WO2014063466A1 - 数据传输方法及终端 - Google Patents

数据传输方法及终端 Download PDF

Info

Publication number
WO2014063466A1
WO2014063466A1 PCT/CN2013/073469 CN2013073469W WO2014063466A1 WO 2014063466 A1 WO2014063466 A1 WO 2014063466A1 CN 2013073469 W CN2013073469 W CN 2013073469W WO 2014063466 A1 WO2014063466 A1 WO 2014063466A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
interference
data transmission
terminal
pdcch
Prior art date
Application number
PCT/CN2013/073469
Other languages
English (en)
French (fr)
Inventor
余荣道
王锐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18161678.0A priority Critical patent/EP3402264B1/en
Priority to EP13849041.2A priority patent/EP2903367B1/en
Publication of WO2014063466A1 publication Critical patent/WO2014063466A1/zh
Priority to US14/694,587 priority patent/US9788309B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method and a terminal. Background technique
  • D2D (Dev i ce-to-Dev i ce ) communication does not require control of a base station or an access node, and communication or networking is very flexible.
  • the terminal self-organizing communication mode that is, the D2D communication mode, is hidden between the terminals of the cellular mobile communication system, and a direct advantage is that local services that are close to the base station can be directly relayed through the terminals without going through the base station.
  • the power consumption can be reduced, when the communication has a long When the path is converted to several short paths to achieve, the power of these short paths will be less than the power required for a long path.
  • the introduction of self-organizing will increase the throughput of the entire mobile communication system and increase the reuse space.
  • the D2D communication mode can be used to transmit in the unlicensed frequency band.
  • the interference of the unlicensed frequency band is uncontrollable, especially when there are more and more services on the unlicensed frequency band, the interference will become more and more serious, thus seriously affecting the D2D transmission. performance. Summary of the invention
  • the embodiment of the invention provides a data transmission method and a terminal.
  • the user terminal other than the cell where the user terminal is located multiplexes the time-frequency resources of the user terminal with the least interference to the user terminal to perform D2D data transmission to other user terminals, thereby reducing cellular transmission to the user terminal. Interference caused by D2D transmission.
  • the embodiment of the present invention provides a data transmission method, where the method includes: a first user terminal detecting a physical downlink control channel PDCCH of a second user terminal other than a cell where the first user terminal is located, from the PDCCH Obtaining code modulation mode information;
  • the first user terminal multiplexes the uplink time-frequency resources of the second user terminal with the least interference to perform D2D data transmission.
  • the embodiment of the present invention provides a data transmission method, where the method includes: establishing an interference correspondence table according to interference data between a first user terminal and a second user terminal other than the cell where the first user terminal is located;
  • the first user terminal multiplexes the uplink time-frequency resources of the available second user terminal with the least interference to perform D2D data transmission.
  • the embodiment of the present invention provides a data transmission method, where the method includes: a first user terminal corresponding to a second user terminal other than the cell where the first user terminal is located Performing subcarrier energy detection on the first orthogonal frequency division multiplexing OFDM symbol of the row subframe; determining interference between the first user terminal and the second user terminal according to the energy detection result;
  • the first user terminal multiplexes the low energy subcarrier starting from the nth OFDM symbol of the uplink subframe corresponding to the second user terminal with the smallest interference to perform D2D data transmission.
  • the embodiment of the present invention provides a data transmission terminal, where the terminal includes: a detecting unit, configured to detect a PDCCH of a second user terminal other than a cell where the data transmission terminal is located, and obtain a code from the PDCCH Modulation method information;
  • a determining unit configured to determine, according to the coded modulation mode information, an interference situation between the data transmission terminal and the second user terminal;
  • a selecting unit configured to select, according to the interference situation, a second user terminal that has the least interference to the data transmission terminal
  • a transmitting unit configured to multiplex the uplink time-frequency resource of the second user terminal with the least interference to perform D2D data transmission.
  • an embodiment of the present invention provides a data transmission terminal, where the terminal includes: an establishing unit, configured to perform interference according to the second user terminal except the data transmission terminal and the data transmission terminal The data establishes an interference correspondence table;
  • a searching unit configured to search, according to the interference correspondence table, a plurality of second user terminals that have the least interference to the data transmission terminal;
  • a selecting unit configured to select, from the plurality of second user terminals that are small in interference to the data transmission terminal, a second user terminal that has the least interference available;
  • a transmitting unit configured to multiplex the uplink time-frequency resource of the second user terminal with the smallest interference available for D2D data transmission.
  • an embodiment of the present invention provides a data transmission terminal, where the terminal includes: a detecting unit, configured to perform subcarrier energy detection on a first OFDM symbol of an uplink subframe corresponding to a second user terminal other than the cell where the data transmission terminal is located;
  • a determining unit configured to determine, according to the energy detection result, an interference situation between the data transmission terminal and the second user terminal
  • a selecting unit configured to select, according to the interference situation, a second user terminal that has the least interference to the data transmission terminal
  • a transmitting unit configured to perform D2D data transmission by using a subcarrier with low energy starting from the nth OFDM symbol of the uplink subframe corresponding to the second user terminal with the smallest interference.
  • the data transmission method and the terminal provided by the embodiment of the present invention detect and search for a user terminal with the least interference to the user terminal, and multiplex the time-frequency resource of the user terminal with the least interference, so that the user terminal is in the D2D data transmission.
  • the interference caused by cellular transmissions during D2D transmission is minimized.
  • FIG. 1 is a schematic diagram of a two-dimensional time-frequency resource
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of another data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of data transmission using subcarriers in an uplink subframe according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a data transmission terminal according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another data transmission terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another data transmission terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another structure of a data transmission terminal according to an embodiment of the present invention.
  • FIG. 10 is another schematic structural diagram of another data transmission terminal according to an embodiment of the present invention.
  • the data transmission method in the embodiment of the present invention is applied to data transmission between D2D user terminals under a Long Term Evolution (LTE) system.
  • the data in the LTE system is transmitted on two-dimensional time-frequency resources.
  • FIG. 1 it is a schematic diagram of a two-dimensional time-frequency resource.
  • the horizontal axis is the time domain and the vertical axis is the frequency domain.
  • the smallest resource unit used for data transmission is the Resource Element (RE).
  • the scheduling and transmission of data is performed in units of Resource Blocks (RBs), and one resource block is composed of a plurality of resource particles on a two-dimensional time-frequency.
  • one resource block is composed of 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain, frequency i or upper 12 subcarriers.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 2 is a flow chart of a data transmission method according to an embodiment of the present invention.
  • the execution subject of this embodiment is a user terminal for D2D data transmission.
  • the cellular user terminal uses a Physical Downlink Shared Channel (PDSCH) for data transmission.
  • PDSCH Physical Downlink Shared Channel
  • the base station passes a Physical Downlink Control Channel (PDCCH). Indicates the resource block occupied by the data transfer.
  • the D2D user terminal can determine the interference between the cellular user terminal and the D2D user terminal by detecting the PDCCH of the cellular user terminal. Then, the time-frequency resources of the cellular user terminal with small interference are multiplexed to perform D2D data transmission.
  • Step S201 The first user terminal detects a PDCCH of a second user terminal other than the cell where the first user terminal is located.
  • the first user terminal is a user terminal that performs data transmission by using D2D.
  • the second user terminal is a user terminal other than the cell in which the first user terminal is located, and the user terminal performs data transmission using the cell.
  • the user terminals in the same cell are close to each other, so the interference between them is large, so that the first user terminal only detects the user terminal using the cell for data transmission outside the cell in which it is located, that is, the second user terminal.
  • the first user terminal may detect one second user terminal, or may simultaneously detect multiple second user terminals.
  • the PDCCH carries information such as Modulation and Coding Scheme (MCS) information, Hybrid Automatic Repeat ReQuest (HQQ) information, and the like, so the PDCCH of the second user terminal is detected to obtain corresponding information.
  • MCS Modulation and Coding Scheme
  • HQQ Hybrid Automatic Repeat ReQuest
  • the first user terminal passes the ID of the second user terminal to the second user terminal.
  • the PDCCH is detected.
  • the first user terminal arbitrarily selects the PDCCH for analysis, and determines whether the data length is in compliance with the specification by analyzing a field of the time-frequency resource information indicated by the PDCCH, so as to determine whether the PDCCH is a second user terminal (that is, using the cellular to perform data transmission. Reasonable PDCCH for the user terminal). If the PDCCH is a reasonable PDCCH of the second user terminal, the PDCCH is detected.
  • Step S202 Acquire MCS information from the PDCCH.
  • the MCS information reflects the signal-to-noise ratio (Signal Noise Ratio) of the user terminal, and the signal-to-noise ratio closely reflects the distance between the user terminal and the base station. The further the distance between the second user terminal and the base station is, the smaller the distance between the second user terminal and the first user terminal is, and the smaller the interference between them is. Step S203, determining interference between the first user terminal and the second user terminal according to the MCS information.
  • the MCS information has a total of 32 levels. As shown in Table 1, it is an MCS information table in the LTE system, and each level of MCS information corresponds to a modulation order, and corresponding to one transport block reference, the transport block reference implicit indication. Data transmission The coding rate used. The larger the coding rate difference, the larger the signal-to-noise ratio gap. It can be seen from the table that the coding rates of the MCS information of the same modulation order are relatively small. Therefore, for the binning operation, the interference between the first user terminal and the second user terminal can be determined by the modulation order corresponding to the MCS information. happening.
  • the modulation order corresponding to the MCS information of the first user terminal and the modulation order corresponding to the MCS information of the second user terminal are compared.
  • the judging method can reduce the number of times the first user terminal detects and analyzes the second user terminal PDCCH, and can reduce the complexity.
  • Step S204 Select, according to the interference situation, a second user terminal that has the least interference to the first user terminal.
  • step S203 the second user terminal that has the largest difference in modulation order corresponding to the MCS information of the first user terminal is selected.
  • the modulation order corresponding to the MCS information of the first user terminal and the modulation order corresponding to the MCS information of the second user terminal are different, the interference between the first user terminal and the second user terminal is relatively small. Therefore, when the second user terminal that has the largest difference in modulation order corresponding to the MCS information of the first user terminal cannot select according to a special case, the modulation order corresponding to the MCS information of the first user terminal may be selected to be different. Second user terminal.
  • Step S 205 The first user equipment multiplexes the uplink time-frequency resources of the second user terminal with the smallest interference to perform D2D data transmission.
  • the uplink time-frequency resource of the second user terminal is multiplexed to send D2D data to another user terminal, so that the first user terminal performs D2D data transmission to other user terminals.
  • the interference caused by cellular transmission is greatly reduced.
  • FIG. 3 is a flowchart of another data transmission method according to an embodiment of the present invention.
