WO2014068668A1 - 衝突回避支援装置及び衝突回避支援方法 - Google Patents

衝突回避支援装置及び衝突回避支援方法 Download PDF

Info

Publication number
WO2014068668A1
WO2014068668A1 PCT/JP2012/078023 JP2012078023W WO2014068668A1 WO 2014068668 A1 WO2014068668 A1 WO 2014068668A1 JP 2012078023 W JP2012078023 W JP 2012078023W WO 2014068668 A1 WO2014068668 A1 WO 2014068668A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
support
collision
collision avoidance
assistance
Prior art date
Application number
PCT/JP2012/078023
Other languages
English (en)
French (fr)
Inventor
亮 猪俣
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/078023 priority Critical patent/WO2014068668A1/ja
Publication of WO2014068668A1 publication Critical patent/WO2014068668A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems

Definitions

  • the present invention relates to a collision avoidance support apparatus and a collision avoidance support method that perform collision avoidance support between a vehicle and an object.
  • the detection accuracy of the object may be easily lowered by the deceleration by the braking avoidance assistance.
  • the possibility of collision with the object is determined based on the low-precision detection result, and further, it is determined whether or not it is necessary to cancel the braking avoidance support based on the determination result, which is unnatural for the driver. There is a possibility that the braking avoidance support is canceled in the state.
  • the present invention intends to provide a collision avoidance support device and a collision avoidance support method that can suppress the release of the braking avoidance support in an unnatural state for the driver due to a decrease in object detection accuracy. .
  • a collision avoidance assistance apparatus is a collision avoidance assistance apparatus that performs collision avoidance assistance between a vehicle and an object, and includes an object detection unit that detects an object around the vehicle, and a collision avoidance based on a detection result by the object detection unit. And a support control unit that suppresses the release of the braking avoidance support as the degree of deceleration of the vehicle by the braking avoidance support increases after controlling execution of the support and starting the braking avoidance support by the collision avoidance support.
  • the release of the brake avoidance support is suppressed as the degree of deceleration by the brake avoidance support increases.
  • the detection accuracy of the object tends to decrease as the degree of deceleration by the braking avoidance assistance increases. Therefore, the release of the braking avoidance assistance is suppressed as the degree of deceleration due to the braking avoidance assistance increases and the object detection accuracy tends to decrease, so the braking avoidance support becomes unnatural for the driver due to the decrease in the object detection accuracy. Can be prevented from being released.
  • the support control unit may suppress the release of the braking avoidance support when the degree of deceleration by the braking avoidance support exceeds a threshold value.
  • the assistance control unit performs braking from pre-braking executed based on the possibility of collision with an object to intervention braking executed based on no possibility of collision.
  • the state of avoidance support may be shifted.
  • the support control unit may continue the intervention braking until the duration time of the pre-braking exceeds a threshold value, or until the vehicle is stopped or the stop of the vehicle is estimated.
  • the object detection unit may transmit an electromagnetic wave and detect the object based on a reception result of the electromagnetic wave reflected by the object.
  • a collision avoidance assistance apparatus is a collision avoidance assistance apparatus that performs collision avoidance assistance between a vehicle and an object, and transmits an electromagnetic wave to an image detection unit that images the surroundings of the vehicle and detects an object based on the imaging result.
  • An object detection unit that detects an object based on a reception result of the electromagnetic wave reflected by the object, and a collision based on a composite target generated using the detection result by the image detection unit and the detection result by the object detection unit After controlling the execution of the avoidance support and starting the braking avoidance support by the collision avoidance support, if no object is detected by the object detection unit, the release of the brake avoidance support is suppressed as the degree of deceleration of the vehicle by the brake avoidance support increases.
  • a support control unit that controls the execution of the avoidance support and starting the braking avoidance support by the collision avoidance support.
  • the release of the brake avoidance support is suppressed as the degree of deceleration by the brake avoidance support increases.
  • the detection accuracy of the object tends to decrease as the degree of deceleration by the braking avoidance assistance increases. Therefore, the release of the braking avoidance assistance is suppressed as the degree of deceleration due to the braking avoidance assistance increases and the object detection accuracy tends to decrease, so the braking avoidance support becomes unnatural for the driver due to the decrease in the object detection accuracy. Can be prevented from being released.
  • a collision avoidance support method is a collision avoidance support method for performing collision avoidance support between a vehicle and an object, detects an object around the vehicle, and controls execution of the collision avoidance support based on the detection result of the object.
  • the release of the brake avoidance support is suppressed as the degree of deceleration of the vehicle by the brake avoidance support becomes larger.
  • the release of the brake avoidance support is suppressed as the degree of deceleration by the brake avoidance support increases.
  • the detection accuracy of the object tends to decrease as the degree of deceleration by the braking avoidance assistance increases. Therefore, the release of the braking avoidance assistance is suppressed as the degree of deceleration due to the braking avoidance assistance increases and the object detection accuracy tends to decrease, so the braking avoidance support becomes unnatural for the driver due to the decrease in the object detection accuracy. Can be prevented from being released.
  • the present invention it is possible to provide a collision avoidance support device and a collision avoidance support method that can suppress the release of braking avoidance support in an unnatural state for the driver due to a decrease in object detection accuracy.
  • FIG. 1 It is a block diagram which shows the collision avoidance assistance apparatus which concerns on 1st Embodiment of this invention. It is a flowchart which shows the collision avoidance assistance method which concerns on 1st Embodiment. It is a flowchart which shows the detail of the collision avoidance assistance method which concerns on 1st Embodiment. It is a flowchart which shows the detail of the collision avoidance assistance method which concerns on 1st Embodiment. It is a figure which shows the collision avoidance assistance method shown in FIG. It is a block diagram which shows the collision avoidance assistance apparatus which concerns on 2nd Embodiment of this invention. It is a flowchart which shows the collision avoidance assistance method which concerns on 2nd Embodiment. It is a figure which shows the collision avoidance assistance method shown in FIG.
  • the collision avoidance support device is a device mounted on a vehicle in order to perform collision avoidance support between the vehicle and an object.
  • the collision avoidance assistance device 10 and method according to the first embodiment of the present invention perform collision avoidance assistance between a vehicle and an object using a radar sensor 12.
  • FIG. 1 is a block diagram showing a collision avoidance assistance device 10 according to the first embodiment of the present invention.
  • the collision avoidance support device 10 includes a vehicle speed sensor 11, a radar sensor 12, a support execution unit 13, and an ECU 20 (Electronic Control Unit).
  • the vehicle speed sensor 11 detects the vehicle speed (vehicle speed).
  • vehicle speed vehicle speed
  • a wheel speed sensor provided on a wheel is used as the vehicle speed sensor 11 .
  • the vehicle speed sensor 11 supplies the detection result of the vehicle speed to the ECU 20.
  • the radar sensor 12 functions as an object detection unit that detects objects around the vehicle.
  • the radar sensor 12 for example, a millimeter wave radar, a laser radar, or the like is used.
  • the radar sensor 12 is provided, for example, on the front surface of the vehicle body, transmits an electromagnetic wave, and detects an object based on a reception result of the electromagnetic wave reflected by the object.
  • the radar sensor 12 supplies the ECU 20 with detection results of the position of the object and the relative speed of the object.
  • the radar sensor 12 may be configured to detect an object by combining detection results of the long-range radar and the short-range radar.
  • the support execution unit 13 executes collision avoidance support between the vehicle and the object based on the detection result by the radar sensor 12.
  • the support execution unit 13 is controlled by the ECU 20 and executes at least one of notification support and control support.
  • notification support for example, information for alerting a collision and guiding to a collision avoidance operation is notified to the driver using a display, a speaker, a vibrator, and the like.
  • control assistance for example, control intervention for braking avoidance assistance, steering avoidance assistance, collision safety assistance, and the like is performed using a brake actuator, a steering actuator, a seat belt actuator, and the like.
  • Steering avoidance assistance includes, for example, automatic steering assistance, assistance for steering assistance by the driver, and continuation assistance for steering using physical stimulation.
  • the braking avoidance support for example, automatic braking support, assistance support for a braking operation by a driver, and continuing support for a braking operation using a physical stimulus are performed.
  • automatic braking assistance after preliminary braking is performed, further intervention braking is performed as necessary. The pre-braking is performed based on the possibility of collision with the object, and the intervention braking is performed without being based on the possibility of collision with the object.
  • the ECU 20 includes a radar target generation unit 21 and a support control unit 22.
  • the ECU 20 is composed mainly of a CPU, a ROM, and a RAM, and realizes the functions of the radar target generation unit 21 and the support control unit 22 through execution of a program by the CPU. Note that the functions of the radar target generation unit 21 and the support control unit 22 may be realized by two or more ECUs.
