WO2018214172A1 - 一种数据传输方法、网络设备及终端 - Google Patents

一种数据传输方法、网络设备及终端 Download PDF

Info

Publication number
WO2018214172A1
WO2018214172A1 PCT/CN2017/086220 CN2017086220W WO2018214172A1 WO 2018214172 A1 WO2018214172 A1 WO 2018214172A1 CN 2017086220 W CN2017086220 W CN 2017086220W WO 2018214172 A1 WO2018214172 A1 WO 2018214172A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
uplink data
time
network device
indication information
Prior art date
Application number
PCT/CN2017/086220
Other languages
English (en)
French (fr)
Inventor
陈拓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/086220 priority Critical patent/WO2018214172A1/zh
Publication of WO2018214172A1 publication Critical patent/WO2018214172A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method, a network device, and a terminal.
  • the spectrum resources are limited, that is, a standard communication network can only provide communication services in a limited frequency band, the number of terminals and service capacity in the network are limited.
  • the base station can only provide wireless communication services for the terminal in the frequency band. If there are multiple terminals simultaneously requiring wireless communication services, each terminal can only obtain partial time-frequency resource transmission data, and the capacity of the data transmission system has an upper limit.
  • FIG. 1 is a schematic diagram of time-frequency resource allocation in the existing non-multiplexed and multiplexed mode.
  • the terminal in the non-multiplexed mode, the terminal separately shares available time-frequency resources at times T0 and T0+1, and each other There are no resource conflicts between them.
  • terminal 1 and terminal 2 In the multiplexing mode, terminal 1 and terminal 2 occupy the complete time-frequency resource at time T0, but terminal 3 also occupies the time-frequency resource.
  • the time-frequency resource multiplexing technology is adopted, more data can be transmitted in the same time, thereby achieving the purpose of increasing the capacity of the data transmission system.
  • VMIMO virtual multiple-input multiple-output
  • LTE Long Term Evolution
  • 2 is a schematic diagram of two resource multiplexing modes in the existing VMIMO technology. As shown in FIG. 2, there are two modes of aligned VMIMO and non-aligned VMIMO in the existing VMIMO technology.
  • the terminal 1 and the terminal 2 allocate exactly the same Resource Block (RB) resources in the same subframe, and the terminal 1 and the terminal 2 adjust the cyclic shift of the pilot sequence, the orthogonal code or the physical cell.
  • Physical Cell Identifier (PCI) to reduce inter-pilot interference.
  • the terminal 1 and the terminal 2 are allocated partially overlapping RB resources in the same subframe, and the terminal 1 and the terminal 2 reduce the inter-pilot interference by adjusting the orthogonal code of the pilot sequence or the PCI.
  • the interference between pilots can be reduced by a certain means to ensure the reliability of data transmission. However, due to the interference of the non-pilot data, the reliability of the data transmission of the multiplex terminals is achieved. Greatly discounted, resulting in reduced transmission efficiency.
  • Embodiments of the present invention provide a data transmission method, a network device, and a terminal, which are used to achieve both reliability of data transmission and capacity of a data transmission system.
  • a data transmission method including:
  • the network device sends the resource allocation indication information to the N terminals, where the resource allocation indication information is used to indicate the time-frequency resource used by the terminal to transmit the uplink data M times, where the uplink data transmitted by any terminal M times corresponds to the same
  • the source data the at least two terminals of the N terminals have a time-frequency resource multiplexing relationship in at least one transmission process, and the frequency domain resources used by at least one terminal in M transmissions are not completely the same, and N is greater than or equal to 2, M is greater than or equal to 2, the network device receives the uplink data that the N terminals send on the corresponding time-frequency resource according to the resource allocation indication information, and the network device receives the The uplink data sent by the terminal is decoded to obtain source data of the terminal.
  • the network device indicates, by using the resource allocation indication information, that each terminal sends the uplink data corresponding to the same source data multiple times, and improves the reliability of data transmission of each terminal by receiving the uplink data of the same source data multiple times.
  • the resource allocation indication information indicates the time-frequency resource used by the terminal to transmit the uplink data M times, so that the time-frequency resources used for transmitting the uplink data by M times of any terminal are dynamically changed, and the degree of resource reuse between the terminals becomes changed. Therefore, when the uplink data is transmitted M times by the N terminals, the system resources occupied by the multiple transmissions are reduced by the time-frequency resource multiplexing between the terminals, thereby improving the system capacity. Therefore, the technical solution provided by the embodiments of the present invention can balance the reliability of data transmission and the capacity of the data transmission system.
  • the resource allocation indication information includes a number of transmissions, a first transmission time-frequency resource, and a retransmission time-frequency resource.
  • the network device sends the resource allocation indication information to the N terminals, respectively, including: the network device And transmitting the respective resource allocation indication information to the N terminals, where the first transmission time-frequency resources of the N terminals are time-frequency resources with the same time domain and different frequency domains, or different time domains and the same frequency domain. Time-frequency resources.
  • each terminal transmits uplink data for the first time
  • the multiplexing of time-frequency resources is avoided as much as possible to avoid additional interference caused by multiplexing, so that the uplink data sent by each terminal for the first time has the best decoding performance and the highest reliability.
  • the successful decoding of most terminals can be achieved by the uplink data transmitted for the first time.
  • the method before the network device sends the resource allocation indication information to the N terminals, the method further includes: determining, by the network device, the N The resource allocation indication information of the terminal, where the first rule is a positive relationship between the number of retransmissions and the degree of multiplexing of the time-frequency resources.
  • the degree of multiplexing of time-frequency resources between terminals is gradually strengthened, which can reduce the occupation of system resources by multiple transmissions.
  • the number of successfully decoded terminals will also increase. Increased, so even if the degree of multiplexing is strengthened, the interference between some terminals can be eliminated by the decoding result of the successfully decoded terminal, thereby preserving the improvement of the reliability of data transmission caused by multiple transmissions, and reducing the reliability.
  • the degree of reuse enhances the adverse impact on reliability.
  • the method before the network device sends the resource allocation indication information to the N terminals, the method further includes: determining, by the network device, the N The respective resource allocation indication information of the terminal, where the first rule includes that terminals that multiplex the same time-frequency resources in each retransmission are not completely identical.
  • the terminals that multiplex the same time-frequency resources in each retransmission are not completely the same, so that when decoding the uplink data, the decoding result of the successful decoding terminal can be utilized to the greatest extent, and the effect of multiplexing on the unsuccessfully decoded terminal is reduced. , thereby improving the decoding efficiency and increasing the transmission rate of the data transmission system.
  • the network device Decoding the uplink data sent by the terminal to obtain the source data of the terminal, where the network device determines that the terminal transmits the resource allocation indication information on the corresponding time-frequency resource according to the K-1 times of uplink data decoding failed, the network The network device decodes the Kth uplink data transmitted by the terminal on the corresponding time-frequency resource according to the resource allocation indication information according to the decoding result of the first K-1 times, and if the decoding fails, And continuing to receive the K+1th uplink data transmitted by the terminal on the corresponding time-frequency resource until the decoding succeeds or the M transmission ends.
  • the network device For the uplink data sent by any terminal, the network device only decodes the uplink data of the terminal that has not been successfully decoded, and does not decode the uplink data of the terminal that has been successfully decoded, thereby reducing the translation of the network device. Code pressure improves the decoding speed of network devices.
  • the network device is configured according to the decoding result of the first K-1 times Decoding, according to the resource allocation indication information, the Kth uplink data that is transmitted on the corresponding time-frequency resource, where the network device: according to the decoding result of the first K-1 times, The uplink data of the K times of transmission is subjected to the first round of decoding, and the network device fails to decode the first round, and the terminal transmits the previous K times of uplink data based on the time-frequency resource multiplexing manner with other multiplexing terminals.
  • the uplink data is updated, and the network device performs secondary decoding on the updated uplink data.
  • the uplink data is updated according to the decoding result of the successfully decoded multiplex terminal, and the related data of the multiplexed terminal that has been successfully decoded in the uplink data can be removed, so that only the undecoded terminal remains in the updated uplink data.
  • the data so as to remove the effect of the successfully decoded multiplex terminal on the undecoded terminal, so that the uplink data decoding success rate of the undecoded terminal is improved.
  • the network device performs the second decoding on the updated uplink data, including: The network device performs secondary decoding on the updated uplink data according to a decoding result of the first round decoding of the uplink data of the terminal.
  • the decoding result of the first round decoding is used as the secondary decoding.
  • a priori information can improve the success rate of secondary decoding.
  • a data transmission method including:
  • the terminal receives the resource allocation indication information sent by the network device, where the resource allocation indication information is used to indicate the time-frequency resource used by the terminal to transmit the uplink data M times; the uplink data transmitted by the terminal M times corresponds to the same source data; The terminal sends uplink data to the network device according to the resource allocation indication information sent by the network device.
  • the terminal sends uplink data multiple times, which improves the reliability of data transmission.
  • the terminal sends the uplink data to the network device according to the resource allocation indication information, where the resource allocation indication information indicates the time-frequency resource used by the terminal to transmit the uplink data M times, so that the time-frequency resource used by the terminal to transmit the uplink data M times dynamically changes. It is possible to change the degree of resource reuse between terminals.
  • the terminal transmits uplink data M times it can be multiplexed with other terminals.
  • the time-frequency resource multiplexing between terminals can reduce the system resources occupied by multiple transmissions and improve system capacity. Therefore, the technical solution provided by the embodiments of the present invention can balance the reliability of data transmission and the capacity of the data transmission system.
  • the resource allocation indication information includes a number of transmissions, a first transmission time-frequency resource, and a retransmission time-frequency resource.
  • a third aspect provides a network device, including: a transceiver module and a processing module;
  • the transceiver module is configured to send resource allocation indication information to the N terminals, where the resource allocation indication information is used to indicate the time-frequency resource used by the terminal to transmit the uplink data M times, where the uplink of any terminal is transmitted M times.
  • the data corresponds to the same source data, and at least two of the N terminals have time-frequency in at least one transmission process.
  • the resource multiplexing relationship, the frequency domain resources used by the at least one terminal in the M transmission are not completely the same, N is greater than or equal to 2, M is greater than or equal to 2, and the uplink data sent by the N terminals is received, the processing module, For decoding, the uplink data sent by the received terminal is obtained for any terminal, and the source data of the terminal is obtained.
  • the resource allocation indication information includes a number of transmissions, a first transmission time-frequency resource, and a retransmission time-frequency resource.
  • the transceiver module is configured to send the resource allocation indication information to the N terminals respectively. And transmitting the respective resource allocation indication information to the N terminals, where the time-frequency resources of the first time of the N terminals are time-frequency resources with the same time domain and different frequency domains, or different time-frequency bands The same time-frequency resource of the domain.
  • the processing module is further configured to: according to the first rule, before the sending, by the sending, the module sends the resource allocation indication information to the N terminals, Determining resource allocation indication information of each of the N terminals, where the first rule is a positive relationship between the number of retransmissions and the degree of multiplexing of time-frequency resources.
  • the processing module is further configured to: according to the first rule, before the sending, by the sending, the module sends the resource allocation indication information to the N terminals, Determining resource allocation indication information of each of the N terminals, where the first rule includes that terminals that multiplex the same time-frequency resources in each retransmission are not completely identical.
  • the processing module is for any terminal, And receiving, by the received terminal, the uplink data, and obtaining the source data of the terminal, where the method is specifically configured to: determine a pre-K- transmitted by the terminal according to the resource allocation indication information on the corresponding time-frequency resource.
  • Decoding failure of one uplink data decoding, according to the decoding result of the first K-1 times, the Kth uplink data transmitted by the terminal on the corresponding time-frequency resource according to the resource allocation indication information If the decoding fails, the transceiver module is controlled to continue to receive the K+1th uplink data transmitted by the terminal on the corresponding time-frequency resource until the decoding succeeds or the M transmission ends.
  • the processing module is configured to perform the decoding result according to the first K-1 times
  • the decoding of the Kth uplink data is specifically performed by: performing, according to the decoding result of the first K-1 times, performing first round decoding on the Kth uplink data, where the first round decoding is performed.
  • the terminal fails to transmit the Kth uplink data according to the time-frequency resource multiplexing manner with the other multiplexing terminals, the decoding result of successfully decoding the first K times of uplink data transmitted by the multiplexing terminal is obtained, according to Decoding the successfully decoded multiplex terminal, updating the Kth uplink data transmitted by the terminal, and performing secondary decoding on the updated uplink data.
  • the processing module when performing the secondary decoding on the updated uplink data, Specifically, the method is: performing secondary decoding on the updated uplink data according to a decoding result of the first round decoding of the terminal.
  • a fourth aspect provides a terminal, including: a transceiver module and a processing module;
  • the processing module is configured to control the transceiver module to receive the resource allocation indication information sent by the network device, where the resource allocation indication information is used to indicate the time-frequency resource used by the terminal to transmit the uplink data M times; the terminal M The uplink data of the secondary transmission corresponds to the same source data;
  • the processing module is further configured to control, according to the resource allocation indication information sent by the network device, the transceiver module to send uplink data to the network device on a corresponding time-frequency resource.
  • the resource allocation indication information includes a number of transmissions, a first transmission time-frequency resource, and a retransmission time-frequency resource.
  • a computer storage medium for storing computer instructions that can execute the first aspect and the first aspect when invoked by a processing module or a processing device or a processing unit Any of the possible implementations provided by the aspect.
  • a computer storage medium for storing computer instructions that can perform the second aspect and the second aspect when invoked by a processing module or a processing device, such as a processor or a processing unit Any method provided by a possible implementation.
  • 1 is a schematic diagram of time-frequency resource allocation in a non-multiplexed and multiplexed mode
  • FIG. 2 is a schematic diagram of two resource multiplexing modes in VMIMO technology
  • FIG. 3 is a structural diagram of a possible communication network system according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a decoding process according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of data transmission according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of data processing according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of data transmission according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of data processing according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the embodiment of the invention provides a data transmission method, which can be applied to a communication network system.
  • FIG. 3 is a structural diagram of a possible communication network system according to an embodiment of the present invention.
  • the communication network system includes a network device 01, a terminal 021, a terminal 022, ..., a terminal 02N, and the network device 01 provides radio resource control for the terminal 021, the terminal 022, ..., the terminal 02N through a wireless air interface protocol ( English: Radio Resource Control, RRC) Network side equipment for services such as connection and non-access stratum (NAS) mobility management and security input.
  • RRC Radio Resource Control
  • NAS non-access stratum
  • the network device 01 mentioned in this paper may be a base station in the Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA) (English: Base Transceiver Station, In BTS), it can also be a base station (English: NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or it can be in Long Term Evolution (LTE).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station, In BTS
  • BTS Global System of Mobile communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Evolved base station (English: Evolutional Node B, eNB or eNodeB), or relay station or access point, or base station in the future 5G network, transmission point (English: Transmission and Receiver Point, TRP or TP), etc. limited.
  • the terminal 021, the terminal 022, ..., the terminal 02N mentioned herein may be a wireless terminal device or a wired terminal device, and the wireless terminal device may be a device that provides voice and/or other service data connectivity to the user, and has a wireless device. Connected handheld devices, or other processing devices connected to a wireless modem.
  • the wireless terminal device can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has
  • RAN Radio Access Network
  • the computer of the mobile terminal for example, may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal device may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, or a remote terminal. Access Terminal, User Terminal, User Agent, User Device or User Equipment.
  • FIG. 4 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure, where the process specifically includes:
  • Step S401 The network device separately sends resource allocation indication information to the terminal.
  • the network device sends the resource allocation indication information to the terminal, where the terminal is only one of the N terminals of the data transmission system, and the interaction relationship between the other terminal and the network device is the same as the interaction relationship shown in FIG. The figure is omitted for the sake of brevity.
  • the resource allocation indication information is used to indicate the time-frequency resource used by the terminal to transmit the uplink data.
  • the uplink data transmitted by any terminal M times corresponds to the same source data, and M is greater than or equal to 2, that is, the same terminal M.
  • the uplink data sent by the secondary may be different, but the result of successful decoding of the uplink data sent by M times should be the same source data, that is, the useful information that the terminal wants to send to the network device.
  • the resource allocation indication information specifies a time-frequency resource corresponding to each uplink data sent by the terminal in the uplink data, and at least one terminal of the N terminals is used for M transmissions.
  • the time-frequency resources are not completely the same. This dynamic time-frequency resource allocation can increase the flexibility of the system, and increase the transmission speed of the new terminal data while repeatedly transmitting a certain terminal data, thereby improving the overall transmission speed of the system.
  • the network device allocates the number of transmissions, the first transmission time-frequency resource, and the retransmission time-frequency resources to each terminal.
  • the resource allocation indication information sent by the network device to the N terminals is the same resource allocation indication message, and the message is The time-frequency resource allocation of all terminals is included.
  • the network device can also send different resource allocation indication messages to different terminals, and the message only includes the time-frequency resource allocation of the terminal.
  • the network device may send the resource allocation indication information to the N terminals at the same time, or send the resource allocation indication information to the N terminals in a timely manner.
  • the network device can indicate an accurate time-frequency location for transmitting the uplink data, for example, when the data is repeatedly sent in the first few times, Indicates the starting position of the frequency domain or time domain resource and the required number of resource blocks; the network device can also indicate the time-frequency resource configuration sequence number for transmitting the uplink data, that is, the network device and the terminal stipulate several resource configuration modes, and the network device only needs to send The serial number of the required configuration mode is to the terminal, and the terminal can send data according to the serial number at the corresponding time-frequency resource.
  • Step S402 The terminal receives resource allocation indication information sent by the network device.
  • the terminal may receive the resource allocation indication information sent by the network device by using the downlink control channel, where the resource allocation indication information may be used to indicate the time-frequency resource used by the terminal to transmit the uplink data M times, and the uplink data transmitted by the terminal M times corresponds to the same Source data.
  • Step S403 The terminal sends uplink data to the network device according to the corresponding time-frequency resource indicated by the resource allocation indication information.
  • the terminal sends the uplink data to the network device by using the corresponding time-frequency resource indicated by the resource allocation indication information according to the received resource allocation indication information. For example, if the resource allocation indication information specifies that the time-frequency resources occupied by a certain terminal M to send uplink data to the network device are A1, A2, ..., AM, the terminal follows the resource allocation indication information in the time-frequency domain.
  • the uplink data is transmitted in A1, A2, ..., AM.
  • Step S404 The network device receives uplink data sent by the N terminals.
  • the network device receives, by using the uplink data transmission channel, uplink data that the N terminals respectively send according to the indicated resources.
  • the network device determines, according to the resource allocation indication information sent to the terminal, the time frequency of the uplink data sent by each terminal. The location of the resource, so as to accurately receive the uplink data sent by each terminal.
  • Step S405 For any terminal, the network device decodes the uplink data sent by the received terminal to obtain source data of the terminal.
  • the network device decodes the uplink data sent by the received terminal, and if the decoding is successful, the source data sent by the terminal can be obtained.
  • the data is decoded every time the uplink data of the terminal is received, until the source data of the terminal is successfully decoded, and then the uplink data corresponding to the source data sent by the terminal is received. The uplink data is no longer decoded.
  • the network device indicates, by using the resource allocation indication information, that each terminal sends the uplink data corresponding to the same source data multiple times, and improves the reliability of data transmission of each terminal by receiving the uplink data of the same source data multiple times.
  • the resource allocation indication information indicates the time-frequency resource used by the terminal to transmit the uplink data M times, so that the time-frequency resources used for transmitting the uplink data by M times of any terminal are dynamically changed, and the degree of resource reuse between the terminals becomes changed. Therefore, when the uplink data is transmitted M times by the N terminals, the system resources occupied by the multiple transmissions are reduced by the time-frequency resource multiplexing between the terminals, thereby improving the system capacity. Therefore, the technical solution provided by the embodiments of the present invention can balance the reliability of data transmission and the capacity of the data transmission system.
  • the embodiment of the present invention provides a feasible resource allocation indication information, including the number of transmissions, the first transmission time-frequency resource, and the retransmission time-frequency resources.
  • the number of transmissions refers to the number of times the terminal receiving the indication information needs to send the uplink data corresponding to the same source data. For example, if the number of transmissions is 4, the terminal needs to send 4 times of uplink data to the network device, and the 4 times of sending The uplink data corresponds to the same source data.
  • the time-frequency resources of the first transmission of the N terminals are time-frequency resources with the same time domain and different frequency domains, or time-frequency resources with different time domains and the same frequency domain, for example, terminal 1, terminal 2, and terminal.
  • the uplink data may be transmitted for the first time in the frequency domain F1, F2, and F3 at time T1, or may be transmitted by the terminal 1, the terminal 2, and the terminal 3 at times T1, T2, and T3, respectively.
  • the frequency domain of the uplink data may be the same or different.
  • the time-frequency resource occupied by the terminal repeatedly transmitting the uplink data is dynamically adjusted.
  • the network device determines, according to the first rule, resource allocation indication information of each of the N terminals; the first rule is the number of retransmissions.
  • a positive relationship with the degree of reuse of time-frequency resources means that as the number of retransmissions increases, the degree of multiplexing of time-frequency resources between terminals is gradually strengthened.
  • the degree of multiplexing of time-frequency resources refers to the time-frequency used in the system. The number of terminals that are multiplexed with resources or the number of terminals that multiplex the same time-frequency resources.
  • a specific positive relationship between the number of retransmissions in the first rule and the degree of multiplexing of the time-frequency resources may be adjusted according to actual conditions.
  • the degree of multiplexing of time-frequency resources between terminals is gradually strengthened, which can reduce the occupation of system resources by multiple transmissions.
  • the number of successfully decoded terminals will also increase. Increased, so even if the degree of multiplexing is strengthened, the interference between some terminals can be eliminated by the decoding result of the successfully decoded terminal, thereby preserving the improvement of the reliability of data transmission caused by multiple transmissions, and reducing the reliability.
  • the degree of reuse enhances the adverse impact on reliability.
  • the time-frequency resources occupied by the terminal when the uplink data is repeatedly sent are dynamically adjusted.
  • the terminals that reuse the same time-frequency resource in each retransmission are not completely the same.
  • the terminal 1 performs time-frequency resource multiplexing with the terminal 2 when transmitting the uplink data for the second time, and performs time-frequency resource multiplexing with the terminal 3 when the uplink data is repeatedly transmitted for the third time.
  • the combination of terminals can improve the decoding efficiency and thus the transmission rate of the data transmission system.
  • the terminal 1, the terminal 2, and the terminal 3 do not perform time-frequency resource multiplexing at the time of the first transmission, and the terminal 1 and the terminal 2 perform the second transmission.
  • terminal 1 and terminal 3 are multiplexed during the third transmission. Then, after any terminal of the terminal 1, the terminal 2, and the terminal 3 successfully decodes, the successful decoding result of the other terminal can be quickly obtained.
  • the decoding result of the successful decoding terminal can be utilized to the greatest extent to reduce the influence of the multiplexing on the terminal that is not successfully decoded, thereby improving the decoding efficiency and improving the transmission rate of the data transmission system.
  • the network device decodes the uplink data.
  • the embodiment of the invention provides a feasible decoding method for uplink data decoding sent by any terminal, which includes the following steps:
  • Step 1 The network device determines that the first K-1 uplink data transmitted by the terminal on the corresponding time-frequency resource according to the resource allocation indication information fails to be decoded.
  • the network device receives the uplink data transmitted by the terminal for the Kth time, and K is any one of the uplink data output by the terminal M times.
  • the network device only continues to decode the Kth uplink data of the terminal if it determines that the first K-1 uplink data of the terminal fails to be decoded. If the uplink data of the first K-1 transmission of the terminal has been successfully decoded, optionally, the network device does not process the uplink data of the Kth transmission to reduce the running pressure of the network device.
  • Step 2 The network device decodes the Kth uplink data transmitted by the terminal on the corresponding time-frequency resource according to the resource allocation indication information according to the decoding result of the previous K-1 times, and if the decoding fails, continues to receive the terminal.
  • the network device demodulates and decodes the uplink data of the Kth transmission.
  • the embodiment of the present invention provides a feasible implementation manner for decoding the uplink data of the Kth transmission according to the decoding result of the previous K-1 times. As shown in FIG. 5, it is provided by the embodiment of the present invention.
  • a schematic diagram of a process for decoding the Kth uplink data transmitted by any terminal including the following steps:
  • Step S501 The network device performs the first round decoding on the Kth uplink data according to the decoding result of the previous K-1 times.
  • Step S502 The network device fails to decode in the first round, and the terminal acquires the Kth uplink data transmitted by the multiplexing terminal when transmitting the Kth uplink data according to the time-frequency resource multiplexing manner with other multiplexing terminals. Decoding successful decoding results.
  • Step S503 The network device updates the Kth uplink data transmitted by the terminal according to the decoding result of the multiplexed terminal that is successfully decoded.
  • Step S504 The network device performs secondary decoding on the updated uplink data.
  • step S501 although the uplink data sent by the K-1 times before the terminal is not successfully decoded, the decoding result still contains part of the correct information, and the first round of the uplink data of the Kth transmission is performed.
  • the decoding result of the uplink data transmitted by the first K-1 times is used as the a priori information for decoding the uplink data of the Kth transmission, and the success rate of decoding the uplink data of the Kth transmission can be improved. .
  • step S502 if the first round of decoding fails, when the Kth transmission of the terminal is time-frequency resource multiplexing, the decoding result of the multiplexed terminal that has been successfully decoded in the Kth transmission is obtained.
  • the terminal 1 multiplexes with the terminal 2 and the terminal 3 when transmitting the uplink data for the Kth time.
  • the decoding result of the terminal 2 is obtained, and the decoding result of the terminal 2 may be If the uplink data of the Kth transmission is successfully decoded in the first round of decoding, the uplink data of the previous K-1 transmission may be successfully decoded.
  • the network device receives the Kth uplink data of multiple multiplexing terminals at the same time-frequency resource location, and there is a certain interference between the uplink data.
  • the data of the terminal thereby realizing the update of the received Kth uplink data.
  • the terminal 1 multiplexes with the terminal 2 and the terminal 3 when transmitting the uplink data in the Kth time, and the uplink data received by the network device at the time-frequency location is the uplink data sent by the terminal 1, the terminal 2, and the terminal 3 respectively.
  • the network device reconstructs the uplink data sent by the terminal 2 according to the decoding result of the terminal 2, and then receives the uplink received from the network device according to the reconstructed uplink data of the terminal 2.
  • the data of the terminal 2 is removed from the data, so that the received uplink data only includes the data of the terminal 1 and the terminal 3 that have not been successfully decoded.
  • the network device performs secondary decoding on the updated uplink data, and only the uplink data of the terminal that has not been successfully decoded remains in the uplink data at this time, such as terminal 1 in step S503. Terminal 3 data.
  • the network device performs secondary decoding on the updated uplink data according to the decoding result of the first round decoding of the uplink data of the terminal.
  • FIG. 6 is a schematic diagram of data transmission according to an embodiment of the present invention.
  • the network device sends resource allocation indication information to the terminal 1, the terminal 2, the terminal 3, and the terminal 4, respectively, and indicates the terminal 1, the terminal 2, and the terminal. 3 and the terminal 4 sends information according to the time-frequency resource shown in FIG. 6, and the specific implementation process may be as follows:
  • the network device respectively sends resource allocation indication information - indication 1, indication 2, indication 3 and indication 4 to terminal 1, terminal 2, terminal 3 and terminal 4 through the downlink control channel, indication 1, indication 2, indication 3 and
  • the indication 4 includes the following contents: (1) a frequency domain resource location occupied by the terminal transmitting uplink data at time T1, where T1 may be obtained by accumulating a fixed delay on the basis of T0, and the delay is determined by a specific communication standard.
  • the number of repetitions of the data transmitted by the terminal for example, a value of 1 indicates that data is transmitted only at T1, a value of 2 indicates that data of T1 is repeatedly transmitted at T2, and so on, and the value in this embodiment is 3; (3) The frequency domain location indication of the terminal transmitting the uplink data.
  • the terminal transmits the first uplink data at the designated frequency domain resource location according to the resource allocation indication information at time T0.
  • the terminal repeatedly transmits uplink data in the specified frequency domain resource location according to the resource allocation indication information at time T0.
  • the form of the signal actually transmitted by the terminal at time T2 that is, the uplink data
  • the uplink data may be different from the uplink data sent at time T1, but the useful data contained in the two must be consistent, that is, both can be decoded into the same source data.
  • the same data in LTE can be added with different redundancy versions to form different uplink data, but the original source data is the same.
  • terminal 1 and terminal 2 occupy the same frequency domain resource
  • terminal 3 and terminal 4 occupy the same frequency domain resource.
  • the terminal repeatedly transmits uplink data in the specified frequency domain resource location according to the resource allocation indication information at time T0, and the degree of multiplexing is gradually increased as the number of repetitions increases, as shown in FIG. 6, terminal 1, terminal 2, and terminal 3 and terminal 4 share the same frequency domain resources.
  • a schematic diagram of data processing according to an embodiment of the present invention includes the following steps:
  • Step S701 The network device acquires the uplink data frequency domain resource location sent by the terminal 1, the terminal 2, the terminal 3, and the terminal 4 at the T1 time based on the resource allocation indication information of the T0 time transmission, and parses the terminal 1 after receiving the uplink data.
  • Step S702 The network device performs processing such as demodulation, decoding, and the like based on the acquired uplink data of each terminal.
  • Step S703 For the successfully decoded terminal, save the decoding result.
  • Step S704 The network device acquires the uplink data frequency domain resource position sent by the terminal 1, the terminal 2, the terminal 3, and the terminal 4 at the T2 time based on the resource allocation indication information of the T0 time transmission, and parses the terminal 1 after receiving the uplink data.
  • Step S705 The network device performs the first round of demodulation, decoding, and the like on the terminal that fails to decode at the T1 time, based on the acquired uplink data of each terminal, and the decoding process needs to combine the decoding result of the terminal at the time T1 to The decoding result at time T1 is used as the a priori information decoded at time T2 to achieve the purpose of improving the correctness of decoding. If the first round of decoding is successful, the decoded result is saved.
  • Step S706 For the terminal that is successfully decoded in the first round decoding and at the time T1, reconstruct the transmission signal at the time T2 based on the channel information and the decoding result of the terminal at the time T2, and in the uplink data received at the time T2. Eliminating the reconstructed signals of all successfully decoding terminals to update the uplink data received at time T2; for the terminal that fails to decode in step S605, performing secondary demodulation, decoding, etc. based on the updated uplink data, And combining the decoding result of the terminal in step S604 to obtain a final combined decoding result.
  • Step S707 The decoding result of the successfully decoded terminal is saved.
  • the T3 time processing is similar to the T2 time, with the difference that the terminals that have been successfully decoded have increased.
  • Step S708 The network device acquires the uplink data frequency domain resource location sent by the terminal 1, the terminal 2, the terminal 3, and the terminal 4 at the T3 time based on the resource allocation indication information of the T0 time transmission, and parses the terminal after receiving the uplink data. 1. Data corresponding to terminal 2, terminal 3 and terminal 4;
  • Step S709 The network device performs first-stage demodulation, decoding, and the like on the terminal that fails to decode at time T1 and T2 based on the obtained uplink data of each terminal, and the processing needs to merge the terminal at the time of T1 and T2.
  • the decoding result at times T1 and T2 is used as the a priori information decoded at time T3, so as to improve the correctness of decoding. If the first round of decoding is successful, the decoding result is saved;
  • Step S710 For the terminal that is successfully decoded in the first round decoding and at the time T1 and T2, reconstruct the transmission signal at the time T3 based on the channel information and the decoding result of the terminal at the time T3, and receive the uplink at the time T3.
  • the reconstructed signal of all successfully decoding terminals is eliminated in the data to update the uplink data received at time T3; for the terminal that fails to decode in step S709, based on the updated uplink data, secondary demodulation, decoding, etc. are performed. Processing, and merging the decoding result of the terminal in step S709, to obtain a final combined decoding result.
  • Step S711 The decoding result of the successfully decoded terminal is saved.
  • the terminal ensures the correct decoding of the uplink data by repeatedly transmitting the uplink data corresponding to the same source data, where the best decoding performance is achieved by frequency division multiplexing when transmitting the data for the first time, and the subsequent repetition is performed.
  • Sending uplink data ensures that the error rate reaches an extremely low level by multiple merge decoding after the first decoding error.
  • the subsequent repeated transmission of data has a multiplexing behavior
  • the uplink data of the successfully decoded terminal is successfully reconstructed to eliminate the interference of the successfully decoded terminal to the unsuccessfully decoded terminal, and the decoding accuracy rate of the multiplexed partial data is improved.
  • the multiplexing method reduces the time-frequency resource overhead, so that the data transmission system can accommodate more terminal services and improve the data transmission system under the constraints of limited time-frequency resources. Capacity.
  • FIG. 8 is a schematic diagram of data transmission according to an embodiment of the present invention.
  • the network device sends resource allocation indication information to the terminal 1, the terminal 2, the terminal 3, and the terminal 4, respectively, and indicates the terminal 1, the terminal 2, and the terminal. 3 and the terminal 4 sends information according to the time-frequency resource shown in FIG. 8.
  • the specific implementation process may be as follows:
  • the network device sends indication information indication 1, indication 2, indication 3, and indication 4 to terminal 1, terminal 2, terminal 3, and terminal 4 through the downlink control channel, where T01, T02, T03, The T04 may be the same time or a different time.
  • the indication information includes the following content: (1) a frequency domain resource location occupied by each terminal in transmitting uplink data for the first time, where each terminal first uplinks data transmission time T1, T2 T3 and T4 are delayed based on T01, T02, T03, and T04, and the delay amount may be a fixed value or indicated by indication information, and T1 to T4 are different.
  • the frequency domain resource positions occupied by the terminal for transmitting the uplink data for the first time may be the same or different.
  • the form of the fixed frequency domain resource is adopted.
  • (2) The number of repetitions of the data transmitted by the terminal, which is 3 in the embodiment; (3) the time domain location indication of the terminal transmitting duplicate data, as shown in FIG. 8 is the time domain locations allocated by the terminal 1 as T1, T5, and T7.
  • the frequency domain location indication of the terminal transmitting the repeated data using but not limited to any of the following methods: a, without specific indication information, the terminal repeatedly transmits the uplink data at the frequency domain resource of the first data transmission; b, the network device An accurate frequency domain resource location indicating repeated data; c, a frequency domain resource location configuration sequence number indicating the repeated data of the network device, and the like.
  • terminal 1 transmits uplink data for the first time at the designated frequency domain resource location.
  • terminal 2 transmits uplink data for the first time at the designated frequency domain resource location.
  • terminal 3 transmits uplink data for the first time at the designated frequency domain resource location.
  • terminal 4 transmits uplink data for the first time at the designated frequency domain resource location.
  • terminal 1 and terminal 2 repeatedly transmit uplink data and perform resource multiplexing.
  • terminal 3 and terminal 4 repeatedly transmit uplink data and perform resource multiplexing.
  • terminal 1, terminal 2, terminal 3, and terminal 4 simultaneously transmit uplink data and perform resource multiplexing.
  • a schematic diagram of data processing according to an embodiment of the present invention includes the following steps:
  • Step S901 The network device learns, according to the resource allocation indication information sent to each terminal, the frequency domain location where the terminal sends the uplink data for the first time from T1 to T4, and receives and parses each uplink data.
  • Step S902 Demodulate and decode each uplink data sent for the first time.
  • Step S903 The decoding result of the successfully decoded terminal is saved.
  • Step S904 The network device learns the uplink data frequency domain resource position sent by each of the T5 and T6 times based on the resource allocation indication information, and parses the corresponding uplink data after receiving the uplink data.
  • Step S905 The network device performs the first round of demodulation, decoding, and the like on the terminal that fails to decode at the time T1 to T4, based on the acquired uplink data of each terminal, and the processing needs to merge the terminal at the time of T1 to T4.
  • the result of the code is used to improve the correctness of the decoding. If the first round of decoding is successful, the decoded result is saved.
  • Step S906 For the terminal successfully decoded in step S905 and at times T1 to T4, reconstruct the transmission signal at the time of T5/T6 based on the channel information of the terminal at time T5/T6, and receive the uplink at time T5/T6. The reconstructed signal of all successfully decoding terminals is eliminated in the data, and the updated uplink data is obtained. For the terminal that fails to decode in step S905, based on the obtained updated uplink data, performs secondary demodulation, decoding, and the like, and combines the decoding result of the terminal in step S905 to obtain a final merged decoding. result.
  • Step S907 The decoding result of the successfully decoded terminal is saved.
  • the T7 time processing is similar to the T5/T6 time, the difference being that the number of terminals that have been successfully decoded has increased.
  • Step S908 The network device learns the frequency data resource location of each uplink data sent at time T7 based on the information about the resource allocation indication information, and parses the corresponding uplink data after receiving the uplink data.
  • Step S909 The network device performs first-stage demodulation, decoding, and the like on the terminal that fails to decode at the time T1 to T6, based on the obtained uplink data of each terminal, and the processing needs to merge the terminal at the time of T1 to T6.
  • the result of the code is used to improve the correctness of the decoding. If the first round of decoding is successful, the decoded result is saved.
  • Step S910 For the terminal successfully decoded in step S909 and at times T1 to T6, reconstruct the transmission signal at time T7 based on the channel information of the terminal at time T7, and eliminate all successful translations in the uplink data received at time T7. The reconstructed signal of the code terminal obtains the updated uplink data. For the terminal that fails to decode in step S909, based on the obtained updated uplink data, performing secondary demodulation, decoding, and the like, and combining the decoding result of the terminal in step S909 to obtain a final merged decoding. result.
  • Step S911 The decoding result of the successfully decoded terminal is saved.
  • the technical effect of the embodiment is similar to that of the first embodiment.
  • the embodiment is more applicable to the limited bandwidth of the data transmission system.
  • the number of reusable terminals in the first embodiment is reduced.
  • the technical solution of the embodiment can implement multiplexing of more terminals by non-continuous repeated transmission in the time domain dimension, thereby improving system capacity.
  • the embodiment of the present invention provides a data transmission method, including: the network device separately sends resource allocation indication information to the N terminals, where the resource allocation indication information is used to indicate the time-frequency resource used by the terminal to transmit the uplink data M times.
  • the network device receives the uplink data sent by the N terminals.
  • the network device decodes the uplink data sent by the received terminal to obtain the source data of the terminal.
  • the network device indicates, by using the resource allocation indication information, that each terminal sends the uplink data corresponding to the same source data multiple times, and improves each uplink by receiving the uplink data of the same source data multiple times. The reliability of the terminal data transmission.
  • the resource allocation indication information indicates the time-frequency resource used by the terminal to transmit the uplink data M times, so that the time-frequency resources used for transmitting the uplink data by M times of any terminal are dynamically changed, and the degree of resource reuse between the terminals becomes changed. Therefore, when the uplink data is transmitted M times by the N terminals, the system resources occupied by the multiple transmissions are reduced by the time-frequency resource multiplexing between the terminals, thereby improving the system capacity. Therefore, the technical solution provided by the embodiments of the present invention can balance the reliability of data transmission and the capacity of the data transmission system.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device includes: a transceiver module 1001 and a processing module 1002, where:
  • the transceiver module 1001 is configured to send resource allocation indication information to the N terminals, where the resource allocation indication information is used to indicate the time-frequency resource used by the terminal to transmit the uplink data M times, where the uplink data transmitted by any terminal M times corresponds to The same source data; at least two terminals of the N terminals have a time-frequency resource multiplexing relationship in at least one transmission process; the frequency domain resources used by at least one terminal in M transmissions are not completely the same; N is greater than or equal to 2 ; M is greater than or equal to 2, and receives uplink data sent by N terminals;
  • the processing module 1002 is configured to decode, for any terminal, uplink data sent by the received terminal, to obtain source data of the terminal.
  • transceiver module 1001 and the processing module 1002 has been specifically described in the foregoing embodiments, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 10, the terminal includes: a transceiver module 1101 and a processing module 1102, where:
  • the processing module 1102 is configured to control the transceiver module 1101 to receive the resource allocation indication information sent by the network device, where the resource allocation indication information is used to indicate the time-frequency resource used by the terminal to transmit the uplink data M times;
  • the processing module 1102 is further configured to control, according to the resource allocation indication information sent by the network device, the transceiver module 1101 to send uplink data to the network device.
  • transceiver module 1101 and the processing module 1102 have been specifically described in the foregoing embodiments, and details are not described herein again.
  • the network device 1200 can include a transceiver 1201, a processor 1202, and a memory 1203, wherein the memory 1203 stores a computer program, the transceiver 1201 is configured to send and receive data, and the processor 1202 is configured to invoke a computer program stored in the execution memory 1203 for transmission and reception.
  • the processor 1201 transmits and receives data to perform any of the above embodiments.
  • the terminal 1300 can include a transceiver 1301, a processor 1302, and a memory 1303, wherein the memory 1303 stores a computer program, the transceiver 1301 is configured to send and receive data, and the processor 1302 is configured to invoke a computer program stored in the execution memory 1303, through the transceiver.
  • the 1301 transmits and receives data to perform any of the above embodiments.
  • embodiments of the invention may be provided as a method, system, or computer program product.
  • embodiments of the invention may be in the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • embodiments of the invention may take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • Embodiments of the invention are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法、网络设备及终端,包括:网络设备分别向N个终端发送资源分配指示信息,指示终端M次传输上行数据所使用的时频资源,其中,任一终端M次传输的上行数据对应于同一信源数据;N个终端中至少存在两个终端在至少一次传输过程中存在时频资源复用关系;至少一个终端在M次传输时所使用的频域资源不完全相同;N大于等于2;M大于等于2;网络设备接收N个终端发送的上行数据;针对任一终端,网络设备对接收的上行数据译码,得到信源数据。网络设备多次接收而提升数据传输的可靠性。同时,终端间资源复用降低多次传输所占资源,提升系统容量。因此,能够兼顾数据传输的可靠性和数据传输系统的容量。

Description

一种数据传输方法、网络设备及终端 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输方法、网络设备及终端。
背景技术
无线通信中,由于频谱资源是有限的,即一种制式的通信网络只能在有限的频段提供通信服务,因此该网络内的终端数量、业务容量是有限的。例如在LTE网络中,给定中心频点与带宽后,基站只能在该频段为终端提供无线通信服务。如果存在多个终端同时需求无线通信服务,那么每个终端只能获取部分时频资源传输数据,数据传输系统的容量存在上限。
为了能够提升整网的容量,一种有效方式是多终端时频资源复用,即在相同时频资源上传输多个终端的上下行信号。图1为现有的非复用与复用模式下时频资源分配示意图,如图1所示,非复用模式下,终端在T0和T0+1时刻分别共享可用的时频资源,且彼此间不存在资源冲突。复用模式下,T0时刻终端1和终端2已经占用了完整的时频资源,但终端3也占用了该时频资源。采用时频资源复用技术后,相同时间内可以传输更多的数据量,从而达到提升数据传输系统容量的目的。
然而,采用时频资源复用后,虽然一定程度上能够提升数据传输系统的容量,但由于终端间资源冲突,导致终端间产生额外的干扰,会使得数据传输的可靠性降低。以长期演进(Long Term Evolution,LTE)中采用的一种虚拟多输入多输出(Virtual Multiple-Input Multiple-Output,VMIMO)技术为例,该技术能够实现相同物理小区内的终端进行主动时频资源复用,并通过导频序列的正交/伪正交处理降低同频干扰。图2为现有VMIMO技术中两种资源复用模式示意图,如图2所示,现有的VMIMO技术中存在着对齐VMIMO和非对齐VMIMO两种模式。在对齐VMIMO模式中,终端1与终端2在相同子帧分配完全一样的资源块(Resource Block,RB)资源,终端1与终端2通过调整导频序列的循环移位、正交码或者物理小区标识(Physical Cell Identifier,PCI)来降低导频间干扰。在非对齐VMIMO模式中,终端1与终端2在相同子帧中被分配部分重叠的RB资源,终端1与终端2通过调整导频序列的正交码或者PCI来降低导频间干扰。多终端采用VMIMO复用后,虽然通过一定的手段可以降低导频间干扰,以保障数据传输的可靠性,但是由于非导频部分数据仍存在干扰,使得复用终端各自的数据传输的可靠性大打折扣,造成传输效率降低。
因此,现有技术中存在着无法兼顾数据传输可靠性和数据传输系统容量的问题。
发明内容
本发明实施例提供一种数据传输方法、网络设备及终端,用以实现兼顾数据传输的可靠性和数据传输系统的容量。
第一方面,提供一种数据传输方法,包括:
网络设备分别向N个终端发送资源分配指示信息,所述资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源,其中,任一终端M次传输的上行数据对应于同一 信源数据,所述N个终端中至少存在两个终端在至少一次传输过程中存在时频资源复用关系,至少一个终端在M次传输时所使用的频域资源不完全相同,N大于等于2,M大于等于2,所述网络设备接收所述N个终端根据所述资源分配指示信息在对应的时频资源上发送的上行数据,针对任一终端,所述网络设备对接收的所述终端发送的上行数据译码,得到所述终端的信源数据。
网络设备通过资源分配指示信息指示每个终端多次发送同一信源数据对应的上行数据,通过多次接收同一信源数据的上行数据而提升每一个终端数据传输的可靠性。同时,资源分配指示信息指示终端M次传输上行数据所使用的时频资源,使得任一终端的M次传输上行数据所使用的时频资源为动态变化的,终端间资源复用程度的改变成为可能,从而在N个终端M次传输上行数据时,通过终端间时频资源复用降低多次传输所占用的系统资源,提升系统容量。因此,本发明实施例所提供的技术方案能够兼顾数据传输的可靠性和数据传输系统的容量。
结合第一方面,在第一方面的第一种可能的实现方式中,所述资源分配指示信息包括传输次数、首次传输时频资源、各次重传时频资源。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,网络设备分别向N个终端发送资源分配指示信息,包括:所述网络设备向所述N个终端发送各自的资源分配指示信息,其中,所述N个终端的首次传输时频资源为时域相同且频域不同的时频资源,或,时域不同且频域相同的时频资源。
在各终端首次传输上行数据时,尽量避免时频资源的复用,以避免复用为各终端带来的额外干扰,使得各终端首次发送的上行数据具备最佳的译码性能,可靠性最高,通过首次传输的上行数据便可对多数终端实现成功译码。
结合第一方面,在第一方面的第三种可能的实现方式中,网络设备分别向N个终端发送资源分配指示信息之前,还包括:所述网络设备根据第一规则,确定所述N个终端各自的资源分配指示信息,所述第一规则为重传次数与时频资源复用程度的正向关系。
随着重传次数的递增,终端间时频资源复用程度逐渐加强,可以减少多次传输对系统资源的占用,而且,随着上行数据传输次数的增多,被成功译码的终端的数量也会增多,因此即使复用程度加强,也可以通过已成功译码的终端的译码结果消除部分终端之间的干扰,从而既保留了多次发送带来的数据传输可靠性的提升,又降低了复用程度加强对可靠性带来的不利影响。
结合第一方面,在第一方面的第四种可能的实现方式中,网络设备分别向N个终端发送资源分配指示信息之前,还包括:所述网络设备根据第一规则,确定所述N个终端各自的资源分配指示信息,所述第一规则包括各次重传中复用相同时频资源的终端不完全相同。
各次重传中复用相同时频资源的终端不完全相同,使得对上行数据译码时,可以最大程度上利用成功译码终端的译码结果降低复用对未成功译码的终端的影响,从而提高译码效率,提高数据传输系统的传输速率。
结合第一方面或第一方面的第一种可能的实现方式至第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述针对任一终端,所述网络设备对接收的所述终端发送的上行数据译码,得到所述终端的信源数据,包括:所述网络设备确定对所述终端根据所述资源分配指示信息在对应的时频资源上传输的前K-1次上行数据均译码失败,所述网 络设备根据所述前K-1次的译码结果,对所述终端根据所述资源分配指示信息在对应的时频资源上传输的第K次上行数据进行译码,若译码失败,则继续接收所述终端在对应的时频资源上传输的第K+1次上行数据,直至译码成功或M次传输结束为止。
针对任一终端发送的上行数据,网络设备只对还未译码成功的终端的上行数据进行译码,对已经译码成功的终端的上行数据则不进行译码,从而减少了网络设备的译码压力,提高了网络设备的译码速度。
结合第一方面或第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述网络设备根据所述前K-1次的译码结果,对所述终端根据所述资源分配指示信息在对应的时频资源上传输的第K次上行数据进行译码,包括:所述网络设备根据所述前K-1次的译码结果,对所述第K次传输的上行数据进行首轮译码,所述网络设备在所述首轮译码失败、且所述终端基于与其他复用终端进行时频资源复用方式传输前K次上行数据时,获取对所述复用终端传输的第K次上行数据译码成功的译码结果,所述网络设备根据所述译码成功的复用终端的译码结果,对所述终端传输的第K次上行数据进行更新,所述网络设备对更新后的上行数据进行二次译码。
根据已译码成功的复用终端的译码结果更新上行数据,可以去除上行数据中已译码成功的复用终端的相关数据,使得更新后的上行数据中仅剩下未译码成功的终端数据,从而去除了已译码成功的复用终端对未译码成功的终端的影响,使得对未译码成功的终端的上行数据译码成功率得到提升。
结合第一方面或第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述网络设备对所述更新后上行数据进行二次译码,包括:所述网络设备根据对所述终端的上行数据的首轮译码的译码结果,对所述更新后上行数据进行二次译码。
首轮译码虽然未成功译码,但译码结果中仍包含部分正确信息,在对更新后的上行数据进行二次译码时,将首轮译码的译码结果作为二次译码的先验信息,能够提高二次译码的成功率。
第二方面,提供一种数据传输方法,包括:
终端接收网络设备发送的资源分配指示信息,所述资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源;所述终端M次传输的上行数据对应于同一信源数据;所述终端根据所述网络设备发送的资源分配指示信息向所述网络设备发送上行数据。
终端多次发送上行数据,使得数据传输可靠性提高。终端根据资源分配指示信息向网络设备发送上行数据,资源分配指示信息指示终端M次传输上行数据所使用的时频资源,使得终端的M次传输上行数据所使用的时频资源为动态变化的,终端间资源复用程度的改变成为可能,终端M次传输上行数据时能够与其它终端实现复用,通过终端间时频资源复用降低多次传输所占用的系统资源,提升系统容量。因此,本发明实施例所提供的技术方案能够兼顾数据传输的可靠性和数据传输系统的容量。
结合第二方面,在第二方面的第一种可能的实现方式中,所述资源分配指示信息包括传输次数、首次传输时频资源、各次重传时频资源。
第三方面,提供一种网络设备,包括:收发模块和处理模块;
所述收发模块,用于分别向N个终端发送资源分配指示信息,所述资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源,其中,任一终端M次传输的上行数据对应于同一信源数据,所述N个终端中至少存在两个终端在至少一次传输过程中存在时频 资源复用关系,至少一个终端在M次传输时所使用的频域资源不完全相同,N大于等于2,M大于等于2,以及接收所述N个终端发送的上行数据,所述处理模块,用于针对任一终端,对接收的所述终端发送的上行数据译码,得到所述终端的信源数据。
结合第三方面,在第三方面的第一种可能的实现方式中,所述资源分配指示信息包括传输次数、首次传输时频资源、各次重传时频资源。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述收发模块在分别向N个终端发送资源分配指示信息时,具体用于:向所述N个终端发送各自的资源分配指示信息,其中,所述N个终端的首次传输的时频资源为时域相同且频域不同的时频资源,或,时域不同且频域相同的时频资源。
结合第三方面,在第三方面的第三种可能的实现方式中,所述处理模块在控制所述收发模块分别向N个终端发送资源分配指示信息之前,还用于:根据第一规则,确定所述N个终端各自的资源分配指示信息,所述第一规则为重传次数与时频资源复用程度的正向关系。
结合第三方面,在第三方面的第四种可能的实现方式中,所述处理模块在控制所述收发模块分别向N个终端发送资源分配指示信息之前,还用于:根据第一规则,确定所述N个终端各自的资源分配指示信息,所述第一规则包括各次重传中复用相同时频资源的终端不完全相同。
结合第三方面或第三方面的第一种可能的实现方式至第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述处理模块在针对任一终端,对接收的所述终端发送的上行数据译码,得到所述终端的信源数据时,具体用于:确定对所述终端根据所述资源分配指示信息在对应的时频资源上传输的前K-1次上行数据均译码失败,根据所述前K-1次的译码结果,对所述终端根据所述资源分配指示信息在对应的时频资源上传输的第K次上行数据进行译码,若译码失败,则控制所述收发模块继续接收所述终端在对应的时频资源上传输的第K+1次上行数据,直至译码成功或M次传输结束为止。
结合第三方面或第三方面的第五种可能的实现方式,在第三方面的第六种可能的实现方式中,所述处理模块在根据所述前K-1次的译码结果,对所述第K次上行数据进行译码时,具体用于:根据所述前K-1次的译码结果,对所述第K次上行数据进行首轮译码,在所述首轮译码失败、且所述终端基于与其他复用终端进行时频资源复用方式传输第K次上行数据时,获取对所述复用终端传输的前K次上行数据译码成功的译码结果,根据所述译码成功的复用终端的译码结果,对所述终端传输的第K次上行数据进行更新,对更新后的上行数据进行二次译码。
结合第三方面或第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,所述处理模块在对所述更新后上行数据进行二次译码时,具体用于:根据所述终端的首轮译码的译码结果,对所述更新后上行数据进行二次译码。
第四方面,提供一种终端,包括:收发模块和处理模块;
所述处理模块,用于控制所述收发模块接收网络设备发送的资源分配指示信息,所述资源分配指示信息用于指示所述终端M次传输上行数据所使用的时频资源;所述终端M次传输的上行数据对应于同一信源数据;
所述处理模块,还用于根据所述网络设备发送的资源分配指示信息控制所述收发模块在对应的时频资源上向所述网络设备发送上行数据。
结合第四方面,在第四方面的第一种可能的实现方式中,所述资源分配指示信息包括传输次数、首次传输时频资源、各次重传时频资源。
第五方面,提供一种计算机存储介质,用于存储计算机指令,所述计算机指令在被处理模块或处理器或处理单元等有处理能力的器件调用执行时,可以执行上述第一方面以及第一方面可能的实现方式提供的任意方法。
第六方面,提供一种计算机存储介质,用于存储计算机指令,所述计算机指令在被处理模块或处理器或处理单元等有处理能力的器件调用执行时,可以执行第二方面以及第二方面可能的实现方式提供的任意方法。
附图说明
图1为一种非复用与复用模式下时频资源分配示意图;
图2为一种VMIMO技术中两种资源复用模式示意图;
图3为本发明实施例提供的一种可能的通信网络系统结构图;
图4为本发明实施例提供的一种数据传输方法的流程示意图;
图5为本发明实施例提供的一种译码流程示意图;
图6为本发明实施例提供的一种数据传输示意图;
图7为本发明实施例提供的一种数据处理示意图;
图8为本发明实施例提供的一种数据传输示意图;
图9为本发明实施例提供的一种数据处理示意图;
图10为本发明实施例提供的一种网络设备的结构示意图;
图11为本发明实施例提供的一种终端的结构示意图;
图12为本发明实施例提供的一种网络设备的结构示意图;
图13为本发明实施例提供的一种终端的结构示意图。
具体实施方式
本发明实施例提供一种数据传输方法,该方法可以应用于通信网络系统中。请参考图3所示,为本发明实施例提供的一种可能的通信网络系统结构图。如图3所示,该通信网络系统包括网络设备01、终端021、终端022、…、终端02N,网络设备01为通过无线空口协议为终端021、终端022、…、终端02N提供无线资源控制(英文:Radio Resource Control,RRC)连接、非接入层(英文:non-access stratum,NAS)移动性管理和安全性输入等服务的网络侧设备。
本文中提到的网络设备01,可以是全球移动通讯(英文:Global System of Mobile communication,GSM)或码分多址(英文:Code Division Multiple Access,CDMA)中的基站(英文:Base Transceiver Station,BTS)中,也可以是宽带码分多址(英文:Wideband Code Division Multiple Access,WCDMA)中的基站(英文:NodeB,NB),还可以是长期演进(英文:Long Term Evolution,LTE)中的演进型基站(英文:Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站,传输点(英文:Transmission and Receiver Point,TRP或者TP)等,本文中并不限定。
本文中提到的终端021、终端022、…、终端02N,可以是无线终端设备也可以是有线终端设备,无线终端设备可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(英文:Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(英文:Personal Communication Service,PCS)电话、无绳电话、会话发起协议(英文:Session Initiation Protocol,SIP)话机、无线本地环路(英文:Wireless Local Loop,WLL)站、个人数字助理(英文:Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment)。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本文中的一些英文简称为以LTE系统为例对本发明实施例进行的描述,其可能随着网络的演进发生变化,具体演进可以参考相应标准中的描述。
接下来请参考如图4所示,为本发明实施例提供的一种数据传输方法的流程示意图,该流程具体包括:
步骤S401:网络设备分别向终端发送资源分配指示信息。
在网络设备向终端发送资源分配指示信息,其中,终端仅为数据传输系统的N个终端中的任一个终端,其它终端与网络设备之间的交互关系与图4中所示的交互关系相同,图中为了简洁表示而省略。资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源,其中,任一终端M次传输的上行数据需对应于同一信源数据,M大于等于2,即,同一个终端M次发送的上行数据可能有所不同,但这M次发送的上行数据成功译码的结果都应为同一个信源数据,也就是该终端欲向网络设备发送的有用信息。在系统的N个终端中,至少存在两个终端在至少一次传输过程中存在时频资源复用关系,N大于等于2,采用时频资源复用能够减少多次发送上行数据对数据传输系统的时频资源的占用,提升系统的容量。此外,对于任一个终端,资源分配指示信息中规定了该终端M次发送上行数据中每一次发送上行数据所对应的时频资源,在N个终端中,至少一个终端在M次传输时所使用的时频资源不完全相同,这种动态式的时频资源分配能够增加系统的灵活度,而且,在重复发送某一终端数据的同时增加新的终端数据的传输,可以提升系统整体的传输速度。网络设备为每一个终端分配了传输次数、首次传输时频资源、各次重传时频资源可选的,网络设备发送给N个终端的资源分配指示信息为同一个资源分配指示消息,该消息中包含了所有终端的时频资源分配情况,当然,网络设备也可以向不同的终端发送不同的资源分配指示消息,该消息中只包含了该终端的时频资源分配情况。可选的,网络设备可以同时向N个终端发送资源分配指示信息,也可以分时向N个终端发送资源分配指示信息。可选的,网络设备可以指示传输上行数据的准确时频位置,例如在第几次重复发送数据时,指 示其频域或时域资源起始位置以及所需资源块数;网络设备也可以指示传输上行数据的时频资源配置序号,即网络设备与终端约定几种资源配置模式,网络设备只需要发送所需配置模式的序号至终端,终端根据该序号在对应的时频资源处发送数据即可。
步骤S402:终端接收网络设备发送的资源分配指示信息。
终端可以通过下行控制信道接收网络设备发送的资源分配指示信息,该资源分配指示信息可以用于指示该终端M次传输上行数据所使用的时频资源,并且终端M次传输的上行数据对应于同一信源数据。
步骤S403:终端基于资源分配指示信息指示的对应时频资源向网络设备发送上行数据。
终端根据收到的资源分配指示信息,利用资源分配指示信息指示的对应时频资源向网络设备发送上行数据。例如,若资源分配指示信息中规定了某一终端M次向网络设备发送上行数据所占用的时频资源为A1、A2、……、AM,则该终端便按照资源分配指示信息在时频域A1、A2、……、AM中发送上行数据。
步骤S404:网络设备接收N个终端发送的上行数据。
网络设备通过上行数据传输信道接收N个终端分别按照各自被指示的资源发送的上行数据,可选的,网络设备根据向终端发送的资源分配指示信息确定各个终端发送来的上行数据所在的时频资源位置,从而准确接收各终端发送来的上行数据。
步骤S405:针对任一终端,网络设备对接收的终端发送的上行数据译码,得到终端的信源数据。
网络设备对接收的终端发送的上行数据译码,若译码成功,便可得到终端发送的信源数据。可选的,每接收到一次该终端的上行数据就对该数据进行译码直至成功译码获得该终端的信源数据,之后,即使仍接收到该终端发送的该信源数据对应的上行数据,也不再对上行数据进行译码。
网络设备通过资源分配指示信息指示每个终端多次发送同一信源数据对应的上行数据,通过多次接收同一信源数据的上行数据而提升每一个终端数据传输的可靠性。同时,资源分配指示信息指示终端M次传输上行数据所使用的时频资源,使得任一终端的M次传输上行数据所使用的时频资源为动态变化的,终端间资源复用程度的改变成为可能,从而在N个终端M次传输上行数据时,通过终端间时频资源复用降低多次传输所占用的系统资源,提升系统容量。因此,本发明实施例所提供的技术方案能够兼顾数据传输的可靠性和数据传输系统的容量。
更进一步的,本发明实施例提供一种可行的资源分配指示信息,包括传输次数、首次传输时频资源、各次重传时频资源。传输次数指的是接受该指示信息的终端需要发送同一信源数据对应的上行数据的次数,例如,若传输次数为4,则终端需向网络设备发送4次上行数据,而且这4次发送的上行数据对应着同一个信源数据。可选的,N个终端的首次传输的时频资源为时域相同且频域不同的时频资源,或,时域不同且频域相同的时频资源,例如,终端1、终端2和终端3可在T1时刻分别在频域F1、F2和F3上首次传输上行数据,也可以,在T1、T2和T3时刻分别由终端1、终端2和终端3传输上行数据,此时三个终端传输上行数据的频域可以相同也可以不相同。采用上述方式,在各终端首次传输上行数据时,尽量避免时频资源的复用,以使各终端首次发送的上行数据具备最佳的译码性能,可靠性最高。当然,在不影响传输可靠性的前提下对首次传输进行适当的时频资源复用以 减少资源占用的情况,也应包含于本发明实施例中。
在本发明实施例中,动态调整终端重复发送上行数据时占用的时频资源,可选的,网络设备根据第一规则,确定N个终端各自的资源分配指示信息;第一规则为重传次数与时频资源复用程度的正向关系。重传次数与时频资源复用程度的正向关系,指的是随着重传次数的递增,终端间时频资源复用程度逐渐加强,时频资源复用程度指的是系统中采用时频资源复用的终端的数量或复用同一时频资源的终端的数量。例如,两个终端首次传输上行数据时,资源不复用,第二次重复传输上行数据时,两个终端复用同一时频资源,又或者,三个终端首次传输上行数据时,资源不复用,第二次重复传输上行数据时,其中两个终端复用同一时频资源,第三次重复传输上行数据时,三个终端复用同一时频资源。当然,以上仅为本发明实施例提供的几个可行的实现方式,具体应用过程中,可依据实际情况调整第一规则中重传次数与时频资源复用程度之间具体的正向关系。随着重传次数的递增,终端间时频资源复用程度逐渐加强,可以减少多次传输对系统资源的占用,而且,随着上行数据传输次数的增多,被成功译码的终端的数量也会增多,因此即使复用程度加强,也可以通过已成功译码的终端的译码结果消除部分终端之间的干扰,从而既保留了多次发送带来的数据传输可靠性的提升,又降低了复用程度加强对可靠性带来的不利影响。
在本发明实施例中,动态调整终端重复发送上行数据时占用的时频资源,可选的,各次重传中复用相同时频资源的终端不完全相同。例如,终端1在第二次重复发送上行数据时与终端2进行了时频资源复用,在第三次重复发送上行数据时与终端3进行了时频资源复用,这种动态调整复用终端组合的方式可以提高译码效率,进而提高数据传输系统的传输速率。例如,对于终端1、终端2和终端3构成的系统,在第一次传输时终端1、终端2和终端3不进行时频资源复用,在第二次传输时,终端1和终端2进行了复用,在第三次传输时,终端1和终端3进行了复用。则,当终端1、终端2和终端3任一终端成功译码之后,便能迅速获得其它终端的成功译码结果。采用上述方式,可以最大程度上利用成功译码终端的译码结果降低复用对未成功译码的终端的影响,从而提高译码效率,提高数据传输系统的传输速率。
针对上述任一实施例中终端发送的上行数据,网络设备对其进行译码。本发明实施例提供一种可行的针对任一终端发送的上行数据译码的译码方法,包括以下步骤:
步骤一:网络设备确定对终端根据资源分配指示信息在对应的时频资源上传输的前K-1次上行数据均译码失败。
网络设备接收终端第K次传输的上行数据,K为终端M次输出上行数据中的任一次。网络设备只有在确定该终端的前K-1次上行数据均译码失败的情况下,才会继续对该终端的第K次上行数据进行译码。若该终端的前K-1次传输的上行数据已译码成功,则,可选的,网络设备不再对第K次传输的上行数据进行处理,以减轻网络设备的运行压力。