  • the data transmission method in this embodiment finds the user with the least interference by establishing an interference correspondence table. End.
  • the data transmission method provided in this embodiment includes the following steps: Step S301: Establish an interference correspondence table according to interference data between the first user terminal and a second user terminal other than the cell where the first user terminal is located.
  • the first user terminal is a user terminal that performs data transmission by using D2D.
  • the second user terminal is a user terminal other than the cell in which the first user terminal is located, and the user terminal performs data transmission using the cell.
  • the user terminals in the same cell are close to each other, so the interference between them is large, so that the first user terminal only detects the user terminal that the cell is located in, and uses the cell for data transmission, that is, the second user terminal.
  • the method for establishing the interference correspondence table is to detect the PDCCH of the second user terminal other than the cell where the first user terminal is located; and perform the PDSCH for the subframe corresponding to the time-frequency resource information indicated by the PDCCH according to the second user terminal performing data transmission.
  • the first user terminal detects the PDCCH of the second user terminal by using the ID of the second user terminal.
  • the first user terminal arbitrarily selects the PDCCH for analysis, and determines whether the data length is in compliance with the specification by analyzing a field of the time-frequency resource information indicated by the PDCCH, and so as to determine whether the PDCCH is a second user terminal (that is, using the cell for data transmission).
  • Reasonable PDCCH for the user terminal If the PDCCH is a reasonable PDCCH of the second user terminal, the PDCCH is detected.
  • the method for establishing the interference correspondence table is to detect a Sounding signal of the second user terminal other than the cell where the first user terminal is located; the weaker the Sounding signal, the smaller the interference between the first user terminal and the second terminal user; The detection result establishes an interference correspondence table between the first user terminal and the plurality of second user terminals.
  • Step S302 Search for, according to the interference correspondence table, a plurality of second user terminals that are less likely to interfere with the first user terminal.
  • the interference correspondence table has the interference size between the first user terminal and the plurality of second user terminals Condition. Finding a plurality of second user terminals that are less intrusive to the first user terminal according to the interference correspondence table. The degree of the small interference can be differently selected according to different situations.
  • Step S303 Select, from a plurality of second user terminals that are less interfered with the first user terminal, a second user terminal that has the least interference available;
  • the second user terminal with the smallest interference to the first user terminal in the interference correspondence table cannot be selected due to special circumstances, the second user terminal in the interference correspondence table that has relatively small interference to the first user terminal is selected, that is, the available interference is selected to be the smallest. Second user terminal.
  • Step S304 The first user equipment multiplexes the uplink time-frequency resources of the second user terminal with the smallest interference that can be used for D2D data transmission. After the first user terminal selects the available minimum interference second user terminal, the uplink time-frequency resource of the second user terminal is multiplexed to send D2D data to another user terminal, so that the first user terminal performs D2D to other user terminals. When data is transmitted, the interference caused by cellular transmission is greatly reduced.
  • FIG. 4 is a flowchart of another data transmission method according to an embodiment of the present invention.
  • the data transmission method in this embodiment performs subcarrier energy detection on the first OFDM symbol of the subframe to find the user terminal with the least interference.
  • the data transmission method provided in this embodiment includes the following steps:
  • Step S401 The first user terminal performs subcarrier energy detection on the first OFDM symbol of the corresponding uplink subframe when the second user terminal other than the cell where the first user terminal is located performs information transmission.
  • the first user terminal is a user terminal that performs data transmission by using D2D.
  • the second user terminal is a user terminal other than the cell in which the first user terminal is located, and the user terminal performs data transmission using the cell.
  • the user terminals in the same cell are close to each other, so the interference between them is large, so that the first user terminal only detects the user terminal that the cell is located in, and uses the cell for data transmission, that is, the second user terminal.
  • the user terminal performs data transmission on the corresponding uplink subframe, and one subframe is composed of multiple OFDM symbols. Composition. There are multiple subcarriers on each OFDM symbol. The OFDM symbols and subcarriers constitute the time-frequency resources used for data transmission. Determining the interference between the first user terminal and the second user terminal only needs to perform energy detection on the subcarriers on the first OFDM symbol of the corresponding uplink subframe.
  • the first user terminal may detect one second user terminal, or may simultaneously detect multiple second user terminals.
  • Step S402 Determine, according to the energy detection result, an interference situation between the first user terminal and the second user terminal.
  • determining, according to the strength of the subcarrier energy on the first OFDM symbol of the uplink subframe corresponding to the second user terminal, the subcarrier energy on the first OFDM symbol of the uplink subframe corresponding to the second user terminal The weaker, the less interference between the first user terminal and the second end user.
  • Step S403 Select, according to the interference situation, a second user terminal that has the least interference to the first user terminal.
  • the second user terminal corresponding to the weakest uplink subframe of the subcarrier energy on the first OFDM symbol is selected.
  • the second user terminal corresponding to the weakest uplink subframe of the subcarrier energy on the first OFDM symbol cannot be selected due to special circumstances, the relative energy of the subcarrier energy on the first OFDM symbol can be selected.
  • the second user terminal corresponding to the weak uplink subframe can be selected due to special circumstances.
  • Step S404 The first user terminal performs D2D data transmission on the low energy subcarrier starting from the nth OFDM symbol of the uplink subframe corresponding to the second user terminal with the smallest interference.
  • FIG. 5 it is a schematic diagram of transmitting data by using subcarriers in an uplink subframe according to an embodiment of the present invention.
  • the first user terminal performs subcarrier energy detection on the first OFDM symbol of the uplink subframe corresponding to the second user terminal, a delay occurs. Therefore, after determining the second user terminal with the least interference, the D2D data transmission can only be performed from the subcarriers of the energy starting from the delayed OFDM symbol (i.e., the nth OFDM symbol).
  • the first user terminal performs D2D data transmission on one or more subcarriers with low energy starting from the nth OFDM symbol of the uplink subframe corresponding to the second user terminal with the smallest interference.
  • the first user terminal transmits the D2D data of the low energy starting from the nth OFDM symbol of the uplink subframe corresponding to the second user terminal with the smallest interference, and sends the D2D data to the other user terminal, so that the first user terminal sends the other user terminal to the other user terminal.
  • the interference caused by cellular transmission is greatly reduced.
  • FIG. 6 is a schematic structural diagram of a data transmission terminal according to an embodiment of the present invention.
  • the data transmission terminal includes: a detecting unit 610, a determining unit 620, a selecting unit 630, and a transmitting unit 640.
  • the detecting unit 610 is configured to detect a PDCCH of the second user terminal other than the cell where the data transmission terminal is located.
  • the data transmission terminal uses D2D for data transmission.
  • the second user terminal is a user terminal other than the cell where the data transmission terminal is located, and the user terminal performs data transmission using the cell. Since the user terminals in the same cell are close in distance and therefore have large interference with each other, the detecting unit 610 detects only the user terminal using the cell for data transmission other than the cell in which the data transmission terminal is located, that is, the second user terminal.
  • the detecting unit 610 can detect one second user terminal, and can simultaneously detect multiple second user terminals.
  • the PDCCH carries MCS information, HARQ (information and the like, and thus detects the PDCCH of the second user terminal to obtain corresponding information.
  • the detecting unit 610 detects the PDCCH of the second user terminal by using the ID of the second user terminal.
  • the detecting unit 610 arbitrarily selects the PDCCH for analysis, and determines whether the data length is in compliance with the specification by analyzing the time-frequency resource information and the like indicated by the PDCCH, so as to determine whether the PDCCH is the second user terminal (that is, using the cellular for data transmission. User terminal) PDCCH. If the PDCCH is a reasonable PDCCH of the second user terminal, the PDCCH is detected.
  • the detecting unit 610 is further configured to acquire MCS information from the PDCCH.
  • the MCS information reflects the signal-to-noise ratio of the user terminal, and the signal-to-noise ratio closely reflects the distance between the user terminal and the base station. The farther the second user terminal is from the base station, the smaller the distance between the second user terminal and the data transmission terminal, and the smaller the interference between them.
  • the determining unit 620 is configured to determine, according to the MCS information, an interference situation between the data transmission terminal and the second user terminal.
  • the determining unit 620 compares the modulation order corresponding to the MCS information of the data transmission terminal with the modulation order corresponding to the MCS information of the second user terminal. The greater the difference between the modulation order corresponding to the MCS information of the data transmission terminal and the modulation order corresponding to the MCS information of the second user terminal, the smaller the interference between the data transmission terminal and the second user terminal.
  • the selecting unit 630 is configured to select a second user terminal that has the least interference to the data transmission terminal according to the interference situation.
  • the selecting unit 630 selects the second user terminal that has the largest difference in modulation order corresponding to the MC S information of the data transmission terminal according to the determination result of the determining unit 620.
  • the modulation order corresponding to the MCS information of the data transmission terminal and the modulation order corresponding to the MCS information of the second user terminal are different, the interference between the data transmission terminal and the second user terminal is relatively small. Therefore, when the second user terminal having the largest modulation order corresponding to the MCS information of the data transmission terminal cannot select according to a special case, the modulation order corresponding to the MCS information of the data transmission terminal may be selected to be different. Two user terminals.
  • the transmitting unit 640 is configured to perform uplink D2D data transmission by multiplexing the uplink time-frequency resources of the second user terminal with the smallest interference.
  • the transmission unit 640 After the selection unit 630 selects the minimum interference second user terminal, the transmission unit 640 multiplexes the uplink time-frequency resource of the second user terminal to send D2D data to another user terminal, so that the data transmission terminal performs D2D to other user terminals. Significantly reduce cellular transmission when data is transmitted Interference caused by the loss.
  • the foregoing data transmission terminal is used to implement the data transmission method described in the embodiment of FIG. 2, and the included units are only divided according to functional logic, but are not limited to the above division, as long as the corresponding function can be implemented.
  • the specific names of the respective functional units are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present invention.
  • FIG. 7 is a schematic structural diagram of another data transmission terminal according to an embodiment of the present invention.
  • the data transmission terminal includes: an establishing unit 710, a searching unit 720, a selecting unit 730, and a transmitting unit 740.
  • the establishing unit 710 is configured to establish an interference correspondence table according to the interference data between the data transmission terminal and the second user terminal other than the cell where the data transmission terminal is located.
  • the data transmission terminal uses D2D for data transmission.
  • the second user terminal is a user terminal other than the cell where the data transmission terminal is located, and the user terminal performs data transmission using the cell. Since the user terminals in the same cell are close in distance and therefore have a large interference with each other, only the user terminal using the cell for data transmission other than the cell in which the data transmission terminal is located, that is, the second user terminal is detected.
  • the establishing unit 710 is specifically configured to detect a PDCCH of the second user terminal other than the cell where the data transmission terminal is located, and perform a PDSCH signal on the subframe corresponding to the time-frequency resource information indicated by the PDCCH according to the second user terminal performing data transmission.
  • Energy detection the smaller the PDSCH signal energy is, the smaller the interference between the data transmission terminal and the second user terminal is; the interference correspondence table between the data transmission terminal and the plurality of second user terminals is established according to the detection result.
  • the data transmission end detects the PDCCH of the second user terminal by using the ID of the second user terminal.
  • the data transmission terminal arbitrarily selects the PDCCH for analysis, and determines whether the data length is in compliance with the specification by analyzing a field of the time-frequency resource information indicated by the PDCCH, so as to determine whether the PDCCH is a second user terminal (that is, using the cellular to perform data transmission. Reasonable PDCCH for the user terminal). If the PDCCH is a reasonable PDCCH of the second user terminal, the PDCCH is detected.
  • the establishing unit 710 is specifically configured to detect a Sound ng signal of the second user terminal other than the cell where the data transmission terminal is located; the weaker the Sound ng signal, the interference between the data transmission terminal and the second terminal user The smaller the packet is, the interference correspondence table between the data transmission terminal and the plurality of second user terminals is established according to the detection result.
  • the searching unit 720 is configured to search, according to the interference correspondence table, a plurality of second user terminals that are less interfered with the data transmission terminal.
  • the interference correspondence table has a size of interference between the first user terminal and the plurality of second user terminals. Finding a plurality of second user terminals that are less intrusive to the first user terminal according to the interference correspondence table. The degree of the small interference can be differently selected according to different situations.
  • the selecting unit 730 is configured to select a second user terminal that has the least interference available from a plurality of second user terminals that are small in interference to the data transmission terminal;
  • the selecting unit 730 selects the second user terminal in the interference correspondence table that is relatively small for the first user terminal, that is, the selecting unit. 730 selects the second user terminal that has the least interference available.
  • the transmission unit 740 is configured to perform uplink D2D data transmission by multiplexing uplink time-frequency resources of the second user terminal with the smallest interference available.
  • the transmission unit 740 multiplexes the uplink time-frequency resource of the second user terminal to send D2D data to another user terminal, so that the data transmission terminal performs the other data to the other user terminal.
  • D2D data is transmitted, the interference caused by cellular transmission is greatly reduced.
  • the foregoing data transmission terminal is used to implement the data transmission method described in the embodiment of FIG. 3, and the included units are only divided according to functional logic, but are not limited to the foregoing division, as long as the corresponding function can be implemented.
  • the specific names of the respective functional units are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present invention.
  • the embodiment of the present invention provides another data transmission terminal, as shown in FIG.
  • Embodiments of the Invention A schematic structural diagram of another data transmission terminal.
  • the data transmission terminal includes: a detecting unit 81 0 , a determining unit 820 , a selecting unit 830 , and a transmitting unit 840 .
  • the detecting unit 81 is configured to perform subcarrier energy detection on the first OFDM symbol of the corresponding uplink subframe when the second user terminal other than the cell where the data transmission terminal is located performs information transmission.
  • the data transmission terminal uses D2D for data transmission.
  • the second user terminal is a user terminal outside the cell where the data transmission terminal is located, and the user terminal uses the cell for data transmission. Since the user terminals in the same cell are close in distance and therefore have a large interference with each other, the detecting unit 81 0 detects only the user terminal using the cell for data transmission other than the cell in which the data transmission terminal is located, that is, the second user terminal.
  • the user terminal performs data transmission on the corresponding uplink subframe, and one subframe is composed of multiple OFDM symbols. There are multiple subcarriers on each OFDM symbol. The OFDM symbols and subcarriers constitute the time-frequency resources used for data transmission. To determine the interference between the data transmission terminal and the second user terminal, the detecting unit 81 only needs to perform energy detection on the subcarriers on the first 0FDM symbol of the corresponding uplink subframe.
  • the detecting unit 810 can detect one second user terminal, and can also detect multiple second user terminals at the same time.
  • the determining unit 82 0 is configured to determine the interference situation between the data transmission terminal and the second user terminal according to the energy detection result.
  • the determining unit 820 is specifically configured to determine, according to the strength of the subcarrier energy on the first OFDM symbol of the uplink subframe corresponding to the second user terminal, on the first OFDM symbol of the uplink subframe corresponding to the second user terminal.
  • the weaker the subcarrier energy the smaller the interference between the data transmission terminal and the second end user.
  • the selecting unit 8 30 is configured to select a second user terminal that has the least interference with the data transmission terminal according to the interference situation.
  • the second user terminal corresponding to the weakest uplink subframe of the subcarrier energy on the first 0FDM symbol is selected.
  • the selection unit 8 30 can select the second user terminal corresponding to the relatively weak uplink subframe of the subcarrier energy on the first OFDM symbol.
  • the transmitting unit 840 is configured to perform D2D data transmission on the low energy subcarrier starting from the nth OFDM symbol of the uplink subframe corresponding to the second user terminal with the smallest interference.
  • the transmission unit 840 can only perform D2D data transmission from the energy subcarriers starting from the delayed OFDM symbol (i.e., the nth 0FDM symbol).
  • the detection delay used by the detecting unit 81 0 is shorter, and the smaller n is, the more time-frequency resources are available for D2D data transmission.
  • the transmission unit 840 selects the lower energy subcarrier for D2D data transmission.
  • the transmitting unit 840 multiplexes one or more subcarriers with low energy starting from the nth 0FDM symbol of the uplink subframe corresponding to the second user terminal with the smallest interference to perform D2D data transmission.
  • the transmitting unit 840 transmits the D2D data of the low energy starting from the nth OFDM symbol of the uplink subframe corresponding to the second user terminal with the smallest interference to the other user terminals, so that the data transmission terminal performs the other data to the user terminal.
  • D2D data is transmitted, the interference caused by cellular transmission is greatly reduced.
  • the foregoing data transmission terminal is used to implement the data transmission method described in the embodiment of FIG. 4, and the included units are only divided according to functional logic, but are not limited to the foregoing division, as long as the corresponding function can be implemented.
  • the specific names of the respective functional units are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present invention.
  • the data transmission terminal provided by the embodiment of the present invention for implementing the data transmission method described in the embodiment of FIG. 2 may also be implemented in the following manner. As shown in FIG. 9 , it is a data transmission terminal according to an embodiment of the present invention. Another structural diagram.
  • the data transmission terminal includes: a processor 910. Memory 920, interface 930, and system bus 940.
  • System bus 940 is used to connect processor 910, memory 920, and interface 930.
  • the processor 910 is configured to detect a PDCCH of the second user terminal other than the cell where the data transmission terminal is located, obtain MCS information from the PDCCH, and determine interference between the data transmission terminal and the second user terminal according to the MCS information; In the case, the second user terminal with the least interference to the data transmission terminal is selected; the uplink time-frequency resource of the second user terminal with the least interference is minimized for D 2 D data transmission.
  • each MCS information corresponds to a modulation order; when determining, according to the MCS information of the data transmission terminal The modulation order is compared with the size of the modulation order corresponding to the MCS information of the second user terminal; the modulation order corresponding to the MCS information of the data transmission terminal is different from the modulation order corresponding to the MCS information of the second user terminal, The interference between the data transmission terminal and the second terminal user is smaller.
  • the memory 920 is used to store the execution flow of the processor 910.
  • the interface 930 is used for D2D data transmission with other user terminals.
  • the data transmission terminal provided by the embodiment of the present invention for implementing the data transmission method described in the embodiment of FIG. 3 may also be implemented as follows. As shown in FIG. 10, it is another data transmission terminal according to an embodiment of the present invention. A schematic diagram of the structure.
  • the data transmission terminal includes: a processor 1010, a memory 1020, an interface 1030, and a system bus 1040.
  • System bus 1030 is used to connect processor 1010 memory 1020 and interface 1030.
  • the processor 1010 is configured to establish an interference correspondence table according to interference data between the data transmission terminal and a second user terminal other than the cell where the data transmission terminal is located; and search, according to the interference correspondence table, multiple second interferences that are least to the data transmission terminal. a user terminal; selecting, from a plurality of second user terminals that are less interfered with the first user terminal, a second user terminal that has the least interference available; and multiplexing the uplink time-frequency resources of the second user terminal with the least interference available for D2D data transmission .
  • the process of establishing an interference correspondence table is: Preferably, the PDCCH of the second user terminal other than the cell where the data transmission terminal is located is detected; the PDSCH signal energy is detected in the subframe corresponding to the time-frequency resource information indicated by the PDCCH according to the data transmission by the second user terminal; Small, the interference between the data transmission terminal and the second user terminal is smaller, thereby establishing an interference correspondence table between the data transmission terminal and the plurality of second user terminals.
  • the memory 1020 is used to store the execution flow of the processor 1010.
  • the interface 1030 is used for D2D data transmission with other user terminals.
  • the data transmission terminal provided by the embodiment of the present invention for implementing the data transmission method described in the embodiment of FIG. 4 can also be implemented as follows. As shown in FIG. 11 , it is another data transmission terminal according to an embodiment of the present invention. A schematic diagram of the structure.
  • the data transmission terminal includes: a processor 1110, a memory 1 120, an interface 11 30, and a system bus 1140.
  • the system bus 11 30 is used to connect the processor 11 10, the memory 1120, and the interface 11 30.
  • the processor 1110 is configured to perform subcarrier energy detection on a first OFDM symbol of an uplink subframe corresponding to a second user terminal other than the cell where the data transmission terminal is located; and determine, according to the energy detection result, the data transmission terminal and the second Interference between user terminals; selecting a second user terminal that has the least interference to the data transmission terminal according to the interference situation; and starting energy on the nth OFDM symbol of the uplink subframe corresponding to the second user terminal with the least interference Low subcarriers perform D2D data transmission.
  • the specific process of determining the interference between the data transmission terminal and the second user terminal according to the energy detection result is: according to the strength of the subcarrier energy on the first OFDM symbol of the uplink subframe corresponding to the second user terminal A judgment is made; the weaker the subcarrier energy on the first OFDM symbol of the uplink subframe corresponding to the second user terminal, the smaller the interference between the data transmission terminal and the second terminal user.
  • the memory 1120 is used to store the execution flow of the processor 11 10 .
  • the interface 11 30 is used for D2D data transmission with other user terminals.
  • the data transmission method and the terminal provided by the embodiment of the present invention detect and find the user terminal with the least interference to the user terminal, and reuse the time-frequency resource of the user terminal with the least interference, so that the user terminal is used before the user terminal performs the D2D data transmission.
  • the interference caused by cellular transmissions during D2D transmission is minimized.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field Any other form of storage medium known.