  • the radar target generator 21 generates a radar target based on the detection result of the radar sensor 12.
  • the radar target has information on the vertical distance / lateral distance to the object and the relative speed of the object.
  • the vertical distance to the object is the distance to the object in the traveling direction of the vehicle
  • the lateral distance to the object is the distance to the object in the direction orthogonal to the traveling direction of the vehicle.
  • the relative speed of the object is the relative speed between the vehicle and the object.
  • the support control unit 22 controls the execution of the collision avoidance support between the vehicle and the object using the radar target.
  • the assistance control unit 22 obtains the collision prediction time and the collision possibility with the object using the radar target, and supplies a control signal corresponding to the collision prediction time and the collision possibility to the assistance execution unit 13.
  • the assistance control unit 22 controls execution of at least one of notification assistance and control assistance according to the collision prediction time and the possibility of collision. In the control assistance, execution of at least one of steering avoidance assistance and braking avoidance assistance is performed. Control.
  • the support control unit 22 supplies a control signal for controlling the start and end (release) of the brake avoidance support and the braking amount to the support execution unit 13.
  • the predicted collision time is obtained by dividing the distance to the object by the relative speed as a margin time until the predicted collision.
  • the possibility of collision is obtained based on indices such as the lateral position of the object, the lateral position of the collision, the existence probability, and the own lane probability.
  • the lateral position of the object is the current position of the object in the direction orthogonal to the traveling direction of the vehicle, and the collision lateral position is the lateral position of the object at the predicted collision point, based on the movement trajectory of the radar target.
  • the existence probability is a probability that an object corresponding to the radar target actually exists, and is obtained based on a generation state of the radar target.
  • the own lane probability is a probability that an object corresponding to the radar target is present on the traveling lane of the vehicle, and is obtained based on the generation situation and position of the radar target.
  • the support control unit 22 suppresses the release of the brake avoidance support as the degree of deceleration of the vehicle by the brake avoidance support increases.
  • the degree of deceleration is obtained as a deceleration occurrence state represented by a differential value of the vehicle speed supplied from the vehicle speed sensor 11.
  • release of braking avoidance assistance means completion
  • the support control unit 22 may suppress the release of the braking avoidance support when the degree of deceleration by the braking avoidance support exceeds a threshold value.
  • FIG. 2 is a flowchart showing a collision avoidance support method according to the first embodiment.
  • the radar sensor 12 detects an object around the vehicle (S11).
  • the support execution unit 14 executes collision avoidance support between the vehicle and the object based on the detection result by the radar sensor 12 (S12).
  • the support control unit 22 suppresses the release of the brake avoidance support as the degree of deceleration of the vehicle by the brake avoidance support increases (S12a).
  • FIGS. 3 and 4 are flowcharts showing details of the collision avoidance support method according to the first embodiment.
  • FIG. 3 shows an end determination flow for preliminary braking
  • FIG. 4 shows an end determination flow for intervention braking.
  • the support control unit 22 repeatedly executes the processes shown in FIGS. 3 and 4 for each processing cycle.
  • the support control unit 22 determines whether the pre-braking start condition is satisfied. Specifically, it is determined that the start condition is satisfied when the predicted collision time is less than the first threshold. Then, the support control unit 22 starts pre-braking when it is determined that the start condition is satisfied, and continues determination when it is not determined that the start condition is satisfied.
  • the support control unit 22 When the pre-braking is started, the support control unit 22 performs the process shown in FIG. The support control unit 22 determines whether pre-braking is being performed (S21). If it is determined that the process is being executed, the process proceeds to S22. If it is not determined, the process ends.
  • the support control unit 22 determines whether or not the pre-braking continuation condition is satisfied (S22). Specifically, if the vehicle speed is greater than 0, the relative speed of the object is less than the threshold value, and each of the collision probability indicators satisfies the threshold value, it is determined that the continuation condition is satisfied. . Therefore, the continuation of the pre-braking depends on the possibility of collision. If it is determined that the continuation condition is satisfied, the process proceeds to S23. If it is not determined that the continuation condition is satisfied, the support control unit 22 ends the preliminary braking (S24).
  • the support control unit 22 determines whether or not a normal start condition for intervention braking is satisfied (S23). Specifically, it is determined that the normal start condition is satisfied when the predicted collision time is less than the second threshold that is smaller than the first threshold. If it is determined that the normal start condition is satisfied, the support control unit 22 starts intervention braking instead of preliminary braking (S25).
  • the support control unit 22 determines whether the start condition for intervention braking based on the degree of deceleration is satisfied (S26). Specifically, when the degree of deceleration exceeds the threshold and the vehicle speed is less than the threshold (about 10 km / h) or the predicted collision time is less than the third threshold between the first threshold and the second threshold, It is determined that the start condition based on the degree of deceleration is satisfied.
  • the degree of deceleration represents the state of occurrence of deceleration due to pre-braking, and is represented, for example, as the number of times that deceleration exceeding a predetermined value is detected continuously. Therefore, the braking avoidance support shifts from preliminary braking to intervention braking when the degree of deceleration due to preliminary braking increases and the vehicle approaching the object is braked to some extent.
  • the support control unit 22 starts interventional braking when it is determined that the start condition based on the degree of deceleration is satisfied (S25), and continues pre-braking when it is determined that it is not satisfied (S27). ).
  • the support control unit 22 When the intervention braking is started in S25, the support control unit 22 performs the process shown in FIG. The support control unit 22 determines whether intervention braking is being executed (S31). If it is determined that the process is being executed, the process proceeds to S32. If it is not determined, the process ends.
  • the support control unit 22 determines whether the intervention braking continuation condition is satisfied (S32). Specifically, when the vehicle speed is not 0 and the braking time is less than the threshold value, it is determined that the continuation condition is satisfied.
  • the braking time is the duration of intervention braking
  • the threshold value is set according to the running condition of the vehicle.
  • the continuation of intervention braking depends on the braking state of the vehicle instead of the possibility of collision. Then, the support control unit 22 continues the intervention braking when it is determined that the continuation condition is satisfied (S33), and ends the intervention braking when it is determined that the continuation condition is not satisfied (S34).
  • the support control unit 22 executes the pre-brake executed based on the possibility of collision with the object without performing the possibility of collision.
  • the state of braking avoidance assistance is shifted to the intervention braking. Therefore, even if the possibility of collision with the object is determined based on the detection result with low accuracy, it is not necessary to determine whether or not it is necessary to cancel the braking avoidance support based on the determination result. Thereby, after starting the braking avoidance support by the collision avoidance support, when the degree of deceleration by the braking avoidance support exceeds the threshold value, the release of the braking avoidance support is suppressed.
  • FIG. 5 is a diagram showing the collision avoidance support method shown in FIG. FIG. 5 shows a time series of the positional relationship (a) between the vehicle C and the pedestrian P and the detection status (b) of the pedestrian P as a situation where the collision avoidance support with the pedestrian P existing in front of the vehicle C is performed. Is shown in
  • the collision avoidance assistance device 10 starts braking avoidance assistance by preliminary braking when the predicted collision time with the pedestrian P is less than the threshold, and intervention braking when the degree of deceleration by preliminary braking exceeds the threshold. Thus, the brake avoidance support is continued and the collision avoidance support with the pedestrian P is performed.
  • the object detection accuracy is likely to decrease due to, for example, erroneous matching of radar targets. That is, for example, as shown in FIG. 5, a situation in which a pedestrian P to be detected in front of the vehicle C is detected in the front side of the vehicle C or is not detected (is lost) is likely to occur.
  • the radar target T1 is indicated by a cross. Then, despite the fact that the possibility of collision is actually high, it is erroneously determined that the possibility of collision is low, and it is determined that it is necessary to cancel the braking avoidance support. The braking avoidance support may be canceled.
  • the collision avoidance assistance device 10 suppresses the release of the braking avoidance assistance as the degree of deceleration by the braking avoidance assistance increases. Note that when the degree of deceleration by the braking avoidance support is small, it is difficult to reduce the object detection accuracy, and thus it is not necessary to suppress the cancellation of the braking avoidance support.
  • the suppression of the release is performed, for example, by shifting the state of the braking avoidance support from the pre-braking executed based on the possibility of collision to the intervention braking executed not based on the possibility of collision.
  • the release of the brake avoidance support is suppressed as the degree of deceleration increases. It is possible to suppress the release of the braking avoidance support in an unnatural state.
  • the braking avoidance increases as the degree of deceleration by the braking avoidance assistance increases. Cancellation of support is suppressed.
  • the detection accuracy of the object tends to decrease as the degree of deceleration by the braking avoidance assistance increases. Therefore, the release of the braking avoidance assistance is suppressed as the degree of deceleration due to the braking avoidance assistance increases and the object detection accuracy tends to decrease, so the braking avoidance support becomes unnatural for the driver due to the decrease in the object detection accuracy. Can be prevented from being released.
  • the degree of deceleration by the braking avoidance support exceeds a threshold value, release of the braking avoidance support may be suppressed.
  • the state of the braking avoidance support is changed from the pre-brake executed based on the possibility of collision with an object to the intervention braking executed based on the possibility of no collision. May be migrated.
  • intervention braking may be continued until the duration time of the pre-braking exceeds a threshold value, or until the vehicle is stopped or the stop of the vehicle is estimated.
  • the collision avoidance assistance device 20 and method according to the second embodiment performs collision avoidance assistance between a vehicle and an object using the radar sensor 12 and the image sensor 14. Note that a description overlapping that of the first embodiment is omitted.
  • FIG. 6 is a block diagram showing a collision avoidance assistance device 20 according to the second embodiment of the present invention.
  • the collision avoidance support device 20 includes a vehicle speed sensor 11, a radar sensor 12, an image sensor 14, a support execution unit 13, and an ECU 40 (Electronic Control Unit).
  • vehicle speed sensor 11 a radar sensor 12
  • image sensor 14 a support execution unit 13
  • ECU 40 Electronic Control Unit
  • the image sensor 14 functions as an image detection unit that images around the vehicle and detects an object based on the imaging result.
  • the image sensor 14 for example, a video camera, a stereo camera, or an infrared camera is used.
  • the image sensor 14 is provided, for example, on the front surface of the passenger compartment, and images the surroundings of the vehicle and detects an object based on the imaging result.
  • the image sensor 14 supplies the ECU 40 with the detection result of the position of the object and the width of the object.
  • the support execution unit 13 executes the collision avoidance support between the vehicle and the object based on the composite target generated using the detection result by the radar sensor 12 and the detection result by the image sensor 14.
  • the ECU 40 includes a radar target generation unit 21, an image target generation unit 41, a composite target generation unit 42, and a support control unit 43.
  • the configuration and function of the radar target generation unit 21 are the same as those in the first embodiment.
  • the image target generation unit 41 generates an image target based on the detection result supplied from the image sensor 14.
  • the image target has information regarding the vertical distance / horizontal distance to the object and the horizontal width of the object.
  • the horizontal width of the object is the width of the object in a direction orthogonal to the traveling direction of the vehicle.
  • the composite target generation unit 42 generates a composite target by fusing the radar target and the image target.
  • the composite target is generated by comparing the radar target with the image target.
  • the composite target has information on the vertical distance / lateral distance to the object, the relative speed of the object, and the horizontal width. The composite target achieves higher detection accuracy than the radar target or the image target alone.
  • the support control unit 43 controls execution of collision avoidance support between the vehicle and the object using the composite target.
  • the assistance control unit 43 obtains the collision prediction time and the collision possibility with the object using the synthetic target, and supplies a control signal corresponding to the collision prediction time and the collision possibility to the assistance execution unit 13.
  • the assistance control unit 43 controls the execution of at least one of the steering avoidance assistance and the braking avoidance assistance in the braking assistance according to the collision prediction time and the collision possibility.
  • the support control unit 43 supplies the support execution unit 13 with a control signal for controlling the start and end (release) of the brake avoidance support and the braking amount.
  • the support control unit 43 suppresses the release of the brake avoidance support as the degree of deceleration of the vehicle by the brake avoidance support increases. To do.
  • the assistance control part 43 may suppress cancellation
  • FIG. 7 is a flowchart showing details of the collision avoidance support method according to the second embodiment.
  • the image sensor 14 captures an image of the surroundings of the vehicle and detects an object based on the imaging result (S41).
  • the radar sensor 12 transmits an electromagnetic wave and detects the object based on the reception result of the electromagnetic wave reflected by the object (S42). Note that the execution order of S41 and S42 may be reversed.
  • the support execution unit 14 performs collision avoidance support between the vehicle and the object based on the composite target generated using the detection result by the image sensor 14 and the detection result by the radar sensor 12 (S43).
  • the support control unit 43 suppresses the release of the brake avoidance support as the degree of deceleration of the vehicle by the brake avoidance support increases. (S43a).
  • the support control unit 43 controls braking avoidance support in the same manner as the case where the first embodiment is described with reference to FIGS. 3 and 4.
  • the state of the brake avoidance support shifts from the pre-brake to the intervention brake, thereby releasing the brake avoidance support. It is suppressed.
  • the support control unit 43 determines whether the collision may occur from the preliminary braking performed based on the possibility of collision with the object.
  • the state of the braking avoidance assistance is shifted to the intervention braking executed without being based on the control. Therefore, even if the possibility of collision with the object is determined based on the detection result with low accuracy, it is not necessary to determine whether or not it is necessary to cancel the braking avoidance support based on the determination result.
  • FIG. 8 is a diagram showing the collision avoidance support method shown in FIG. In FIG. 8, as a situation where the collision avoidance assistance with the pedestrian P existing in front of the vehicle is performed, the positional relationship (a) between the vehicle C and the pedestrian P and the detection situation (b) of the pedestrian P are shown in time series. It is shown.
  • the collision avoidance support device 20 starts the brake avoidance support by pre-braking when the predicted collision time with the pedestrian P is less than the threshold, and the pedestrian P is not detected by the radar sensor 12 and braking is performed.
  • the degree of deceleration by avoidance support exceeds a threshold value, braking avoidance support is continued by intervention braking, and collision avoidance support with the pedestrian P is performed.
  • the detection accuracy of an object tends to decrease due to, for example, erroneous matching of radar targets. That is, a situation in which a pedestrian P that should be detected in front of the vehicle C is detected on the front side of the vehicle or is no longer detected (disappears) as shown in FIG.
  • the radar target T1 is indicated by an X mark
  • the image target T2 is indicated by a wide H mark. Then, despite the fact that the possibility of collision is actually high, it is erroneously determined that the possibility of collision is low, and it is determined that it is necessary to cancel the braking avoidance support. The braking avoidance support may be canceled.
  • the collision avoidance assistance device 20 suppresses the release of the braking avoidance assistance as the degree of deceleration by the braking avoidance assistance increases. Note that when the degree of deceleration by the braking avoidance support is small, it is difficult to reduce the object detection accuracy, and thus it is not necessary to suppress the cancellation of the braking avoidance support.
  • the suppression of the release is performed, for example, by shifting the state of the braking avoidance support from the pre-braking executed based on the possibility of collision to the intervention braking executed not based on the possibility of collision.
  • the release of the brake avoidance support is suppressed as the degree of deceleration increases. It is possible to suppress the release of the braking avoidance support in an unnatural state.
  • the braking avoidance assistance device 20 when an object is not detected by the object detection unit after starting the braking avoidance assistance by the collision avoidance assistance, the braking avoidance is performed.
  • the release of braking avoidance assistance is suppressed as the degree of deceleration by assistance increases.
  • the detection accuracy of the object tends to decrease as the degree of deceleration by the braking avoidance assistance increases. Therefore, the release of the braking avoidance assistance is suppressed as the degree of deceleration due to the braking avoidance assistance increases and the object detection accuracy tends to decrease, so the braking avoidance support becomes unnatural for the driver due to the decrease in the object detection accuracy. Can be prevented from being released.
  • the above-described embodiments are the best embodiments of the collision avoidance support devices 10 and 20 and the collision avoidance support method according to the present invention, and the collision avoidance support devices 10 and 20 and the collision avoidance according to the present invention are described.
  • the support method is not limited to the one described in this embodiment.
  • the collision avoidance support apparatuses 10 and 20 and the collision avoidance support method according to the present invention are the collision avoidance support apparatuses 10 and 20 and the collision avoidance support method according to the present embodiment without departing from the gist of the invention described in each claim. It may be modified or applied to others.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

車両と物体の衝突回避支援を行う衝突回避支援装置であって、車両周囲の物体を検出する物体検出部と、物体検出部による検出結果に基づいて衝突回避支援の実行を制御し、衝突回避支援による制動回避支援を開始した後に、制動回避支援による車両の減速の程度が大きくなるほど制動回避支援の解除を抑制する支援制御部とを備える。

Description

衝突回避支援装置及び衝突回避支援方法
 本発明は、車両と物体の衝突回避支援を行う衝突回避支援装置及び衝突回避支援方法に関する。
 従来、衝突回避支援装置及び衝突回避支援方法としては、特開2000-57496号公報に記載されているように、自動制動中に物体を見失うまでの検知状況に応じて物体との接触の可能性を求め、それに基づいて自動制動を継続すべきか否かを判断する装置及び方法が知られている。
特開2000-57496号公報
 ところで、衝突回避支援装置では、制動回避支援による減速によって物体の検出精度が低下し易くなる場合がある。この場合、低精度の検出結果に基づいて物体との衝突可能性が判定され、さらに該判定結果に基づいて制動回避支援の解除の要否が判断されることになり、運転者にとって不自然な状態で制動回避支援が解除されてしまう可能性がある。
 そこで、本発明は、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる、衝突回避支援装置及び衝突回避支援方法を提供しようとするものである。
 本発明に係る衝突回避支援装置は、車両と物体の衝突回避支援を行う衝突回避支援装置であって、車両周囲の物体を検出する物体検出部と、物体検出部による検出結果に基づいて衝突回避支援の実行を制御し、衝突回避支援による制動回避支援を開始した後に、制動回避支援による車両の減速の程度が大きくなるほど制動回避支援の解除を抑制する支援制御部とを備える。
 これにより、衝突回避支援による制動回避支援を開始した後に、制動回避支援による減速の程度が大きくなるほど制動回避支援の解除が抑制される。ここで、物体の検出精度は、制動回避支援による減速の程度が大きくなるほど低下し易くなる。よって、制動回避支援による減速の程度が大きくなり物体の検出精度が低下し易くなるほど制動回避支援の解除が抑制されるので、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる。
 また、支援制御部は、制動回避支援による減速の程度が閾値を超える場合、制動回避支援の解除を抑制してもよい。
 また、支援制御部は、制動回避支援による減速の程度が閾値を超える場合、物体との衝突可能性に基づいて実行される事前制動から、衝突可能性に基づかずに実行される介入制動に制動回避支援の状態を移行させてもよい。
 また、支援制御部は、事前制動の継続時間が閾値を超えるまで、又は車両が停止し若しくは車両の停止が推定されるまで介入制動を継続させてもよい。
 また、物体検出部は、電磁波を送信し、物体により反射される該電磁波の受信結果に基づいて物体を検出してもよい。
 本発明に係る衝突回避支援装置は、車両と物体の衝突回避支援を行う衝突回避支援装置であって、車両周囲を撮像し撮像結果に基づいて物体を検出する画像検出部と、電磁波を送信し、物体により反射される該電磁波の受信結果に基づいて物体を検出する物体検出部と、画像検出部による検出結果と物体検出部による検出結果とを用いて生成される合成物標に基づいて衝突回避支援の実行を制御し、衝突回避支援による制動回避支援を開始した後に、物体検出部により物体が検出されない場合、制動回避支援による車両の減速の程度が大きくなるほど制動回避支援の解除を抑制する支援制御部とを備える。
 これにより、衝突回避支援による制動回避支援を開始した後に、物体検出部により物体が検出されない場合、制動回避支援による減速の程度が大きくなるほど制動回避支援の解除が抑制される。ここで、物体の検出精度は、制動回避支援による減速の程度が大きくなるほど低下し易くなる。よって、制動回避支援による減速の程度が大きくなり物体の検出精度が低下し易くなるほど制動回避支援の解除が抑制されるので、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる。
 本発明に係る衝突回避支援方法は、車両と物体の衝突回避支援を行う衝突回避支援方法であって、車両周囲の物体を検出し、物体の検出結果に基づいて衝突回避支援の実行を制御するに際して、衝突回避支援による制動回避支援を開始した後に、制動回避支援による車両の減速の程度が大きくなるほど制動回避支援の解除を抑制することを含む。
 これにより、衝突回避支援による制動回避支援を開始した後に、制動回避支援による減速の程度が大きくなるほど制動回避支援の解除が抑制される。ここで、物体の検出精度は、制動回避支援による減速の程度が大きくなるほど低下し易くなる。よって、制動回避支援による減速の程度が大きくなり物体の検出精度が低下し易くなるほど制動回避支援の解除が抑制されるので、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる。
 本発明によれば、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる、衝突回避支援装置及び衝突回避支援方法を提供することができる。
本発明の第1実施形態に係る衝突回避支援装置を示すブロック図である。 第1実施形態に係る衝突回避支援方法を示すフローチャートである。 第1実施形態に係る衝突回避支援方法の詳細を示すフローチャートである。 第1実施形態に係る衝突回避支援方法の詳細を示すフローチャートである。 図2に示す衝突回避支援方法を示す図である。 本発明の第2実施形態に係る衝突回避支援装置を示すブロック図である。 第2実施形態に係る衝突回避支援方法を示すフローチャートである。 図7に示す衝突回避支援方法を示す図である。
 以下、添付図面を参照して、本発明の実施形態に係る衝突回避支援装置及び衝突回避支援方法を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。衝突回避支援装置は、車両と物体の衝突回避支援を行うために車両に搭載される装置である。
 以下では、図1から図4を参照して、本発明の第1実施形態に係る衝突回避支援装置10及び方法について説明する。第1実施形態に係る衝突回避支援装置10及び方法は、レーダセンサ12を用いて車両と物体の衝突回避支援を行うものである。
 まず、図1を参照して、第1実施形態に係る衝突回避支援装置10の構成について説明する。図1は、本発明の第1実施形態に係る衝突回避支援装置10を示すブロック図である。
 図1に示すように、衝突回避支援装置10は、車速センサ11、レーダセンサ12、支援実行部13及びECU20(Electronic Control Unit)を備える。
 車速センサ11は、車両の速度(車速)を検出する。車速センサ11としては、例えば、車輪に設けられた車輪速センサが用いられる。車速センサ11は、車速の検出結果をECU20に供給する。
 レーダセンサ12は、車両周囲の物体を検出する物体検出部として機能する。レーダセンサ12としては、例えば、ミリ波レーダ、レーザレーダなどが用いられる。レーダセンサ12は、例えば車体前面に設けられ、電磁波を送信し、物体により反射される該電磁波の受信結果に基づいて物体を検出する。レーダセンサ12は、物体の位置及び物体の相対速度の検出結果をECU20に供給する。なお、レーダセンサ12は、遠距離レーダと近距離レーダそれぞれの検出結果を融合して物体を検出するように構成されてもよい。
 支援実行部13は、レーダセンサ12による検出結果に基づいて車両と物体の衝突回避支援を実行する。支援実行部13は、ECU20により制御されて報知支援及び制御支援のうち少なくとも一方を実行する。報知支援では、例えば、ディスプレイ、スピーカ、バイブレータなどを用いて、衝突に対する注意喚起、衝突回避操作への誘導などのための情報が運転者に報知される。制御支援では、例えば、ブレーキアクチュエータ、ステアリングアクチュエータ、シートベルトアクチュエータなどを用いて、制動回避支援、操舵回避支援、衝突安全支援などのための制御介入が行われる。
 操舵回避支援では、例えば、自動操舵支援、運転者による操舵の補助支援、物理的刺激を用いた操舵の継続支援などが行われる。制動回避支援では、例えば、自動制動支援、運転者による制動操作の補助支援、物理的刺激を用いた制動操作の継続支援などが行われる。自動制動支援では、事前制動が行われた後に、必要に応じてさらに介入制動が行われる。事前制動は、物体との衝突可能性に基づいて実行され、介入制動は、物体との衝突可能性に基づかずに実行される。
 ECU20は、レーダ物標生成部21及び支援制御部22を備える。ECU20は、CPU、ROM、RAMを主体として構成され、CPUによるプログラムの実行を通じて、レーダ物標生成部21及び支援制御部22の機能を実現する。なお、レーダ物標生成部21及び支援制御部22の機能は、2つ以上のECUにより実現されてもよい。
 レーダ物標生成部21は、レーダセンサ12による検出結果に基づいてレーダ物標を生成する。レーダ物標は、物体までの縦距離・横距離及び物体の相対速度に関する情報を有する。物体までの縦距離とは、車両の進行方向における物体までの距離であり、物体までの横距離とは、車両の進行方向と直交する方向における物体までの距離である。物体の相対速度とは、車両と物体の相対速度である。
 支援制御部22は、レーダ物標を用いて車両と物体の衝突回避支援の実行を制御する。支援制御部22は、レーダ物標を用いて物体との衝突予測時間及び衝突可能性を求め、衝突予測時間及び衝突可能性に応じた制御信号を支援実行部13に供給する。支援制御部22は、衝突予測時間及び衝突可能性に応じて、報知支援及び制御支援のうち少なくとも一方の実行を制御し、制御支援では、操舵回避支援及び制動回避支援のうち少なくとも一方の実行を制御する。支援制御部22は、制動回避支援では、制動回避支援の開始、終了(解除)及び制動量を制御するための制御信号を支援実行部13に供給する。
 衝突予測時間は、予測される衝突までの余裕時間として、物体までの距離を相対速度により除して求められる。衝突可能性は、例えば、物体の横位置、衝突横位置、存在確率、自車線確率などの指標に基づいて求められる。物体の横位置とは、車両の進行方向と直交する方向における物体の現在位置であり、衝突横位置とは、予測される衝突時点における物体の横位置であり、レーダ物標の移動軌跡に基づいて予測される。存在確率とは、レーダ物標に対応する物体が実在する確率であり、レーダ物標の生成状況に基づいて求められる。自車線確率とは、レーダ物標に対応する物体が車両の走行車線上に存在する確率であり、レーダ物標の発生状況及び位置に基づいて求められる。
 ここで、支援制御部22は、衝突回避支援による制動回避支援を開始した後に、制動回避支援による車両の減速の程度が大きくなるほど制動回避支援の解除を抑制する。ここで、減速の程度は、車速センサ11から供給される車速の微分値により表される減速度の発生状況として求められる。また、制動回避支援の解除とは、制動回避支援の終了を意味する。また、支援制御部22は、制動回避支援による減速の程度が閾値を超える場合、制動回避支援の解除を抑制してもよい。
 つぎに、図2から図4を参照して、第1実施形態に係る衝突回避支援方法及び衝突回避支援装置10の動作について説明する。
 図2は、第1実施形態に係る衝突回避支援方法を示すフローチャートである。図2に示すように、レーダセンサ12は、車両周囲の物体を検出する(S11)。支援実行部14は、レーダセンサ12による検出結果に基づいて車両と物体の衝突回避支援を実行する(S12)。ここで、支援制御部22は、衝突回避支援による制動回避支援を開始した後に、制動回避支援による車両の減速の程度が大きくなるほど制動回避支援の解除を抑制する(S12a)。
 図3及び図4は、第1実施形態に係る衝突回避支援方法の詳細を示すフローチャートである。図3は、事前制動の終了判定フローを示しており、図4は、介入制動の終了判定フローを示している。支援制御部22は、図3及び図4に示す処理を処理周期毎に繰り返し実行する。
 支援制御部22は、事前制動の開始条件が成立しているか否かを判定する。具体的には、衝突予測時間が第1閾値未満である場合に開始条件が成立していると判定される。そして、支援制御部22は、開始条件が成立していると判定した場合に事前制動を開始し、成立していると判定しなかった場合に判定を継続する。
 事前制動を開始すると、支援制御部22は、図3に示す処理を行う。支援制御部22は、事前制動を実行中であるか否かを判定する(S21)。そして、実行中であると判定した場合に処理がS22に進み、判定しなかった場合に処理が終了する。
 S21にて事前制動を実行中であると判定すると、支援制御部22は、事前制動の継続条件が成立しているか否かを判定する(S22)。具体的には、車速が0を超えており、物体の相対速度が閾値未満であり、かつ、衝突可能性の各指標がそれぞれの閾値を満たす場合、継続条件が成立していると判定される。よって、事前制動の継続は、衝突可能性に依存している。そして、継続条件が成立していると判定した場合、処理がS23に進み、成立していると判定しなかった場合、支援制御部22は、事前制動を終了する(S24)。
 S22にて継続条件が成立していると判定した場合、支援制御部22は、介入制動の通常の開始条件が成立しているか否かを判定する(S23)。具体的には、衝突予測時間が第1閾値よりも小さな第2閾値未満である場合に通常の開始条件が成立していると判定される。そして、通常の開始条件が成立していると判定した場合、支援制御部22は、事前制動に代えて介入制動を開始する(S25)。
 一方、S23にて通常の開始条件が成立していると判定しなかった場合、支援制御部22は、減速の程度に基づく介入制動の開始条件が成立しているか否かを判定する(S26)。具体的には、減速の程度が閾値を超えており、かつ、車速が閾値(10km/h程度)未満又は衝突予測時間が第1閾値と第2閾値の間の第3閾値未満である場合、減速の程度に基づく開始条件が成立していると判定される。
 ここで、減速の程度は、事前制動による減速度の発生状況を表しており、例えば、所定値を超える減速度が連続して検出された回数として表される。よって、制動回避支援は、事前制動による減速の程度が大きくなり、かつ、物体に接近した車両がある程度制動されている場合に事前制動から介入制動へ移行する。そして、支援制御部22は、減速の程度に基づく開始条件が成立していると判定した場合に介入制動を開始し(S25)、成立していないと判定した場合に事前制動を継続する(S27)。
 S25にて介入制動を開始すると、支援制御部22は、図4に示す処理を行う。支援制御部22は、介入制動を実行中であるか否かを判定する(S31)。そして、実行中であると判定した場合に処理がS32に進み、判定しなかった場合に処理が終了する。
 S31にて介入制動を実行中であると判定した場合、支援制御部22は、介入制動の継続条件が成立しているか否かを判定する(S32)。具体的には、車速が0ではなく、かつ、制動時間が閾値未満である場合、継続条件が成立していると判定される。ここで、制動時間とは、介入制動の継続時間であり、その閾値は、車両の走行条件に応じて設定される。よって、介入制動の継続は、衝突可能性の代わりに、車両の制動状態に依存している。そして、支援制御部22は、継続条件が成立していると判定した場合、介入制動を継続し(S33)、成立していないと判定した場合、介入制動を終了する(S34)。
 上記のような処理によって、支援制御部22は、制動回避支援による減速の程度が閾値を超える場合、物体との衝突可能性に基づいて実行される事前制動から、衝突可能性に基づかずに実行される介入制動に制動回避支援の状態を移行させる。よって、低精度の検出結果に基づいて物体との衝突可能性が判定されても、該判定結果に基づいて制動回避支援の解除の要否が判断されずにすむ。これにより、衝突回避支援による制動回避支援を開始した後に、制動回避支援による減速の程度が閾値を超える場合、制動回避支援の解除が抑制されることになる。
 図5は、図2に示す衝突回避支援方法を示す図である。図5には、車両C前方に存在する歩行者Pとの衝突回避支援を行う状況として、車両Cと歩行者Pの位置関係(a)及び歩行者Pの検出状況(b)が時系列的に示されている。
 図5に示すように、衝突回避支援装置10は、歩行者Pとの衝突予測時間が閾値未満になると事前制動により制動回避支援を開始し、事前制動による減速の程度が閾値を超えると介入制動により制動回避支援を継続し、歩行者Pとの衝突回避支援を行う。
 ここで、衝突回避支援装置10では、減速の程度が大きくなるほど、例えばレーダ物標の誤マッチングにより、物体の検出精度が低下し易くなる。すなわち、例えば図5に示すように車両Cの前方正面に検出されるべき歩行者Pを車両Cの前方側方に検出したり、検出しなくなったり(見失ったり)する状況が生じ易くなる。なお、図5には、×印によりレーダ物標T1が示されている。すると、実際には衝突可能性が高い状況にもかかわらず、衝突可能性が低いと誤判定され、制動回避支援の解除が必要であると判定されることで、運転者にとって不自然な状態で制動回避支援が解除される場合がある。
 このため、衝突回避支援装置10は、制動回避支援による減速の程度が大きくなるほど制動回避支援の解除を抑制する。なお、制動回避支援による減速の程度が小さい場合、物体の検出精度が低下し難いので、制動回避支援の解除を抑制しなくてもよい。
 解除の抑制は、例えば、衝突可能性に基づいて実行される事前制動から、衝突可能性に基づかずに実行される介入制動に制動回避支援の状態を移行させることにより行われる。これにより、制動回避支援による減速の程度に起因して物体の検出精度が低下した場合でも、減速の程度が大きくなるほど制動回避支援の解除が抑制されるので、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる。
 以上説明したように、本発明の第1実施形態に係る衝突回避支援装置10及び方法によれば、衝突回避支援による制動回避支援を開始した後に、制動回避支援による減速の程度が大きくなるほど制動回避支援の解除が抑制される。ここで、物体の検出精度は、制動回避支援による減速の程度が大きくなるほど低下し易くなる。よって、制動回避支援による減速の程度が大きくなり物体の検出精度が低下し易くなるほど制動回避支援の解除が抑制されるので、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる。
 また、制動回避支援による減速の程度が閾値を超える場合、制動回避支援の解除が抑制されてもよい。
 また、制動回避支援による減速の程度が閾値を超える場合、物体との衝突可能性に基づいて実行される事前制動から、衝突可能性に基づかずに実行される介入制動に制動回避支援の状態が移行されてもよい。
 また、事前制動の継続時間が閾値を超えるまで、又は車両が停止し若しくは車両の停止が推定されるまで介入制動が継続されてもよい。
 以下では、図6から図8を参照して、本発明の第2実施形態に係る衝突回避支援装置20及び方法について説明する。第2実施形態に係る衝突回避支援装置20及び方法は、レーダセンサ12及び画像センサ14を用いて車両と物体の衝突回避支援を行うものである。なお、第1実施形態と重複する説明については省略する。
 まず、図6を参照して、第2実施形態に係る衝突回避支援装置20の構成について説明する。図6は、本発明の第2実施形態に係る衝突回避支援装置20を示すブロック図である。
 図6に示すように、衝突回避支援装置20は、車速センサ11、レーダセンサ12、画像センサ14、支援実行部13及びECU40(Electronic Control Unit)を備える。車速センサ11、レーダセンサ12の構成及び機能については、第1実施形態と同様である。
 画像センサ14は、車両周囲を撮像し撮像結果に基づいて物体を検出する画像検出部として機能する。画像センサ14としては、例えば、ビデオカメラ、ステレオカメラ、赤外線カメラが用いられる。画像センサ14は、例えば車室前面に設けられ、車両周囲を撮像し撮像結果に基づいて物体を検出する。画像センサ14は、物体の位置及び物体の横幅の検出結果をECU40に供給する。
 支援実行部13は、レーダセンサ12による検出結果と画像センサ14による検出結果とを用いて生成される合成物標に基づいて、車両と物体の衝突回避支援を実行する。
 ECU40は、レーダ物標生成部21、画像物標生成部41、合成物標生成部42及び支援制御部43を備える。レーダ物標生成部21の構成及び機能については、第1実施形態と同様である。
 画像物標生成部41は、画像センサ14から供給される検出結果に基づいて画像物標を生成する。画像物標は、物体までの縦距離・横距離及び物体の横幅に関する情報を有する。物体の横幅とは、車両の進行方向と直交する方向における物体の幅である。
 合成物標生成部42は、レーダ物標と画像物標を融合(フュージョン)して合成物標を生成する。合成物標は、レーダ物標と画像物標を照合することにより生成される。合成物標は、物体までの縦距離・横距離、物体の相対速度及び横幅に関する情報を有する。合成物標は、レーダ物標又は画像物標単独の場合よりも高い検出精度を実現する。
 支援制御部43は、合成物標を用いて車両と物体の衝突回避支援の実行を制御する。支援制御部43は、合成物標を用いて物体との衝突予測時間及び衝突可能性を求め、衝突予測時間及び衝突可能性に応じた制御信号を支援実行部13に供給する。支援制御部43は、衝突予測時間及び衝突可能性に応じて、制動支援では、操舵回避支援及び制動回避支援の少なくとも一方の実行を制御する。支援制御部43は、制動回避支援では、制動回避支援の開始、終了(解除)及び制動量を制御するための制御信号を支援実行部13に供給する。
 ここで、支援制御部43は、衝突回避支援による制動回避支援を開始した後に、レーダセンサ12により物体が検出されない場合、制動回避支援による車両の減速の程度が大きくなるほど制動回避支援の解除を抑制する。また、支援制御部43は、制動回避支援による減速の程度が閾値を超える場合、制動回避支援の解除を抑制してもよい。
 つぎに、図7から図8を参照して、第2実施形態に係る衝突回避支援方法及び衝突回避支援装置20の動作について説明する。
 図7は、第2実施形態に係る衝突回避支援方法の詳細を示すフローチャートである。図7に示すように、画像センサ14は、車両周囲を撮像し撮像結果に基づいて物体を検出する(S41)。レーダセンサ12は、電磁波を送信し、物体により反射される該電磁波の受信結果に基づいて物体を検出する(S42)。なお、S41とS42の実行順序は、互いに前後してもよい。
 支援実行部14は、画像センサ14による検出結果とレーダセンサ12による検出結果とを用いて生成される合成物標に基づいて、車両と物体の衝突回避支援を実行する(S43)。ここで、支援制御部43は、衝突回避支援による制動回避支援を開始した後に、レーダセンサ12により物体が検出されない場合、制動回避支援による車両の減速の程度が大きくなるほど制動回避支援の解除を抑制する(S43a)。
 支援制御部43は、第1実施形態について図3及び図4を参照して説明した場合と同様に、制動回避支援を制御する。第2実施形態では、事前制動によって減速の程度が大きくなって、レーダセンサ12により物体が検出されない場合に制動回避支援の状態が事前制動から介入制動へ移行することで、制動回避支援の解除が抑制される。
 そして、支援制御部43は、レーダセンサ12により物体が検出されず、制動回避支援による減速の程度が閾値を超える場合、物体との衝突可能性に基づいて実行される事前制動から、衝突可能性に基づかずに実行される介入制動に制動回避支援の状態を移行させる。よって、低精度の検出結果に基づいて物体との衝突可能性が判定されても、該判定結果に基づいて制動回避支援の解除の要否が判断されずにすむ。これにより、レーダセンサ12により物体が検出されず、衝突回避支援による制動回避支援を開始した後に、制動回避支援による減速の程度が閾値を超える場合、制動回避支援の解除が抑制されることになる。
 図8は、図7に示す衝突回避支援方法を示す図である。図8には、車両前方に存在する歩行者Pとの衝突回避支援を行う状況として、車両Cと歩行者Pの位置関係(a)及び歩行者Pの検出状況(b)が時系列的に示されている。
 図8に示すように、衝突回避支援装置20は、歩行者Pとの衝突予測時間が閾値未満になると事前制動により制動回避支援を開始し、レーダセンサ12により歩行者Pが検出されず、制動回避支援による減速の程度が閾値を超えると介入制動により制動回避支援を継続し、歩行者Pとの衝突回避支援を行う。
 ここで、衝突回避支援装置20では、減速の程度が大きくなるほど、例えばレーダ物標の誤マッチングにより、物体の検出精度が低下し易くなる。すなわち、車両Cの前方正面に検出されるべき歩行者Pを車両の前方側方に検出したり、例えば図8に示すように検出しなくなったり(消失したり)する状況が生じ易くなる。なお、図8には、×印によりレーダ物標T1が示され、幅広のH印により画像物標T2が示されている。すると、実際には衝突可能性が高い状況にもかかわらず、衝突可能性が低いと誤判定され、制動回避支援の解除が必要であると判定されることで、運転者にとって不自然な状態で制動回避支援が解除される場合がある。
 このため、衝突回避支援装置20は、レーダセンサ12により物体が検出されない場合、制動回避支援による減速の程度が大きくなるほど制動回避支援の解除を抑制する。なお、制動回避支援による減速の程度が小さい場合、物体の検出精度が低下し難いので、制動回避支援の解除を抑制しなくてもよい。
 解除の抑制は、例えば、衝突可能性に基づいて実行される事前制動から、衝突可能性に基づかずに実行される介入制動に制動回避支援の状態を移行させることにより行われる。これにより、制動回避支援による減速の程度に起因して物体の検出精度が低下した場合でも、減速の程度が大きくなるほど制動回避支援の解除が抑制されるので、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる。
 以上説明したように、本発明の第2実施形態に係る衝突回避支援装置20及び方法によれば、衝突回避支援による制動回避支援を開始した後に、物体検出部により物体が検出されない場合、制動回避支援による減速の程度が大きくなるほど制動回避支援の解除が抑制される。ここで、物体の検出精度は、制動回避支援による減速の程度が大きくなるほど低下し易くなる。よって、制動回避支援による減速の程度が大きくなり物体の検出精度が低下し易くなるほど制動回避支援の解除が抑制されるので、物体の検出精度の低下により運転者にとって不自然な状態で制動回避支援が解除されることを抑制できる。
 なお、前述した実施形態は、本発明に係る衝突回避支援装置10、20及び衝突回避支援方法の最良な実施形態を説明したものであり、本発明に係る衝突回避支援装置10、20及び衝突回避支援方法は、本実施形態に記載したものに限定されるものではない。本発明に係る衝突回避支援装置10、20及び衝突回避支援方法は、各請求項に記載した発明の要旨を逸脱しない範囲で本実施形態に係る衝突回避支援装置10、20及び衝突回避支援方法を変形し、または他のものに適用したものであってもよい。
 10、30…衝突回避支援装置、11…車速センサ、12…レーダセンサ、13…支援実行部、14…画像センサ、20、30…ECU、21…レーダ物標生成部、22、43…支援制御部、41…画像物標生成部、42…合成物標生成部。

Claims (7)

  1.  車両と物体の衝突回避支援を行う衝突回避支援装置であって、
     前記車両周囲の前記物体を検出する物体検出部と、
     前記物体検出部による検出結果に基づいて前記衝突回避支援の実行を制御し、前記衝突回避支援による制動回避支援を開始した後に、前記制動回避支援による前記車両の減速の程度が大きくなるほど前記制動回避支援の解除を抑制する支援制御部と
    を備える衝突回避支援装置。
  2.  前記支援制御部は、前記制動回避支援による前記減速の程度が閾値を超える場合、前記制動回避支援の解除を抑制する、請求項1に記載の衝突回避支援装置。
  3.  前記支援制御部は、前記制動回避支援による前記減速の程度が前記閾値を超える場合、前記物体との衝突可能性に基づいて実行される事前制動から、前記衝突可能性に基づかずに実行される介入制動に前記制動回避支援の状態を移行させる、請求項2に記載の衝突回避支援装置。
  4.  前記支援制御部は、前記事前制動の継続時間が閾値を超えるまで、又は前記車両が停止し若しくは前記車両の停止が推定されるまで前記介入制動を継続させる、請求項3に記載の衝突回避支援装置。
  5.  前記物体検出部は、電磁波を送信し、前記物体により反射される該電磁波の受信結果に基づいて前記物体を検出する、請求項1~4のいずれか一項に記載の衝突回避支援装置。
  6.  車両と物体の衝突回避支援を行う衝突回避支援装置であって、
     前記車両周囲を撮像し撮像結果に基づいて前記物体を検出する画像検出部と、
     電磁波を送信し、前記物体により反射される該電磁波の受信結果に基づいて前記物体を検出する物体検出部と、
     前記画像検出部による検出結果と前記物体検出部による検出結果とを用いて生成される合成物標に基づいて前記衝突回避支援の実行を制御し、前記衝突回避支援による制動回避支援を開始した後に、前記物体検出部により前記物体が検出されない場合、前記制動回避支援による前記車両の減速の程度が大きくなるほど前記制動回避支援の解除を抑制する支援制御部と
    を備える衝突回避支援装置。
  7.  車両と物体の衝突回避支援を行う衝突回避支援方法であって、
     前記車両周囲の前記物体を検出し、
     前記物体の検出結果に基づいて前記衝突回避支援の実行を制御するに際して、前記衝突回避支援による制動回避支援を開始した後に、前記制動回避支援による前記車両の減速の程度が大きくなるほど前記制動回避支援の解除を抑制すること
    を含む衝突回避支援方法。
PCT/JP2012/078023 2012-10-30 2012-10-30 衝突回避支援装置及び衝突回避支援方法 WO2014068668A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078023 WO2014068668A1 (ja) 2012-10-30 2012-10-30 衝突回避支援装置及び衝突回避支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078023 WO2014068668A1 (ja) 2012-10-30 2012-10-30 衝突回避支援装置及び衝突回避支援方法

Publications (1)

Publication Number Publication Date
WO2014068668A1 true WO2014068668A1 (ja) 2014-05-08

Family

ID=50626646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078023 WO2014068668A1 (ja) 2012-10-30 2012-10-30 衝突回避支援装置及び衝突回避支援方法

Country Status (1)

Country Link
WO (1) WO2014068668A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103223A (ja) * 2014-11-28 2016-06-02 株式会社デンソー 車両制御装置
EP3037308A1 (en) * 2014-12-26 2016-06-29 Toyota Jidosha Kabushiki Kaisha Vehicle braking control apparatus
TWI800093B (zh) * 2021-11-12 2023-04-21 財團法人資訊工業策進會 碰撞警示系統及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267200A (ja) * 2002-03-14 2003-09-25 Nissan Motor Co Ltd 車両用制動制御装置
JP2009161171A (ja) * 2008-01-04 2009-07-23 Wabco Gmbh 運転者援助システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267200A (ja) * 2002-03-14 2003-09-25 Nissan Motor Co Ltd 車両用制動制御装置
JP2009161171A (ja) * 2008-01-04 2009-07-23 Wabco Gmbh 運転者援助システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103223A (ja) * 2014-11-28 2016-06-02 株式会社デンソー 車両制御装置
EP3037308A1 (en) * 2014-12-26 2016-06-29 Toyota Jidosha Kabushiki Kaisha Vehicle braking control apparatus
TWI800093B (zh) * 2021-11-12 2023-04-21 財團法人資訊工業策進會 碰撞警示系統及方法

Similar Documents

Publication Publication Date Title
US9487195B2 (en) Collision avoidance assistance device and collision avoidance assistance method
JP6308186B2 (ja) 衝突回避支援装置
US20190100197A1 (en) Collision avoidance assist apparatus
US11014554B2 (en) Vehicle control apparatus and vehicle control method
CN108156822B (zh) 车辆控制装置,以及车辆控制方法
JP6561584B2 (ja) 車両制御装置、及び車両制御方法
US9707973B2 (en) Drive assist device
WO2018056212A1 (ja) 物体検知装置及び物体検知方法
WO2018074287A1 (ja) 車両制御装置
JP2015027846A (ja) 車両制御装置
US11136013B2 (en) Vehicle control apparatus and vehicle control method
CN108602494B (zh) 车辆控制装置以及车辆控制方法
JP2017117344A (ja) 走行支援装置
WO2016158238A1 (ja) 車両制御装置、及び車両制御方法
US9643576B2 (en) Collision avoidance assist device and collision avoidance assist method
WO2019012995A1 (ja) 走行支援装置
JP6198019B2 (ja) 車両の制御装置
WO2014068668A1 (ja) 衝突回避支援装置及び衝突回避支援方法
US20190143966A1 (en) Vehicle control apparatus
JP6075575B2 (ja) 車両の制御装置
JP2014118048A (ja) 運転支援装置
WO2017154471A1 (ja) 横断判定装置
JP2008279863A (ja) 衝突緩和装置
JP2009217728A (ja) 車両の障害物検知装置
JP6156655B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP