WO2014068740A1 - Cell unit - Google Patents

Cell unit Download PDF

Info

Publication number
WO2014068740A1
WO2014068740A1 PCT/JP2012/078277 JP2012078277W WO2014068740A1 WO 2014068740 A1 WO2014068740 A1 WO 2014068740A1 JP 2012078277 W JP2012078277 W JP 2012078277W WO 2014068740 A1 WO2014068740 A1 WO 2014068740A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
negative electrode
positive electrode
battery
unit
Prior art date
Application number
PCT/JP2012/078277
Other languages
French (fr)
Japanese (ja)
Inventor
尚貴 木村
心 ▲高▼橋
玲緒 小林
栄二 關
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2012/078277 priority Critical patent/WO2014068740A1/en
Publication of WO2014068740A1 publication Critical patent/WO2014068740A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the bus bar is a metal, which causes an increase in weight and cost.
  • the present invention provides battery units that can be connected in series or in parallel without using a bus bar and without using joining or welding with fasteners such as bolts.
  • a battery unit in which a plurality of unit cells including a battery can accommodating a positive electrode, a negative electrode, and a separator, and a positive electrode terminal and a negative electrode terminal protruding from the battery case are stacked and electrically connected to each other
  • the positive electrode terminal and the negative electrode terminal of the unit cells arranged are in contact with each other by a plane perpendicular to the stacking direction of the unit cells, forming a terminal contact portion, and the plurality of unit cells
  • the present invention can provide a low cost and lightweight battery unit. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
  • FIG. 1 shows a perspective view of the appearance of the unit cell 25. As shown in FIG. 1
  • the unit cell 25 includes a battery can 6 and a battery lid 12.
  • the winding group 3 is housed in the battery can 6, and the upper opening of the battery can is sealed by the battery lid 12.
  • the battery lid 12 is welded to the battery can 6 by laser welding, and the battery can 6 and the battery lid 12 constitute a battery case.
  • the battery cover 6 is provided with a positive electrode terminal 19 and a negative electrode terminal 20. The winding group 3 is charged via the positive electrode terminal 19 and the negative electrode terminal 20, and power is supplied to the external load.
  • a pressure release valve 17 is integrally provided on the battery lid 12, and when the pressure in the battery container rises, the pressure release valve 17 is opened to discharge gas from the inside, and the pressure in the battery container is reduced. Thereby, the safety of the unit cell 25 is secured.
  • the positive electrode terminal 19 and the negative electrode terminal 20 have terminal structures directed in different directions in the thickness direction of the battery.
  • FIG. 2 is an exploded perspective view of a prismatic secondary battery according to the present embodiment.
  • the cells 25 are respectively connected to the positive and negative electrode current collectors 9 and 10 connected to the winding group 8 and penetrate the battery cover 12 in a state of being electrically insulated by the gasket 11 and the insulating ring 13
  • Other electrolytes include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, methyl acetate, ethyl acetate, methyl propionate, tetrahydrofuran, 2 -Methyltetrahydrofuran, 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 3-methyltetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, 2
  • Non-aqueous solvents selected from at least one or more selected from, for example, LiPF 6 , LiBF 4
  • FIG. 3 is an exploded perspective view of the winding group 8.
  • the strip-shaped positive electrode 3 and the strip-shaped negative electrode 5 are wound via the strip-shaped two separators 4.
  • the positive electrode uncoated portion 2 and the negative electrode uncoated portion 1 are wound in an oval shape in cross section so as to be positioned on both end surfaces of the wound group.
  • the uncoated parts 1 and 2 are arranged on the opposite side to each other.
  • the positive electrode 3 constituting the winding group 8 has an aluminum foil as a positive electrode current collector foil. On both sides of the aluminum foil, Li Ni 1/3 Co 1/3 Mn 1/3 O 2 of lithium-containing transition metal double oxide was used as a positive electrode active material. Besides, various lithium transition metal complex oxides can be used for the positive electrode active material of the lithium ion secondary battery. For example, it is possible to replace part of Ni, Co, Mn, and the like of the positive electrode active material such as lithium nickelate, lithium cobaltate, and lithium manganate with one or more transition metals.
  • a conductive material of a carbon material and a binder (binder) of polyvinylidene fluoride hereinafter abbreviated as PVDF
  • the negative electrode active material mixture other than the negative electrode active material, acetylene black or graphite was used as a conductive material, and a PVDF binder was further used.
  • the viscosity is adjusted with a dispersion solvent such as NMP.
  • the width (length in the direction of WH) of the coated portion of the negative electrode active material mixture is such that the coated portion of the positive electrode active material mixture protrudes from the coated portion of the negative electrode active material mixture in the longitudinal direction of the wound group In order to prevent this, the width is set to be longer than the width of the coated portion of the positive electrode active material mixture.
  • FIG. 4 is an external appearance perspective view of the battery unit.
  • a battery unit can be configured by stacking a plurality of unit cells 25 each having a rectangular case.
  • the shape of the terminal for stacking the unit cells 25 is not particularly limited, but a shape such as a crank type (chair type) or an L shape can be used.
  • a crank-type terminal having a larger number of bends as shown in FIGS. 1 and 4 rather than simply making it L-shaped, it is possible to withstand a change in size or a positional deviation due to a stress in the stacking direction.
  • the shape of the terminal is a crank type.
  • the L-shaped shape has the advantage of being easy to manufacture.
  • the terminals connected in series are in contact with each other perpendicularly to the stacking direction of the unit cells 25 and in parallel to the stacking surface.
  • the contact surface of the terminal contact portion 28 formed by the contact between the positive electrode terminal 19 and the negative electrode terminal 20 is preferably a surface parallel to the lamination surface of the unit cell. This is because when the terminals connected in series have a plane perpendicular to the stacking direction of the unit cells and parallel to the stacking surface of the unit cells, the stress in the stacking direction caused by the stacking of the unit cells 25 This is because the terminal 19 and the negative electrode terminal 20 can be crimped together, which is structurally efficient in manufacturing. Moreover, it is because fixation of the insulating block 21 mentioned later becomes easy, and productivity improves.
  • FIG. 5 is an external appearance perspective view of the battery unit having the insulating block 21.
  • a terminal contact portion 28 in which the positive electrode terminal 19 and the negative electrode terminal 20 are combined is formed between the cells 25.
  • the contact between the positive electrode terminal 19 and the negative electrode terminal 20 is assisted.
  • the positive electrode terminal 19 and the negative electrode terminal 20 can be pressure-bonded by the external stress 24 in the thickness direction of the unit cell 25, and the contact between the positive electrode terminal 19 and the negative electrode terminal 20 can be made reliable.
  • the external stress 24 can be generated, for example, by putting the battery unit of FIG. 5 in a case and tightening it from the outside, or by providing a fastener and tightening.
  • the external stress 24 is preferably within a range that can be handled by securing the battery unit, and is preferably 1 kPa or more and 10 MPa or less. In particular, 0.1 MPa or more and 2 MPa or less is the most preferable.
  • bonded is the terminals mutually connected at least in series or parallelly, single cells may also be crimped
  • metal blocks 22 and 23 can be provided on the positive electrode terminal 19 and the negative electrode terminal 20 of the outermost cell 25 respectively.
  • the insulating block 21, the metal blocks 22 and 23, and the positive and negative electrode terminals 19 and 20 can be integrated and connected in series by the external stress 24.
  • the insulating block 21 is not particularly limited as long as it is an insulator, but a material excellent in heat dissipation, for example, a resin such as insulating epoxy or silicone, a metal oxide such as alumina or magnesium oxide, or these oxides or insulators It is preferable to use an insulating metal such as a metal coated with a conductive resin or the like, a Peltier element, or the like.
  • a material excellent in heat dissipation for the insulating block 21 the heat generated inside the unit cell 25 and transferred to the terminal portion can be efficiently dissipated from the insulating block 21.
  • a refrigerant can be disposed to further circulate the refrigerant.
  • a space is formed by the insulating block near the pressure release valve 17 of the battery unit.
  • the insulating block can be used as a gas discharge path.
  • a voltage detection mechanism may be provided in the insulating block, and a voltage monitor of single cells connected in series may be installed.
  • Negative electrode uncoated portion 2 Positive electrode uncoated portion 3: Positive electrode 4: Separator 5: Negative electrode 6: Battery can 7: Insulating sheet 8: Winding group 9: Positive electrode current collector plate 10: Negative electrode current collector plate 11: Gasket 12: Battery cover 13: Insulating ring 14: Positive electrode rivet 15: Negative electrode rivet 16: Liquid injection plug 17: Pressure release valve 18: Liquid injection port 19: Positive electrode terminal 20: Negative electrode terminal 21: Insulating block 22: Outermost single cell Positive electrode side metal block 23: outermost single cell negative electrode side metal block 24: external stress 25: single cell 26: battery unit A in which four single cells are connected in series 27: Battery unit B in which four single cells are connected in series 28: Terminal contact portion