步骤二:网络设备根据前K-1次的译码结果,对终端根据资源分配指示信息在对应的时频资源上传输的第K次上行数据进行译码,若译码失败,则继续接收终端在对应的时频资源上传输的第K+1次上行数据,直至译码成功或M次传输结束为止。
网络设备对第K次传输的上行数据进行解调并译码。本发明实施例提供一种可行的根据前K-1次的译码结果,对第K次传输的上行数据进行译码的实现方式,如图5所示,为本发明实施例提供的一种针对任一终端传输的第K次上行数据进行译码的流程示意图,包括以下步骤:
步骤S501:网络设备根据前K-1次的译码结果,对第K次上行数据进行首轮译码。
步骤S502:网络设备在首轮译码失败、且该终端基于与其他复用终端进行时频资源复用方式传输第K次上行数据时,获取对所述复用终端传输的前K次上行数据译码成功的译码结果。
步骤S503:网络设备根据译码成功的复用终端的译码结果,对该终端传输的第K次上行数据进行更新。
步骤S504:网络设备对更新后的上行数据进行二次译码。
在步骤S501的具体实施过程中,对于终端前K-1次发送的上行数据,虽然未成功译码,但译码结果中仍包含部分正确信息,在对第K次传输的上行数据进行首轮译码时,将前K-1次传输的上行数据的译码结果作为对第K次传输的上行数据译码时的先验信息,能够提高对第K次传输的上行数据译码的成功率。
在步骤S502的具体实施过程中,若首轮译码失败,则在终端的第K次传输为时频资源复用时,获取第K次传输中已译码成功的复用终端的译码结果,例如,终端1在第K次传输上行数据时与终端2和终端3进行了复用,其中,终端2已译码成功,则获取终端2的译码结果,终端2的译码结果可以是对第K次传输的上行数据首轮译码时成功译码得到的,也可以前K-1次传输的上行数据成功译码得到的。
在步骤S503的具体实施过程中,网络设备在同一时频资源位置会收到多个复用终端的第K次上行数据,这些上行数据之间存在一定的干扰。根据已译码成功的复用终端的译码结果重构其在上行数据中的数据形式,之后,网络设备从在该时频资源位置上收到的上行数据中去除已译码成功的复用终端的数据,从而实现对接收的第K次上行数据的更新。例如,终端1在第K次传输上行数据时与终端2和终端3进行了复用,网络设备在该时频位置接收到的上行数据是终端1、终端2和终端3分别发送的上行数据的糅合。当终端2为已译码成功的终端时,网络设备根据终端2的译码结果重构终端2发送的上行数据,之后,便可根据重构的终端2的上行数据从网络设备接收到的上行数据中去除终端2的数据,使得接收到的上行数据中只包含了还未译码成功的终端1和终端3的数据。
在步骤S504的具体实施过程中,网络设备对更新后的上行数据进行二次译码,此时的上行数据中仅剩下还未译码成功的终端的上行数据,如步骤S503中终端1和终端3的数据。可选的,网络设备根据对终端的上行数据的首轮译码的译码结果,对更新后上行数据进行二次译码。
为了更进一步具体地介绍本发明实施例所提供的技术方案,本发明实施例提供以下两个具体实施例。应理解,以下具体实施例在此仅是举例,并不代表本发明实施例所公开的技术方案仅包含或仅适用于以下两种情况。
实施例一
图6为本发明实施例提供的一种数据传输示意图,如图6所示,网络设备分别向终端1、终端2、终端3和终端4发送资源分配指示信息,指示终端1、终端2、终端3和终端4按照图6中所示的时频资源发送信息,具体实现过程可以如下:
T0时刻,网络设备通过下行控制信道分别将资源分配指示信息—指示1、指示2、指示3和指示4发送至终端1、终端2、终端3和终端4,指示1、指示2、指示3和指示4包括如下内容:(1)终端在T1时刻发送上行数据所占用的频域资源位置,其中,T1可以是在T0基础上累加一个固定的时延得到的,该时延由具体的通信制式决定,本发明实施 例不对其进行约束;(2)终端发送数据的重复次数,例如取值1表示仅在T1发送数据,取值2表示在T2重复发送T1的数据,以此类推,本实施例中取值为3;(3)终端发送上行数据的频域位置指示。
在T1时刻,终端根据T0时刻的资源分配指示信息,在指定频域资源位置发送首个上行数据。
在T2时刻,终端根据T0时刻的资源分配指示信息,在指定频域资源位置重复发送上行数据。应理解,T2时刻终端实际发送的信号形式,即上行数据,可以与T1时刻发送的上行数据不同,但是两者包含的有用数据必须一致,即二者可以被译码为同一个信源数据。例如,LTE中同一份数据可以增加不同的冗余版本,形成不同的上行数据,但是原始的信源数据是一样的。图6中,终端1与终端2占用相同频域资源,终端3与终端4占用相同频域资源。
在T3时刻,终端根据T0时刻的资源分配指示信息,在指定频域资源位置重复发送上行数据,且随重复次数增多,复用程度逐渐加强,如图6所示,终端1、终端2、终端3和终端4共同占用相同的频域资源。
基于图6所示的数据传输过程,本发明实施例还提供一种与其对应的可行的数据处理过程,如图7所示,为本发明实施例提供的一种数据处理示意图,包括如下步骤:
在T1时刻:
步骤S701:网络设备基于T0时刻的发送的资源分配指示信息,获取T1时刻终端1、终端2、终端3和终端4发送的上行数据频域资源位置,并在接收上行数据后解析出终端1、终端2、终端3和终端4对应的数据。
步骤S702:网络设备基于获取的每个终端的上行数据,进行解调、译码等处理。
步骤S703:对于成功译码的终端,保存其译码结果。
在T2时刻:
步骤S704:网络设备基于T0时刻的发送的资源分配指示信息,获取T2时刻终端1、终端2、终端3和终端4发送的上行数据频域资源位置,并在接收上行数据后解析出终端1、终端2、终端3和终端4对应的数据。
步骤S705:网络设备基于获取的每个终端的上行数据,对于T1时刻译码失败的终端进行首轮解调、译码等处理,该次处理需要合并该终端在T1时刻的译码结果,以T1时刻的译码结果作为T2时刻译码的先验信息,以达到提升译码正确性的目的。如果首轮译码成功,则保存其译码结果。
步骤S706:对于首轮译码中以及T1时刻译码成功的终端,基于T2时刻该终端的信道信息和译码结果重构其在T2时刻的发送信号,并在T2时刻接收到的上行数据中消除所有成功译码终端的重构信号以对T2时刻接收到的上行数据进行更新;对于步骤S605中译码失败的终端,基于更新后的上行数据,进行二次解调、译码等处理,并合并该终端在步骤S604中的译码结果,获得最终的合并后译码结果。
步骤S707:保存译码成功的终端的译码结果。
在T3时刻:
T3时刻处理与T2时刻类似,差异在于已经成功译码的终端有所增加。
步骤S708:网络设备基于T0时刻的发送的资源分配指示信息,获取T3时刻终端1、终端2、终端3和终端4发送的上行数据频域资源位置,并在接收上行数据后解析出终端 1、终端2、终端3和终端4对应的数据;
步骤S709:网络设备基于获取的每个终端的上行数据,对于T1、T2时刻译码失败的终端进行首轮解调、译码等处理,该次处理需要合并该终端在T1、T2时刻的译码结果,以T1、T2时刻的译码结果作为T3时刻译码的先验信息,以达到提升译码正确性的目的。如果首轮译码成功,则保存其译码结果;
步骤S710:对于首轮译码中以及T1、T2时刻译码成功的终端,基于T3时刻该终端的信道信息和译码结果重构其在T3时刻的发送信号,并在T3时刻接收到的上行数据中消除所有成功译码终端的重构信号以对T3时刻接收到的上行数据进行更新;对于步骤S709中译码失败的终端,基于更新后的上行数据,进行二次解调、译码等处理,并合并该终端在步骤S709中的译码结果,获得最终的合并后译码结果。
步骤S711:保存译码成功的终端的译码结果。
在本发明实施例一中,终端采用重复发送同一信源数据对应的上行数据的方式保证上行数据译码正确性,其中,首次发送数据时通过频分复用达到最佳译码性能,后续重复发送上行数据保证首次译码错误后通过多次合并译码使得错误率达到极低水平。当后续重复发送数据存在复用行为时,通过重构成功译码终端的上行数据以消除成功译码终端对未成功译码终端的干扰,提升复用部分数据的译码正确率。同时,不同终端在多次重复发送上行数据时,采用复用的方式降低时频资源开销,使得在有限的时频资源约束下,数据传输系统能够容纳更多的终端业务,提升了数据传输系统的容量。
实施例二
图8为本发明实施例提供的一种数据传输示意图,如图8所示,网络设备分别向终端1、终端2、终端3和终端4发送资源分配指示信息,指示终端1、终端2、终端3和终端4按照图8中所示的时频资源发送信息,具体实现过程可以如下:
T01、T02、T03、T04时刻,网络设备分别通过下行控制信道发送指示信息指示1、指示2、指示3和指示4至终端1、终端2、终端3和终端4,其中T01、T02、T03、T04可以为同一时刻,也可以为不同时刻,该指示信息包括如下内容:(1)各终端在首次发送上行数据所占用的频域资源位置,其中每个终端首次上行数据发送时刻T1、T2、T3和T4是在T01、T02、T03、T04的基础上进行延迟,延迟量可以采用固定值或由指示信息指示,且T1~T4各不相同。各终端首次发送上行数据所占用的频域资源位置可以相同也可以不同,本实施例中采用了固定频域资源的形式。(2)终端发送数据的重复次数,本实施例中取值为3;(3)终端发送重复数据的时域位置指示,如图8中为终端1分配的时域位置为T1、T5和T7;(4)终端发送重复数据的频域位置指示,采用但不局限于如下任一方式:a、没有具体指示信息,终端在首次数据发送的频域资源处重复发送上行数据;b、网络设备指示重复数据的准确频域资源位置;c、网络设备指示重复数据的频域资源位置配置序号等。
T1时刻,终端1在指定频域资源位置首次发送上行数据。
T2时刻,终端2在指定频域资源位置首次发送上行数据。
T3时刻,终端3在指定频域资源位置首次发送上行数据。
T4时刻,终端4在指定频域资源位置首次发送上行数据。
T5时刻,终端1和终端2同时重复发送上行数据并进行资源复用。
T6时刻,终端3和终端4同时重复发送上行数据并进行资源复用。
T7时刻,终端1、终端2、终端3和终端4同时重复发送上行数据并进行资源复用。
基于图8所示的数据传输过程,本发明实施例还提供一种与其对应的可行的数据处理过程,如图9所示,为本发明实施例提供的一种数据处理示意图,包括如下步骤:
在T1-T4时刻:
步骤S901:网络设备基于发送给各终端的资源分配指示信息,获悉T1至T4时刻各终端首次发送上行数据的频域位置,接收并解析出各的上行数据。
步骤S902:解调并译码各首次发送的上行数据。
步骤S903:保存译码成功的终端的译码结果。
在T5-T6时刻:
步骤S904:网络设备基于发送各的资源分配指示信息,获悉T5和T6时刻各发送的上行数据频域资源位置,并在接收上行数据后解析出各对应的上行数据。
步骤S905:网络设备基于获取的每个终端的上行数据,对于T1~T4时刻译码失败的终端进行首轮解调、译码等处理,该次处理需要合并该终端在T1~T4时刻的译码结果,以达到提升译码正确性的目的。如果首轮译码成功,则保存其译码结果。
步骤S906:对于步骤S905中以及T1~T4时刻译码成功的终端,基于T5/T6时刻该终端的信道信息重构其在T5/T6时刻的发送信号,并在T5/T6时刻接收到的上行数据中消除所有成功译码终端的重构信号,获得更新后的上行数据。对于步骤S905中译码失败的终端,基于得到的更新后的上行数据,进行二次解调、译码等处理,并合并该终端在步骤S905中的译码结果,获得最终的合并后译码结果。
步骤S907:保存译码成功的终端的译码结果。
在T7时刻:
T7时刻处理与T5/T6时刻类似,差异在于已经成功译码的终端有所增加。
步骤S908:网络设备基于发送各的资源分配指示信息,获悉T7时刻各发送的上行数据频域资源位置,并在接收上行数据后解析出各对应的上行数据。
步骤S909:网络设备基于获取的每个终端的上行数据,对于T1~T6时刻译码失败的终端进行首轮解调、译码等处理,该次处理需要合并该终端在T1~T6时刻的译码结果,以达到提升译码正确性的目的。如果首轮译码成功,则保存其译码结果。
步骤S910:对于步骤S909中以及T1~T6时刻译码成功的终端,基于T7时刻该终端的信道信息重构其在T7时刻的发送信号,并在T7时刻接收到的上行数据中消除所有成功译码终端的重构信号,获得更新后的上行数据。对于步骤S909中译码失败的终端,基于得到的更新后的上行数据,进行二次解调、译码等处理,并合并该终端在步骤S909中的译码结果,获得最终的合并后译码结果。
步骤S911:保存译码成功的终端的译码结果。
本实施例的技术效果与实施例一类似,但相比于实施例一,本实施例更适用于数据传输系统可用带宽受限的情况,此时,实施例一可复用的终端数量减少,采用本实施例的技术方案可以通过时域维度的非连续重复发送实现更多终端的复用,提升系统容量。
综上所述,本发明实施例提供一种数据传输方法,包括:网络设备分别向N个终端发送资源分配指示信息,资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源,网络设备接收N个终端发送的上行数据;针对任一终端,网络设备对接收的终端发送的上行数据译码,得到终端的信源数据。网络设备通过资源分配指示信息指示每个终端多次发送同一信源数据对应的上行数据,通过多次接收同一信源数据的上行数据而提升每一 个终端数据传输的可靠性。同时,资源分配指示信息指示终端M次传输上行数据所使用的时频资源,使得任一终端的M次传输上行数据所使用的时频资源为动态变化的,终端间资源复用程度的改变成为可能,从而在N个终端M次传输上行数据时,通过终端间时频资源复用降低多次传输所占用的系统资源,提升系统容量。因此,本发明实施例所提供的技术方案能够兼顾数据传输的可靠性和数据传输系统的容量。
基于相同的技术构思,本发明实施例还提供一种网络设备,该网络设备用于实现上述实施例中的任一种数据传输方法。图10为本发明实施例提供的一种网络设备结构示意图,如图10所示,网络设备包括:收发模块1001和处理模块1002,其中:
收发模块1001,用于分别向N个终端发送资源分配指示信息,资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源,其中,任一终端M次传输的上行数据对应于同一信源数据;N个终端中至少存在两个终端在至少一次传输过程中存在时频资源复用关系;至少一个终端在M次传输时所使用的频域资源不完全相同;N大于等于2;M大于等于2,以及接收N个终端发送的上行数据;
处理模块1002,用于针对任一终端,对接收的终端发送的上行数据译码,得到终端的信源数据。
所述收发模块1001与所述处理模块1002所执行的具体流程已在上述实施例中具体描述,此处不再赘述。
基于相同的技术构思,本发明实施例还提供一种终端,该终端用于实现上述实施例中的任一种数据传输方法。图11为本发明实施例提供的一种终端结构示意图,如图10所示,终端包括:收发模块1101和处理模块1102,其中:
处理模块1102,用于控制收发模块1101接收网络设备发送的资源分配指示信息,资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源;
处理模块1102,还用于根据网络设备发送的资源分配指示信息控制收发模块1101向网络设备发送上行数据。
所述收发模块1101和所述处理模块1102所执行的具体流程已在上述实施例中具体描述,此处不再赘述。
基于相同的技术构思,参见图12,为本发明实施例提供的一种网络设备1200。该网络设备1200可包括:收发器1201、处理器1202和存储器1203,其中存储器1203存储有计算机程序,收发器1201用于收发数据,处理器1202用于调用执行存储器1203存储的计算机程序,通过收发器1201收发数据来执行上述实施例中的任意方案。
基于相同的技术构思,参见图13,为本发明实施例提供的一种终端1300。该终端1300可包括:收发器1301、处理器1302和存储器1303,其中存储器1303存储有计算机程序,收发器1301用于收发数据,处理器1302用于调用执行存储器1303存储的计算机程序,通过收发器1301收发数据来执行上述实施例中的任意方案。
本领域内的技术人员应明白,本发明实施例可提供为方法、系统、或计算机程序产品。 因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种数据传输方法,其特征在于,包括:
    网络设备分别向N个终端发送资源分配指示信息,所述资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源,其中,任一终端M次传输的上行数据对应于同一信源数据;所述N个终端中至少存在两个终端在至少一次传输过程中存在时频资源复用关系;至少一个终端在M次传输时所使用的频域资源不完全相同;N大于等于2;M大于等于2;
    所述网络设备接收所述N个终端根据所述资源分配指示信息在对应的时频资源上发送的上行数据;
    针对任一终端,所述网络设备对接收的所述终端发送的上行数据译码,得到所述终端的信源数据。
  2. 如权利要求1所述的方法,其特征在于,所述资源分配指示信息包括传输次数、首次传输时频资源、各次重传时频资源。
  3. 如权利要求2所述的方法,其特征在于,网络设备分别向N个终端发送资源分配指示信息,包括:
    所述网络设备向所述N个终端发送各自的资源分配指示信息,其中,所述N个终端的首次传输时频资源为时域相同且频域不同的时频资源,或,时域不同且频域相同的时频资源。
  4. 如权利要求1所述的方法,其特征在于,网络设备分别向N个终端发送资源分配指示信息之前,还包括:
    所述网络设备根据第一规则,确定所述N个终端各自的资源分配指示信息;所述第一规则为重传次数与时频资源复用程度的正向关系。
  5. 如权利要求1所述的方法,其特征在于,网络设备分别向N个终端发送资源分配指示信息之前,还包括:
    所述网络设备根据第一规则,确定所述N个终端各自的资源分配指示信息;所述第一规则包括各次重传中复用相同时频资源的终端不完全相同。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述针对任一终端,所述网络设备对接收的所述终端发送的上行数据译码,得到所述终端的信源数据,包括:
    所述网络设备确定对所述终端根据所述资源分配指示信息在对应的时频资源上传输的前K-1次上行数据均译码失败;
    所述网络设备根据所述前K-1次的译码结果,对所述终端根据所述资源分配指示信息在对应的时频资源上传输的第K次上行数据进行译码;
    若译码失败,则继续接收所述终端在对应的时频资源上传输的第K+1次上行数据,直至译码成功或M次传输结束为止。
  7. 如权利要求6所述的方法,其特征在于,所述网络设备根据所述前K-1次的译码结果,对所述终端根据所述资源分配指示信息在对应的时频资源上传输的第K次上行数据进行译码,包括:
    所述网络设备根据所述前K-1次的译码结果,对所述第K次上行数据进行首轮译码;
    所述网络设备在所述首轮译码失败、且所述终端基于与其他复用终端进行时频资源复用方式传输第K次上行数据时,获取对所述复用终端传输的前K次上行数据译码成功的译码结果;
    所述网络设备根据所述译码成功的复用终端的译码结果,对所述终端传输的第K次上行数据进行更新;
    所述网络设备对更新后的上行数据进行二次译码。
  8. 如权利要求7所述的方法,其特征在于,所述网络设备对所述更新后上行数据进行二次译码,包括:
    所述网络设备根据对所述终端的上行数据的首轮译码的译码结果,对所述更新后上行数据进行二次译码。
  9. 一种数据传输方法,其特征在于,包括:
    终端接收网络设备发送的资源分配指示信息,所述资源分配指示信息用于指示所述终端M次传输上行数据所使用的时频资源;所述终端M次传输的上行数据对应于同一信源数据;
    所述终端根据所述网络设备发送的资源分配指示信息在对应的时频资源上向网络设备发送上行数据。
  10. 如权利要求9所述的方法,其特征在于,所述资源分配指示信息包括传输次数、首次传输时频资源、各次重传时频资源。
  11. 一种网络设备,其特征在于,包括:收发模块和处理模块;
    所述收发模块,用于分别向N个终端发送资源分配指示信息,所述资源分配指示信息用于指示终端M次传输上行数据所使用的时频资源,其中,任一终端M次传输的上行数据对应于同一信源数据;所述N个终端中至少存在两个终端在至少一次传输过程中存在时频资源复用关系;至少一个终端在M次传输时所使用的频域资源不完全相同;N大于等于2;M大于等于2;以及接收所述N个终端根据所述资源分配指示信息在对应的时频资源上发送的上行数据;
    所述处理模块,用于针对任一终端,对接收的所述终端发送的上行数据译码,得到所述终端的信源数据。
  12. 如权利要求11所述的网络设备,其特征在于,所述资源分配指示信息包括传输次数、首次传输时频资源、各次重传时频资源。
  13. 如权利要求12所述的网络设备,其特征在于,所述收发模块在分别向N个终端发送资源分配指示信息时,具体用于:
    向所述N个终端发送各自的资源分配指示信息,其中,所述N个终端的首次传输时频资源为时域相同且频域不同的时频资源,或,时域不同且频域相同的时频资源。
  14. 如权利要求11所述的网络设备,其特征在于,所述处理模块在控制所述收发模块分别向N个终端发送资源分配指示信息之前,还用于:
    根据第一规则,确定所述N个终端各自的资源分配指示信息;所述第一规则为重传次数与时频资源复用程度的正向关系。
  15. 如权利要求11所述的网络设备,其特征在于,所述处理模块在控制所述收发模块分别向N个终端发送资源分配指示信息之前,还用于:
    根据第一规则,确定所述N个终端各自的资源分配指示信息;所述第一规则包括各次 重传中复用相同时频资源的终端不完全相同。
  16. 如权利要求11至15任一项所述的网络设备,其特征在于,所述处理模块在针对任一终端,对接收的所述终端发送的上行数据译码,得到所述终端的信源数据时,具体用于:
    确定对所述终端根据所述资源分配指示信息在对应的时频资源上传输的前K-1次上行数据均译码失败;
    根据所述前K-1次的译码结果,对所述终端根据所述资源分配指示信息在对应的时频资源上传输的第K次传输的上行数据进行译码;
    若译码失败,则控制所述收发模块继续接收所述终端在对应的时频资源上传输的第K+1次上行数据,直至译码成功或M次传输结束为止。
  17. 如权利要求16所述的网络设备,其特征在于,所述处理模块在根据所述前K-1次的译码结果,对所述第K次上行数据进行译码时,具体用于:
    根据所述前K-1次的译码结果,对所述第K次上行数据进行首轮译码;
    在所述首轮译码失败、且所述终端基于与其他复用终端进行时频资源复用方式传输第K次上行数据时,获取对所述复用终端传输的前K次上行数据译码成功的译码结果;
    根据所述译码成功的复用终端的译码结果,对所述终端传输的第K次上行数据进行更新;
    对更新后的上行数据进行二次译码。
  18. 如权利要求17所述的网络设备,其特征在于,所述处理模块在对所述更新后上行数据进行二次译码时,具体用于:
    根据所述终端的上行数据的首轮译码的译码结果,对所述更新后上行数据进行二次译码。
  19. 一种终端,其特征在于,包括:收发模块和处理模块;
    所述处理模块,用于控制所述收发模块接收网络设备发送的资源分配指示信息,所述资源分配指示信息用于指示所述终端M次传输上行数据所使用的时频资源;所述终端M次传输的上行数据对应于同一信源数据;
    所述处理模块,还用于根据网络设备发送的资源分配指示信息控制所述收发模块在对应的时频资源上向所述网络设备发送上行数据。
  20. 如权利要求19所述的终端,其特征在于,所述资源分配指示信息包括传输次数、首次传输时频资源、各次重传时频资源。
PCT/CN2017/086220 2017-05-26 2017-05-26 一种数据传输方法、网络设备及终端 WO2018214172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086220 WO2018214172A1 (zh) 2017-05-26 2017-05-26 一种数据传输方法、网络设备及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086220 WO2018214172A1 (zh) 2017-05-26 2017-05-26 一种数据传输方法、网络设备及终端

