with the phosphoric acid aqueous solution. By immersing the wafer W in the phosphoric acid aqueous solution, the surface of the wafer W is subjected to phosphoric acid etching (corresponding to step S1 in FIG. 3).
 また、制御部40はヒータ昇降機構206を制御して、ヒータヘッド203を、ヒータヘッド203の下面209がウエハWの表面(上面)に近接する近接位置まで下降させる。ヒータヘッド203が近接位置にある状態で、ウエハWの表面(上面)とヒータヘッド203の下面209との間隔は、たとえば約2mm程度に設定されている。ヒータヘッド203がリン酸水溶液に対する耐薬性を有する材質を用いて形成されている場合には、ヒータヘッド203の下部を、貯留槽204のリン酸水溶液に漬けることができ、この状態でウエハWを加熱することができる。 Further, the control unit 40 controls the heater lifting mechanism 206 to lower the heater head 203 to a close position where the lower surface 209 of the heater head 203 is close to the surface (upper surface) of the wafer W. In a state where the heater head 203 is in the proximity position, the distance between the surface (upper surface) of the wafer W and the lower surface 209 of the heater head 203 is set to about 2 mm, for example. When the heater head 203 is formed using a material having chemical resistance to the phosphoric acid aqueous solution, the lower part of the heater head 203 can be dipped in the phosphoric acid aqueous solution in the storage tank 204, and the wafer W is placed in this state. Can be heated.
 ウエハWの表面(上面)とヒータヘッド203の下面209との間隔が2mm程度であるので、スピンチャック3に保持されているウエハWは、ヒータヘッド203の下面209から熱輻射により加熱される。ヒータヘッド203の下面209とウエハWの表面とが平行をなしているので、ヒータヘッド203からウエハWに与えられる単位面積当たりの熱量は、ウエハWの全域においてほぼ均一である。ヒータヘッド203による加熱により、ウエハWの温度は、リン酸水溶液の液温よりもやや高温(約160℃であると予想される)まで昇温されて、その温度のまま維持される。この状態で、ウエハW表面との境界部分のリン酸水溶液に、ウエハWの表面に近づくほど高くなる温度勾配が形成される。その後、予め定めるエッチング時間が経過すると、ヒータ昇降機構206が制御されてヒータヘッド203が近接位置から上方に大きく退避させられ、これにより、ヒータヘッド203によるウエハWの加熱は停止される。 Since the distance between the surface (upper surface) of the wafer W and the lower surface 209 of the heater head 203 is about 2 mm, the wafer W held by the spin chuck 3 is heated from the lower surface 209 of the heater head 203 by heat radiation. Since the lower surface 209 of the heater head 203 and the surface of the wafer W are parallel to each other, the amount of heat per unit area given from the heater head 203 to the wafer W is substantially uniform over the entire area of the wafer W. Due to the heating by the heater head 203, the temperature of the wafer W is raised to a temperature slightly higher than the liquid temperature of the phosphoric acid aqueous solution (expected to be about 160 ° C.) and maintained at that temperature. In this state, a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached. Thereafter, when a predetermined etching time elapses, the heater elevating mechanism 206 is controlled and the heater head 203 is largely retracted upward from the proximity position, whereby the heating of the wafer W by the heater head 203 is stopped.
 その後、第1実施形態の場合と同様、リンス処理(図3のステップS2に相当)およびスピンドライ(図3のステップS3に相当)が実行される。 Thereafter, as in the case of the first embodiment, rinsing processing (corresponding to step S2 in FIG. 3) and spin drying (corresponding to step S3 in FIG. 3) are executed.
 第3実施形態によれば、貯留槽204のリン酸水溶液に浸漬されているウエハWを、その上方に近接配置されたヒータヘッド203を用いて加熱する。そのため、貯留槽204にヒータを内蔵する等の複雑な構成を採用することなく、ウエハWを良好に加熱することができる。 According to the third embodiment, the wafer W immersed in the phosphoric acid aqueous solution in the storage tank 204 is heated using the heater head 203 disposed close to the wafer W. Therefore, the wafer W can be heated satisfactorily without adopting a complicated configuration such as incorporating a heater in the storage tank 204.
 図10は、本発明の第4実施形態に係る基板処理装置301の構成を模式的に示す図である。図10において、第3実施形態に示された各部に対応する部分には、図1~図7および図9の場合と同一の参照符号を付して示し、説明を省略する。 FIG. 10 is a diagram schematically showing the configuration of a substrate processing apparatus 301 according to the fourth embodiment of the present invention. In FIG. 10, parts corresponding to the parts shown in the third embodiment are denoted by the same reference numerals as in FIGS. 1 to 7 and FIG. 9, and description thereof is omitted.
 基板処理装置301が、基板処理装置301が、第3実施形態に係る基板処理装置201と相違する点は、ウエハWの表面を加熱するためのヒータとして、ヒータヘッド203に代えて赤外線ヒータ(加熱手段)303を設けた点にある。 The substrate processing apparatus 301 is different from the substrate processing apparatus 201 according to the third embodiment in that an infrared heater (heating) is used instead of the heater head 203 as a heater for heating the surface of the wafer W. Means) 303 is provided.
 赤外線ヒータ303は、ウエハWよりも小径(たとえば、ウエハWの径の1/5~1/10程度)を有する平面視円形状をなし、スピンチャック3に保持されたウエハWの表面に対し、上方に対向配置されている。赤外線ヒータ303は、赤外線照射面(発熱部)304Aを下面に有する赤外線ランプ304を内蔵している。赤外線照射面304Aは、ウエハWの表面に略全域に対向している赤外線照射面304Aは、ウエハWの表面に対向している。赤外線ランプ38は、フィラメントを石英配管内に収容して構成されている。赤外線ランプ38として、ハロゲンランプやカーボンヒータに代表される短・中・長波長の赤外線ヒータを採用することができる。 The infrared heater 303 has a circular shape in a plan view having a smaller diameter than the wafer W (for example, about 1/5 to 1/10 of the diameter of the wafer W), and the surface of the wafer W held by the spin chuck 3 is Oppositely arranged above. The infrared heater 303 incorporates an infrared lamp 304 having an infrared irradiation surface (heat generating portion) 304A on the lower surface. The infrared irradiation surface 304 </ b> A faces the surface of the wafer W over substantially the entire area, and the infrared irradiation surface 304 </ b> A faces the surface of the wafer W. The infrared lamp 38 is configured by accommodating a filament in a quartz pipe. As the infrared lamp 38, a short, medium and long wavelength infrared heater represented by a halogen lamp and a carbon heater can be adopted.
 ホルダ205には、赤外線ヒータ303を、ウエハWの面外に設けられた所定の鉛直の揺動軸線まわりに揺動させるためのヒータ揺動機構306が結合されている。ヒータ揺動機構306が制御されることにより、赤外線ヒータ303が、ウエハWの表面の回転中心(回転軸線A1上)と周縁部との間を、ウエハWの回転方向と交差する円弧状の軌跡を描くように移動可能に設けられている。 The holder 205 is coupled with a heater swing mechanism 306 for swinging the infrared heater 303 about a predetermined vertical swing axis provided outside the surface of the wafer W. By controlling the heater swing mechanism 306, the infrared heater 303 has an arc-shaped trajectory that intersects the rotation direction of the wafer W between the rotation center (on the rotation axis A <b> 1) and the peripheral edge of the surface of the wafer W. It is provided to be movable so as to draw.
 リン酸エッチング処理(図3のステップS1に相当)では、ヒータ昇降機構206が制御されて、赤外線ヒータ303が、その赤外線照射面304AがウエハWの表面(上面)に近接する近接位置まで下降させられる。赤外線ヒータ303が近接位置にある状態で、ウエハWの表面(上面)と赤外線ヒータ303の赤外線照射面304Aとの間隔は、たとえば10mm程度に設定されている。この実施形態では、近接位置にある赤外線ヒータ303の赤外線照射面304Aが、貯留槽204のリン酸水溶液に接液することはない。 In the phosphoric acid etching process (corresponding to step S1 in FIG. 3), the heater elevating mechanism 206 is controlled, and the infrared heater 303 is lowered to a close position where the infrared irradiation surface 304A is close to the surface (upper surface) of the wafer W. It is done. In a state where the infrared heater 303 is in the proximity position, the distance between the surface (upper surface) of the wafer W and the infrared irradiation surface 304A of the infrared heater 303 is set to about 10 mm, for example. In this embodiment, the infrared irradiation surface 304 </ b> A of the infrared heater 303 in the close position does not come into contact with the phosphoric acid aqueous solution in the storage tank 204.
 ウエハWの表面と赤外線照射面304Aとが近接されるので、スピンチャック3に保持されているウエハWは、赤外線ヒータ303の赤外線照射面304Aから熱輻射により加熱される。赤外線ヒータ303による加熱により、ウエハWの温度は、リン酸水溶液の液温よりもやや高温(約160℃であると予想される)まで昇温されて、この温度のまま維持される。この状態で、ウエハW表面との境界部分のリン酸水溶液に、ウエハWの表面に近づくほど高くなる温度勾配が形成される。その後、予めエッチング時間が経過すると、ヒータ昇降機構206が制御されて赤外線ヒータ303が近接位置から上方に大きく退避させられ、これにより、赤外線ヒータ303によるウエハWの加熱は停止される。 Since the surface of the wafer W and the infrared irradiation surface 304A are close to each other, the wafer W held by the spin chuck 3 is heated by thermal radiation from the infrared irradiation surface 304A of the infrared heater 303. Due to the heating by the infrared heater 303, the temperature of the wafer W is raised to a slightly higher temperature than the liquid temperature of the phosphoric acid aqueous solution (expected to be about 160 ° C.) and maintained at this temperature. In this state, a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached. Thereafter, when the etching time elapses in advance, the heater elevating mechanism 206 is controlled so that the infrared heater 303 is largely retracted upward from the proximity position, whereby the heating of the wafer W by the infrared heater 303 is stopped.
 なお、赤外線ヒータ303による赤外線照射時には、赤外線ヒータ303を、ウエハWの回転中心の上方とウエハWの周縁部の上方との間でスキャンさせるか、あるいは、赤外線ヒータ303を、ウエハWの回転中心を除く位置の上方に静止配置させる。ウエハWが回転軸線A1まわりに回転するので、赤外線ヒータ303からの赤外線の照射によりウエハWの略全域を加熱することができる。 When the infrared heater 303 irradiates infrared rays, the infrared heater 303 is scanned between the rotation center of the wafer W and the periphery of the wafer W, or the infrared heater 303 is moved to the rotation center of the wafer W. It is placed stationary above the position excluding. Since the wafer W rotates about the rotation axis A <b> 1, almost the entire area of the wafer W can be heated by irradiation with infrared rays from the infrared heater 303.
 第4実施形態によれば、貯留槽204のリン酸水溶液に浸漬されているウエハWを、その上方に近接配置された赤外線ヒータ303を用いて加熱する。そのため、貯留槽204にヒータを内蔵する等の複雑な構成を採用することなく、ウエハWを良好に加熱することができる。 According to the fourth embodiment, the wafer W immersed in the phosphoric acid aqueous solution in the storage tank 204 is heated using the infrared heater 303 disposed close to the wafer W. Therefore, the wafer W can be heated satisfactorily without adopting a complicated configuration such as incorporating a heater in the storage tank 204.
 また、大きな熱量を与えることが可能な赤外線ヒータ303を加熱手段として設けるので、加熱手段として簡便な構成を採用しつつ、ウエハWを加熱することができる。 Further, since the infrared heater 303 capable of giving a large amount of heat is provided as a heating means, the wafer W can be heated while adopting a simple configuration as the heating means.
 なお、第4実施形態において、赤外線ヒータ303の径を、ウエハWと同等の径に形成することもできる。この場合、赤外線ヒータ303の下面が、ウエハWの表面の全域に対向するように、赤外線ヒータ303が設けられている。 In the fourth embodiment, the diameter of the infrared heater 303 can be formed to the same diameter as the wafer W. In this case, the infrared heater 303 is provided so that the lower surface of the infrared heater 303 faces the entire surface of the wafer W.
 図11は、本発明の第5実施形態に係る基板処理装置401の構成を模式的に示す図である。図11において、第1実施形態に示された各部に対応する部分には、図1~図7の場合と同一の参照符号を付して示し、説明を省略する。 FIG. 11 is a diagram schematically showing a configuration of a substrate processing apparatus 401 according to the fifth embodiment of the present invention. In FIG. 11, parts corresponding to those shown in the first embodiment are denoted by the same reference numerals as those in FIGS. 1 to 7, and description thereof is omitted.
 基板処理装置401は、ウエハWを保持するための基板保持手段として、基板保持台402を備えている。基板保持台402は、第1実施形態のスピンチャック3に代えて用いられる。 The substrate processing apparatus 401 includes a substrate holding table 402 as substrate holding means for holding the wafer W. The substrate holder 402 is used in place of the spin chuck 3 of the first embodiment.
 基板保持台402は、リン酸水溶液を溜めるための貯留槽404(加熱手段)を備えている。貯留槽404は、たとえば略円筒の有底容器状をなし、セラミックや炭化ケイ素(SiC)を用いて形成されている。貯留槽404は、水平平坦な円形の底面409を有する底面部409Aと、底面409の周縁部から鉛直上方に立ち上がる外周壁408とを備えている。貯留槽404の底面409と外周壁408の内周面とによって、底面29の上方に液を溜めるための貯留溝405が区画されており、底面409の上方に液を溜めることができるようになっており、貯留溝405の溝深さ(貯留溝41に溜められる液の厚み)は、2mm~11mmの範囲内でたとえば約7mmに設定されている。貯留槽404の底面部409Aには、抵抗式のヒータ406が埋設されている。 The substrate holder 402 includes a storage tank 404 (heating means) for storing a phosphoric acid aqueous solution. The storage tank 404 has, for example, a substantially cylindrical bottomed container shape, and is formed using ceramic or silicon carbide (SiC). The storage tank 404 includes a bottom surface portion 409A having a horizontally flat circular bottom surface 409, and an outer peripheral wall 408 that rises vertically upward from the peripheral edge of the bottom surface 409. A storage groove 405 for storing liquid is defined above the bottom surface 29 by the bottom surface 409 of the storage tank 404 and the inner peripheral surface of the outer peripheral wall 408, so that the liquid can be stored above the bottom surface 409. The groove depth of the storage groove 405 (the thickness of the liquid stored in the storage groove 41) is set to, for example, about 7 mm within the range of 2 mm to 11 mm. A resistance heater 406 is embedded in the bottom surface portion 409 </ b> A of the storage tank 404.
