WO2014067826A1 - Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible - Google Patents

Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible Download PDF

Info

Publication number
WO2014067826A1
WO2014067826A1 PCT/EP2013/072152 EP2013072152W WO2014067826A1 WO 2014067826 A1 WO2014067826 A1 WO 2014067826A1 EP 2013072152 W EP2013072152 W EP 2013072152W WO 2014067826 A1 WO2014067826 A1 WO 2014067826A1
Authority
WO
WIPO (PCT)
Prior art keywords
phr
tire
acid
rubber composition
tread
Prior art date
Application number
PCT/EP2013/072152
Other languages
English (en)
Inventor
Hiroko Fukasawa
Chika OCHIAI
Salvatore Pagano
Original Assignee
Compagnie Generale Des Etablissements Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A. filed Critical Compagnie Generale Des Etablissements Michelin
Priority to EP13779885.6A priority Critical patent/EP2914442B1/fr
Publication of WO2014067826A1 publication Critical patent/WO2014067826A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component

Definitions

  • the invention relates to rubber compositions used as tire treads for vehicles, pneumatic or non-pneumatic, in particular "winter” tires able to roll on floors covered with ice or ice without being provided with nails (also called bandages “studless”).
  • It relates more particularly to vehicle tires, especially winter tires, the tread of which is specifically adapted for driving under conditions called “dry ice” or “cold ice” corresponding to a temperature range typically below -5. ° C., while also satisfying the so-called “melting ice” conditions encountered in a temperature range of between -5 ° C. and 0 ° C., a range in which, in a known manner, the pressure of the tires at the passage of a vehicle causes a superficial melting of the ice which is covered with a thin film of water harmful to the adhesion of these bandages.
  • water-soluble powders include, for example, the use of cellulose powder, PVA (polyvinyl alcohol) or starch, powders of guar gum or xanthan gum, or powder magnesium or potassium sulphate (see, for example, patent applications JP 3-159803, JP 2002-211203, WO 2008/080750, WO 2008/080751, WO 2010/009850, WO 2011/073188, WO 2011/086061, WO 2012/052331, WO 2012/085063).
  • PVA polyvinyl alcohol
  • starch powders of guar gum or xanthan gum
  • powder magnesium or potassium sulphate see, for example, patent applications JP 3-159803, JP 2002-211203, WO 2008/080750, WO 2008/080751, WO 2010/009850, WO 2011/073188, WO 2011/086061, WO 2012/052331, WO 2012/085063.
  • expansion agents such as, for example, nitro, sulphonyl or azo compounds, are capable of liberating, during a thermal activation, for example during the vulcanization of the bandage, a large quantity of gas, in particular nitrogen, and thus lead to the formation of bubbles within a sufficiently soft material such as a rubber composition comprising such expansion agents.
  • foam bandages for winter bandages have been described for example in patent documents JP 2003-183434, JP 2004-091747, JP 2006-299031, JP 2007-039499, JP 2007-314683, JP2008-001826, JP 2008- 150413, EP 826,522, US 5,147,477, US 6,336,487, as well as in the more recent application WO 2011/064128.
  • the present invention relates to a tire whose tread comprises, in the unvulcanized state, a heat-expandable rubber composition comprising at least one diene elastomer, more than 50 phr of a non-reinforcing filler. black, optionally carbon black at a rate of less than 3 phr, between 2 and 25 phr of an expansion agent, between 2 and 25 phr of a hot-melt compound whose melting point is between 60 ° C. and 220 ° C, and between 5 and 50 phr of a photocurable liquid polymer resin.
  • the invention also relates to a bandage in the vulcanized state obtained after firing (vulcanization) of the green tire according to the invention as described above.
  • the bandages of the invention are particularly intended for equipping tourism-type motor vehicles, including 4x4 vehicles (four-wheel drive) and SUV vehicles ("Sport Utility Vehicles"), two-wheeled vehicles (including motorcycles) as vehicles.
  • industrial vehicles chosen in particular from vans and "heavy goods vehicles” (ie, metro, buses, road transport vehicles such as trucks, tractors).
  • the invention as well as its advantages will be readily understood in the light of the description and the following exemplary embodiments.
  • any range of values designated by the expression “between a and b” represents the range of values greater than "a” and less than "b” (i.e., terminals a and b excluded). while any range of values designated by the term “from a to b” means the range of values from "a" to "b” (i.e. including the strict limits a and b).
  • the bandage of the invention therefore has the essential characteristic that its tread, in the uncured state, comprises a heat-expandable rubber composition (at least for the upper part of the tread which comes into direct contact with the tread).
  • the surface of the road comprising at least: - a (at least one) diene elastomer;
  • elastomer or rubber, the two terms being synonymous
  • dienes monomers carrying two double bonds carbon - carbon, conjugated or not
  • the diene elastomers can be classified in known manner into two categories: those known as “essentially unsaturated” and those known as “essentially saturated”. Butyl rubbers, and for example copolymers of dienes and alpha-olefins of the EPDM type, fall into the category of essentially saturated diene elastomers, having a level of diene origin units which is low or very low, always less than 15% (mole%).
  • essentially unsaturated diene elastomer is understood to mean a diene elastomer derived at least in part from conjugated diene monomers having a proportion of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%). .
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • At least one diene elastomer of the highly unsaturated type in particular a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), polybutadienes (BR) and butadiene copolymers, copolymers of isoprene and mixtures of these elastomers.
  • a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), polybutadienes (BR) and butadiene copolymers, copolymers of isoprene and mixtures of these elastomers.
  • Such copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR), isoprene-copolymers of butadiene-styrene (SBIR) and mixtures of such copolymers.
  • SBR butadiene-styrene copolymers
  • BIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • SBIR isoprene-copolymers of butadiene-styrene
  • the elastomers can be for example block, statistical, sequenced, microsequenced, and be prepared in dispersion or in solution; they may be coupled and / or starred or functionalized with a coupling agent and / or starring or functionalization.
  • a coupling agent for example
  • functional groups comprising a C-Sn bond or amino functional groups such as benzophenone for example
  • silica for example, silanol or polysiloxane functional groups having a silanol end (as described, for example, in US Pat. No. 6,013,718), alkoxysilane groups (as described by US Pat.
  • Polybutadienes and in particular those having a 1,2-unit content of between 4% and 80%, or those having a cis-1,4 content of greater than 80%, polyisoprenes and copolymers of butadiene- styrene and in particular those having a styrene content of between 5% and 50% by weight and more particularly between 20% and 40%, a 1,2-butadiene content of the butadiene part of between 4% and 65%. %, a trans-1,4-linkage content of between 20% and 80%, butadiene-isoprene copolymers and in particular those having an isoprene content of between 5% and 90% by weight and a glass transition temperature.
  • Tg "Tg" - measured according to ASTM D3418-82) from -40 ° C to -80 ° C, the isoprene-styrene copolymers and in particular those having a styrene content of between 5% and 50% by weight and a Tg between -25 ° C and -50 ° C.
  • butadiene-styrene-isoprene copolymers are especially suitable those having a styrene content of between 5% and 50% by weight and more particularly of between 10% and 40%, an isoprene content of between 15% and 60%.
  • the diene elastomer is chosen from the group consisting of natural rubber, synthetic polyisoprenes and polybutadienes having a cis-1,4 bond ratio of greater than 90%, copolymers of butadiene-styrene and mixtures of these elastomers.
  • the heat-expandable rubber composition comprises 50 to 100 phr of natural rubber or synthetic polyisoprene, said synthetic rubber or synthetic polyisoprene can be used in particular in blending (mixing) with at most 50 phr of a polybutadiene having a cis-1,4 bond ratio greater than 90%.
  • the heat-expandable rubber composition comprises 50 to 100 phr of a polybutadiene having a cis-1,4 bond ratio greater than 90%, said polybutadiene may be used in particular in a blend with at most 50 phr of natural rubber or synthetic polyisoprene.
  • diene elastomers of the treads according to the invention could be associated, in a minor amount, synthetic elastomers other than diene, or even polymers other than elastomers, for example thermoplastic polymers.
  • non-black reinforcing filler is to be understood here any inorganic or organic filler other than carbon black, whatever its color (other than black) and its origin (natural or synthetic), sometimes referred to as “mineral” filler, "white” filler or “clear” filler as opposed to carbon black, this non-black filler being capable of reinforcing on its own, with no other means than a possible intermediate coupling agent, a composition rubber for manufacturing a tire tread, in other words able to replace, in its reinforcing function, a conventional tire grade carbon black for tread.
  • the non-black reinforcing filler is an inorganic filler, more particularly a filler of the siliceous or aluminous type, or a mixture of these two types of filler.
  • the silica (SiO 2 ) used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface area both less than 450 m 2 / g, preferably 30 to 400 m 2 / g.
  • Highly dispersible precipitated silicas are preferred, particularly when the invention is used for the manufacture of tires having a low rolling resistance; examples of such silicas include the "Ultrasil” 7000 silicas from Evonik, the "Zeosil” 1165 MP, 1135 MP and 1115 MP silicas from Rhodia, the "Hi-Sil” EZ150G silica from PPG. , the "Zeopol” silicas 8715, 8745 or 8755 of the Huber Company, the silicas as described in application WO 03/016387.
  • the reinforcing alumina (Al 2 O 3 ) preferably used is a highly dispersible alumina having a BET surface area ranging from 30 to 400 m 2 / g, more preferably between 60 and 250 m 2 / g, an average particle size of at most equal at 500 nm, more preferably at most equal to 200 nm.
  • aluminas "Baikalox A125” or "CR125” (Ba ⁇ kowski company), "APA-100RDX” (Congrua), "Aluminoxid C” (Degussa) or "AKP-G015" (Sumitomo Chemicals).
  • inorganic filler suitable for use in the rubber compositions according to the invention, mention may also be made of aluminum (oxide) hydroxides, aluminosilicates, titanium oxides, carbides or nitrides. silicon, all of the reinforcing type as described for example in the applications WO 99/28376, WO 00/73372, WO 02/053634, WO 2004/003067, WO 2004/056915.
  • the non-black reinforcing filler used in particular if it is a reinforcing inorganic filler such as silica, preferably has a BET surface area between 60 and 350 m2 / g.
  • An advantageous embodiment of the invention consists in using a non-black filler, in particular a reinforcing inorganic filler such as silica, having a high BET specific surface area, in a range of 130 to 300 m 2 / g, because of of the high reinforcing power recognized such charges.
  • non-black filler having a BET specific surface area of less than 130 m 2 / g, preferably in such a case between 60 and 130 m 2 / g (see examples WO03 / 002648 and WO03 / 002649 applications cited above).
  • non-black reinforcing filler is also understood to mean mixtures of different non-black reinforcing fillers, in particular inorganic fillers such as highly dispersible siliceous and / or aluminous fillers as described above.
  • such a reinforcing inorganic filler consists of nanoparticles whose average mass size is less than 500 nm, most often between 20 and 200 nm, in particular and more preferably between 20 and 150 ⁇ .
  • This average size can be measured in a well-known manner, after dispersion by ultrasonic deagglomeration of the load to be analyzed in water (or aqueous solution containing a surfactant), for example by means of a centrifugal sedimentometer with X-ray detection type "XDC” (X-rays Disk Centrifuge), marketed by Brookhaven Instruments, according to the following procedure: a suspension of 3.2 g of inorganic filler sample to be analyzed in 40 ml of water, by action for 8 minutes, at 60% power (60% of the maximum position of the "output control"), a 1500 W ultrasound probe (3/4 "Vibracell soniflator marketed by Bioblock); after sonification, 15 ml of the suspension is introduced into the rotating disc; after sedimentation for 120 minutes, the mass distribution of the particle sizes and the mean mass size of the particles d w are calculated by the software of the XDC sedimentometer.
  • XDC X-rays Disk Centrifuge
  • the BET surface area is determined in a known manner by gas adsorption using the Brunauer-Emmett-Teller method described in "The Journal of the American Chemical Society” Vol. 60, page 309, February 1938, specifically according to the French standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points) - gas: nitrogen - degassing: time at 160 ° C - relative pressure range p / po: 0.05 at 0.17).
  • the CTAB specific surface is the external surface determined according to the French standard NF T 45-007 of November 1987 (method B).
  • the non-black reinforcing filler is silica.
  • the level of non-black reinforcing filler in particular silica, is between 50 and 150 phr, especially in a range of 70 to 120 phr.
  • a bifunctional coupling agent intended to ensure a sufficient chemical and / or physical connection between the charge (surface of its particles) and the diene elastomer.
  • bifunctional organosilanes or polyorganosiloxanes are used.
  • polysulfide silanes, called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described for example in the applications WO03 / 002648 (or US 2005/016651) and WO03 / 002649 (or US 2005/016650).
  • x is an integer of 2 to 8 (preferably 2 to 5);
  • - A is a divalent hydrocarbon radical (preferably Ci alkylene groups -C 8 arylene groups or C 6 -C 2, especially in Cl- Cio alkylene, in particular C1-C4, particularly propylene);
  • R radicals substituted or unsubstituted, identical or different, represent an alkyl group Ci-Cig, cycloalkyl C 5 -C 8 aryl or C 6 -C 8 (preferably alkyl, Ci-C 6 , cyclohexyl or phenyl, especially C 1 -C 4 alkyl groups, more particularly methyl and / or ethyl).
  • R radicals substituted or unsubstituted, identical or different, represent an alkoxy group or Ci-Ci 8 cycloalkoxy, C 5 -C 8 (preferably a group selected from alkoxyls Cg and C cycloalkoxyls 5 -C 8 , more preferably still a group selected from C 1 -C 4 alkoxyls, in particular methoxyl and ethoxyl).
  • polysulfurized silanes mention may be made more particularly of bis (3-trimethoxysilylpropyl) or bis (3-triethoxysilylpropyl) polysulfides.
  • bis (3-triethoxysilylpropyl) tetrasulfide, abbreviated as TESPT, or bis (triethoxysilylpropyl) disulfide, abbreviated as TESPD is especially used.
  • polysulphides in particular disulphides, trisulphides or tetrasulphides
  • bis (monoalkoxyl (C 1 -C 4 ) -dialkyl (C 1 -C 4 ) silylpropyl) more particularly bis-monoethoxydimethylsilylpropyl tetrasulfide, such as described in patent application WO 02/083782 (or US 2004/132880).
  • the content of coupling agent is preferably between 2 and 12 phr, more preferably between 3 and 8 phr.
  • the rubber composition of the tread of the bandage of the invention is devoid of carbon black or comprises less than 3 phr, preferably less than 2 phr, in order to prevent the carbon black from being able to play, because of its known anti-UV properties, an antagonistic role therefore undesirable compared to the targeted photocrosslinking of the photocurable liquid polymer resin.
  • carbon black is used in a very small amount, between 0.05 and 2.0 phr, in particular between 0.05 and 1.5 phr, a narrow concentration range in which the black retains its function of black coloration of the composition but no longer fills that of anti-UV agent.
  • Suitable carbon blacks are all carbon blacks capable of bringing a black color to the rubber compositions, in particular blacks of the HAF, ISAF and SAF type known to those skilled in the art and conventionally used in bandages.
  • the reinforcing carbon blacks of the series (ASTM grades) 100, 200 or 300 used in the treads of these tires for example NI 15, N134, N234, N326, N330, N339, N347, N375
  • those of the non-reinforcing (because less structured) type of the higher series 400 to 700 for example the blacks N660, N683, N772.
  • Non-reinforcing blacks called "ink blacks" used as black pigments in printing inks and paints could also be used as examples.
  • the carbon blacks can be used in the isolated state, as commercially available, or in any other form, for example as a carrier for some of the rubber additives used.
  • Expansion agent and associated heat fusible compound
  • blowing agent in English
  • a blowing agent is a thermally decomposable compound, intended to release during a thermal activation, for example during the vulcanization of the bandage, a significant amount of gas (for example nitrogen or carbon dioxide) and thus lead to the formation of bubbles.
  • gas for example nitrogen or carbon dioxide
  • chemical expansion agents of the endothermic or exothermic type.
  • chemical expansion agents are used, more preferably exothermic chemical expansion agents, for example diazo, dinitroso, hydrazide, carbazide, semi-carbazide, tetrazole, carbonate or citrate compounds, as they have been used. described especially in the aforementioned application WO 2011/064128.
  • the blowing agent preferably used is a carbonate or hydrogencarbonate, in particular a carbonate or hydrogencarbonate (also called bicarbonate) of sodium (Na), potassium (K) or ammonium (NH 4 ). More preferably, it is a carbonate selected from the group consisting of sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, and mixtures of such carbonates (including, of course, their hydrated forms) .
  • Such an expansion agent has the advantage of only releasing carbon dioxide and water during its decomposition; it is therefore particularly favorable to the environment.
  • Hydrogen carbonate or sodium bicarbonate (NaHCO 3) is particularly used.
  • the content of this blowing agent is between 5 and 25 phr, more preferably between 8 and 20 phr.
  • An essential characteristic of the invention is to add to the previously described blowing agent a hot-melt compound whose melting temperature is between 60 ° C and 220 ° C, preferably between 100 ° C and 200 ° C, more preferably between 120 ° C and 180 ° C.
  • the content of this hot-melt compound is between 2 and 25 phr, preferably between 2 and 20 phr, especially between 2 and 15 phr. Its function is to turn into a liquid in the specific temperature range indicated above, before or at the moment when the blowing agent thermally decomposes and releases gas bubbles.
  • any compound having a melting temperature in the areas indicated above is likely to be suitable.
  • the rubber additives known to those skilled in the art may be used as being compatible, both in their form (for example in powder form) and by their chemical nature, with conventional rubber compositions for bandages.
  • thermoplastic polymers such as polyethylene or polypropylene
  • thermoplastic hydrocarbon plasticizing resins with a high glass transition temperature (Tg) whose melting temperature (or what is considered equivalent here, the softening temperature measured for example according to the known "Ring and Bail” method - ISO 4625 standard ) is included in the above fields
  • Tg glass transition temperature
  • urea or a thermofusible derivative of urea such compounds have been described in more detail in the aforementioned application WO 2011/064128.
  • Melting temperature is a well-known basic physical constant (available for example in "Handbook of Chemistry and Physics") of hot melt compounds, organic or inorganic; it can be controlled by any known method, for example by the Thiele method, the Kofler bench method or by DSC analysis.
  • the hot melt compound preferably used is a carboxylic acid. Any carboxylic acid having a melting temperature between 60 ° C and 220 ° C (so solid at 23 ° C), preferably between 100 ° C and 200 ° C, in particular between 120 ° C and 180 ° C, is likely to agree.
  • this carboxylic acid has the function of chemically activating (ie, by chemical reaction) the blowing agent which, during its decomposition thermal, will release much more gas bubbles (C0 2 and H 2 0) than if it was used alone.
  • the pKa (Ka acid constant) of the carboxylic acid is greater than 1, more preferably between 2.5 and 12, in particular between 3 and 10.
  • the carboxylic acid comprises, along its hydrocarbon chain, from 2 to 22 carbon atoms, preferably from 4 to 20 carbon atoms.
  • the aliphatic monoacids preferably comprise, along their hydrocarbon chain, at least 16 carbon atoms; mention may be made, for example, of palmitic acid (Cl 6), stearic acid (Cl 8), nonadecanoic acid (Cl 9), behenic acid (C 20) and their various mixtures.
  • the aliphatic diacids preferably comprise, along their hydrocarbon chain, from 2 to 10 carbon atoms; mention may be made, for example, of oxalic acid (C2), malonic acid (C3), succinic acid (C4), glutaric acid (C5), adipic acid (C6), pimellic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10) and their various mixtures.
  • aromatic monoacid there may be mentioned for example benzoic acid.
  • the acids having functional groups may be monoacids, diacids or triacids, of the aliphatic type as aromatic; examples that may be mentioned include tartaric acid, malic acid, maleic acid, glycolic acid, ⁇ -ketoglutaric acid, salicylic acid, phthalic acid or citric acid; .
  • the carboxylic acid is chosen from the group consisting of palmitic acid, stearic acid, nonadecanoic acid, behenic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimellic acid, suberic acid, azelaic acid, sebacic acid, benzoic acid, tartaric acid, malic acid, maleic acid, glycolic acid, ⁇ -ketoglutaric acid, salicylic acid, phthalic acid, citric acid and mixtures of these acids.
  • the carboxylic acid is selected from the group consisting of malic acid, ⁇ -ketoglutaric acid, citric acid, stearic acid and mixtures thereof. More preferably still, citric acid, stearic acid or a mixture of these two acids is used.
  • the total amount of blowing agent (in particular of carbonate or hydrogencarbonate) and of hot-melt compound (in particular of carboxylic acid) is greater than 10 phr, preferably between 10 and 40 phr. This total amount is more preferably greater than 15 phr, in particular between 15 and 40 phr.
  • Another essential feature of the present invention is the use of a photocurable liquid polymer resin in the rubber composition forming at least the surface of the tread according to the invention, that is to say the portion of the tread that is intended to come into contact with the road during the rolling of the tread.
  • This polymer may be an oligomer, a prepolymer, a homopolymer or a copolymer.
  • Its essential characteristic is that it is on the one hand liquid (at ambient temperature, ie 23 ° C) in the non (photo) crosslinked state and on the other functionalized that is to say carrying one or several groups or functions crosslinkable (polymerizable) under the action of UV radiation. The consequence is a hardening of the rubber matrix comprising this type of polymer, when this matrix, at least its surface, is exposed to UV.
  • this polymer is an oligomer, typically having 3 to 20 monomer units.
  • the number of functions capable of reacting under the action of UV is preferably within a range of 1 to 4 per oligomeric hydrocarbon backbone.
  • the crosslinkable function or functions are more preferably in the telechelic position, that is to say at the ends of said oligomeric hydrocarbon backbone.
  • a photocrosslinkable resin of the radical type (radical polymerizing) or cationic (cationic polymerizing) type is used.
  • the photocurable resin is selected from the group consisting of acrylate, methacrylate, epoxide, oxetane, unsaturated polyester, vinyl ether, vinylester resins, and mixtures thereof.
  • Such denominations refer in a well-known manner to the nature of the photo-crosslinkable (or photo-polymerizable) functional groups carried by the polymer (or preferentially oligomeric) constituting the hydrocarbon backbone of these resins.
  • the photocurable resin used is an acrylate resin (for example, monoacrylate, diacrylate, triacrylate, epoxy-acrylate, epoxy-diacrylate, urethane-acrylate, urethane-diacrylate) or a methacrylate resin (eg monomethacrylate, diamethacrylate, urethane-monomethacrylate, urethane-dimethacrylate).
  • acrylate resin for example, monoacrylate, diacrylate, triacrylate, epoxy-acrylate, epoxy-diacrylate, urethane-acrylate, urethane-diacrylate
  • methacrylate resin eg monomethacrylate, diamethacrylate, urethane-monomethacrylate, urethane-dimethacrylate.
  • fumarate resins for example monofumarate, difumarate
  • maleate for example monomaleate, dimaleate
  • mixtures of such resins include fumarate resins (for example monofumarate, difumarate), maleate (for example monomaleate, dimaleate), and mixtures of such resins.
  • the liquid polymer or oligomer constituting the resin is a diene-type polymer; in particular, this diene polymer, by liquid definition, is preferably a polybutadiene or polyisoprene bearing the photocrosslinkable functional group.
  • the photocurable liquid polymer resin is a poly (butadiene-acrylate) or a poly (butadiene-methacrylate) or a mixture of both.
  • the weight average mass (denoted Mw) of the liquid polymer described above, in particular when it is a liquid diene polymer, is preferably between 200 and 5000 g / mol. This size is well known to those skilled in the art, available especially from polymer suppliers, also measurable by conventional techniques such as GPC ("Gel Permeation Chromatography") or SEC ("Size Exclusion Chromatography”).
  • the SEC analysis for example, consists in separating the macromolecules in solution according to their size through columns filled with a porous gel; the molecules are separated according to their hydrodynamic volume, the larger ones being eluted first.
  • the sample to be analyzed is simply solubilized beforehand in a suitable solvent, for example tetrahydrofuran at a concentration of 1 g / liter. Then the solution is filtered on a filter, for example porosity 0.45 ⁇ , before injection into the apparatus.
  • the equipment used is for example a chromatographic chain "Waters alliance".
  • the elution solvent is for example tetrahydrofuran
  • the flow rate is 0.7 ml / min
  • the system temperature is 35 ° C.
  • a set of 4 "Waters” columns in series (denominations “Styragel HMW7", “Styragel HMW6E", and two “Styragel HT6E”) are used.
  • the injected volume of the solution of the polymer sample is for example 100 ⁇ .
  • the detector is a differential refractometer (for example “Waters 2410") that can be equipped with associated data mining software (for example “Waters Millenium”).
  • a Moore calibration is conducted with a series of low Ip (less than 1.2) polystyrene commercial standards of known molar masses covering the field of masses to be analyzed.
  • the rubber composition may also comprise, in combination with the photo-crosslinkable liquid polymer resin previously described, a photoinitiator intended to promote, accelerate the process of surface photocrosslinking of the tread when the latter is exposed to UV radiation. .
  • the photoinitiators are stable compounds able to release, when exposed to a light of appropriate wavelength, radical or ionic species which will favor and accelerate photocrosslinking or photooxidation processes.
  • These usable photoinitiators are preferably of the radical or cationic type. Such compounds are commonly used in the fields of photopolymerization of multifunctional monomers, surface treatment of materials with protective coatings, graphic arts and electronics for the production of microcircuits. They have also been described (see patent application WO 2006/077059) in photo-oxidizable treads having improved adhesion on a wet road.
  • cationic initiators are onium salts, more particularly sulphonium salts such as triarylsulphonium salts or iodonium salts such as diaryliodonium salts.
  • a photoinitiator of the radical type is preferably used, in particular those chosen from the group consisting of benzal ketals (especially diketals), benzoins (in particular benzoin ethers) and ⁇ , ⁇ -dialkoxy. acetophenones, ⁇ -hydroxyalkylphenones, ⁇ -aminoaromatic ketones (or ⁇ -aminoalkylphenones), acylphosphine oxides, benzophenones or thioxanthones in combination with a hydrogen donor (eg, a tertiary amine), and mixtures of such compounds.
  • a hydrogen donor eg, a tertiary amine
  • photoinitiator preferably between 0.1 and 10 phr, more preferably between 0.2 and 5 phr.
  • the photoinitiators previously described may be used alone when exposed to UV radiation or, when exposed to visible light, in combination with photosensitizers capable of activating their own photo-oxidative action.
  • photosensitizers are, for example, dyes such as phthalenes (eosin, erythrosine, ethyl eosin, phloxine, bengal rose) and thiazines (thionine and methylene blue).
  • photo-initiators will be preferentially chosen in such a way that their UV absorption spectrum and the emission spectrum of the light source (whether natural or artificial) responsible for the photooxidation of the tread, do indeed have a recovery zone. 4.5.
  • Various additives are possible to be used without photosensitizers.
  • the heat-expandable rubber composition may also comprise all or part of the usual additives normally used in tread rubber compositions, such as, for example, protective agents such as anti-ozone waxes, chemical antiozonants, anti-oxidants , plasticizing agents, reinforcing resins, a crosslinking system based on either sulfur, or sulfur and / or peroxide and / or bismaleimide donors, vulcanization accelerators, vulcanization activators.
  • protective agents such as anti-ozone waxes, chemical antiozonants, anti-oxidants , plasticizing agents, reinforcing resins, a crosslinking system based on either sulfur, or sulfur and / or peroxide and / or bismaleimide donors, vulcanization accelerators, vulcanization activators.
  • thermo-expandable rubber composition also comprises a liquid plasticizer (at 20 ° C) whose function is to soften the matrix by diluting the diene elastomer and the reinforcing filler; its Tg (glass transition temperature) is by definition less than -20 ° C, preferably less than -40 ° C.
  • this liquid plasticizer is used at a relatively reduced rate, such that the weight ratio of non-black reinforcing filler on liquid plasticizer is greater than 2.0. More preferably greater than 2.5, in particular greater than 3.0.
  • any extender oil whether aromatic or non-aromatic, any liquid plasticizer known for its plasticizing properties vis-à-vis diene elastomers, is usable.
  • these plasticizers or these oils are liquids (that is to say, as a reminder, substances having the capacity to eventually take on the shape of their container) , in contrast to, in particular, hydrocarbon plasticizing resins which are inherently solid at room temperature.
  • Particularly suitable liquid plasticizers selected from the group consisting of naphthenic oils (low or high viscosity, including hydrogenated or not), paraffinic oils, MES oils (Medium Extracted Solvates), oils DAE (Distillate Aromatic Extracts), Treated Distillate Aromatic Extracts (TDAE) oils, Residual Aromatic Extract oils (RAE), Treated Residual Aromatic Extract (TREE) oils, Residual Aromatic Extract oils (SRAE), mineral oils, vegetable oils, plasticisers ethers, ester plasticizers, phosphate plasticizers, sulphonate plasticizers and mixtures of these compounds.
  • the liquid plasticizer is selected from the group consisting of MES oils, TDAE oils, naphthenic oils, vegetable oils and mixtures of these oils.
  • phosphate plasticizers for example, mention may be made of those containing from 12 to 30 carbon atoms, for example trioctyl phosphate.
  • ester plasticizers mention may be made in particular of compounds selected from the group consisting of trimellitates, pyromellitates, phthalates, 1,2-cyclohexane dicarboxylates, adipates, azelates, sebacates, glycerol and mixtures of these compounds.
  • glycerol triesters preferably consisting predominantly (for more than 50%, more preferably more than 80% by weight) of an unsaturated fatty acid Ci 8 is that is to say selected from the group consisting of oleic acid, linoleic acid, linolenic acid and mixtures of these acids. More preferably, whether of synthetic or natural origin (for example vegetable oils of sunflower or rapeseed), the fatty acid used is more than 50% by weight, more preferably still more than 80% by weight. % by weight of oleic acid.
  • Such triesters (trioleates) with high oleic acid content are well known, they have been described for example in the application WO 02/088238, as plasticizers in bandage treads.
  • the rubber composition according to the invention may also comprise, as a solid plasticizer (at 23 ° C.), a plasticizing hydrocarbon resin having a Tg greater than + 20 ° C., preferably greater than + 30 ° C, as described for example in the applications WO 2005/087859, WO 2006/061064 or WO 2007/017060.
  • a solid plasticizer at 23 ° C.
  • a plasticizing hydrocarbon resin having a Tg greater than + 20 ° C., preferably greater than + 30 ° C, as described for example in the applications WO 2005/087859, WO 2006/061064 or WO 2007/017060.
  • Hydrocarbon resins are polymers that are well known to those skilled in the art, essentially based on carbon and hydrogen, and therefore inherently miscible in diene (s) elastomer compositions when they are further qualified as "plasticisers". ". They may be aliphatic, aromatic or aliphatic / aromatic type that is to say based on aliphatic and / or aromatic monomers. They may be natural or synthetic, whether based on petroleum or not (if so, also known as petroleum resins). They are preferably exclusively hydrocarbon-based, that is to say they contain only carbon and hydrogen atoms.
  • the plasticizing hydrocarbon resin has at least one, more preferably all, of the following characteristics: a Tg greater than 20 ° C (more preferably between 40 and 100 ° C);
  • the Tg of this resin is measured in a known manner by DSC (Differential Scanning Calorimetry), according to the ASTM D3418 standard.
  • the macrostructure (Mw, Mn and Ip) of the hydrocarbon resin is determined by steric exclusion chromatography (SEC): solvent tetrahydrofuran; temperature 35 ° C; concentration 1 g / 1; flow rate 1 ml / min; filtered solution on 0.45 ⁇ porosity filter before injection; Moore calibration with polystyrene standards; set of 3 "WATERS” columns in series (“STYRAGEL” HR4E, HR1 and HR0.5); differential refractometer detection (“WATERS 2410") and its associated operating software (“WATERS EMPOWER”).
  • SEC steric exclusion chromatography
  • the plasticizing hydrocarbon resin is chosen from the group consisting of cyclopentadiene homopolymer or copolymer resins (abbreviated to CPD), dicyclopentadiene homopolymer or copolymer resins (abbreviated to DCPD), terpene homopolymer or copolymer resins, homopolymer or C5 cut copolymer resins, homopolymer or C9 cut copolymer resins, alpha-methyl-styrene homopolymer or copolymer resins and mixtures thereof. resins.
  • CPD cyclopentadiene homopolymer or copolymer resins
  • DCPD dicyclopentadiene homopolymer or copolymer resins
  • terpene homopolymer or copolymer resins homopolymer or C5 cut copolymer resins
  • homopolymer or C9 cut copolymer resins homopolymer or C9 cut copolymer resins
  • copolymer resins are more preferably used those selected from the group consisting of (D) CPD / vinylaromatic copolymer resins, (D) CPD / terpene copolymer resins, copolymer resins (D) CPD / C5 cut, (D) CPD / C9 cut copolymer resins, terpene / vinylaromatic copolymer resins, terpene / phenol copolymer resins, C5 / vinylaromatic cut copolymer resins, C9 / vinylaromatic cut copolymer resins, and mixtures of these resins.
  • pene here combines in a known manner the alpha-pinene, beta-pinene and limonene monomers; preferably, a limonene monomer is used which is in a known manner in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer), or the dipentene, racemic of the dextrorotatory and levorotatory enantiomers. .
  • Suitable vinylaromatic monomers are, for example, styrene, alpha-methylstyrene, ortho-, meta-, para-methylstyrene, vinyltoluene, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, hydroxystyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene, any vinylaromatic monomer from a C 9 cut (or more generally from a C 8 to C 10 cut).
  • the vinyl-aromatic compound is styrene or a vinylaromatic monomer derived from a C 9 cut (or more generally from a C 8 to C 10 cut).
  • the vinylaromatic compound is the minor monomer, expressed as a mole fraction, in the copolymer under consideration.
  • the content of hydrocarbon resin is preferably between 3 and 60 phr, more preferably between 3 and 40 phr, especially between 5 and 30 phr.
  • reinforcing resins eg acceptors and donors of methylene
  • the heat-expandable rubber composition may also contain coupling enhancers when a coupling agent is used, inorganic filler recovery agents when an inorganic filler is used, or more generally, bleaching agents.
  • implementation likely in a known manner, through an improvement of the dispersion of the load in the rubber matrix and a lowering of the viscosity of the compositions, to improve their processability in the green state; these agents are for example hydroxysilanes or hydrolysable silanes such as alkyl-alkoxysilanes, polyols, polyethers, amines, hydroxylated or hydrolysable polyorganosiloxanes.
  • the rubber compositions are manufactured in suitable mixers, for example using three successive preparation phases according to a general procedure known to those skilled in the art: a first phase of work or thermomechanical mixing (sometimes referred to as a "non-productive" phase ) at a high temperature, up to a maximum temperature between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C, followed by a second phase (non-productive) at lower temperature (preferably less than 100 ° C) during which the blowing agent is incorporated, and finally a third phase of mechanical work (sometimes referred to as a "productive" phase) at low temperature, typically less than 120 ° C, for example between 60 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system or vulcanization.
  • a first phase of work or thermomechanical mixing (sometimes referred to as a "non-productive" phase ) at a high temperature, up to a maximum temperature between 130 ° C and 200 ° C, preferably between 145
  • a process that can be used for the manufacture of such rubber compositions comprises, for example, and preferably the following steps: incorporating in a mixer, at least one non-black filler, optionally carbon black, into the elastomer or elastomer mixture; at a content of less than 3 phr, the hot-melt compound, the photo-crosslinkable liquid polymer resin, optional optional additives, by thermomechanically kneading the whole, in one or more times, until a maximum temperature of between 130 ° C. and 200 is reached. ° C;
  • thermomechanical work falling and cooling of the mixture thus obtained, a second (non-productive) phase of thermomechanical work is then conducted in the same internal mixer, during which phase the blowing agent is incorporated at a more moderate temperature. (eg 60 ° C), to reach a maximum temperature of fall below 100 ° C.
  • the low temperature crosslinking system is then incorporated, usually in an external mixer such as a roll mill; the whole is then mixed (productive phase) for a few minutes, for example between 5 and 15 min.
  • the actual crosslinking system is preferably based on sulfur and a primary vulcanization accelerator, in particular a sulfenamide type accelerator.
  • a primary vulcanization accelerator in particular a sulfenamide type accelerator.
  • various known secondary accelerators or vulcanization activators such as zinc oxide, stearic acid, guanidine derivatives (especially diphenylguanidine), etc.
  • the sulfur content is preferably between 0.5 and 5 phr, that of the primary accelerator is preferably between 0.5 and 8 phr.
  • accelerator primary or secondary
  • any compound capable of acting as an accelerator of vulcanization of diene elastomers in the presence of sulfur in particular thiazole-type accelerators and their derivatives, accelerators of thiuram type, zinc dithiocarbamates.
  • accelerators are for example selected from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated "MBTS”), tetrabenzylthiuram disulfide (“TBZTD”), N-cyclohexyl-2-benzothiazyl sulfenamide (“CBS”), N, N dicyclohexyl-2-benzothiazylsulfenamide (“DCBS”), N-tert-butyl-2-benzothiazylsulfenamide (“TBBS”), N-tert-butyl-2-benzothiazylsulfenamide (“TBSI”), zinc dibenzyldithiocarbamate (“ ZBEC ”) and mixtures of these compounds.
  • MBTS 2-mercaptobenzothiazyl disulfide
  • TBZTD tetrabenzylthiuram disulfide
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • a carboxylic acid is used as a hot-melt compound, the latter having the effect of reducing the induction time (that is to say the time required for the beginning of the vulcanization reaction) during the baking of the composition
  • a vulcanization retarder to counteract this phenomenon, and thus to offer the rubber composition the time necessary for complete expansion before vulcanization.
  • the level of this vulcanization retarder is preferably between 0.5 and 10 phr, more preferably between 1 and 5 phr, in particular between 1 and 3 phr.
  • Vulcanization retarders are well known to those skilled in the art. Mention may be made, for example, of N-cyclohexylthiophthalimide sold under the name "Vulkalent G” by the company Lanxess, N- (trichloromethylthio) benzenesulfonamide sold under the name "Vulkalent E / C” by Lanxess, or else marketed phthalic anhydride. under the name “Vulkalent B / C” by Lanxess.
  • CTP N-cyclohexylthiophthalimide
  • the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or else calendered or extruded in the form of a heat-expandable tread.
  • the density or density denoted Di of the heat-expandable rubber composition is preferably between 1, 100 and 1, 400 g / cm 3 , more preferably in a range from 1.50 to 1. 350 g / cm 3 .
  • the vulcanization (or cooking) is conducted in a known manner at a temperature generally between 130 ° C and 200 ° C, for a sufficient time which may vary for example between 5 and 90 min depending in particular on the cooking temperature, the system of vulcanization adopted and the kinetics of vulcanization of the composition under consideration.
  • the density denoted D 2 of the rubber composition once expanded is preferably between 0.700 and 1.000 g / cm 3 . more preferably within a range of 0.750 to 0.950 g / cm 3 .
  • Its volume expansion rate T E (expressed in%) is preferably between 25% and 75%, more preferably in a range of 30 to 60%>, this expansion rate T E being calculated in a known manner to from densities Di and D 2 above, as follows:
  • T E [(D 1 / D 2 ) - 1] x 100.
  • This complementary step may consist of a simple natural exposure to UV-visible radiation or preferably an accelerated artificial aging, for example using one or more lamp (s) emitting in the UV-visible (eg steam lamp mercury, xenon lamp, fluorescent lamp, metal halide lamps), or in an accelerated photo-aging chamber which may comprise one or more of said lamps.
  • lamp eg steam lamp mercury, xenon lamp, fluorescent lamp, metal halide lamps
  • the rubber composition thus treated offers the bandages of the invention a very good adhesion on ice, both on dry ice and on melting ice.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Bandage pour véhicule, notamment bandage hiver, dont la bande de roulement comporte une composition de caoutchouc thermo-expansible à l'état non vulcanisé, expansée à l'état vulcanisé; ladite composition, à l'état non vulcanisé, comporte au moins un élastomère diénique tel que du caoutchouc naturel et/ou un polybutadiène, plus de 50 pce d'une charge renforçante non-noire telle que de la silice, optionnellement du noir de carbone à un taux inférieur à 3 pce, entre 2 et 25 pce d'un agent d'expansion tel qu'un (hydrogéno)carbonate de sodium ou potassium, entre 2et 25 pce d'un composé thermofusible dont la température de fusion est comprise entre 60°C et 220°C, tel que par exemple l'acide citrique, et entre 5 et 50 pce d'une résine polymère liquide photoréticulable telle qu'une résine poly(butadiène-acrylate) ou poly(butadiène-méthacrylate). L'utilisation combinée de ces différents composés, aux taux préconisés, permet d'améliorer l'adhérence sur glace.

Description

BANDAGE POUR VÉHICULE DONT LA BANDE DE ROULEMENT COMPORTE UNE COMPOSITION DE CAOUTCHOUC THERMO-EXPANSIBLE
1. DOMAINE DE L'INVENTION
L'invention est relative aux compositions caoutchouteuses utilisées comme bandes de roulement de bandages pour véhicules, pneumatiques ou non-pneumatiques, en particulier de bandages « hiver » aptes à rouler sur des sols recouverts de glace ou verglas sans être pourvus de clous (aussi appelés bandages "studless").
Elle est plus particulièrement relative aux bandages pour véhicule, notamment bandages hiver, dont la bande de roulement est spécifiquement adaptée à un roulage sous des conditions dites de "glace sèche" ou "glace froide" correspondant à un domaine de températures typiquement inférieures à -5°C, tout en satisfaisant aussi aux conditions dites de "glace fondante" rencontrées dans un domaine de températures comprises entre -5°C et 0°C, domaine dans lequel de manière connue, la pression des bandages au passage d'un véhicule provoque une fusion superficielle de la glace qui se recouvre d'un mince film d'eau nuisible à l'adhérence de ces bandages.
2. ETAT DE LA TECHNIQUE Pour éviter les effets néfastes des clous, notamment leur forte action abrasive sur le revêtement du sol lui-même et un comportement routier notablement dégradé sur sol sec, les manufacturiers de bandages ont proposé différentes solutions consistant à modifier la formulation des compositions de caoutchouc elles-mêmes. Ainsi, il a été proposé tout d'abord d'incorporer des particules solides à grande dureté, telle que par exemple du carbure de silicium (voir par exemple US 3 878 147), dont certaines viennent affleurer la surface de la bande de roulement au fur et à mesure de l'usure de cette dernière, et entrent donc en contact avec la glace. De telles particules, aptes à agir en définitive comme des micro-clous sur de la glace dure, grâce à un effet de "griffe" bien connu, restent relativement agressives vis-à-vis du sol ; elles ne sont pas bien adaptées aux conditions de roulage sur une glace fondante.
D'autres solutions ont donc été proposées, consistant notamment à incorporer des poudres hydroso lubies (i.e., qui peuvent se dissoudre dans l'eau) dans la composition constitutive de la bande de roulement. De telles poudres se solubilisent plus ou moins au contact de la neige ou de la glace fondue, ce qui permet d'une part la création à la surface de la bande de roulement de porosités susceptibles d'améliorer l'accrochage de la bande de roulement sur le sol et d'autre part la création de gorges jouant le rôle de canaux d'évacuation du film liquide créé entre le bandage et le sol. A titre d'exemples de telles poudres hydrosolubles, on peut citer par exemple l'emploi de poudre de cellulose, de PVA (alcool polyvinylique) ou d'amidon, de poudres de gomme de guar ou de gomme de xanthane, ou encore de poudre de sulfate de magnésium ou de potassium (voir par exemple demandes de brevet JP 3-159803, JP 2002- 211203, WO 2008/080750, WO 2008/080751, WO 2010/009850, WO 2011/073188, WO 2011/086061, WO 2012/052331, WO 2012/085063).
Il a également été proposé d'utiliser des particules de poudre qui ne sont ni à haute dureté ni hydrosolubles, aptes malgré tout à générer une microrugosité de surface efficace (voir en particulier demandes de brevet WO 2009/083125 et WO 2009/112220). Enfin, pour améliorer les performances d'adhérence sur glace fondante d'une bande de roulement, il est également bien connu d'utiliser une couche de caoutchouc mousse à base d'élastomère diénique, d'un agent d'expansion ("blowing agent") et divers autres additifs. Ces agents d'expansion, tels que par exemple des composés nitro, sulfonyl ou azo, sont aptes à libérer lors d'une activation thermique, par exemple lors de la vulcanisation du bandage, une quantité de gaz importante, notamment de l'azote, et ainsi conduire à la formation de bulles au sein d'un matériau suffisamment mou tel qu'une composition de caoutchouc comportant de tels agents d'expansion.
De telles formulations de caoutchouc mousse pour bandages hiver ont été décrites par exemple dans les documents brevet JP 2003-183434, JP 2004-091747, JP 2006-299031, JP 2007-039499, JP 2007-314683, JP2008-001826, JP 2008-150413, EP 826 522, US 5 147 477, US 6 336 487, ainsi que dans la demande plus récente WO 2011/064128.
3. BREVE DESCRIPTION DE L'INVENTION
Au cours de leurs recherches sur la technologie ci-dessus relative à l'utilisation de caoutchouc mousse, les Demanderesses ont découvert une formulation spécifique à base d'un agent d'expansion, d'un composé thermofusible et d'une résine polymère liquide photoréticulable combinés, qui permet d'obtenir une très bonne adhérence sur glace, à la fois sur glace sèche et sur glace fondante.
En conséquence, la présente invention concerne un bandage dont la bande de roulement comporte, à l'état non vulcanisé, une composition de caoutchouc thermo-expansible comportant au moins un élastomère diénique, plus de 50 pce d'une charge renforçante non- noire, optionnellement du noir de carbone à un taux inférieur à 3 pce, entre 2 et 25 pce d'un agent d'expansion, entre 2 et 25 pce d'un composé thermofusible dont la température de fusion est comprise entre 60°C et 220°C, et entre 5 et 50 pce d'une résine polymère liquide photoréticulable .
L'invention concerne également un bandage à l'état vulcanisé obtenu après cuisson (vulcanisation) du bandage cru conforme à l'invention tel que décrit ci-dessus.
Les bandages de l'invention sont particulièrement destinés à équiper des véhicules à moteur de type tourisme, incluant les véhicules 4x4 (à quatre roues motrices) et véhicules SUV {"Sport Utility Vehicles"), des véhicules deux roues (notamment motos) comme des véhicules industriels choisis en particulier parmi camionnettes et "poids-lourd" (i.e., métro, bus, engins de transport routier tels que camions, tracteurs). L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent.
4. DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse. L'abréviation "pce" signifie parties en poids pour cent parties d'élastomère (du total des élastomères si plusieurs élastomères sont présents). D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs supérieur à "a" et inférieur à "b" (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de "a" jusqu'à "b" (c'est-à-dire incluant les bornes strictes a et b). Le bandage de l'invention a donc pour caractéristique essentielle que sa bande de roulement, à l'état non vulcanisé, comporte une composition de caoutchouc thermo-expansible (au moins pour la partie supérieure de la bande de roulement qui vient directement en contact avec la surface de la route) comportant au moins: - un (au moins un) élastomère diénique ;
- plus de 50 pce d'une (au moins une) charge renforçante non-noire ;
optionnellement du noir de carbone à un taux inférieur à 3 pce ;
entre 2 et 25 pce d'un (au moins un) agent d'expansion ;
entre 2 et 25 pce d'un (au moins un) composé thermofusible dont la température de fusion est comprise entre 60°C et 220°C ; entre 5 et 50 pce d'une (au moins une) résine polymère liquide photoréticulable.
Les différents composants ci-dessus sont décrits en détail ci-après. 4.1. Elastomère diénique
Par élastomère (ou caoutchouc, les deux termes étant synonymes) du type "diénique", on rappelle que doit être entendu un élastomère issu au moins en partie (i.e. un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone- carbone, conjuguées ou non).
Les élastomères diéniques peuvent être classés de manière connue en deux catégories : ceux dits "essentiellement insaturés" et ceux dits "essentiellement saturés". Les caoutchoucs butyl, ainsi que par exemple les copolymères de diènes et d'alpha-oléfïnes type EPDM, entrent dans la catégorie des élastomères diéniques essentiellement saturés, ayant un taux de motifs d'origine diénique qui est faible ou très faible, toujours inférieur à 15% (% en moles). A contrario, par élastomère diénique essentiellement insaturé, on entend un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles). Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%>.
On préfère utiliser au moins un élastomère diénique du type fortement insaturé, en particulier un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les polybutadiènes (BR), les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène-styrène (SBR), les copolymères d'isoprène-butadiène (BIR), les copolymères d'isoprène-styrène (SIR), les copolymères d'isoprène-butadiène-styrène (SBIR) et les mélanges de tels copolymères.
Les élastomères peuvent être par exemple à blocs, statistiques, séquencés, microséquencés, et être préparés en dispersion ou en solution ; ils peuvent être couplés et/ou étoilés ou encore fonctionnalisés avec un agent de couplage et/ou d'étoilage ou de fonctionnalisation. Pour un couplage à du noir de carbone, on peut citer par exemple des groupes fonctionnels comprenant une liaison C-Sn ou des groupes fonctionnels aminés tels que benzophénone par exemple ; pour un couplage à une charge inorganique renforçante telle que silice, on peut citer par exemple des groupes fonctionnels silanol ou polysiloxane ayant une extrémité silanol (tels que décrits par exemple dans US 6 013 718), des groupes alkoxysilanes (tels que décrits par exemple dans US 5 977 238), des groupes carboxyliques (tels que décrits par exemple dans US 6 815 473 ou US 2006/0089445) ou encore des groupes polyéthers (tels que décrits par exemple dans US 6 503 973). A titre d'autres exemples de tels élastomères fonctionnalisés, on peut citer également des élastomères (tels que SBR, BR, NR ou IR) du type époxydés.
A titre préférentiel conviennent les polybutadiènes et en particulier ceux ayant une teneur en unités -1,2 comprise entre 4% et 80% ou ceux ayant une teneur en cis-1,4 supérieure à 80%, les polyisoprènes, les copolymères de butadiène-styrène et en particulier ceux ayant une teneur en styrène comprise entre 5% et 50%> en poids et plus particulièrement entre 20%> et 40%>, une teneur en liaisons -1,2 de la partie butadiénique comprise entre 4% et 65 % , une teneur en liaisons trans-1,4 comprise entre 20%> et 80%>, les copolymères de butadiène-isoprène et notamment ceux ayant une teneur en isoprène comprise entre 5% et 90% en poids et une température de transition vitreuse ("Tg" - mesurée selon ASTM D3418-82) de -40°C à -80°C, les copolymères isoprène-styrène et notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et une Tg comprise entre -25°C et -50°C.
Dans le cas des copolymères de butadiène-styrène-isoprène conviennent notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 10% et 40%, une teneur en isoprène comprise entre 15% et 60% en poids et plus particulièrement entre 20% et 50%, une teneur en butadiène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 20% et 40%, une teneur en unités -1,2 de la partie butadiénique comprise entre 4% et 85%, une teneur en unités trans -1,4 de la partie butadiénique comprise entre 6% et 80%, une teneur en unités -1,2 plus -3,4 de la partie isoprénique comprise entre 5% et 70% et une teneur en unités trans -1,4 de la partie isoprénique comprise entre 10% et 50%, et plus généralement tout copolymère butadiène- styrène-isoprène ayant une Tg comprise entre -20°C et -70°C.
Selon un mode de réalisation particulièrement préférentiel de l'invention, l'élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes ayant un taux de liaisons cis-1,4 supérieur à 90%, les copolymères de butadiène-styrène et les mélanges de ces élastomères.
Selon un mode de réalisation plus particulier et préférentiel, la composition de caoutchouc thermo-expansible comporte 50 à 100 pce de caoutchouc naturel ou de polyisoprène de synthèse, ledit caoutchouc naturel ou polyisoprène de synthèse pouvant être utilisé notamment en coupage (mélange) avec au plus 50 pce d'un polybutadiène ayant un taux de liaisons cis-1,4 supérieur à 90%.
Selon un autre mode de réalisation particulier et préférentiel, la composition de caoutchouc thermo-expansible comporte 50 à 100 pce d'un polybutadiène ayant un taux de liaisons cis-1,4 supérieur à 90%, ledit polybutadiène pouvant être utilisé notamment en coupage avec au plus 50 pce de caoutchouc naturel ou polyisoprène de synthèse.
Aux élastomères diéniques des bandes de roulement selon l'invention pourraient être associés, en quantité minoritaire, des élastomères synthétiques autres que diéniques, voire des polymères autres que des élastomères, par exemple des polymères thermoplastiques.
4.2. Charge renforçante non-noire Par "charge renforçante non-noire", doit être entendu ici toute charge inorganique voire organique autre que du noir de carbone, quelles que soient sa couleur (autre que noire) et son origine (naturelle ou de synthèse), parfois appelée charge "minérale", charge "blanche" ou charge "claire" par opposition au noir de carbone, cette charge non-noire étant capable de renforcer à elle seule, sans autre moyen qu'un éventuel agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication d'une bande de roulement de bandage, en d'autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique pour bande de roulement.
Préférentiellement, la charge renforçante non-noire est une charge inorganique, plus particulièrement une charge du type siliceuse ou alumineuse, ou un mélange de ces deux types de charges.
La silice (Si02) utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m2/g, de préférence de 30 à 400 m2/g. Les silices précipitées hautement dispersibles (dites "HDS") sont préférées, en particulier lorsque l'invention est mise en œuvre pour la fabrication de bandage présentant une faible résistance au roulement ; comme exemples de telles silices, on peut citer les silices « Ultrasil » 7000 de la société Evonik, les silices « Zeosil » 1165 MP, 1135 MP et 1115 MP de la société Rhodia, la silice « Hi-Sil » EZ150G de la société PPG, les silices « Zeopol » 8715, 8745 ou 8755 de la Société Huber, les silices telles que décrites dans la demande WO 03/016387.
L'alumine (AI2O3) renforçante utilisée préférentiellement est une alumine hautement dispersible ayant une surface BET allant de 30 à 400 m2/g, plus préférentiellement entre 60 et 250 m2/g, une taille moyenne de particules au plus égale à 500 nm, plus préférentiellement au plus égale à 200 nm. Comme exemples non limitatifs de telles alumines renforçantes, on peut citer notamment les alumines "Baikalox A125" ou "CR125" (société Baïkowski), "APA- 100RDX" (Condéa), "Aluminoxid C" (Degussa) ou "AKP-G015" (Sumitomo Chemicals). A titre d'autres exemples de charge inorganique susceptible d'être utilisée dans les compositions de caoutchouc selon l'invention peuvent être encore cités des (oxyde- )hydroxydes d'aluminium, des alumino silicates, des oxydes de titane, des carbures ou nitrures de silicium, tous du type renforçants tels que décrits par exemple dans les demandes WO 99/28376, WO 00/73372, WO 02/053634, WO 2004/003067, WO 2004/056915.
Lorsque les bandes de roulement selon l'invention sont destinées à des bandages à faible résistance au roulement, la charge renforçante non-noire utilisée, en particulier s'il s'agit d'une charge inorganique renforçante telle que silice, a de préférence une surface BET comprise entre 60 et 350 m2/g. Un mode de réalisation avantageux de l'invention consiste à utiliser une charge non-noire, en particulier une charge inorganique renforçante telle que silice, ayant une surface spécifique BET élevée, comprise dans un domaine de 130 à 300 m2/g, en raison du haut pouvoir renforçant reconnu de telles charges. Selon un autre mode préférentiel de réalisation de l'invention, on peut utiliser une charge non-noire présentant une surface spécifique BET inférieure à 130 m2/g, préférentiellement dans un tel cas comprise entre 60 et 130 m2/g (voir par exemple demandes WO03/002648 et WO03/002649 précitées).
L'état physique sous lequel se présente la charge renforçante non-noire (en particulier inorganique) est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, de billes ou toute autre forme densifïée appropriée. Bien entendu, on entend également par charge renforçante non-noire des mélanges de différentes charges renforçantes non-noires, en particulier des charges inorganiques telles que des charges siliceuses et/ou alumineuses hautement dispersibles telles que décrites précédemment. Préférentiellement, une telle charge inorganique renforçante consiste en des nanoparticules dont la taille moyenne en masse est inférieure à 500 nm, le plus souvent comprise entre 20 et 200 nm, en particulier et plus préférentiellement comprise entre 20 et 150 μιη. Cette taille moyenne peut être mesurée de manière bien connue, après dispersion par désagglomération aux ultrasons de la charge à analyser dans l'eau (ou solution aqueuse contenant un agent tensioactif), par exemple au moyen d'un sédimentomètre centrifuge à détection rayons X type « XDC » (X-rays Disk Centrifuge), commercialisé par la société Brookhaven Instruments, selon le mode opératoire qui suit : on réalise une suspension de 3,2 g d'échantillon de charge inorganique à analyser dans 40 ml d'eau, par action durant 8 minutes, à 60% de puissance (60% de la position maxi du "output control"), d'une sonde ultrasons de 1500 W (sonifïcateur Vibracell 3/4 pouce commercialisé par la société Bioblock); après sonification, on introduit 15 ml de la suspension dans le disque en rotation ; après sédimentation pendant 120 minutes, la distribution en masse des tailles de particules et la taille moyenne en masse des particules dw sont calculées par le logiciel du sédimentomètre XDC. Dans le présent exposé, la surface spécifique BET est déterminée de manière connue par adsorption de gaz à l'aide de la méthode de Brunauer-Emmett-Teller décrite dans "The Journal of the American Chemical Society" Vol. 60, page 309, février 1938, plus précisément selon la norme française NF ISO 9277 de décembre 1996 (méthode volumétrique multipoints (5 points) - gaz: azote - dégazage: lheure à 160°C - domaine de pression relative p/po : 0.05 à 0.17). La surface spécifique CTAB est la surface externe déterminée selon la norme française NF T 45-007 de novembre 1987 (méthode B).
De préférence, la charge renforçante non-noire est de la silice.
De manière préférentielle, le taux de charge renforçante non-noire, en particulier de silice, est compris entre 50 et 150 pce, notamment dans un domaine de 70 à 120 pce.
Pour coupler la charge renforçante non-noire à l'élastomère diénique, on peut utiliser de manière bien connue un agent de couplage (ou agent de liaison) au moins bifonctionnel destiné à assurer une connexion suffisante, de nature chimique et/ou physique, entre la charge (surface de ses particules) et l'élastomère diénique. On utilise en particulier des organosilanes ou des po lyorganosiloxanes bifonctionnels . On utilise notamment des silanes polysulfurés, dits "symétriques" ou "asymétriques" selon leur structure particulière, tels que décrits par exemple dans les demandes WO03/002648 (ou US 2005/016651) et WO03/002649 (ou US 2005/016650).
Conviennent en particulier, sans que la définition ci-après soit limitative, des silanes polysulfurés dits "symétriques" répondant à la formule générale (I) suivante:
(I) Z - A - Sx - A - Z , dans laquelle:
- x est un entier de 2 à 8 (de préférence de 2 à 5) ;
- A est un radical hydrocarboné divalent (de préférence des groupements alkylène en Ci- Ci8 ou des groupements arylène en C6-Ci2, plus particulièrement des alkylènes en Ci- Cio, notamment en C1-C4, en particulier le propylène) ;
- Z répond à l'une des formules ci-après:
Figure imgf000009_0001
dans lesquelles : - les radicaux Ri, substitués ou non substitués, identiques ou différents entre eux, représentent un groupe alkyle en Ci-Cig, cycloalkyle en C5-Ci8 ou aryle en C6-Ci8 (de préférence des groupes alkyle en Ci-C6, cyclohexyle ou phényle, notamment des groupes alkyle en C1-C4, plus particulièrement le méthyle et/ou l'éthyle).
- les radicaux R^, substitués ou non substitués, identiques ou différents entre eux, représentent un groupe alkoxyle en Ci-Ci8 ou cycloalkoxyle en C5-Ci8 (de préférence un groupe choisi parmi alkoxyles en Ci-Cg et cycloalkoxyles en C5-C8, plus préférentiellement encore un groupe choisi parmi alkoxyles en C1-C4, en particulier méthoxyle et éthoxyle).
A titre d'exemples de silanes polysulfurés, on citera plus particulièrement les polysulfures de bis(3-triméthoxysilylpropyl) ou de bis(3-triéthoxysilylpropyl). Parmi ces composés, on utilise en particulier le tétrasulfure de bis(3-triéthoxysilylpropyl), en abrégé TESPT, ou le disulfure de bis-(triéthoxysilylpropyle), en abrégé TESPD. On citera également à titre d'exemples préférentiels les polysulfures (notamment disulfures, trisulfures ou tétrasulfures) de bis- (monoalkoxyl(Ci-C4)-dialkyl(Ci-C4)silylpropyl), plus particulièrement le tétrasulfure de bis- monoéthoxydiméthylsilylpropyl tel que décrit dans la demande de brevet WO 02/083782 (ou US 2004/132880). A titre d'agent de couplage autre qu'alkoxysilane polysulfuré, on citera notamment des POS (polyorganosiloxanes) bifonctionnels ou encore des polysulfures d'hydroxysilane (R2 = OH dans la formule (I) ci-dessus) tels que décrits dans les demandes de brevet WO 02/30939 (ou US 6,774,255) et WO 02/31041 (ou US 2004/051210), ou encore des silanes ou POS porteurs de groupements fonctionnels azo-dicarbonyle, tels que décrits par exemple dans les demandes de brevet WO 2006/125532, WO 2006/125533, WO 2006/125534.
Dans les compositions de caoutchouc selon l'invention, la teneur en agent de couplage est préférentiellement comprise entre 2 et 12 pce, plus préférentiellement entre 3 et 8 pce. La composition de caoutchouc de la bande de roulement du bandage de l'invention est dépourvue de noir de carbone ou en comporte moins de 3 pce, de préférence moins de 2 pce, ceci afin d'éviter que le noir de carbone puisse jouer, en raison de ses propriétés anti-UV connues, un rôle antagoniste donc non souhaitable par rapport à la photoréticulation visée de la résine polymère liquide photoréticulable.
Préférentiellement, on utilise du noir de carbone en très faible quantité, entre 0,05 et 2,0 pce, en particulier entre 0,05 et 1,5 pce, fourchette de concentration étroite dans laquelle le noir conserve sa fonction d'agent de coloration noire de la composition mais ne remplit plus celle d'agent anti-UV. Comme noirs de carbone conviennent tous les noirs de carbone susceptibles d'apporter une coloration noire aux compositions de caoutchouc, notamment les noirs du type HAF, ISAF et SAF connus de l'homme du métier et conventionnellement utilisés dans les bandages. Parmi ces derniers, on peut citer les noirs de carbone renforçants des séries (grades ASTM) 100, 200 ou 300 utilisés dans les bandes de roulement de ces bandages (par exemple NI 15, N134, N234, N326, N330, N339, N347, N375), mais encore ceux du type non-renforçants (car moins structurés) des séries plus élevées 400 à 700 (par exemple les noirs N660, N683, N772). On pourrait aussi utiliser à titre d'exemple des noirs non-renforçants dits "noirs d'encre" utilisés comme pigments noirs dans les encres d'imprimerie, les peintures.
Les noirs de carbone peuvent être utilisés à l'état isolé, tels que disponibles commercialement, ou sous tout autre forme, par exemple comme support de certains des additifs de caoutchouterie utilisés. 4.3. Agent d'expansion et composé thermo fusible associé
De manière connue, un agent d'expansion (« blowing agent » en anglais) est un composé décomposable thermiquement, destiné à libérer lors d'une activation thermique, par exemple lors de la vulcanisation du bandage, une quantité importante de gaz (par exemple azote ou dioxyde carbone) et ainsi conduire à la formation de bulles. La libération de gaz dans la composition de caoutchouc provient donc de cette décomposition thermique de l'agent d'expansion.
Il existe des agents d'expansion physiques ou chimiques, du type endothermiques ou exothermiques. On utilise préférentiellement des agents d'expansion chimiques, plus préférentiellement des agents d'expansion chimiques du type exothermiques comme par exemple des composés diazo, dinitroso, hydrazides, carbazides, semi-carbazides, tétrazoles, carbonates, citrates, tels qu'ils ont été décrits notamment dans la demande précitée WO 2011/064128.
L'agent d'expansion utilisé préférentiellement est un carbonate ou hydrogénocarbonate, en particulier un carbonate ou hydrogénocarbonate (aussi appelé bicarbonate) de sodium (Na), de potassium (K) ou d'ammonium (NH4). Plus préférentiellement, il s'agit d'un carbonate choisi dans le groupe constitué par carbonate de sodium, hydrogénocarbonate de sodium, carbonate de potassium, hydrogénocarbonate de potassium, et les mélanges de tels carbonates (y compris, bien entendu, leurs formes hydratées). Un tel agent d'expansion a l'avantage de ne dégager que du dioxyde de carbone et de l'eau lors de sa décomposition ; il est donc particulièrement favorable à l'environnement. On utilise particulièrement l'hydrogénocarbonate ou bicarbonate de sodium (NaHCOs). Préférentiellement, le taux de cet agent d'expansion est compris entre 5 et 25 pce, plus préférentiellement entre 8 et 20 pce. Une caractéristique essentielle de l'invention est d'ajouter à l'agent d'expansion précédemment décrit un composé thermofusible dont la température de fusion est comprise entre 60°C et 220°C, de préférence entre 100°C et 200°C, plus préférentiellement entre 120°C et 180°C. Le taux de ce composé thermofusible est compris entre 2 et 25 pce, de préférence entre 2 et 20 pce, notamment entre 2 et 15 pce. Il a pour fonction de se transformer en liquide dans le domaine de température spécifique indiqué ci-dessus, avant que ou au moment où l'agent d'expansion se décompose thermiquement et libère des bulles de gaz.
Tout composé présentant une température de fusion dans les domaines indiqués ci-dessus est susceptible de convenir. On pourra utiliser notamment les additifs de caoutchouterie connus de l'homme du métier comme étant compatibles, tant sous leur forme (par exemple sous forme de poudre) que par leur nature chimique, avec des compositions de caoutchouc usuelles pour bandages.
A titre d'exemples, on peut citer notamment des polymères thermoplastiques telles que polyéthylène ou polypropylène ; des résines plastifiantes hydrocarbonées thermoplastiques à haute température de transition vitreuse (Tg), dont la température de fusion (ou ce qui est ici considéré comme équivalent, la température de ramollissement mesurée par exemple selon le méthode connue "Ring and Bail" - norme ISO 4625) est comprise dans les domaines ci- dessus ; de l'urée ou un dérivé thermofusible de l'urée ; de tels composés ont été décrits plus en détail dans la demande précitée WO 2011/064128.
La température de fusion est une constante physique de base bien connue (disponible par exemple dans "Handbook of Chemistry and Physics") des composés thermofusibles, organiques ou inorganiques ; elle pourra être contrôlée par toute méthode connue, par exemple par la méthode de Thiele, la méthode du banc de Kôfler ou encore par analyse DSC.
Le composé thermofusible préférentiellement utilisé est un acide carboxylique. Tout acide carboxylique présentant une température de fusion comprise entre 60°C et 220°C (donc solide à 23°C), de préférence entre 100°C et 200°C, en particulier entre 120°C et 180°C, est susceptible de convenir.
En se dispersant de manière homogène dans la composition, lors de sa fusion dans le domaine de température spécifique indiqué ci-dessus, cet acide carboxylique a pour fonction d'activer chimiquement (i.e., par réaction chimique) l'agent d'expansion qui, lors de sa décomposition thermique, va ainsi libérer beaucoup plus de bulles de gaz (C02 et H20) que s'il était utilisé seul.
Les acides carboxyliques peuvent être des monoacides, diacides ou triacides, ils peuvent être aliphatiques ou aromatiques ; ils peuvent également comporter des groupements fonctionnels supplémentaires (autres que COOH) tels que des groupes hydroxyle (OH), des groupes cétone (C=0) ou encore des groupes porteurs d' insaturation éthylénique.
Selon un mode de réalisation préférentiel, le pKa (Ka constante d'acidité) de l'acide carboxylique est supérieur à 1, plus préférentiellement compris entre 2,5 et 12, en particulier compris entre 3 et 10.
Selon un autre mode de réalisation préférentiel, combiné ou non au précédent, l'acide carboxylique comporte, le long de sa chaîne hydrocarbonée, de 2 à 22 atomes de carbone, de préférence de 4 à 20 atomes de carbone.
Les monoacides aliphatiques comportent de préférence, le long de leur chaîne hydrocarbonée, au moins 16 atomes de carbone ; on peut citer à titre d'exemples l'acide palmitique (Cl 6), l'acide stéarique (Cl 8), l'acide nonadécanoique (Cl 9), l'acide béhénique (C20) et leurs différents mélanges. Les diacides aliphatiques comportent de préférence, le long de leur chaîne hydrocarbonée, de 2 à 10 atomes de carbone ; on peut citer à titre d'exemples l'acide oxalique (C2), l'acide malonique (C3), l'acide succinique (C4), l'acide glutarique (C5), l'acide adipique (C6), l'acide pimellique (C7), l'acide subérique (C8), l'acide azélaique (C9), l'acide sébacique (C10) et leurs différents mélanges. A titre de monoacide aromatique, on peut citer par exemple l'acide benzoïque. Les acides comportant des groupes fonctionnels peuvent être des monoacides, diacides ou triacides, du type aliphatiques comme aromatiques ; on peut citer à titre d'exemples l'acide tartrique, l'acide malique, l'acide maléique, l'acide glycolique, l'acide α-cétoglutarique, l'acide salycilique, l'acide phtalique ou encore l'acide citrique. De manière préférentielle, l'acide carboxylique est choisi dans le groupe constitué par l'acide palmitique, l'acide stéarique, l'acide nonadécanoique, l'acide béhénique, l'acide oxalique, l'acide malonique, l'acide succinique, l'acide glutarique, l'acide adipique, l'acide pimellique, l'acide subérique, l'acide azélaique, l'acide sébacique, l'acide benzoïque, l'acide tartrique, l'acide malique, l'acide maléique, l'acide glycolique, l'acide α-cétoglutarique, l'acide salycilique, l'acide phtalique, l'acide citrique et les mélanges de ces acides.
Plus particulièrement, l'acide carboxylique est choisi dans le groupe constitué par l'acide malique, l'acide α-cétoglutarique, l'acide citrique, l'acide stéarique et leurs mélanges. Plus préférentiellement encore, est utilisé l'acide citrique, l'acide stéarique ou un mélange de ces deux acides. Préférentiellement, pour l'obtention d'une adhérence optimale de la bande de roulement sur la glace, la quantité totale d'agent d'expansion (en particulier de carbonate ou hydrogénocarbonate) et de composé thermofusible (en particulier d'acide carboxylique) est supérieure à 10 pce, de préférence comprise entre 10 et 40 pce. Cette quantité totale est plus préférentiellement supérieure à 15 pce, en particulier comprise entre 15 et 40 pce.
4.4. Résine polymère liquide photoréticulable Une autre caractéristique essentielle de la présente invention réside dans l'utilisation d'une résine polymère liquide photoréticulable dans la composition de caoutchouc formant au moins la surface de la bande de roulement selon l'invention, c'est-à-dire la portion de la bande de roulement qui est destinée à entrer au contact de la route lors du roulage du bandage. Ce polymère peut-être un oligomère, un pré-polymère, un homopolymère ou un copolymère. Sa caractéristique essentielle est qu'il est d'une part liquide (à température ambiante, soit 23°C) à l'état non (photo)réticulé et d'autre part fonctionnalisé c'est-à-dire porteur d'un ou plusieurs groupes ou fonctions réticulables (polymérisables) sous l'action du rayonnement UV. La conséquence est un durcissement de la matrice de caoutchouc comportant ce type de polymère, lorsque cette matrice, tout au moins sa surface, est exposée aux UV.
Préférentiellement, ce polymère est un oligomère, typiquement comportant 3 à 20 unités monomère. Dans un tel cas préférentiel, le nombre de fonctions capables de réagir sous l'action des UV est préférentiellement compris dans un domaine de 1 à 4 par squelette hydrocarboné oligomère. La ou les fonctions réticulables sont plus préférentiellement en position téléchélique, c'est-à-dire aux extrémités dudit squelette hydrocarboné oligomère.
Selon un mode de réalisation préférentiel, on utilise une résine photoréticulable du type radicalaire (polymérisant par un mécanisme radicalaire) ou cationique (polymérisant par voie cationique).
Plus préférentiellement, la résine photoréticulable est choisie dans le groupe constitué par les résines acrylate, méthacrylate, époxyde, oxétane, polyester insaturé, vinyléther, vinylester, et leurs mélanges. De telles dénominations se réfèrent de manière bien connue à la nature des groupes fonctionnels photo-réticulables (ou photo -polymérisables) portés par le polymère (ou préférentiellement oligomère) constituant le squelette hydrocarboné de ces résines.
Plus préférentiellement encore, parmi celles énoncées ci-dessus, la résine photoréticulable utilisée est une résine acrylate (par exemple monoacrylate, diacrylate, triacrylate, époxy- acrylate, époxy-diacrylate, uréthane-acrylate, uréthane-diacrylate) ou une résine méthacrylate (par exemple monométhacrylate, diaméthacrylate, uréthane-monométhacrylate, uréthane- diméthacrylate) .
On peut toutefois citer, à titre d'autres exemples possibles, les résines fumarate (par exemple monofumarate, difumarate), maléate (par exemple monomaléate, dimaléate), et les mélanges de telles résines.
Selon un autre mode de réalisation préférentiel, le polymère ou oligomère liquide constituant la résine est un polymère du type diénique ; en particulier, ce polymère diénique, par définition liquide, est de préférence un polybutadiène ou polyisoprène porteur du groupe fonctionnel photoréticulable .
Ainsi, plus préférentiellement encore, la résine polymère liquide photoréticulable est un poly(butadiène-acrylate) ou un poly(butadiène-méthacrylate) ou un mélange des deux.
La masse molaire moyenne en masse (notée Mw) du polymère liquide précédemment décrit, en particulier lorsqu'il s'agit d'un polymère diénique liquide, est de préférence comprise entre 200 et 5000 g/mol. Cette grandeur est bien connue de l'homme du métier, disponible notamment auprès des fournisseurs de polymère, mesurable par ailleurs par des techniques conventionnelles telles que GPC {"Gel Permeation Chromatography") ou SEC ("Size Exclusion Chromatography") .
Pour rappel, l'analyse SEC, par exemple, consiste à séparer les macromolécules en solution suivant leur taille à travers des colonnes remplies d'un gel poreux ; les molécules sont séparées selon leur volume hydrodynamique, les plus volumineuses étant éluées en premier. L'échantillon à analyser est simplement préalablement solubilisé dans un solvant approprié, par exemple tétrahydrofuranne à une concentration de 1 g/litre. Puis la solution est filtrée sur un filtre, par exemple de porosité 0,45 μιη, avant injection dans l'appareillage. L'appareillage utilisé est par exemple une chaîne chromatographique "Waters alliance". Le solvant d'élution est par exemple le tétrahydrofuranne, le débit est de 0,7 ml/min, la température du système est de 35°C. On utilise par exemple un jeu de 4 colonnes "Waters" en série (dénominations "Styragel HMW7", " Styragel HMW6E", et deux " Styragel HT6E"). Le volume injecté de la solution de l'échantillon de polymère est par exemple de 100 μΐ. Le détecteur est un réfractomètre différentiel (par exemple "Waters 2410") pouvant être équipé d'un logiciel associé d'exploitation des données (par exemple "Waters Millenium"). Un étalonnage de Moore est conduit avec une série d'étalons commerciaux de polystyrène à faible Ip (inférieur à 1,2), de masses molaires connues, couvrant le domaine de masses à analyser. On déduit des données enregistrées (courbe de distribution massique des masses molaires) la masse molaire moyenne en masse (Mw), la masse molaire moyenne en nombre (Mn), ainsi que l'indice de polymolécularité (Ip = Mw/Mn). La composition de caoutchouc peut comporter également, en combinaison avec la résine polymère liquide photoréticulable précédemment décrite, un photo-amorceur destiné à favoriser, accélérer le processus de photoréticulation de surface de la bande de roulement lorsque cette dernière est soumise à une exposition au rayonnement UV.
De manière connue, les photo-amorceurs (également appelés photo -initiateurs ou photo- activateurs) sont des composés stables aptes à libérer, lorsqu'ils sont exposés à une lumière de longueur d'onde appropriée, des espèces radicalaires ou ioniques qui vont favoriser et accélérer les processus de photoréticulation ou de photo-oxydation.
Ces photo -initiateurs utilisables sont de préférence du type radicalaire ou cationique. De tels composés sont couramment utilisés dans les domaines de la photopolymérisation de monomères multifonctionnels, du traitement de surface de matériaux par des revêtements protecteurs, des arts graphiques et en électronique pour la réalisation de microcircuits. Ils ont été également décrits (voir demande de brevet WO 2006/077059) dans des bandes de roulement photo-oxydables présentant une adhérence améliorée sur route mouillée.
Comme photo -initiateurs cationiques peuvent être cités par exemple les sels d'onium, plus particulièrement les sels de sulfonium tels que sels de triarylsulfonium ou les sels d'iodonium tels que sels de diaryliodonium.
On utilise préférentiellement un photo -initiateur du type radicalaire, plus préférentiellement choisi parmi les cétones aromatiques, notamment celles choisies dans le groupe constitué par les cétals (notamment dicétals) benzyliques, les benzoïnes (notamment éthers de benzoïnes), les α,α-dialkoxy-acétophénones, les α-hydroxy-alkylphénones, les cétones a-amino aromatiques (ou α-amino alkylphénones), les oxydes d'acylphosphines, les benzophénones ou thioxanthones en combinaison avec un donneur d'hydrogène (e.g., une aminé tertiaire), et les mélanges de tels composés.
L'homme du métier saura, le cas échéant, ajuster la quantité de photo -initiateur en fonction des applications particulières visées. Cette quantité est de préférence comprise entre 0,1 et 10 pce, plus préférentiellement entre 0,2 et 5 pce. Les photo -initiateurs précédemment décrits peuvent être utilisés seuls lorsqu'ils sont exposés à un rayonnement UV ou, lorsqu'ils sont exposés à la lumière visible, en combinaison avec des photosensibilisateurs aptes à activer leur propre action photo -oxydante. De tels photosensibilisateurs sont par exemple des colorants tels que des phtaléïnes (éosine, érythrosine, éthyléosine, phloxine, rose de bengale) et des thiazines (thionine et bleu de méthylène). S'ils sont utilisés sans photosensibilisateurs, les photo -initiateurs seront préférentiellement choisis de telle manière que leur spectre d'absorption UV et le spectre d'émission de la source lumineuse (qu'elle soit naturelle comme artificielle) responsable de la photo -oxydation de la bande de roulement, aient bien une zone de recouvrement. 4.5. Additifs divers
La composition de caoutchouc thermo-expansible peut comporter également tout ou partie des additifs usuels habituellement utilisés dans les compositions de caoutchouc pour bandes de roulement, comme par exemple des agents de protection tels que cires anti-ozone, anti- ozonants chimiques, anti-oxydants, des agents plastifiants, des résines renforçantes, un système de réticulation à base soit de soufre, soit de donneurs de soufre et/ou de peroxyde et/ou de bismaléimides, des accélérateurs de vulcanisation, des activateurs de vulcanisation.
Selon un mode de réalisation préférentiel, la composition de caoutchouc thermo-expansible comporte également un agent plastifiant liquide (à 20°C) dont la fonction est de ramollir la matrice en diluant l'élastomère diénique et la charge renforçante ; sa Tg (température de transition vitreuse) est par définition inférieure à -20°C, de préférence inférieure à -40°C.
Plus préférentiellement, pour une performance optimale de la bande de roulement du bandage de l'invention, ce plastifiant liquide est utilisé à un taux relativement réduit, tel que le rapport pondéral charge renforçante non-noire sur agent plastifiant liquide soit supérieur à 2,0, plus préférentiellement supérieur à 2,5, en particulier supérieur à 3,0.
Toute huile d'extension, qu'elle soit de nature aromatique ou non-aromatique, tout agent plastifiant liquide connu pour ses propriétés plastifiantes vis-à-vis d'élastomères diéniques, est utilisable. A température ambiante (20°C), ces plastifiants ou ces huiles, plus ou moins visqueux, sont des liquides (c'est-à-dire, pour rappel, des substances ayant la capacité de prendre à terme la forme de leur contenant), par opposition notamment à des résines plastifiantes hydrocarbonées qui sont par nature solides à température ambiante.
Conviennent particulièrement les plastifiants liquides choisis dans le groupe constitué par les huiles naphténiques (à basse ou haute viscosité, notamment hydrogénées ou non), les huiles paraffïniques, les huiles MES (Médium Extracted Solvates), les huiles DAE (Distillate Aromatic Extracts), les huiles TDAE (Treated Distillate Aromatic Extracts), les huiles RAE (Residual Aromatic Extract oils), les huiles TRAE (Treated Residual Aromatic Extract), les huiles SRAE (Safety Residual Aromatic Extract oils), les huiles minérales, les huiles végétales, les plastifiants éthers, les plastifiants esters, les plastifiants phosphates, les plastifiants sulfonates et les mélanges de ces composés. Selon un mode de réalisation plus préférentiel, l'agent plastifiant liquide est choisi dans le groupe constitué par les huiles MES, les huiles TDAE, les huiles naphténiques, les huiles végétales et les mélanges de ces huiles. A titre de plastifiants phosphates par exemple, on peut citer ceux qui contiennent entre 12 et 30 atomes de carbone, par exemple le trioctyle phosphate. A titre d'exemples de plastifiants esters, on peut citer notamment les composés choisis dans le groupe constitué par les trimellitates, les pyromellitates, les phtalates, les 1 ,2-cyclohexane dicarboxylates, les adipates, les azélates, les sébacates, les triesters de glycérol et les mélanges de ces composés. Parmi les triesters ci-dessus, on peut citer notamment des triesters de glycérol, de préférence constitués majoritairement (pour plus de 50 %, plus préférentiellement pour plus de 80 % en poids) d'un acide gras insaturé en Ci8, c'est-à-dire choisi dans le groupe constitué par l'acide oléique, l'acide linoléique, l'acide linolénique et les mélanges de ces acides. Plus préférentiellement, qu'il soit d'origine synthétique ou naturelle (cas par exemple d'huiles végétales de tournesol ou de colza), l'acide gras utilisé est constitué pour plus de 50% en poids, plus préférentiellement encore pour plus de 80% en poids d'acide oléique. De tels triesters (trioléates) à fort taux d'acide oléique sont bien connus, ils ont été décrits par exemple dans la demande WO 02/088238, à titre d'agents plastifiants dans des bandes de roulement pour bandages.
Selon un autre mode de réalisation préférentiel, la composition de caoutchouc selon l'invention peut comporter aussi, à titre de plastifiant solide (à 23°C), une résine plastifiante hydrocarbonée présentant une Tg supérieur à +20°C, de préférence supérieure à +30°C, telle que décrite par exemple dans les demandes WO 2005/087859, WO 2006/061064 ou WO 2007/017060.
Les résines hydrocarbonées sont des polymères bien connus de l'homme du métier, essentiellement à base de carbone et hydrogène, miscibles donc par nature dans les compositions d'élastomère(s) diénique(s) lorsqu'elles sont qualifiées en outre de "plastifiantes". Elles peuvent être aliphatiques, aromatiques ou encore du type aliphatique/aromatique c'est-à- dire à base de monomères aliphatiques et/ou aromatiques. Elles peuvent être naturelles ou synthétiques, à base ou non de pétrole (si tel est le cas, connues aussi sous le nom de résines de pétrole). Elles sont préférentiellement exclusivement hydrocarbonées, c'est-à-dire qu'elles ne comportent que des atomes de carbone et d'hydrogène.
De préférence, la résine plastifiante hydrocarbonée présente au moins une, plus préférentiellement l'ensemble, des caractéristiques suivantes : une Tg supérieure à 20°C (plus préférentiellement entre 40 et 100°C) ;
une masse moléculaire moyenne en nombre (Mn) comprise entre 400 et
2000 g/mol (plus préférentiellement entre 500 et 1500 g/mol) ;
un indice de polymolécularité (Ip) inférieur à 3, plus préférentiellement inférieur à 2 (rappel : Ip = Mw/Mn avec Mw masse moléculaire moyenne en poids). La Tg de cette résine est mesurée de manière connue par DSC {Differential Scanning Calorimetry), selon la norme ASTM D3418. La macrostructure (Mw, Mn et Ip) de la résine hydrocarbonée est déterminée par chromatographie d'exclusion stérique (SEC) : solvant tétrahydrofurane ; température 35°C ; concentration 1 g/1 ; débit 1 ml/min ; solution filtrée sur filtre de porosité 0,45 μιη avant injection ; étalonnage de Moore avec des étalons de polystyrène ; jeu de 3 colonnes "WATERS" en série ("STYRAGEL" HR4E, HR1 et HR0.5) ; détection par réfractomètre différentiel ("WATERS 2410") et son logiciel d'exploitation associé ("WATERS EMPOWER").
Selon un mode de réalisation particulièrement préférentiel, la résine plastifiante hydrocarbonée est choisie dans le groupe constitué par les résines d'homopolymère ou copolymère de cyclopentadiène (en abrégé CPD), les résines d'homopolymère ou copolymère de dicyclopentadiène (en abrégé DCPD), les résines d'homopolymère ou copolymère de terpène, les résines d'homopolymère ou copolymère de coupe C5, les résines d'homopolymère ou copolymère de coupe C9, les résines d'homopolymère ou copolymère d'alpha-méthyl-styrène et les mélanges de ces résines. Parmi les résines de copolymères ci-dessus sont plus préférentiellement utilisées celles choisies dans le groupe constitué par les résines de copolymère (D)CPD/ vinylaromatique, les résines de copolymère (D)CPD/ terpène, les résines de copolymère (D)CPD/ coupe C5, les résines de copolymère (D)CPD/ coupe C9, les résines de copolymère terpène/ vinylaromatique, les résines de copolymère terpène/ phénol, les résines de copolymère coupe C5/ vinylaromatique, les résines de copolymère coupe C9/ vinylaromatique, et les mélanges de ces résines. Le terme "terpène" regroupe ici de manière connue les monomères alpha-pinène, beta-pinène et limonène ; préférentiellement est utilisé un monomère limonène, composé se présentant de manière connue sous la forme de trois isomères possibles : le L-limonène (énantiomère lévogyre), le D-limonène (énantiomère dextrogyre), ou bien le dipentène, racémique des énantiomères dextrogyre et lévogyre. A titre de monomère vinylaromatique conviennent par exemple le styrène, l'alpha- méthylstyrène, l'ortho-, méta-, para-méthylstyrène, le vinyle- toluène, le para-tertiobutylstyrène, les méthoxystyrènes, les chloro styrènes, les hydroxystyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène, tout monomère vinylaromatique issu d'une coupe C9 (ou plus généralement d'une coupe C8 à Cio). De préférence, le composé vinyle-aromatique est du styrène ou un monomère vinylaromatique issu d'une coupe C9 (ou plus généralement d'une coupe C8 à Cio). De préférence, le composé vinylaromatique est le monomère minoritaire, exprimé en fraction molaire, dans le copolymère considéré.
Le taux de résine hydrocarbonée est préférentiellement compris entre 3 et 60 pce, plus préférentiellement entre 3 et 40 pce, notamment entre 5 et 30 pce. Dans le cas où l'on souhaite augmenter la rigidité de la bande de roulement une fois expansée, sans réduire pour autant la teneur en plastifiant liquide ci-dessus, on pourra avantageusement incorporer des résines renforçantes (e.g. accepteurs et donneurs de méthylène) tels que décrites par exemple dans WO 02/10269 ou US 7, 199, 175.
La composition de caoutchouc thermo-expansible peut également contenir des activateurs de couplage lorsque qu'un agent de couplage est utilisé, des agents de recouvrement de la charge inorganique lorsqu'une charge inorganique est utilisée, ou plus généralement des agents d'aide à la mise en œuvre (processabilité) susceptibles de manière connue, grâce à une amélioration de la dispersion de la charge dans la matrice de caoutchouc et à un abaissement de la viscosité des compositions, d'améliorer leur processabilité à l'état cru ; ces agents sont par exemple des hydroxysilanes ou des silanes hydrolysables tels que des alkyl-alkoxysilanes, des polyols, des polyéthers, des aminés, des polyorganosiloxanes hydroxylés ou hydrolysables.
4.6. Fabrication des compositions
Les compositions de caoutchouc sont fabriquées dans des mélangeurs appropriés, en utilisant par exemple trois phases de préparation successives selon une procédure générale connue de l'homme du métier : une première phase de travail ou malaxage thermomécanique (parfois qualifiée de phase "non-productive") à haute température, jusqu'à une température maximale comprise entre 130°C et 200°C, de préférence entre 145°C et 185°C, suivie d'une seconde phase (non-productive) à plus basse température (de préférence inférieure à 100°C) au cours de laquelle est incorporé l'agent d'expansion, enfin une troisième phase de travail mécanique (parfois qualifiée de phase "productive") à basse température, typiquement inférieure à 120°C, par exemple entre 60°C et 100°C, phase de finition au cours de laquelle est incorporé le système de réticulation ou vulcanisation.
Un procédé utilisable pour la fabrication de telles compositions de caoutchouc comporte par exemple et de préférence les étapes suivantes : incorporer dans un mélangeur, à l'élastomère ou au mélange d'élastomères, au moins la charge non-noire, optionnellement du noir de carbone à un taux inférieur à 3 pce, le composé thermofusible, la résine polymère liquide photoréticulable, les éventuels autres additifs optionnels, en malaxant thermomécaniquement le tout, en une ou plusieurs fois, jusqu'à atteindre une température maximale comprise entre 130°C et 200°C ;
refroidir l'ensemble à une température inférieure à 100°C ; puis incorporer l'agent d'expansion au mélange ainsi obtenu et refroidi, en malaxant thermomécaniquement le tout jusqu'à atteindre une température maximale inférieure à 100 C ;
incorporer ensuite un système de réticulation ;
- malaxer le tout jusqu'à une température maximale inférieure à 120°C ;
extruder ou calandrer la composition de caoutchouc ainsi obtenue.
A titre d'exemple, on introduit au cours de la première phase non-productive, dans un mélangeur approprié tel qu'un mélangeur interne usuel, tous les constituants nécessaires, les éventuels agents de recouvrement ou de mise en œuvre complémentaires et autres additifs divers, à l'exception de l'agent d'expansion et du système de réticulation. Après travail thermomécanique, tombée et refroidissement du mélange ainsi obtenu, on conduit alors une seconde phase (non-productive) de travail thermomécanique dans le même mélangeur interne, phase au cours de laquelle est incorporé l'agent d'expansion à une température plus modérée (par exemple 60°C), pour atteindre une température maximale de tombée inférieure à 100°C. On incorpore alors le système de réticulation à basse température, généralement dans un mélangeur externe tel qu'un mélangeur à cylindres ; le tout est alors mélangé (phase productive) pendant quelques minutes, par exemple entre 5 et 15 min. Le système de réticulation proprement dit est préférentiellement à base de soufre et d'un accélérateur primaire de vulcanisation, en particulier d'un accélérateur du type sulfénamide. A ce système de vulcanisation viennent s'ajouter, incorporés au cours de la première phase non- productive et/ou au cours de la phase productive, divers accélérateurs secondaires ou activateurs de vulcanisation connus tels qu'oxyde de zinc, acide stéarique, dérivés guanidiques (en particulier diphénylguanidine), etc. Le taux de soufre est de préférence compris entre 0,5 et 5 pce, celui de l'accélérateur primaire est de préférence compris entre 0,5 et 8 pce.
On peut utiliser comme accélérateur (primaire ou secondaire) tout composé susceptible d'agir comme accélérateur de vulcanisation des élastomères diéniques en présence de soufre, notamment des accélérateurs du type thiazoles ainsi que leurs dérivés, des accélérateurs de types thiurames, dithiocarbamates de zinc. Ces accélérateurs sont par exemple choisis dans le groupe constitué par disulfure de 2-mercaptobenzothiazyle (en abrégé "MBTS"), disulfure de tetrabenzylthiurame ("TBZTD"), N-cyclohexyl-2-benzothiazyle sulfénamide ("CBS"), N,N- dicyclohexyl-2-benzothiazyle sulfénamide ("DCBS"), N-ter-butyl-2-benzothiazyle sulfénamide ("TBBS"), N-ter-butyl-2-benzothiazyle sulfénimide ("TBSI"), dibenzyldithiocarbamate de zinc ("ZBEC") et les mélanges de ces composés.
Si un acide carboxylique est utilisé comme composé thermofusible, ce dernier ayant comme effet possible celui de réduire le délai d'induction (c'est-à-dire le temps nécessaire au début de la réaction de vulcanisation) lors de la cuisson de la composition, on pourra utiliser avantageusement un retardateur de vulcanisation permettant de contrecarrer ce phénomène, et d'offrir ainsi à la composition de caoutchouc le temps nécessaire pour une expansion complète avant sa vulcanisation. Le taux de ce retardateur de vulcanisation est de préférence compris entre 0,5 et 10 pce, plus préférentiellement entre 1 et 5 pce, en particulier entre 1 et 3 pce.
Les retardateurs de vulcanisation sont bien connus de l'homme du métier. On peut citer par exemple le N-cyclohexylthiophtalimide commercialisé sous la dénomination « Vulkalent G » par la société Lanxess, le N-(trichlorométhylthio)benzène-sulfonamide commercialisé sous dénomination « Vulkalent E/C » par Lanxess, ou encore l'anhydride phtalique commercialisé sous dénomination « Vulkalent B/C » par Lanxess. De manière préférentielle, on utilise le N- cyclohexylthiophtalimide (en abrégé « CTP »).
La composition finale ainsi obtenue est ensuite calandrée par exemple sous la forme d'une feuille ou d'une plaque, notamment pour une caractérisation au laboratoire, ou encore calandrée ou extrudée sous la forme d'une bande de roulement thermo-expansible.
A l'état cru (i.e., non vulcanisé) et donc non expansé, la densité ou masse volumique notée Di de la composition de caoutchouc thermo-expansible est de préférence comprise entre 1 , 100 et 1 ,400 g/cm3, plus préférentiellement comprise dans un domaine de 1 ,150 à 1 ,350 g/cm3.
La vulcanisation (ou cuisson) est conduite de manière connue à une température généralement comprise entre 130°C et 200°C, pendant un temps suffisant qui peut varier par exemple entre 5 et 90 min en fonction notamment de la température de cuisson, du système de vulcanisation adopté et de la cinétique de vulcanisation de la composition considérée.
C'est au cours de cette étape de vulcanisation que l'agent d'expansion va libérer une quantité de gaz importante, conduire à la formation de bulles dans la composition de caoutchouc mousse et finalement à son expansion. A l'état cuit (i.e., vulcanisé), la densité notée D2 de la composition de caoutchouc une fois expansée (i.e., à l'état de caoutchouc mousse) est comprise de préférence entre 0,700 à 1 ,000 g/cm3, plus préférentiellement comprise dans un domaine de 0,750 à 0,950 g/cm3.
Son taux d'expansion volumique noté TE (exprimé en %) est de préférence compris entre 25% et 75%, plus préférentiellement dans un domaine de 30 à 60%>, ce taux d'expansion TE étant calculé de manière connue à partir des densités Di et D2 ci-dessus, comme suit :
TE = [(D!/D2) - l] x 100. Comme expliqué précédemment, une ultime étape de photo -oxydation de la surface de la bande de roulement confère à cette dernière une adhérence améliorée sur glace sèche comme sur glace fondante. Cette étape complémentaire peut consister en une simple exposition naturelle au rayonnement UV-visible ou préférentiellement en un vieillissement artificiel accéléré, par exemple à l'aide d'une ou plusieurs lampe(s) émettant dans l'UV-visible (e.g. lampe à vapeur de mercure, lampe au xénon, lampe à fluorescence, lampes aux halogénures métalliques), ou encore dans une enceinte de photo -vieillissement accéléré pouvant comporter une ou plusieurs desdites lampes.
La composition de caoutchouc ainsi traitée offre aux bandages de l'invention une très bonne adhérence sur glace, à la fois sur glace sèche et sur glace fondante.

Claims

REVENDICATIONS
1. Bandage dont la bande de roulement comporte, à l'état non vulcanisé, une composition de caoutchouc thermo-expansible comportant au moins un élastomère diénique, plus de 50 pce d'une charge renforçante non-noire, optionnellement du noir de carbone à un taux inférieur à 3 pce, entre 2 et 25 pce d'un agent d'expansion, entre 2 et 25 pce d'un composé thermofusible dont la température de fusion est comprise entre 60°C et 220°C, et entre 5 et 50 pce d'une résine polymère liquide photoréticulable.
2. Bandage selon la revendication 1, dans lequel Γ élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères.
3. Bandage selon la revendication 2, dans lequel ladite composition de caoutchouc comporte 50 à 100 pce de caoutchouc naturel ou de polyisoprène de synthèse.
4. Bandage selon la revendication 2, dans lequel ladite composition comporte 50 à 100 pce d'un polybutadiène ayant un taux de liaisons cis-1,4 supérieur à 90%.
5. Bandage selon l'une quelconque des revendications 1 à 4, dans lequel le taux de charge renforçante non-noire est compris entre 50 et 150 pce, de préférence compris dans un domaine de 70 à 120 pce.
6. Bandage selon l'une quelconque des revendications 1 à 5, dans lequel la charge renforçante non-noire est une charge inorganique, de préférence de la silice.
7. Bandage selon l'une quelconque des revendications 1 à 6, dans lequel l'agent d'expansion est un carbonate ou hydrogénocarbonate, de préférence un carbonate ou hydrogénocarbonate de sodium, potassium ou ammonium.
8. Bandage selon la revendication 7, dans lequel l'agent d'expansion est choisi dans le groupe constitué par carbonate de sodium, hydrogénocarbonate de sodium, carbonate de potassium, hydrogénocarbonate de potassium, et les mélanges de tels carbonates.
9. Bandage selon l'une quelconque des revendications 1 à 8, dans lequel le taux d'agent d'expansion est compris entre 5 et 25 pce, de préférence entre 8 et 20 pce.
10. Bandage selon l'une quelconque des revendications 1 à 9, dans lequel la température de fusion du composé thermo fusible est comprise entre 100°C et 200°C, de préférence entre 120 et 180°C.
11. Bandage selon l'une quelconque des revendications 1 à 10, dans lequel le composé thermofusible est un acide carboxylique.
12. Bandage selon la revendication 11, dans lequel l'acide carboxylique est choisi dans le groupe constitué par l'acide malique, l'acide α-cétoglutarique, l'acide citrique, l'acide stéarique et les mélanges de ces acides.
13. Bandage selon l'une quelconque des revendications 1 à 12, dans lequel le taux de composé thermo fusible est compris entre 2 et 20 pce, de préférence entre 2 et 15 pce.
14. Bandage selon l'une quelconque des revendications 1 à 13, dans lequel la teneur totale en agent d'expansion et en composé thermofusible est supérieure à 10 pce, de préférence supérieure à 15 pce.
15. Bandage selon l'une quelconque des revendications 1 à 14, dans lequel le taux de noir de carbone est inférieur à 2 pce.
16. Bandage selon l'une quelconque des revendications 1 à 15, dans lequel la résine polymère liquide photoréticulable est choisie dans le groupe constitué par les résines acrylate, méthacrylate, époxyde, oxétane, polyester insaturé, vinyléther, vinylester et les mélanges de telles résines.
17. Bandage selon la revendication 16, dans lequel la résine polymère liquide photoréticulable est une résine acrylate ou méthacrylate.
18. Bandage selon l'une quelconque des revendications 1 à 17, dans lequel la résine polymère liquide photoréticulable est un polymère diénique, de préférence un polybutadiène ou un polyisoprène.
19. Bandage selon les revendications 17 et 18, dans laquelle la résine polymère liquide photoréticulable est un poly(butadiène-acrylate) ou un poly(butadiène-méthacrylate).
20. Bandage selon l'une quelconque des revendications 1 à 19, dans lequel la composition de caoutchouc thermo-expansible comporte en outre un agent plastifiant liquide à 20°C, de préférence à un taux tel que le rapport pondéral charge renforçante non-noire sur agent plastifiant liquide est supérieur à 2,0, de préférence supérieur à 2,5.
21. Bandage selon l'une quelconque des revendications 11 à 20, dans lequel la composition de caoutchouc thermo-expansible comporte en outre un retardateur de vulcanisation, de préférence à un taux compris entre 0,5 et 10 pce.
22. Bandage selon l'une quelconque des revendications 1 à 21, dans lequel la densité de la composition de caoutchouc thermo-expansible est comprise entre 1,100 et 1,400 g/cm3, de préférence dans un domaine de 1,150 à 1,350 g/cm3.
23. Bandage à l'état vulcanisé, obtenu après cuisson d'un bandage selon l'une quelconque des revendications 1 à 22.
PCT/EP2013/072152 2012-10-30 2013-10-23 Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible WO2014067826A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13779885.6A EP2914442B1 (fr) 2012-10-30 2013-10-23 Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260373 2012-10-30
FR1260373A FR2997407B1 (fr) 2012-10-30 2012-10-30 Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible

Publications (1)

Publication Number Publication Date
WO2014067826A1 true WO2014067826A1 (fr) 2014-05-08

Family

ID=47666284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/072152 WO2014067826A1 (fr) 2012-10-30 2013-10-23 Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible

Country Status (3)

Country Link
EP (1) EP2914442B1 (fr)
FR (1) FR2997407B1 (fr)
WO (1) WO2014067826A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195053A1 (fr) * 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
CN112778593A (zh) * 2021-01-06 2021-05-11 正新橡胶(中国)有限公司 一种半热熔胎面橡胶组合物及柏油拉力赛轮胎
IT202100023213A1 (it) 2021-09-08 2023-03-08 Pirelli Pneumatico per ruote di veicoli

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998508A1 (fr) * 2012-11-29 2014-05-30 Michelin & Cie Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878147A (en) 1973-12-27 1975-04-15 Du Pont Composition for increasing the friction of surfaces on ice
JPH03159803A (ja) 1989-11-17 1991-07-09 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
US5147477A (en) 1986-02-05 1992-09-15 Bridgestone Corporation Pneumatic tire having foamed tread rubber
EP0826522A1 (fr) 1996-03-18 1998-03-04 Bridgestone Corporation Pneu, procede de production de pneus, composition de caoutchouc et composition de caoutchouc vulcanise
WO1999028376A2 (fr) 1997-11-28 1999-06-10 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Charge alumineuse renforcante et composition de caoutchouc comportant une telle charge
US5977238A (en) 1997-07-11 1999-11-02 Michelin & Cie Rubber composition based on carbon black having silica fixed to its surface and on diene polymer functionalized with alkoxysilane
US6013718A (en) 1995-11-07 2000-01-11 Michelin & Cie Rubber composition based on silica and on functionalized diene polymer which has a silanol end functional group
WO2000073372A1 (fr) 1999-05-28 2000-12-07 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique, a base d'elastomere dienique et d'un oxyde de titane renforçant
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002053634A1 (fr) 2001-01-02 2002-07-11 Societe De Technologie Michelin Composition de caoutchouc a base d'élastomère dienique et d'un carbure de silicium renforçant
JP2002211203A (ja) 2001-01-19 2002-07-31 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
WO2002088238A1 (fr) 2001-03-12 2002-11-07 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique
US6503973B2 (en) 2000-02-24 2003-01-07 Michelin Recherche Et Technique S.A. Vulcanizable rubber composition usable for the manufacture of a tire, and a tire comprising this composition
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
WO2003016387A1 (fr) 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
JP2003183434A (ja) 2001-12-14 2003-07-03 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物及びその製造方法
WO2004003067A1 (fr) 2002-07-01 2004-01-08 Societe De Technologie Michelin Composition de caoutchouc a base d' elastomere dienique et d' un nitrure de silicium renforcant
JP2004091747A (ja) 2002-09-04 2004-03-25 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物およびその製造方法
WO2004056915A1 (fr) 2002-12-19 2004-07-08 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique a base d'un aluminosilicate renforcant
US6815473B2 (en) 2000-05-26 2004-11-09 Michelin Recherche Et Technique S.A. Rubber composition usable as a tire tread
WO2005087859A1 (fr) 2004-02-11 2005-09-22 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
US20060089445A1 (en) 2003-04-29 2006-04-27 Michelin Recherche Et Technique S.A. Process for obtaining a grafted elastomer having functional groups along the chain and a rubber composition
FR2877348A1 (fr) * 2004-10-28 2006-05-05 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc
WO2006077059A1 (fr) 2005-01-19 2006-07-27 Societe De Technologie Michelin Bande de roulement pour pneumatique
JP2006299031A (ja) 2005-04-19 2006-11-02 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2007017060A1 (fr) 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
JP2007039499A (ja) 2005-08-01 2007-02-15 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2007314683A (ja) 2006-05-26 2007-12-06 Yokohama Rubber Co Ltd:The ゴム組成物
JP2008001826A (ja) 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2008150413A (ja) 2006-12-14 2008-07-03 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2008080750A1 (fr) 2006-12-27 2008-07-10 Société de Technologie Michelin Bande de roulement dont la composition comporte une poudre de gomme de guar
WO2008080751A1 (fr) 2006-12-27 2008-07-10 Societe De Technologie Michelin Bande de roulement dont la composition comporte une poudre de gomme de xanthane
WO2009083125A1 (fr) 2007-12-27 2009-07-09 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2009112220A1 (fr) 2008-03-13 2009-09-17 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2010009850A1 (fr) 2008-07-24 2010-01-28 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2011051203A1 (fr) * 2009-10-27 2011-05-05 Societe De Technologie Michelin Bandage pneumatique dont la paroi interne est pourvue d'une couche de caoutchouc thermo-expansible
WO2011064128A1 (fr) 2009-11-27 2011-06-03 Societe De Technologie Michelin Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2011073188A1 (fr) 2009-12-18 2011-06-23 Societe De Technologie Michelin Pneumatique hiver a adherence sur glace amelioree
WO2011086061A1 (fr) 2010-01-18 2011-07-21 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2012052331A1 (fr) 2010-10-18 2012-04-26 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique
WO2012085063A1 (fr) 2010-12-23 2012-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc pour bande de roulement de pneumatique

Patent Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878147A (en) 1973-12-27 1975-04-15 Du Pont Composition for increasing the friction of surfaces on ice
US5147477A (en) 1986-02-05 1992-09-15 Bridgestone Corporation Pneumatic tire having foamed tread rubber
JPH03159803A (ja) 1989-11-17 1991-07-09 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
US6013718A (en) 1995-11-07 2000-01-11 Michelin & Cie Rubber composition based on silica and on functionalized diene polymer which has a silanol end functional group
EP0826522A1 (fr) 1996-03-18 1998-03-04 Bridgestone Corporation Pneu, procede de production de pneus, composition de caoutchouc et composition de caoutchouc vulcanise
US6336487B1 (en) 1996-03-18 2002-01-08 Bridgestone Corporation Pneumatic tire, method of manufacturing a pneumatic tire, rubber composition and vulcanized rubber composition
US5977238A (en) 1997-07-11 1999-11-02 Michelin & Cie Rubber composition based on carbon black having silica fixed to its surface and on diene polymer functionalized with alkoxysilane
WO1999028376A2 (fr) 1997-11-28 1999-06-10 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Charge alumineuse renforcante et composition de caoutchouc comportant une telle charge
WO2000073372A1 (fr) 1999-05-28 2000-12-07 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique, a base d'elastomere dienique et d'un oxyde de titane renforçant
US6503973B2 (en) 2000-02-24 2003-01-07 Michelin Recherche Et Technique S.A. Vulcanizable rubber composition usable for the manufacture of a tire, and a tire comprising this composition
US6815473B2 (en) 2000-05-26 2004-11-09 Michelin Recherche Et Technique S.A. Rubber composition usable as a tire tread
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
US7199175B2 (en) 2000-07-31 2007-04-03 Michelin Recherche Et Technique S.A. Tread for a tire having a rigidity gradient
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
US20040051210A1 (en) 2000-10-13 2004-03-18 Jean-Claude Tardivat Rubber composition comprising a polyfunctional organosilane as coupling agent
US6774255B1 (en) 2000-10-13 2004-08-10 Michelin Recherche Et Technique, S.A. Polyfunctional organosilane usable as a coupling agent and process for the obtainment thereof
WO2002053634A1 (fr) 2001-01-02 2002-07-11 Societe De Technologie Michelin Composition de caoutchouc a base d'élastomère dienique et d'un carbure de silicium renforçant
JP2002211203A (ja) 2001-01-19 2002-07-31 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
WO2002088238A1 (fr) 2001-03-12 2002-11-07 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
US20040132880A1 (en) 2001-04-10 2004-07-08 Olivier Durel Tire and tread comprising a bis-alkoxysilane testrasulfide as coupling agent
US20050016651A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of low specific surface area
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
US20050016650A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of very low specific surface area
WO2003016387A1 (fr) 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
JP2003183434A (ja) 2001-12-14 2003-07-03 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物及びその製造方法
WO2004003067A1 (fr) 2002-07-01 2004-01-08 Societe De Technologie Michelin Composition de caoutchouc a base d' elastomere dienique et d' un nitrure de silicium renforcant
JP2004091747A (ja) 2002-09-04 2004-03-25 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物およびその製造方法
WO2004056915A1 (fr) 2002-12-19 2004-07-08 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique a base d'un aluminosilicate renforcant
US20060089445A1 (en) 2003-04-29 2006-04-27 Michelin Recherche Et Technique S.A. Process for obtaining a grafted elastomer having functional groups along the chain and a rubber composition
WO2005087859A1 (fr) 2004-02-11 2005-09-22 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
FR2877348A1 (fr) * 2004-10-28 2006-05-05 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc
WO2006061064A1 (fr) 2004-10-28 2006-06-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006077059A1 (fr) 2005-01-19 2006-07-27 Societe De Technologie Michelin Bande de roulement pour pneumatique
JP2006299031A (ja) 2005-04-19 2006-11-02 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
JP2007039499A (ja) 2005-08-01 2007-02-15 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2007017060A1 (fr) 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
JP2007314683A (ja) 2006-05-26 2007-12-06 Yokohama Rubber Co Ltd:The ゴム組成物
JP2008001826A (ja) 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2008150413A (ja) 2006-12-14 2008-07-03 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2008080750A1 (fr) 2006-12-27 2008-07-10 Société de Technologie Michelin Bande de roulement dont la composition comporte une poudre de gomme de guar
WO2008080751A1 (fr) 2006-12-27 2008-07-10 Societe De Technologie Michelin Bande de roulement dont la composition comporte une poudre de gomme de xanthane
WO2009083125A1 (fr) 2007-12-27 2009-07-09 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2009112220A1 (fr) 2008-03-13 2009-09-17 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2010009850A1 (fr) 2008-07-24 2010-01-28 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2011051203A1 (fr) * 2009-10-27 2011-05-05 Societe De Technologie Michelin Bandage pneumatique dont la paroi interne est pourvue d'une couche de caoutchouc thermo-expansible
WO2011064128A1 (fr) 2009-11-27 2011-06-03 Societe De Technologie Michelin Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2011073188A1 (fr) 2009-12-18 2011-06-23 Societe De Technologie Michelin Pneumatique hiver a adherence sur glace amelioree
WO2011086061A1 (fr) 2010-01-18 2011-07-21 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2012052331A1 (fr) 2010-10-18 2012-04-26 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique
WO2012085063A1 (fr) 2010-12-23 2012-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc pour bande de roulement de pneumatique

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRUNAUER-EMMETT-TELLER, THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, February 1938 (1938-02-01), pages 309
C. DECKER, H. LE XUAN AND NGUYEN THI VIET: "Photocrosslinking of Functionalized Rubber. III. Polymerization of Multifunctional Monomers in Expoxidized Liquid Natural Rubber", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 34, no. 9, 15 July 1996 (1996-07-15), pages 1771 - 1781, XP002693610 *
C. DECKER, T. NGUYEN THI VIE AND H. LE XUAN: "Photoréticulation de caoutchoucs fonctionnalisés - V. Polymérisation radicalaire de caoutchouc à groupements acrylates", EUR. POLYM. J., vol. 32, no. 5, 1 May 1996 (1996-05-01), pages 559 - 567, XP002693609 *
PRANEE PHINYOCHEEP, SAYAN DUANGTHONG: "Ultraviolet-Curable Liquid Natural Rubber", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 78, no. 8, 21 November 2000 (2000-11-21), pages 1478 - 1485, XP002693608 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195053A1 (fr) * 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
CN112778593A (zh) * 2021-01-06 2021-05-11 正新橡胶(中国)有限公司 一种半热熔胎面橡胶组合物及柏油拉力赛轮胎
IT202100023213A1 (it) 2021-09-08 2023-03-08 Pirelli Pneumatico per ruote di veicoli

Also Published As

Publication number Publication date
EP2914442B1 (fr) 2016-12-14
FR2997407B1 (fr) 2015-01-23
EP2914442A1 (fr) 2015-09-09
FR2997407A1 (fr) 2014-05-02

Similar Documents

Publication Publication Date Title
EP2714425B1 (fr) Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
CA2813516C (fr) Composition de caoutchouc pour bande de roulement de pneumatique
EP2655089B1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
WO2011073188A1 (fr) Pneumatique hiver a adherence sur glace amelioree
EP2547726A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2011086061A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP2864134B1 (fr) Composition de caoutchouc thermo-expansible et pneumatique pour vehicule dont la bande de roulement comporte une telle composition
WO2012146611A1 (fr) Pneumatique a adhérence sur glace améliorée
EP2836544B1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique comportant des microparticules de sulfate de potassium
EP2914442B1 (fr) Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2013092340A1 (fr) Pneumatique a adhérence sur glace améliorée
WO2014067828A1 (fr) Pneumatique a adherence sur glace amelioree
WO2015014576A1 (fr) Composition de caoutchouc thermo-expansible et pneumatique comportant une telle composition
EP2914443B1 (fr) Pneumatique à adhérence sur glace améliorée
EP2925539A1 (fr) Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
EP2925537A1 (fr) Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2014114623A1 (fr) Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13779885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013779885

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013779885

Country of ref document: EP