Publications (1)

Publication Number Publication Date
WO2018214172A1 true WO2018214172A1 (zh) 2018-11-29

Family

ID=64396069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086220 WO2018214172A1 (zh) 2017-05-26 2017-05-26 一种数据传输方法、网络设备及终端

Country Status (1)

Country Link
WO (1) WO2018214172A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312472A (zh) * 2012-03-15 2013-09-18 中兴通讯股份有限公司 网间语音数据包自动重传方法和系统、用户设备及eNB
CN103379628A (zh) * 2012-04-17 2013-10-30 中兴通讯股份有限公司 基于传输时间间隔捆绑的资源分配方法及移动终端
CN103795505A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 一种传输数据的方法、系统和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312472A (zh) * 2012-03-15 2013-09-18 中兴通讯股份有限公司 网间语音数据包自动重传方法和系统、用户设备及eNB
CN103379628A (zh) * 2012-04-17 2013-10-30 中兴通讯股份有限公司 基于传输时间间隔捆绑的资源分配方法及移动终端
CN103795505A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 一种传输数据的方法、系统和设备

Similar Documents

Publication Publication Date Title
US11736250B2 (en) Method for transmitting reference signal, and communication device
AU2017431429B2 (en) Data transmission method, terminal device, and network device
WO2016107430A1 (zh) 传输上行数据的方法和装置
WO2018086016A1 (zh) 传输上行数据的方法、终端设备和网络设备
KR102247996B1 (ko) 데이터 송신 방법 및 장치
EP3425981B1 (en) Resource allocation method and network device
US11088804B2 (en) Reference signal transmission method, apparatus, and system
WO2016154991A1 (zh) 基于非正交传输的通信方法和设备
EP3500003A1 (en) Information transmission method, terminal apparatus, and network apparatus
US11252722B2 (en) Method and device in UE and base station for wireless communication
US11652588B2 (en) Aperiodic ZP CSI-RS resource set determination and configuration methods and devices, storage medium, user equipment, and network end
US11706786B2 (en) Wireless communication method, terminal device, and network device
AU2016433342B2 (en) Information transmission method, network device and terminal device
WO2022016411A1 (en) Method and apparatus for harq-ack feedback transmission
US20240015740A1 (en) Method and apparatus for downlink transmission in physical downlink control channel
WO2018112933A1 (zh) 传输信息的方法、网络设备和终端设备
US20190174515A1 (en) Physical Channel Sending Method and Receiving Method, Terminal Device, and Network Device
WO2018214172A1 (zh) 一种数据传输方法、网络设备及终端
US20190261334A1 (en) Transmission control method, apparatus, and system, and storage medium
US11317429B2 (en) Method for transmitting and receiving scheduling information in communication system
CN114449655A (zh) 信道传输方法、装置、终端设备、网络设备及存储介质
WO2024082477A1 (en) Methods and apparatuses for resource indication in subband non-overlapping full duplex scenario
CN114362894B (zh) 反馈码本确定方法、接收方法、终端、网络设备
CN114257484B (zh) 一种符号应用方法及通信装置
CN116418473A (zh) 低信道带宽的pbch资源管理的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911138

Country of ref document: EP

Kind code of ref document: A1