 ヒータ406のオン状態では、ヒータ406への給電により当該ヒータ406が発熱し、貯留槽404全体が発熱状態になる。これにより、底面409全域が発熱する。底面409の全域において、ヒータ406のオン状態における底面409の単位面積当たりの発熱量は均一に設定されている。 In the ON state of the heater 406, the heater 406 generates heat by supplying power to the heater 406, and the entire storage tank 404 is heated. As a result, the entire bottom surface 409 generates heat. In the entire area of the bottom surface 409, the heat generation amount per unit area of the bottom surface 409 when the heater 406 is on is set to be uniform.
 基板処理装置401では、貯留槽404に関連して、貯留槽404に対してウエハWを昇降させる複数本(たとえば、3本)のリフトピン403が設けられている。複数本のリフトピン403は、貯留槽404の底面部409Aを上下に貫通して形成された貫通孔412に挿通されて、その貯留槽404の底面409に対して昇降可能に設けられている。また、各リフトピン403は共通の支持部材410に支持されている。支持部材410には、シリンダを含むリフトピン昇降機構411が結合されている。リフトピン昇降機構411は、複数本のリフトピン403の先端が基板保持台402の上方に突出する位置と、複数本のリフトピン403の先端が基板保持台402の下方に退避する位置との間で、複数本のリフトピン403を一体的に昇降させる。 In the substrate processing apparatus 401, a plurality of (for example, three) lift pins 403 that move the wafer W up and down relative to the storage tank 404 are provided in association with the storage tank 404. The plurality of lift pins 403 are inserted through a through hole 412 formed vertically through the bottom surface portion 409A of the storage tank 404, and are provided so as to be movable up and down with respect to the bottom surface 409 of the storage tank 404. Each lift pin 403 is supported by a common support member 410. A lift pin elevating mechanism 411 including a cylinder is coupled to the support member 410. The lift pin lifting mechanism 411 includes a plurality of lift pins 403 between a position where the tips of the plurality of lift pins 403 protrude above the substrate holding table 402 and a position where the tips of the plurality of lift pins 403 retract below the substrate holding table 402. The book lift pins 403 are moved up and down integrally.
 基板処理装置401で実行されるリン酸エッチング処理では、まず、リフトピン昇降機構411が制御されて、複数本のリフトピン403の先端が基板保持台402の上方に突出する。そして、未処理のウエハWが搬入され、このウエハWが複数本のリフトピン403の先端上に載置される。このとき、リフトピン昇降機構411が制御されて、複数本のリフトピン403が降下し、ウエハWが複数本のリフトピン403から基板保持台402に引き渡される。これにより、貯留槽404の底面409上に、ウエハWが、その表面を上方に向けた状態で載置される。この状態で、ウエハWの下面は、貯留槽404の底面409に接している。また、この状態で、各貫通孔412がウエハWによって塞がれる。 In the phosphoric acid etching process executed by the substrate processing apparatus 401, first, the lift pin lifting mechanism 411 is controlled so that the tips of the plurality of lift pins 403 protrude above the substrate holding table 402. Then, an unprocessed wafer W is loaded, and this wafer W is placed on the tips of a plurality of lift pins 403. At this time, the lift pin raising / lowering mechanism 411 is controlled, the plurality of lift pins 403 are lowered, and the wafer W is transferred from the plurality of lift pins 403 to the substrate holding table 402. As a result, the wafer W is placed on the bottom surface 409 of the storage tank 404 with the surface thereof facing upward. In this state, the lower surface of the wafer W is in contact with the bottom surface 409 of the storage tank 404. Further, in this state, each through hole 412 is closed by the wafer W.
 次いで、貯留槽404の貯留溝405にリン酸水溶液が溜められる。貫通孔412がウエハWによって塞がれているので、貯留溝405からリン酸水溶液は漏出しない。そして、貯留槽404のリン酸水溶液中にウエハWが浸漬される。このとき、貯留槽404のリン酸水溶液の液面がウエハWの表面よりも上方に位置し、その結果、リン酸水溶液によってウエハWの表面の全域が覆われる。リン酸水溶液へのウエハWの浸漬によって、ウエハWの表面にリン酸エッチング処理が施される(図3のステップS1に相当)。 Next, the phosphoric acid aqueous solution is stored in the storage groove 405 of the storage tank 404. Since the through hole 412 is blocked by the wafer W, the phosphoric acid aqueous solution does not leak from the storage groove 405. Then, the wafer W is immersed in the phosphoric acid aqueous solution in the storage tank 404. At this time, the liquid level of the phosphoric acid aqueous solution in the storage tank 404 is located above the surface of the wafer W, and as a result, the entire surface of the wafer W is covered with the phosphoric acid aqueous solution. By immersing the wafer W in the phosphoric acid aqueous solution, the surface of the wafer W is subjected to phosphoric acid etching (corresponding to step S1 in FIG. 3).
