WO2014067469A1 - 一种传输数据的方法、系统和设备 - Google Patents

一种传输数据的方法、系统和设备 Download PDF

Info

Publication number
WO2014067469A1
WO2014067469A1 PCT/CN2013/086277 CN2013086277W WO2014067469A1 WO 2014067469 A1 WO2014067469 A1 WO 2014067469A1 CN 2013086277 W CN2013086277 W CN 2013086277W WO 2014067469 A1 WO2014067469 A1 WO 2014067469A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
control channel
transmission
time domain
receiving
Prior art date
Application number
PCT/CN2013/086277
Other languages
English (en)
French (fr)
Inventor
贾民丽
徐伟杰
邢艳萍
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2014067469A1 publication Critical patent/WO2014067469A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system, and device for transmitting data. Background technique
  • M2M Machine to Machine
  • GSM Global System for Mobile Communications
  • the uplink and downlink data are scheduled to be transmitted by using a physical downlink control channel (PDCCH), and the control information of the data transmission channel PDSCH or PUSCH is carried on the PDCCH, for example, whether frequency hopping or resource allocation is performed. , transport format, retransmission sequence number, power control command, Hybrid Automatic Repeat reQuest (HARQ) process number, uplink subframe sequence number, and so on.
  • the data is transmitted on a Physical Downlink Shared Channel (PDSCH) (for downlink transmission) or a Physical Uplink Shared Channel (PUSCH) (for uplink transmission).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the current data transmission is a non-subframe bundling operation.
  • the non-subframe binding operation refers to a single transmission and the eNodeB/UE performs Acknowledgement/Negative Acknowledgement (ACK/NACK) feedback for a single transmission. Also: it is said that currently the data can only be transmitted using non-subframe binding operations, and the coverage strength cannot be greatly improved.
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • the present invention provides a method, system and device for transmitting data, which can solve the problem that the transmission data existing in the prior art can only use the non-subframe binding operation and cannot greatly improve the coverage strength.
  • a method for transmitting data according to an embodiment of the present invention includes:
  • the sender determines the available data transmission resources
  • the transmitting end periodically repeats sending data in groups on the determined available data sending resources, where, for each group, the packets are continuously and periodically repeated n times in the group, n is a positive integer; The total number of times is not greater than the maximum number of times the data is allowed to be repeatedly transmitted; the available data transmission resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • the receiving end determines the available data receiving resources
  • Receiving by the receiving end, periodically receiving data in units of groups on the determined available data receiving resources, wherein for each group, the data is received continuously or periodically n times in the group, n is a positive integer; The number of times is not greater than the maximum number of times the data is allowed to be repeatedly received; the available data receiving resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • a first determining module configured to determine an available data sending resource
  • a sending module configured to periodically send data in groups on a determined available data sending resource, where, for each group, the data is repeatedly transmitted n times in a group continuously or periodically, n is a positive integer; The total number of times of data is not greater than the maximum number of times the data is allowed to be repeatedly transmitted; the available data transmission resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • a second determining module configured to determine available data receiving resources
  • a receiving module configured to periodically receive data in groups on a determined available data receiving resource, where for each group, the data is received continuously or periodically n times in the group, n is a positive integer; The number of times is not greater than the maximum number of times the data is allowed to be repeatedly received; the available data receiving resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • a sending device configured to determine an available data sending resource; periodically repeating sending data in units of groups on the determined available data sending resource; wherein, for each group, continuously or periodically repeating the sending in the group n times, n a positive integer; the total number of times of repeatedly transmitting data is not greater than the maximum number of times the data is allowed to be repeatedly transmitted; the available data transmission resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer;
  • a receiving device configured to determine available data receiving resources; periodically receive data in units of groups on the determined available data receiving resources, wherein for each group, the data is received continuously or periodically within the group n times.
  • the data of the data channel can be repeatedly transmitted, which greatly increases the number of retransmissions, and the receiving end can combine and decode the data received multiple times, thereby bringing the combined decoding gain, thereby greatly improving the data transmission. Coverage strength.
  • FIG. 1 is a schematic structural diagram of a system for transmitting data according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a first type of data transmission according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a second type of data transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a third type of data transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a fourth type of data transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a first resource location according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a second resource location according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a sending device in a system for transmitting data according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a receiving device in a system for transmitting data according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a method for transmitting data by a network side device according to an embodiment of the present disclosure
  • FIG. 11 is a schematic flowchart of a method for receiving data by a user equipment according to an embodiment of the present invention. detailed description
  • the transmitting end determines the available data sending resource, and periodically repeats the sending data on the determined available data sending resource in groups, wherein, for each group, the group repeatedly sends the data continuously or periodically for n times.
  • n is a positive integer; the total number of times of repeatedly transmitting data is not greater than the maximum number of times the data is allowed to be repeatedly transmitted; the available data transmission resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • the data of the data channel can be repeatedly transmitted, so that the number of retransmissions is increased, and the received data can be combined and decoded by the receiving end to bring the combined decoding gain, thereby improving the coverage strength of the transmitted data.
  • a system for transmitting data includes: a transmitting device 10 and a receiving device 20.
  • the sending device 10 is configured to determine an available data sending resource, and periodically send the data in groups on the determined available data sending resource; wherein, for each group, the group repeatedly sends the data continuously or periodically for n times.
  • n is a positive integer; the total number of times of repeatedly transmitting data is not greater than the maximum number of times the data is allowed to be repeatedly transmitted; the available data transmission resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer;
  • the transmission is repeated n times consecutively or periodically within the group, that is, the number is sent in units of groups.
  • multiple groups for example, m groups
  • each group is sent multiple times (n times), that is, the total number of times of sending data is m*n times.
  • the receiving device 20 is configured to determine available data receiving resources, and periodically repeat receiving data in units of groups on the determined available data receiving resources; wherein, for each group, the data is continuously or periodically received within the group n times, n Is a positive integer.
  • the sending device 10 and the receiving device 20 may both be transmission devices having a transceiving function.
  • the transmitting device 10 may transmit the same data corresponding to the redundancy version in the order in which the set redundancy versions are transmitted.
  • the transmission order of the redundancy version may be cyclically repeating multiple redundancy versions, that is, RV0, RV1, RV2, RV3, RV0, RV1, RV2, RV3 RV0, RV1. ,
  • RV2, RV3 You can also set the transmission order as needed, such as RV3, RV2, RV1, RV0, RV3, RV2, RV1, RVO RV3, RV2, RV1, RVO; RV3, RV3, RV2, RV2, RV1, RV1, RV0 , RVO Vietnamese, etc.
  • the order in which the redundancy versions are sent may be agreed by a protocol or a high layer.
  • the receiving device 20 Since the receiving device 20 knows which subframe has data, even if no data is received on the corresponding subframe, there is no deviation in the understanding of the transmission order of the redundancy version.
  • subframe 0 subframe 5
  • subframe 6 subframe 5
  • the transmission order of the redundancy version is RV0, RV1, and RV2
  • the data is not received, and the receiving device 20 also determines that subframe 0 corresponds to RV0, and subframe 6 corresponds to RV2.
  • the sending device 10 periodically repeats sending data in units of groups, specifically:
  • the transmitting device 10 can periodically transmit m groups of data, and repeatedly send n times of data in each group, and n times m is not greater than the maximum number of times the data is allowed to be repeatedly transmitted.
  • n can be 1 or an integer greater than 1.
  • the method for transmitting data in the embodiment of the present invention includes multiple modes, which are separately introduced below.
  • Manner 1 The receiving device 20 does not feed back the decoding result information.
  • the sending device 10 repeatedly sends the data multiple times, and after receiving the data, the receiving device 20 does not feed back the decoding result information, and the sending device 10 defaults that the decoding result information of the receiving device 20 is unsuccessful in receiving, and is repeatedly sent.
  • the data is repeatedly sent until the maximum number of times the data is allowed to be repeatedly transmitted.
  • the sending device 10 repeatedly sends data, and the receiving device 20 feeds back the decoding result information after receiving the data once or after the group of data; After receiving the decoding result information, the transmitting device 10 performs a decoding decision or an energy detection decision on the received decoding result information.
  • the receiving device 20 determines whether the receiving device is successfully received according to the result of the determination, wherein the statistical result of the determination result is the number of statistics that the judgment result is successful, or the result of the judgment is the number of statistics of the receiving failure;
  • the transmitting device 10 after receiving the decoding result information, combines with the previously received decoding result information to perform a decoding decision or an energy detection decision, and judges whether the receiving device 20 receives success according to the decision result.
  • the new data is sent. If the result of the determination is that the reception is unsuccessful, and the number of times of repeatedly transmitting data is not greater than the maximum number of times of the maximum allowable repeated transmission, the data is continuously transmitted repeatedly; if the result of the determination is that the reception fails, and the repetition is repeated. The number of times the data is sent is equal to the maximum number of times the data is allowed to be repeatedly sent, and new data is sent.
  • Mode 3 The transmitting device 10 repeatedly sends data, and after receiving the data once or receiving a group of data, if the decoding result information is successful, the receiving device 20 feeds back the decoding result information, otherwise the decoding result information is not fed back;
  • the transmitting device 10 performs a decoding decision or an energy detection decision on the received decoding result information each time after receiving the decoding result information, and if the judgment result is more than the set number of times in the obtained multiple transmission decision result Determining the threshold value, determining whether the receiving device 20 is successfully received according to the judgment result; or
  • the transmitting device 10 after receiving the decoding result information, combines with the previously received decoding result information to perform a decoding decision or an energy detection decision, and judges whether the receiving device 20 receives success according to the decision result. After receiving the decoding result information for the first time, since the decoding result information has not been received before, the first received decoding result information is merged with the empty decoding result information.
  • the new data is sent. If the result of the determination is that the reception is unsuccessful, and the number of times of repeatedly transmitting data is not greater than the maximum number of times of the maximum allowable repeated transmission, the data is continuously transmitted repeatedly; if the result of the determination is that the reception fails, and the repetition is repeated. The number of times the data is sent is equal to the maximum number of times the data is allowed to be repeatedly sent, and new data is sent.
  • the processing may not be performed, and the direct feedback is successfully received.
  • the maximum allowed number of feedbacks can also be set; correspondingly, in the above manner, the number of feedbacks of the receiving end for the same data is not greater than the maximum allowed number of feedbacks, if the number of feedbacks for the same data is equal to the maximum allowed The number of feedbacks is no longer feedback for the same data.
  • the receiving end can feedback the decoding result information multiple times, and ensure that the number of feedbacks for the same data is not greater than the maximum allowed number of feedbacks.
  • the receiving device 20 feeds back the decoding result information according to the timing relationship between the subframe carrying the data and the subframe carrying the decoding result information.
  • the sending device 10 according to the subframe carrying the data and the bearer decoding result information
  • the timing relationship between the subframes receives the decoding result information from the receiving end.
  • the timing relationship is configured by protocol agreement or higher layer; the timing relationship includes a timing relationship between the subframe of the last data transmission before the feedback and the subframe of the first decoding result information.
  • the transmitting device 10 receives the decoding according to the timing relationship between the subframe that carries the decoding result information and the subframe that carries the data after the subframe that carries the decoding result information.
  • the data is sent; correspondingly, after receiving the feedback decoding result information, the receiving device 20, according to the timing between the subframe carrying the decoding result information and the subframe carrying the data after the subframe carrying the decoding result information Relationship, receiving data;
  • the timing relationship is configured by a protocol or a high layer; the timing relationship between the subframe carrying the decoding result information and the subframe carrying the data later includes: a subframe of the last feedback transmission and a subframe of the first data transmission thereafter The timing relationship between.
  • the resources scheduled by the downlink control channel include resources for data transmission scheduled by repeatedly transmitting the control channel. That is to say, the resources scheduled by the downlink control channel, that is, the resources used for data transmission need to be scheduled through the control channel, and the embodiment of the present invention may repeatedly transmit the control channel.
  • the transmitting device 10 is a network device
  • the receiving device 20 is a user device. If the transmitting device 10 is a user device, the receiving device 20 is a network device. Therefore, according to different scenarios, the device scheduled by the control channel may be the transmitting device 10 or the receiving device 20.
  • both the transmitting device 10 and the receiving device 20 need to determine the resource location of the control channel, which will be described in detail below. Since the sending device 10 and the receiving device 20 are specifically determined in the same manner, the transmitting device 10 is taken as an example, and the receiving device 20 is determined in the same manner as the transmitting device 10, and the description is not repeated.
  • the device that sends the scheduling information is the base station, and the device that receives the scheduling information is the user equipment.
  • the control channel of the embodiment of the present invention includes part or all of the PDCCH, ePDCCH (Enhanced PDCCH).
  • the transmitting device 10 determines to repeatedly transmit the resource location of the control channel;
  • the resource location of the control channel includes a time domain resource location and a frequency domain resource location.
  • the transmitting device 10 determines the location of the resource for the control channel to perform multiple repeated transmissions through system broadcast or higher layer signaling or protocol convention.
  • the transmitting device 10 determines the resource location according to the following steps:
  • the sending device 10 sends the control channel according to the group, and determines the resource location according to the group in which the control channel is located; wherein the control channels in different groups occupy different resource locations.
  • control channels may not be grouped here as needed.
  • the sending device 10 determines the resource location, including:
  • the transmitting device 10 transmits the control channel in groups, and determines the time domain starting position of the control channel according to the correspondence between the group in which the control channel is located and the time domain starting position of the control channel.
  • the transmitting device 10 determines the time domain resource location according to the following steps:
  • the transmitting device 10 transmits the offset period Offset of the transmission period according to the transmission period Period of the transmission control channel, and wirelessly Determining a time domain resource location by using a subframe offset s in the frame and some or all parameters in the duration of the transmission control channel Length;
  • the sending device 10 determines the Period, Offset, s and Length by protocol agreement or high-level configuration or system message notification.
  • the transmitting device 10 determines the time domain resource location according to the following steps:
  • the transmitting device 10 determines the time domain of the transmission control channel according to the transmission period Period of the transmission control channel, the offset Offset in the transmission period, and some or all of the parameters in the subframe offset s in the radio frame and the system radio frame number SFN. Starting position, and determining that the available available subframes are time domain resource locations;
  • the Length available subframes are consecutive Length available subframes or preset Length or available uplink subframes.
  • each group of control channels may also correspond to parameters of Period, Offset, s and Length, respectively.
  • the sending device 10 # ⁇ according to the group in which the control channel is located when determining the resource location, first determine the Period, Offset, s and Length corresponding to the group in which the control channel is located, and then determine the resource location by using the above method.
  • the transmitting device 10 determines the time domain start position of the transmission control channel according to the following formula:
  • control channel resource location is a cell level or a user equipment level.
  • the time domain resource location has a certain timing relationship with the data channel
  • the timing relationship includes a timing relationship between a time domain location of the first transmission of the control channel or a time domain location of the last transmission and a time domain location of the first transmission or the last transmission of the data channel;
  • Timing relationships are defined through protocol or high-level configuration.
  • the bearer information in the repeatedly transmitted control channel is the same and/or the aggregation level used by the control channel is the same.
  • the frequency domain resource location of the repeatedly transmitted control channel determined by the transmitting device 10 is the same.
  • the receiving device 20 determines the resource location, including:
  • the receiving device 20 determines the time domain starting position of the control channel corresponding to the index number according to the correspondence between the index number and the time domain starting position of the control channel.
  • control channels may not be grouped here as needed.
  • the scheme of the present invention will be described below by way of a few examples.
  • the data in Figure 2 to Figure 6 is carried by PDSCH or PUSCH, that is, including uplink and downlink transmission.
  • the decoding result is ACK or NACK.
  • the decoding result information is carried by the PUCCH channel or the PUSCH channel, and for the uplink transmission, the decoding result information is carried by the PHICH channel.
  • the transmission of the scheduling channel is not shown in the figure.
  • the transmitting end repeats the data transmission N times, and the data receiving end does not feed back the decoding result information. That is, the data is forced to be repeatedly transmitted to the maximum number of times N times, and new data is transmitted after N times.
  • N can be agreed upon by agreement or high-level configuration. Repeated transmission of data can be a different redundancy version that transmits the same data.
  • the order of the redundancy versions can be agreed by protocol, for example, the existing RV version can be used sequentially, and then iteratively repeated.
  • the physical downlink control channel PDCCH or the enhanced PDCCH may be transmitted for scheduling and allocation.
  • the allocation of data transmission resources required for N transmissions is scheduled, and the transmission methods of multiple transmissions are the same.
  • the upper layer allocates a dedicated data transmission resource, and each transmission uses control information such as a dedicated transmission mode, such as an MCS level.
  • the channel may be repeatedly transmitted multiple times. The specific transmission time and resource location are described later in the scheme of determining to repeatedly transmit resources for scheduling data transmission through the control channel.
  • Figure 2 shows a schematic of this scheme.
  • N 100 times in the figure.
  • N can be used to give the recommended or recommended range of N to reach the coverage target by simulation.
  • N can notify the sender and receiver through protocol agreement or high-level configuration.
  • the transmitting end is an evolved base station (eNodeB)
  • the receiving end is a user equipment (UE)
  • the data is carried on the PDSCH;
  • the transmitting end is a UE, the receiving end is an eNodeB, and the data bearer is carried in On the PUSCH.
  • eNodeB evolved base station
  • UE user equipment
  • Repeatedly transmitted data can use different redundancy versions (RV), such as sequential use of the existing 4 RV versions and cyclic repetition: RV0-RV1 -RV2-RV3 -RV0-RV1 -RV2-RV3 - . . . . -RV0-RV1-RV2-RV3.
  • the scheduling method is the same as described above.
  • the transmitting end As long as the transmitting end decides that the received decoding result information is non-ACK/DTX transmission, that is, the receiving fails, the data transmission continues to be repeated until the maximum retransmission or the number of transmissions N. If the transmitting end determines that the received decoding result information is ACK/non-DTX transmission, that is, the reception is successful, the data transmission is stopped and the new data is started to be sent. The transmitting end performs combined energy detection or merge decoding on all decoding result information received after each data transmission to determine that the feedback result is ACK/non-DTX transmission or non-ACK/DTX transmission or the transmitting end is based on each decoding result information.
  • the merge decoding decision is performed according to the previously repeatedly transmitted data. If the decision is ACK, the ACK is fed back. If the decision is NACK, the DTX transmission is performed, that is, the decoding result information is not fed back. As long as the decoding result is ACK, the receiving end rejects the ACK after receiving the new data arrival indication after this decoding. The receiving end may not require a decoding operation during this time. N can be agreed upon by agreement or high-level configuration.
  • control information such as resources or transmission methods used for data transmission, such as MCS level, transmission format, etc.
  • the method of transmitting the physical downlink control channel PDCCH or ePDCCH scheduling and allocating the data transmission resources required for N transmissions may be used.
  • the control information such as the allocation scheduling and the transmission mode of multiple transmissions is the same.
  • the upper layer allocates dedicated data transmission resources, and each transmission uses control information such as a dedicated transmission method, such as an MCS level.
  • the control channel may be repeatedly transmitted multiple times. The specific transmission time and resource location are described later in the scheme of determining to repeatedly transmit resources for scheduling data transmission through the control channel.
  • Timing Relationship The timing relationship between data and feedback can be the same as existing mechanisms.
  • Figure 3 shows a schematic of this scheme.
  • N 100 times in the figure.
  • the determination of N a possible way to determine is to give the recommended value or recommended range of N to reach the target by simulation.
  • N can notify the sender and receiver through protocol agreement or high-level configuration.
  • the transmitting end is an eNodeB
  • the receiving end is a UE
  • the data is carried on the PDSCH
  • the feedback is carried on the PUCCH or the PUSCH
  • the transmitting end is the UE
  • the receiving end is the eNodeB
  • the data is carried in On the PUSCH
  • the feedback is carried on the PHICH.
  • the eNode B starts sending new data.
  • Repeatedly transmitted data can use different redundancy versions (RV), such as sequential use of the existing 4 RV versions and cyclic repetition: RV0-RV1-RV2-RV3-RV0-RV1-RV2-RV3-....- -RV0-RV1-RV2-RV3 0
  • the transmission or transmitting end performs a decoding decision or an energy detection decision based on each decoding result information, and counts or combines all the transmitted decision results. If the statistical value or the combined value of a certain decision result is greater than a certain threshold, the decision is determined as the decision. result.
  • the scheduling method is the same as described above.
  • the sender transmits data repeatedly in groups of m, and transmits data in n times in each group.
  • n*m ⁇ N.
  • the number of specifically sent m groups is determined according to the feedback of the receiving end. If the sending end receives the decoding feedback result as ACK, the data transmission is stopped and the new data is started to be sent. If the sending end receives the decoding feedback result as NACK, the data is repeatedly sent until the maximum number of retransmissions is N times.
  • the X-translated version received by the sender after sending data for each group of n times The code feedback result is combined and decoded and determined to obtain a decoding feedback result.
  • the X-th decoding result may be combined energy detection or combined decoding to determine the feedback result as ACK or NACK, or may be decoded X times. As a result, each single energy detection or decoding decision is performed first, and then the judgment result of the X transmission is counted or combined. If the statistical value or the combined value of a certain judgment result is greater than a certain threshold, the judgment result is determined.
  • Repeated transmission of data can be a different redundancy version that transmits the same data.
  • the order of the redundancy versions can be agreed upon by the protocol, for example, the existing RV version can be used sequentially and then iteratively repeated.
  • the receiving end every time the data transmission does not feed back the decoding result, but all the repeatedly transmitted data is received before the merge decoding, and after the completion of the group transmission, the ACK or NACK is fed back according to the decoding result, and the ACK or NACK is repeatedly sent. X times. As long as the decoding result is ACK, the receiving end rejects the ACK after receiving the new data arrival indication after this decoding. The receiving end may not require a decoding operation during this time. n, m, N, x are agreed by protocol or through high-level configuration.
  • the physical downlink control channel PDCCH or ePDCCH scheduling may be transmitted once, and the resources required to transmit the data for n times are periodically allocated.
  • the control information such as the transmission mode of multiple transmissions is the same.
  • the period can be agreed or configured at a high level.
  • the upper layer allocates dedicated periodic data transmission resources, and each transmission uses control information such as a dedicated transmission mode, such as an MCS level.
  • the channel may be repeatedly transmitted multiple times. The specific transmission time and resource location are described later in the scheme of determining to repeatedly transmit resources for scheduling data transmission through the control channel.
  • Timing relationship The timing relationship between each group of data and feedback can be agreed upon by agreement or high-level configuration. For example, the timing relationship between the last transmission and the first feedback transmission in the n transmissions may be agreed, specifically, the timing relationship between the subframes in which the two transmissions are located, for example, the number of subframes between the two transmissions.
  • the timing relationship between the feedback result and the next set of data can be agreed upon or configured at a high level.
  • the timing relationship between the last feedback in the X feedback and the first data transmission in the next data transmission may be agreed, specifically, the timing relationship between the subframes in which the two transmissions are located, for example, the interval between The number of subframes.
  • Figure 4 shows a schematic of this scheme.
  • N 100 times in the figure.
  • the determination of N a possible way to determine is to give the recommended value or recommended range of N to reach the target by simulation.
  • N can notify the sender and receiver through protocol agreement or high-level configuration.
  • the transmitting end is an eNodeB
  • the receiving end is a UE
  • the data is carried on the PDSCH.
  • the feedback is carried on the PUCCH or the PUSCH.
  • the uplink data is transmitted, the transmitting end is the UE, the receiving end is the eNodeB, the data is carried on the PUSCH, and the feedback is carried on the PHICH.
  • the eNode B receives the decoding result information and determines that it is an ACK, that is, the transmitted data is correctly received by the UE, and the eNode B starts to send new data.
  • n*m 30 ⁇ N.
  • Repeatedly transmitted data can use different redundancy versions (RV), such as sequential use of the existing four RV versions and cyclic repetition: RV0-RV1-RV2-RV3-RV0-RV1-RV2-RV3-.
  • the X-time decoding feedback results received after each group of n times of transmitting data are combined and decoded and determined to obtain a decoding feedback result, and the combined energy detection or combined decoding may be performed on the X decoding results.
  • the feedback result is ACK or NACK, or each time a single energy detection or decoding decision can be performed on the X decoding result, and then the judgment result of the X transmission is counted or combined, if a certain judgment result statistical value or combined value If it is greater than a certain threshold, the judgment is the result of the judgment.
  • the scheduling method and timing relationship are the same as described above.
  • the sender transmits data repeatedly in groups of m, and transmits data in n times in each group.
  • n*m ⁇ N.
  • the number of specifically transmitted m groups is determined according to the feedback from the receiving end. If the transmitting end decides to send ACK or non-DTX transmission to the received decoding result information, the transmission of the data is stopped and the new data is started to be transmitted. If the transmitting end receives the decoding result information and decides to be non-ACK or DTX transmission, the data is repeatedly transmitted until the maximum number of retransmissions is N times.
  • the transmitting end performs combined detection or decoding on the X times received after each group of n times of data transmission or the decoded feedback result received after transmitting the data to determine that the feedback result is ACK/non-DTX transmission or non-ACK/DTX transmission.
  • the combined energy detection or the combined decoding may be performed on the x or all received decoding results to determine that the feedback result is ACK or NACK, or X or all received decoding results may be performed first.
  • a single energy detection or decoding decision and then statistically or merging the decision results of X times or all received transmissions. If a certain decision result statistic or combined value is greater than a certain threshold, the decision is the result of the decision.
  • Repeated transmission of data can be a different redundancy version that transmits the same data.
  • the order of the redundancy versions can be agreed upon by the protocol, for example, the existing RV version can be used sequentially and then iteratively repeated.
  • the receiving end every time the data transmission does not feed back the decoding result, but all the repeatedly transmitted data is received before the merge decoding, after the completion of the group transmission, the feedback is fed back according to the decoding result and only the ACK information is fed back, or no feedback NACK information.
  • the ACK is repeatedly transmitted X times or not transmitted X times, wherein the ACK is repeatedly transmitted X times, corresponding to the previous "feedback based on the decoding result after the completion of the current group transmission and only feedback ACK information"; Any information X times, corresponding to the previous "or not feedback NACK information".
  • the receiving end feeds back the ACK after receiving the new data arrival indication after this decoding.
  • the receiving end may not require a decoding operation during this time.
  • n, m, N, x are agreed by protocol or through high-level configuration.
  • the physical downlink control channel PDCCH or ePDCCH scheduling may be transmitted once, and the resources required to transmit the data for n times are periodically allocated.
  • the control information for multiple transmissions is the same.
  • the period can be agreed or configured at a high level.
  • the upper layer allocates dedicated periodic data transmission resources, and each transmission uses control information such as a dedicated transmission mode, such as an MCS level.
  • the channel may be repeatedly transmitted multiple times. For specific transmission time and resource location, see the following scheme for determining to repeatedly transmit resources for scheduling data transmission through the control channel.
  • Timing relationship The timing relationship between each group of data and feedback can be agreed upon by agreement or high-level configuration. For example, the timing relationship between the last transmission and the first feedback transmission in n transmissions may be agreed, specifically, the two transmissions may be The timing relationship between subframes, such as the number of subframes that are spaced apart.
  • the timing relationship between the feedback result and the next set of data can be agreed upon or configured at a high level.
  • the timing relationship between the last feedback in the X feedback and the first data transmission in the next data transmission may be agreed, specifically, the timing relationship between the subframes in which the two transmissions are located, for example, the interval between The number of subframes.
  • Figure 5 shows a schematic of this scheme.
  • N 100 times in the figure.
  • the determination of N a possible way to determine is to give the recommended value or recommended range of N to reach the target by simulation.
  • N can notify the sender and receiver through protocol agreement or high-level configuration.
  • the transmitting end is an eNodeB
  • the receiving end is a UE
  • the data is carried on the PDSCH
  • the feedback is carried on the PUCCH or the PUSCH
  • the transmitting end is the UE
  • the receiving end is the eNodeB
  • the data is carried in On the PUSCH
  • the feedback is carried on the PHICH.
  • Repeatedly transmitted data can use different redundancy versions (RV), such as sequential use of the existing 4 RV versions and cyclic repetition: RV0-RV1-RV2-RV3-RV0-RV1-RV2-RV3-....- -RV0-RVl-RV2-RV3 o
  • the transmitting end performs combined detection or decoding on the x decoding feedback results received after each group of n times of transmitting data to determine that the feedback result is ACK/non-DTX transmission or non-ACK /DTX transmission, specifically, the combined energy detection or the combined decoding may be performed on the X decoding results to determine that the feedback result is ACK or NACK, or the X-th decoding result may be first performed for each single energy detection or translation.
  • the code is judged, and then the judgment result of the X transmission is counted or combined. If the statistical value or the combined value of a certain judgment result is greater than a certain threshold, the judgment is the result of the judgment.
  • the scheduling method and timing relationship are the same as described above.
  • Example 2 can be regarded as a special case of the fourth example, that is, each group only sends data once, and each feedback only feeds back the decoding result information once.
  • the data and the feedback are repeatedly transmitted multiple times, and the transmission performance and reliability can be improved by multiple merge decoding, thereby achieving the coverage improvement target. For example 1, without feedback, a large amount of feedback overhead can be saved. However, since the transmitting end cannot obtain the decoding result information, if the N setting is too large, the transmission resources are wasted and the spectrum efficiency is lowered.
  • the latter three embodiments can be judged by the decoding result information, so that the number of retransmissions required to ensure the reliability of the data transmission can be quickly obtained, and the problem caused by the excessive setting of N is avoided, but the latter three embodiments all require certain Feedback overhead.
  • the scheme for determining the repeated transmission of resources for scheduling data transmission through the control channel is further described below.
  • the transmitting end is taken as an example for description.
  • the receiving end determines the resource in the same manner as the sending end, but only the receiving end determines the receiving resource, and details are not described herein again.
  • the sending resource location may be notified to the sender and receiver or the protocol contract resource location in system broadcast or higher layer signaling.
  • the sending resource location includes a time domain resource location and a frequency domain resource location.
  • the time domain resource location of the sending resource may be continuous or periodic, and its period Period, the duration duration of the period and some or all of the specific subframes s in the period may be through system broadcast or high layer signaling or protocol agreement. Obtained, three parameters can be sent in units of sub-frames.
  • the start time of the domain can be associated with the system radio frame number SFN (System Frame Number). For example, the resource start position is (10*SFN+s) mod.
  • Period can take any integer value greater than one.
  • the duration is Length available subframes. The length subframes may be consecutive available subframes, or may be periodically available subframes.
  • the offset Offset in the period can also be notified, and the corresponding resource location is a resource that lasts for a certain length of time from the offset Offset in the period Period, for example, the resource starting position can be defined as (10*SFN+s-OfFset)
  • the position of mod Period 0, the duration is Length available subframes, and the length subframes may be consecutive available subframes, or may be periodic reserved available subframes.
  • the foregoing resource location may be UE-level, that is, dedicated to a single UE or a cell-level, that is, intra-cell UE. If it is a UE level, a set of Period and or Offset and or Length and or s can be defined for each UE. If the UE is shared by multiple UEs, the UE needs to perform blind detection, and further distinguish according to the ID identifier of the UE.
  • control channel may be grouped according to an Internation Modbile Subcriber Identity (IMSI) of the user equipment, and each group corresponds to some or all of the above three parameters, for example, when the K group sends resources. Domain location.
  • IMSI Internation Modbile Subcriber Identity
  • K may be a protocol agreement or a system broadcast or a high-level signaling configuration.
  • the sender may directly determine the resources corresponding to each group of control channels according to the correspondence between the control channel and the resource location.
  • the receiver needs to first determine the group index number, and then determine according to the index number.
  • the corresponding resource location It should be noted that the control channels may not be grouped as needed.
  • the transmission time of the control channel may be associated with the transmission of the data channel, that is, the timing relationship between the control channel and the data channel may be agreed or configured at a high level, for example, the first transmission or the last transmission of the control channel (eg, PDCCH or ePDCCH)
  • the packet can shift a large number of UE scheduling times, and can also reduce the number of blind detections of the UE.
  • the frequency domain location of the sending resource may be a high level signaling semi-static configuration or a protocol agreed location.
  • the frequency domain resources that are repeatedly sent multiple times have the same location.
  • the repeated transmission of the control channel multiple times includes, the repeated transmission of the control channel bearer information is the same, and the control channel aggregation level is the same. This is advantageous for the receiving end to combine the received multiple control channels to improve the control channel. Yes, on the other hand, the number of blind checks on the control channel can be reduced.
  • Figure 6 shows a schematic diagram of the location of a resource for repeated transmissions for scheduling data transmissions.
  • the PDCCH is transmitted as an example.
  • the sender is the eNode B and the receiver is the UE.
  • the transmission method of the control channel can be combined with the above data transmission scheme. Then the transmission time is associated with the data transmission.
  • Figure 7 shows an embodiment in which the control channel transmission method and the method of the above example 3 are combined to give a complete data transmission scheme.
  • the transmission timing of the PDCCH in the figure can be determined according to the above method (i.e., the method illustrated in Fig. 6).
  • the transmission time of the PUCCH can also be determined in this way, but the timing must be after the data transmission, or can be determined according to the timing relationship with the PDSCH.
  • the transmission time of the PDSCH can be determined according to the transmission timing of the PDCCH and the defined timing relationship between the two.
  • the timing relationship may define a subframe interval between a subframe where the p-th transmission of the PDCCH is located and a subframe where the PDSCH is transmitted for the first time, and a sub-frame between the subframe where the nth transmission of the PDSCH is located and the first transmission of the PUCCH. Frame interval.
  • the sending end and the receiving end can understand the starting position of the control channel, which is beneficial for the receiving end to receive the repeated repeated control channels from the correct starting position, and perform the combined decoding or detecting. , to obtain reliable coverage performance, and further ensure the reliability of data transmission. Otherwise, if the two understand differently, the receiver will not receive or merge errors correctly, which will reduce the transmission performance of the control channel. In addition, it can avoid blind detection of each subframe in the blind end of the receiving end, reduce the number of blind detections, and reduce the processing complexity and cost of the receiving end.
  • the network side device in the embodiment of the present invention may be a station, such as a macro base station, a home base station, or the like, or may be a relay device (RN), or may be another network side device.
  • a station such as a macro base station, a home base station, or the like
  • RN relay device
  • the transmitting device in the system for transmitting data in the embodiment of the present invention includes: a first determining module 800 and a sending module 810.
  • a first determining module 800 configured to determine an available data sending resource
  • the sending module 810 is configured to periodically send the data in groups on the determined available data sending resources, where, for each group, the data is repeatedly transmitted n times consecutively or periodically within the group, where n is a positive integer; The total number of times the data is sent is not greater than the maximum number of times the data is allowed to be repeatedly transmitted; the available data transmission resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • the first determining module 800 may be a processor or the like, and the sending module 810 may be configured to receive and receive. Functional transmission device.
  • the sending module 810 transmits the same data corresponding to the redundancy version according to the sending order of the set redundancy version.
  • the sending module 810 determines whether the receiving end receives success, and if so, sends new data; if not, and the number of times of repeatedly transmitting data is not greater than the maximum number of data allowed to be repeatedly transmitted, and continues to repeatedly send data; if not, and The number of times the data is repeatedly sent is equal to the maximum number of times the data is allowed to be repeatedly sent, and new data is sent.
  • the sending module 810 defaults that the decoding result information of the receiving end is unsuccessful in receiving; or after each receiving the decoding result information from the receiving end, performing decoding judgment or energy detection on the received decoding result information. Judging, in the obtained multiple transmission decision result, if the statistical result of the judgment result is greater than the set threshold, it is determined according to the judgment result whether the receiving end receives success; or all received for a group of data transmission. The decoding result information or the decoding result information of all the received data transmissions is combined, and the decoding decision or the energy detection decision is performed on the combined information, and the receiving end is determined whether the receiving end is successful according to the judgment result.
  • the resources scheduled by the downlink control channel include resources for data transmission scheduled by repeatedly transmitting the control channel.
  • the first determining module 800 is further configured to:
  • the resource location of the control channel Before determining the resources scheduled by the downlink control channel, determining, by repeatedly transmitting, the resource location of the control channel; wherein, the resource location of the control channel includes a time domain resource location and a frequency domain resource location.
  • the first determining module 800 determines the resource location according to the following steps:
  • the control channel is sent in groups, and the resource locations are determined according to the group in which the control channel is located; wherein the control channels in different groups occupy different resource locations.
  • the first determining module 800 may further determine a time domain starting position of the control channel according to a correspondence between a group in which the control channel is located and a time domain starting position of the control channel.
  • the first determining module 800 determines the time domain resource location according to the following steps:
  • the first determining module 800 determines the time domain resource location according to the following steps:
  • the Length available subframes are consecutive Length available subframes or preset Length or available uplink subframes.
  • the frequency domain resource locations of the control channels repeatedly transmitted by the first determining module 800 are the same.
  • the receiving device in the system for transmitting data in the embodiment of the present invention includes: a second determining module 900 and a receiving module 910.
  • a second determining module 900 configured to determine an available data receiving resource
  • the receiving module 910 is configured to periodically receive data in groups on the determined available data receiving resources, where for each group, the data is received continuously or periodically within the group n times, n is a positive integer; repeated receiving The number of times of data is not greater than the maximum number of times the data is allowed to be repeatedly received; the available data receiving resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • the second determining module 900 may also be a processor or the like, and the receiving module 910 may be a transmitting device having a transceiving function.
  • the second determining module 900 does not feed back the decoding result information after receiving the data; or does not feed back the decoding result information after receiving the data; or after receiving the data once or after receiving a group of data Feedback decoding result information; or after receiving a data or receiving a group of data, if the decoding result information is successful, the decoding result information is fed back, otherwise the decoding result information is not fed back.
  • the resources scheduled by the downlink control channel include resources for data transmission scheduled by receiving a control channel that is repeatedly transmitted repeatedly.
  • the second determining module 900 Before determining, by the second determining module 900, the resource scheduled by the downlink control channel, determining, by the second determining module 900, the resource location of the control channel that receives the repeated transmission;
  • the resource location of the control channel includes a time domain resource location and a frequency domain resource location.
  • the second determining module 900 determines the resource location according to the following steps:
  • control channels in different groups occupy different resource locations.
  • the value of the index ranges from 0 K-1.
  • the time domain start position of the control channel corresponding to the index number is determined according to the corresponding relationship between the index number and the start position of the time domain of the control channel.
  • the second determining module 900 determines the time domain resource location according to the following steps:
  • the second determining module 900 determines the time domain resource location according to the following steps: According to the transmission period Period of the transmission control channel, the offset Offset in the transmission period, some or all of the parameters in the subframe offset s in the radio frame, and the system radio frame number SFN determine the time domain start of the control channel. Position, and determine that the available available subframes of the Length are time domain resource locations;
  • the Length available subframes are consecutive Length available subframes or preset Length or available uplink subframes.
  • the second determining module 900 determines the time domain starting position of the control channel according to the following formula:
  • the network side device may serve as the transmitting end or the receiving end; the user equipment may serve as the transmitting end or the receiving end, so the functions of the sending device and the receiving device may be combined in one entity, that is, The modules of the transmitting device and the receiving device are in one entity, and the function of the transmitting device or the function of the receiving device is selected as needed.
  • the embodiment of the present invention further provides a method for transmitting data by a sending device, where the device corresponding to the method is a sending device in a system for transmitting data, and is similar to the principle of solving the problem by the device, so The implementation of the method can be referred to the implementation of the device, and the repeated description will not be repeated.
  • the method for transmitting data by the network side device includes the following steps:
  • Step 1000 The sending end determines an available data sending resource.
  • Step 1010 The sending end periodically repeats sending data in groups on the determined available data sending resources, where, for each group, the packets are repeatedly and periodically repeated n times in the group, where n is a positive integer; The total number of times of data is not greater than the maximum number of times the data is allowed to be repeatedly transmitted; the available data transmission resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • the sending end repeatedly sends data, including:
  • the transmitting end sends the same data corresponding to the redundancy version according to the sending order of the set redundancy version.
  • the transmission order of the redundancy version is agreed by a protocol
  • the order of transmission includes cyclically transmitting multiple redundancy versions.
  • the method further includes:
  • the transmitting end determines whether the receiving end receives success, and if so, sends new data; if not, and the number of times of repeatedly transmitting data is not greater than the maximum number of data allowed to be repeatedly transmitted, and continues to repeatedly send data; if not, and the number of times of repeatedly transmitting data Equal to the maximum number of times the data is allowed to be sent repeatedly, and send new data.
  • the sending end determines whether the receiving end receives success, including:
  • the sender's default receiving end decoding result information is unsuccessful in receiving; or
  • the transmitting end After receiving the decoding result information from the receiving end, the transmitting end performs a decoding decision or an energy detection decision on the received decoding result information, and if there is a judgment result statistics number in the obtained multiple transmission decision result Greater than the setting Threshold, according to the judgment result, it is judged whether the receiving end receives success; or
  • the transmitting end combines all the decoding result information received for a group of data transmissions or the decoding result information of all received data transmissions, and performs decoding judgment or energy detection judgment on the combined information, according to the judgment result. Determine whether the receiving end receives success.
  • the sending end receives the decoding result information, including:
  • the transmitting end receives the decoding result information from the receiving end according to the timing relationship between the subframe carrying the data and the subframe carrying the decoding result information;
  • the timing relationship is configured by a protocol or a high layer; the timing relationship between the subframe carrying the data and the subframe carrying the decoding result information includes a subframe of the last data transmission before the feedback and a child of the first decoding result information.
  • the timing relationship between frames is configured by a protocol or a high layer; the timing relationship between the subframe carrying the data and the subframe carrying the decoding result information includes a subframe of the last data transmission before the feedback and a child of the first decoding result information.
  • the sending end further includes
  • the transmitting end sends the data after receiving the decoding result information according to the timing relationship between the subframe carrying the decoding result information and the subframe of the bearer data after the subframe carrying the decoding result information;
  • the timing relationship is configured by a protocol or a high layer; the timing relationship between the subframe carrying the decoding result information and the subframe carrying the data later includes: a subframe of the last feedback transmission and a subframe of the first data transmission thereafter The timing relationship between.
  • the resources scheduled by the downlink control channel include resources for data transmission scheduled by repeatedly transmitting the control channel.
  • the method before the sending end determines the resources scheduled by the downlink control channel, the method further includes:
  • the transmitting end determines the resource location of the control channel that is repeatedly sent multiple times
  • the resource location of the control channel includes a time domain resource location and a frequency domain resource location.
  • the transmitting end determines the location of the resource used for the control channel to perform multiple repeated transmissions through system broadcast or higher layer signaling or protocol convention.
  • the sender determines the resource location according to the following steps:
  • the transmitting end sends the control channel according to the group, and determines the resource location according to the group where the control channel is located;
  • control channels in different groups occupy different resource locations.
  • the sending end determines the resource location, including:
  • the transmitting end sends the control channel according to the group, and determines the time domain starting position of the control channel according to the correspondence between the group where the control channel is located and the time domain starting position of the control channel.
  • the sender # ⁇ determines the time domain resource location according to the following steps:
  • the transmitting end determines the time domain according to the transmission period Period of the transmission control channel, the offset Offset in the transmission period, the subframe offset s in the radio frame, and some or all parameters in the duration of the transmission control channel Length. Resource location Among them, the sender determines the Period, Offset, s and Length through protocol agreement or high-level configuration or system message notification.
  • the sender determines the time domain resource location according to the following steps:
  • the transmitting end determines the time domain of the transmission control channel according to the transmission period Period of the transmission control channel, the offset Offset in the transmission period, and some or all of the parameters of the subframe offset s in the radio frame and the system radio frame number SFN. a starting position, and determining that the available available subframes are time domain resource locations;
  • the Length available subframes are consecutive Length available subframes or preset Length or available uplink subframes.
  • the transmitting end determines the start time position of the transmission control channel according to the following formula:
  • control channel resource location is a cell level or a user equipment level.
  • the time domain resource location has a certain timing relationship with the data channel
  • the timing relationship includes a timing relationship between a time domain location of the first transmission of the control channel or a time domain location of the last transmission and a time domain location of the first transmission or the last transmission of the data channel;
  • Timing relationships are defined through protocol or high-level configuration.
  • the frequency domain resource locations of the control channels repeatedly transmitted multiple times determined by the transmitting end are the same.
  • the bearer information in the repeatedly transmitted control channel is the same and/or the aggregation level used by the control channel is the same.
  • the embodiment of the present invention further provides a method for receiving data by a receiving device.
  • the device corresponding to the method is a receiving device in a system for transmitting data, and is similar to the principle of solving the problem by the device.
  • the implementation of the method can be referred to the implementation of the device, and the repeated description will not be repeated.
  • the method for receiving data by a network user equipment includes the following steps:
  • Step 1100 The receiving end determines an available data receiving resource.
  • Step 1110 The receiving end periodically receives data in groups on the determined available data receiving resources, where for each group, the data is continuously or periodically received in the group n times, n is a positive integer; The number of times is not greater than the maximum number of times the data is allowed to be repeatedly received; the available data receiving resources include resources scheduled by the downlink control channel or dedicated data transmission resources allocated by the upper layer.
  • the method further includes:
  • the receiving end After receiving the data, the receiving end does not feed back the decoding result information; or
  • the receiving end feeds back the decoding result information after receiving the data once or after receiving a set of data; or After receiving the data once or receiving a group of data, if the decoding result information is successful, the receiving end feeds back the decoding result information, otherwise the decoding result information is not fed back; or
  • the receiving end returns the decoding result information after receiving a set of data
  • the receiving end After receiving a set of data, the receiving end feeds back the decoding result information if the decoding result information is successful, otherwise the decoding result information is not fed back.
  • the number of feedbacks by the receiving end for the same data is not greater than the maximum allowed number of feedbacks.
  • the receiving end is successful in receiving the same data for the same data, the subsequent feedback decoding result information before receiving the new data indication is successful.
  • the receiving end feeds back the decoding result information, including:
  • the receiving end feeds back the decoding result information according to the timing relationship between the subframe carrying the data and the subframe carrying the decoding result information.
  • the timing relationship is configured by a protocol or a high-level configuration; the timing relationship includes a timing relationship between a subframe after the last data transmission before the feedback and a subframe of the first decoding result information.
  • the method further includes:
  • the receiving end After receiving the feedback decoding result information, the receiving end receives the data according to a timing relationship between the subframe carrying the decoding result information and the subframe carrying the data after the subframe carrying the decoding result information;
  • the timing relationship is configured by a protocol or a high-level configuration; the timing relationship includes a timing relationship between the subframe in which the last transmission is transmitted and the subframe in which the first data transmission is performed.
  • the resources scheduled by the downlink control channel include resources for data transmission scheduled by receiving a control channel that is repeatedly transmitted repeatedly.
  • the method before the receiving end determines the resources scheduled by the downlink control channel, the method further includes:
  • the receiving end determines a resource location of the control channel that receives the multiple repeated transmissions
  • the resource location of the control channel includes a time domain resource location and a frequency domain resource location.
  • the receiving end determines the location of the resource for the control channel that receives the multiple repeated transmissions through system broadcast or higher layer signaling or protocol convention.
  • the receiving end determines the time domain resource location according to the following steps:
  • the receiving end determines the resource location according to the group in which the control channel is located;
  • control channels in different groups occupy different resource locations.
  • the receiving end determines the resource location, including:
  • the receiving end determines the control letter corresponding to the index number according to the correspondence between the index number and the start position of the time domain of the control channel.
  • the time domain start position of the track is the position of the track.
  • the receiving end determines the time domain resource location according to the following steps:
  • the receiving end determines the time domain resource location according to the transmission period Period of the transmission control channel, the offset Offset in the transmission period, the subframe offset s in the radio frame, and some or all parameters in the duration of the transmission control channel Length. ;
  • the receiving end determines the Period, Offset, s and Length by protocol agreement or high-level configuration or system message notification.
  • the receiving end determines the time domain resource location according to the following steps:
  • the receiving end determines the time domain start of the control channel according to the transmission period Period of the transmission control channel, the offset Offset in the transmission period, some or all parameters in the subframe offset s in the radio frame, and the system radio frame number SFN. Position, and determine that the available available subframes are the time domain resource locations;
  • the Length available subframes are consecutive Length available subframes or preset Length or available uplink subframes.
  • the receiving end determines the time domain starting position of the control channel according to the following formula:
  • the control channel resource location is a cell level or a user equipment level.