Abstract

本发明涉及一种数据传输方法及终端。该数据传输方法包括:第一用户终端检测该第一用户终端所在蜂窝以外的第二用户终端的PDCCH(S201),从所述PDCCH中获取编码调制方式(MCS)信息(S202);根据所述MCS信息判断所述第一用户终端与所述第二用户终端之间的干扰情况(S203);根据所述干扰情况,选择对于所述第一用户终端干扰最小的第二用户终端(S204);所述第一用户终端复用所述干扰最小的第二用户终端的上行时频资源进行D2D数据传输(S205)。

Description

数据传输方法及终端 技术领域
本发明涉及通信领域, 尤其涉及一种数据传输方法及终端。 背景技术
现有的 3G , 4G蜂窝移动通信系统属于典型的基础设施网络, 利用多个小 功率发射机代替一个大功率发射机。 每个小发射区对应的小覆盖成为一个小 区, 每个小区分配一组信道, 对应于一组无线资源, 相邻小区使用不同的无 线资源。 因此, 小区之间互相之间不会形成干扰。 相距较远的小区可以重复 使用相同的无线资源(即无线信道资源的空间复用), 从而使系统容量大幅度 提! ¾。
D2D ( Dev i ce-to-Dev i ce )通信不需要基站或接入节点的控制, 通信或组 网非常灵活。 在蜂窝移动通信系统的终端之间隐去终端自组织通信方式, 即 D2D通信方式,一个直接的优势是对于近在咫尺的局部业务可以不经过基站而 直接通过终端之间中继转发来完成, 从而减少对基站资源的占用; 二是能够 弥补预设网络的覆盖缺陷, 消除现有蜂窝移动通信系统的覆盖区域内总会存 在一些盲区的缺陷; 三是能够降低功耗, 当通信有一个长路径转变为几个短 路径来实现时, 这几个短路径的功率和将小于一个长路径所需要的功率。 ; 另外, 引入自组织方式可将使整个移动通信系统通量得到提高, 并且增加复 用空间。
采用 D2D通信方式可以在非授权频段进行传输, 但是由于非授权频段的 干扰不可控, 特别是当非授权频段上的业务越来越多时, 干扰也会越来越严 重, 从而严重影响 D2D传输的性能。 发明内容
本发明实施例提供了一种数据传输方法及终端。 在用户终端进行 D2D数 据传输之前, 该用户终端所在蜂窝以外的用户终端, 复用对于该用户终端干 扰最小的用户终端的时频资源向其他用户终端进行 D2D数据传输, 从而减小 了蜂窝传输给 D2D传输带来的干扰。
第一方面, 本发明实施例提供了一种数据传输方法, 所述方法包括: 第一用户终端检测该第一用户终端所在蜂窝以外的第二用户终端的物理 下行控制信道 PDCCH, 从所述 PDCCH中获取编码调制方式信息;
根据所述编码调制方式信息判断所述第一用户终端与所述第二用户终端 之间的干扰情况;
根据所述干扰情况, 选择对于所述第一用户终端干扰最小的第二用户终 端;
所述第一用户终端复用所述干扰最小的第二用户终端的上行时频资 源进行 D2D数据传输。
第二方面, 本发明实施例提供了一种数据传输方法, 所述方法包括: 根据第一用户终端与该第一用户终端所在蜂窝以外的第二用户终端之间 的干扰数据建立干扰对应表;
根据所述干扰对应表查找多个对于所述第一用户终端干扰小的第二用户 终端;
从所述多个对于所述第一用户终端干扰小的第二用户终端中选择可用的 干扰最小的第二用户终端;
所述第一用户终端复用所述可用的干扰最小的第二用户终端的上行 时频资源进行 D2D数据传输。
第三方面, 本发明实施例提供了一种数据传输方法, 所述方法包括: 第一用户终端在该第一用户终端所在蜂窝以外的第二用户终端对应的上 行子帧的第一个正交频分复用 OFDM符号上进行子载波能量检测; 根据能量检测结果, 判断所述第一用户终端与所述第二用户终端之间的 干扰情况;
根据所述干扰情况, 选择对于所述第一用户终端干扰最小的第二用户终 端;
所述第一用户终端复用所述干扰最小的第二用户终端对应的上行子帧的 第 n个 OFDM符号上开始的能量低的子载波进行 D2D数据传输。
第四方面, 本发明实施例提供了一种数据传输终端, 所述终端包括: 检测单元, 用于检测所述数据传输终端所在蜂窝以外的第二用户终端的 PDCCH , 从所述 PDCCH中获取编码调制方式信息;
判断单元, 用于根据所述编码调制方式信息判断所述数据传输终端与所 述第二用户终端之间的干扰情况;
选择单元, 用于根据所述干扰情况, 选择对于所述数据传输终端干扰最 小的第二用户终端;
传输单元, 用于复用所述干扰最小的第二用户终端的上行时频资源进 行 D2D数据传输。
第五方面, 本发明实施例提供了一种数据传输终端, 所述终端包括: 建立单元, 用于根据所述数据传输终端与所述数据传输终端所在蜂窝以 外的第二用户终端之间的干扰数据建立干扰对应表;
查找单元, 用于根据所述干扰对应表查找多个对于所述数据传输终端干 扰最小的第二用户终端;
选择单元, 用于从所述多个对于所述数据传输终端干扰小的第二用户终 端中选择可用的干扰最小的第二用户终端;
传输单元, 用于复用所述可用的干扰最小的第二用户终端的上行时频 资源进行 D2 D数据传输。
第六方面, 本发明实施例提供了一种数据传输终端, 所述终端包括: 检测单元, 用于在所述数据传输终端所在蜂窝以外的第二用户终端对应 的上行子帧的第一个 OFDM符号上进行子载波能量检测;
判断单元, 用于根据能量检测结果, 判断所述数据传输终端与所述第二 用户终端之间的干扰情况;
选择单元, 用于根据所述干扰情况, 选择对于所述数据传输终端干扰最 小的第二用户终端;
传输单元, 用于复用所述干扰最小的第二用户终端对应的上行子帧的 第 n个 OFDM符号上开始的能量低的子载波进行 D2D数据传输。
本发明实施例提供的数据传输方法及终端, 在用户终端进行 D2D数据传 输之前, 检测并查找对于该用户终端干扰最小的用户终端, 复用干扰最小的 用户终端的时频资源, 使得用户终端在进行 D2D传输时受到的蜂窝传输造成 的干扰达到最小。 附图说明
图 1为为二维时频资源示意图;
图 2为本发明实施例一种数据传输方法流程图;
图 3为本发明实施例另一种数据传输方法流程图
图 4为本发明实施例又一种数据传输方法流程图;
图 5为本发明实施例利用上行子帧中的子载波传输数据的示意图; 图 6为本发明实施例一种数据传输终端的结构示意图;
图 7为本发明实施例另一种数据传输终端的结构示意图;
图 8为本发明实施例又一种数据传输终端的结构示意图;
图 9为本发明实施例一种数据传输终端的另一种结构示意图; 图 1 0为本发明实施例另一种数据传输终端的另一种结构示意图; 图 1 1为本发明实施例又一种数据传输终端的另一种结构示意图。 具体实施方式
为了使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明作进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部份实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的 范围。
本发明实施例中的数据传输方法应用于长期演进( Long Term Evolution, LTE) 系统下 D2D用户终端之间的数据传输。 LTE系统中数据是在二维的时 频资源上进行传输的。 如图 1所示, 其为二维时频资源示意图, 横轴为时域, 纵轴为频域, 数据传输时所使用的最小的资源单位为资源粒子 (Resource Element, RE) 。 实际上, 数据的调度和传输是以资源块(Resource Block, RB) 为单位进行的, 一个资源块是由二维时频上的多个资源粒子构成的。 一 般的, 一个资源块由时域上 7 个正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM)符号, 频 i或上 12个子载波构成。 D2D用户终 端通过复用干扰小的蜂窝用户终端的时频资源向另一 D2D用户终端进行数据 传输, 使得蜂窝传输与 D2D传输的干扰达到最小。
需要说明的是, 本发明实施例应用于 LTE系统, 但不仅限于 LTE系统, 可采用其他同等的系统进行替换。
下面以图 2为例详细说明本发明实施例一种数据传输方法, 图 2为本发 明实施例一种数据传输方法流程图。 本实施例的执行主体为用于 D2D数据传 输的用户终端。
首先, 需要说明的是, 蜂窝用户终端利用物理下行分享信道(Physical Downlink Shared Channel, PDSCH )进行数据传输, 为了便于蜂窝用户终端 正确接收数据, 基站通过物理下行控制信道( Physical Downlink Control Channel, PDCCH )指示数据传输时所占用的资源块。 D2D用户终端通过检测蜂 窝用户终端的 PDCCH,便可判断出蜂窝用户终端与 D2D用户终端之间的干扰情 况, 然后复用干扰小的蜂窝用户终端的时频资源进行 D2D数据传输。
本实施例的一种数据传输方法的步骤过程如下:
步骤 S201 , 第一用户终端检测该第一用户终端所在蜂窝以外的第二用 户终端的 PDCCH。
其中, 第一用户终端为利用 D2D进行数据传输的用户终端。 第二用户 终端为在第一用户终端所在蜂窝以外的用户终端, 该用户终端利用蜂窝进 行数据传输。 在同一蜂窝内的用户终端距离近, 因此彼此间的干扰大, 所 以第一用户终端只检测其所在蜂窝以外的利用蜂窝进行数据传输的用户终 端, 即第二用户终端。
需要说明的是, 第一用户终端可检测一个第二用户终端, 也可同时检 测多个第二用户终端。
PDCCH中携带有编码调制方式 (Modulation and Coding Scheme, MCS ) 信息, 混合自动重传请求 ( Hybrid Automatic Repeat reQuest, HARQ )信 息等信息, 因此检测第二用户终端的 PDCCH以便获取相应的信息。
优选地, 第一用户终端通过第二用户终端的 ID 对该第二用户终端的
PDCCH进行检测。
优选地, 第一用户终端任意选择 PDCCH进行分析, 通过分析该 PDCCH 指示的时频资源信息等字段确定其数据长度是否符合规范, 从而判断该 PDCCH 是否是第二用户终端 (即利用蜂窝进行数据传输的用户终端) 的合 理 PDCCH。如果该 PDCCH是第二用户终端的合理 PDCCH, 则对该 PDCCH进行 检测。
步骤 S202, 从 PDCCH中获取 MCS信息。
MCS 信息反映了用户终端的信噪比 (Signal Noise Ratio) , 而信噪 比近反映了用户终端与基站间的距离远近。 第二用户终端距离基站的距离 越远, 说明第二用户终端与第一用户终端之间的距离越远, 彼此间的干扰 也就越小。 步骤 S203,根据 MCS信息判断第一用户终端与第二用户终端之间的干 扰情况。
Figure imgf000008_0001
表 1
在 LTE系统中, MCS信息共有 32等级。 如表 1所示, 其为 LTE系统中 的 MCS 信息表, 每个等级的 MCS 信息中对应一个调制阶数 (modulation order ) , 同时对应一个传输块引索, 传输块引索隐含的指示了数据传输时 所采用的编码速率。编码速率差距越大信噪比差距越大。从表中可以看出, 同一调制阶数的 MCS信息的编码速率相差较小, 因此为了筒化操作, 可通 过 MCS信息对应的调制阶数判断第一用户终端与第二用户终端之间的干扰 情况。