 したがって、基板保持台402に保持されているウエハWは、貯留槽404からの熱伝導により加熱される。貯留槽404による加熱により、ウエハWの温度は約200℃まで昇温され、維持される。この状態で、ウエハW表面との境界部分のリン酸水溶液に、ウエハWの表面に近づくほど高くなる温度勾配が形成される。 Therefore, the wafer W held on the substrate holding table 402 is heated by heat conduction from the storage tank 404. Due to heating by the storage tank 404, the temperature of the wafer W is raised to about 200 ° C. and maintained. In this state, a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached.
 第5実施形態によれば、貯留槽404の底面409の熱伝導によるウエハWへの加熱により、ウエハWが約200℃に昇温される。この状態で、ウエハW表面との境界部分のリン酸水溶液に、ウエハWの表面に近づくほど高くなる温度勾配が形成される。その結果、ウエハWの表面との境界部分におけるリン酸水溶液において、極めて高温で、かつリン酸濃度が低く維持された状態を実現することができる。この状態のリン酸水溶液が、ウエハWの表面のシリコン窒化膜に作用するから、シリコン窒化膜のエッチングレートを非常に高めることができ、同時にシリコン窒化膜の選択比を高く維持することができる。 According to the fifth embodiment, the temperature of the wafer W is raised to about 200 ° C. by heating the wafer W by heat conduction in the bottom surface 409 of the storage tank 404. In this state, a temperature gradient is formed in the phosphoric acid aqueous solution at the boundary with the surface of the wafer W, which becomes higher as the surface of the wafer W is approached. As a result, it is possible to realize a state in which the phosphoric acid aqueous solution at the boundary portion with the surface of the wafer W is maintained at a very high temperature and a low phosphoric acid concentration. Since the phosphoric acid aqueous solution in this state acts on the silicon nitride film on the surface of the wafer W, the etching rate of the silicon nitride film can be greatly increased, and at the same time, the selectivity of the silicon nitride film can be kept high.
 なお、第5実施形態において、図11に破線で示すように各リフトピン403に代えて、貫通孔412をシールするためのシール部420を有するリフトピン403Aを採用してもよい。シール部420は、リフトピン403Aの先端部(上端部)に設けられ、上方に向かう程拡径する円錐台状をなしている。この場合、貫通孔412の開口端部には、上方に向かう程拡径する円錐面からなるテーパ面421を有している。 In the fifth embodiment, a lift pin 403A having a seal portion 420 for sealing the through hole 412 may be employed instead of each lift pin 403 as indicated by a broken line in FIG. The seal portion 420 is provided at the tip (upper end) of the lift pin 403A and has a truncated cone shape whose diameter increases toward the upper side. In this case, the opening end of the through hole 412 has a tapered surface 421 formed of a conical surface whose diameter increases toward the upper side.
 リフトピン403AがウエハWの下方に退避する退避位置にある状態で、リフトピン403Aのシール部420は貫通孔412の開口端部に収容される。この状態で、シール部420の外周面がテーパ面421と接触し、シール部420が貫通孔412をシールする(塞ぐ)。リフトピン403Aのシール部420によって貫通孔412がシールされているので、貯留溝405からリン酸水溶液の漏出をより確実に防止することができる。 The seal part 420 of the lift pin 403A is accommodated in the opening end of the through hole 412 in a state where the lift pin 403A is in the retreat position where it is retracted below the wafer W. In this state, the outer peripheral surface of the seal portion 420 contacts the tapered surface 421, and the seal portion 420 seals (closes) the through hole 412. Since the through hole 412 is sealed by the seal portion 420 of the lift pin 403A, leakage of the phosphoric acid aqueous solution from the storage groove 405 can be prevented more reliably.
 以上、本発明の5つの実施形態について説明したが、本発明は他の形態で実施することもできる。 As mentioned above, although 5 embodiment of this invention was described, this invention can also be implemented with another form.
 たとえば、第2実施形態と第5実施形態とを組み合わせることができる。すなわち、第2実施形態において、バーノズル50(図1参照)に代えて、水の液滴をスプレー状に吐出(噴霧)するスプレーノズル102を採用してもよい。 For example, the second embodiment and the fifth embodiment can be combined. That is, in the second embodiment, instead of the bar nozzle 50 (see FIG. 1), a spray nozzle 102 that discharges (sprays) water droplets in a spray form may be employed.