  • the time domain resource location has a certain timing relationship with the data channel
  • the timing relationship includes a timing relationship between a time domain location of the first transmission of the control channel or a time domain location of the last transmission and a time domain location of the first transmission or the last transmission of the data channel;
  • the timing relationship may be an agreement or a high-level configuration.
  • the frequency domain resource locations of the control channels that are received by the receiving end and received repeatedly are repeatedly transmitted.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及无线通信技术领域,特别涉及一种传输数据的方法、系统和设备,用以解决现有技术中存在的发送数据只能采用非子帧绑定操作,无法大幅度提高覆盖强度的问题。本发明实施例的方法包括:发送端确定可用数据发送资源;发送端在确定的可用数据发送资源上以组为单位周期性重复发送数据,针对每一组,在组内连续或周期性的重复发送n次;重复发送数据的总次数不大于最大允许重复发送数据的次数;可用数据发送资源包括下行控制信道调度的资源或高层分配的专用的数据传输资源。本发明实施例数据信道的数据可以进行重复发送,这样增加重传次数,对于接收端可以对多次收到的数据进行合并译码,带来合并译码增益,从而提高发送数据的覆盖强度。

Description

一种传输数据的方法、 系统和设备 本申请要求在 2012年 11月 2日提交中国专利局、 申请号为 201210433451 .5、发明名称 为"一种传输数据的方法、 系统和设备"的中国专利申请的优先权, 其全部内容通过引用结 合在本申请中。 技术领域
本发明涉及无线通信技术领域, 特别涉及一种传输数据的方法、 系统和设备。 背景技术
在现有的基于全球移动通信系统(Global System for Mobile communications, GSM ) 技术的机器与机器(Machine to Machine, M2M ) 网络中, 运营商发现在有些场景下工作 的用户设备, 比如工作于地下室、 商场或者建筑角落的用户设备, 由于无线信号被严重遮 挡, 信号受到很大的衰减, 上述用户设备无法与网络进行通信, 而针对这些场景下进行网 络的深度覆盖会大大增加网络的建网成本, 包括增加设备开支、 网络规划成本、 增加人工 维护开支等。 随着无线通信技术的演进, M2M服务将部署于长期演进系统 (Long Term Evolution, LTE ) 网络中, 因此运营商希望在后续的基于 LTE的无线通信技术中可以有效 增加网络的覆盖, 解决工作于上述场景下的用户设备需要大幅度提升覆盖的问题。
在现有 LTE 系统中, 通过单次传输物理下行控制信道(Physical Downlink Control Channel, PDCCH )进行调度传输上下行数据, PDCCH上承载数据传输信道 PDSCH或者 PUSCH的控制信息, 例如是否跳频、 资源分配、 传输格式、 重传序号、 功率控制命令、 混 合自动重传请求( Hybrid Automatic Repeat reQuest, HARQ )进程数、 上行子帧序号等。 数 据承载在信道物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) (用于下行 传输)或物理上行共享信道( Physical Uplink Shared Channel, PUSCH ) (用于上行传输) 进行传输。 其中, 目前发送数据是釆用非子帧绑定(non-subframe bundling )操作。 非子帧 绑定操作是指单次传输并且 eNodeB/UE 对单次传输进行确认 /否定确认 ( Acknowledgement/Negative Acknowledgement, ACK/NACK )反馈。 也: it是说, 目前发送 数据只能釆用非子帧绑定操作 , 无法大幅度提高覆盖强度。
综上所述, 目前发送数据只能釆用非子帧绑定操作 , 无法大幅度提高数据传输信道的 覆盖强度。 发明内容
本发明提供一种传输数据的方法、 系统和设备, 用以解决现有技术中存在的发送数据 只能釆用非子帧绑定操作, 无法大幅度提高覆盖强度的问题。 本发明实施例提供的一种传输数据的方法, 包括:
发送端确定可用数据发送资源;
所述发送端在确定的可用数据发送资源上以组为单位周期性重复发送数据, 其中, 针 对每一组, 在组内连续或周期性的重复发送 n次, n为正整数; 重复发送数据的总次数不 大于最大允许重复发送数据的次数; 可用数据发送资源包括下行控制信道调度的资源或高 层分配的专用的数据传输资源。
本发明实施例提供的另一种传输数据的方法, 包括:
接收端确定可用数据接收资源;
所述接收端在确定的可用数据接收资源上以组为单位周期性重复接收数据 , 其中针对 每一组, 在组内连续或周期性的接收数据 n次, n为正整数; 重复接收数据的次数不大于 最大允许重复接收数据的次数; 可用数据接收资源包括下行控制信道调度的资源或高层分 配的专用的数据传输资源。
本发明实施例提供的一种传输数据的设备, 包括:
第一确定模块, 用于确定可用数据发送资源;
发送模块,用于在确定的可用数据发送资源上以组为单位周期性重复发送数据,其中, 针对每一组, 在组内连续或周期性的重复发送 n次, n为正整数; 重复发送数据的总次数 不大于最大允许重复发送数据的次数; 可用数据发送资源包括下行控制信道调度的资源或 高层分配的专用的数据传输资源。
本发明实施例提供的另一种传输数据的设备, 包括:
第二确定模块, 用于确定可用数据接收资源;
接收模块, 用于在确定的可用数据接收资源上以组为单位周期性重复接收数据, 其中 针对每一组, 在组内连续或周期性的接收数据 n次, n为正整数; 重复接收数据的次数不 大于最大允许重复接收数据的次数; 可用数据接收资源包括下行控制信道调度的资源或高 层分配的专用的数据传输资源。
本发明实施例提供的一种传输数据的系统, 包括:
发送设备, 用于确定可用数据发送资源; 在确定的可用数据发送资源上以组为单位周 期性重复发送数据; 其中, 针对每一组, 在组内连续或周期性的重复发送 n次, n为正整 数; 重复发送数据的总次数不大于最大允许重复发送数据的次数; 可用数据发送资源包括 下行控制信道调度的资源或高层分配的专用的数据传输资源;
接收设备, 用于确定可用数据接收资源; 在确定的可用数据接收资源上以组为单位周 期性重复接收数据, 其中针对每一组, 在组内连续或周期性的接收数据 n次。
本发明实施例数据信道的数据可以进行重复发送, 这样大大增加重传次数, 对于接收 端可以对多次收到的数据进行合并译码 , 带来合并译码增益, 从而大幅度提高发送数据的 覆盖强度。 附图说明
图 1为本发明实施例提供的传输数据的系统结构示意图;
图 2为本发明实施例提供的第一种数据传输的示意图;
图 3为本发明实施例提供的第二种数据传输的示意图;
图 4为本发明实施例提供的第三种数据传输的示意图;
图 5为本发明实施例提供的第四种数据传输的示意图;
图 6为本发明实施例提供的第一种资源位置的示意图;
图 7为本发明实施例提供的第二种资源位置的示意图;
图 8为本发明实施例提供的传输数据的系统中的发送设备的结构示意图;
图 9为本发明实施例提供的传输数据的系统中的接收设备的结构示意图;
图 10为本发明实施例提供的网络侧设备传输数据的方法流程示意图;
图 11为本发明实施例提供的用户设备接收数据的方法流程示意图。 具体实施方式
本发明实施例发送端确定可用数据发送资源; 在确定的可用数据发送资源上以组为单 位周期性重复发送数据, 其中, 针对每一组, 在组内连续或周期性的重复发送 n次, n为 正整数; 重复发送数据的总次数不大于最大允许重复发送数据的次数; 可用数据发送资源 包括下行控制信道调度的资源或高层分配的专用的数据传输资源。 本发明实施例数据信道 的数据可以进行重复发送, 这样增加重传次数, 对于接收端可以对多次收到的数据进行合 并译码, 带来合并译码增益, 从而提高发送数据的覆盖强度。
下面结合说明书附图对本发明实施例作进一步详细描述。
在下面的说明过程中, 先从发送侧和接收侧的配合实施进行说明, 最后分别从发送侧 与接收侧的实施进行说明, 但这并不意味着二者必须配合实施, 实际上, 当发送侧与接收 侧分开实施时, 也解决了分别在发送侧、 接收侧所存在的问题, 只是二者结合使用时, 会 获得更好的技术效果。
如图 1所示, 本发明实施例传输数据的系统包括: 发送设备 10和接收设备 20。 发送设备 10, 用于确定可用数据发送资源, 在确定的可用数据发送资源上以组为单位 周期性重复发送数据; 其中, 针对每一组, 在组内连续或周期性的重复发送 n次, n为正 整数; 重复发送数据的总次数不大于最大允许重复发送数据的次数; 可用数据发送资源包 括下行控制信道调度的资源或高层分配的专用的数据传输资源;
其中, 所述针对每一组, 在组内连续或周期性的重复发送 n次, 即以组为单位发送数 据, 发送多组(例如 m组), 每组里面又发送了多次(n次), 即发送数据的总次数为 m*n 次。
接收设备 20, 用于确定可用数据接收资源, 在确定的可用数据接收资源上以组为单位 周期性重复接收数据; 其中针对每一组, 在组内连续或周期性的接收数据 n次, n为正整 数。
其中, 所述的发送设备 10和接收设备 20均可以是具有收发功能的传输设备。
在实施中, 发送设备 10可以按照设定的冗余版本的发送顺序, 发送冗余版本对应的 相同数据。
比如冗余版本为 RV0、 RV1、 RV2和 RV3 , 则冗余版本的发送顺序可以是循环重复发 送多种冗余版本, 即 RV0、 RV1、 RV2、 RV3、 RV0、 RV1、 RV2、 RV3 RV0、 RV1、
RV2、 RV3; 还可以根据需要设定发送顺序, 比如 RV3、 RV2、 RV1、 RV0、 RV3、 RV2、 RV1、 RVO RV3、 RV2、 RV1、 RVO; RV3、 RV3、 RV2、 RV2、 RV1、 RV1、 RV0、 RVO ..... 等。
需要说明的是, 除了上面举例的顺序外, 冗余版本的任何发送顺序都适用本发明实施 例。
其中, 冗余版本的发送顺序可以通过协议约定或高层通知。
不管釆用什么方式必须保证发送设备 10和接收设备 20对于冗余版本的发送顺序理解 一致。
由于接收设备 20知道在哪个子帧会有数据, 所以即便在对应的子帧上未收到数据, 也不会对冗余版本的发送顺序的理解出现偏差。
比如, 确定在子帧 0、 子帧 5和子帧 6会收到数据, 冗余版本的发送顺序是 RV0、 RV1 和 RV2, 如果在子帧 0和子帧 6上收到数据, 而在子帧 5上未收到数据, 接收设备 20也 确定子帧 0对应 RV0, 子帧 6对应 RV2。
发送设备 10以组为单位周期性重复发送数据, 具体的:
发送设备 10可以周期性的重复发送 m组数据,每组中又重复发送 n次数据, n乘以 m 不大于最大允许重复发送数据的次数。 n可以为 1也可以为大于 1的整数。
其中, 本发明实施例传输数据包括多种方式, 下面分别进行介绍。
方式一、 接收设备 20不反馈译码结果信息。
具体的, 发送设备 10重复发送多次数据, 接收设备 20在收到数据后, 不反馈译码结 果信息, 发送设备 10默认接收设备 20的译码结果信息均为接收不成功, 并一直重复发送 数据直到达到最大允许重复发送数据的次数后, 再重复发送新的数据。
方式二、 发送设备 10重复发送数据, 接收设备 20在收到一次数据后或一组数据后反 馈译码结果信息; 发送设备 10在每次收到译码结果信息后, 对收到的译码结果信息进行译码判决或能 量检测判决, 在获得的多次传输的判决结果中, 若存在判决结果的统计次数大于设定门限 值, 则根据该判决结果判断接收设备 20是否接收成功, 其中, 判决结果的统计次数, 为 判决结果为接收成功的统计次数, 或者判决结果为接收失败的统计次数; 或者
发送设备 10在每次收到译码结果信息后, 与之前收到的译码结果信息进行合并后进 行译码判决或能量检测判决, 根据该判决结果判断接收设备 20是否接收成功。
若判决结果为接收成功, 则发送新的数据, 若判决结果为接收失败, 且重复发送数据 的次数不大于最大允许重复发送的数据次数,继续重复发送数据;若判决结果为接收失败, 且重复发送数据的次数等于最大允许重复发送的数据次数, 发送新的数据。
方式三、发送设备 10重复发送数据 ,接收设备 20在收到一次数据或收到一组数据后, 若译码结果信息为接收成功, 则反馈译码结果信息, 否则不反馈译码结果信息;
发送设备 10在每次收到译码结果信息后, 对收到的译码结果信息进行译码判决或能 量检测判决,在获得的多次传输的判决结果中,若存在判决结果统计次数大于设定门限值, 则根据该判决结果判断接收设备 20是否接收成功; 或者
发送设备 10在每次收到译码结果信息后, 与之前收到的译码结果信息进行合并后进 行译码判决或能量检测判决, 根据该判决结果判断接收设备 20是否接收成功。 其中, 在 第一次收到译码结果信息后, 由于之前没有收到译码结果信息, 因此第一次收到译码结果 信息与空的译码结果信息合并。
若判决结果为接收成功, 则发送新的数据, 若判决结果为接收失败, 且重复发送数据 的次数不大于最大允许重复发送的数据次数,继续重复发送数据;若判决结果为接收失败, 且重复发送数据的次数等于最大允许重复发送的数据次数, 发送新的数据。
较佳地, 如果相同的数据之前已经反馈接收成功, 在接收到相同数据后, 可以不进行 处理, 直接反馈接收成功。
在实施中, 还可以设定最大允许的反馈次数; 相应的, 上述方式中, 接收端针对相同 的数据的反馈次数不大于最大允许的反馈次数, 如果针对相同的数据的反馈次数等于最大 允许的反馈次数, 则针对相同的数据不再进行反馈。 此外, 接收端收到一次数据或一组数 据后, 可多次反馈译码结果信息, 并保证针对相同数据的反馈次数不大于最大允许的反馈 次数。
其中, 接收设备 20根据承载数据的子帧和承载译码结果信息的子帧之间的定时关系, 反馈译码结果信息; 相应的, 发送设备 10根据承载数据的子帧和承载译码结果信息的子 帧之间的定时关系, 接收来自接收端的译码结果信息。
定时关系由协议约定或高层配置; 定时关系包括反馈前最后一次数据传输的子帧和第 一次译码结果信息的子帧之间的定时关系。 其中, 发送设备 10接收到译码结果信息之后, 根据承载译码结果信息的子帧和位于 承载译码结果信息的子帧之后的承载数据的子帧之间的定时关系, 在接收到译码结果信息 之后发送数据; 相应的, 接收设备 20在发送一个反馈译码结果信息之后, 根据承载译码 结果信息的子帧与承载译码结果信息的子帧之后承载数据的子帧之间的定时关系, 接收数 据;
其中, 定时关系由协议约定或高层配置; 承载译码结果信息的子帧和之后承载数据的 子帧之间的定时关系包括: 最后一次反馈传输的子帧和之后第一次数据传输的子帧之间的 定时关系。
在实施中, 下行控制信道调度的资源包括通过重复多次发送控制信道进行调度的用于 数据传输的资源。 也就是说, 下行控制信道调度的资源, 即用于数据传输的资源需要通过 控制信道进行调度, 而本发明实施例可以多次重复发送控制信道。
由于若本发明实施例的发送设备 10是网络侧设备, 则接收设备 20是用户设备; 若本 发明实施例的发送设备 10是用户设备 , 则接收设备 20是网络侧设备。 所以根据不同的场 景, 通过控制信道进行调度的设备可以是发送设备 10, 也可以是接收设备 20。
但是不管哪种设备进行调度, 发送设备 10和接收设备 20都需要确定控制信道的资源 位置, 下面进行详细说明。 由于发送设备 10和接收设备 20具体确定的方式相同, 所以下 面以发送设备 10为例, 接收设备 20与发送设备 10确定方式相同, 不再重复介绍。
本发明实施例中在进行调度时, 发送调度信息的设备为基站, 接收调度信息的设备为 用户设备。
本发明实施例的控制信道包括 PDCCH, ePDCCH (增强的 PDCCH ) 的部分或全部。 较佳地, 发送设备 10确定重复多次发送控制信道的资源位置;
其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
较佳地, 发送设备 10通过系统广播或高层信令或协议约定, 确定用于控制信道进行 多次重复发送的资源的位置。
较佳地, 发送设备 10根据下列步骤确定资源位置:
发送设备 10按组发送控制信道, 根据控制信道所在的组, 确定资源位置; 其中, 不同组中的控制信道占用不同的资源位置。
需要说明的是, 根据需要这里也可以不对控制信道进行分组。
较佳地, 发送设备 10确定资源位置, 包括:
发送设备 10按组发送控制信道, 根据控制信道所在的组和控制信道的时域起始位置 的对应关系, 确定控制信道的时域起始位置。
较佳地, 发送设备 10根据下列步骤确定时域资源位置:
发送设备 10根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线 帧内的子帧偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数,确定时域资 源位置;
其中, 发送设备 10通过协议约定或高层配置或系统消息通知, 确定 Period, Offset, s 和 Length
较佳地, 发送设备 10根据下列步骤确定时域资源位置:
发送设备 10根据发送控制信道的发送周期 Period,发送周期内的偏移量 Offset和无线 帧内的子帧偏移量 s中的部分或全部参数以及系统无线帧号 SFN确定发送控制信道的时域 起始位置, 并确定之后的 Length个可用子帧为时域资源位置;
其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
在实施中, 每组控制信道还可以分别对应 Period, Offset, s和 Length这些参数。 这样 发送设备 10 # ^据控制信道所在的组, 确定资源位置时, 可以先确定控制信道所在的组对 应的 Period, Offset, s和 Length, 然后再釆用上述方式确定资源位置。
较佳地, 发送设备 10根据下列公式确定发送控制信道的时域起始位置:
发送设备 10将( 10*SFN+s ) mod Period=0的子帧位置作为发送控制信道的时域起始 位置; 或
发送设备 10将( 10*SFN+s-Offset ) mod Period=0的子帧位置作为发送控制信道的时 域起始位置。
较佳地, 控制信道资源位置是小区级别或用户设备级别。
较佳地, 时域资源位置与数据信道之间具有一定的定时关系;
定时关系包括控制信道第一次传输的时域位置或最后一次传输的时域位置与数据信 道的第一次传输或最后一次传输的时域位置之间的定时关系;
定时关系通过协议约定或高层配置。
较佳地, 控制信道多次重复发送时, 重复发送的控制信道中的承载信息相同和 /或控制 信道使用的聚合等级相同。
发送设备 10多次确定的重复发送的控制信道的频域资源位置相同。
较佳地, 接收设备 20确定资源位置, 包括:
接收设备 20根据国际移动用户标识确定控制信道组的索引号; 其中控制信道组的索 引号 Index=IMSI mod K, Κ为控制信道组的个数, Κ是协议约定或系统广播或高层信令配 置, Index的取值范围为 0 K-1;
接收设备 20根据索引号和控制信道的时域起始位置的对应关系, 确定所述索引号对 应的控制信道的时域起始位置。
需要说明的是, 根据需要这里也可以不对控制信道进行分组。 下面分别列举几个实例对本发明的方案进行说明。
图 2〜图 6中数据由 PDSCH或 PUSCH承载, 即包括上下行传输。译码结果即 ACK或 NACK, 对于下行传输, 是通过 PUCCH信道或 PUSCH信道来承载译码结果信息, 对于上 行传输, 是通过 PHICH信道来承载译码结果信息。 图中不体现调度信道的发送。
实例一、
设置最大传输次数 N;
发送端重复 N次发送数据, 数据接收端不反馈译码结果信息。 即数据被强制重复传输 到最大次数 N次, N次后传输新数据。
N可协议约定或高层配置。 重复传输数据可以是传输相同数据的不同冗余版本。 冗余 版本的顺序可以通过协议约定, 例如可以顺序使用现有的 RV版本, 然后循环重复。
调度:对于数据传输所使用的资源或传输方式等控制信息,例如调制编码方式(MCS ) 等级, 传输格式等, 可釆用发送一次物理下行控制信道 PDCCH 或增强的 PDCCH ( ePDCCH )进行调度, 分配 N次传输所需的数据传输资源的方式进行分配调度, 多次 传输的传输方式等相同。 或者高层分配专用的数据传输资源, 每次传输使用专用的传输方 式等控制信息, 例如 MCS等级等。 进一步的, 为了提高物理下行控制信道的可靠性, 可 重复多次发送该信道。 具体的发送时刻和资源位置见后面的确定通过控制信道进行重复发 送用于调度数据传输的资源的方案。
图 2给出一种该方案的示意图。 例如图中 N=100次。 其中 N可以通过仿真给出达到 覆盖目标情况下 N的推荐值或推荐范围。其中 N可通过协议约定或高层配置通知发送端和 接收端。这里如果是下行数据传输,发送端为演进基站( eNodeB ),接收端为用户设备( UE ), 数据承载在 PDSCH上; 如果是上行数据传输, 发送端为 UE, 接收端为 eNodeB , 数据承 载在 PUSCH上。 重复发送的数据可以使用不同的冗余版本( RV ), 例如顺序使用现有的 4 种 RV版本并循环重复: RV0-RV1 -RV2-RV3 -RV0-RV1 -RV2-RV3 - . . . .- -RV0-RV1-RV2-RV3。 调度方式同上述说明。
实例二、
设置最大重传次数或最大传输次数 N;
对于发送端: 只要发送端对接收到的译码结果信息判决为非 ACK/DTX传输, 即接收 失败, 则继续重复发送数据直到最大重传或传输次数 N。 如果发送端对接收到的译码结果 信息判决为 ACK/非 DTX传输, 即接收成功, 则停止重复发送该数据, 开始发送新数据。 发送端对每次发送数据之后接收到的所有译码结果信息进行合并能量检测或合并译码来 判决反馈结果为 ACK/非 DTX传输或非 ACK/DTX传输或者发送端基于每次译码结果信息 进行译码判决或进行能量检测判决, 并统计或合并所有传输的判决结果, 若某种判决结果 (比如 ACK、 NACK,非 DTX和 DTX中的一种, 下同)统计值或合并值大于设定门限值, 则判决为该判决结果。 重复传输数据可以是传输相同数据的不同冗余版本。 冗余版本的顺 序可以通过协议约定, 例如可以顺序使用现有的 RV版本, 然后循环重复。
对于接收端: 在每次数据传输之后, 根据之前重复发送的数据进行合并译码判决, 如 果判决为 ACK, 则反馈 ACK, 如果判决为 NACK, 则进行 DTX传输, 即不反馈译码结果 信息。 只要译码结果为 ACK, 则接收端在本次译码之后, 在收到新数据到达指示之前均反 馈 ACK。 接收端在此期间可不需要译码操作。 N可协议约定或高层配置。
调度: 对于数据传输所使用的资源或传输方式等控制信息, 例如 MCS等级, 传输格 式等, 可釆用发送一次物理下行控制信道 PDCCH或 ePDCCH调度, 分配 N次传输所需的 数据传输资源的方式进行分配调度, 多次传输的传输方式等控制信息相同。 或者高层分配 专用的数据传输资源, 每次传输使用专用的传输方式等控制信息, 例如 MCS等级等。 进 一步的, 为了提高物理下行控制信道的可靠性, 可重复多次发送该控制信道。 具体的发送 时刻和资源位置见后面的确定通过控制信道进行重复发送用于调度数据传输的资源的方 案。
定时关系: 数据和反馈之间的定时关系可以同现有机制。
图 3给出一种该方案的示意图。 例如图中 N=100次。 其中 N的确定, 可能的一种确 定的方式是通过仿真给出达到覆盖目标情况下 N的推荐值或推荐范围。其中 N可通过协议 约定或高层配置通知发送端和接收端。 这里如果是下行数据传输, 发送端为 eNodeB, 接 收端为 UE, 数据承载在 PDSCH上, 反馈承载在 PUCCH或 PUSCH上; 如果是上行数据 传输, 发送端为 UE, 接收端为 eNodeB, 数据承载在 PUSCH上, 反馈承载在 PHICH上。 以下行传输为例, 其中 eNode B在发送了 y=30次数据后接收译码结果信息判决为 ACK, 即认为发送数据被 UE正确接收。 eNode B开始发送新数据。 重复发送的数据可以使用不 同的冗余版本 ( RV ) , 例如顺序使用现有的 4 种 RV 版本并循环重复: RV0-RV1-RV2-RV3-RV0-RV1-RV2-RV3-....- -RV0-RV1-RV2-RV30 对于发送端, 对每次发 送数据之后接收到的所有译码结果信息进行合并能量检测或合并译码来判决反馈结果为 ACK/非 DTX传输或非 ACK/DTX传输或者发送端基于每次译码结果信息进行译码判决或 进行能量检测判决, 并统计或合并所有传输的判决结果, 若某种判决结果统计值或合并值 大于一定门限, 则判决为该判决结果。 调度方式同上述说明。
实例三、
设置最大重传次数或最大传输次数 N;
对于发送端:发送端分 m组重复发送数据,每组中重复 n次发送数据。这里 n*m<=N。 具体发送的 m组的数目根据接收端反馈来确定, 如果发送端接收到译码反馈结果为 ACK, 则停止重复发送该数据, 开始发送新数据。 如果发送端接收到译码反馈结果为 NACK, 则 重复发送该数据直到最大重传次数 N次。发送端对每组 n次发送数据之后接收到的 X次译 码反馈结果进行合并译码并判决来获得译码反馈结果, 具体的可以对这 X次译码结果进行 合并能量检测或合并译码来判决反馈结果为 ACK或 NACK, 或者可以对 X次译码结果先 进行每次的单次能量检测或译码判决, 然后统计或合并 X次传输的判决结果, 若某种判决 结果统计值或合并值大于一定门限, 则判决为该判决结果。 重复传输数据可以是传输相同 数据的不同冗余版本。 冗余版本的顺序可以通过协议约定, 例如可以顺序使用现有的 RV 版本, 然后循环重复。
对于接收端: 在每次数据传输不反馈译码结果, 而是合并译码之前收到所有重复发送 的数据,在完成本次组传输后根据译码结果反馈 ACK或 NACK, ACK或 NACK重复发送 X次。 只要译码结果为 ACK, 则接收端在本次译码之后, 在收到新数据到达指示之前均反 馈 ACK。 接收端在此期间可不需要译码操作。 n、 m、 N、 x由协议约定或通过高层配置。
调度: 对于数据传输所使用的资源或传输方式等控制信息, 例如 MCS等级, 传输格 式等, 可釆用发送一次物理下行控制信道 PDCCH或 ePDCCH调度, 周期性分配重复 n次 发送数据所需的资源, 多次传输的传输方式等控制信息等相同。 周期可约定或高层配置。 或者高层分配专用的周期性的数据传输资源, 每次传输使用专用的传输方式等控制信息, 例如 MCS等级等。 进一步的, 为了提高物理下行控制信道的可靠性, 可重复多次发送该 信道。 具体的发送时刻和资源位置见后面的确定通过控制信道进行重复发送用于调度数据 传输的资源的方案。
定时关系: 每组数据与反馈之间的定时关系可协议约定或高层配置。 例如可约定 n次 传输中最后一次传输与第一次反馈传输之间的定时关系, 具体的可以是这两次传输所在子 帧之间的定时关系, 例如之间间隔的子帧个数。
反馈结果与下一组数据之前的定时关系可协议约定或高层配置。 例如可约定 X次反馈 中最后一次反馈与下一组数据传输中第一次数据传输之间的定时关系, 具体的可以是这两 次传输所在子帧之间的定时关系, 例如之间间隔的子帧个数。
图 4给出一种该方案的示意图。 例如图中 N=100次。 其中 N的确定, 可能的一种确 定的方式是通过仿真给出达到覆盖目标情况下 N的推荐值或推荐范围。其中 N可通过协议 约定或高层配置通知发送端和接收端。 这里如果是下行数据传输, 发送端为 eNodeB , 接 收端为 UE, 数据承载在 PDSCH上。 反馈承载在 PUCCH或 PUSCH上; 如果是上行数据 传输, 发送端为 UE, 接收端为 eNodeB , 数据承载在 PUSCH上, 反馈承载在 PHICH上。 以下行传输为例, 其中 eNode B按照组重复发送数据, 组内重复 n=10次, UE重复 x=20 次进行反馈 ACK和 NACK。 例如当发送了 m=3组数据后, eNode B接收译码结果信息判 决为 ACK, 即认为发送数据被 UE正确接收, eNode B开始发送新数据。 n*m=30<N。 重 复发送的数据可以使用不同的冗余版本( RV ), 例如顺序使用现有的 4种 RV版本并循环 重复: RV0-RV1-RV2-RV3-RV0-RV1-RV2-RV3-. . . -RV0-RV1-RV2-RV3 0 对于发送端, 其 对每组 n次发送数据之后接收到的 X次译码反馈结果进行合并译码并判决来获得译码反馈 结果,具体的可以对这 X次译码结果进行合并能量检测或合并译码来判决反馈结果为 ACK 或 NACK, 或者可以对 X次译码结果先进行每次的单次能量检测或译码判决, 然后统计或 合并 X次传输的判决结果, 若某种判决结果统计值或合并值大于一定门限, 则判决为该判 决结果。 调度方式和定时关系同上述说明。
实例四、
设置最大重传次数或最大传输次数 N;
对于发送端:发送端分 m组重复发送数据,每组中重复 n次发送数据。这里 n*m<=N。 具体发送的 m组的数目根据接收端反馈来确定,如果发送端对接收到译码结果信息判决为 ACK或非 DTX传输, 则停止重复发送该数据, 开始发送新数据。 如果发送端接收到译码 结果信息判决为非 ACK或 DTX传输, 则重复发送该数据直到最大重传次数 N次。发送端 对每组 n次发送数据之后接收到的 X次或发送数据后接收到的所有译码反馈结果进行合并 检测或译码来判决反馈结果为 ACK/非 DTX传输或非 ACK/DTX传输, 具体的可以对这 x 次或所有接收到的译码结果进行合并能量检测或合并译码来判决反馈结果为 ACK 或 NACK,或者可以对 X次或所有接收到的译码结果先进行每次的单次能量检测或译码判决, 然后统计或合并 X次或所有接收到的传输的判决结果, 若某种判决结果统计值或合并值大 于一定门限, 则判决为该判决结果。 重复传输数据可以是传输相同数据的不同冗余版本。 冗余版本的顺序可以通过协议约定, 例如可以顺序使用现有的 RV版本, 然后循环重复。
对于接收端: 在每次数据传输不反馈译码结果, 而是合并译码之前收到所有重复发送 的数据, 在完成本次组传输后根据译码结果反馈且只反馈 ACK信息, 或不反馈 NACK信 息。 ACK重复发送 X次或不发送任何信息 X次, 其中, 所述 ACK重复发送 X次, 对应前 面的 "在完成本次组传输后根据译码结果反馈且只反馈 ACK信息"; 所述不发送任何信息 X次, 对应前面的 "或不反馈 NACK信息"。 只要译码结果为 ACK, 则接收端在本次译码 之后, 在收到新数据到达指示之前均反馈 ACK。 接收端在此期间可不需要译码操作。 n、 m、 N、 x由协议约定或通过高层配置。
调度: 对于数据传输所使用的资源或传输方式等控制信息, 例如 MCS等级, 传输格 式等, 可釆用发送一次物理下行控制信道 PDCCH或 ePDCCH调度, 周期性分配重复 n次 发送数据所需的资源, 多次传输的控制信息相同。 周期可约定或高层配置。 或者高层分配 专用的周期性的数据传输资源, 每次传输使用专用的传输方式等控制信息, 例如 MCS等 级等。 进一步的, 为了提高物理下行控制信道的可靠性, 可重复多次发送该信道。 具体的 发送时刻和资源位置见后面的确定通过控制信道进行重复发送用于调度数据传输的资源 的方案。 定时关系: 每组数据与反馈之间的定时关系可协议约定或高层配置。 例如可约定 n次传输中最后一次传输与第一次反馈传输之间的定时关系, 具体的可以是这两次传输所 在子帧之间的定时关系, 例如之间间隔的子帧个数。
反馈结果与下一组数据之前的定时关系可协议约定或高层配置。 例如可约定 X次反馈 中最后一次反馈与下一组数据传输中第一次数据传输之间的定时关系, 具体的可以是这两 次传输所在子帧之间的定时关系, 例如之间间隔的子帧个数。
图 5给出一种该方案的示意图。 例如图中 N=100次。 其中 N的确定, 可能的一种确 定的方式是通过仿真给出达到覆盖目标情况下 N的推荐值或推荐范围。其中 N可通过协议 约定或高层配置通知发送端和接收端。 这里如果是下行数据传输, 发送端为 eNodeB, 接 收端为 UE, 数据承载在 PDSCH上, 反馈承载在 PUCCH或 PUSCH上; 如果是上行数据 传输, 发送端为 UE, 接收端为 eNodeB, 数据承载在 PUSCH上, 反馈承载在 PHICH上。 以下行传输为例, 其中 eNode B按照组重复发送数据, 组内重复 n=10次, UE重复 x=20 次进行反馈 ACK。 如果合并译码结果为 NACK, 则不反馈。 例如当发送了 m=3组数据后, eNode B接收译码结果信息判决为 ACK, 即认为发送数据被 UE正确接收, eNode B开始 发送新数据。 n*m=30<N。 重复发送的数据可以使用不同的冗余版本( RV ), 例如顺序使用 现有的 4 种 RV 版本并循环重复: RV0-RV1-RV2-RV3-RV0-RV1-RV2-RV3-....- -RV0-RVl-RV2-RV3 o 对于发送端, 其对每组 n次发送数据之后接收到的 x次译码反馈结 果进行合并检测或译码来判决反馈结果为 ACK/非 DTX传输或非 ACK/DTX传输, 具体的 可以对这 X次译码结果进行合并能量检测或合并译码来判决反馈结果为 ACK或 NACK, 或者可以对 X次译码结果先进行每次的单次能量检测或译码判决, 然后统计或合并 X次传 输的判决结果, 若某种判决结果统计值或合并值大于一定门限, 则判决为该判决结果。 调 度方式和定时关系同上述说明。
其中实例二可以看作是实例四的一种特例, 即, 每组只发送一次数据, 每次反馈只反 馈一次译码结果信息。
通过上述方案, 数据以及反馈均进行多次重复传输, 可以通过多次合并译码提高传输 性能和可靠性, 从而达到覆盖提升目标。 对于实例一, 不进行反馈, 可以节省大量的反馈 开销,但是由于发送端无法获得译码结果信息,如果 N设置过大,会导致传输资源的浪费, 频谱效率下降。 后 3个实施例均可以通过译码结果信息判断从而能够快速获得保证数据传 输可靠性的所需的重传次数, 避免 N设置过大带来的问题, 但后 3个实施例均需要一定的 反馈开销。
下面对确定通过控制信道进行重复发送用于调度数据传输的资源的方案进一步进行 说明。 在下面的描述中以发送端为例进行说明, 接收端确定资源的方式与发送端相同, 只 是接收端确定的是接收资源, 在此不再赘述。
发送资源位置可以在系统广播或高层信令通知给发送端和接收端或者协议约定资源 位置。 发送资源位置包括时域资源位置和频域资源位置。 发送资源的时域资源位置可以是连续的或周期性的, 其周期 Period, 周期内持续时长 Length和周期内的具体子帧 s 中的部分或全均可通过系统广播或高层信令或协议约定获 得, 3个参数可以以子帧为单位发送资源时域起始位置可以和系统无线帧号 SFN ( System Frame Number )建立某种关联规则, 例如资源起始位置为 ( 10*SFN+s ) mod Period=0的 子帧位置。 其中 s, Offset和 Period均可以以子帧为单位。 其中 s的取值为 0~9。 Period可 以取任意大于 1的整数值。 Offset的取值为 0~Period。 或者还有一种设置, 可以保证每个 起始位置是从无线帧的专用的子帧开始。 例如可以设置, s的取值为 0~9, Period是 10或 5的倍数, 例如 Period=10*x, x为大于等于 1的整数, Offset的取值范围为 s ~ 10* ( x-1 ) +s。 持续时间为 Length个可用子帧。 这 length个子帧可以是连续的可用子帧, 也可以是周 期性约定的可用子帧。 此外, 还可以通知周期内的偏移 Offset, 相应的资源位置是从周期 Period 内的偏移 Offset开始持续一定时长 Length的资源, 例如可以定义资源起始位置为 ( 10*SFN+s-OfFset ) mod Period=0的位置, 持续时间为 Length个可用子帧, 这 length个子 帧可以是连续的可用子帧, 也可以是周期性约定的可用子帧。 上述资源位置可以是 UE级 别即单个 UE专用的或者小区级别即小区内 UE共享的。如果是 UE级别, 可以每个 UE定 义一套 Period和或 Offset和或 Length和或 s。 如果是多个 UE共享, UE需要进行盲检, 进一步根据 UE的 ID标识进行区分。
进一步的, 可以根据用户设备的国际移动用户标识 ( Internation Modbile Subcriber Identity, IMSI )对控制信道进行分组, 每组对应一套上述 3个参数中的部分或全部参数, 例如分为 K 组发送资源时域位置。 每个用户设备所在的资源发送位置的组索引为 Index=IMSI mod K , Index的取值范围为 0~K- 1。 如果用户设备没有 IMSI , 那么可以取一 个特殊值, 例如 IMSI=0。 K可以是协议约定或系统广播或高层信令配置, 发送端可以直接 根据控制信道和资源位置的对应关系确定每组控制信道对应的资源, 接收端需要先确定组 索引号, 然后根据索引号确定对应的资源位置。 需要说明的是, 根据需要这里也可以不对 控制信道进行分组。
或者, 控制信道的发送时刻可以和数据信道的发送相关联, 即可约定或高层配置控制 信道和数据信道之间定时关系, 例如控制信道(例如 PDCCH或 ePDCCH ) 第一次传输或 最后一次传输与数据传输的第一次传输所在子帧之间的定时关系, 或者定义数据传输的第 一次传输或最后一次传输与控制信道( PUCCH或 PHICH ) 第一次传输所在子帧之间的定 义关系。 分组可以将大量的 UE调度时间错开, 也可以减少 UE的盲检次数。
发送资源的频域位置可以是高层信令半静态配置或协议约定位置。 多次重复发送的频 域资源位置相同。
控制信道连续多次重复发送包括, 重复发送控制信道承载信息相同, 和或控制信道聚 合等级相同。 这样有利于接收端对接收到的多个控制信道进行合并处理, 提高控制信道性 能, 另一方面, 可以减少控制信道的盲检次数。
图 6给出了一个进行重复发送用于调度数据传输的资源的位置的示意图。 这里以发送 PDCCH为例。 发送端为 eNode B, 接收端为 UE。 其中发送起始时域位置为 (10*SFN+s ) mod Period=0的时刻。 持续时间为 Length。 举例中, Period=100, Offset=65 , Length=4, s=5 , 其单位个数均为子帧。 即 PDCCH在上述发送起始时域位置开始重复发送 4次, 如图 所示,起始位置为第 16个 SFN中的第 5个子帧。持续的长度 Length=4, 说明重复了 4次, 所占的子帧可以是连续的, 例如是 SFN=16中的 4个可用下行子帧或者可以是周期的, 例 如是 SFN=16,17,18,19的第 5个子帧。
控制信道的发送方法可以和上述数据传输方案合并适用。 那么发送时刻就与数据传输 相关联。 图 7给了一种实施例, 以该控制信道发送方法和上述实例 3的方法合并给出一种 完整的数据传输方案。 这里仅以一组数据传输为例。 图中 PDCCH的发送时刻可以按照上 述方法(即如图 6示例的方法) 来确定。 PUCCH的发送时刻也可以按此方法确定, 但时 序上一定在数据传输之后, 或者也可以根据与 PDSCH的定时关系来确定。 PDSCH的发送 时刻可以根据 PDCCH的发送时刻以及定义的两者间的定时关系来确定。 例如定时关系可 以定义 PDCCH第 p次传输所在的子帧与 PDSCH第 1次传输所在子帧之间的子帧间隔, 以及定义 PDSCH第 n次传输所在子帧和 PUCCH第 1次传输之间的子帧间隔。
通过上述确定发送资源的位置方法, 可以令发送端和接收端对控制信道发送起始位置 理解一致, 有利于接收端从正确的起始位置接收多次重复的控制信道, 进行合并译码或检 测, 获得可靠的覆盖性能, 进一步保证数据传输的可靠性。 否则, 如果两者理解不同, 会 导致接收端无法正确接收或者合并错误, 降低控制信道的传输性能。 此外, 还可以避免接 收端盲目的每个子帧进行盲检测, 降低盲检次数, 从而降低接收端的处理复杂度和成本。
本发明实施例的网络侧设备可以^ &站, 比如宏基站、 家庭基站等, 也可以是中继设 备( RN ) , 还可以是其它网络侧设备。
本领域技术人员可以理解的是, 与以上实例类似或等同的方式仍然属于本发明的保护 范围, 所以不能以此限定本发明的保护范围。
如图 8所示, 本发明实施例传输数据的系统中的发送设备包括: 第一确定模块 800和 发送模块 810。
第一确定模块 800 , 用于确定可用数据发送资源;
发送模块 810, 用于在确定的可用数据发送资源上以组为单位周期性重复发送数据, 其中, 针对每一组, 在组内连续或周期性的重复发送 n次, n为正整数; 重复发送数据的 总次数不大于最大允许重复发送数据的次数; 可用数据发送资源包括下行控制信道调度的 资源或高层分配的专用的数据传输资源。
其中, 第一确定模块 800可以是处理器等设备, 所述的发送模块 810可以是具有收发 功能的传输设备。
较佳地, 发送模块 810按照设定的冗余版本的发送顺序, 发送冗余版本对应的相同数 据。
较佳地, 发送模块 810判断接收端是否接收成功, 若是, 则发送新的数据; 若否, 且 重复发送数据的次数不大于最大允许重复发送的数据次数, 继续重复发送数据; 若否, 且 重复发送数据的次数等于最大允许重复发送的数据次数, 发送新的数据。
较佳地, 发送模块 810默认接收端译码结果信息均为接收不成功; 或在每次收到来自 接收端的译码结果信息后, 对收到的译码结果信息进行译码判决或能量检测判决, 在获得 的多次传输的判决结果中, 若存在判决结果统计次数大于设定门限值, 则根据该判决结果 判断接收端是否接收成功; 或对收到的针对一组数据传输的所有译码结果信息或对收到的 所有数据传输的译码结果信息进行合并处理, 并针对合并信息进行译码判决或能量检测判 决, 根据判决结果判断接收端是否接收成功。
较佳地, 下行控制信道调度的资源包括通过重复多次发送控制信道进行调度的用于数 据传输的资源。
较佳地, 第一确定模块 800还用于:
确定下行控制信道调度的资源之前, 确定重复多次发送控制信道的资源位置; 其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
较佳地, 第一确定模块 800根据下列步骤确定所述资源位置:
按组发送控制信道, 根据控制信道所在的组, 确定所述资源位置; 其中, 不同组中的 控制信道占用不同的资源位置。
较佳地, 第一确定模块 800还可以根据控制信道所在的组和控制信道的时域起始位置 的对应关系, 确定控制信道的时域起始位置。
较佳地, 第一确定模块 800根据下列步骤确定时域资源位置:
才艮据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内的子帧 偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数, 确定时域资源位置; 其中, 通过协议约定或高层配置或系统消息通知, 确定 Period, Offset, s和 Length。 较佳地, 第一确定模块 800根据下列步骤确定时域资源位置:
根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset和无线帧内的子帧 偏移量 s中的部分或全部参数以及系统无线帧号 SFN确定发送控制信道的时域起始位置, 并确定之后的 Length个可用子帧为时域资源位置;
其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
较佳地, 第一确定模块 800根据下列公式确定发送控制信道的时域起始位置: 将(10*SFN+s ) mod Period=0 的子帧位置作为发送控制信道的时域起始位置; 或将 ( 10*SFN+s-Offset ) mod Period=0的子帧位置作为发送控制信道的时域起始位置。
较佳地, 第一确定模块 800确定的重复多次发送的控制信道的频域资源位置相同。 如图 9所示, 本发明实施例传输数据的系统中的接收设备包括: 第二确定模块 900和 接收模块 910
第二确定模块 900 , 用于确定可用数据接收资源;
接收模块 910, 用于在确定的可用数据接收资源上以组为单位周期性重复接收数据, 其中针对每一组, 在组内连续或周期性的接收数据 n次, n为正整数; 重复接收数据的次 数不大于最大允许重复接收数据的次数; 可用数据接收资源包括下行控制信道调度的资源 或高层分配的专用的数据传输资源。
其中, 所述的第二确定模块 900也可以是处理器等设备 , 所述的接收模块 910可以是 具有收发功能的传输设备。
较佳地, 第二确定模块 900在收到数据后, 不反馈译码结果信息; 或在收到数据后, 不反馈译码结果信息; 或在收到一次数据后或收到一组数据后反馈译码结果信息; 或在收 到一次数据或收到一组数据后, 若译码结果信息为接收成功, 则反馈译码结果信息, 否则 不反馈译码结果信息。
较佳地,下行控制信道调度的资源包括通过接收多次重复发送的控制信道进行调度的 用于数据传输的资源。
较佳地, 第二确定模块 900确定所述下行控制信道调度的资源之前, 确定接收多次重 复发送的控制信道的资源位置;
其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
较佳地, 第二确定模块 900根据下列步骤确定所述资源位置:
才艮据控制信道所在的组, 确定所述资源位置;
其中, 不同组中的控制信道占用不同的资源位置。
较佳地, 第二确定模块 900根据国际移动用户标识确定控制信道组的索引号; 其中控 制信道组的索引号 Index=IMSI mod K, Κ为控制信道组的个数, Κ是协议约定或系统广播 或高层信令配置。 Index的取值范围为 0 K-1 ; 根据索引号和控制信道的时域起始位置的对 应关系, 确定所述索引号对应的控制信道的时域起始位置。
较佳地, 第二确定模块 900根据下列步骤确定时域资源位置:
根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内的子帧 偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数, 确定时域资源位置; 其中, 通过协议约定或高层配置或系统消息通知, 确定 Period, Offset, s和 Length。 较佳地, 第二确定模块 900根据下列步骤确定时域资源位置: 才艮据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内的子帧 偏移量 s中的部分或全部参数以及系统无线帧号 SFN确定控制信道的时域起始位置,并确 定之后的 Length个可用子帧为时域资源位置;
其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
较佳地, 第二确定模块 900根据下列公式确定控制信道的时域起始位置:
将 ( 10* SFN+s ) mod Period=0 的子帧位置作为控制信道的时域起始位置; 或将 ( 10*SFN+s-Offset ) mod Period=0的子帧位置作为控制信道的时域起始位置。
在实施中, 根据不同的场景, 网络侧设备可能作为发送端也可能作为接收端; 用户设 备可能作为发送端也可能作为接收端, 所以发送设备和接收设备的功能可以合在一个实体 中, 即发送设备和接收设备的模块在一个实体中, 根据需要选择使用发送设备的功能或接 收设备的功能。
基于同一发明构思, 本发明实施例中还提供了一种发送设备传输数据的方法, 由于该 方法对应的设备是传输数据的系统中的发送设备, 并且与该设备解决问题的原理相似, 因 此该方法的实施可以参见设备的实施, 重复之处不再赘述。
如图 10所示, 本发明实施例网络侧设备传输数据的方法包括下列步骤:
步骤 1000、 发送端确定可用数据发送资源;
步骤 1010、发送端在确定的可用数据发送资源上以组为单位周期性重复发送数据, 其 中, 针对每一组, 在组内连续或周期性的重复发送 n次, n为正整数; 重复发送数据的总 次数不大于最大允许重复发送数据的次数; 可用数据发送资源包括下行控制信道调度的资 源或高层分配的专用的数据传输资源。
较佳地, 发送端重复发送数据, 包括:
发送端按照设定的冗余版本的发送顺序, 发送冗余版本对应的相同数据。
较佳地, 冗余版本的发送顺序通过协议约定;
发送顺序包括循环重复发送多种冗余版本。
较佳地, 该方法还包括:
发送端判断接收端是否接收成功, 若是, 则发送新的数据; 若否, 且重复发送数据的 次数不大于最大允许重复发送的数据次数, 继续重复发送数据; 若否, 且重复发送数据的 次数等于最大允许重复发送的数据次数, 发送新的数据。
较佳地, 发送端判断接收端是否接收成功, 包括:
发送端默认接收端译码结果信息均为接收不成功; 或
发送端在每次收到来自接收端的译码结果信息后, 对收到的译码结果信息进行译码判 决或能量检测判决, 在获得的多次传输的判决结果中, 若存在判决结果统计次数大于设定 门限值 , 则根据该判决结果判断接收端是否接收成功; 或
发送端对收到的针对一组数据传输的所有译码结果信息或对收到的所有数据传输的 译码结果信息进行合并处理, 并针对合并信息进行译码判决或能量检测判决, 根据判决结 果判断接收端是否接收成功。
较佳地, 发送端接收译码结果信息, 包括:
发送端根据承载数据的子帧和承载译码结果信息的子帧之间的定时关系, 接收来自接 收端的译码结果信息;
其中, 定时关系由协议约定或高层配置; 承载数据的子帧和承载译码结果信息的子帧 之间的定时关系包括反馈前最后一次数据传输的子帧和第一次译码结果信息的子帧之间 的定时关系。
较佳地, 发送端接收到译码结果信息之后, 还包括
发送端根据承载译码结果信息的子帧和位于承载译码结果信息的子帧之后的承载数 据的子帧之间的定时关系, 在接收到译码结果信息之后发送数据;
其中, 定时关系由协议约定或高层配置; 承载译码结果信息的子帧和之后承载数据的 子帧之间的定时关系包括: 最后一次反馈传输的子帧和之后第一次数据传输的子帧之间的 定时关系。
较佳地, 下行控制信道调度的资源包括通过重复多次发送控制信道进行调度的用于数 据传输的资源。
较佳地, 发送端确定下行控制信道调度的资源之前, 还包括:
发送端确定重复多次发送控制信道的资源位置;
其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
较佳地,发送端通过系统广播或高层信令或协议约定, 确定用于控制信道进行多次重 复发送的资源的位置。
较佳地, 发送端根据下列步骤确定资源位置:
发送端按组发送控制信道, 根据控制信道所在的组, 确定资源位置;
其中, 不同组中的控制信道占用不同的资源位置。
较佳地, 发送端确定资源位置, 包括:
发送端按组发送控制信道, 根据控制信道所在的组和控制信道的时域起始位置的对应 关系, 确定控制信道的时域起始位置。
较佳地, 发送端 # ^据下列步骤确定时域资源位置:
发送端才艮据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内 的子帧偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数,确定时域资源位 置; 其中, 发送端通过协议约定或高层配置或系统消息通知, 确定 Period, Offset, s 和 Length
较佳地, 发送端根据下列步骤确定时域资源位置:
发送端根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset和无线帧内 的子帧偏移量 s中的部分或全部参数以及系统无线帧号 SFN确定发送控制信道的时域起始 位置, 并确定之后的 Length个可用子帧为时域资源位置;
其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
较佳地, 发送端根据下列公式确定发送控制信道的时域起始位置:
发送端将( 10*SFN+s ) mod Period=0的子帧位置作为发送控制信道的时域起始位置; 或
发送端将( 10*SFN+s-Offset ) mod Period=0的子帧位置作为发送控制信道的时域起始 位置。
较佳地, 控制信道资源位置是小区级别或用户设备级别。
较佳地, 时域资源位置与数据信道之间具有一定的定时关系;
定时关系包括控制信道第一次传输的时域位置或最后一次传输的时域位置与数据信 道的第一次传输或最后一次传输的时域位置之间的定时关系;
定时关系通过协议约定或高层配置。
较佳地, 发送端确定的重复多次发送的控制信道的频域资源位置相同。
较佳地, 控制信道多次重复发送时, 重复发送的控制信道中的承载信息相同和 /或控制 信道使用的聚合等级相同。
基于同一发明构思, 本发明实施例中还提供了一种接收设备接收数据的方法, 由于该 方法对应的设备是传输数据的系统中的接收设备 , 并且与该设备解决问题的原理相似, 因 此该方法的实施可以参见设备的实施, 重复之处不再赘述。
如图 11所示, 本发明实施例网用户设备接收数据的方法包括下列步骤:
步骤 1100、 接收端确定可用数据接收资源;
步骤 1110、 接收端在确定的可用数据接收资源上以组为单位周期性重复接收数据, 其 中针对每一组, 在组内连续或周期性的接收数据 n次, n为正整数; 重复接收数据的次数 不大于最大允许重复接收数据的次数; 可用数据接收资源包括下行控制信道调度的资源或 高层分配的专用的数据传输资源。
较佳地, 该方法还包括:
接收端在收到数据后, 不反馈译码结果信息; 或
接收端在收到一次数据后或收到一组数据后反馈译码结果信息; 或 接收端在收到一次数据或收到一组数据后, 若译码结果信息为接收成功, 则反馈译码 结果信息, 否则不反馈译码结果信息; 或
接收端在收到一组数据后返回译码结果信息; 或
接收端在收到一组数据后, 若译码结果信息为接收成功, 则反馈译码结果信息, 否则 不反馈译码结果信息。
较佳地, 接收端针对相同的数据的反馈次数不大于最大允许的反馈次数。
较佳地, 接收端针对相同的数据的只要一次译码结果为接收成功, 则在接收到新数据 指示之前的后续反馈译码结果信息均为接收成功。
较佳地, 接收端反馈译码结果信息, 包括:
接收端根据承载数据的子帧和承载译码结果信息的子帧之间的定时关系, 反馈译码结 果信息。
其中, 定时关系由协议约定或高层配置; 定时关系包括反馈前最后一次数据传输的子 帧和第一次译码结果信息的子帧之间的定时关系。
较佳地, 接收端反馈译码结果信息之后, 还包括:
接收端在发送一个反馈译码结果信息之后 , 根据承载译码结果信息的子帧与承载译码 结果信息的子帧之后承载数据的子帧之间的定时关系, 接收数据;
其中, 定时关系由协议约定或高层配置; 定时关系包括反馈最后一次传输的子帧和之 后第一次数据传输的子帧之间的定时关系。
较佳地,下行控制信道调度的资源包括通过接收多次重复发送的控制信道进行调度的 用于数据传输的资源。
较佳地, 接收端确定下行控制信道调度的资源之前, 还包括:
接收端确定接收多次重复发送的控制信道的资源位置;
其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
较佳地,接收端通过系统广播或高层信令或协议约定, 确定用于所述接收多次重复发 送的控制信道的资源的位置。
较佳地, 接收端根据下列步骤确定时域资源位置:
接收端根据控制信道所在的组, 确定资源位置;
其中, 不同组中的控制信道占用不同的资源位置。
较佳地, 接收端确定资源位置, 包括:
接收端接收端根据国际移动用户标识确定控制信道组的索引号; 其中控制信道组的索 引号 Index=IMSI mod K, Κ为控制信道组的个数, Κ是协议约定或系统广播或高层信令配 置, Index的取值范围为 0~K- 1;
接收端根据索引号和控制信道的时域起始位置的对应关系, 确定索引号对应的控制信 道的时域起始位置。
较佳地, 接收端根据下列步骤确定时域资源位置:
接收端根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内 的子帧偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数,确定时域资源位 置;
其中, 接收端通过协议约定或高层配置或系统消息通知, 确定 Period, Offset, s 和 Length
较佳地, 接收端根据下列步骤确定时域资源位置:
接收端根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内 的子帧偏移量 s 中的部分或全部参数以及系统无线帧号 SFN确定控制信道的时域起始位 置, 并确定之后的 Length个可用子帧为时域资源位置;
其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
较佳地, 接收端根据下列公式确定控制信道的时域起始位置:
接收端将(10*SFN+s ) mod Period=0的子帧位置作为控制信道的时域起始位置; 或 接收端将( 10*SFN+s-Offset ) mod Period=0的子帧位置作为控制信道的时域起始位置。 较佳地, 控制信道资源位置是小区级别或用户设备级别。
较佳地, 时域资源位置与数据信道之间具有一定的定时关系;
定时关系包括控制信道第一次传输的时域位置或最后一次传输的时域位置与数据信 道的第一次传输或最后一次传输的时域位置之间的定时关系;
其中, 定时关系可协议约定或高层配置。
较佳地, 接收端确定的接收多次重复发送的控制信道的频域资源位置相同。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-R0M、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种传输数据的方法, 其特征在于, 该方法包括:
发送端确定可用数据发送资源;
所述发送端在确定的可用数据发送资源上以组为单位周期性重复发送数据, 其中, 针 对每一组, 在组内连续或周期性的重复发送 n次, n为正整数; 重复发送数据的总次数不 大于最大允许重复发送数据的次数; 可用数据发送资源包括下行控制信道调度的资源或高 层分配的专用的数据传输资源。
2、 如权利要求 1所述的方法, 其特征在于, 该方法还包括:
所述发送端判断所述接收端是否接收成功, 若是, 则发送新的数据; 若否, 且重复发 送数据的次数不大于最大允许重复发送的数据次数, 继续重复发送数据; 若否, 且重复发 送数据的次数等于最大允许重复发送的数据次数, 发送新的数据。
3、 如权利要求 2 所述的方法, 其特征在于, 所述发送端判断所述接收端是否接收成 功, 包括:
所述发送端默认接收端译码结果信息均为接收不成功; 或
所述发送端在每次收到来自所述接收端的译码结果信息后, 对收到的译码结果信息进 行译码判决或能量检测判决, 在获得的多次传输的判决结果中, 若存在判决结果统计次数 大于设定门限值, 则根据该判决结果判断所述接收端是否接收成功; 或
所述发送端对收到的针对一组数据传输的所有译码结果信息或对收到的所有数据传 输的译码结果信息进行合并处理, 并针对合并信息进行译码判决或能量检测判决, 根据判 决结果判断所述接收端是否接收成功。
4、 如权利要求 3 所述的方法, 其特征在于, 所述发送端根据下列方式接收译码结果 信息:
所述发送端根据承载数据的子帧和承载译码结果信息的子帧之间的定时关系, 接收来 自所述接收端的译码结果信息;
其中, 所述定时关系由协议约定或高层配置; 所述承载数据的子帧和承载译码结果信 息的子帧之间的定时关系包括反馈前最后一次数据传输的子帧和第一次译码结果信息的 子帧之间的定时关系。
5、 如权利要求 3 所述的方法, 其特征在于, 所述发送端接收到译码结果信息之后, 还包括:
所述发送端根据承载译码结果信息的子帧和位于承载译码结果信息的子帧之后的承 载数据的子帧之间的定时关系, 在接收到译码结果信息之后发送数据;
其中, 所述定时关系由协议约定或高层配置; 所述承载译码结果信息的子帧和之后承 载数据的子帧之间的定时关系包括: 最后一次反馈传输的子帧和之后第一次数据传输的子 帧之间的定时关系。
6、 如权利要求 1所述的方法, 其特征在于, 所述发送端重复发送数据, 包括: 所述发送端按照设定的冗余版本的发送顺序, 发送冗余版本对应的相同数据。
7、 如权利要求 6所述的方法, 其特征在于, 所述冗余版本的发送顺序通过协议约定; 所述发送顺序包括循环重复发送多种冗余版本。
8、 如权利要求 1 所述的方法, 其特征在于, 所述下行控制信道调度的资源包括通过 重复多次发送控制信道进行调度的用于数据传输的资源;
所述发送端确定所述下行控制信道调度的资源之前, 还包括:
所述发送端确定重复多次发送控制信道的资源位置;
其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
9、 如权利要求 8所述的方法, 其特征在于, 所述发送端通过系统广播或高层信令或 协议约定, 确定用于所述控制信道进行多次重复发送的资源的位置。
10、 如权利要求 9所述的方法, 其特征在于, 所述发送端根据下列步骤确定所述资源 位置:
发送端按组进行控制信道发送;
所述发送端才 居控制信道所在的组, 确定所述资源位置;
其中, 不同组中的控制信道占用不同的资源位置。
11、如权利要求 10所述的方法, 其特征在于, 所述发送端根据下列方式确定所述资源 位置的时域起始位置:
所述发送端才 居控制信道所在的组和控制信道的时域起始位置的对应关系, 确定控制 信道的时域起始位置。
12、 如权利要求 8或 10所述的方法, 其特征在于, 所述发送端根据下列步骤确定所 述时域资源位置:
所述发送端根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线 帧内的子帧偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数,确定时域资 源位置;
其中, 所述发送端通过协议约定或高层配置或系统消息通知, 确定所述 Period, 所述 Offset , 所述 s和所述 Length。
13、 如权利要求 12 所述的方法, 其特征在于, 所述发送端根据下列步骤确定时域资 源位置:
所述发送端根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset和无线 帧内的子帧偏移量 s中的部分或全部参数以及系统无线帧号 SFN确定发送控制信道的时域 起始位置, 并确定时域起始位置之后的 Length个可用子帧为时域资源位置; 其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
14、 如权利要求 13 所述的方法, 其特征在于, 所述发送端根据下列公式确定发送控 制信道的时域起始位置:
所述发送端将( 10*SFN+s ) mod Period=0的子帧位置作为发送控制信道的时域起始位 置; 或
所述发送端将( 10*SFN+s-Offset ) mod Period=0的子帧位置作为发送控制信道的时域 起始位置。
15、 如权利要求 8或 10所述的方法, 其特征在于, 所述控制信道的资源位置是小区 级别或用户设备级别。
16、 如权利要求 8或 10所述的方法, 其特征在于, 所述时域资源位置与数据信道之 间的定时关系具体为:
控制信道第一次传输的时域位置或最后一次传输的时域位置与数据信道的第一次传 输或最后一次传输的时域位置之间的定时关系;
所述定时关系通过协议约定或高层配置。
17、 如权利要求 8或 10所述的方法, 其特征在于, 所述发送端确定的重复多次发送 的控制信道的频域资源位置相同。
18、 如权利要求 8所述的方法, 其特征在于, 所述控制信道多次重复发送时, 重复发 送的控制信道中的承载信息相同和 /或控制信道使用的聚合等级相同。
19、 一种传输数据的方法, 其特征在于, 该方法包括:
接收端确定可用数据接收资源;
所述接收端在确定的可用数据接收资源上以组为单位周期性重复接收数据 , 其中针对 每一组, 在组内连续或周期性的接收数据 n次, n为正整数; 重复接收数据的次数不大于 最大允许重复接收数据的次数; 可用数据接收资源包括下行控制信道调度的资源或高层分 配的专用的数据传输资源。
20、 如权利要求 19所述的方法, 其特征在于, 该方法还包括:
所述接收端在收到数据后, 不反馈译码结果信息; 或
所述接收端在收到一次数据后或收到一组数据后反馈译码结果信息; 或
所述接收端在收到一次数据或收到一组数据后, 若译码结果信息为接收成功, 则反馈 译码结果信息, 否则不反馈译码结果信息。
21、 如权利要求 20 所述的方法, 其特征在于, 所述接收端针对相同的数据的反馈次 数不大于最大允许的反馈次数。
22、 如权利要求 20 所述的方法, 其特征在于, 所述接收端针对相同的数据在译码结 果为接收成功后, 将接收成功作为接收到新数据指示之前的反馈译码结果信息。
23、 如权利要求 20所述的方法, 其特征在于, 所述接收端反馈译码结果信息, 包括: 所述接收端根据承载数据的子帧和承载译码结果信息的子帧之间的定时关系, 反馈译 码结果信息;
其中, 所述定时关系由协议约定或高层配置; 所述定时关系包括反馈前最后一次数据 传输的子帧和第一次译码结果信息的子帧之间的定时关系。
24、 如权利要求 20所述的方法, 其特征在于, 所述接收端重复接收数据, 包括: 所述接收端在发送一个反馈译码结果信息之后 , 根据承载所述译码结果信息的子帧与 承载所述译码结果信息的子帧之后承载数据的子帧之间的定时关系, 接收数据;
其中, 所述定时关系由协议约定或高层配置; 所述定时关系包括反馈最后一次传输的 子帧和之后第一次数据传输的子帧之间的定时关系。
25、 如权利要求 19所述的方法, 其特征在于, 所述下行控制信道调度的资源包括通 过接收多次重复发送的控制信道进行调度的用于数据传输的资源;
所述接收端确定所述下行控制信道调度的资源之前, 还包括:
所述接收端确定接收多次重复发送的控制信道的资源位置;
其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
26、 如权利要求 25所述的方法, 其特征在于, 所述接收端通过系统广播或高层信令 或协议约定, 确定用于所述接收多次重复发送的控制信道的资源的位置。
27、 如权利要求 26 所述的方法, 其特征在于, 所述接收端根据下列步骤确定所述时 域资源位置:
所述接收端才 居控制信道所在的组, 确定所述资源位置;
其中, 不同组中的控制信道占用不同的资源位置。
28、 如权利要求 25或 27所述的方法, 其特征在于, 所述接收端根据下列步骤确定所 述时域资源位置:
所述接收端根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线 帧内的子帧偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数,确定时域资 源位置;
其中, 所述接收端通过协议约定或高层配置或系统消息通知, 确定所述 Period, 所述 Offset, 所述 s和所述 Length。
29、 如权利要求 28 所述的方法, 其特征在于, 所述接收端根据下列方式确定所述资 源位置的时域起始位置:
所述接收端才 居自身的国际移动用户标识确定控制信道组的索引号; 其中控制信道组 的索引号 Index=IMSI mod K, K为控制信道组的个数, Κ是协议约定或系统广播或高层信 令配置, Index的取值范围为 0~K- 1;
所述接收端才艮据索引号和控制信道的时域起始位置的对应关系, 确定所述索引号对应 的控制信道的时域起始位置。
30、 如权利要求 28 所述的方法, 其特征在于, 所述接收端根据下列步骤确定时域资 源位置:
所述接收端根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线 帧内的子帧偏移量 s中的部分或全部参数以及系统无线帧号 SFN确定控制信道的时域起始 位置, 并确定时域起始位置之后的 Length个可用子帧为时域资源位置;
其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
31、 如权利要求 30 所述的方法, 其特征在于, 所述接收端根据下列公式确定控制信 道的时域起始位置:
所述接收端将( 10*SFN+s ) mod Period=0的子帧位置作为控制信道的时域起始位置; 或
所述接收端将( 10*SFN+s-Offset ) mod Period=0的子帧位置作为控制信道的时域起始 位置。
32、 如权利要求 25或 27所述的方法, 其特征在于, 所述控制信道的资源位置是小区 级别或用户设备级别。
33、 如权利要求 25或 27所述的方法, 其特征在于, 所述时域资源位置与数据信道之 间具有一定的定时关系;
所述定时关系包括控制信道第一次传输的时域位置或最后一次传输的时域位置与数 据信道的第一次传输或最后一次传输的时域位置之间的定时关系;
其中, 所述定时关系可协议约定或高层配置。
34、 如权利要求 25或 27所述的方法, 其特征在于, 所述接收端确定的接收多次重复 发送的控制信道的频域资源位置相同。
35、 一种传输数据的设备, 其特征在于, 该设备包括:
第一确定模块, 用于确定可用数据发送资源;
发送模块,用于在确定的可用数据发送资源上以组为单位周期性重复发送数据,其中, 针对每一组, 在组内连续或周期性的重复发送 n次, n为正整数; 重复发送数据的总次数 不大于最大允许重复发送数据的次数; 可用数据发送资源包括下行控制信道调度的资源或 高层分配的专用的数据传输资源。
36、 如权利要求 35所述的设备, 其特征在于, 所述发送模块还用于: 判断所述接收端是否接收成功, 若是, 则发送新的数据; 若否, 且重复发送数据的次 数不大于最大允许重复发送的数据次数, 继续重复发送数据; 若否, 且重复发送数据的次 数等于最大允许重复发送的数据次数, 发送新的数据。
37、 如权利要求 36所述的设备, 其特征在于, 所述发送模块具体用于:
默认接收端译码结果信息均为接收不成功; 或在每次收到来自所述接收端的译码结果 信息后, 对收到的译码结果信息进行译码判决或能量检测判决, 在获得的多次传输的判决 结果中, 若存在判决结果统计次数大于设定门限值, 则根据该判决结果判断所述接收端是 否接收成功; 或对收到的针对一组数据传输的所有译码结果信息或对收到的所有数据传输 的译码结果信息进行合并处理, 并针对合并信息进行译码判决或能量检测判决, 根据判决 结果判断所述接收端是否接收成功。
38、 如权利要求 35 所述的设备, 其特征在于, 所述下行控制信道调度的资源包括通 过重复多次发送控制信道进行调度的用于数据传输的资源;
所述第一确定模块还用于:
确定所述下行控制信道调度的资源之前, 确定重复多次发送控制信道的资源位置; 其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
39、 如权利要求 38所述的方法, 其特征在于, 所述第一确定模块具体用于: 按组发送控制信道, 根据控制信道所在的组, 确定所述资源位置;
其中, 不同组中的控制信道占用不同的资源位置。
40、 如权利要求 38或 39所述的设备, 其特征在于, 所述第一确定模块具体用于: 根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内的子帧 偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数, 确定时域资源位置; 其中, 通过协议约定或高层配置或系统消息通知, 确定所述 Period, 所述 Offset, 所 述 s和所述 Length。
41、 如权利要求 40所述的设备, 其特征在于, 所述第一确定模块具体用于: 根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset和无线帧内的子帧 偏移量 s中的部分或全部参数以及系统无线帧号 SFN确定发送控制信道的时域起始位置, 并确定之后的 Length个可用子帧为时域资源位置;
其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
42、 如权利要求 41所述的设备, 其特征在于, 所述第一确定模块具体用于: 将(10*SFN+s ) mod Period=0 的子帧位置作为发送控制信道的时域起始位置; 或将 ( 10*SFN+s-Offset ) mod Period=0的子帧位置作为发送控制信道的时域起始位置。
43、 一种传输数据的设备, 其特征在于, 该设备包括: 第二确定模块, 用于确定可用数据接收资源;
接收模块, 用于在确定的可用数据接收资源上以组为单位周期性重复接收数据, 其中 针对每一组, 在组内连续或周期性的接收数据 n次, n为正整数; 重复接收数据的次数不 大于最大允许重复接收数据的次数; 可用数据接收资源包括下行控制信道调度的资源或高 层分配的专用的数据传输资源。
44、 如权利要求 43所述的设备, 其特征在于, 所述第二确定模块还用于: 在收到数据后, 不反馈译码结果信息; 或在收到一次数据后或收到一组数据后反馈译 码结果信息; 或在收到一次数据或收到一组数据后, 若译码结果信息为接收成功, 则反馈 译码结果信息, 否则不反馈译码结果信息。
45、 如权利要求 43 所述的设备, 其特征在于, 所述下行控制信道调度的资源包括通 过接收多次重复发送的控制信道进行调度的用于数据传输的资源;
所述第二确定模块还用于:
确定所述下行控制信道调度的资源之前,确定接收多次重复发送的控制信道的资源位 置;
其中, 控制信道的资源位置包括时域资源位置和频域资源位置。
46、 如权利要求 45所述的设备, 其特征在于, 所述第二确定模块具体用于: 才艮据控制信道所在的组, 确定所述资源位置;
其中, 不同组中的控制信道占用不同的资源位置。
47、 如权利要求 45或 46所述的设备, 其特征在于, 所述第二确定模块具体用于: 根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内的子帧 偏移量 s和发送控制信道的持续时长 Length中的部分或全部参数, 确定时域资源位置; 其中, 通过协议约定或高层配置或系统消息通知, 确定所述 Period, 所述 Offset, 所 述 s和所述 Length。
48、 如权利要求 47所述的设备, 其特征在于, 所述第二确定模块具体用于: 根据发送控制信道的发送周期 Period, 发送周期内的偏移量 Offset, 无线帧内的子帧 偏移量 s中的部分或全部参数以及系统无线帧号 SFN确定控制信道的时域起始位置,并确 定之后的 Length个可用子帧为时域资源位置;
其中, Length个可用子帧为连续的 Length个可用子帧或预先设定或高层配置的周期性 的 Length个可用子帧。
49、 如权利要求 48所述的设备, 其特征在于, 所述第二确定模块具体用于: 将 ( 10* SFN+s ) mod Period=0 的子帧位置作为控制信道的时域起始位置; 或将 ( 10*SFN+s-Offset ) mod Period=0的子帧位置作为控制信道的时域起始位置。
50、 一种传输数据的系统, 其特征在于, 该系统包括: 发送设备, 用于确定可用数据发送资源; 在确定的可用数据发送资源上以组为单位周 期性重复发送数据; 其中, 针对每一组, 在组内连续或周期性的重复发送 n次, n为正整 数; 重复发送数据的总次数不大于最大允许重复发送数据的次数; 可用数据发送资源包括 下行控制信道调度的资源或高层分配的专用的数据传输资源;
接收设备, 用于确定可用数据接收资源; 在确定的可用数据接收资源上以组为单位周 期性重复接收数据, 其中针对每一组, 在组内连续或周期性的接收数据 n次。
PCT/CN2013/086277 2012-11-02 2013-10-31 一种传输数据的方法、系统和设备 WO2014067469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210433451.5A CN103795505A (zh) 2012-11-02 2012-11-02 一种传输数据的方法、系统和设备
CN201210433451.5 2012-11-02

Publications (1)

Publication Number Publication Date
WO2014067469A1 true WO2014067469A1 (zh) 2014-05-08

Family

ID=50626508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086277 WO2014067469A1 (zh) 2012-11-02 2013-10-31 一种传输数据的方法、系统和设备

Country Status (2)

Country Link
CN (1) CN103795505A (zh)
WO (1) WO2014067469A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361820B2 (en) 2015-01-30 2019-07-23 Hfi Innovation Inc. Methods for repetition design
CN113411770A (zh) * 2021-08-19 2021-09-17 辰芯科技有限公司 周期性资源的选择方法、装置、设备及存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519533A (zh) 2013-09-26 2015-04-15 中兴通讯股份有限公司 一种传输系统信息的方法、基站及终端
CN105472532B (zh) * 2014-09-09 2020-11-17 中兴通讯股份有限公司 一种传输数据的方法和装置
DE102015205478A1 (de) * 2015-03-26 2016-09-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Konfiguration einer Übertragungsverbindung
CN106161293B (zh) * 2015-04-09 2019-05-24 电信科学技术研究院 一种数据传输方法及设备
JP2019165269A (ja) 2016-07-28 2019-09-26 シャープ株式会社 基地局装置、端末装置および通信方法
CN108736930B (zh) * 2017-04-21 2020-12-15 华为技术有限公司 传输数据的方法和网络设备
CN108809501B (zh) * 2017-05-05 2021-11-19 华为技术有限公司 用于传输数据的方法和设备
WO2018214172A1 (zh) * 2017-05-26 2018-11-29 华为技术有限公司 一种数据传输方法、网络设备及终端
CN109041223B (zh) * 2017-06-08 2024-02-13 华为技术有限公司 一种通信方法及相关设备
WO2019047169A1 (zh) * 2017-09-08 2019-03-14 富士通株式会社 数据传输方法及其装置、通信系统
CN112073160B (zh) * 2017-09-29 2021-12-31 华为技术有限公司 通信系统中冗余版本的设计方案
CN110035515B (zh) * 2018-01-12 2024-02-27 中兴通讯股份有限公司 资源配置方法及装置、存储介质、处理器
WO2019200616A1 (zh) * 2018-04-20 2019-10-24 华为技术有限公司 聚合调度方法、设备、系统及存储介质
CN110505690A (zh) * 2018-05-16 2019-11-26 普天信息技术有限公司 一种下行业务数据的传输方法和系统
CN110971365A (zh) * 2018-09-28 2020-04-07 北京展讯高科通信技术有限公司 信令与数据的多次接收、传输方法及装置、终端
CN112398586B (zh) * 2019-08-13 2024-02-27 中信科智联科技有限公司 一种数据传输方法、装置、发送端设备及接收端设备
CN112866956B (zh) * 2019-11-27 2023-05-02 成都鼎桥通信技术有限公司 语音数据的传输方法、装置、设备及存储介质
CN113271607A (zh) * 2020-02-14 2021-08-17 大唐移动通信设备有限公司 一种时域重复传输方法、装置及发射机
WO2021163898A1 (zh) * 2020-02-18 2021-08-26 Oppo广东移动通信有限公司 信号传输方法、装置、设备和存储介质
CN112367645B (zh) * 2020-11-09 2023-06-16 海能达通信股份有限公司 一种提升mpdcch解调性能的方法及相关装置
CN113055133B (zh) * 2021-03-11 2022-10-14 宸芯科技有限公司 混合自动重传请求harq响应方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047438A (zh) * 2007-03-27 2007-10-03 中兴通讯股份有限公司 Td-scdma中利用复帧收发mbms数据的方法
CN101500259A (zh) * 2008-01-30 2009-08-05 大唐移动通信设备有限公司 在高速共享数据信道上重传数据的方法、系统及装置
CN101568148A (zh) * 2008-04-24 2009-10-28 中兴通讯股份有限公司 为ue分配连续授权资源及在该资源上发送数据的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1593276A4 (en) * 2003-02-13 2011-11-02 Nokia Corp SYSTEM AND METHOD FOR IMPROVED UPWARD SIGNAL DETECTION AND REDUCED UPWARD SIGNALING PERFORMANCE
CN101567774B (zh) * 2008-04-25 2012-12-26 电信科学技术研究院 一种多子帧联合调度的实现方法和装置
CN101594211B (zh) * 2009-06-19 2013-12-18 中兴通讯股份有限公司南京分公司 大带宽的多载波系统中发送正确/错误应答消息的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047438A (zh) * 2007-03-27 2007-10-03 中兴通讯股份有限公司 Td-scdma中利用复帧收发mbms数据的方法
CN101500259A (zh) * 2008-01-30 2009-08-05 大唐移动通信设备有限公司 在高速共享数据信道上重传数据的方法、系统及装置
CN101568148A (zh) * 2008-04-24 2009-10-28 中兴通讯股份有限公司 为ue分配连续授权资源及在该资源上发送数据的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361820B2 (en) 2015-01-30 2019-07-23 Hfi Innovation Inc. Methods for repetition design
US10897330B2 (en) 2015-01-30 2021-01-19 Hfi Innovation Inc. Methods for repetition design
CN113411770A (zh) * 2021-08-19 2021-09-17 辰芯科技有限公司 周期性资源的选择方法、装置、设备及存储介质
CN113411770B (zh) * 2021-08-19 2021-11-12 辰芯科技有限公司 周期性资源的选择方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN103795505A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2014067469A1 (zh) 一种传输数据的方法、系统和设备
US20200076543A1 (en) Method and apparatus for partial retransmission in wireless cellular communication system
WO2017186174A1 (zh) Harq-ack信息的发送方法及装置
US11012196B2 (en) Base stations, user equipments and a system for wireless communication, as well as the corresponding methods
AU2017298225B9 (en) User equipments, base stations and methods
EP3485592A1 (en) Systems and methods for processing time reduction signaling
US9397819B2 (en) Extension carrier for ARQ
WO2015103722A1 (zh) Harq-ack反馈信息的传输方法、系统及终端和基站
WO2014176972A1 (zh) D2d通信中的数据发送方法和设备
US9510368B2 (en) Method and arrangement for acknowledgement of contention-based uplink transmissions in a telecommunication system
JP2012099907A (ja) 移動局装置、無線通信方法および集積回路
CN104243108A (zh) 上行混合自动重传请求反馈方法、装置和系统
EP3304786A1 (en) Apparatus and method for handling the configuration of bundle sizes in communications involving the transmission and/or reception of more than one bundle in a transmission and/or reception attempt
WO2016070561A1 (zh) 数据传输处理方法及装置
KR20160036458A (ko) 단말간 통신의 harq 처리 방법 및 장치
WO2012097724A1 (zh) 半静态调度方法、用户设备及网络设备
WO2015013889A1 (zh) 数据传输方法、基站及用户设备
WO2014075272A1 (zh) 信道传输方法、装置、基站及终端
WO2013135015A1 (zh) 增强上行链路覆盖的方法及装置、基站
WO2016145927A1 (zh) 一种设备到设备通信的方法、装置及计算机存储介质
WO2017129127A1 (zh) 一种数据传输的方法、用户设备和基站
WO2013159597A1 (zh) 数据传输方法、用户设备及基站
WO2021159465A1 (en) Downlink triggered channel state information reporting for semi-persistent scheduling
EP4104415A1 (en) Determining transmission power for reporting a harq feedback message in wireless communications systems
KR20230034981A (ko) 사이드링크를 이용한 네트워크 코딩된 패킷들의 피드백-기반 브로드캐스팅

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850451

Country of ref document: EP

Kind code of ref document: A1