具体的, 比较第一用户终端的 MCS信息对应的调制阶数与第二用户终 端的 MCS信息对应的调制阶数。 第一用户终端的 MCS信息对应的调制阶数 与第二用户终端的 MCS信息对应的调制阶数相差越大, 则第一用户终端与 第二用户终端之间的干扰越小。 利用该判断方法能够减少第一用户终端检 测和分析第二用户终端 PDCCH的次数, 并且可以降低复杂度。
步骤 S204 , 根据干扰情况, 选择对于第一用户终端干扰最小的第二用 户终端。
具体的,根据步骤 S203中的判断结果,选择与第一用户终端的 MCS信息 对应的调制阶数相差最大的第二用户终端。
需要说明的是, 第一用户终端的 MCS信息对应的调制阶数与第二用户 终端的 MCS信息对应的调制阶数只要不同, 该第一用户终端与第二用户终 端之间的干扰就比较小了, 所以当与第一用户终端的 MCS信息对应的调制 阶数相差最大的第二用户终端在由于特殊情况不能选择时, 也可选择与第 一用户终端的 MCS信息对应的调制阶数不同的第二用户终端。
步骤 S 205 ,第一用户终端复用干扰最小的第二用户终端的上行时频资 源进行 D2D数据传输。
在第一用户终端选择好干扰最小第二用户终端后, 复用该第二用户终 端的上行时频资源向另一用户终端发送 D2D数据, 从而使得第一用户终端 向其他用户终端进行 D2D数据传输时,大幅度减小蜂窝传输所造成的干扰。
下面以图 3为例详细说明本发明实施例另一种数据传输方法, 图 3为本 发明实施例另一种数据传输方法流程图。
本实施例中的数据传输方法通过建立干扰对应表查找干扰最小的用户终 端。 如图 3所示, 本实施例提供的数据传输方法包括以下步骤: 步骤 S301 , 根据第一用户终端与该第一用户终端所在蜂窝以外的第二 用户终端之间的干扰数据建立干扰对应表。
其中, 第一用户终端为利用 D2D进行数据传输的用户终端。 第二用户 终端为在第一用户终端所在蜂窝以外的用户终端, 该用户终端利用蜂窝进 行数据传输。 在同一蜂窝内的用户终端距离近, 因此彼此间的干扰大, 所 以第一用户终端只检测其所在蜂窝以为的利用蜂窝进行数据传输的用户终 端, 即第二用户终端。
优选地,干扰对应表的建立方法为检测第一用户终端所在蜂窝以外的第 二用户终端的 PDCCH; 在根据该第二用户终端进行数据传输时 PDCCH指示 的时频资源信息对应的子帧进行 PDSCH信号能量检测; PDSCH信号能量越 小, 则第一用户终端与第二用户终端之间的干扰越小; 根据该检测结果建 立第一用户终端与多个第二用户终端间的干扰对应表。
其中, 第一用户终端通过第二用户终端的 ID 对该第二用户终端的 PDCCH进行检测。 或者, 第一用户终端任意选择 PDCCH进行分析, 通过分 析该 PDCCH指示的时频资源信息等字段确定其数据长度是否符合规范, 从 而判断该 PDCCH是否是第二用户终端 (即利用蜂窝进行数据传输的用户终 端) 的合理 PDCCH。 如果该 PDCCH是第二用户终端的合理 PDCCH , 则对该 PDCCH进行检测。
优选地, 干扰对应表的建立方法为检测第一用户终端所在蜂窝以外的第 二用户终端的 Sounding信号; Sounding信号越弱, 则第一用户终端与第二终 端用户之间的干扰越小; 根据该检测结果建立第一用户终端与多个第二用户 终端间的干扰对应表。
步骤 S302 , 根据干扰对应表查找多个对于第一用户终端干扰小的第二用 户终端。
干扰对应表中具有第一用户终端与多个第二用户终端之间的干扰大小情 况。 根据干扰对应表查找多个对于第一用户终端干扰小的第二用户终端。 所述干扰小的程度可根据不同的情况进行不同的选择。
步骤 S 303 , 从多个对于第一用户终端干扰小的第二用户终端中选择可用 的干扰最小的第二用户终端;
当干扰对应表中对于第一用户终端干扰最小的第二用户终端由于特 殊情况无法选择时, 选择干扰对应表中对于第一用户终端干扰相对较小的 第二用户终端, 即选择可用的干扰最小的第二用户终端。
步骤 S 304 ,第一用户终端复用可用的干扰最小的第二用户终端的上行 时频资源进行 D2 D数据传输。 在第一用户终端选择好可用的干扰最小第二 用户终端后, 复用该第二用户终端的上行时频资源向另一用户终端发送 D2D数据, 从而使得第一用户终端向其他用户终端进行 D2D数据传输时, 大幅度减小蜂窝传输所造成的干扰。
下面以图 4为例详细说明本发明实施例又一种数据传输方法, 图 4为本 发明实施例又一种数据传输方法流程图。
本实施例中的数据传输方法通过子帧的第一个 OFDM符号上进行子载波 能量检测, 查找干扰最小的用户终端。 如图 4所示, 本实施例提供的数据传 输方法包括以下步骤:
步骤 S401 , 第一用户终端在该第一用户终端所在蜂窝以外的第二用户终 端进行信息传输时对应的上行子帧的第一个 OFDM符号上进行子载波能量检 测。
其中, 第一用户终端为利用 D2 D进行数据传输的用户终端。 第二用户 终端为在第一用户终端所在蜂窝以外的用户终端, 该用户终端利用蜂窝进 行数据传输。 在同一蜂窝内的用户终端距离近, 因此彼此间的干扰大, 所 以第一用户终端只检测其所在蜂窝以为的利用蜂窝进行数据传输的用户终 端, 即第二用户终端。
用户终端在相应的上行子帧上进行数据传输, 一个子帧由多个 OFDM符号 组成。每个 OFDM符号上有多个子载波。 OFDM符号和子载波构成数据传输所用 的时频资源。 判断第一用户终端与第二用户终端之间的干扰情况只需要对相 应的上行子帧的第一个 OFDM符号上的子载波进行能量检测。
需要说明的是, 第一用户终端可检测一个第二用户终端, 也可同时检 测多个第二用户终端。
步骤 S402 , 根据能量检测结果, 判断第一用户终端与第二用户终端之间 的干扰情况。
具体的, 根据第二用户终端对应的上行子帧的第一个 OFDM符号上的子载 波能量的强弱进行判断, 第二用户终端对应的上行子帧的第一个 OFDM符号上 的子载波能量越弱, 第一用户终端与第二终端用户之间的干扰越小。
步骤 S403 , 根据干扰情况, 选择对于第一用户终端干扰最小的第二用户 终端。
根据步骤 S402 中的判断结果, 选择第一个 OFDM符号上的子载波能量的 最弱上行子帧对应的第二用户终端。
需要说明的是, 当第一个 OFDM 符号上的子载波能量的最弱上行子帧 对应的第二用户终端由于特殊情况无法选择时,可选择第一个 OFDM符号上 的子载波能量的相对较弱上行子帧对应的第二用户终端。
步骤 S404 ,第一用户终端复用干扰最小的第二用户终端对应的上行子 帧的第 n个 OFDM符号上开始的能量低的子载波进行 D2 D数据传输。
如图 5 所示, 其为本发明实施例利用上行子帧中的子载波传输数据的示 意图。 第一用户终端对第二用户终端对应的上行子帧的第一个 OFDM符号上进 行子载波能量检测时, 会产生时延。 因此, 在确定干扰最小的第二用户终端 后, 只能从时延后的 OFDM符号 (即第 n个 OFDM符号)上开始的能量的子载 波进行 D2D数据传输。 所用的检测时延越短, n越小, D2D数据传输可利用的 时频资源越多。
并且, 每个 OFDM符号上有多个子载波, 子载波的能量越低, 其传输数据 时的干扰越小。 因此, 选用能量较低的子载波进行 D2D数据传输。 优选地, 第一用户终端复用干扰最小的第二用户终端对应的上行子帧的 第 n个 OFDM符号上开始的能量低的一个或多个子载波进行 D2D数据传输。
第一用户终端复用干扰最小的第二用户终端对应的上行子帧的第 n 个 OFDM符号上开始的能量低的子载波向其他用户终端发送 D2D数据, 从而使得 第一用户终端向其他用户终端进行 D2D数据传输时, 大幅度减小蜂窝传输所 造成的干扰。
相应的, 本发明实施例提供一种数据传输终端, 如图 6 所示, 其为本发 明实施例一种数据传输终端的结构示意图。 该数据传输终端包括: 检测单元 610 , 判断单元 620 , 选择单元 630及传输单元 640。
检测单元 610用于检测该数据传输终端所在蜂窝以外的第二用户终端的 PDCCH。
其中, 数据传输终端利用 D2D进行数据传输。 第二用户终端为在该数 据传输终端所在蜂窝以外的用户终端,该用户终端利用蜂窝进行数据传输。 在同一蜂窝内的用户终端距离近,因此彼此间的干扰大,所以检测单元 610 只检测该数据传输终端所在蜂窝以外的利用蜂窝进行数据传输的用户终 端, 即第二用户终端。
需要说明的是, 检测单元 610可检测一个第二用户终端, 也可同时检 测多个第二用户终端。
PDCCH中携带有 MCS信息, HARQ (信息等信息, 因此检测第二用户终 端的 PDCCH以便获取相应的信息。
优选地, 检测单元 610通过第二用户终端的 ID对该第二用户终端的 PDCCH进行检测。
优选地, 检测单元 610任意选择 PDCCH进行分析, 通过分析该 PDCCH 指示的时频资源信息等字段确定其数据长度是否符合规范, 从而判断该 PDCCH 是否是第二用户终端 (即利用蜂窝进行数据传输的用户终端) 的合 理 PDCCH。如果该 PDCCH是第二用户终端的合理 PDCCH , 则对该 PDCCH进行 检测。
检测单元 610还用于从 PDCCH中获取 MCS信息。
MCS信息反映了用户终端的信噪比,而信噪比近反映了用户终端与基站间 的距离远近。 第二用户终端距离基站的距离越远, 说明第二用户终端与该数 据传输终端之间的距离越远, 彼此间的干扰也就越小。
判断单元 620用于根据 MCS信息判断该数据传输终端与第二用户终端 之间的干扰情况。
具体的, 判断单元 620比较数据传输终端的 MCS信息对应的调制阶数 与第二用户终端的 MCS信息对应的调制阶数。 该数据传输终端的 MCS信息 对应的调制阶数与第二用户终端的 MCS信息对应的调制阶数相差越大, 则 该数据传输终端与第二用户终端之间的干扰越小。
选择单元 630用于根据干扰情况, 选择对于该数据传输终端干扰最小 的第二用户终端。
具体的, 选择单元 630根据判断单元 620的判断结果, 选择与该数据传 输终端的 MC S信息对应的调制阶数相差最大的第二用户终端。
需要说明的是, 该数据传输终端的 MCS信息对应的调制阶数与第二用 户终端的 MCS信息对应的调制阶数只要不同, 该数据传输终端与第二用户 终端之间的干扰就比较小了, 所以当与该数据传输终端的 MCS信息对应的 调制阶数相差最大的第二用户终端在由于特殊情况不能选择时, 也可选择 与该数据传输终端的 MCS信息对应的调制阶数不同的第二用户终端。
传输单元 640用于复用干扰最小的第二用户终端的上行时频资源进行 D2D数据传输。
在选择单元 630选择好干扰最小第二用户终端后, 传输单元 640复用 该第二用户终端的上行时频资源向另一用户终端发送 D2D数据, 从而使得 该数据传输终端向其他用户终端进行 D2D数据传输时, 大幅度减小蜂窝传 输所造成的干扰。
上述数据传输终端是用来实现图 2所述实施例所述的数据传输方法, 所 包括的各个单元只是按照功能逻辑进行划分的, 但并不局限于上述的划分, 只要能够实现相应的功能即可; 另外, 各功能单元的具体名称也只是为了便 于相互区分, 并不用于限制本发明的保护范围。
相应的, 本发明实施例提供另一种数据传输终端, 如图 7 所示, 其为本 发明实施例另一种数据传输终端的结构示意图。 该数据传输终端包括: 建立 单元 710 , 查找单元 720 , 选择单元 730及传输单元 740。
建立单元 710用于根据该数据传输终端与该数据传输终端所在蜂窝以外 的第二用户终端之间的干扰数据建立干扰对应表。