Abstract

The present invention provides a cell unit that can be connected in series or parallel without using a bus bar and without welding or bonding using a fixing tool such as a bolt. The characteristic of the present invention is, e.g., as follows. A cell unit in which a plurality of single cells provided with a cell can housing a positive electrode, a negative electrode, and a separator, and a positive electrode terminal and a negative electrode terminal protruding from the cell can, are stacked and electrically connected to each other; the positive electrode terminal and the negative electrode terminal of single cells that are arranged adjacent to each other being in contact with each other at a surface perpendicular to the direction in which the single cells are stacked, forming a terminal contact part; an insulation block being provided between a plurality of terminal connection parts formed by stacking a plurality of the single cells; and the insulation block being in contact with the terminal connection parts. The present invention can thereby provide an inexpensive and lightweight cell unit.

Description

電池ユニットBattery unit
 近年、地球温暖化や枯渇燃料の問題から電気自動車(EV)や駆動の一部を電気モーターで補助するハイブリッド電気自動車(HEV)が各自動車メーカーで開発されている。その電源として高性能な二次電池が求められているが、市場での普及には高い安全性が必要不可欠である。また、家庭用蓄電としても大型二次電池が注目されており、高電圧化に合わせ、多数の電池(単電池)を組み合わせた電池ユニットの開発も進められている。 In recent years, each automobile manufacturer has developed an electric vehicle (EV) and a hybrid electric vehicle (HEV) in which a part of the drive is assisted by an electric motor due to the problem of global warming and depleted fuel. High performance secondary batteries are required as their power source, but high safety is essential for their widespread use in the market. In addition, large-sized secondary batteries are also attracting attention as household storage batteries, and development of a battery unit in which a large number of batteries (unit cells) are combined is also being pursued in line with the increase in voltage.
 一般に電池ユニットは高電圧にするために直列接続される。その際、単電池の正極端子(または負極端子)と別の単電池の負極端子(または正極端子)をバスバと呼ばれる金属(アルミニウム、銅、ニッケル、合金系など)で接続し、コンパクトに並べられるのが、一般的である(特許文献1)。 In general, battery units are connected in series to achieve high voltage. At that time, the positive electrode terminal (or negative electrode terminal) of the unit cell and the negative electrode terminal (or positive electrode terminal) of another unit cell are connected by a metal (aluminium, copper, nickel, alloy system, etc.) Is common (Patent Document 1).
特開2009-87720JP, 2009-87720, 特開2008-186725Patent Document 1: Japanese Patent Application Publication No. 2008-186725
 特許文献1では、バスバは金属であるため、重量増加やコスト増加を引き起こす。 In Patent Document 1, the bus bar is a metal, which causes an increase in weight and cost.
 そこで、特許文献2では、端子自身の形状を変更することで、バスバを用いずに、単セル同士をボルト締めで接合する発明が報告されている。しかしながら、HEVやEVなど大型化に伴い、単セルの数も多く、単セル同士をボルト締めする時間や労力は大きい。 Then, in patent document 2, the invention which bonds single cells together by bolting without using a bus bar is reported by changing the shape of a terminal itself. However, with the increase in size of HEVs and EVs, the number of single cells is large, and the time and labor for bolting single cells to each other is large.
 本発明はバスバを用いず、かつボルトなどの固定具による接合または溶接をせずに、直列または並列接続できる電池ユニットを提供する。 The present invention provides battery units that can be connected in series or in parallel without using a bus bar and without using joining or welding with fasteners such as bolts.
 本発明の特徴は、例えば、以下の通りである。 The features of the present invention are, for example, as follows.
 正極と負極とセパレータとを収容する電池缶と、前記電池缶から突出した正極端子及び負極端子と、を備えた単電池を複数積層し、互いに電気的に接続された電池ユニットであって、隣接配置される前記単電池同士の前記正極端子と前記負極端子とは、前記単電池の積層方向に対して垂直な面によりに接触し、端子接触部を形成しており、複数の前記単電池の積層により形成される複数の前記端子接続部の間には絶縁ブロックが設けられ、前記絶縁ブロックは前記端子接続部と接している電池ユニット。 A battery unit in which a plurality of unit cells including a battery can accommodating a positive electrode, a negative electrode, and a separator, and a positive electrode terminal and a negative electrode terminal protruding from the battery case are stacked and electrically connected to each other The positive electrode terminal and the negative electrode terminal of the unit cells arranged are in contact with each other by a plane perpendicular to the stacking direction of the unit cells, forming a terminal contact portion, and the plurality of unit cells A battery unit in which an insulating block is provided between the plurality of terminal connection portions formed by stacking, and the insulating block is in contact with the terminal connection portion.
 本発明により、低コストかつ軽量な電池ユニットを提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 The present invention can provide a low cost and lightweight battery unit. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
単電池の外観斜視図External perspective view of single cell 電池の分解斜視図Battery disassembled perspective view 捲回群の斜視図Perspective view of winding group 直列接続された電池ユニットBattery unit connected in series 絶縁ブロックを有する電池ユニットの配列外観斜視図Array appearance perspective view of a battery unit having an insulating block 絶縁ブロックの列を両側で利用した電池ユニット例Battery unit example using rows of insulating blocks on both sides 直列接続電池ユニットを並列接続した例Example of parallel connection of battery units connected in series