 なお、第2実施形態において、図8では、スプレーノズル102を1つだけ設ける場合を示しているが、左右方向に関し異なる位置にある複数のスプレーノズルから、水をスプレー状に吐出することもできる。 In the second embodiment, FIG. 8 shows a case where only one spray nozzle 102 is provided, but water can also be discharged from a plurality of spray nozzles at different positions in the left-right direction. .
 また、第1、第2および第5実施形態において、バーノズル50またはスプレーノズル102を用いて、貯留槽4,404のリン酸水溶液に水を供給するものを例に挙げて説明したが、リンス用の水ノズル30を用いて貯留槽4,404内のリン酸水溶液に水(DIW)を供給するようにしてもよい。 Moreover, in 1st, 2nd and 5th embodiment, although using as an example what supplies water to the phosphoric acid aqueous solution of the storage tank 4404 using the bar nozzle 50 or the spray nozzle 102, it was for rinse. You may make it supply water (DIW) to the phosphoric acid aqueous solution in the storage tank 4404 using the water nozzle 30 of this.
 また、第1、第2および第5実施形態において、貯留槽4,404内のリン酸水溶液に供給する水としてDIWを例に挙げて説明したが、リン酸水溶液に供給する水として、炭酸水、電解イオン水、オゾン水、還元水(水素水)、磁気水などを採用してもよい。 In the first, second and fifth embodiments, DIW has been described as an example of water supplied to the phosphoric acid aqueous solution in the storage tank 4, 404, but carbonated water is used as the water supplied to the phosphoric acid aqueous solution. Electrolytic ion water, ozone water, reduced water (hydrogen water), magnetic water, etc. may be employed.
 また、第1、第2および第5実施形態において、貯留槽4,404にヒータの機能を持たせる場合について説明したが、貯留槽4,404とヒータとを分離した構成であってもよい。この場合、たとえば、貯留槽4,404の下方からヒータにより加熱する構成であってもよい。 In the first, second, and fifth embodiments, the case where the storage tanks 4, 404 are provided with the heater function has been described. However, the storage tanks 4, 404 and the heaters may be separated. In this case, for example, a configuration in which the heater is heated from below the storage tanks 4, 404 may be used.
 また、第3実施形態において、ヒータヘッド203をウエハWの径よりも十分に小径に形成し、オン状態のヒータヘッド203をウエハWの表面に対向配置しつつ、当該ヒータヘッド203をウエハWの表面に沿って移動させるようにしてもよい。 In the third embodiment, the heater head 203 is formed to have a diameter sufficiently smaller than the diameter of the wafer W, and the heater head 203 is placed on the surface of the wafer W while the heater head 203 in the on state is opposed to the surface of the wafer W. You may make it move along a surface.
 また、第4実施形態において、赤外線ヒータ303をウエハWの径よりも十分に小径に形成し、オン状態の赤外線ヒータ303をウエハWの表面に対向配置しつつ、当該赤外線ヒータ303をウエハWの表面に沿って移動させるようにしてもよい。 Further, in the fourth embodiment, the infrared heater 303 is formed to have a diameter sufficiently smaller than the diameter of the wafer W, and the infrared heater 303 is placed on the surface of the wafer W while the infrared heater 303 in the on state is opposed to the surface of the wafer W. You may make it move along a surface.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. Rather, the scope of the present invention is limited only by the accompanying claims.
 この出願は、2012年11月5日に日本国特許庁に提出された特願2012-243596号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2012-243596 filed with the Japan Patent Office on November 5, 2012, the entire disclosure of which is incorporated herein by reference.
  1;101;201;301;401 基板処理装置
  3 スピンチャック
  4 貯留槽
 13 挟持部材
 14 スピンモータ
 29 底面
 40 制御部
 50 バーノズル
102 スプレーノズル
203 抵抗式ヒータ
204 貯留槽
209 下面
303 赤外線ヒータ
304A 赤外線照射面
304 赤外線ランプ
402 基板保持台
404 貯留槽
409 底面
  W ウエハ
DESCRIPTION OF SYMBOLS 1; 101; 201; 301; 401 Substrate processing apparatus 3 Spin chuck 4 Storage tank 13 Holding member 14 Spin motor 29 Bottom surface 40 Control part 50 Bar nozzle 102 Spray nozzle 203 Resistance type heater 204 Storage tank 209 Lower surface 303 Infrared heater 304A Infrared irradiation surface 304 Infrared lamp 402 Substrate holder 404 Storage tank 409 Bottom surface W Wafer

Claims (9)

  1.  リン酸水溶液を貯留する貯留槽と、
     前記貯留槽内のリン酸水溶液に基板を浸漬させた状態で、当該基板を水平姿勢に保持する基板保持手段と、
     前記基板保持手段に保持されている基板と対向する発熱部を有し、当該基板を、前記発熱部からの熱輻射または熱伝達により加熱する加熱手段とを含む、基板処理装置。
    A storage tank for storing a phosphoric acid aqueous solution;
    A substrate holding means for holding the substrate in a horizontal position in a state where the substrate is immersed in the phosphoric acid aqueous solution in the storage tank;
    A substrate processing apparatus, comprising: a heating unit that opposes a substrate held by the substrate holding unit; and heating unit that heats the substrate by heat radiation or heat transfer from the heating unit.
  2.  前記貯留槽に貯留されているリン酸水溶液に水を供給する水供給手段と、
     前記水供給手段からの水の供給/供給停止を制御することにより、前記貯留槽に貯留されているリン酸水溶液の濃度を制御する濃度制御手段とを含む、請求項1記載の基板処理装置。
    Water supply means for supplying water to the phosphoric acid aqueous solution stored in the storage tank;
    The substrate processing apparatus according to claim 1, further comprising: concentration control means for controlling the concentration of the phosphoric acid aqueous solution stored in the storage tank by controlling supply / stop of water supply from the water supply means.
  3.  前記水供給手段は、水の液滴を吐出する多数の吐出口を有する多孔ノズルを含む、請求項1または2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the water supply means includes a porous nozzle having a plurality of discharge ports for discharging water droplets.
  4.  前記水供給手段は、前記貯留部にスプレー状の水を噴射するスプレーノズルを含む、請求項1または2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the water supply means includes a spray nozzle that injects spray-like water into the storage section.
  5.  前記加熱手段は、前記基板保持手段に保持されている基板を、下方側から加熱する、請求項1~4のいずれか一項に記載の基板処理装置。 5. The substrate processing apparatus according to claim 1, wherein the heating unit heats the substrate held by the substrate holding unit from below.
  6.  前記貯留槽は底面を有し、
     前記貯留槽の前記底面が前記発熱部を構成している、請求項5に記載の基板処理装置。
    The reservoir has a bottom surface;
    The substrate processing apparatus according to claim 5, wherein the bottom surface of the storage tank constitutes the heat generating portion.
  7.  前記加熱手段は、前記基板保持手段に保持されている基板を、上方側から加熱する、請求項1~4のいずれか一項に記載の基板処理装置。 5. The substrate processing apparatus according to claim 1, wherein the heating unit heats the substrate held by the substrate holding unit from above.
  8.  前記加熱手段は赤外線ランプを有し、
     前記赤外線ランプは、前記基板保持手段に保持されている基板の表面に対向配置されて、当該表面に向けて赤外線を照射する、請求項7に記載の基板処理装置。
    The heating means has an infrared lamp,
    The substrate processing apparatus according to claim 7, wherein the infrared lamp is disposed to face the surface of the substrate held by the substrate holding unit and irradiates infrared rays toward the surface.
  9.  前記基板保持手段は、前記貯留槽に対して非接触状態で、基板を支持する基板支持部を有し、
     前記基板支持部に支持された基板を回転させる基板回転手段をさらに含む、請求項1~8のいずれか一項に記載の基板処理装置。
     
    The substrate holding means has a substrate support portion that supports the substrate in a non-contact state with respect to the storage tank,
    The substrate processing apparatus according to any one of claims 1 to 8, further comprising a substrate rotating unit that rotates the substrate supported by the substrate support section.
PCT/JP2013/072438 2012-11-05 2013-08-22 Substrate processing device WO2014069079A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012243596A JP6061378B2 (en) 2012-11-05 2012-11-05 Substrate processing equipment
JP2012-243596 2012-11-05

Publications (1)

Publication Number Publication Date
WO2014069079A1 true WO2014069079A1 (en) 2014-05-08

Family

ID=50627001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072438 WO2014069079A1 (en) 2012-11-05 2013-08-22 Substrate processing device

Country Status (3)

Country Link
JP (1) JP6061378B2 (en)
TW (1) TWI539514B (en)
WO (1) WO2014069079A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011052A (en) * 2015-06-19 2017-01-12 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
EP3416687A4 (en) * 2016-02-17 2019-10-23 Seattle Genetics, Inc. Bcma antibodies and use of same to treat cancer and immunological disorders
US11784065B2 (en) * 2015-04-27 2023-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method for etching etch layer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681183B1 (en) 2014-07-11 2016-12-02 세메스 주식회사 Apparatus for treating a substrate
US10490426B2 (en) 2014-08-26 2019-11-26 Lam Research Ag Method and apparatus for processing wafer-shaped articles
JP6653608B2 (en) 2016-03-29 2020-02-26 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6850650B2 (en) * 2017-03-27 2021-03-31 株式会社Screenホールディングス Board processing method and board processing equipment
JP7291030B2 (en) * 2018-09-06 2023-06-14 株式会社荏原製作所 Substrate processing equipment
JP7130510B2 (en) * 2018-09-21 2022-09-05 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161674A (en) * 1993-12-08 1995-06-23 Mitsubishi Electric Corp Device and method for processing semiconductor wafer
JPH08236497A (en) * 1995-03-01 1996-09-13 Mitsubishi Electric Corp Method for cleaning and drying semiconductor wafer and apparatus therefor
JPH09162153A (en) * 1995-12-13 1997-06-20 Sony Corp Method for treating substrate surface with liquid and system for treating substrate with liquid
JP2000031113A (en) * 1998-06-23 2000-01-28 Samsung Electron Co Ltd Wet etching device for manufacturing semiconductor element and wet etching method for semiconductor element using the same
JP2005079212A (en) * 2003-08-29 2005-03-24 Trecenti Technologies Inc Semiconductor manufacturing equipment, and method for manufacturing semiconductor device
JP2008066400A (en) * 2006-09-05 2008-03-21 Dainippon Screen Mfg Co Ltd Apparatus and method for processing substrate
JP2008235333A (en) * 2007-03-16 2008-10-02 Toshiba Corp Semiconductor manufacturing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342828A (en) * 1989-07-11 1991-02-25 Mitsubishi Electric Corp Method and device for treating semiconductor wafer
JPH09199469A (en) * 1996-01-23 1997-07-31 Sony Corp Chemical processing method and device
JP3395616B2 (en) * 1997-11-20 2003-04-14 株式会社デンソー Method and apparatus for etching semiconductor wafer
JP2002280339A (en) * 2001-03-21 2002-09-27 Dainippon Screen Mfg Co Ltd Method of processing substrate, and apparatus thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161674A (en) * 1993-12-08 1995-06-23 Mitsubishi Electric Corp Device and method for processing semiconductor wafer
JPH08236497A (en) * 1995-03-01 1996-09-13 Mitsubishi Electric Corp Method for cleaning and drying semiconductor wafer and apparatus therefor
JPH09162153A (en) * 1995-12-13 1997-06-20 Sony Corp Method for treating substrate surface with liquid and system for treating substrate with liquid
JP2000031113A (en) * 1998-06-23 2000-01-28 Samsung Electron Co Ltd Wet etching device for manufacturing semiconductor element and wet etching method for semiconductor element using the same
JP2005079212A (en) * 2003-08-29 2005-03-24 Trecenti Technologies Inc Semiconductor manufacturing equipment, and method for manufacturing semiconductor device
JP2008066400A (en) * 2006-09-05 2008-03-21 Dainippon Screen Mfg Co Ltd Apparatus and method for processing substrate
JP2008235333A (en) * 2007-03-16 2008-10-02 Toshiba Corp Semiconductor manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784065B2 (en) * 2015-04-27 2023-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method for etching etch layer
JP2017011052A (en) * 2015-06-19 2017-01-12 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
EP3416687A4 (en) * 2016-02-17 2019-10-23 Seattle Genetics, Inc. Bcma antibodies and use of same to treat cancer and immunological disorders
US11078291B2 (en) 2016-02-17 2021-08-03 Seagen Inc. BCMA antibodies and use of same to treat cancer and immunological disorders
US11767365B2 (en) 2016-02-17 2023-09-26 Seagen Inc. BCMA antibodies and use of same to treat cancer and immunological disorders

Also Published As

Publication number Publication date
JP2014093449A (en) 2014-05-19
TW201419396A (en) 2014-05-16
TWI539514B (en) 2016-06-21
JP6061378B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6061378B2 (en) Substrate processing equipment
JP5894897B2 (en) Substrate processing method and substrate processing apparatus
CN107403742B (en) Substrate processing apparatus and substrate processing method
CN108198748B (en) Substrate processing apparatus
US9786522B2 (en) Substrate treatment method and substrate treatment apparatus
JP5975563B2 (en) Substrate processing apparatus and substrate processing method
TWI670121B (en) Substrate processing apparatus and substrate processing method
WO2013140955A1 (en) Substrate processing apparatus and heater cleaning method
JP2018056200A (en) Substrate processing method and substrate processing device
JP2009212301A (en) Substrate processing method and apparatus
CN107924832B (en) Substrate processing method and substrate processing apparatus
JP2017168699A (en) Substrate processing apparatus and substrate processing method
CN110098137B (en) Substrate processing method and substrate processing apparatus
JP6593591B2 (en) Substrate processing method
JP6028892B2 (en) Substrate processing equipment
JP6233564B2 (en) Substrate processing apparatus and substrate processing method
JP2014038979A (en) Substrate processing apparatus and substrate processing method
JP5801228B2 (en) Substrate processing equipment
JP5999625B2 (en) Substrate processing method
JP2013197114A (en) Substrate processing apparatus
US20190096705A1 (en) Substrate treatment method and substrate treatment apparatus
KR101757821B1 (en) Apparatus and Metod for treating substrate
JP6191954B2 (en) Substrate processing method and substrate processing apparatus
JP2013182958A (en) Substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850239

Country of ref document: EP

Kind code of ref document: A1