其中, 数据传输终端利用 D2D进行数据传输。 第二用户终端为在该数 据传输终端所在蜂窝以外的用户终端,该用户终端利用蜂窝进行数据传输。 在同一蜂窝内的用户终端距离近, 因此彼此间的干扰大, 所以只检测该数 据传输终端所在蜂窝以外的利用蜂窝进行数据传输的用户终端, 即第二用 户终端。
优选地, 建立单元 710具体用于检测该数据传输终端所在蜂窝以外的 第二用户终端的 PDCCH; 在根据该第二用户终端进行数据传输时 PDCCH指 示的时频资源信息对应的子帧进行 PDSCH信号能量检测; PDSCH信号能量 越小, 则该数据传输终端与第二用户终端之间的干扰越小; 根据该检测结 果建立该数据传输终端与多个第二用户终端间的干扰对应表。
其中, 该数据传输端通过第二用户终端的 ID 对该第二用户终端的 PDCCH进行检测。 或者, 该数据传输终端任意选择 PDCCH进行分析, 通过 分析该 PDCCH指示的时频资源信息等字段确定其数据长度是否符合规范, 从而判断该 PDCCH是否是第二用户终端 (即利用蜂窝进行数据传输的用户 终端)的合理 PDCCH。 如果该 PDCCH是第二用户终端的合理 PDCCH , 则对该 PDCCH进行检测。 优选地, 建立单元 71 0具体用于检测该数据传输终端所在蜂窝以外的 第二用户终端的 Sound i ng信号; Sound i ng信号越弱, 则该数据传输终端 与第二终端用户之间的干扰越小; 根据该检测结果建立该数据传输终端与 多个第二用户终端间的干扰对应表。
查找单元 720用于根据干扰对应表查找多个对于该数据传输终端干扰小 的第二用户终端。
干扰对应表中具有第一用户终端与多个第二用户终端之间的干扰大小情 况。 根据干扰对应表查找多个对于第一用户终端干扰小的第二用户终端。 所述干扰小的程度可根据不同的情况进行不同的选择。 选择单元 730用于从多个对于数据传输终端干扰小的第二用户终端中选 择可用的干扰最小的第二用户终端;
当干扰对应表中对于第一用户终端干扰最小的第二用户终端由于特殊情 况无法选择时, 选择单元 730选择干扰对应表中对于第一用户终端干扰相对 较小的第二用户终端, 即选择单元 730选择可用的干扰最小的第二用户终端。
传输单元 740用于复用可用的干扰最小的第二用户终端的上行时频资源 进行 D2D数据传输。
选择单元 730选择好可用的干扰最小第二用户终端后, 传输单元 740 复用该第二用户终端的上行时频资源向另一用户终端发送 D2D数据, 从而 使得该数据传输终端向其他用户终端进行 D2D数据传输时, 大幅度减小蜂 窝传输所造成的干扰。
上述数据传输终端是用来实现图 3 所述实施例所述的数据传输方法, 所 包括的各个单元只是按照功能逻辑进行划分的, 但并不局限于上述的划分, 只要能够实现相应的功能即可; 另外, 各功能单元的具体名称也只是为了便 于相互区分, 并不用于限制本发明的保护范围。
相应的, 本发明实施例提供又一种数据传输终端, 如图 8 所示, 其为本 发明实施例又一种数据传输终端的结构示意图。 该数据传输终端包括: 检测 单元 81 0 , 判断单元 820 , 选择单元 8 30及传输单元 840。
检测单元 81 0用于在该数据传输终端所在蜂窝以外的第二用户终端进行 信息传输时对应的上行子帧的第一个 OFDM符号上进行子载波能量检测。
其中, 数据传输终端利用 D2D进行数据传输。 第二用户终端为在该数据 传输终端所在蜂窝以外的用户终端, 该用户终端利用蜂窝进行数据传输。 在 同一蜂窝内的用户终端距离近, 因此彼此间的干扰大, 所以检测单元 81 0 只 检测该数据传输终端所在蜂窝以外的利用蜂窝进行数据传输的用户终端, 即 第二用户终端。
用户终端在相应的上行子帧上进行数据传输, 一个子帧由多个 OFDM符号 组成。每个 OFDM符号上有多个子载波。 OFDM符号和子载波构成数据传输所用 的时频资源。 判断数据传输终端与第二用户终端之间的干扰情况, 检测单元 81 0只需要对相应的上行子帧的第一个 0FDM符号上的子载波进行能量检测。
需要说明的是, 检测单元 8 1 0可检测一个第二用户终端, 也可同时检 测多个第二用户终端。
判断单元 82 0用于根据能量检测结果, 判断该数据传输终端与第二用 户终端之间的干扰情况。
判断单元 820具体用于根据第二用户终端对应的上行子帧的第一个 0FDM 符号上的子载波能量的强弱进行判断, 第二用户终端对应的上行子帧的第一 个 0FDM符号上的子载波能量越弱, 该数据传输终端与第二终端用户之间的干 扰越小。
选择单元 8 30用于根据干扰情况, 选择对于该数据传输终端干扰最小的 第二用户终端。
根据判断单元 820的判断结果, 选择第一个 0FDM符号上的子载波能量的 最弱上行子帧对应的第二用户终端。
需要说明的是, 当第一个 0FDM符号上的子载波能量的最弱上行子帧对应 的第二用户终端由于特殊情况选择单元 8 30无法选择时, 选择单元 8 30可选 择第一个 OFDM符号上的子载波能量的相对较弱上行子帧对应的第二用户终 端。
传输单元 840 用于复用干扰最小的第二用户终端对应的上行子帧的第 n 个 OFDM符号上开始的能量低的子载波进行 D2D数据传输。
检测单元 81 0对第二用户终端对应的上行子帧的第一个 OFDM符号上进行 子载波能量检测时, 会产生时延。 因此, 在确定干扰最小的第二用户终端后, 传输单元 840只能从时延后的 OFDM符号 (即第 n个 0FDM符号)上开始的能 量的子载波进行 D2D数据传输。 检测单元 81 0所用的检测时延越短, n越小, D2D数据传输可利用的时频资源越多。
并且, 每个 0FDM符号上有多个子载波, 子载波的能量越低, 其传输数据 时的干扰越小。 因此, 传输单元 840选用能量较低的子载波进行 D2D数据传 输。
优选地, 传输单元 840 复用干扰最小的第二用户终端对应的上行子帧的 第 n个 0FDM符号上开始的能量低的一个或多个子载波进行 D2D数据传输。
传输单元 840 复用干扰最小的第二用户终端对应的上行子帧的第 n 个 0FDM符号上开始的能量低的子载波向其他用户终端发送 D2D数据, 从而使得 该数据传输终端向其他用户终端进行 D2D数据传输时, 大幅度减小蜂窝传输 所造成的干扰。
上述数据传输终端是用来实现图 4所述实施例所述的数据传输方法, 所 包括的各个单元只是按照功能逻辑进行划分的, 但并不局限于上述的划分, 只要能够实现相应的功能即可; 另外, 各功能单元的具体名称也只是为了便 于相互区分, 并不用于限制本发明的保护范围。
另外, 本发明实施例提供的实现图 2所述实施例所述的数据传输方法的 数据传输终端还可以采用如下方式实现, 如图 9所示, 其为本发明实施例 一种数据传输终端的另一种结构示意图。 该数据传输终端包括: 处理器 910、 存储器 920 , 接口 930及系统总线 940。
系统总线 940用于连接处理器 910、 存储器 920和接口 930。
处理器 910 用于检测该数据传输终端所在蜂窝以外的第二用户终端的 PDCCH, 从该 PDCCH中获取 MCS信息; 根据 MCS信息判断该数据传输终端与第 二用户终端之间的干扰情况; 根据干扰情况, 选择对于该数据传输终端干扰 最小的第二用户终端;复用干扰最小的第二用户终端的上行时频资源进行 D 2 D 数据传输。
其中, 根据 MCS信息判断该数据传输终端与第二用户终端之间的干扰情 况的具体过程为: 每个 MCS信息对应一个调制阶数; 在进行判断时, 根据该 数据传输终端的 MCS信息对应的调制阶数与第二用户终端的 MCS信息对应的 调制阶数的大小进行比较; 该数据传输终端的 MCS信息对应的调制阶数与第 二用户终端的 MCS信息对应的调制阶数相差越大, 该数据传输终端与第二终 端用户之间的干扰越小。
存储器 920用于存储处理器 910的执行流程。
接口 930用于与其它用户终端进行 D2D数据传输。
本发明实施例提供的实现图 3所述实施例所述的数据传输方法的数据传 输终端还可以采用实现方式如下,如图 10所示, 其为本发明实施例另一种 数据传输终端的另一种结构示意图。 该数据传输终端包括: 处理器 1010、 存储器 1020 , 接口 1030及系统总线 1040。
系统总线 1030用于连接处理器 1010存储器 1020和接口 1030。
处理器 1010用于根据该数据传输终端与该数据传输终端所在蜂窝以外的 第二用户终端之间的干扰数据建立干扰对应表; 根据干扰对应表查找多个对 于该数据传输终端干扰最小的第二用户终端; 从多个对于第一用户终端干扰 小的第二用户终端中选择可用的干扰最小的第二用户终端; 复用可用的干扰 最小的第二用户终端的上行时频资源进行 D2D数据传输。
其中, 建立干扰对应表的过程为: 优选地,检测该数据传输终端所在蜂窝以外的第二用户终端的 PDCCH; 在 根据第二用户终端进行数据传输时 PDCCH指示的时频资源信息对应的子帧进 行 PDSCH信号能量检测; PDSCH信号能量越小, 该数据传输终端与第二用户终 端之间的干扰越小, 从而建立该数据传输终端与多个第二用户终端的干扰对 应表。
优选地, 检测该数据传输终端所在蜂窝以外的第二用户终端的 Sound ing 信号; Sound ing信号越弱, 该数据传输终端与第二终端用户之间的干扰越小 从而建立该数据传输终端与多个第二用户终端的干扰对应表。
存储器 1020用于存储处理器 1010的执行流程。
接口 1030用于与其它用户终端进行 D2D数据传输。
本发明实施例提供的实现图 4所述实施例所述的数据传输方法的数据传 输终端还可以采用如下方式实现, 如图 11所示, 其为本发明实施例又一种数 据传输终端的另一种结构示意图。 该数据传输终端包括: 处理器 1110、 存储 器 1 120 , 接口 11 30及系统总线 1140。
系统总线 11 30用于连接处理器 11 10、 存储器 1120和接口 11 30。
处理器 1 110用于在该数据传输终端所在蜂窝以外的第二用户终端对应的 上行子帧的第一个 OFDM符号上进行子载波能量检测; 根据能量检测结果, 判 断该数据传输终端与第二用户终端之间的干扰情况; 根据干扰情况, 选择对 于该数据传输终端干扰最小的第二用户终端; 复用干扰最小的第二用户终端 对应的上行子帧的第 n个 OFDM符号上开始的能量低的子载波进行 D2D数据传 输。
其中, 根据能量检测结果, 判断该数据传输终端与第二用户终端之间的 干扰情况具体过程为: 根据第二用户终端对应的上行子帧的第一个 0FDM符号 上的子载波能量的强弱进行判断; 第二用户终端对应的上行子帧的第一个 0FDM符号上的子载波能量越弱, 该数据传输终端与第二终端用户之间的干扰 越小。 存储器 1120用于存储处理器 11 10的执行流程。
接口 11 30用于与其它用户终端进行 D2D数据传输。
利用本发明实施例提供的数据传输方法及终端, 在用户终端进行 D2D数 据传输之前, 检测并查找对于该用户终端干扰最小的用户终端, 复用干扰最 小的用户终端的时频资源, 使得用户终端在进行 D2D传输时受到的蜂窝传输 造成的干扰达到最小。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 ( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 CD-R0M、 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种数据传输方法, 其特征在于, 所述方法包括:
第一用户终端检测该第一用户终端所在蜂窝以外的第二用户终端的物理 下行控制信道 PDCCH , 从所述 PDCCH中获取编码调制方式信息;
根据所述编码调制方式信息判断所述第一用户终端与所述第二用户终端 之间的干扰情况;
根据所述干扰情况, 选择对于所述第一用户终端干扰最小的第二用户终 端;
所述第一用户终端复用所述干扰最小的第二用户终端的上行时频资源进 行 D2D数据传输。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述编码调制 方式信息判断所述第一用户终端与所述第二用户终端之间的干扰情况的步 骤, 包括:
所述编码调制方式信息对应一个调制阶数;
根据所述第一用户终端的编码调制方式信息对应的调制阶数与所述第二 用户终端的编码调制方式信息对应的调制阶数的大小进行比较;
所述第一用户终端的编码调制方式信息对应的调制阶数与所述第二用户 终端的编码调制方式信息对应的调制阶数相差越大, 所述第一用户终端与所 述第二终端用户之间的干扰越小。
3、 根据权利要求 1 所述的方法, 其特征在于, 所述第一用户终端检 测该第一用户终端所在蜂窝以外的第二用户终端的 PDCCH , 包括:
所述第一用户终端通过所述第二用户终端的 ID检测所述第二用户终端的 PDCCH。
4、 根据权利要求 1 所述的方法, 其特征在于, 所述第一用户终端检 测该第一用户终端所在蜂窝以外的第二用户终端的 PDCCH , 包括:
任意选择 PDCCH进行分析, 判断该 PDCCH是否是所述第二用户终端的合 理 PDCCH;
如果是所述第二用户终端的合理 PDCCH , 则对该 PDCCH进行检测。
5、 一种数据传输方法, 其特征在于, 所述方法包括:
根据第一用户终端与该第一用户终端所在蜂窝以外的第二用户终端之间 的干扰数据建立干扰对应表;
根据所述干扰对应表查找多个对于所述第一用户终端干扰小的第二用户 终端;
从所述多个对于所述第一用户终端干扰小的第二用户终端中选择可用的 干扰最小的第二用户终端;
所述第一用户终端复用所述可用的干扰最小的第二用户终端的上行时频 资源进行 D2D数据传输。
6、 根据权利要求 5 所述的方法, 其特征在于, 所述根据第一用户终 端与该第一用户终端所在蜂窝以外的第二用户终端之间的干扰数据建立干 扰对应表, 具体过程为:
检测所述第一用户终端所在蜂窝以外的第二用户终端的 PDCCH;
在根据所述第二用户终端进行数据传输时 PDCCH指示的时频资源信息对 应的子帧进行物理下行分享信道 PDSCH信号能量检测;
所述 PDSCH信号能量越小, 所述第一用户终端与所述第二用户终端之间 的干扰越小;
根据检测结果建立所述干扰对应表。
7、 根据权利要求 5 所述的方法, 其特征在于, 所述根据第一用户终 端与该第一用户终端所在蜂窝以外的第二用户终端之间的干扰数据建立干 扰对应表, 具体过程为:
检测所述第一用户终端所在蜂窝以外的第二用户终端的 Sound ing信号; 所述 Sound ing信号越弱, 所述第一用户终端与所述第二终端用户之间的 干扰越小; 根据检测结果建立所述干扰对应表。
8、 根据权利要求 6 所述的方法, 其特征在于, 所述检测所述第一用 户终端所在蜂窝以外的第二用户终端的 PDCCH , 包括:
所述第一用户终端通过所述第二用户终端的 I D检测所述第二用户终端的 PDCCH。
9、 根据权利要求 6 所述的方法, 其特征在于, 所述检测所述第一用 户终端所在蜂窝以外的第二用户终端的 PDCCH , 包括:
任意选择 PDCCH进行分析, 判断该 PDCCH是否是所述第二用户终端的合 理 PDCCH;
如果是所述第二用户终端的合理 PDCCH , 则对该 PDCCH进行检测。
1 0、 一种数据传输方法, 其特征在于, 所述方法包括:
第一用户终端在该第一用户终端所在蜂窝以外的第二用户终端对应的上 行子帧的第一个正交频分复用 OFDM符号上进行子载波能量检测;
根据能量检测结果, 判断所述第一用户终端与所述第二用户终端之间的 干扰情况;
根据所述干扰情况, 选择对于所述第一用户终端干扰最小的第二用户终 端;
所述第一用户终端复用所述干扰最小的第二用户终端对应的上行子帧的 第 n个 OFDM符号上开始的能量低的子载波进行 D2D数据传输。
1 1、 根据权利要求 1 0所述的方法, 其特征在于, 所述根据能量检测 结果, 判断所述第一用户终端与所述第二用户终端之间的干扰情况, 包括, 根据所述第二用户终端对应的上行子帧的第一个 OFDM符号上的子载波能 量的强弱进行判断;
所述第二用户终端对应的上行子帧的第一个 OFDM符号上的子载波能量越 弱, 所述第一用户终端与所述第二终端用户之间的干扰越小。
1 2、 根据权利要求 1 0所述的方法, 其特征在于, 所述第一用户终端 复用所述干扰最小的第二用户终端对应的上行子帧的第 n个 OFDM符号上开 始的能量低的子载波进行 D2D数据传输, 进一步为
所述第一用户终端复用所述干扰最小的第二用户终端对应的上行子帧的 第 n个 OFDM符号上开始的能量低的一个或多个子载波进行 D2D数据传输。
1 3、 一种数据传输终端, 其特征在于, 所述终端包括:
检测单元, 用于检测所述数据传输终端所在蜂窝以外的第二用户终端的 PDCCH , 从所述 PDCCH中获取编码调制方式信息;
判断单元, 用于根据所述编码调制方式信息判断所述数据传输终端与所 述第二用户终端之间的干扰情况;
选择单元, 用于根据所述干扰情况, 选择对于所述数据传输终端干扰最 小的第二用户终端;
传输单元, 用于复用所述干扰最小的第二用户终端的上行时频资源进行
D2D数据传输。
14、 根据权利要求 1 3所述的终端, 其特征在于, 所述判断单元, 具 体用于,
所述编码调制方式信息对应一个调制阶数;
根据所述数据传输终端的编码调制方式信息对应的调制阶数与所述第二 用户终端的编码调制方式信息对应的调制阶数的大小进行比较;
所述数据传输终端的编码调制方式信息对应的调制阶数与所述第二用户 终端的编码调制方式信息对应的调制阶数相差越大, 所述数据传输终端与所 述第二用户终端之间的干扰越小。
1 5、 根据权利要求 1 3所述的终端, 其特征在于, 所述检测模块, 具 体用于,
通过所述第二用户终端的 ID检测所述第二用户终端的 PDCCH。
1 6、 根据权利要求 1 3所述的终端, 其特征在于, 所述检测模块, 具 体用于, 任意选择 PDCCH进行分析, 判断该 PDCCH是否是所述第二用户终端的合 理 PDCCH;
如果是所述第二用户终端的合理 PDCCH , 则对该 PDCCH进行检测。
1 7、 一种数据传输终端, 其特征在于, 所述终端包括:
建立单元, 用于根据所述数据传输终端与所述数据传输终端所在蜂窝以 外的第二用户终端之间的干扰数据建立干扰对应表;
查找单元, 用于根据所述干扰对应表查找多个对于所述数据传输终端干 扰小的第二用户终端;
选择单元, 用于从所述多个对于所述数据传输终端干扰小的第二用户终 端中选择可用的干扰最小的第二用户终端;
传输单元, 用于复用所述可用的干扰最小的第二用户终端的上行时频资 源进行 D2D数据传输。
1 8、 根据权利要求 17所述的终端, 其特征在于, 所述建立单元, 具 体用于,
检测所述数据传输终端所在蜂窝以外的第二用户终端的 PDCCH;
在根据所述第二用户终端进行数据传输时 PDCCH指示的时频资源信息对 应的子帧进行 PDSCH信号能量检测;
所述 PDSCH信号能量越小, 所述数据传输终端与所述第二终端用户之间 的干扰越小;
根据检测结果建立所述干扰对应表。
1 9、 根据权利要求 17所述的终端, 其特征在于, 所述建立单元, 具 体用于,
检测所述数据传输终端所在蜂窝以外的第二用户终端的 Sound ing信号; 所述 Sound ing信号越弱, 所述数据传输终端与所述第二用户终端之间的 干 4尤越小;
根据检测结果建立所述干扰对应表。
20、 根据权利要求 18所述的终端, 其特征在于, 所述检测所述数据 传输终端所在蜂窝以外的第二用户终端的 PDCCH , 包括:
通过所述第二用户终端的 ID检测所述第二用户终端的 PDCCH。
21、 根据权利要求 18所述的终端, 其特征在于, 所述检测所述数据 传输终端所在蜂窝以外的第二用户终端的 PDCCH , 包括:
任意选择 PDCCH进行分析, 判断该 PDCCH是否是所述第二用户终端的合 理 PDCCH;
如果是所述第二用户终端的合理 PDCCH , 则对该 PDCCH进行检测。
22、 一种数据传输终端, 其特征在于, 所述终端包括:
检测单元, 用于在所述数据传输终端所在蜂窝以外的第二用户终端对应 的上行子帧的第一个 OFDM符号上进行子载波能量检测;
判断单元, 用于根据能量检测结果, 判断所述数据传输终端与所述第二 用户终端之间的干扰情况;
选择单元, 用于根据所述干扰情况, 选择对于所述数据传输终端干扰最 小的第二用户终端;
传输单元,用于复用所述干扰最小的第二用户终端对应的上行子帧的第 n 个 OFDM符号上开始的能量低的子载波进行 D2D数据传输。
23、 根据权利要求 22所述的终端, 其特征在于, 所述判断单元, 具 体用于,
根据所述第二用户终端对应的上行子帧的第一个 OFDM符号上的子载波能 量的强弱进行判断;
所述第二用户终端对应的上行子帧的第一个 OFDM符号上的子载波能量越 弱, 所述数据传输终端与所述第二终端用户之间的干扰越小。
24、 根据权利要求 22所述的终端, 其特征在于, 所述传输单元, 进 一步用于,
所述数据传输终端复用所述干扰最小的第二用户终端对应的上行子帧的 第 n个 OFDM符号上开始的能量低的一个或多个子载波进行 D2D数据传输。
PCT/CN2013/073469 2012-10-24 2013-03-29 数据传输方法及终端 WO2014063466A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18161678.0A EP3402264B1 (en) 2012-10-24 2013-03-29 Data transmission method and terminal
EP13849041.2A EP2903367B1 (en) 2012-10-24 2013-03-29 Data transmission method and terminal
US14/694,587 US9788309B2 (en) 2012-10-24 2015-04-23 Data transmission method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210409187.1A CN103780530B (zh) 2012-10-24 2012-10-24 数据传输方法及终端
CN201210409187.1 2012-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/694,587 Continuation US9788309B2 (en) 2012-10-24 2015-04-23 Data transmission method and terminal