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。例えば、電池として、角形リチウムイオン二次電池を例にとって説明するが、キャパシタやニッケル水素二次電池などの他電池やラミネートセルなどの他形状でも適応でき、以下に限定されるものではない。また、電池ユニットは直列接続を主に例にとり説明しているが、並列であってもかまわない。 Hereinafter, embodiments of the present invention will be described using the drawings and the like. The following description shows specific examples of the content of the present invention, and the present invention is not limited to these descriptions, and various modifications by those skilled in the art can be made within the scope of the technical idea disclosed herein. Changes and modifications are possible. For example, although a prismatic lithium ion secondary battery is described as an example of a battery, other shapes such as a capacitor and a nickel hydrogen secondary battery, and other shapes such as a laminate cell can be applied, and the present invention is not limited thereto. Further, although the battery units are mainly described by taking serial connection as an example, they may be parallel.
 図1に単電池25外観の斜視図を示す。 FIG. 1 shows a perspective view of the appearance of the unit cell 25. As shown in FIG.
 単電池25は、電池缶6および電池蓋12を備える。電池缶6内には、捲回群3が収納され、電池缶の上部開口が電池蓋12によって封止されている。電池蓋12は、電池缶6にレーザ溶接により溶接されて、これら電池缶6と電池蓋12によって電池容器が構成される。電池蓋6には、正極端子19と、負極端子20が設けられている。正極端子19と負極端子20を介して捲回群3に充電され、また外部負荷に電力が供給される。 The unit cell 25 includes a battery can 6 and a battery lid 12. The winding group 3 is housed in the battery can 6, and the upper opening of the battery can is sealed by the battery lid 12. The battery lid 12 is welded to the battery can 6 by laser welding, and the battery can 6 and the battery lid 12 constitute a battery case. The battery cover 6 is provided with a positive electrode terminal 19 and a negative electrode terminal 20. The winding group 3 is charged via the positive electrode terminal 19 and the negative electrode terminal 20, and power is supplied to the external load.
 電池蓋12には、圧力解放弁17が一体的に設けられ、電池容器内の圧力が上昇すると、圧力解放弁17が開いて内部からガスが排出され、電池容器内の圧力が低減される。これによって、単電池25の安全性が確保される。 A pressure release valve 17 is integrally provided on the battery lid 12, and when the pressure in the battery container rises, the pressure release valve 17 is opened to discharge gas from the inside, and the pressure in the battery container is reduced. Thereby, the safety of the unit cell 25 is secured.
 単電池25の外観からは、正極端子19と負極端子20が見とめられる。 From the appearance of the unit cell 25, the positive electrode terminal 19 and the negative electrode terminal 20 can be seen.
 正極端子19と負極端子20は電池の厚み方向に互いに異なる方向に向かう端子構造である。本発明において直列接続する場合、この端子方向を正負極逆にした別の単電池を用い、2種類の単電池を交互に配列させ、電池ユニットを構成させることができる。 The positive electrode terminal 19 and the negative electrode terminal 20 have terminal structures directed in different directions in the thickness direction of the battery. In the case of connecting in series in the present invention, it is possible to configure a battery unit by alternately arranging two types of single cells using another single cell whose terminal direction is reversed in positive and negative directions.
 電池の内部構成についてさらに詳細に説明する。図2は、本実施形態に係わる角形二次電池の分解斜視図である。 The internal configuration of the battery will be described in more detail. FIG. 2 is an exploded perspective view of a prismatic secondary battery according to the present embodiment.
 単電池25は、捲回群8に接続される正負極集電板9、10にそれぞれ接続され、電池蓋12をガスケット11及び絶縁リング13により電気的に絶縁した状態で貫通し、電池内外を電気的に接続する正極端子14、負極端子15と、電池缶6の内側を電気的に絶縁する絶縁シート7と電池缶6及び、電池内へ電解液を注入した後に注入口を封止する注液栓16で構成することができる。この単電池25に、電解液を電池容器内に注液口18より注入した後、注液栓により、注液口を密閉する。 The cells 25 are respectively connected to the positive and negative electrode current collectors 9 and 10 connected to the winding group 8 and penetrate the battery cover 12 in a state of being electrically insulated by the gasket 11 and the insulating ring 13 The positive electrode terminal 14 and the negative electrode terminal 15, which are electrically connected, the insulating sheet 7 and the battery can 6, which electrically insulate the inside of the battery can 6, and the injection port sealed after the electrolyte is injected into the battery It can be configured by the liquid stopper 16. After the electrolytic solution is injected into the battery container 25 from the liquid injection port 18 into the unit cell 25, the liquid injection port is sealed by the liquid injection valve.
 電解液には1M LiPF6の電解質を用い、EC:EMC=1:3vol%の溶媒に溶かしたものを用いた。他、電解液には、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン、γ-バレロラクトン、メチルアセテート、エチルアセテート、メチルプロピオネート、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,2-ジメトキシエタン、1-エトキシ-2-メトキシエタン、3-メチルテトラヒドロフラン、1,2-ジオキサン、1,3-ジオキサン、1,4-ジオキサン、1,3-ジオキソラン、2-メチル-1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等より少なくとも1種以上選ばれた非水溶媒に、例えば、LiPF6、LiBF4、LiClO4、LiN(C25SO22等より少なくとも1種以上選ばれたリチウム塩を溶解させた有機電解液あるいはリチウムイオンの伝導性を有する固体電解質あるいはゲル状電解質あるいは溶融塩など電池で使用される既知の電解質を用いることができる。圧力開放弁17は電池の外郭を形成する電池缶6もしくは、電池蓋12に一体成形もしくは別体で配置される。 The electrolyte used was an electrolyte of 1 M LiPF 6 dissolved in a solvent of EC: EMC = 1: 3 vol%. Other electrolytes include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, γ-butyrolactone, γ-valerolactone, methyl acetate, ethyl acetate, methyl propionate, tetrahydrofuran, 2 -Methyltetrahydrofuran, 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 3-methyltetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, 2 Non-aqueous solvents selected from at least one or more selected from, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (C 2 F 5 SO 2) 2) than 2 or the like Without even it may be a known electrolyte used in the battery, such as one or more selected solid electrolyte or gel electrolyte or a molten salt having a conductivity of the lithium salt and the organic electrolyte or a lithium ion dissolved. The pressure release valve 17 is formed integrally with or separately from the battery can 6 or the battery lid 12 which forms the outer shell of the battery.
 図3は、捲回群8の分解斜視図である。捲回群8では、帯状の正極3と、帯状の負極5とが、帯状の2枚のセパレータ4を介して捲回されている。正極未塗工部2と、負極未塗工部1とは、捲回群の両端面にそれぞれ位置するように、断面長円状に捲回されている。 FIG. 3 is an exploded perspective view of the winding group 8. In the winding group 8, the strip-shaped positive electrode 3 and the strip-shaped negative electrode 5 are wound via the strip-shaped two separators 4. The positive electrode uncoated portion 2 and the negative electrode uncoated portion 1 are wound in an oval shape in cross section so as to be positioned on both end surfaces of the wound group.
 得られる捲回群8では、未塗工部1、2が互いに反対側に配置されている。 In the wound group 8 obtained, the uncoated parts 1 and 2 are arranged on the opposite side to each other.
 捲回群8を構成する正極3は、正極集電箔としてアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質としてリチウム含有遷移金属複酸化物のLi Ni1/3 Co1/3 Mn1/3 O2を用いた。他、リチウムイオン二次電池の正極活物質には種々リチウム遷移金属複合酸化物を用いることができる。例えば、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウムなどの正極活物質のNi、Co、Mnなどの一部を1種あるいはそれ以上の遷移金属で置換して用いることができる。 The positive electrode 3 constituting the winding group 8 has an aluminum foil as a positive electrode current collector foil. On both sides of the aluminum foil, Li Ni 1/3 Co 1/3 Mn 1/3 O 2 of lithium-containing transition metal double oxide was used as a positive electrode active material. Besides, various lithium transition metal complex oxides can be used for the positive electrode active material of the lithium ion secondary battery. For example, it is possible to replace part of Ni, Co, Mn, and the like of the positive electrode active material such as lithium nickelate, lithium cobaltate, and lithium manganate with one or more transition metals.
 正極活物質合剤には、正極活物質以外に、炭素材料の導電材およびポリフッ化ビニリデン(以下、PVDFと略記する。)のバインダ(結着材)を用いた。 As the positive electrode active material mixture, in addition to the positive electrode active material, a conductive material of a carbon material and a binder (binder) of polyvinylidene fluoride (hereinafter abbreviated as PVDF) were used.
 アルミニウム箔への正極活物質合剤の塗工時には、N-メチルピロリドン(以下、NMPと略記する。)等の分散溶媒で粘度調整される。 At the time of coating of the positive electrode active material mixture on an aluminum foil, the viscosity is adjusted with a dispersion solvent such as N-methylpyrrolidone (hereinafter abbreviated as NMP).
 このとき、アルミニウム箔の長寸方向一側の側縁に正極活物質合剤の塗工されない未塗工部2が形成される。すなわち、正極未塗工部2では、アルミニウム箔が露出している。正極3は、乾燥後ロールプレスで密度が調整されている。一方、負極5は、負極集電箔として銅箔を有している。銅箔の両面には、負極活物質として非晶質炭素を用いた。他、負極活物質には天然黒鉛、人造黒鉛などの炭素材料などリチウムイオンを可逆に吸蔵、放出可能な材料を用いることができる。 At this time, the uncoated part 2 to which the positive electrode active material mixture is not applied is formed on the side edge on one side in the long side of the aluminum foil. That is, the aluminum foil is exposed in the positive electrode uncoated portion 2. The density of the positive electrode 3 is adjusted by a roll press after drying. On the other hand, the negative electrode 5 has copper foil as a negative electrode current collector foil. Amorphous carbon was used as the negative electrode active material on both sides of the copper foil. In addition, as the negative electrode active material, materials capable of reversibly absorbing and releasing lithium ions, such as carbon materials such as natural graphite and artificial graphite, can be used.
 負極活物質合剤には、負極活物質以外に、アセチレンブラックや黒鉛を導電材として用い、さらにPVDFのバインダを用いた。銅箔への負極活物質合剤の塗工時には、NMP等の分散溶媒で粘度調整される。 As the negative electrode active material mixture, other than the negative electrode active material, acetylene black or graphite was used as a conductive material, and a PVDF binder was further used. At the time of coating of the negative electrode active material mixture on copper foil, the viscosity is adjusted with a dispersion solvent such as NMP.
 このとき、銅箔の長寸方向一側の側縁に負極活物質合剤の塗工されない未塗工部1が形成される。すなわち、負極未塗工部1では、銅箔が露出している。負極5は、乾燥後ロールプレスで密度が調整されている。なお、負極5の長さは、正極3および負極5を捲回したときに、捲回最内周および最外周で捲回方向に正極3が負極5からはみ出すことがないよう、正極3の長さより長く設定されている。 At this time, the uncoated part 1 to which the negative electrode active material mixture is not applied is formed on the side edge on one side in the length direction of the copper foil. That is, in the negative electrode uncoated portion 1, the copper foil is exposed. The density of the negative electrode 5 is adjusted by a roll press after drying. The length of the negative electrode 5 is set so that the positive electrode 3 does not protrude from the negative electrode 5 in the winding innermost and outermost peripheries when the positive electrode 3 and the negative electrode 5 are wound. Is set to be longer than