Publications (1)

Publication Number Publication Date
WO2014063466A1 true WO2014063466A1 (zh) 2014-05-01

Family

ID=50543944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073469 WO2014063466A1 (zh) 2012-10-24 2013-03-29 数据传输方法及终端

Country Status (4)

Country Link
US (1) US9788309B2 (zh)
EP (2) EP2903367B1 (zh)
CN (1) CN103780530B (zh)
WO (1) WO2014063466A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780530B (zh) * 2012-10-24 2017-12-01 华为技术有限公司 数据传输方法及终端
US9692533B2 (en) * 2014-06-20 2017-06-27 Sony Corporation Operating a user equipment in a wireless communication network
CN106664647B (zh) * 2014-07-08 2021-07-20 夏普株式会社 终端装置、基站装置、通信系统、通信方法以及集成电路
US10701749B2 (en) 2016-09-20 2020-06-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method for terminal device in device to device communication, terminal device, and network device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061549A (en) * 1997-02-20 2000-05-09 Telefonaktiebolaget L M Ericsson Support of multiple modulation levels for a cellular traffic channel
WO2011032274A1 (en) * 2009-09-15 2011-03-24 Nortel Networks Limited Adaptive modulation and coding scheme adjustment in wireless networks
CN102026307A (zh) * 2010-12-20 2011-04-20 北京交通大学 下一代移动通信异构网络中的频谱切换方法
CN102088736A (zh) * 2011-01-14 2011-06-08 北京邮电大学 一种基于用户位置列表的d2d用户对选择复用多个蜂窝用户资源的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072060B2 (en) * 2008-06-03 2015-06-30 Nokia Technologies Oy Method, apparatus and computer program for power control to mitigate interference
US8554200B2 (en) * 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
WO2010086715A1 (en) * 2009-01-30 2010-08-05 Nokia Corporation Multiple user mimo interference suppression communications system and methods
US8107883B2 (en) * 2009-03-23 2012-01-31 Nokia Corporation Apparatus and method for interference avoidance in mixed device-to-device and cellular environment
US9351340B2 (en) * 2009-04-08 2016-05-24 Nokia Technologies Oy Apparatus and method for mode selection for device-to-device communications
EP2425670B1 (en) * 2009-04-30 2016-07-20 Nokia Technologies Oy Methods, apparatuses and computer program product for managing device-to-device interference
WO2011037413A2 (ko) * 2009-09-23 2011-03-31 한국전자통신연구원 다중 송수신 노드를 가지는 인접 셀 간섭 관리 방법 및 장치
EP2556688A4 (en) * 2010-04-06 2016-11-09 Nokia Technologies Oy METHOD AND APPARATUS FOR MANAGING CELL INTERFERENCE FOR DEVICE DEVICE COMMUNICATIONS
WO2012034269A1 (en) * 2010-09-14 2012-03-22 Nokia Corporation Interference measurement and reporting for device-to-device communications in communication system
KR20120074254A (ko) * 2010-12-27 2012-07-05 한국전자통신연구원 단말간 직접 연결 통신 및 단말 릴레잉을 위한 디바이스 대 디바이스 링크의 연결 설정 및 스케쥴링 방법
EP2700259A1 (en) * 2011-04-19 2014-02-26 Telefonaktiebolaget LM Ericsson (PUBL) Radio base stations and methods therein for handling interference and scheduling radio resources accordingly
GB2497589A (en) * 2011-12-16 2013-06-19 Renesas Mobile Corp Resource Allocation in a Wireless Communication System
CN103298113B (zh) * 2012-02-23 2016-08-10 华为技术有限公司 端到端d2d通信方法和d2d通信设备
US9185690B2 (en) * 2012-02-29 2015-11-10 Sharp Kabushiki Kaisha Allocating and determining resources for a device-to-device link
US8914055B2 (en) * 2012-03-21 2014-12-16 Telefonaktiebolaget L M Ericsson (Publ) Dynamic resource selection to reduce interference that results from direct device to device communications
US8914054B2 (en) * 2012-03-21 2014-12-16 Telefonaktiebolaget L M Ericsson (Publ) Dynamic resource selection to reduce interference resulting from direct device to device communications
US8804689B2 (en) * 2012-05-16 2014-08-12 Qualcommm Incorporated Methods and apparatus for peer-to-peer communications resource scheduling
US8982895B2 (en) * 2012-09-21 2015-03-17 Blackberry Limited Inter-device communication in wireless communication systems
US10154467B2 (en) * 2012-09-26 2018-12-11 Blackberry Limited Transmit power adjustment for inter-device communication in wireless communication systems
US9019841B2 (en) * 2012-10-19 2015-04-28 Qualcomm Incorporated Architecture for relays in LTE using D2D
CN103780530B (zh) * 2012-10-24 2017-12-01 华为技术有限公司 数据传输方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061549A (en) * 1997-02-20 2000-05-09 Telefonaktiebolaget L M Ericsson Support of multiple modulation levels for a cellular traffic channel
WO2011032274A1 (en) * 2009-09-15 2011-03-24 Nortel Networks Limited Adaptive modulation and coding scheme adjustment in wireless networks
CN102026307A (zh) * 2010-12-20 2011-04-20 北京交通大学 下一代移动通信异构网络中的频谱切换方法
CN102088736A (zh) * 2011-01-14 2011-06-08 北京邮电大学 一种基于用户位置列表的d2d用户对选择复用多个蜂窝用户资源的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2903367A4 *

Also Published As

Publication number Publication date
EP2903367A1 (en) 2015-08-05
US9788309B2 (en) 2017-10-10
CN103780530B (zh) 2017-12-01
EP2903367A4 (en) 2015-09-30
US20150230217A1 (en) 2015-08-13
EP3402264B1 (en) 2022-03-16
EP3402264A1 (en) 2018-11-14
EP2903367B1 (en) 2018-05-02
CN103780530A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
JP7340648B2 (ja) 車両間通信のためのロケーションおよびリッスンビフォアスケジュールベースのリソース割振り
US11388720B2 (en) Methods and apparatus for user equipment capability exchange
CN110521264B (zh) 在无线通信系统中执行由v2x终端执行的v2x通信的方法以及使用该方法的终端
CN108353422B (zh) 用于无线通信系统中的侧链路通信的方法和设备
US9432818B2 (en) Controlling communication devices
EP1806884B1 (en) Method and system for transmitting/receiving data in a communication system
US8705506B2 (en) Time reservation for a dominant interference scenario in a wireless communication network
US8219105B2 (en) Radio resource allocation to reduce uplink interference
CN105101431B (zh) 一种设备到设备通信方法、装置及系统
TW201707493A (zh) 一種進行資料傳輸的方法和設備
JP2012195954A (ja) リソース割り当て方法、通信方法、通信システム、基地局、及び移動局
US20150016355A1 (en) Apparatus and method for broadcasting data transmission on lte d2d communications
CN116783945A (zh) 用于全双工反馈的发射功率调整
US20150016356A1 (en) System and method for managing frequencies on lte d2d communications
CN116508381A (zh) 具有发射机感测的资源选择
US9788309B2 (en) Data transmission method and terminal
US20200128583A1 (en) Procedures for autonomous uplink transmissions
JPWO2016208296A1 (ja) ユーザ装置、基地局及び通信方法
CN105101414B (zh) 用户设备及其方法
WO2021109358A1 (en) System and method for sidelink configuration
US11102797B2 (en) Method and device for operating plurality of frame structures in mobile communication system
CN116530196A (zh) 蜂窝车辆对万物分配冲突检测
WO2011129226A1 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法、および集積回路
KR20150007221A (ko) Lte 셀룰러 커버리지 내의 d2d 통신 시스템 및 방법
WO2011020217A1 (zh) 分配下行传输功率的方法及相应的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013849041

Country of ref document: EP