 また、負極活物質合剤の塗工部の幅(WH方向の長さ)は、捲回群の長手方向において正極活物質合剤の塗工部が負極活物質合剤の塗工部からはみ出すことがないように、正極活物質合剤の塗工部の幅より長く設定されている。 Further, the width (length in the direction of WH) of the coated portion of the negative electrode active material mixture is such that the coated portion of the positive electrode active material mixture protrudes from the coated portion of the negative electrode active material mixture in the longitudinal direction of the wound group In order to prevent this, the width is set to be longer than the width of the coated portion of the positive electrode active material mixture.
 図4は、電池ユニットの配列外観斜視図である。角型の筺体を有する単電池25を複数積層させ電池ユニットを構成することができる。 FIG. 4 is an external appearance perspective view of the battery unit. A battery unit can be configured by stacking a plurality of unit cells 25 each having a rectangular case.
 単電池25を積層させるための端子の形状は、特に問わないが、クランク型(いす型)、L字型
等の形状を用いることができる。単にL字型とするよりも、図1、図4のようなより曲げ回数の多いクランク型の端子を用いることで、積層方向の応力によるサイズの変化や位置のずれに耐えることができる。特に、後述する絶縁ブロック21を端子接続部28間に設けた場合、絶縁ブロック21により端子接続部28の位置が強制的に固定されるため、絶縁ブロック21と単電池25の位置ずれに耐えるために端子の形状をクランク型とすることが好ましい。これに対して、L字型の形状は、製造が簡単であるというメリットがある。
The shape of the terminal for stacking the unit cells 25 is not particularly limited, but a shape such as a crank type (chair type) or an L shape can be used. By using a crank-type terminal having a larger number of bends as shown in FIGS. 1 and 4 rather than simply making it L-shaped, it is possible to withstand a change in size or a positional deviation due to a stress in the stacking direction. In particular, when the insulating block 21 described later is provided between the terminal connection portions 28, the position of the terminal connection portion 28 is forcibly fixed by the insulating block 21. Preferably, the shape of the terminal is a crank type. On the other hand, the L-shaped shape has the advantage of being easy to manufacture.
 一の単電池25において、正極端子19及び負極端子20の接触面は、単電池25の積層方向に対してそれぞれ逆方向を向くようにする。さらに、複数の単電池25を直列接続させるためには、図4のように端子方向を逆にした二種類の単電池25を用意し、積層させることが好ましい。端子方向を逆にした二種類の単電池25を交互に配列させ、互いに向かい合った単電池25同士の正極端子19と負極端子20とを合わせ、電池ユニットを構成する。 In the single cell 25, the contact surfaces of the positive electrode terminal 19 and the negative electrode terminal 20 are directed in the opposite direction to the stacking direction of the single cell 25. Furthermore, in order to connect a plurality of unit cells 25 in series, it is preferable to prepare and stack two types of unit cells 25 whose terminal directions are reversed as shown in FIG. 4. Two types of single cells 25 whose terminal directions are reversed are alternately arranged, and the positive electrode terminal 19 and the negative electrode terminal 20 of the single cells 25 facing each other are combined to constitute a battery unit.
 また、直列接続される端子同士は、いずれも単電池25の積層方向に対して垂直、積層面に対して平行に接触させる。正極端子19と負極端子20との接触により形成される端子接触部28の接触面は、単電池の積層面に対して平行した面であることが好ましい。これは、直列接続される端子同士が、単電池の積層方向に垂直で、単電池の積層面に平行した面を有している場合、単電池25の積層により生じる積層方向の応力により、正極端子19と負極端子20とを圧着させることができ、製造上、構造上効率的であるからである。また、後述する絶縁ブロック21の固定が容易となり、生産性が向上するためである。 Further, the terminals connected in series are in contact with each other perpendicularly to the stacking direction of the unit cells 25 and in parallel to the stacking surface. The contact surface of the terminal contact portion 28 formed by the contact between the positive electrode terminal 19 and the negative electrode terminal 20 is preferably a surface parallel to the lamination surface of the unit cell. This is because when the terminals connected in series have a plane perpendicular to the stacking direction of the unit cells and parallel to the stacking surface of the unit cells, the stress in the stacking direction caused by the stacking of the unit cells 25 This is because the terminal 19 and the negative electrode terminal 20 can be crimped together, which is structurally efficient in manufacturing. Moreover, it is because fixation of the insulating block 21 mentioned later becomes easy, and productivity improves.
 図5は、絶縁ブロック21を有する電池ユニットの配列外観斜視図である。 FIG. 5 is an external appearance perspective view of the battery unit having the insulating block 21. FIG.
 単電池25を図4のように配列することで、単電池25間には、正極端子19と負極端子20とを合わせた端子接触部28が形成される。端子接触部28間に絶縁ブロック21を設けることで、正極端子19と負極端子20との接触を補助した構造となる。さらに、単電池25の厚さ方向の外部応力24により、正極端子19と負極端子20とを圧着させ、正極端子19と負極端子20との接触を確実なものとすることができる。外部応力24は、例えば図5の電池ユニットをケースに入れ外側から締めつけたり、または、留め具を設け締めつけること等によりで発生させることができる。外部応力24は電池ユニット単位で固縛により対応できる範囲が好ましく、1kPa以上10MPa以内が好ましい。特に0.1MPa以上2MPa以内が最も好ましい。また、圧着させる部位は、少なくとも直列接続または並列接続される端子同士であるが、単電池同士も圧着されていてもかまわない。 By arranging the cells 25 as shown in FIG. 4, a terminal contact portion 28 in which the positive electrode terminal 19 and the negative electrode terminal 20 are combined is formed between the cells 25. By providing the insulating block 21 between the terminal contact portions 28, the contact between the positive electrode terminal 19 and the negative electrode terminal 20 is assisted. Furthermore, the positive electrode terminal 19 and the negative electrode terminal 20 can be pressure-bonded by the external stress 24 in the thickness direction of the unit cell 25, and the contact between the positive electrode terminal 19 and the negative electrode terminal 20 can be made reliable. The external stress 24 can be generated, for example, by putting the battery unit of FIG. 5 in a case and tightening it from the outside, or by providing a fastener and tightening. The external stress 24 is preferably within a range that can be handled by securing the battery unit, and is preferably 1 kPa or more and 10 MPa or less. In particular, 0.1 MPa or more and 2 MPa or less is the most preferable. Moreover, although the site | part to be crimped | bonded is the terminals mutually connected at least in series or parallelly, single cells may also be crimped | bonded.
 本構造により、バスバやボルトなどの固定具無しで容易に直列接続させることが可能となるため、低コスト且つ、軽量な電池ユニットを実現することができる。 With this structure, it is possible to easily connect in series without fasteners such as bus bars and bolts, so a low-cost and lightweight battery unit can be realized.
 さらに、直列電池ユニットの電気を取り出すために、最外に位置する単電池25の正極端子19と負極端子20にはそれぞれ金属ブロック22、23を設けることができる。絶縁ブロック21、金属ブロック22、23と、正負極端子19、20を一体化として、外部応力24により直列接続することができる。 Furthermore, in order to take out the electricity of the series battery unit, metal blocks 22 and 23 can be provided on the positive electrode terminal 19 and the negative electrode terminal 20 of the outermost cell 25 respectively. The insulating block 21, the metal blocks 22 and 23, and the positive and negative electrode terminals 19 and 20 can be integrated and connected in series by the external stress 24.
 絶縁ブロック21は、絶縁物であれば、特に問わないが、放熱性に優れた材料、例えば、絶縁性エポキシやシリコーン系などの樹脂、アルミナや酸化マグネシウムなどの金属酸化物やこれら酸化物または絶縁性樹脂などをコートした金属などの絶縁性金属、ペルチェ素子などを用いることが好ましい。絶縁ブロック21に放熱性に優れた材料を用いることで、単電池25の内部で生じ、端子部に伝わった熱を絶縁ブロック21から効率よく逃がすことができる。さらに、絶縁ブロック21を、空洞とすることで、より放熱効果に優れた構造とすることができる。また、冷媒を配し、冷媒をさらに循環させることもできる。 The insulating block 21 is not particularly limited as long as it is an insulator, but a material excellent in heat dissipation, for example, a resin such as insulating epoxy or silicone, a metal oxide such as alumina or magnesium oxide, or these oxides or insulators It is preferable to use an insulating metal such as a metal coated with a conductive resin or the like, a Peltier element, or the like. By using a material excellent in heat dissipation for the insulating block 21, the heat generated inside the unit cell 25 and transferred to the terminal portion can be efficiently dissipated from the insulating block 21. Furthermore, by making the insulating block 21 hollow, it is possible to make the structure more excellent in the heat dissipation effect. In addition, a refrigerant can be disposed to further circulate the refrigerant.
 図5に示したように、電池ユニットの圧力開放弁17付近には、絶縁ブロックにより、空間が形成される。この空間は、絶縁ブロックはガス排出経路として用いることができる。さらに、絶縁ブロック内には電圧検出機構を有し、直列接続される単電池の電圧モニタを設置してもかまわない。 As shown in FIG. 5, a space is formed by the insulating block near the pressure release valve 17 of the battery unit. In this space, the insulating block can be used as a gas discharge path. Furthermore, a voltage detection mechanism may be provided in the insulating block, and a voltage monitor of single cells connected in series may be installed.
 図6は絶縁ブロック21の両側に単電池25の列を設けた電池ユニットの配列外観斜視図である。図6は図5の電池ユニットを90度横にし、絶縁ブロックの列を両側で利用した電池ユニットである。絶縁ブロック21の両側に単電池25の列を設けることで、体積効率に優れ、かつガス排出経路としてもより効率的な構造となる。 FIG. 6 is an external appearance perspective view of an array of battery units in which a row of single cells 25 is provided on both sides of the insulating block 21. FIG. 6 shows a battery unit in which the battery unit of FIG. 5 is 90 degrees horizontal and the row of insulating blocks is used on both sides. By providing the row of single cells 25 on both sides of the insulating block 21, the structure is excellent in volumetric efficiency and is more efficient as a gas discharge path.
 図7に絶縁ブロック21の列を両側で利用し、直列接続電池ユニットを並列接続した例を示す。図6同様に体積効率に優れ、かつガス排出経路としてもより有効な電池ユニットとなる。 FIG. 7 shows an example in which series-connected battery units are connected in parallel by using a row of insulating blocks 21 on both sides. Similar to FIG. 6, the battery unit is excellent in volumetric efficiency and more effective as a gas discharge path.
 以上、本発明により、端子間のバスバを用いず、かつ固定具による接合や溶接をせずに、直列接続または並列接続することが可能であり、低コストで軽量な電池ユニットを提供できる。 As described above, according to the present invention, it is possible to connect in series or in parallel without using a bus bar between terminals and without using bonding or welding with a fixing tool, and a low cost and lightweight battery unit can be provided.
1:負極未塗工部
2:正極未塗工部
3:正極
4:セパレータ
5:負極
6:電池缶
7:絶縁シート
8:捲回群
9:正極集電板
10:負極集電板
11:ガスケット
12:電池蓋
13:絶縁リング
14:正極リベット
15:負極リベット
16:注液栓
17:圧力開放弁
18:注液口
19:正極端子
20:負極端子
21:絶縁ブロック
22:最外単セルの正極側金属ブロック
23:最外単セルの負極側金属ブロック
24:外部応力
25:単電池
26:4つの単セルを直列接続した電池ユニットA 
27:4つの単セルを直列接続した電池ユニットB 
28:端子接触部
1: Negative electrode uncoated portion 2: Positive electrode uncoated portion 3: Positive electrode 4: Separator 5: Negative electrode 6: Battery can 7: Insulating sheet 8: Winding group 9: Positive electrode current collector plate 10: Negative electrode current collector plate 11: Gasket 12: Battery cover 13: Insulating ring 14: Positive electrode rivet 15: Negative electrode rivet 16: Liquid injection plug 17: Pressure release valve 18: Liquid injection port 19: Positive electrode terminal 20: Negative electrode terminal 21: Insulating block 22: Outermost single cell Positive electrode side metal block 23: outermost single cell negative electrode side metal block 24: external stress 25: single cell 26: battery unit A in which four single cells are connected in series
27: Battery unit B in which four single cells are connected in series
28: Terminal contact portion

Claims (8)

  1.  正極と負極とセパレータとを収容する電池缶と、
     前記電池缶から突出した正極端子及び負極端子と、を備えた単電池を複数積層し、互いに電気的に接続された電池ユニットであって、
     隣接配置される前記単電池同士の前記正極端子と前記負極端子とは、前記単電池の積層方向に対して垂直な面によりに接触し、端子接触部を形成しており、
     複数の前記単電池の積層により形成される複数の前記端子接続部の間には絶縁ブロックが設けられ、
     前記絶縁ブロックは前記端子接続部と接している電池ユニット。
    A battery can containing the positive electrode, the negative electrode, and the separator;
    A battery unit in which a plurality of unit cells including a positive electrode terminal and a negative electrode terminal protruding from the battery can are stacked and electrically connected to each other,
    The positive electrode terminal and the negative electrode terminal of the unit cells arranged adjacent to each other are in contact by a plane perpendicular to the stacking direction of the unit cells, forming a terminal contact portion,
    An insulating block is provided between the plurality of terminal connection portions formed by stacking the plurality of unit cells,
    The battery unit in which the insulating block is in contact with the terminal connection portion.
  2.  請求項1において、
     前記単電池の前記正極端子と前記負極端子は、前記単電池の積層方向に対して互いに異なる方向を向いており、
     前記正極端子および前記負極端子は、クランク状または、L字型状に屈折している電池ユニット。
    In claim 1,
    The positive electrode terminal and the negative electrode terminal of the unit cell face in different directions with respect to the stacking direction of the unit cell,
    A battery unit in which the positive electrode terminal and the negative electrode terminal are bent in a crank shape or an L shape.
  3.  請求項1または請求項2において、
     隣接配置される前記単電池同士の前記正極端子と前記負極端子とは、前記絶縁ブロックを介した外部応力により圧着されている電池ユニット。
    In claim 1 or claim 2,
    A battery unit in which the positive electrode terminal and the negative electrode terminal of the unit cells disposed adjacent to each other are crimped by an external stress via the insulating block.
  4.  請求項1ないし請求項3のいずれかにおいて、
     複数の前記単電池は、直列または並列に接続された電池ユニット。
    In any one of claims 1 to 3,
    A battery unit in which a plurality of the unit cells are connected in series or in parallel.
  5.  請求項1ないし請求項4のいずれかにおいて、
     前記絶縁ブロックは、絶縁性エポキシ、シリコーン樹脂、絶縁性金属、ペルチェ素子のいずれか一種または、複数を含む電池ユニット。
    In any one of claims 1 to 4,
    The insulating block is a battery unit including one or more of an insulating epoxy, a silicone resin, an insulating metal, and a Peltier element.
  6.  請求項5において、
     前記絶縁性金属は、アルミナ、酸化マグネシウムまたは、絶縁性樹脂をコートした金属のいずれか一種または、複数を含む電池ユニット。
    In claim 5,
    The battery unit, wherein the insulating metal is any one or more of alumina, magnesium oxide, and a metal coated with an insulating resin.
  7.  請求項1ないし請求項6のいずれかにおいて、
     積層した前記単電池の最外に位置する前記単電池の前記正極端子または前記負極端子は、金属ブロックを有する電池ユニット。
    In any one of claims 1 to 6,
    A battery unit in which the positive electrode terminal or the negative electrode terminal of the unit cell positioned at the outermost side of the stacked unit cells has a metal block.
  8.  請求項1ないし請求項7のいずれかにおいて、
     前記絶縁ブロックは、空洞である電池ユニット。
    In any one of claims 1 to 7,
    The insulating block is a battery unit that is hollow.
PCT/JP2012/078277 2012-11-01 2012-11-01 Cell unit WO2014068740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078277 WO2014068740A1 (en) 2012-11-01 2012-11-01 Cell unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078277 WO2014068740A1 (en) 2012-11-01 2012-11-01 Cell unit

Publications (1)

Publication Number Publication Date
WO2014068740A1 true WO2014068740A1 (en) 2014-05-08

Family

ID=50626706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078277 WO2014068740A1 (en) 2012-11-01 2012-11-01 Cell unit

Country Status (1)

Country Link
WO (1) WO2014068740A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291658A (en) * 2017-02-03 2019-09-27 罗伯特·博世有限公司 Battery unit and battery module
CN110429234A (en) * 2019-07-05 2019-11-08 恒大新能源科技集团有限公司 A kind of no busbar connector battery module structure and assemble method
CN110537268A (en) * 2017-04-20 2019-12-03 A123系统有限责任公司 The configuration of battery contact

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210312A (en) * 2004-10-26 2006-08-10 Nissan Motor Co Ltd Battery pack
JP2008147047A (en) * 2006-12-11 2008-06-26 Nissan Motor Co Ltd Battery module
JP2008146943A (en) * 2006-12-07 2008-06-26 Nissan Motor Co Ltd Battery pack and its manufacturing method
JP2010282767A (en) * 2009-06-03 2010-12-16 Honda Motor Co Ltd Battery pack module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210312A (en) * 2004-10-26 2006-08-10 Nissan Motor Co Ltd Battery pack
JP2008146943A (en) * 2006-12-07 2008-06-26 Nissan Motor Co Ltd Battery pack and its manufacturing method
JP2008147047A (en) * 2006-12-11 2008-06-26 Nissan Motor Co Ltd Battery module
JP2010282767A (en) * 2009-06-03 2010-12-16 Honda Motor Co Ltd Battery pack module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291658A (en) * 2017-02-03 2019-09-27 罗伯特·博世有限公司 Battery unit and battery module
CN110537268A (en) * 2017-04-20 2019-12-03 A123系统有限责任公司 The configuration of battery contact
CN110537268B (en) * 2017-04-20 2023-04-04 A123系统有限责任公司 Battery contact configuration
CN110429234A (en) * 2019-07-05 2019-11-08 恒大新能源科技集团有限公司 A kind of no busbar connector battery module structure and assemble method

Similar Documents

Publication Publication Date Title
EP3051606B1 (en) Assembled cell
JP4158440B2 (en) Secondary battery and assembled battery using the same
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP5889333B2 (en) Assembled battery
JP6198844B2 (en) Assembled battery
US9318735B2 (en) Terminal-attached plate, plate assembly, and battery module
US10686182B2 (en) Secondary battery
JP4135474B2 (en) Laminated secondary battery, assembled battery module comprising a plurality of laminated secondary batteries, assembled battery comprising a plurality of assembled battery modules, and an electric vehicle equipped with any of these batteries
US10158107B2 (en) Battery comprising insulative films
JP4009803B2 (en) Non-aqueous secondary battery
US10483512B2 (en) Battery pack
JP2012238461A (en) Secondary battery, and method for manufacturing the same
WO2014068740A1 (en) Cell unit
JP7236035B2 (en) Secondary battery and manufacturing method thereof
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP2004171954A (en) Laminated secondary battery, battery pack module comprising multiple laminated secondary batteries, battery pack comprising multiple set battery modules, and electric automobile with either battery mounted
JP2002298827A (en) Nonaqueous secondary battery
US20180097234A1 (en) Lithium ion secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP4859277B2 (en) Non-aqueous secondary battery
JP6655865B2 (en) Storage element
JP7208201B2 (en) Battery case and secondary battery provided with the battery case
JP4594540B2 (en) Non-aqueous secondary battery charge / discharge method
JP2022110189A (en) Power storage element
CN114156489A (en) Battery with a battery cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP