WO2014062033A1 - Micro pcr chip and real-time pcr device comprising same - Google Patents

Micro pcr chip and real-time pcr device comprising same Download PDF

Info

Publication number
WO2014062033A1
WO2014062033A1 PCT/KR2013/009343 KR2013009343W WO2014062033A1 WO 2014062033 A1 WO2014062033 A1 WO 2014062033A1 KR 2013009343 W KR2013009343 W KR 2013009343W WO 2014062033 A1 WO2014062033 A1 WO 2014062033A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcr
micro
chip
reaction chamber
light
Prior art date
Application number
PCT/KR2013/009343
Other languages
French (fr)
Korean (ko)
Inventor
김성우
김덕중
Original Assignee
나노바이오시스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노바이오시스(주) filed Critical 나노바이오시스(주)
Publication of WO2014062033A1 publication Critical patent/WO2014062033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres

Definitions

  • the present invention relates to a very small PCR chip for performing real-time polymerase chain reaction (PCR) and a real-time PCR device including the same.
  • PCR polymerase chain reaction
  • PCR Real-time polymerase chain reaction
  • a device for implementing real-time PCR is a thermal cycler having at least one heating block for performing a nucleic acid amplification reaction and a signal for measuring in real time a signal generated from a nucleic acid amplification product. And a detector.
  • Such a signal detector may be exemplified as an optical detector for detecting a fluorescence signal generated from a nucleic acid amplification product, an electrical signal detector for detecting an electrical signal generated through specific binding of a nucleic acid amplification product and a medium which is mutually coupled thereto. Can be.
  • Korean Laid-Open Patent Publication No. 10-2004-0048754 (a real-time fluorescence retrieval apparatus with temperature control) is sensitive to fluorescence of several wavelengths in a few hundred to thousands of samples within seconds and even at low concentrations of samples. It provides a compact fluorescence detector that can search and analyze enzyme reactions in real time and is portable at an economical price.
  • the prior fluorescence detection device is a device for analyzing a sample by searching for a fluorescence emitted from the sample after irradiating a light source to a biological sample, a sample container, a light source positioned to irradiate the sample container, the light emitted from the sample
  • a fluorescence retrieval device comprising a detector for detecting fluorescence, a fluorescence shifting device for moving fluorescence emitted from the sample to the detector, a wavelength selection device, and a control unit, the fluorescence retrieval device comprising: an array of LEDs arranged to sequentially emit a plurality of LEDs; A well chamber block having a plurality of wells for inserting a sample container; A multi-channel PMT for detecting fluorescence emitted from the sample by each LED emission of the LED array; And a plurality of optical fibers for individually moving the fluorescence emitted from each sample to the multi-channel PMT.
  • Korean Patent Registration No. 10-0794703 provides a device that can compare the degree of reaction of a plurality of samples by minimizing the deviation of the light detection sensitivity during the reaction in the reaction tube plate.
  • the preceding real-time monitoring device is a thermostat block system consisting of a thermoelectric element which is a heat supply source capable of supplying heat to the reaction tube and a heat transfer block for transferring heat to the reaction tube;
  • An irradiation light source unit including a lamp and an optical waveguide for irradiating uniform light to a sample in the reaction tube;
  • an optical system including a reflector for changing a light path and a light receiving unit for receiving fluorescence generated in a sample in the reaction tube by light irradiated by the irradiation light source unit.
  • Korean Patent No. 10-1089045 (A real-time monitoring device of the nucleic acid amplification reaction product) performs a nucleic acid amplification reaction such as polymerase chain reaction of a plurality of trace samples in real time to monitor the production of reaction products generated during the reaction In order to efficiently separate the interference of the excitation light and fluorescence, to provide a real-time monitoring device for a biochemical reaction including a polarizer, a polarization beam splitter, a polarization converter and the like.
  • Korean Patent Application Publication No. 10-2008-0103548 (a real-time detection device for nucleic acid amplification products) can effectively exclude or reduce the error factor on the device without using a second fluorescent signal used for correction,
  • a plurality of wells are subjected to temperature cycles to detect in real time the fluorescence intensity from the nucleic acid amplification products in each well, furthermore, the fluorescence measurement [DNA] raw obtained from the wells and the surrounding connections in the vicinity of the wells.
  • Real time of nucleic acid amplification products which can determine fluorescence intensity [DNA] real of the well by detecting fluorescence measurement [DNA] bg obtained from the wall and subtracting fluorescence measurement [DNA] bg from fluorescence measurement [DNA] raw It provides a detection device.
  • Korean Patent No. 10-0794699 (a real-time monitoring device for nucleic acid amplification reaction products) monitors the production of reaction products generated during the reaction while performing nucleic acid amplification reactions such as polymerase chain reaction of a plurality of trace samples.
  • a sample reaction unit including a reaction vessel having a plurality of wells for holding a plurality of samples, a transparent sealing cover for covering the reaction vessel, and a thermoelectric element for supplying a heat source to the reaction vessel;
  • a light emitting element unit comprising a selective transmission filter positioned in front of the excitation light source and a linear polarizer for linearly polarizing the light passing through the filter;
  • a light receiving element portion comprising a linear polarizer in a direction perpendicular to the linear polarizer of the light emitting element portion, a condenser lens for condensing light passing through the linear polarizer, a selective transmission filter for selectively transmitting the light passing through the condenser lens, and a fluorescent sensing element It provides a real-time monitoring device of the nucleic acid amplification reaction product, characterized in that configured.
  • the present invention is to provide a real-time PCR device that can measure a large number of small amounts of nucleic acid amplification products at the same time quickly, detect the nucleic acid amplification products at low cost, and further secure the reliability of the results.
  • One embodiment of the present invention comprises a PCR reaction chamber (chamber) with an open top surface; And an open top surface of the PCR reaction chamber, which seals the open top surface, and protrudes toward the inside of the PCR reaction chamber from a portion of the sealing surface that is in contact with the open top surface and extends along the optical path. It provides a micro-Polymerase Chain Reaction chip, including a cover having a light transmitting portion of the material.
  • the PCR reaction chamber may be implemented to have a liquid sample capacity of 10 ⁇ l or less. In this case, the PCR reaction chamber can accommodate 5 to 8 ⁇ l of liquid sample.
  • the light transmitting part may be disposed at the center of the sealing surface.
  • the light transmitting part may be implemented to reach a position partially spaced upward from the bottom bottom surface of the PCR reaction chamber or upward from the bottom bottom surface of the PCR reaction chamber.
  • the cover may further include a hole that penetrates through the light transmitting part, and a flexible packing part which contacts the open top surface of the PCR reaction chamber to seal the open top surface.
  • the micro PCR chip may include two or more unit modules including the PCR reaction chamber and the cover.
  • the micro PCR chip may have a flat plate shape.
  • the micro PCR chip may include a first plate having a flat plate shape; A second plate having a flat plate shape disposed on the first plate, the plate having the PCR reaction chamber; And a third plate disposed on an upper portion of the second plate to seal the open top surface in contact with an open top surface of the PCR reaction chamber and serve as a cover having the light transmitting part. .
  • the micro PCR chip may further include a heat dissipation unit implemented to discharge heat generated from the PCR reaction chamber to the outside.
  • micro PCR chip Another embodiment of the present invention the micro PCR chip; One or more thermal blocks implemented to thermally contact at least one side of the micro PCR chip; And a light detection module implemented to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber of the micro PCR chip.
  • micro PCR chip A first thermal block disposed on a substrate and configured to be in thermal contact with the micro PCR chip; A second thermal block disposed on the substrate and spaced apart from the first thermal block, and configured to be in thermal contact with the micro PCR chip; A chip holder movable left and right and / or up and down by a driving means over the first row block and the second row block, and on which the micro PCR chip is mounted; And PCR amplification in the PCR reaction chamber of the micro PCR chip, wherein the micro PCR chip is disposed between the first row block and the second row block, when the micro PCR chip is moved between the first row block and the second row block by the driving means. It provides a real-time PCR device, including a light detection module implemented to detect an optical signal generated from the product.
  • nucleic acid amplification products Accommodate multiple small amounts of nucleic acid amplification products at the same time and at the same time secure the maximum thermal contact efficiency with the heat block to ensure fast results. Furthermore, the optical signal generated from the nucleic acid amplification products can be accurately and accurately filtered without processing or processing. A micro PCR chip that can be measured can be provided.
  • 1 to 3 relates to a phenomenon in which the optical signal sensitivity is reduced by bubbles generated during the PCR process in a micro-miniaturized PCR vessel (small size, x1 / 20) compared to a conventional PCR vessel (large size).
  • FIG. 4 is a cross-sectional view of the basic configuration of a micro PCR chip according to an embodiment of the present invention.
  • Figure 5 relates to the principle that the optical signal is emitted from the PCR product, without the influence of bubbles generated during the PCR process in the micro PCR chip according to an embodiment of the present invention.
  • 6 relates to various types of light transmitting portions of a micro PCR chip according to an embodiment of the present invention.
  • 7 to 9 are related to the flexible packing of the micro PCR chip according to an embodiment of the present invention.
  • FIG. 10 is a micro PCR chip according to an embodiment of the present invention in which two or more unit modules including a PCR reaction chamber and a cover including a light transmitting unit are repeatedly implemented.
  • 11 to 12 relate to the cross-sectional exploded view of a micro PCR chip according to an embodiment of the present invention.
  • Figure 13 relates to a micro PCR chip according to an embodiment of the present invention including a heat release.
  • PCR 14 to 15 are to detect an optical signal generated from a micro PCR chip, a thermal block in thermal contact with the micro PCR chip, and a PCR amplification product inside a PCR reaction chamber of the micro PCR chip according to an embodiment of the present invention. It relates to a real-time PCR device according to another embodiment of the present invention including an implemented light detection module.
  • micro PCR chips according to an embodiment of the present invention, two row blocks, a chip holder mounted with the micro PCR chip and movable between the two row blocks by a driving means, and the two row blocks.
  • an optical detection module disposed between the micro PCR chips and configured to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber of the micro PCR chip when the micro PCR chip is moved between the two thermal blocks by the driving means. It relates to a real-time PCR device according to another embodiment of the present invention.
  • 19 is an actual implementation diagram of a micro PCR chip according to an embodiment of the present invention.
  • FIG. 20 is a fluorescence photograph of PCR results after real-time PCR using the micro PCR chip of FIG. 19 and the real-time PCR apparatus of FIG. 18.
  • 21 to 23 are graphs showing PCR results after real-time PCR using the micro PCR chip of FIG. 19 and the real-time PCR apparatus of FIG. 18.
  • Embodiments of the present invention relate to polymerase chain reaction (PCR), and more particularly, real-time PCR for monitoring nucleic acid amplification reactions in real time.
  • PCR polymerase chain reaction
  • PCR is a technology that repeatedly heats and cools PCR samples and reagents containing nucleic acids, thereby serially replicating specific nucleotide sequences of nucleic acids to exponentially amplify nucleic acids having specific nucleotide sequences. It is now widely used for diagnosis and analysis of diseases in engineering and medical fields. Recently, various PCR apparatuses for efficiently performing PCR have been developed. PCR apparatus is collectively referred to as a device implemented to perform PCR for amplifying a nucleic acid having a specific base sequence.
  • a PCR device is a denaturing step of separating a double-stranded DNA into a single-stranded DNA by heating a PCR sample and reagent comprising a double-stranded DNA to a specific temperature, for example about 95 ° C., Provide an oligonucleotide primer having a sequence complementary to a specific nucleotide sequence to be amplified in the PCR sample and reagent, and cooled to a specific temperature, for example 55 °C with the isolated single strand of DNA An annealing step of forming a partial DNA-primer complex by binding the primer to a specific nucleotide sequence of a strand of DNA, and after the annealing step, the PCR sample and reagent are subjected to an activity temperature of DNA polymerase, for example, Maintaining at 72 ° C.
  • the DNA having the specific base sequence can be implemented to be exponentially amplified.
  • the recent PCR apparatus may perform the annealing step and the extension (or amplification) at the same time, in which case the PCR device performs the two steps consisting of the annealing and extension (or amplification) steps following the denaturation step. By doing so, the first circulation can be completed.
  • Real-time PCR uses a nucleic acid amplification reaction to monitor the production of nucleic acid amplification products by applying an optical system module, such as a fluorescence photometer, to a thermal cycler used for PCR.
  • an optical system module such as a fluorescence photometer
  • real-time PCR does not require electrophoresis to identify nucleic acid amplification products, which has the advantage of analyzing nucleic acid amplification products accurately and quickly in real time. Accordingly, the real-time PCR apparatus has also been actively developed in recent years. In order to realize the above advantages, the real-time PCR apparatus not only increases the efficiency of the thermal cycler but also accurately and accurately measures the optical signal generated from the nucleic acid amplification product. You should be able to.
  • 1 to 3 relates to a phenomenon in which optical signal sensitivity is reduced by bubbles generated during a PCR process in a conventional PCR vessel (large) and an ultra-miniaturized PCR vessel (small, ⁇ 1/20).
  • PCR devices For practical realization of personalized medical services, PCR devices have recently been aimed at miniaturization, portability, speed, and economy.
  • Existing PCR apparatus is not only a container for PCR samples and reagents, but also the device itself is large, difficult to operate and difficult to carry, as well as a considerable waste of PCR samples and reagents accordingly, there was also a problem that a considerable cost.
  • the large amount of PCR samples and reagents used was quite time consuming and difficult to implement efficient PCR.
  • a conventional PCR vessel (large size)
  • the right figure is a PCR vessel (small size) in which the size and liquid sample capacity are extremely small ( ⁇ 1/20) compared to the PCR vessel (large size).
  • a conventional PCR vessel (large) is composed of a reaction chamber containing a PCR sample and reagents and a cover thereof, the reaction chamber and the cover is made of a light transmitting material, about 200 ⁇ l of liquid PCR was performed with a sample capacity and about 20 ⁇ l of sample and reagents.
  • the PCR vessel (small) also includes a reaction chamber containing a PCR sample and a reagent and a cover thereof, and the reaction chamber and the cover may be made of a light transmissive material, in which case the PCR vessel ( Small) has a liquid sample capacity of about 10 ⁇ l, and PCR is performed with about 5 to 8 ⁇ l of sample and reagents received.
  • fabricating ultra-miniaturized PCR vessels can be readily implemented in the currently known art.
  • miniaturization of PCR vessels is difficult to implement easily because they have a significant adverse effect on the measurement of nucleic acid amplification products as follows.
  • FIG. 2 it is easy to identify a phenomenon in which an optical signal sensitivity decreases due to a bubble generated during a PCR process in an ultra-miniaturized PCR vessel (small size, ⁇ 1/20) compared to a conventional PCR vessel (large size).
  • PCR involves a heat supply step, so that a considerable amount of bubbles are generated inside the PCR vessel by heating the liquid sample, which blocks the light signal generated from the nucleic acid amplification product. do.
  • bubbles generated inside the PCR vessel (large) reduce the optical signal sensitivity by blocking the optical signals generated from the nucleic acid amplification products, but the internal space of the reaction vessel compared to the size and number of the bubbles themselves.
  • the bubbles are dispersed inside the PCR vessel (large) or clustered on the inner wall of the PCR vessel (large), so that although optical signal sensitivity is inferior, optical signal measurement is not impossible.
  • the bubble generated inside the PCR vessel (small) has a relatively small internal space of the reaction vessel relative to the size and number of bubbles itself.
  • the optical signal sensitivity is significantly reduced and non-uniform, resulting in less reliable results. Therefore, when miniaturizing the PCR apparatus and at the same time miniaturizing the PCR vessel mounted therein, it is necessary to fully consider a method of securing the reliability of the result due to the decrease in optical signal sensitivity and the nonuniformity.
  • FIG. 4 is a cross-sectional view of the basic configuration of a micro PCR chip according to an embodiment of the present invention.
  • a micro-polymer chain reaction chip 1 according to an embodiment of the present invention 1 includes a PCR reaction chamber 10 having an open top surface; And an open top surface of the PCR reaction chamber 10, which is in contact with the open top surface of the PCR reaction chamber 10, to seal the open top surface, and protrude toward the inside of the PCR reaction chamber 10 from a portion of the sealing surface that is in contact with the open top surface of the optical path. And a cover 20 having a light transmitting portion 25 of a light transmissive material extending along (21).
  • the PCR reaction chamber 10 is open to the upper surface, but the lower surface and the side border surface is implemented to accommodate a liquid sample, that is, a PCR sample and reagents.
  • the PCR reaction chamber 10 should be implemented so as not to be affected by repetitive heating and cooling during the PCR process, and is not limited to a specific shape and / or material as long as it can maintain this function.
  • the micro PCR chip 1 according to the embodiment of the present invention is based on the real-time optical signal measurement of the nucleic acid amplification product, at least a portion overlapping the optical path 21 is preferably implemented by a light transmissive material. Do.
  • the cover 20 abuts the open top surface of the PCR reaction chamber 10 and serves to seal the open top surface. As the cover 20 seals the open top surface of the PCR reaction chamber 10, PCR samples and reagents reacting inside the PCR reaction chamber 10 are not leaked to the outside, and the PCR reaction chamber 10 is closed. It maintains the internal temperature.
  • the cover 20 may be implemented in a variety of shapes and / or materials if it can implement the above functions.
  • the micro PCR chip 1 since the micro PCR chip 1 according to an embodiment of the present invention presupposes the real-time optical signal measurement of the nucleic acid amplification product, it is preferable that the micro PCR chip 1 is made of a light transmitting material.
  • the cover 20 protrudes toward the inside of the PCR reaction chamber 10 from a portion of the sealing surface that is in contact with the open top surface, and extends along the light path 21.
  • Light transmission portion 25 is provided.
  • the light transmitting part 25 is implemented as a light transmitting material and is implemented to extend along the light path 21 for the measurement of the nucleic acid amplification product, the optical signal generated from the nucleic acid amplification product in the PCR reaction chamber 10 passes through That's the part.
  • the light transmitting part 25 is directed toward the inside of the PCR reaction chamber 10 from a part of the sealing surface which contacts the open top surface of the PCR reaction chamber 10, that is, the bottom surface of the lid 20. It is implemented to protrude downward.
  • the protruding shape of the light transmitting part 25 may vary, but is preferably implemented in a cylindrical or square column shape.
  • the protruding shape of the light transmitting part 25 may be implemented in various ways, such that it is implemented to contact the bottom bottom surface of the PCR reaction chamber 10 (the right side of FIG. 6), or the PCR reaction. It may be implemented up to some spaced apart position upward from the bottom bottom face of the chamber 10 (left side of FIG. 6). That is, when the liquid sample is accommodated in the PCR reaction chamber 10, the light transmitting part 25 may be adjacent to or abut the surface of the liquid sample, or may pass through the surface of the liquid sample and be contained within the liquid sample. have.
  • the light transmitting part 25 may be implemented in any part of the sealing surface that contacts the open top surface of the PCR reaction chamber 10, that is, the bottom surface of the lid 20. It may be, it is preferably disposed in the center of the sealing surface, that is, the central region of the bottom surface of the cover (20).
  • the liquid sample capacity of the PCR reaction chamber 10 is not limited to a specific volume, but is preferably implemented to have a liquid sample capacity of 10 ⁇ l or less to accommodate 5 to 8 ⁇ l of liquid sample.
  • Figure 5 relates to the principle that the optical signal is emitted from the PCR product, without the influence of bubbles generated during the PCR process in the micro PCR chip according to an embodiment of the present invention.
  • the liquid sample inside the PCR vessel may be heated, thereby generating bubbles.
  • a liquid sample that is, a PCR sample and a reagent inside the PCR reaction chamber 10 of the micro PCR chip 1 according to an embodiment of the present invention is heated by a heat supply during a PCR process
  • Bubbles occur.
  • a portion of the sealed surface protruding from the bottom surface of the lid 20, that is, contacting the open top surface of the PCR reaction chamber 10 ( According to FIG. 5, the PCR reaction chamber 10 is formed by a light transmitting part 25 of a light transmitting material protruding from the central region) toward the inside of the PCR reaction chamber 10 and extending along the light path 21.
  • the formed bubble is pushed to the peripheral area of the edge surface of the light transmitting part 25 and is compressed and disposed in the peripheral space. Accordingly, the bubble completely deviates from the optical signal path (light transmitting part) 25 formed from the nucleic acid amplification product present in the liquid sample, and the optical signal sensitivity for measuring the nucleic acid amplification product is It has no effect at all. Therefore, when the nucleic acid amplification products are measured in real time during the real-time PCR process using the micro PCR chip 1 according to an embodiment of the present invention, the influence of bubbles generated inside the PCR reaction chamber 10 is not affected at all. The optical signal sensitivity is significantly increased.
  • the PCR vessel can be miniaturized.
  • the optical signal sensitivity can be significantly increased, thereby miniaturization and portability of the PCR vessel and the real-time PCR apparatus can be achieved, and further, a large number of small amount of nucleic acid amplification products can be quickly and accurately measured simultaneously. .
  • 7 to 9 are related to the flexible packing of the micro PCR chip according to an embodiment of the present invention.
  • the cover 20 of the micro PCR chip 1 includes a hole 45 penetrating through the light transmitting part 25, and the PCR reaction.
  • a flexible packing part 40 may be further included to abut the open top surface of the chamber 10 to seal the open top surface.
  • the flexible packing unit 40 serves to prevent leakage of the liquid sample due to bubble generation or pressure rise due to a temperature rise inside the PCR reaction chamber 10 during a PCR process.
  • the flexible packing part 40 is made of a material having elasticity or elasticity such as rubber or silicon to buffer the expansion force due to the bubble generation or the pressure rise, but the PCR reaction chamber 10 It is implemented to maintain the sealed state.
  • the hole 45 is implemented according to the shape of the light transmitting part 25, although it is implemented in a circular shape in Figure 7 is not limited thereto.
  • FIG. 8 illustrates a state in which the flexible packing part 40 is attached to the cover 20 but is enclosed through the light transmitting part 25, and
  • FIG. 9 illustrates that the cover 20 of FIG. The state in which the inner space of the PCR reaction chamber 10 is sealed by coupling to the upper surface of the PCR reaction chamber 10 is illustrated.
  • FIG. 10 is a micro PCR chip according to an embodiment of the present invention in which two or more unit modules including a PCR reaction chamber and a cover including a light transmitting unit are repeatedly implemented.
  • the micro PCR chip 1 significantly increases the optical signal sensitivity by the lid 20 including the PCR reaction chamber 10 and the light transmitting part 25. It is possible to implement a PCR vessel having a multi-chamber structure that can be extremely miniaturized without affecting or affecting a large number of liquid samples.
  • the micro PCR chip 1 may include two or more unit modules 50 including the PCR reaction chamber 10 and the cover 20.
  • the unit modules 50 may be arranged in a line or may be integrated in a circular space on the flat plate and implemented as two or more numbers N.
  • the unit module 50 may be implemented in 19 (19 well), 48 (48 well), 96 (96 well) and the like.
  • 11 to 12 relate to the cross-sectional exploded view of a micro PCR chip according to an embodiment of the present invention.
  • a micro PCR chip 1 may include a first plate 100 having a flat plate shape; A second plate (200) having a flat plate shape disposed on the first plate (100) and having the PCR reaction chamber (10); And a cover 20 disposed above the second plate 200 to seal the open top surface by contacting the open top surface of the PCR reaction chamber 10 and having the light transmitting part 25. It may be implemented to include a third plate 300 to play a role.
  • the first plate 100 is implemented in a flat plate shape, and serves as a bottom support of the micro PCR chip 1 according to an embodiment of the present invention.
  • the first plate 100 may be made of various materials, but in consideration of cost reduction, the first plate 100 may be made of a plastic material, for example, polycarbonate (polyarbonate, PC), polyethylene terephthalate (PET), or the like. It is preferred to be implemented with a transparent material.
  • the surface of the first plate 100 may be embodied in various ways, but is preferably treated to have a hydrophilic surface.
  • the first plate 100 may be preferably implemented in about 0.03 to 1.0 mm, more preferably in about 0.1 to 0.5 mm.
  • the second plate 200 is implemented in a flat plate shape and is disposed on the first plate 100.
  • the second plate 200 is a region of the PCR reaction chamber 10 of the micro PCR chip 1 according to an embodiment of the present invention. Serves to form.
  • the second plate 200 may be made of various materials, but in consideration of cost reduction, the second plate 200 may be made of a plastic material, for example, polycarbonate (polyarbonate, PC), polyethylene terephthalate (PET), or the like. It is preferred to be implemented with a transparent material.
  • the second plate 200 may be preferably implemented as about 0.5 to 5 mm, more preferably about 1 to 2 mm.
  • the bottom surface space of the PCR reaction chamber 10 of the micro PCR chip 1 is provided between the first plate 100 and the second plate 200.
  • An additional layer 150 in the form of a plate may be formed. This may be a bonding surface between the first plate 100 and the second plate 200, or may be an adhesive layer. Therefore, adhesion between the first plate 100 and the second plate 200 may be achieved by thermal bonding, ultrasonic bonding, ultraviolet bonding, or solvent bonding.
  • the additional layer 150 may be preferably implemented in about 0.03 to 1.0 mm, more preferably in about 0.1 to 0.5 mm.
  • the third plate 300 is implemented in a flat plate shape, but is disposed on the second plate 200, and opens the PCR reaction chamber 10 of the micro PCR chip 1 according to an embodiment of the present invention.
  • the open top surface is sealed to abut on the top surface, and serves as a cover 20 having the light transmitting part 50.
  • the third plate 200 may be made of various materials, but in consideration of cost reduction, the third plate 200 may be made of a plastic material, for example, polycarbonate (polyarbonate, PC), polyethylene terephthalate (PET), or the like. It is preferred to be implemented with a transparent material.
  • the third plate 200 may be preferably implemented as about 0.5 to 5 mm, more preferably about 1 to 2 mm.
  • the third plate 300 surrounds a hole between the second plate 200 and the third plate 300 to penetrate the light transmitting part 25, and the PCR.
  • the flexible packing part 40 may be further provided to contact the open top surface of the reaction chamber 10 to seal the open top surface.
  • the flexible packing unit 40 serves to prevent leakage of PCR samples and reagents contained in the PCR reaction chamber 10 and contamination between the plurality of chambers.
  • the flexible packing part 40 may be made of various materials having elasticity or elasticity.
  • the flexible packing part 40 may be made of silicon, telflon, or the like.
  • the flexible packing part 40 may be preferably implemented as about 0.1 to 2 mm, more preferably about 0.5 to 1 mm, and the circular hole diameter is preferably about 1.0 mm It can be implemented as.
  • Figure 13 relates to a micro PCR chip according to an embodiment of the present invention including a heat release.
  • the micro PCR chip 1 may further include a heat dissipation unit 60 implemented to discharge heat generated from the PCR reaction chamber 10 to the outside.
  • the micro PCR chip 1 according to the exemplary embodiment of the present invention has a thin plate shape as a whole and is implemented such that a plurality of unit modules 50 are integrated in a central circular region.
  • the PCR chip 1 may arrange the heat dissipation parts 60 on both sides of the central circular region.
  • FIG. 14 to 15 illustrate a real-time PCR apparatus having a single row block to which a micro PCR chip is applied according to an embodiment of the present invention.
  • the real-time PCR device 2000 includes a micro PCR chip 1 according to an embodiment of the present invention described above; One or more thermal blocks (200) implemented to thermally contact at least one surface of the micro PCR chip (1); And an optical detection module 300 implemented to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber 10 of the micro PCR chip 1.
  • the thermal block 200 is a module implemented to enable heat exchange in thermal contact with the micro PCR chip 1.
  • the thermal block 200 may be formed of various materials, and may be implemented to have a light transmittance (or partially) in order to measure the optical signal of the nucleic acid amplification product.
  • the transparent heat generating material may include all materials having heat generating property by power supply as a material having light transmittance, but preferably, indium tin oxide (ITO), a conducting polymer, carbon nano It may be selected from the group consisting of tubes (Cabon NanoTube, CNT), graphene, transparent metal oxide (TCO), and oxide-metal-oxide multilayer transparent devices.
  • ITO Indium tin oxide
  • Indium tin oxide is a mixture of indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ), and is generally composed of 90% indium oxide and 10% tin oxide, and is a transparent electrode It is also called ITO.
  • Indium tin oxide has an electrical conductivity when implemented in a thin film (thin layer), and becomes yellowish gray when implemented in a lumped state, transparent and colorless.
  • Indium tin oxide is deposited on the surface of other materials by electron beam deposition, vapor deposition, and sputtering techniques.
  • Indium tin oxide is conventionally mainly used in liquid crystal displays, flat panel displays, plasma displays, touch screens, electronic paper, organic light emitting diodes, and solar cells.
  • the conducting polymer is called a plastic through which electricity is transmitted, and has the advantage of excellent light transmittance, light weight, excellent elasticity and electrical conductivity, and easy processing.
  • the conductive polymer is made from materials such as polyacetylene, polyparaenylene, polyphenol, polyaniline, and the like, and recently, may be made from polystyrene sulfonic acid and / or PEDOT (poly (3,4--ethylenedioxythiophene)).
  • Carbon NanoTube (CNT) refers to tiny molecules of 1 nanometer in diameter, with long, long rings of carbons connected by hexagonal rings.
  • Tensile force is known to be stronger than steel, more flexible, lighter, and more electrically conductive.
  • SWNT purified single-walled carbon nanotubes
  • a transparent conductor is formed, which has both transparency and conductivity.
  • Graphene graphene
  • Graphene is a material separated from graphite in the early 2000s, and is a nanomaterial composed of carbon number 6 such as carbon nanotubes and fullerenes.
  • Graphene is known to be more than 100 times higher electrical conductivity than copper, and has a very good elasticity, and has recently been implemented as a transparent electrode and used for various purposes.
  • Transparent Conductive Oxide refers to a material having transparency among various metal oxides bonded with oxygen, and includes ZnO, SnO 2 , TiO 2 , and the like. Transparent metal oxides have high conductivity and transparency and can be used as coating materials at low cost.
  • the oxide-metal-oxide multilayer transparent device is manufactured by a roll-to-roll sputtering process, and can be implemented to have flexibility of a metal, low resistance, and high permeability of an oxide.
  • the thermal block 200 may be implemented in a variety of shapes, but preferably in a flat shape.
  • the plate-shaped thermal block 200 has a large surface area in contact with the micro PCR chip 1, preferably, the plate-shaped chip, thereby providing heat evenly to the mixed solution of the PCR sample and the reagents, and thus The temperature change for each cycle can proceed rapidly.
  • the thermal block 200 may be implemented to have a light transmittance as a whole, so that most of the excitation light emitted from the light source may be transmitted as it is, thereby increasing the optical signal sensitivity.
  • the light absorbing material may be processed on the lower surface of the thermal block 200 to further increase the optical signal sensitivity.
  • the light absorbing material may be, for example, mica, but is not limited to a material having a property of absorbing light. Therefore, the light absorbing layer absorbs a part of the light derived from the light source, and the generation of reflected light acting as noise of the optical signal can be suppressed as much as possible.
  • the optical signal sensitivity may be further increased by treating an antireflective material on the upper surface of the thermal block 200.
  • the anti-reflective material may be, for example, a fluoride such as MgF 2 or an oxide such as SiO 2 or Al 2 O 3 , but is not limited as long as the material has a property of preventing light reflection.
  • the light absorbing material may be processed on the lower surface of the thermal block 200, and at the same time, the light reflection preventing material may be processed on the upper surface of the thermal block 200 to further increase the optical signal sensitivity. That is, for effective real-time PCR monitoring, the ratio of the optical signal to the noise should have the maximum possible value, and the ratio of the optical signal to the noise may be improved as the reflectance of the excitation light from the PCR chip is lower.
  • the reflectance of the excitation light of the existing thermal block of a general metallic material is about 20 to 80%, but the light reflectance is 0.2% to 4 when using the heat block 200 including the light absorbing layer or the antireflective layer. It can be reduced to within%, and when using the heat block 200 including the light absorbing layer 60 and the light reflection prevention layer 70 can reduce the light reflectance to 0.2% or less.
  • the light detection module 300 is operable to receive light emitted from the micro PCR chip 1 and a light providing unit (not shown) operably arranged to provide light to the micro PCR chip 1. It may include a light detector (not shown) disposed so as to.
  • the light providing unit is a module for providing light to the micro PCR chip (1), the light detection unit receives the light emitted from the micro PCR chip (1) PCR products carried out in the micro PCR chip (1) This module is for measuring. Light is emitted from the light providing unit, and the emitted light passes through or reflects through the PCR reaction chamber in the micro PCR chip 1, specifically, the unit module 50 of the micro PCR chip 1.
  • the light detector detects an optical signal generated by nucleic acid amplification in the PCR reaction chamber.
  • the nucleic acid amplification product (fluorescent material is bound) in the PCR reaction chamber during the PCR process in the micro PCR chip (1)
  • the light providing unit and the light detecting unit may be all disposed above or below the thermal block 200, or may be disposed respectively.
  • the arrangement of the light providing unit and the light detecting unit may be various in consideration of the arrangement relationship with other modules for optimal implementation of the real-time PCR apparatus 1000 according to another embodiment of the present invention.
  • both the light providing unit and the light detecting unit 300 may be disposed above the thermal block 200.
  • the light providing unit includes a light emitting diode (LED) light source or a laser light source, a first light filter for selecting light having a predetermined wavelength from the light emitted from the light source, and a light collecting unit for collecting light emitted from the first light filter. It may further include a first aspheric lens including a first optical lens, disposed to spread light between the light source and the first light filter.
  • the light source includes all light sources capable of emitting light, and includes a light emitting diode (LED) light source or a laser light source.
  • the first light filter selects and emits light having a specific wavelength among incident light having various wavelength bands, and may be variously selected according to the predetermined light source.
  • the first light filter may pass only light in a wavelength band of 500 nm or less of the light emitted from the light source.
  • the first optical lens collects the incident light and increases the intensity of the emitted light.
  • the first optical lens may increase the intensity of light irradiated onto the micro PCR chip 1 through the thermal block 200.
  • the light providing unit may further include a first aspherical lens disposed to spread light between the light source and the first light filter. By adjusting the arrangement direction of the first aspherical lens, the light range emitted from the light source is extended to reach the measurable area.
  • the light detector includes a second optical lens for collecting light emitted from the micro PCR chip 1, a second optical filter for selecting light having a predetermined wavelength from the light emitted from the second optical lens, and the second optical filter.
  • An optical analyzer for detecting an optical signal from light emitted from the second optical filter, and further comprising a second aspherical lens disposed between the second optical filter and the optical analyzer to integrate light emitted from the second optical filter; And a photodiode disposed between the second aspherical lens and the optical analyzer to remove noise of light emitted from the second aspherical lens and to amplify the light emitted from the second aspherical lens.
  • the integrated circuit may further include a PDIC.
  • the second optical lens collects the incident light and increases the intensity of the emitted light.
  • the second optical lens increases the intensity of light emitted from the micro PCR chip 1 through the thermal block 200 to detect the optical signal.
  • the second light filter selects and emits light having a specific wavelength among incident light having various wavelength bands, and variously selects the light according to a predetermined wavelength of light emitted from the micro PCR chip 1 through the thermal block 200.
  • the second light filter may pass only light in a wavelength range of 500 nm or less among predetermined light emitted from the micro PCR chip 1 through the heat block 200.
  • the optical analyzer is a module that detects an optical signal from light emitted from the second optical filter, and converts expression fluorescence from an PCR sample and a reagent into an electrical signal to enable qualitative and quantitative measurement.
  • the light detector may further include a second aspherical lens disposed between the second light filter and the light analyzer to integrate light emitted from the second light filter. By adjusting the arrangement direction of the second aspherical lens, the light region emitted from the second light filter is expanded to reach the measurable region.
  • the light detector may further include a photodiode disposed between the second aspherical lens and the optical analyzer to remove noise of light emitted from the second aspherical lens and to amplify the light emitted from the second aspherical lens.
  • the real-time PCR apparatus 1000 may further include a photodiode integrated circuit (PDIC).
  • PDIC photodiode integrated circuit
  • the real-time PCR apparatus 1000 adjusts the direction of light travel so that the light emitted from the light providing unit reaches the light detecting unit, and separates light having a predetermined wavelength.
  • One or more dichroic filters may be further included.
  • the dichroic filter is a module that reflects light at an angle selectively transmitted or selectively adjusted according to the wavelength.
  • the dichroic filter is disposed to be inclined at an angle of about 45 degrees with respect to the optical axis of the light emitted from the light providing unit, and selectively transmits the light having a short wavelength component and reflects the long wavelength component at a right angle according to the wavelength thereof so that the heat block ( To the micro PCR chip 1 disposed on the substrate 200). Further, the dichroic filter is disposed to be inclined at an angle of about 45 degrees with respect to the optical axis of the light reflected from the micro PCR chip 1 and the thermal block 200, and selectively transmits the light according to the wavelength of the short wavelength component. And the long wavelength component is reflected at right angles to reach the photodetector. The light reaching the light detector may be converted into an electrical signal in the optical analyzer to indicate whether the nucleic acid is amplified and the degree of amplification.
  • 16 to 18 illustrate a real-time PCR device having two column blocks to which a micro PCR chip according to an embodiment of the present invention is applied.
  • the real-time PCR device 2000 includes a micro PCR chip 1 according to the embodiment of the present invention described above; A first thermal block (100a) disposed on the substrate (400a) and implemented to be in thermal contact with the micro PCR chip (1); A second thermal block 200a disposed on the substrate 400a to be spaced apart from the first thermal block 100a and in thermal contact with the micro PCR chip 1; A chip holder 300a movable left and right and / or up and down by the driving means 500a on the first row block 100a and the second row block 200a and on which the micro PCR chip 1 is mounted; And between the first row block 100a and the second row block 200a, wherein the micro PCR chip 1 is driven by the driving means 500a by the first row block 100a and the second row.
  • the light detection module 700a and 800a are implemented to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber 10 of the micro PCR chip 1 when moving between blocks 200a.
  • the real-time PCR apparatus 2000 may include a first row block 100a disposed on the substrate 400a; A second thermal block 200a spaced apart from the first thermal block 100a on the substrate 400a; And move up, down, and / or up and down by the driving means 500a over the first and second row blocks 100a and 200a, and the micro PCR chip 1 according to an embodiment of the present invention may be And a mounted chip holder 300a.
  • the substrate 400a does not change its physical and / or chemical properties due to heating and temperature maintenance of the first thermal block 100a and the second thermal block 200a, and the first thermal block 100a and the first thermal block 100a and the second thermal block 200a do not change. It includes all materials having a material such that mutual heat exchange does not occur between the two heat blocks 200a.
  • the substrate 400a may include or be made of a material such as plastic.
  • the first row block 100a and the second row block 200a are for maintaining a temperature for performing a denaturation step, annealing step and extension (or amplification) step for amplifying the nucleic acid.
  • the first thermal block 100a and the second thermal block 200a may include or be operably connected with various modules for providing and maintaining the required temperature required for the respective steps. . Therefore, when the chip holder 300a on which the micro PCR chip 1 is mounted is in contact with one surface of each of the row blocks 100a and 200a, the first row block 100a and the second row block 200a are provided. Since the contact surface with the micro PCR chip 1 as a whole can be heated and temperature maintained, the sample solution in the micro PCR chip 1 can be uniformly heated and temperature maintained.
  • the temperature change rate in the single thermal block is within a range of 3 to 7 ° C per second
  • a real time PCR apparatus including two thermal blocks according to another embodiment of the present invention ( 2000) the rate of temperature change in each of the thermal blocks 100a and 200a is within a range of 20 to 40 ° C. per second, thereby greatly shortening the PCR progress time.
  • Hot wires may be disposed in the first row block 100a and the second row block 200a.
  • the heating wire may be operably connected with various heat sources to maintain a temperature for performing the denaturing, annealing and extending (or amplifying) steps, and may be operably connected with various temperature sensors for monitoring the temperature of the heating wire.
  • the heating wires are vertically and / or horizontally based on the center point of the surface of each of the heat blocks 100a and 200a in order to maintain a constant internal temperature of the first and second heat blocks 100a and 200a. It may be arranged to be symmetrical. The arrangement of the hot wires symmetrically in the vertical direction and / or the horizontal direction may vary.
  • a thin film heater (not shown) may be disposed in the first thermal block 100a and the second thermal block 200a.
  • the thin-film heater is vertically and / or horizontally based on a center point of each of the thermal block 100a and 200a in order to maintain a constant internal temperature of the first and second thermal blocks 100a and 200a. May be spaced apart at regular intervals.
  • the arrangement of the thin film heater that is constant in the vertical and / or horizontal directions may vary.
  • the first thermal block 100a and the second thermal block 200a may include a metal material, for example, aluminum or may be made of aluminum for even heat distribution and rapid heat transfer over the same area.
  • the first thermal block 100a may be implemented to maintain an appropriate temperature for performing the denaturation step, or the annealing and extension (or amplification) steps.
  • the first row block 100a of the real-time PCR apparatus 2000 may maintain 50 ° C. to 100 ° C., preferably in the first row block 100 a.
  • the temperature may be maintained at 90 ° C. to 100 ° C., preferably at 95 ° C., and 55 when the annealing and extension (or amplification) steps are performed in the first heat block 100a.
  • °C to 75 °C can be maintained, preferably 72 °C can be maintained.
  • the temperature of the denaturation step or the annealing and extension (or amplification) step is not limited thereto.
  • the second row block 200a may be implemented to maintain an appropriate temperature for performing the denaturation step, or the annealing and extension (or amplification) steps.
  • the second row block 200a of the PCR apparatus according to the third embodiment of the present invention may maintain 90 ° C. to 100 ° C. when the denaturation step is performed in the second row block 200 a.
  • the temperature may be maintained at 95 ° C., and may be maintained at 55 ° C. to 75 ° C., preferably at 72 ° C., when the annealing and extension (or amplification) steps are performed in the second heat block.
  • the temperature of the denaturation step or the annealing and extension (or amplification) step is not limited thereto. Therefore, the first heat block 100a may maintain the denaturing temperature of the PCR, and when the denaturation temperature is lower than 90 ° C., denaturation of the nucleic acid that is a template of the PCR occurs, resulting in poor efficiency and low PCR efficiency.
  • the denaturation step temperature is higher than 100 ° C., the enzyme used for PCR loses activity, so the denaturation step temperature may be 90 ° C. to 100 ° C., preferably 95 ° C. have.
  • the second row block 200a may maintain annealing / extension temperature of annealing and extension (or amplification) of the PCR.
  • the extension (or amplification) step temperature is lower than 55 ° C., the specificity of the PCR product may be degraded, and if the annealing and extension (or amplification) step temperature is higher than 74 ° C., the PCR may not occur. Since the efficiency is lowered, the annealing and extension (or amplification) step temperature may be 55 ° C to 75 ° C, preferably 72 ° C.
  • the first thermal block 100a and the second thermal block 200a may be spaced apart from each other at a predetermined distance such that mutual heat exchange does not occur. Accordingly, since the heat exchange does not occur between the first heat block 100a and the second heat block 200a, the denaturation step and the nucleic acid amplification reaction may be significantly affected by a slight temperature change. Accurate temperature control of the annealing and extension (or amplification) steps is possible.
  • the real-time PCR apparatus 2000 may move left and right and / or up and down by the driving means 500a over the first row block 100a and the second row block 200a, and the micro And a chip holder 300a on which the PCR chip 1 is mounted.
  • the chip holder 300a is a module in which the micro PCR chip 1 is mounted on the real time PCR device 2000.
  • the inner wall of the chip holder 300a has the micro PCR chip 1 so that the micro PCR chip 1 does not leave the chip holder 300a when the nucleic acid amplification reaction is performed by the real-time PCR device 2000. It may have a shape or structure for fixed mounting with the outer wall of.
  • the chip holder 300a is operably connected to the driving means 500a.
  • the micro PCR chip 1 may be detachable to the chip holder (300a).
  • the driving means 500a is configured to allow the chip holder 300a on which the micro PCR chip 1 is mounted to move left and right and / or up and down over the first row block 100a and the second row block 200a. Means; By the left and right movement of the driving means 500a, the chip holder 300a on which the micro PCR chip 1 is mounted can reciprocate between the first row block 100a and the second row block 200a. In addition, by the vertical movement of the driving means 500a, the chip holder 300a on which the PCR chip 10 is mounted is in contact with and separated from the first row block 100a and the second row block 200a. Can be.
  • the left and right and / or vertical movement of the driving means 500a may be controlled by a control means (not shown), which is operably disposed inside or outside the PCR device, and the control means may be modified with a modification step of PCR. It is possible to control the contact and separation between the chip holder 300a on which the micro PCR chip 1 is mounted and the first row block 100a and the second row block 200a for the annealing and extension (or amplification) steps. Can be.
  • FIG. 17 illustrates each step of the nucleic acid amplification reaction by the movement of the chip holder of the real-time PCR device 2000 according to another embodiment of the present invention.
  • Nucleic acid amplification reaction by the real-time PCR device 2000 is based on the following steps.
  • a nucleic acid for example, double-stranded DNA, an oligonucleotide primer having a sequence complementary to a specific nucleotide sequence to be amplified, DNA polymerase, deoxyribonucleotide triphosphates, dNTP in the micro PCR chip 1
  • a sample solution including a PCR buffer (PCR buffer) is introduced, and the PCR chip 10 is mounted on the chip holder 300a.
  • the first heat block 100a is heated and maintained at a temperature for the modification step, for example, 90 ° C. to 100 ° C., preferably at 95 ° C.
  • the micro PCR chip 1 is moved downward by controlling the connecting member 520a of the driving means 500a to move the chip holder 300a on which the micro PCR chip 1 is mounted in the first row.
  • Contacting block 100a performs a first denaturation step of PCR (step x).
  • the micro PCR chip 1 is moved upward by controlling the connecting member 520a of the driving means 500a to move the chip holder 300a on which the micro PCR chip 1 is mounted in the first row.
  • the nucleic acid amplification reaction is performed by repeating steps x, y, and z after moving up to 100a (circulation step).
  • the real-time PCR device 2000 is disposed between the first row block 100a and the second row block 200a, wherein the micro PCR chip 1 is driven by the driving means 500a by the driving unit 500a.
  • Optical detection modules 700a and 800a implemented to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber 10 of the micro PCR chip 1 when moving between 100a and the second row block 200a.
  • the light source 700a and the light detector 800a are included.
  • a light source 700a is disposed between the first row block 100a and the second row block 200a and is emitted from the light source 700a on the chip holder 300a.
  • the light detector 800a is disposed to detect the light to be used, or the light detector 800a is configured to detect light emitted from the light source 700a between the first and second row blocks 100a and 200a. ) May be disposed, and the light source 700a may be disposed on the chip holder 300a.
  • the light detector 800a may be disposed on the driving means 500a, and the through means 530a may be disposed on the driving means 900a to allow the light emitted from the light source 700a to pass therethrough.
  • the nucleic acid amplification reaction can be detected in real time in the micro PCR chip 1 during the nucleic acid amplification reaction by the real-time PCR device 2000. do.
  • a separate fluorescent substance may be further added to the sample solution introduced into the micro PCR chip 1.
  • the light source 700a is disposed to be as wide as possible in the spaced space between the first column block 100a and the second column block 200a and is arranged to emit the same light as much as possible.
  • the light source 700a may be operably connected to a lens (not shown) that collects light emitted from the light source 700a and an optical filter (not shown) that filters light of a specific wavelength band.
  • the nucleic acid amplification reaction by the real time PCR device 2000 detects the degree of nucleic acid amplification in the micro PCR chip 1 in real time.
  • the connecting member 520a of the driving means 500a is controlled to move the micro PCR chip 1 from above the first row block 100a to the second row block 200a.
  • the micro PCR chip 1 is moved to a second row block by moving the upper portion of the PCR or controlling the connecting member 520a of the driving means 500a after the end of the first annealing and extension (or amplification) step.
  • the chip holder 300a on which the micro PCR chip 1 is mounted is controlled to control the connecting member 520a of the driving means 500a.
  • a step of stopping on the spaced space between the first row block 100a and the second row block 200a is performed.
  • the micro PCR chip 1 specifically, the PCR reaction chamber of the micro PCR chip 1, in this case, the PCR reaction.
  • the light detector 800a detects an optical signal generated by amplification of the nucleic acid in the chamber.
  • the light passing through the micro-PCR chip 1 of the light transmissive material passes through the driving means 500a, specifically, the penetrating portion 530a disposed on the rail 510a to the light emitting portion 800a. Can be reached.
  • the amount of target nucleic acid contained in the initial reaction sample is monitored in real time by monitoring the result of the reaction by amplification of the nucleic acid (fluorescent material bound) in the reaction channel in real time. Can be measured and analyzed.
  • first to third plates 100, 200, and 300 having a flat plate shape were prepared from a plastic material.
  • the first plate 100 was manufactured to a thickness of 0.5 mm
  • the second plate 200 was made to have a thickness of 2 mm, but was prepared by integrating 19 PCR reaction chambers 10 in a central circular region.
  • the third plate 300 has a thickness of 2 mm, and implements a circular groove on the bottom surface of the third plate 300 to correspond to the central circular region, and protrudes toward the inside of the 19 PCR reaction chambers 10. It was prepared by forming.
  • a flexible packing part 50 that can be coupled to correspond to the circular groove and the light transmitting part 50 of the third plate 300 was manufactured and attached to the bottom surface of the third plate 300.
  • a double-sided adhesive tape was adhered to the upper portion of the first plate 100 and the second plate 200 was attached to the upper portion of the first plate 100.
  • the first plate 100 and the second plate 200 may be attached to each other through a thermal bonding, an ultrasonic bonding, an ultraviolet bonding, a solvent bonding method, etc. in addition to the double-sided adhesive tape.
  • PCR samples and reagents are injected into nineteen PCR reaction chambers 10 formed by the attachment of the second plate 200, and the third plate 300 to which the flexible packing unit 50 is attached is placed.
  • the PCR reaction chamber 10 was sealed by attaching an upper portion of the second plate 200. According to FIG. 19, in this embodiment, the completed micro PCR chip 1 can be confirmed.
  • 19A is an appearance of a micro PCR chip 1 according to an embodiment of the present invention
  • B is an appearance in which a perspective view of the third plate 300 is reflected in the micro PCR chip 1 of FIG.
  • FIG. C is an enlarged view showing a state where 19 unit modules 50 are arranged in the central circular region of the micro PCR chip 1 of FIG.
  • the PCR samples and reagents are related to Influenza A virus, and the genomic RNA of Influenza A virus was distributed from the Center for Disease Control.
  • the reverse transcription reaction solution was prepared using Invitrogen's SupterScript III First-strand Synthesis System for RT-PCR kit together with the pre-generated RNA, the reverse transcription reaction was performed, and cDNA was synthesized.
  • the composition of the reverse transcription reaction solution and cDNA synthesis conditions used in the reverse transcription reaction are shown in Tables 1 and 2 below.
  • the primers used for the influenza A virus detection were prepared using Primer 3 with GC% of 40 to 60%, Tm value of 65 to 75 ° C, and the prepared primers manufactured by Genotech (Note). Was synthesized. Then, PCR was performed using the cDNA of the synthetic influenza A virus as a template to confirm the detection of the primer for the influenza A virus.
  • Tables 3 and 4 show the compositions of the PCR samples and reagents used in the PCR and the PCR conditions performed. Each PCR sample and reagent were according to the composition in the table below and brought to a total volume of 16 ⁇ l.
  • PCR performance results were confirmed through a fluorescence picture of the PCR result according to FIG. 20 and a real-time PCR result graph (X-axis: cycle number, Y-axis: fluorescence) according to FIGS. 21 to 23.
  • the fluorescence signal for each unit module 50 of the micro PCR chip 1 is clearly identified as a white dot.
  • the first region 1 of the micro PCR chip 1 of FIG. 20 corresponds to the graph of FIG. 21
  • the second region 2 corresponds to the graph of FIG. 22,
  • the third region 3 corresponds to the graph of FIG. 23. do.
  • the micro PCR chip 1 and the real-time PCR device 2000 it can be confirmed that the real-time PCR results can be measured accurately and quickly.

Abstract

An embodiment of the present invention relates to a micro PCR chip and to a real-time PCR device comprising same, whereby it is possible to provide a micro PCR chip which is able to simultaneously accommodate a plurality of small-volume samples and at the same time ensure maximum thermal contact efficiency with a heating block so as to ensure rapid results and which is also able to accurately measure optical signals emitted from nucleic acid amplification products even without any separate filtering or processing, and also whereby, based on this, it is possible to provide a real-time PCR device which is able to rapidly obtain nucleic acid amplification results of guaranteed reliability even without a complicated light-signal measuring module.

Description

마이크로 PCR 칩 및 이를 포함하는 실시간 PCR 장치Micro PCR chip and real-time PCR device including the same
본 발명은 실시간 PCR(real-time Polymerase chain reaction)을 수행하기 위한 극소형 PCR 칩 및 이를 포함하는 실시간 PCR 장치에 관한 것이다.The present invention relates to a very small PCR chip for performing real-time polymerase chain reaction (PCR) and a real-time PCR device including the same.
실시간 PCR(real-time Polymerase chain reaction)은 핵산 증폭 산물을 겔(gel) 상에서의 전기영동 수행 없이도 반응 순환(cycle) 동안 실시간으로 확인할 수 있다는 장점으로 근래 핵산 분석 수행에 있어서 많이 활용되고 있다. 일반적으로, 실시간 PCR을 구현하기 위한 장치는 핵산 증폭 반응을 수행하는 1 이상의 열 블록(heating block)을 구비하는 열 순환 장치(thermal cycler) 및 핵산 증폭 산물로부터 발생하는 신호를 실시간으로 측정하기 위한 신호 검출기를 포함한다. 이와 같은 신호 검출기는 핵산 증폭 산물로부터 발생하는 형광 신호를 검출하기 위한 광 검출기, 핵산 증폭 산물과 이와 상호 결합하는 매개체의 특이적 결합을 통해 발생하는 전기적 신호를 검출하기 위한 전기적 신호 검출기 등으로 예시될 수 있다.Real-time polymerase chain reaction (PCR) has been widely used in performing nucleic acid analysis as an advantage that nucleic acid amplification products can be confirmed in real time during the reaction cycle without performing electrophoresis on gels. In general, a device for implementing real-time PCR is a thermal cycler having at least one heating block for performing a nucleic acid amplification reaction and a signal for measuring in real time a signal generated from a nucleic acid amplification product. And a detector. Such a signal detector may be exemplified as an optical detector for detecting a fluorescence signal generated from a nucleic acid amplification product, an electrical signal detector for detecting an electrical signal generated through specific binding of a nucleic acid amplification product and a medium which is mutually coupled thereto. Can be.
한편, 최근 의료 분야에 있어서, 맞춤 의학을 구현하기 위한 효율적인 진단 및 치료 방법이 활발하게 개발되고 있는데, 맞춤 의학을 실질적으로 실현하기 위해서는 다수의 개체에 대한 신속하고 정확한 진단 및 치료가 필요하다. 이 경우 진단 및 치료에 있어서, 핵산 증폭 단계는 가장 기초가 되는 전제 과정이고, 이를 수행하는 일 예인 실시간 PCR은 맞춤 의학 실현에 있어서 전제되는 단계라 할 것이다. 그러나, 실시간 PCR은 복잡한 수행 과정을 전제하기 때문에 완료 단계까지 상당한 시간이 소요되고, 이를 구현하기 위한 장치는 대부분 비싸고, 대형이어서 실질적인 맞춤 의학 실현에 장애가 되고 있다. 이와 같은 문제점을 해결하고자 최근 많은 시도가 이루어지고 있다.Meanwhile, recently, in the medical field, efficient diagnosis and treatment methods for implementing personalized medicine have been actively developed. In order to realize personalized medicine, rapid and accurate diagnosis and treatment of many individuals is required. In this case, in the diagnosis and treatment, the nucleic acid amplification step is the most basic premise process, and real time PCR, which is an example of performing this, is a prerequisite step in personalized medicine realization. However, since real-time PCR presupposes a complex process, it takes considerable time to complete, and the apparatus for implementing this is largely expensive and large, which is a barrier to practical personalized medicine. Recently, many attempts have been made to solve such problems.
이와 관련하여, 한국공개특허 제10-2004-0048754호(온도 제어가 가능한 리얼타임 형광 검색 장치)는 수백에서 수천의 샘플에서 여러 파장대(Wavelength)의 형광을 수초 내에 빠르고 낮은 샘플의 농도에서도 민감하게 검색하되, 효소 반응들을 리얼타임으로 검색하고 분석할 수 있으며 경제적인 가격에 휴대 가능한 소형의 형광 검색 장치를 제공한다. 구체적으로, 상기 선행 형광 검색 장치는 생물학적 샘플에 광원을 조사한 후 상기 샘플에서 방사되는 형광을 검색하여 샘플을 분석하는 장치로서, 샘플 용기, 상기 샘플 용기를 조사하도록 위치하는 광원, 상기 샘플에서 방사되는 형광을 탐지하는 탐지기, 상기 샘플에서 방사되는 형광을 상기 탐지기로 이동시키는 형광 이동 장치, 파장 선택 장치, 및 제어부를 포함하는 형광 검색 장치에 있어서, 다수의 LED 가 순차적으로 발광되도록 배열된 LED 어레이; 샘플 용기를 삽입하기 위한 다수의 웰을 가지는 웰 체임버 블록; 상기 LED 어레이의 각 LED 발광에 의해 상기 샘플에서 방사되는 형광을 탐지하기 위한 다중 채널 PMT; 및 상기 각 샘플에서 방사되는 형광을 개별적으로 상기 다중 채널 PMT 로 이동시키기 위한 다수의 광섬유를 포함하는 것을 특징으로 한다.In this regard, Korean Laid-Open Patent Publication No. 10-2004-0048754 (a real-time fluorescence retrieval apparatus with temperature control) is sensitive to fluorescence of several wavelengths in a few hundred to thousands of samples within seconds and even at low concentrations of samples. It provides a compact fluorescence detector that can search and analyze enzyme reactions in real time and is portable at an economical price. Specifically, the prior fluorescence detection device is a device for analyzing a sample by searching for a fluorescence emitted from the sample after irradiating a light source to a biological sample, a sample container, a light source positioned to irradiate the sample container, the light emitted from the sample A fluorescence retrieval device comprising a detector for detecting fluorescence, a fluorescence shifting device for moving fluorescence emitted from the sample to the detector, a wavelength selection device, and a control unit, the fluorescence retrieval device comprising: an array of LEDs arranged to sequentially emit a plurality of LEDs; A well chamber block having a plurality of wells for inserting a sample container; A multi-channel PMT for detecting fluorescence emitted from the sample by each LED emission of the LED array; And a plurality of optical fibers for individually moving the fluorescence emitted from each sample to the multi-channel PMT.
또한, 한국등록특허 제10-0794703호(생화학적 반응의 실시간 모니터링 장치)는 반응 튜브 플레이트 내의 반응 시 광 검출 감도 편차를 최소화하여 다종의 시료의 반응 정도를 비교분석할 수 있는 장치를 제공한다. 구체적으로, 상기 선행 실시간 모니터링 장치는 반응 튜브에 열을 공급할 수 있는 열공급원인 열전소자와 상기 반응 튜브에 열을 전달하기 위한 열전달 블록으로 이루어진 온도 조절 블록계; 상기 반응 튜브 내의 시료에 균일한 광을 조사하기 위한 램프와 광 도파관으로 이루어진 조사 광원부; 및 광 경로를 바꾸는 반사경과 상기 조사 광원부에 의해 조사되는 광에 의해 상기 반응 튜브내의 시료에서 발생되는 형광을 수광하기 위한 수광부로 구성된 광학계를 포함한다. In addition, Korean Patent Registration No. 10-0794703 (real-time monitoring device of the biochemical reaction) provides a device that can compare the degree of reaction of a plurality of samples by minimizing the deviation of the light detection sensitivity during the reaction in the reaction tube plate. Specifically, the preceding real-time monitoring device is a thermostat block system consisting of a thermoelectric element which is a heat supply source capable of supplying heat to the reaction tube and a heat transfer block for transferring heat to the reaction tube; An irradiation light source unit including a lamp and an optical waveguide for irradiating uniform light to a sample in the reaction tube; And an optical system including a reflector for changing a light path and a light receiving unit for receiving fluorescence generated in a sample in the reaction tube by light irradiated by the irradiation light source unit.
또한, 한국등록특허 제10-1089045호(핵산증폭반응 산물의 실시간 모니터링 장치)는 다수의 미량 시료를 중합효소연쇄반응과 같은 핵산 증폭반응을 수행하면서 반응 중에 생성되는 반응산물의 생성을 실시간으로 모니터링하기 위한 것으로서, 여기광과 형광의 간섭을 효율적으로 분리하기 위해 편광자, 편광빔분할기, 편광변환기 등을 포함하는 생화학 반응의 실시간 모니터링 장치를 제공한다.In addition, Korean Patent No. 10-1089045 (A real-time monitoring device of the nucleic acid amplification reaction product) performs a nucleic acid amplification reaction such as polymerase chain reaction of a plurality of trace samples in real time to monitor the production of reaction products generated during the reaction In order to efficiently separate the interference of the excitation light and fluorescence, to provide a real-time monitoring device for a biochemical reaction including a polarizer, a polarization beam splitter, a polarization converter and the like.
또한, 한국공개특허 제10-2008-0103548호(핵산 증폭 생성물의 실시간 검출 장치)는 수정을 위해 사용하는 제2 형광신호를 사용하는 일 없이, 장치상의 오차 요인을 효과적으로 배제 또는 저감시킬 수 있도록, 복수의 웰에 온도 사이클을 부여하여, 각 웰에 있어서의 핵산 증폭 생성물로부터의 형광 강도를 실시간으로 검출하고, 더 나아가 웰로부터 얻어지는 형광 측정값 [DNA]raw와 이 웰 근방에 있어서의 주변의 연결벽으로부터 얻어지는 형광 측정값 [DNA]bg를 검출하고, 형광 측정값 [DNA]raw로부터 형광 측정값 [DNA]bg를 뺌으로써 당해 웰의 형광 강도 [DNA]real을 결정할 수 있는 핵산 증폭 생성물의 실시간 검출 장치를 제공한다.In addition, Korean Patent Application Publication No. 10-2008-0103548 (a real-time detection device for nucleic acid amplification products) can effectively exclude or reduce the error factor on the device without using a second fluorescent signal used for correction, A plurality of wells are subjected to temperature cycles to detect in real time the fluorescence intensity from the nucleic acid amplification products in each well, furthermore, the fluorescence measurement [DNA] raw obtained from the wells and the surrounding connections in the vicinity of the wells. Real time of nucleic acid amplification products which can determine fluorescence intensity [DNA] real of the well by detecting fluorescence measurement [DNA] bg obtained from the wall and subtracting fluorescence measurement [DNA] bg from fluorescence measurement [DNA] raw It provides a detection device.
또한, 한국등록특허 제10-0794699호(핵산증폭반응 산물의 실시간 모니터링 장치)는 다수의 미량 시료를 중합효소연쇄반응과 같은 핵산 증폭반응을 수행하면서 반응 중에 생성되는 반응산물의 생성을 실시간으로 모니터링하기 위해 다수의 시료를 담기 위한 다수의 웰을 가지는 반응용기와 상기 반응용기를 덮기 위한 투명한 실링커버, 및 반응용기에 열원을 공급하기 위한 열전소자로 이루어지는 시료반응부; 여기광원 앞에 위치하는 선택적 투과 필터, 필터를 통과한 광을 선편광시키기 위한 선편광자로 이루어지는 발광 소자부; 발광소자부의 선편광자에 수직한 방향으로 되어 있는 선편광자, 선편광자를 통과한 광을 집광하는 집광렌즈, 집광렌즈를 통과한 광을 선택적으로 투과시키는 선택적 투과필터 및 형광감지소자로 이루어지는 수광소자부를 포함하여 구성되는 것을 특징으로 하는 핵산증폭반응산물의 실시간 모니터링 장치를 제공한다.In addition, Korean Patent No. 10-0794699 (a real-time monitoring device for nucleic acid amplification reaction products) monitors the production of reaction products generated during the reaction while performing nucleic acid amplification reactions such as polymerase chain reaction of a plurality of trace samples. A sample reaction unit including a reaction vessel having a plurality of wells for holding a plurality of samples, a transparent sealing cover for covering the reaction vessel, and a thermoelectric element for supplying a heat source to the reaction vessel; A light emitting element unit comprising a selective transmission filter positioned in front of the excitation light source and a linear polarizer for linearly polarizing the light passing through the filter; A light receiving element portion comprising a linear polarizer in a direction perpendicular to the linear polarizer of the light emitting element portion, a condenser lens for condensing light passing through the linear polarizer, a selective transmission filter for selectively transmitting the light passing through the condenser lens, and a fluorescent sensing element It provides a real-time monitoring device of the nucleic acid amplification reaction product, characterized in that configured.
그러나, 상기 선행기술들은 다수의 핵산증폭 산물을 동시에 측정하기 위해 복잡하고 정교한 형광 신호 측정 모듈을 다수 추가하기 때문에 기기의 대형화 및 고비용 발생 문제가 여전히 문제되고 있다. 더 나아가, 상기 선행기술들은 다수의 소량 샘플을 동시에 측정하는 것을 목적으로 하지만, 핵산증폭 과정 중 소형 반응 용기에 수용된 소량의 샘플 용액에서 가열에 의해 발생하는 버블(bubble)에 의해 신호 감도가 현저히 감소하는 현상에 대해 해결 방법은 전혀 개시하지 않고 있다.However, these prior arts add a large number of complex and sophisticated fluorescence signal measurement modules to simultaneously measure a large number of nucleic acid amplification products, so the problem of large size and high cost of the device is still a problem. Furthermore, the prior art aims to measure a large number of small samples simultaneously, but the signal sensitivity is significantly reduced by bubbles generated by heating in a small sample solution contained in a small reaction vessel during the nucleic acid amplification process. The solution is not disclosed at all.
따라서, 다수의 소량의 핵산 증폭 산물을 동시에 측정함과 동시에 측정값의 신뢰성을 확보하고, 더 나아가 저비용으로 신속하게 핵산 증폭 산물의 실시간 모니터링이 가능한 실시간 PCR 구현 장치가 여전히 요구된다 할 것이다.Therefore, there will still be a need for a real-time PCR implementation apparatus capable of simultaneously measuring a large number of small amounts of nucleic acid amplification products, ensuring reliability of measured values, and further enabling rapid real-time monitoring of nucleic acid amplification products at low cost.
본 발명은 다수의 소량의 핵산 증폭 산물을 동시에 신속하게 측정할 수 있고, 저가의 비용으로 핵산 증폭 산물을 검출하고, 더 나아가 결과의 신뢰성을 확보할 수 있는 실시간 PCR 장치를 제공하기 위함이다.The present invention is to provide a real-time PCR device that can measure a large number of small amounts of nucleic acid amplification products at the same time quickly, detect the nucleic acid amplification products at low cost, and further secure the reliability of the results.
상기 언급된 해결하고자 하는 과제를 수행하기 위하여,In order to carry out the above-mentioned task to be solved,
본 발명의 일 실시예는 상단 면이 개방된 PCR 반응 챔버(chamber); 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버의 내부를 향해 돌출되되 광 경로를 따라 연장된 광 투과성 재질의 광 투과부를 구비하는 덮개(cover)를 포함하는, 마이크로 PCR 칩(Micro-Polymerase Chain Reaction chip)을 제공한다.One embodiment of the present invention comprises a PCR reaction chamber (chamber) with an open top surface; And an open top surface of the PCR reaction chamber, which seals the open top surface, and protrudes toward the inside of the PCR reaction chamber from a portion of the sealing surface that is in contact with the open top surface and extends along the optical path. It provides a micro-Polymerase Chain Reaction chip, including a cover having a light transmitting portion of the material.
본 발명의 일 실시예에 따른 마이크로 PCR 칩에 있어서,In the micro PCR chip according to an embodiment of the present invention,
상기 PCR 반응 챔버는 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현될 수 있다. 이 경우 상기 PCR 반응 챔버는 5 내지 8 ㎕의 액체 샘플을 수용할 수 있다.The PCR reaction chamber may be implemented to have a liquid sample capacity of 10 μl or less. In this case, the PCR reaction chamber can accommodate 5 to 8 μl of liquid sample.
상기 광 투과부는 상기 밀폐 면의 중앙에 배치될 수 있다.The light transmitting part may be disposed at the center of the sealing surface.
상기 광 투과부는 상기 PCR 반응 챔버의 하단 바닥 면에 닿거나, 상기 PCR 반응 챔버의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현될 수 있다.The light transmitting part may be implemented to reach a position partially spaced upward from the bottom bottom surface of the PCR reaction chamber or upward from the bottom bottom surface of the PCR reaction chamber.
상기 덮개는 상기 광 투과부를 관통하여 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부를 더 구비할 수 있다.The cover may further include a hole that penetrates through the light transmitting part, and a flexible packing part which contacts the open top surface of the PCR reaction chamber to seal the open top surface.
상기 마이크로 PCR 칩은 상기 PCR 반응 챔버 및 상기 덮개로 구성된 단위 모듈을 2 이상 구비할 수 있다.The micro PCR chip may include two or more unit modules including the PCR reaction chamber and the cover.
상기 마이크로 PCR 칩은 평판 형상을 가질 수 있다.The micro PCR chip may have a flat plate shape.
상기 마이크로 PCR 칩은 평판 형상의 제1 판; 상기 제1 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버를 구비하는 평판 형상의 제2 판; 및 상기 제2 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부를 구비하는 덮개 역할을 수행하는 제3 판을 포함할 수 있다. 이 경우 상기 제2 판과 제3 판 사이에 상기 광 투과부를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부를 더 포함할 수 있다.The micro PCR chip may include a first plate having a flat plate shape; A second plate having a flat plate shape disposed on the first plate, the plate having the PCR reaction chamber; And a third plate disposed on an upper portion of the second plate to seal the open top surface in contact with an open top surface of the PCR reaction chamber and serve as a cover having the light transmitting part. . In this case, further comprising a hole that surrounds the light transmitting part between the second plate and the third plate, and a flexible packing part which contacts the open top surface of the PCR reaction chamber to seal the open top surface. Can be.
상기 마이크로 PCR 칩은 상기 PCR 반응 챔버로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부를 더 포함할 수 있다.The micro PCR chip may further include a heat dissipation unit implemented to discharge heat generated from the PCR reaction chamber to the outside.
본 발명의 다른 일 실시예는 상기 마이크로 PCR 칩; 상기 마이크로 PCR 칩의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록; 및 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 실시간 PCR 장치를 제공한다.Another embodiment of the present invention the micro PCR chip; One or more thermal blocks implemented to thermally contact at least one side of the micro PCR chip; And a light detection module implemented to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber of the micro PCR chip.
본 발명의 다른 일 실시예는 상기 마이크로 PCR 칩; 기판 상에 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제1 열 블록; 상기 기판 상에 상기 제1 열 블록과 이격 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제2 열 블록; 상기 제1 열 블록 및 제2 열 블록 위로 구동 수단에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩이 장착된 칩 홀더; 및 상기 제1 열 블록과 제2 열 블록 사이에 배치되되, 상기 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 제1 열 블록과 제2 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 실시간 PCR 장치를 제공한다.Another embodiment of the present invention the micro PCR chip; A first thermal block disposed on a substrate and configured to be in thermal contact with the micro PCR chip; A second thermal block disposed on the substrate and spaced apart from the first thermal block, and configured to be in thermal contact with the micro PCR chip; A chip holder movable left and right and / or up and down by a driving means over the first row block and the second row block, and on which the micro PCR chip is mounted; And PCR amplification in the PCR reaction chamber of the micro PCR chip, wherein the micro PCR chip is disposed between the first row block and the second row block, when the micro PCR chip is moved between the first row block and the second row block by the driving means. It provides a real-time PCR device, including a light detection module implemented to detect an optical signal generated from the product.
상기 언급된 과제 해결 수단에 따르면,According to the above mentioned problem solving means,
다수의 소량의 핵산 증폭 산물을 동시에 수용함과 동시에 열 블록과의 열 접촉 효율을 최대한 확보하여 신속한 결과를 확보할 수 있고, 더 나아가 핵산 증폭 산물로부터 발생하는 광신호를 별도의 여과 또는 가공 없이도 정확하게 측정할 수 있는 마이크로 PCR 칩을 제공할 수 있다.Accommodate multiple small amounts of nucleic acid amplification products at the same time and at the same time secure the maximum thermal contact efficiency with the heat block to ensure fast results. Furthermore, the optical signal generated from the nucleic acid amplification products can be accurately and accurately filtered without processing or processing. A micro PCR chip that can be measured can be provided.
또한, 상기 마이크로 PCR 칩을 전제로, 복잡한 측정용 모듈 없이도 신뢰성이 확보된 핵산 증폭 결과를 신속하게 확보할 수 있는 실시간 PCR 장치를 제공할 수 있다.In addition, on the premise of the micro PCR chip, it is possible to provide a real-time PCR device that can quickly secure a nucleic acid amplification result secured without the need for complicated measurement module.
도 1 내지 3은 종래 PCR 용기(대형) 대비 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)에 의해 광신호 감도가 감소하는 현상에 관한 것이다.1 to 3 relates to a phenomenon in which the optical signal sensitivity is reduced by bubbles generated during the PCR process in a micro-miniaturized PCR vessel (small size, x1 / 20) compared to a conventional PCR vessel (large size).
도 4는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 기본 구성에 관한 단면도에 관한 것이다.4 is a cross-sectional view of the basic configuration of a micro PCR chip according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 마이크로 PCR 칩 내부에서 PCR 과정 중 발생한 버블에 의한 영향 없이, PCR 산물로부터 광신호가 방출되는 원리에 관한 것이다.Figure 5 relates to the principle that the optical signal is emitted from the PCR product, without the influence of bubbles generated during the PCR process in the micro PCR chip according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 광 투과부의 다양한 유형에 관한 것이다.6 relates to various types of light transmitting portions of a micro PCR chip according to an embodiment of the present invention.
도 7 내지 9는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 플렉서블 패킹부에 관한 것이다.7 to 9 are related to the flexible packing of the micro PCR chip according to an embodiment of the present invention.
도 10은 PCR 반응 챔버, 및 광 투과부를 구비하는 덮개를 포함하는 단위 모듈이 2 이상 반복 구현된 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.10 is a micro PCR chip according to an embodiment of the present invention in which two or more unit modules including a PCR reaction chamber and a cover including a light transmitting unit are repeatedly implemented.
도 11 내지 12는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 단면 분해도에 관한 것이다.11 to 12 relate to the cross-sectional exploded view of a micro PCR chip according to an embodiment of the present invention.
도 13은 열 방출부를 포함하는 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.Figure 13 relates to a micro PCR chip according to an embodiment of the present invention including a heat release.
도 14 내지 15는 본 발명의 일 실시예에 따른 마이크로 PCR 칩, 상기 마이크로 PCR 칩과 열 접촉하는 열 블록, 및 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치에 관한 것이다.14 to 15 are to detect an optical signal generated from a micro PCR chip, a thermal block in thermal contact with the micro PCR chip, and a PCR amplification product inside a PCR reaction chamber of the micro PCR chip according to an embodiment of the present invention. It relates to a real-time PCR device according to another embodiment of the present invention including an implemented light detection module.
도 16 내지 18은 본 발명의 일 실시예에 따른 마이크로 PCR 칩, 2개의 열 블록, 상기 마이크로 PCR 칩이 장착되되 구동 수단에 의해 상기 2개의 열 블록 간에 이동 가능한 칩 홀더, 및 상기 2개의 열 블록 사이에 배치되되 상기 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 2개의 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치에 관한 것이다.16 to 18 are micro PCR chips according to an embodiment of the present invention, two row blocks, a chip holder mounted with the micro PCR chip and movable between the two row blocks by a driving means, and the two row blocks. And an optical detection module disposed between the micro PCR chips and configured to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber of the micro PCR chip when the micro PCR chip is moved between the two thermal blocks by the driving means. It relates to a real-time PCR device according to another embodiment of the present invention.
도 19는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 실제 구현 도면이다.19 is an actual implementation diagram of a micro PCR chip according to an embodiment of the present invention.
도 20은 도 19에 따른 마이크로 PCR 칩 및 도 18에 따른 실시간 PCR 장치를 이용하여 실시간 PCR을 수행한 후 PCR 결과에 관한 형광 사진이다.FIG. 20 is a fluorescence photograph of PCR results after real-time PCR using the micro PCR chip of FIG. 19 and the real-time PCR apparatus of FIG. 18.
도 21 내지 23은 도 19에 따른 마이크로 PCR 칩 및 도 18에 따른 실시간 PCR 장치를 이용하여 실시간 PCR을 수행한 후 PCR 결과를 나타낸 그래프이다.21 to 23 are graphs showing PCR results after real-time PCR using the micro PCR chip of FIG. 19 and the real-time PCR apparatus of FIG. 18.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세하게 설명한다. 이하 설명은 본 발명에 따른 실시예들을 쉽게 이해하기 위한 수단일 뿐이며, 본 발명의 보호범위를 제한하기 위한 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following description is merely a means for easily understanding the embodiments according to the present invention, but is not intended to limit the protection scope of the present invention.
본 발명의 실시예는 중합효소 연쇄 반응(Polymerase Chain Reaction, PCR), 더 구체적으로, 실시간으로 핵산 증폭 반응을 모니터링하는 실시간 PCR(real-time PCR)에 관한 것이다.Embodiments of the present invention relate to polymerase chain reaction (PCR), and more particularly, real-time PCR for monitoring nucleic acid amplification reactions in real time.
PCR은 핵산을 포함하는 PCR 시료 및 시약을 반복적으로 가열 및 냉각하여 핵산의 특정 염기 서열 부위를 연쇄적으로 복제하여 그 특정 염기 서열 부위를 갖는 핵산을 기하급수적으로 증폭하는 기술로써, 생명과학, 유전공학 및 의료 분야 등에서 질병의 진단 및 분석 목적으로 현재 널리 사용되고 있다. PCR을 효율적으로 수행하기 위한 PCR 장치가 최근 다양하게 개발되고 있다. PCR 장치는 특정 염기 서열을 갖는 핵산을 증폭하는 PCR을 수행하기 위하여 구현된 장치를 통칭한다. 일반적으로, PCR 장치는 이중 가닥의 DNA를 포함하는 PCR 시료 및 시약을 특정 온도, 예를 들어 약 95℃로 가열하여 상기 이중 가닥의 DNA를 단일 가닥의 DNA로 분리하는 변성 단계(denaturing step), 상기 PCR 시료 및 시약에 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드(oligonucleotide) 프라이머를 제공하고, 상기 분리된 단일 가닥의 DNA와 함께 특정 온도, 예를 들어 55℃로 냉각하여 상기 단일 가닥의 DNA의 특정 염기 서열에 상기 프라이머를 결합시켜 부분적인 DNA-프라이머 복합체를 형성하는 어닐링 단계(annealing step), 및 상기 어닐링 단계 이후 상기 PCR 시료 및 시약을 DNA 중합효소의 활성온도, 예를 들어 72℃로 유지하여 DNA 중합효소(polymerase)에 의해 상기 부분적인 DNA-프라이머 복합체의 프라이머를 기초로 이중 가닥의 DNA를 형성하는 연장(또는 증폭) 단계(extension step)를 수행하고, 상기 연장(또는 증폭) 단계를 예를 들어, 20회 내지 40회로 반복함으로써 상기 특정 염기 서열을 갖는 DNA를 기하급수적으로 증폭할 수 있도록 구현된다. 한편, 최근 PCR 장치는 상기 어닐링 단계와 상기 연장(또는 증폭) 단계를 동시에 수행할 수 있고, 이 경우 상기 PCR 장치는 상기 변성 단계에 이은 상기 어닐링 및 연장 (또는 증폭) 단계로 구성된 2 단계를 수행함으로써, 제1 순환을 완성할 수도 있다.PCR is a technology that repeatedly heats and cools PCR samples and reagents containing nucleic acids, thereby serially replicating specific nucleotide sequences of nucleic acids to exponentially amplify nucleic acids having specific nucleotide sequences. It is now widely used for diagnosis and analysis of diseases in engineering and medical fields. Recently, various PCR apparatuses for efficiently performing PCR have been developed. PCR apparatus is collectively referred to as a device implemented to perform PCR for amplifying a nucleic acid having a specific base sequence. In general, a PCR device is a denaturing step of separating a double-stranded DNA into a single-stranded DNA by heating a PCR sample and reagent comprising a double-stranded DNA to a specific temperature, for example about 95 ° C., Provide an oligonucleotide primer having a sequence complementary to a specific nucleotide sequence to be amplified in the PCR sample and reagent, and cooled to a specific temperature, for example 55 ℃ with the isolated single strand of DNA An annealing step of forming a partial DNA-primer complex by binding the primer to a specific nucleotide sequence of a strand of DNA, and after the annealing step, the PCR sample and reagent are subjected to an activity temperature of DNA polymerase, for example, Maintaining at 72 ° C. to form double stranded DNA based on the primers of the partial DNA-primer complex by DNA polymerase. By performing an extension (or amplification) step and repeating the extension (or amplification) step, for example, 20 to 40 times, the DNA having the specific base sequence can be implemented to be exponentially amplified. . On the other hand, the recent PCR apparatus may perform the annealing step and the extension (or amplification) at the same time, in which case the PCR device performs the two steps consisting of the annealing and extension (or amplification) steps following the denaturation step. By doing so, the first circulation can be completed.
실시간 PCR은 PCR에 사용되는 열 순환기(thermal cycler)에 측정 장치, 예를 들어 형광 광도계 등과 같은 광학 시스템(optical system) 모듈이 적용되어 핵산 증폭 산물이 생성되는 과정을 모니터링할 수 있는 핵산 증폭 반응을 말한다. 실시간 PCR은 일반적인 PCR과는 달리, 핵산 증폭 산물의 확인을 위한 전기영동이 요구되지 않아 실시간으로 정확하고 신속하게 핵산 증폭 산물을 분석할 수 있다는 장점이 있다. 그에 따라, 최근 실시간 PCR 장치가 또한 활발하게 개발되고 있는데, 실시간 PCR 장치가 위와 같은 장점을 충분히 발휘하기 위해서는 열 순환기의 효율을 상승시키는 것뿐만 아니라 핵산 증폭 산물로부터 발생하는 광신호를 오류 없이 정확하게 측정할 수 있어야 한다.Real-time PCR uses a nucleic acid amplification reaction to monitor the production of nucleic acid amplification products by applying an optical system module, such as a fluorescence photometer, to a thermal cycler used for PCR. Say. Unlike general PCR, real-time PCR does not require electrophoresis to identify nucleic acid amplification products, which has the advantage of analyzing nucleic acid amplification products accurately and quickly in real time. Accordingly, the real-time PCR apparatus has also been actively developed in recent years. In order to realize the above advantages, the real-time PCR apparatus not only increases the efficiency of the thermal cycler but also accurately and accurately measures the optical signal generated from the nucleic acid amplification product. You should be able to.
도 1 내지 3은 종래 PCR 용기(대형) 및 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)에 의해 광신호 감도가 감소하는 현상에 관한 것이다.1 to 3 relates to a phenomenon in which optical signal sensitivity is reduced by bubbles generated during a PCR process in a conventional PCR vessel (large) and an ultra-miniaturized PCR vessel (small, × 1/20).
맞춤 의료 서비스의 실질적인 실현을 위해 최근 PCR 장치는 소형화, 휴대화, 신속성, 및 경제성을 지향하고 있다. 기존 PCR 장치는 PCR 시료 및 시약을 담는 용기뿐만 아니라 기기 그 자체도 대형이어서 사용 조작이 어렵고, 휴대하기 어려웠을 뿐만 아니라 그에 따라 PCR 시료 및 시약도 상당히 낭비되었고, 비용 또한 상당히 발생하는 문제점이 있었다. 더 나아가, 사용되는 PCR 시료 및 시약의 양이 많아서 상당히 시간이 소요되어 효율적인 PCR이 구현되기 어려웠다.For practical realization of personalized medical services, PCR devices have recently been aimed at miniaturization, portability, speed, and economy. Existing PCR apparatus is not only a container for PCR samples and reagents, but also the device itself is large, difficult to operate and difficult to carry, as well as a considerable waste of PCR samples and reagents accordingly, there was also a problem that a considerable cost. Furthermore, the large amount of PCR samples and reagents used was quite time consuming and difficult to implement efficient PCR.
도 1에 따르면, 좌측 그림은 종래 일반적으로 사용되는 PCR 용기(대형)이고, 우측 그림은 상기 PCR 용기(대형) 대비 크기 및 액체 샘플 수용량을 극-소형화(×1/20)한 PCR 용기(소형)를 도시한다. 일반적으로, 종래 PCR 용기(대형)는 PCR 시료 및 시약을 담는 반응 챔버(reaction chamber) 및 이의 덮개(cover)로 구성되고, 상기 반응 챔버와 덮개는 광 투과성 재질로 구현되며, 약 200 ㎕의 액체 샘플 수용량을 갖고, 약 20 ㎕의 시료와 시약을 수용한 상태에서 PCR이 수행되었다. 상기 PCR 용기(소형) 역시 PCR 시료 및 시약을 담는 반응 챔버(reaction chamber) 및 이의 덮개(cover)로 구성되고, 상기 반응 챔버와 덮개는 광 투과성 재질로 구현될 수 있는데, 이 경우 상기 PCR 용기(소형)는 약 10 ㎕의 액체 샘플 수용량을 갖고, 약 5 내지 8 ㎕의 시료와 시약을 수용한 상태에서 PCR이 수행된다. 이와 같이, 극-소형화된 PCR 용기를 제작하는 것은 현재 공지된 기술 영역에서 용이하게 구현할 수 있다. 그러나, PCR 용기의 소형화는 핵산 증폭 산물의 측정에 있어서 아래와 같이 상당한 악영향을 미치기 때문에 쉽게 구현되기 어렵다.According to Fig. 1, the left figure is a conventionally used PCR vessel (large size), and the right figure is a PCR vessel (small size) in which the size and liquid sample capacity are extremely small (× 1/20) compared to the PCR vessel (large size). ). In general, a conventional PCR vessel (large) is composed of a reaction chamber containing a PCR sample and reagents and a cover thereof, the reaction chamber and the cover is made of a light transmitting material, about 200 μl of liquid PCR was performed with a sample capacity and about 20 μl of sample and reagents. The PCR vessel (small) also includes a reaction chamber containing a PCR sample and a reagent and a cover thereof, and the reaction chamber and the cover may be made of a light transmissive material, in which case the PCR vessel ( Small) has a liquid sample capacity of about 10 μl, and PCR is performed with about 5 to 8 μl of sample and reagents received. As such, fabricating ultra-miniaturized PCR vessels can be readily implemented in the currently known art. However, miniaturization of PCR vessels is difficult to implement easily because they have a significant adverse effect on the measurement of nucleic acid amplification products as follows.
도 2에 따르면, 종래 PCR 용기(대형) 대비 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)로 인해 광신호 감도가 감소하는 현상을 쉽게 확인할 수 있다. 앞서 설명한 바와 같이, PCR은 열 공급 단계를 수반하므로, PCR 용기 내부는 액체 샘플의 가열에 의해 상당한 양의 버블이 발생하는데, 이러한 버블은 핵산 증폭 산물로부터 발생하는 광신호(light signal)를 차단하게 된다. 한편, 도 2에 따르면, 상기 PCR 용기(대형) 내부에서 발생하는 버블은 비록 핵산 증폭 산물로부터 발생하는 광신호를 차단하여 광신호 감도를 감소시키지만, 버블 자체의 크기 및 개수 대비 반응 용기의 내부 공간이 충분히 크기 때문에 상기 버블은 상기 PCR 용기(대형)의 내부에서 분산되거나 상기 PCR 용기(대형)의 내벽에 군집을 형성하여 비록 광신호 감도가 떨어지기는 하지만, 광신호 측정이 불가능한 것은 아니다. 그러나, 도 2 및 도 2의 "a" 부분을 확대한 도 3에 따르면, 상기 PCR 용기(소형) 내부에서 발생하는 버블은 버블 자체 크기 및 개수 대비 반응 용기의 내부 공간이 상당히 작기 때문에 상기 버블은 핵산 증폭 산물로부터 발생하는 광신호를 차단하여 광신호 감도를 상당하게 떨어뜨리고 불균일하게 하여 결과의 신뢰도가 떨어진다. 따라서, PCR 장치를 소형화함과 동시에 이에 장착되는 PCR 용기의 소형화를 구현하는 경우 그만큼 광신호 감도의 감소 및 불균일에 따른 결과의 신뢰성을 확보하는 방안을 충분히 고려해야 한다.According to FIG. 2, it is easy to identify a phenomenon in which an optical signal sensitivity decreases due to a bubble generated during a PCR process in an ultra-miniaturized PCR vessel (small size, × 1/20) compared to a conventional PCR vessel (large size). . As described above, PCR involves a heat supply step, so that a considerable amount of bubbles are generated inside the PCR vessel by heating the liquid sample, which blocks the light signal generated from the nucleic acid amplification product. do. Meanwhile, according to FIG. 2, bubbles generated inside the PCR vessel (large) reduce the optical signal sensitivity by blocking the optical signals generated from the nucleic acid amplification products, but the internal space of the reaction vessel compared to the size and number of the bubbles themselves. Because of this sufficiently large size, the bubbles are dispersed inside the PCR vessel (large) or clustered on the inner wall of the PCR vessel (large), so that although optical signal sensitivity is inferior, optical signal measurement is not impossible. However, according to FIG. 3 in which the portion “a” of FIG. 2 and FIG. 2 are enlarged, the bubble generated inside the PCR vessel (small) has a relatively small internal space of the reaction vessel relative to the size and number of bubbles itself. By blocking the optical signal generated from the nucleic acid amplification product, the optical signal sensitivity is significantly reduced and non-uniform, resulting in less reliable results. Therefore, when miniaturizing the PCR apparatus and at the same time miniaturizing the PCR vessel mounted therein, it is necessary to fully consider a method of securing the reliability of the result due to the decrease in optical signal sensitivity and the nonuniformity.
도 4는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 기본 구성에 관한 단면도에 관한 것이다.4 is a cross-sectional view of the basic configuration of a micro PCR chip according to an embodiment of the present invention.
도 4에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(Micro-Polymerase Chain Reaction Chip)(1)은 상단 면이 개방된 PCR 반응 챔버(chamber)(10); 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)를 구비하는 덮개(cover)(20)를 포함한다.According to FIG. 4, a micro-polymer chain reaction chip 1 according to an embodiment of the present invention 1 includes a PCR reaction chamber 10 having an open top surface; And an open top surface of the PCR reaction chamber 10, which is in contact with the open top surface of the PCR reaction chamber 10, to seal the open top surface, and protrude toward the inside of the PCR reaction chamber 10 from a portion of the sealing surface that is in contact with the open top surface of the optical path. And a cover 20 having a light transmitting portion 25 of a light transmissive material extending along (21).
상기 PCR 반응 챔버(10)는 상단 면이 개방되되 하단 면 및 측 테두리 면이 밀폐되어 액체 샘플, 즉 PCR 시료 및 시약을 수용하도록 구현된다. 상기 PCR 반응 챔버(10)는 PCR 과정 중 반복적인 가열 및 냉각에 영향을 받지 않도록 구현되어야 하고, 이러한 기능을 유지할 수 있다면 특정 형상 및/또는 재질로 제한되진 않는다. 다만, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 핵산 증폭 산물의 실시간 광신호 측정을 전제로 하기 때문에, 적어도 광 경로(21)에 중첩되는 부분은 광 투과성 재질로 구현되는 것이 바람직하다.The PCR reaction chamber 10 is open to the upper surface, but the lower surface and the side border surface is implemented to accommodate a liquid sample, that is, a PCR sample and reagents. The PCR reaction chamber 10 should be implemented so as not to be affected by repetitive heating and cooling during the PCR process, and is not limited to a specific shape and / or material as long as it can maintain this function. However, since the micro PCR chip 1 according to the embodiment of the present invention is based on the real-time optical signal measurement of the nucleic acid amplification product, at least a portion overlapping the optical path 21 is preferably implemented by a light transmissive material. Do.
상기 덮개(20)는 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 역할을 수행한다. 상기 덮개(20)가 상기 PCR 반응 챔버(10)의 개방 상단 면을 밀폐함으로써, 상기 PCR 반응 챔버(10) 내부에서 반응하는 PCR 시료 및 시약은 외부로 유출되지 않으며, 상기 PCR 반응 챔버(10) 내부 온도를 유지하는 역할을 한다. 한편, 상기 덮개(20)는 위와 같은 기능을 구현할 수 있다면 다양한 형상 및/또는 재질로 구현될 수 있다. 다만, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 핵산 증폭 산물의 실시간 광신호 측정을 전제로 하기 때문에, 광 투과성 재질로 구현되는 것이 바람직하다.The cover 20 abuts the open top surface of the PCR reaction chamber 10 and serves to seal the open top surface. As the cover 20 seals the open top surface of the PCR reaction chamber 10, PCR samples and reagents reacting inside the PCR reaction chamber 10 are not leaked to the outside, and the PCR reaction chamber 10 is closed. It maintains the internal temperature. On the other hand, the cover 20 may be implemented in a variety of shapes and / or materials if it can implement the above functions. However, since the micro PCR chip 1 according to an embodiment of the present invention presupposes the real-time optical signal measurement of the nucleic acid amplification product, it is preferable that the micro PCR chip 1 is made of a light transmitting material.
한편, 도 4에 따르면, 상기 덮개(20)는 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)를 구비한다. 상기 광 투과부(25)는 광 투과성 재질로 구현되고 핵산 증폭 산물의 측정을 위한 광 경로(21)를 따라 연장되도록 구현되며, 상기 PCR 반응 챔버(10) 내부의 핵산 증폭 산물로부터 발생하는 광신호가 통과하는 부분이다. 더 나아가, 상기 광 투과부(25)는 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면, 즉 상기 덮개(20)의 하단 면의 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 하향 돌출되도록 구현된다. 상기 광 투과부(25)의 돌출 형상은 다양할 수 있으나, 원기둥 또는 사각기둥 형상으로 구현되는 것이 바람직하다. 또한, 도 6에 따르면, 상기 광 투과부(25)의 돌출 형상은 다양하게 구현될 수 있는데, 상기 PCR 반응 챔버(10)의 하단 바닥 면에 닿도록 구현되거나(도 6의 우측), 상기 PCR 반응 챔버(10)의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현될 수 있다(도 6의 좌측). 즉, 상기 광 투과부(25)는 상기 PCR 반응 챔버(10) 내부에 액체 샘플이 수용되는 경우 상기 액체 샘플 표면에 인접하거나 맞닿거나, 더 나아가 상기 액체 샘플 표면을 통과하여 상기 액체 샘플 내부에 담겨질 수도 있다. 아울러, 상기 광 투과부(25)는 광 경로를 따라 연장되도록 구현된다면, 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면, 즉 상기 덮개(20)의 하단 면의 임의의 일부 영역에 구현될 수 있는데, 상기 밀폐 면의 중앙, 즉 상기 덮개(20)의 하단 면의 중앙 영역에 배치되는 것이 바람직하다. 한편, 상기 PCR 반응 챔버(10)의 액체 샘플 수용량은 특정 부피로 제한되진 않지만, 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현되어 5 내지 8 ㎕의 액체 샘플을 수용할 수 있도록 구현되는 것이 바람직하다.Meanwhile, according to FIG. 4, the cover 20 protrudes toward the inside of the PCR reaction chamber 10 from a portion of the sealing surface that is in contact with the open top surface, and extends along the light path 21. Light transmission portion 25 is provided. The light transmitting part 25 is implemented as a light transmitting material and is implemented to extend along the light path 21 for the measurement of the nucleic acid amplification product, the optical signal generated from the nucleic acid amplification product in the PCR reaction chamber 10 passes through That's the part. Furthermore, the light transmitting part 25 is directed toward the inside of the PCR reaction chamber 10 from a part of the sealing surface which contacts the open top surface of the PCR reaction chamber 10, that is, the bottom surface of the lid 20. It is implemented to protrude downward. The protruding shape of the light transmitting part 25 may vary, but is preferably implemented in a cylindrical or square column shape. In addition, according to FIG. 6, the protruding shape of the light transmitting part 25 may be implemented in various ways, such that it is implemented to contact the bottom bottom surface of the PCR reaction chamber 10 (the right side of FIG. 6), or the PCR reaction. It may be implemented up to some spaced apart position upward from the bottom bottom face of the chamber 10 (left side of FIG. 6). That is, when the liquid sample is accommodated in the PCR reaction chamber 10, the light transmitting part 25 may be adjacent to or abut the surface of the liquid sample, or may pass through the surface of the liquid sample and be contained within the liquid sample. have. In addition, if the light transmitting part 25 is implemented to extend along the light path, the light transmitting part 25 may be implemented in any part of the sealing surface that contacts the open top surface of the PCR reaction chamber 10, that is, the bottom surface of the lid 20. It may be, it is preferably disposed in the center of the sealing surface, that is, the central region of the bottom surface of the cover (20). On the other hand, the liquid sample capacity of the PCR reaction chamber 10 is not limited to a specific volume, but is preferably implemented to have a liquid sample capacity of 10 μl or less to accommodate 5 to 8 μl of liquid sample.
도 5는 본 발명의 일 실시예에 따른 마이크로 PCR 칩 내부에서 PCR 과정 중 발생한 버블에 의한 영향 없이, PCR 산물로부터 광신호가 방출되는 원리에 관한 것이다.Figure 5 relates to the principle that the optical signal is emitted from the PCR product, without the influence of bubbles generated during the PCR process in the micro PCR chip according to an embodiment of the present invention.
PCR 과정이 진행되면서 PCR 용기 내부의 액체 샘플이 가열되어 그에 따라 버블이 발생할 수 있음은 이미 설명한 바와 같다.As described above, as the PCR process proceeds, the liquid sample inside the PCR vessel may be heated, thereby generating bubbles.
도 5에 따르면, PCR 과정 중 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 액체 샘플(liquid sample), 즉 PCR 시료 및 시약이 열 공급에 의해 가열되면 버블(bubble)이 발생한다. 그러나, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 경우 상기 덮개(20)의 하단 면으로부터 돌출된, 즉 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역(도 5에 따르면, 중앙 영역)으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)에 의해 상기 PCR 반응 챔버(10)에 형성된 버블(bubble)이 상기 광 투과부(25)의 테두리 면의 주변 영역으로 밀려서 주변 공간에 압축 배치된다. 그에 따라, 상기 버블(bubble)은 상기 액체 샘플(liquid sample)에 존재하는 핵산 증폭 산물로부터 형성된 광신호 경로(광 투과부, 25)를 완전히 이탈하게 되고, 핵산 증폭 산물을 측정하기 위한 광신호 감도에 전혀 영향을 미치지 않는다. 따라서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)을 이용하여 실시간 PCR 과정 중 핵산 증폭 산물을 실시간으로 측정하는 경우 상기 PCR 반응 챔버(10) 내부에 발생한 버블(bubble)의 영향을 전혀 받지 않게 되어 광신호 감도가 상당하게 증가하게 된다. 그 결과, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)에 의하면, 종래 PCR 용기에 비해 그 액체 샘플 수용량을 예를 들어, 10 ㎕ 이하로 크게 줄일 수 있기 때문에 PCR 용기를 극-소형화할 수 있고, 동시에 광신호 감도를 상당하게 증가시킬 수 있기 때문에 PCR 용기 및 실시간 PCR 장치의 소형화 및 휴대화를 달성할 수 있고, 더 나아가 다수의 소량의 핵산 증폭 산물을 동시에 신속하게 정확하게 측정할 수 있다.Referring to FIG. 5, when a liquid sample, that is, a PCR sample and a reagent inside the PCR reaction chamber 10 of the micro PCR chip 1 according to an embodiment of the present invention is heated by a heat supply during a PCR process, Bubbles occur. However, in the case of the micro PCR chip 1 according to an embodiment of the present invention, a portion of the sealed surface protruding from the bottom surface of the lid 20, that is, contacting the open top surface of the PCR reaction chamber 10 ( According to FIG. 5, the PCR reaction chamber 10 is formed by a light transmitting part 25 of a light transmitting material protruding from the central region) toward the inside of the PCR reaction chamber 10 and extending along the light path 21. The formed bubble is pushed to the peripheral area of the edge surface of the light transmitting part 25 and is compressed and disposed in the peripheral space. Accordingly, the bubble completely deviates from the optical signal path (light transmitting part) 25 formed from the nucleic acid amplification product present in the liquid sample, and the optical signal sensitivity for measuring the nucleic acid amplification product is It has no effect at all. Therefore, when the nucleic acid amplification products are measured in real time during the real-time PCR process using the micro PCR chip 1 according to an embodiment of the present invention, the influence of bubbles generated inside the PCR reaction chamber 10 is not affected at all. The optical signal sensitivity is significantly increased. As a result, according to the micro PCR chip 1 according to the embodiment of the present invention, since the liquid sample capacity can be greatly reduced to, for example, 10 μl or less, compared to the conventional PCR vessel, the PCR vessel can be miniaturized. And at the same time, the optical signal sensitivity can be significantly increased, thereby miniaturization and portability of the PCR vessel and the real-time PCR apparatus can be achieved, and further, a large number of small amount of nucleic acid amplification products can be quickly and accurately measured simultaneously. .
도 7 내지 9는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 플렉서블 패킹부에 관한 것이다.7 to 9 are related to the flexible packing of the micro PCR chip according to an embodiment of the present invention.
도 7 내지 9에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 덮개(20)는 상기 광 투과부(25)를 관통하여 둘러싸는 홀(hole)(45), 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부(40)를 더 포함할 수 있다.According to FIGS. 7 to 9, the cover 20 of the micro PCR chip 1 according to the exemplary embodiment of the present invention includes a hole 45 penetrating through the light transmitting part 25, and the PCR reaction. A flexible packing part 40 may be further included to abut the open top surface of the chamber 10 to seal the open top surface.
상기 플랙서블 패킹부(40)는 PCR 과정 중 상기 PCR 반응 챔버(10) 내부의 온도 상승에 의한 버블(bubble) 발생 또는 압력 상승에 의해 액체 샘플의 누수를 방지하는 역할을 한다. 상기 플랙서블 패킹부(40)는 고무(rubber) 또는 실리콘(silicon) 등 탄력성 또는 신축성을 갖는 물질로 구현되어 상기 버블(bubble) 발생 또는 압력 상승에 의한 팽창력을 완충하되 상기 PCR 반응 챔버(10)의 밀폐 상태를 유지할 수 있도록 구현된다. 한편, 상기 홀(45)은 상기 광 투과부(25)의 형상에 따라 구현되기 때문에, 비록 도 7에서는 원형으로 구현되어 있으나 이에 제한되는 것은 아니다. 한편, 도 8은 상기 플렉서블 패킹부(40)가 상기 덮개(20)에 부착되되 상기 광 투과부(25)를 관통하여 둘러싸고 있는 상태를 도시하고, 도 9는 도 8의 상태의 덮개(20)가 상기 PCR 반응 챔버(10)의 상단 면에 결합하여 상기 PCR 반응 챔버(10)의 내부 공간을 밀폐한 상태를 도시한다.The flexible packing unit 40 serves to prevent leakage of the liquid sample due to bubble generation or pressure rise due to a temperature rise inside the PCR reaction chamber 10 during a PCR process. The flexible packing part 40 is made of a material having elasticity or elasticity such as rubber or silicon to buffer the expansion force due to the bubble generation or the pressure rise, but the PCR reaction chamber 10 It is implemented to maintain the sealed state. On the other hand, since the hole 45 is implemented according to the shape of the light transmitting part 25, although it is implemented in a circular shape in Figure 7 is not limited thereto. Meanwhile, FIG. 8 illustrates a state in which the flexible packing part 40 is attached to the cover 20 but is enclosed through the light transmitting part 25, and FIG. 9 illustrates that the cover 20 of FIG. The state in which the inner space of the PCR reaction chamber 10 is sealed by coupling to the upper surface of the PCR reaction chamber 10 is illustrated.
도 10은 PCR 반응 챔버, 및 광 투과부를 구비하는 덮개를 포함하는 단위 모듈이 2 이상 반복 구현된 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.10 is a micro PCR chip according to an embodiment of the present invention in which two or more unit modules including a PCR reaction chamber and a cover including a light transmitting unit are repeatedly implemented.
앞서 설명한 바와 같이, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10) 및 광 투과부(25)를 구비하는 덮개(20)에 의해 광신호 감도를 상당하게 상승시키거나 영향을 미치지 않게 하면서 극-소형화가 가능하여 다수의 소량의 액체 샘플을 수용하는 멀티-챔버(multi chamber) 구조를 갖는 PCR 용기의 구현이 가능하다.As described above, the micro PCR chip 1 according to the embodiment of the present invention significantly increases the optical signal sensitivity by the lid 20 including the PCR reaction chamber 10 and the light transmitting part 25. It is possible to implement a PCR vessel having a multi-chamber structure that can be extremely miniaturized without affecting or affecting a large number of liquid samples.
도 10에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10) 및 상기 덮개(20)로 구성된 단위 모듈(50)을 2 이상 구비할 수 있다. 예를 들어, 도 10과 같이, 상기 마이크로 PCR 칩(1)이 평판 형상으로 구현될 경우 상기 단위 모듈(50)을 일렬로 나열하거나 평판 상의 원형 공간에 집적하여 2 이상의 개수(N)로 구현할 수 있어서, 예를 들어 상기 단위 모듈(50)을 19개(19 well), 48개(48 well), 96개(96 well) 등으로 구현할 수 있다.According to FIG. 10, the micro PCR chip 1 according to the exemplary embodiment of the present invention may include two or more unit modules 50 including the PCR reaction chamber 10 and the cover 20. For example, as shown in FIG. 10, when the micro PCR chip 1 is implemented in a flat plate shape, the unit modules 50 may be arranged in a line or may be integrated in a circular space on the flat plate and implemented as two or more numbers N. FIG. In this case, for example, the unit module 50 may be implemented in 19 (19 well), 48 (48 well), 96 (96 well) and the like.
도 11 내지 12는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 단면 분해도에 관한 것이다.11 to 12 relate to the cross-sectional exploded view of a micro PCR chip according to an embodiment of the present invention.
도 11에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 평판 형상의 제1 판(100); 상기 제1 판(100)의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버(10)를 구비하는 평판 형상의 제2 판(200); 및 상기 제2 판(200)의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부(25)를 구비하는 덮개(20) 역할을 수행하는 제3 판(300)을 포함하도록 구현될 수 있다.According to FIG. 11, a micro PCR chip 1 according to an embodiment of the present invention may include a first plate 100 having a flat plate shape; A second plate (200) having a flat plate shape disposed on the first plate (100) and having the PCR reaction chamber (10); And a cover 20 disposed above the second plate 200 to seal the open top surface by contacting the open top surface of the PCR reaction chamber 10 and having the light transmitting part 25. It may be implemented to include a third plate 300 to play a role.
상기 제1 판(100)은 평판 형상으로 구현되고, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 바닥 지지체(support) 역할을 수행한다. 상기 제1 판(100)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제1 판(100) 표면은 다양하게 구현될 수 있으나, 친수성 표면을 갖도록 처리되는 것이 바람직하다. 아울러, 상기 제1 판(100)은 바람직하게는 약 0.03 내지 1.0 mm로 구현될 수 있고, 더 바람직하게는 약 0.1 내지 0.5 mm로 구현될 수 있다.The first plate 100 is implemented in a flat plate shape, and serves as a bottom support of the micro PCR chip 1 according to an embodiment of the present invention. The first plate 100 may be made of various materials, but in consideration of cost reduction, the first plate 100 may be made of a plastic material, for example, polycarbonate (polyarbonate, PC), polyethylene terephthalate (PET), or the like. It is preferred to be implemented with a transparent material. In addition, the surface of the first plate 100 may be embodied in various ways, but is preferably treated to have a hydrophilic surface. In addition, the first plate 100 may be preferably implemented in about 0.03 to 1.0 mm, more preferably in about 0.1 to 0.5 mm.
상기 제2 판(200)은 평판 형상으로 구현되되 상기 제1 판(100)의 상부에 배치되는 것으로서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 영역을 형성하는 역할을 수행한다. 상기 제2 판(200)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제2 판(200)은 바람직하게는 약 0.5 내지 5 mm로 구현될 수 있고, 더 바람직하게는 약 1 내지 2 mm로 구현될 수 있다.The second plate 200 is implemented in a flat plate shape and is disposed on the first plate 100. The second plate 200 is a region of the PCR reaction chamber 10 of the micro PCR chip 1 according to an embodiment of the present invention. Serves to form. The second plate 200 may be made of various materials, but in consideration of cost reduction, the second plate 200 may be made of a plastic material, for example, polycarbonate (polyarbonate, PC), polyethylene terephthalate (PET), or the like. It is preferred to be implemented with a transparent material. In addition, the second plate 200 may be preferably implemented as about 0.5 to 5 mm, more preferably about 1 to 2 mm.
한편, 도 11에 따르면, 상기 제1 판(100)과 상기 제2 판(200) 사이에 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10)의 바닥 면 공간을 형성하는 평판 형상의 추가 층(150)이 형성될 수도 있다. 이는 상기 제1 판(100)과 상기 제2 판(200) 사이의 접합 면이거나, 또는 접착제 층일 수 있다. 따라서, 상기 제1 판(100)과 상기 제2 판(200) 사이는 열 접합, 초음파 접합, 자외선 접합, 용매 접합 방법으로 접착 구현될 수 있다. 아울러, 상기 추가 층(150)은 바람직하게는 약 0.03 내지 1.0 mm로 구현될 수 있고, 더 바람직하게는 약 0.1 내지 0.5 mm로 구현될 수 있다.Meanwhile, according to FIG. 11, the bottom surface space of the PCR reaction chamber 10 of the micro PCR chip 1 according to an embodiment of the present invention is provided between the first plate 100 and the second plate 200. An additional layer 150 in the form of a plate may be formed. This may be a bonding surface between the first plate 100 and the second plate 200, or may be an adhesive layer. Therefore, adhesion between the first plate 100 and the second plate 200 may be achieved by thermal bonding, ultrasonic bonding, ultraviolet bonding, or solvent bonding. In addition, the additional layer 150 may be preferably implemented in about 0.03 to 1.0 mm, more preferably in about 0.1 to 0.5 mm.
상기 제3 판(300)은 평판 형상으로 구현되되 상기 제2 판(200)의 상부에 배치되는 것으로서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부(50)를 구비하는 덮개(20) 역할을 수행한다. 상기 제3 판(200)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제3 판(200)은 바람직하게는 약 0.5 내지 5 mm로 구현될 수 있고, 더 바람직하게는 약 1 내지 2 mm로 구현될 수 있다. The third plate 300 is implemented in a flat plate shape, but is disposed on the second plate 200, and opens the PCR reaction chamber 10 of the micro PCR chip 1 according to an embodiment of the present invention. The open top surface is sealed to abut on the top surface, and serves as a cover 20 having the light transmitting part 50. The third plate 200 may be made of various materials, but in consideration of cost reduction, the third plate 200 may be made of a plastic material, for example, polycarbonate (polyarbonate, PC), polyethylene terephthalate (PET), or the like. It is preferred to be implemented with a transparent material. In addition, the third plate 200 may be preferably implemented as about 0.5 to 5 mm, more preferably about 1 to 2 mm.
한편, 도 12에 따르면, 상기 제3 판(300)은 상기 제2 판(200)과 제3 판(300) 사이에 상기 광 투과부(25)를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부(40)를 더 구비할 수 있다. 상기 플렉서블 패킹부(40)는 상기 PCR 반응 챔버(10) 내부에 수용되는 PCR 시료 및 시약의 누수 및 복수의 챔버 간 오염을 방지하기 위한 역할을 수행한다. 상기 플렉서블 패킹부(40)는 탄력성 또는 신축성이 있는 다양한 재질로 구현될 수 있으나, 예를 들어 실리콘(silicon), 텔프론(telflon) 등으로 구현되는 것이 바람직하다. 아울러, 상기 플렉서블 패킹부(40)는 바람직하게는 약 0.1 내지 2 mm로 구현될 수 있고, 더 바람직하게는 약 0.5 내지 1 mm로 구현될 수 있고, 상기 원형 홀 직경은 바람직하게는 약 1.0 mm 로 구현될 수 있다.Meanwhile, according to FIG. 12, the third plate 300 surrounds a hole between the second plate 200 and the third plate 300 to penetrate the light transmitting part 25, and the PCR. The flexible packing part 40 may be further provided to contact the open top surface of the reaction chamber 10 to seal the open top surface. The flexible packing unit 40 serves to prevent leakage of PCR samples and reagents contained in the PCR reaction chamber 10 and contamination between the plurality of chambers. The flexible packing part 40 may be made of various materials having elasticity or elasticity. For example, the flexible packing part 40 may be made of silicon, telflon, or the like. In addition, the flexible packing part 40 may be preferably implemented as about 0.1 to 2 mm, more preferably about 0.5 to 1 mm, and the circular hole diameter is preferably about 1.0 mm It can be implemented as.
도 13은 열 방출부를 포함하는 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.Figure 13 relates to a micro PCR chip according to an embodiment of the present invention including a heat release.
본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10)로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부(60)를 더 포함할 수 있다. 도 13에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 전체적으로 얇은 평판 형상으로, 중앙 원형 영역에 복수 개의 단위 모듈(50)이 집적되도록 구현된다. 앞서 설명된 바와 같이, PCR 과정 중 상기 단위 모듈(50) 내 PCR 반응 챔버(10) 내부에서는 고온의 열이 발생하기 때문에 기기의 내열성과 반응 안정성을 고려하여, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 중앙 원형 영역의 양 측면에 열 방출부(60)를 배치할 수 있다.The micro PCR chip 1 according to an embodiment of the present invention may further include a heat dissipation unit 60 implemented to discharge heat generated from the PCR reaction chamber 10 to the outside. According to FIG. 13, the micro PCR chip 1 according to the exemplary embodiment of the present invention has a thin plate shape as a whole and is implemented such that a plurality of unit modules 50 are integrated in a central circular region. As described above, since the high temperature heat is generated in the PCR reaction chamber 10 in the unit module 50 during the PCR process, in consideration of the heat resistance of the device and the reaction stability, according to an embodiment of the present invention The PCR chip 1 may arrange the heat dissipation parts 60 on both sides of the central circular region.
도 14 내지 15는 본 발명의 일 실시예에 따른 마이크로 PCR 칩이 적용된 단일 열 블록을 구비하는 실시간 PCR 장치를 도시한다.14 to 15 illustrate a real-time PCR apparatus having a single row block to which a micro PCR chip is applied according to an embodiment of the present invention.
도 14 내지 15에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 앞서 설명된 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1); 상기 마이크로 PCR 칩(1)의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록(200); 및 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(300)을 포함한다.14 to 15, the real-time PCR device 2000 according to another embodiment of the present invention includes a micro PCR chip 1 according to an embodiment of the present invention described above; One or more thermal blocks (200) implemented to thermally contact at least one surface of the micro PCR chip (1); And an optical detection module 300 implemented to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber 10 of the micro PCR chip 1.
상기 열 블록(200)은 상기 마이크로 PCR 칩(1)에 열 접촉하여 열 교환이 가능하도록 구현된 모듈이다. 상기 열 블록(200)은 다양한 재질로 구현될 수 있고, 핵산 증폭 산물의 광신호를 측정하기 위해 전체적으로(또는 부분적으로) 광 투과성을 갖도록 구현될 수도 있다. 상기 투명 발열 소재는 광 투과성을 갖는 재질로서 전력 공급에 의해 발열성을 갖는 모든 물질을 포함할 수 있으나, 바람직하게는 인듐 주석 산화물(Indum Tin Oxcide, ITO), 전도성 고분자(conducting polymer), 탄소나노튜브(Cabon NanoTube, CNT), 그래핀(graphene), 투명 금속 산화물(Transparent Conductive Oxide, TCO), 및 산화물-금속-산화물 다층 투명 소자로 구성된 군으로부터 선택될 수 있다. 인듐 주석 산화물(Indum Tin Oxcide, ITO)은 산화 인듐(In2O3)과 산화 주석(SnO2)이 섞여져 있으며, 일반적으로 90%의 산화 인듐과 10%의 산화 주석으로 구성되며, 투명 전극 또는 ITO로 불리기도 한다. 인듐 주석 산화물은 박막(얇은 층)으로 구현되는 경우 전기 전도율이 생기고, 투명하고 색이 존재하지 않다가 덩어리 상태로 구현되면 노란 회색을 띤다. 인듐 주석 산화물은 전자빔 증착, 증기 증착, 스퍼터링 기술에 의해 다른 물질의 표면에 증착된다, 인듐 주석 산화물은 종래까지 주로 액정 디스플레이, 평판 디스플레이, 플라스마 디스플레이, 터치스크린, 전자 종이, 유기 발광 다이오드, 태양 전지, 정전기 방지 코팅, 전자 방해 차폐물에서 주로 투명한 전도성 코팅을 제조하는데 사용되었다. 전도성 고분자(conducting polymer)는 소위 전기가 통하는 플라스틱으로 불리고, 광 투과율이 우수하고, 가벼우며, 탄성력 및 전기전도성이 우수하고, 가공이 매우 쉽다는 장점이 있다. 전도성 고분자는 폴리아세틸린, 폴리파라레닐렌, 폴리페놀, 폴리아닐린 등의 물질로부터 제조되고, 최근에는 폴리스티렌술폰산 및/또는 PEDOT(poly(3,4--ethylenedioxythiophene))로부터 제조되는 경우도 있다. 탄소나노튜브(Cabon NanoTube, CNT)는 6각형 고리로 연결된 탄소들이 긴 대롱 모양을 이루는 지름 1 나노미터 크기의 미세한 분자를 말한다. 인장력이 강철보다 강하고 유연성이 뛰어나며, 가볍고, 전기전도성이 매우 높은 것으로 알려져 있다. 한편, 정제된 단일벽 탄소나노튜브(Single-Walled Carbon Nanotube, SWNT)를 계면활성제를 이용하여 용매 분산하고 진공필터 장치를 이용하여 제작하면, 투명 전도체가 형성되고, 이는 투명성과 전도성을 모두 구비하게 된다. 그래핀(graphene)은 2000년대 초반, 흑연으로부터 분리된 물질로서, 탄소나노튜브, 풀러린(Fullerene)과 같이 원자번호 6번인 탄소로 구성된 나노물질이다. 그래핀은 구리보다 100배 이상 전기 전도성이 높고, 탄성력이 매우 우수한 것으로 알려져 있으며, 최근 투명 전극으로 구현되어 다양한 용도로 사용되고 있다. 투명 금속 산화물(Transparent Conductive Oxide, TCO)은 산소와 결합한 각종 금속 산화물 중 투명성을 갖는 물질을 총칭하는 것으로서, ZnO, SnO2, TiO2 등을 포함한다. 투명 금속 산화물은 높은 전도성과 투명도를 갖고, 적은 비용으로 코팅 물질로 사용될 수 있다. 산화물-금속-산화물 다층 투명 소자는 롤투롤 스퍼터 공정으로 제작되고, 금속의 유연성과 낮은 저항성, 산화물의 높은 투과도를 갖도록 구현될 수 있는 것으로서, ITO-Ag(또는 Cu)-ITO, AZO-Ag-AZO, GZO-Ag-GZO, IZO-Ag-IZO, IZTO-Ag-IZTO 등이 있다. 한편, 도 14 내지 15에 따르면, 상기 열 블록(200)은 다양한 형상으로 구현될 수 있으나, 바람직하게는 평판 형상으로 구현된다. 평판 형상의 열 블록(200)은 상기 마이크로 PCR 칩(1), 바람직하게는 평판 형상의 칩과 접촉하는 표면적이 넓어 PCR 시료 및 시약의 혼합액에 열을 고르게 제공할 수 있고, 그에 따라 PCR 단계의 각 사이클별 온도 변화가 신속하게 진행될 수 있다. 한편, 실시간 PCR 산물을 정확하게 모니터링하기 위해서 상기 광신호의 감도를 가능한 높일 필요가 있다. 상기 열 블록(200)은 전체적으로 광 투과성을 갖도록 구현될 수 있어서 광원으로부터 방출된 여기 광을 대부분 그대로 투과시켜 상기 광신호 감도를 높일 수 있다. 그러나, 상기 여기 광의 일부는 상기 열 블록(200) 상에서 반사되거나 또는 상기 열 블록(200)을 통과한 후 반사되어 광신호의 노이즈(noise)로서 작용할 수 있다. 따라서, 바람직하게는, 상기 열 블록(200)의 하부 면에 흡광 물질을 처리하여 광 신호 감도를 더 높일 수 있다. 상기 흡광 물질은 예를 들어, 운모(mica)일 수 있으나, 광을 흡수하는 성질을 갖는 물질이라면 제한되지 않는다. 따라서, 광원으로부터 유래된 광의 일부를 상기 흡광층이 흡수하여, 광신호의 노이즈로 작용하는 반사 광의 발생을 최대한 억제할 수 있다. 또한, 대안적으로, 상기 열 블록(200)의 상부 면에 광 반사 방지 물질을 처리하여 광신호 감도를 더 높일 수 있다. 상기 광 반사 방지 물질은 예를 들어, MgF2와 같은 불화물, SiO2, Al2O3와 같은 산화물일 수 있으나, 광 반사를 방지할 수 있는 성질을 갖는 물질이라면 제한되지 않는다. 또한, 더 바람직하게는, 상기 열 블록(200)의 하부 면에 흡광 물질을 처리하고, 동시에 상기 열 블록(200)의 상부 면에 광 반사 방지 물질을 처리하여 광신호 감도를 더 높일 수 있다. 즉, 효과적인 실시간 PCR의 모니터링을 위하여 상기 노이즈 대비 광 신호 비율은 가능한 최대 값을 가져야 하고, 상기 노이즈 대비 광 신호 비율은 상기 PCR 칩으로부터 여기 광의 반사율이 낮을수록 향상될 수 있다. 예를 들어, 일반적인 금속성 재질의 기존 열 블록의 여기 광의 반사율은 약 20 내지 80 %이지만, 상기 흡광층 또는 광반사방지층을 포함하는 상기 열 블록(200)을 사용하는 경우 광 반사율을 0.2% 내지 4% 이내로 줄일 수 있고, 상기 흡광층(60) 및 광반사방지층(70)을 포함하는 열 블록(200)을 사용하는 경우 광 반사율을 0.2% 이하로 줄일 수 있다.The thermal block 200 is a module implemented to enable heat exchange in thermal contact with the micro PCR chip 1. The thermal block 200 may be formed of various materials, and may be implemented to have a light transmittance (or partially) in order to measure the optical signal of the nucleic acid amplification product. The transparent heat generating material may include all materials having heat generating property by power supply as a material having light transmittance, but preferably, indium tin oxide (ITO), a conducting polymer, carbon nano It may be selected from the group consisting of tubes (Cabon NanoTube, CNT), graphene, transparent metal oxide (TCO), and oxide-metal-oxide multilayer transparent devices. Indium tin oxide (ITO) is a mixture of indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ), and is generally composed of 90% indium oxide and 10% tin oxide, and is a transparent electrode It is also called ITO. Indium tin oxide has an electrical conductivity when implemented in a thin film (thin layer), and becomes yellowish gray when implemented in a lumped state, transparent and colorless. Indium tin oxide is deposited on the surface of other materials by electron beam deposition, vapor deposition, and sputtering techniques. Indium tin oxide is conventionally mainly used in liquid crystal displays, flat panel displays, plasma displays, touch screens, electronic paper, organic light emitting diodes, and solar cells. , Antistatic coatings, electromagnetic interference shielding, mainly used to make transparent conductive coatings. The conducting polymer is called a plastic through which electricity is transmitted, and has the advantage of excellent light transmittance, light weight, excellent elasticity and electrical conductivity, and easy processing. The conductive polymer is made from materials such as polyacetylene, polyparaenylene, polyphenol, polyaniline, and the like, and recently, may be made from polystyrene sulfonic acid and / or PEDOT (poly (3,4--ethylenedioxythiophene)). Carbon NanoTube (CNT) refers to tiny molecules of 1 nanometer in diameter, with long, long rings of carbons connected by hexagonal rings. Tensile force is known to be stronger than steel, more flexible, lighter, and more electrically conductive. Meanwhile, when the purified single-walled carbon nanotubes (SWNT) are solvent dispersed using a surfactant and manufactured using a vacuum filter device, a transparent conductor is formed, which has both transparency and conductivity. do. Graphene (graphene) is a material separated from graphite in the early 2000s, and is a nanomaterial composed of carbon number 6 such as carbon nanotubes and fullerenes. Graphene is known to be more than 100 times higher electrical conductivity than copper, and has a very good elasticity, and has recently been implemented as a transparent electrode and used for various purposes. Transparent Conductive Oxide (TCO) refers to a material having transparency among various metal oxides bonded with oxygen, and includes ZnO, SnO 2 , TiO 2 , and the like. Transparent metal oxides have high conductivity and transparency and can be used as coating materials at low cost. The oxide-metal-oxide multilayer transparent device is manufactured by a roll-to-roll sputtering process, and can be implemented to have flexibility of a metal, low resistance, and high permeability of an oxide. AZO, GZO-Ag-GZO, IZO-Ag-IZO, IZTO-Ag-IZTO, and the like. On the other hand, according to Figure 14 to 15, the thermal block 200 may be implemented in a variety of shapes, but preferably in a flat shape. The plate-shaped thermal block 200 has a large surface area in contact with the micro PCR chip 1, preferably, the plate-shaped chip, thereby providing heat evenly to the mixed solution of the PCR sample and the reagents, and thus The temperature change for each cycle can proceed rapidly. On the other hand, in order to accurately monitor the real-time PCR product, it is necessary to increase the sensitivity of the optical signal as much as possible. The thermal block 200 may be implemented to have a light transmittance as a whole, so that most of the excitation light emitted from the light source may be transmitted as it is, thereby increasing the optical signal sensitivity. However, some of the excitation light may be reflected on the column block 200 or reflected after passing through the column block 200 to act as noise of an optical signal. Therefore, preferably, the light absorbing material may be processed on the lower surface of the thermal block 200 to further increase the optical signal sensitivity. The light absorbing material may be, for example, mica, but is not limited to a material having a property of absorbing light. Therefore, the light absorbing layer absorbs a part of the light derived from the light source, and the generation of reflected light acting as noise of the optical signal can be suppressed as much as possible. Alternatively, the optical signal sensitivity may be further increased by treating an antireflective material on the upper surface of the thermal block 200. The anti-reflective material may be, for example, a fluoride such as MgF 2 or an oxide such as SiO 2 or Al 2 O 3 , but is not limited as long as the material has a property of preventing light reflection. Also, more preferably, the light absorbing material may be processed on the lower surface of the thermal block 200, and at the same time, the light reflection preventing material may be processed on the upper surface of the thermal block 200 to further increase the optical signal sensitivity. That is, for effective real-time PCR monitoring, the ratio of the optical signal to the noise should have the maximum possible value, and the ratio of the optical signal to the noise may be improved as the reflectance of the excitation light from the PCR chip is lower. For example, the reflectance of the excitation light of the existing thermal block of a general metallic material is about 20 to 80%, but the light reflectance is 0.2% to 4 when using the heat block 200 including the light absorbing layer or the antireflective layer. It can be reduced to within%, and when using the heat block 200 including the light absorbing layer 60 and the light reflection prevention layer 70 can reduce the light reflectance to 0.2% or less.
상기 광 검출 모듈(300)은 상기 마이크로 PCR 칩(1)에 광을 제공하도록 구동가능하게 배치된 광 제공부(도시되지 않음) 및 상기 마이크로 PCR 칩(1)로부터 방출되는 광을 수용하도록 구동가능하게 배치된 광 검출부(도시되지 않음)를 포함할 수 있다. 상기 광 제공부는 상기 마이크로 PCR 칩(1)에 광을 제공하기 위한 모듈이고, 상기 광 검출부는 상기 마이크로 PCR 칩(1)으로부터 방출되는 광을 수용하여 상기 마이크로 PCR 칩(1)에서 수행되는 PCR 산물을 측정하기 위한 모듈이다. 상기 광 제공부로부터 광이 방출되고, 상기 방출된 광은 상기 마이크로 PCR 칩(1), 구체적으로 상기 마이크로 PCR 칩(1)의 단위 모듈(50) 내 PCR 반응 챔버를 통과하거나 반사하고, 이 경우 상기 PCR 반응 챔버 내의 핵산 증폭에 의해 발생하는 광신호를 상기 광 검출부가 검출한다. 따라서, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)에 따르면, 상기 마이크로 PCR 칩(1)에서 상기 PCR 과정이 진행되는 동안 상기 PCR 반응 챔버 내에서 (형광 물질이 결합된) 핵산 증폭 산물을 실시간으로 모니터링함으로써 초기 PCR 시료 및 시약에 포함되어 있는 표적 핵산의 증폭 여부 및 증폭 정도를 실시간으로 측정 및 분석할 수 있다. 또한, 상기 광 제공부 및 광 검출부는 상기 열 블록(200)을 중심으로 위 또는 아래에 모두 배치되거나 각각 배치될 수 있다. 다만, 상기 광 제공부 및 광 검출부의 배치는 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)의 최적의 구현을 위하여 다른 모듈과의 배치 관계를 고려하여 다양할 수 있으며, 바람직하게는 도 14 내지 15에 따라, 상기 광 제공부 및 광 검출부(광 검출 모듈, 300)가 상기 열 블록(200)의 상부에 모두 배치될 수 있다. 상기 광 제공부는 LED(Light Emitting Diode) 광원 또는 레이저 광원, 상기 광원으로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제1 광 여과기, 및 상기 제1 광 여과기로부터 방출되는 광을 포집하는 제1 광 렌즈를 포함하고, 상기 광원과 상기 제1 광 여과기 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈를 더 포함할 수 있다. 상기 광원은 광을 방출할 수 있는 모든 광원을 포함하며, LED(Light Emitting Diode) 광원 또는 레이저 광원을 포함한다. 상기 제1 광 여과기는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 미리 결정된 상기 광원에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 제1 광 여과기는 상기 광원으로부터 방출되는 광 중 500 nm 이하 파장대의 광만을 통과시킬 수 있다. 상기 제1 광 렌즈는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)에 조사되는 광의 강도를 증가시킬 수 있다. 또한, 상기 광 제공부은 상기 광원과 상기 제1 광 여과기 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈를 더 포함할 수 있다. 상기 제1 비구면 렌즈의 배치 방향을 조정함으로써, 상기 광원으로부터 방출되는 광 범위를 확장하여 측정 가능한 영역에 도달하게 한다. 상기 광 검출부는 상기 마이크로 PCR 칩(1)으로부터 방출되는 광을 포집하는 제2 광 렌즈, 상기 제2 광 렌즈로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제2 광 여과기, 및 상기 제2 광 여과기로부터 방출되는 광으로부터 광신호를 검출하는 광 분석기를 포함하고, 상기 제2 광 여과기와 상기 광 분석기 사이에 상기 제2 광 여과기로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈를 더 포함하며, 상기 제2 비구면 렌즈와 상기 광 분석기 사이에 상기 제2 비구면 렌즈로부터 방출되는 광의 노이즈(noise)를 제거하고 상기 제2 비구면 렌즈로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)를 더 포함할 수 있다. 상기 제2 광 렌즈는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 광의 강도를 증가시켜 광신호 검출을 용이하게 한다. 상기 제2 광 여과기는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 미리 결정된 광의 파장에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 제2 광 여과기는 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 미리 결정된 광 중 500 nm 이하 파장대의 광만을 통과시킬 수 있다. 상기 광 분석기는 상기 제2 광 여과기로부터 방출되는 광으로부터 광신호를 검출하는 모듈로서, PCR 시료 및 시약으로부터 발현 형광을 전기 신호로 전환하여 정성 및 정략적인 측정이 가능하도록 한다. 또한, 상기 광 검출부는 상기 제2 광 여과기와 상기 광 분석기 사이에 상기 제2 광 여과기로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈를 더 포함할 수 있다. 상기 제2 비구면 렌즈의 배치 방향을 조정함으로써, 상기 제2 광 여과기로부터 방출되는 광 영역을 확장하여 측정 가능한 영역에 도달하게 한다. 또한, 상기 광 검출부는 상기 제2 비구면 렌즈와 상기 광 분석기 사이에 상기 제2 비구면 렌즈로부터 방출되는 광의 노이즈(noise)를 제거하고, 상기 제2 비구면 렌즈로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)를 더 포함할 수 있다. 상기 광다이오드 집적소자(340)를 사용함으로써, 기기의 소형화가 더욱 가능하고, 노이즈를 최소화하여 신뢰 가능한 광신호를 측정할 수 있다. 더 나아가, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)는 상기 광 제공부로부터 방출된 광이 광 검출부까지 도달할 수 있도록 광의 진행 방향을 조절하고, 미리 결정된 파장을 갖는 광을 분리하기 위한 하나 이상의 이색성 필터를 더 포함할 수 있다. 상기 이색성 필터(dichroic filter)는 광을 파장에 따라 선택적으로 투과 또는 선택적으로 조절된 각도로 반사시키는 모듈이다. 상기 이색성 필터는 상기 광 제공부으로부터 방출되는 광의 광축에 대하여 약 45도 각도로 경사지게 배치되고, 상기 광을 그 파장에 따라 선택적으로 단파장 성분을 투과시키고 장파장 성분을 직각으로 반사시켜 상기 열 블록(200) 상에 배치된 마이크로 PCR 칩(1)에 도달하게 한다. 또한, 상기 이색성 필터는 상기 마이크로 PCR 칩(1) 및 상기 열 블록(200)으로부터 반사된 광의 광축에 대하여 약 45도 각도로 경사지게 배치되고, 상기 광을 그 파장에 따라 선택적으로 단파장 성분을 투과시키고 장파장 성분을 직각으로 반사시켜 상기 광 검출부에 도달하게 한다. 상기 광 검출부에 도달한 광은 광 분석기에서 전기 신호로 전환되어 핵산 증폭 여부 및 증폭 정도를 나타낼 수 있다.The light detection module 300 is operable to receive light emitted from the micro PCR chip 1 and a light providing unit (not shown) operably arranged to provide light to the micro PCR chip 1. It may include a light detector (not shown) disposed so as to. The light providing unit is a module for providing light to the micro PCR chip (1), the light detection unit receives the light emitted from the micro PCR chip (1) PCR products carried out in the micro PCR chip (1) This module is for measuring. Light is emitted from the light providing unit, and the emitted light passes through or reflects through the PCR reaction chamber in the micro PCR chip 1, specifically, the unit module 50 of the micro PCR chip 1. The light detector detects an optical signal generated by nucleic acid amplification in the PCR reaction chamber. Therefore, according to the real-time PCR device 1000 according to another embodiment of the present invention, the nucleic acid amplification product (fluorescent material is bound) in the PCR reaction chamber during the PCR process in the micro PCR chip (1) By monitoring in real time, it is possible to measure and analyze in real time whether the target nucleic acid included in the initial PCR sample and reagent is amplified and the degree of amplification. In addition, the light providing unit and the light detecting unit may be all disposed above or below the thermal block 200, or may be disposed respectively. However, the arrangement of the light providing unit and the light detecting unit may be various in consideration of the arrangement relationship with other modules for optimal implementation of the real-time PCR apparatus 1000 according to another embodiment of the present invention. According to 14 to 15, both the light providing unit and the light detecting unit 300 may be disposed above the thermal block 200. The light providing unit includes a light emitting diode (LED) light source or a laser light source, a first light filter for selecting light having a predetermined wavelength from the light emitted from the light source, and a light collecting unit for collecting light emitted from the first light filter. It may further include a first aspheric lens including a first optical lens, disposed to spread light between the light source and the first light filter. The light source includes all light sources capable of emitting light, and includes a light emitting diode (LED) light source or a laser light source. The first light filter selects and emits light having a specific wavelength among incident light having various wavelength bands, and may be variously selected according to the predetermined light source. For example, the first light filter may pass only light in a wavelength band of 500 nm or less of the light emitted from the light source. The first optical lens collects the incident light and increases the intensity of the emitted light. The first optical lens may increase the intensity of light irradiated onto the micro PCR chip 1 through the thermal block 200. In addition, the light providing unit may further include a first aspherical lens disposed to spread light between the light source and the first light filter. By adjusting the arrangement direction of the first aspherical lens, the light range emitted from the light source is extended to reach the measurable area. The light detector includes a second optical lens for collecting light emitted from the micro PCR chip 1, a second optical filter for selecting light having a predetermined wavelength from the light emitted from the second optical lens, and the second optical filter. An optical analyzer for detecting an optical signal from light emitted from the second optical filter, and further comprising a second aspherical lens disposed between the second optical filter and the optical analyzer to integrate light emitted from the second optical filter; And a photodiode disposed between the second aspherical lens and the optical analyzer to remove noise of light emitted from the second aspherical lens and to amplify the light emitted from the second aspherical lens. The integrated circuit may further include a PDIC. The second optical lens collects the incident light and increases the intensity of the emitted light. The second optical lens increases the intensity of light emitted from the micro PCR chip 1 through the thermal block 200 to detect the optical signal. To facilitate. The second light filter selects and emits light having a specific wavelength among incident light having various wavelength bands, and variously selects the light according to a predetermined wavelength of light emitted from the micro PCR chip 1 through the thermal block 200. Can be. For example, the second light filter may pass only light in a wavelength range of 500 nm or less among predetermined light emitted from the micro PCR chip 1 through the heat block 200. The optical analyzer is a module that detects an optical signal from light emitted from the second optical filter, and converts expression fluorescence from an PCR sample and a reagent into an electrical signal to enable qualitative and quantitative measurement. The light detector may further include a second aspherical lens disposed between the second light filter and the light analyzer to integrate light emitted from the second light filter. By adjusting the arrangement direction of the second aspherical lens, the light region emitted from the second light filter is expanded to reach the measurable region. The light detector may further include a photodiode disposed between the second aspherical lens and the optical analyzer to remove noise of light emitted from the second aspherical lens and to amplify the light emitted from the second aspherical lens. It may further include a photodiode integrated circuit (PDIC). By using the photodiode integrated device 340, it is possible to further reduce the size of the device, and to measure a reliable optical signal by minimizing noise. Furthermore, the real-time PCR apparatus 1000 according to another embodiment of the present invention adjusts the direction of light travel so that the light emitted from the light providing unit reaches the light detecting unit, and separates light having a predetermined wavelength. One or more dichroic filters may be further included. The dichroic filter is a module that reflects light at an angle selectively transmitted or selectively adjusted according to the wavelength. The dichroic filter is disposed to be inclined at an angle of about 45 degrees with respect to the optical axis of the light emitted from the light providing unit, and selectively transmits the light having a short wavelength component and reflects the long wavelength component at a right angle according to the wavelength thereof so that the heat block ( To the micro PCR chip 1 disposed on the substrate 200). Further, the dichroic filter is disposed to be inclined at an angle of about 45 degrees with respect to the optical axis of the light reflected from the micro PCR chip 1 and the thermal block 200, and selectively transmits the light according to the wavelength of the short wavelength component. And the long wavelength component is reflected at right angles to reach the photodetector. The light reaching the light detector may be converted into an electrical signal in the optical analyzer to indicate whether the nucleic acid is amplified and the degree of amplification.
도 16 내지 18은 본 발명의 일 실시예에 따른 마이크로 PCR 칩이 적용된 2개의 열 블록을 구비하는 실시간 PCR 장치를 도시한다.16 to 18 illustrate a real-time PCR device having two column blocks to which a micro PCR chip according to an embodiment of the present invention is applied.
도 16 내지 18에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 앞서 설명된 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1); 기판(400a) 상에 배치되되 상기 마이크로 PCR 칩(1)과 열 접촉하도록 구현된 제1 열 블록(100a); 상기 기판(400a) 상에 상기 제1 열 블록(100a)과 이격 배치되되 상기 마이크로 PCR 칩(1)과 열 접촉하도록 구현된 제2 열 블록(200a); 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a); 및 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 배치되되, 상기 마이크로 PCR 칩(1)이 상기 구동 수단(500a)에 의해 상기 제1 열 블록(100a)과 제2 열 블록(200a) 간 이동시 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(700a, 800a)을 포함한다.16 to 18, the real-time PCR device 2000 according to another embodiment of the present invention includes a micro PCR chip 1 according to the embodiment of the present invention described above; A first thermal block (100a) disposed on the substrate (400a) and implemented to be in thermal contact with the micro PCR chip (1); A second thermal block 200a disposed on the substrate 400a to be spaced apart from the first thermal block 100a and in thermal contact with the micro PCR chip 1; A chip holder 300a movable left and right and / or up and down by the driving means 500a on the first row block 100a and the second row block 200a and on which the micro PCR chip 1 is mounted; And between the first row block 100a and the second row block 200a, wherein the micro PCR chip 1 is driven by the driving means 500a by the first row block 100a and the second row. The light detection module 700a and 800a are implemented to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber 10 of the micro PCR chip 1 when moving between blocks 200a.
도 16에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 기판(400a) 상에 배치된 제1 열 블록(100a); 상기 기판(400a) 상에 상기 제1 열 블록(100a)과 이격 배치된 제2 열 블록(200a); 및 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 포함한다.According to FIG. 16, the real-time PCR apparatus 2000 according to another embodiment of the present invention may include a first row block 100a disposed on the substrate 400a; A second thermal block 200a spaced apart from the first thermal block 100a on the substrate 400a; And move up, down, and / or up and down by the driving means 500a over the first and second row blocks 100a and 200a, and the micro PCR chip 1 according to an embodiment of the present invention may be And a mounted chip holder 300a.
상기 기판(400a)은 상기 제1 열 블록(100a) 및 제2 열 블록(200a)의 가열 및 온도 유지로 인해 그 물리적 및/또는 화학적 성질이 변하지 않고, 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 사이에서 상호 열 교환이 일어나지 않도록 하는 재질을 갖는 모든 물질을 포함한다. 예를 들어, 상기 기판(400a)은 플라스틱 등의 재질을 포함하거나 그러한 재질로 구성될 수 있다.The substrate 400a does not change its physical and / or chemical properties due to heating and temperature maintenance of the first thermal block 100a and the second thermal block 200a, and the first thermal block 100a and the first thermal block 100a and the second thermal block 200a do not change. It includes all materials having a material such that mutual heat exchange does not occur between the two heat blocks 200a. For example, the substrate 400a may include or be made of a material such as plastic.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 핵산을 증폭하기 위한 변성 단계, 어닐링 단계 및 연장 (혹은 증폭) 단계를 수행하기 위한 온도를 유지하기 위한 것이다. 따라서 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 상기 각 단계들에 요구되는 필요한 온도를 제공하고, 이를 유지하기 위한 다양한 모듈을 포함하거나 또는 그러한 모듈과 구동가능하게 연결될 수 있다. 따라서, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)가 상기 각 열 블록(100a, 200a)의 일 면에 접촉되는 경우 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 상기 마이크로 PCR 칩(1)과의 접촉 면을 전체적으로 가열 및 온도 유지할 수 있어서, 상기 마이크로 PCR 칩(1) 내의 샘플 용액을 균일하게 가열 및 온도 유지할 수 있다. 종래 단일 열 블록을 사용하는 PCR 장치는 상기 단일 열 블록에서의 온도 변화율이 초당 3 내지 7℃ 범위 내에서 이루어지는데 반해, 본 발명의 다른 실시예에 따른 2개의 열 블록을 포함하는 실시간 PCR 장치(2000)는 각각의 열 블록(100a, 200a)에서의 온도 변화율이 초당 20 내지 40℃ 범위 내에서 이루어져 PCR 진행 시간을 크게 단축시킬 수 있다.The first row block 100a and the second row block 200a are for maintaining a temperature for performing a denaturation step, annealing step and extension (or amplification) step for amplifying the nucleic acid. Thus, the first thermal block 100a and the second thermal block 200a may include or be operably connected with various modules for providing and maintaining the required temperature required for the respective steps. . Therefore, when the chip holder 300a on which the micro PCR chip 1 is mounted is in contact with one surface of each of the row blocks 100a and 200a, the first row block 100a and the second row block 200a are provided. Since the contact surface with the micro PCR chip 1 as a whole can be heated and temperature maintained, the sample solution in the micro PCR chip 1 can be uniformly heated and temperature maintained. In the conventional PCR apparatus using a single thermal block, the temperature change rate in the single thermal block is within a range of 3 to 7 ° C per second, whereas a real time PCR apparatus including two thermal blocks according to another embodiment of the present invention ( 2000), the rate of temperature change in each of the thermal blocks 100a and 200a is within a range of 20 to 40 ° C. per second, thereby greatly shortening the PCR progress time.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 그 내부에 열선(도시되지 않음)이 배치될 수 있다. 상기 열선은 상기 변성 단계, 어닐링 단계 및 연장 (혹은 증폭) 단계를 수행하기 위한 온도를 유지하도록 다양한 열원과 구동가능하게 연결될 수 있고, 상기 열선의 온도를 모니터링하기 위한 다양한 온도 센서와 구동가능하게 연결될 수 있다. 상기 열선은 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 내부 온도를 전체적으로 일정하게 유지하기 위해 각각의 열 블록(100a, 200a) 면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 대칭되도록 배치될 수 있다. 상기 상하 및/또는 좌우 방향으로 대칭된 열선의 배치는 다양할 수 있다. 또한, 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 그 내부에 박막 히터(thin film heater, 도시되지 않음)가 배치될 수도 있다. 상기 박막 히터는 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 내부 온도를 전체적으로 일정하게 유지하기 위해 각각의 열 블록(100a, 200a) 면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 일정한 간격으로 이격 배치될 수 있다. 상기 상하 및/또는 좌우 방향으로 일정한 박막 히터의 배치는 다양할 수 있다.Hot wires (not shown) may be disposed in the first row block 100a and the second row block 200a. The heating wire may be operably connected with various heat sources to maintain a temperature for performing the denaturing, annealing and extending (or amplifying) steps, and may be operably connected with various temperature sensors for monitoring the temperature of the heating wire. Can be. The heating wires are vertically and / or horizontally based on the center point of the surface of each of the heat blocks 100a and 200a in order to maintain a constant internal temperature of the first and second heat blocks 100a and 200a. It may be arranged to be symmetrical. The arrangement of the hot wires symmetrically in the vertical direction and / or the horizontal direction may vary. In addition, a thin film heater (not shown) may be disposed in the first thermal block 100a and the second thermal block 200a. The thin-film heater is vertically and / or horizontally based on a center point of each of the thermal block 100a and 200a in order to maintain a constant internal temperature of the first and second thermal blocks 100a and 200a. May be spaced apart at regular intervals. The arrangement of the thin film heater that is constant in the vertical and / or horizontal directions may vary.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 동일한 면적에 대한 고른 열 분포 및 신속한 열 전달을 위해 금속 재질, 예를 들어 알루미늄 재질을 포함하거나 또는 알루미늄 재질로 구성될 수 있다.The first thermal block 100a and the second thermal block 200a may include a metal material, for example, aluminum or may be made of aluminum for even heat distribution and rapid heat transfer over the same area.
상기 제1 열 블록(100a)은 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행하기 위한 적정 온도를 유지하도록 구현될 수 있다. 예를 들어, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)의 제1 열 블록(100a)은 50℃ 내지 100℃를 유지할 수 있고, 바람직하게는 상기 제1 열 블록(100a)에서 상기 변성 단계를 수행하는 경우 90℃ 내지 100℃를 유지할 수 있고, 바람직하게는 95℃를 유지할 수 있으며, 상기 제1 열 블록(100a)에서 상기 어닐링 및 연장 (혹은 증폭) 단계를 수행하는 경우에는 55℃ 내지 75℃를 유지할 수 있고, 바람직하게는 72℃를 유지할 수 있다. 다만, 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행할 수 있는 온도라면 이에 제한되는 것은 아니다. 상기 제2 열 블록(200a)은 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행하기 위한 적정 온도를 유지하도록 구현될 수 있다. 예를 들어, 본 발명의 제3 실시예에 따른 PCR 장치의 제2 열 블록(200a)은 상기 제2 열 블록(200a)에서 상기 변성 단계를 수행하는 경우 90℃ 내지 100℃를 유지할 수 있고, 바람직하게는 95℃를 유지할 수 있으며, 상기 제2 열 블록에서 상기 어닐링 및 연장 (혹은 증폭) 단계를 수행하는 경우에는 55℃ 내지 75℃를 유지할 수 있고, 바람직하게는 72℃를 유지할 수 있다. 다만, 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행할 수 있는 온도라면 이에 제한되는 것은 아니다. 따라서, 상기 제1 열 블록(100a)은 PCR의 변성 단계 온도 (denaturing temperature)를 유지할 수 있으며, 변성 단계 온도가 90℃보다 낮으면 PCR의 주형이 되는 핵산의 변성이 일어나 효율이 떨어져 PCR 효율이 떨어지거나 반응이 일어나지 않을 수 있고, 변성 단계 온도가 100℃보다 높아지면 PCR에 이용되는 효소가 활성을 잃게 되므로, 상기 변성 단계 온도는 90℃ 내지 100℃일 수 있고, 바람직하게는 95℃일 수 있다. 또한, 상기 제2 열 블록(200a)은 PCR의 어닐링 및 연장 (혹은 증폭) 단계 온도(annealing/extension temperature)를 유지할 수 있다. 연장 (혹은 증폭) 단계 온도가 55℃보다 낮으면 PCR 산물의 특이성(specificity)이 떨어질 수 있고, 어닐링 및 연장 (혹은 증폭) 단계 온도가 74℃보다 높으면 프라이머에 의한 연장이 일어나지 않을 수 있기 때문에 PCR 효율이 떨어지게 되므로 상기 어니링 및 연장 (혹은 증폭) 단계 온도는 55℃ 내지 75℃일 수 있고, 바람직하게는 72℃일 수 있다.The first thermal block 100a may be implemented to maintain an appropriate temperature for performing the denaturation step, or the annealing and extension (or amplification) steps. For example, the first row block 100a of the real-time PCR apparatus 2000 according to another embodiment of the present invention may maintain 50 ° C. to 100 ° C., preferably in the first row block 100 a. In the case of performing the denaturation step, the temperature may be maintained at 90 ° C. to 100 ° C., preferably at 95 ° C., and 55 when the annealing and extension (or amplification) steps are performed in the first heat block 100a. ℃ to 75 ℃ can be maintained, preferably 72 ℃ can be maintained. However, the temperature of the denaturation step or the annealing and extension (or amplification) step is not limited thereto. The second row block 200a may be implemented to maintain an appropriate temperature for performing the denaturation step, or the annealing and extension (or amplification) steps. For example, the second row block 200a of the PCR apparatus according to the third embodiment of the present invention may maintain 90 ° C. to 100 ° C. when the denaturation step is performed in the second row block 200 a. Preferably, the temperature may be maintained at 95 ° C., and may be maintained at 55 ° C. to 75 ° C., preferably at 72 ° C., when the annealing and extension (or amplification) steps are performed in the second heat block. However, the temperature of the denaturation step or the annealing and extension (or amplification) step is not limited thereto. Therefore, the first heat block 100a may maintain the denaturing temperature of the PCR, and when the denaturation temperature is lower than 90 ° C., denaturation of the nucleic acid that is a template of the PCR occurs, resulting in poor efficiency and low PCR efficiency. When the denaturation step temperature is higher than 100 ° C., the enzyme used for PCR loses activity, so the denaturation step temperature may be 90 ° C. to 100 ° C., preferably 95 ° C. have. In addition, the second row block 200a may maintain annealing / extension temperature of annealing and extension (or amplification) of the PCR. If the extension (or amplification) step temperature is lower than 55 ° C., the specificity of the PCR product may be degraded, and if the annealing and extension (or amplification) step temperature is higher than 74 ° C., the PCR may not occur. Since the efficiency is lowered, the annealing and extension (or amplification) step temperature may be 55 ° C to 75 ° C, preferably 72 ° C.
상기 제1 열 블록(100a)과 제2 열 블록(200a)은 상호 열 교환이 일어나지 않도록 미리 결정된 거리로 이격 배치될 수 있다. 이에 따라, 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에서 열 교환이 일어나지 않기 때문에, 미세한 온도 변화에 의해서도 중대한 영향을 받을 수 있는 핵산 증폭 반응에 있어서, 상기 변성 단계와 상기 어닐링 및 연장 (혹은 증폭) 단계의 정확한 온도 제어가 가능하다.The first thermal block 100a and the second thermal block 200a may be spaced apart from each other at a predetermined distance such that mutual heat exchange does not occur. Accordingly, since the heat exchange does not occur between the first heat block 100a and the second heat block 200a, the denaturation step and the nucleic acid amplification reaction may be significantly affected by a slight temperature change. Accurate temperature control of the annealing and extension (or amplification) steps is possible.
본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 포함한다. 상기 칩 홀더(300a)는 상기 마이크로 PCR 칩(1)이 상기 실시간 PCR 장치(2000)에 장착되는 모듈이다. 상기 칩 홀더(300a)의 내벽은 상기 실시간 PCR 장치(2000)에 의해 핵산 증폭 반응이 수행되는 경우 상기 마이크로 PCR 칩(1)이 상기 칩 홀더(300a)로부터 이탈하지 않도록 상기 마이크로 PCR 칩(1)의 외벽과 고정 장착되기 위한 형상 또는 구조를 가질 수 있다. 상기 칩 홀더(300a)는 상기 구동 수단(500a)에 구동가능하게 연결된다. 또한, 상기 마이크로 PCR 칩(1)은 상기 칩 홀더(300a)에 착탈 가능할 수 있다.The real-time PCR apparatus 2000 according to another embodiment of the present invention may move left and right and / or up and down by the driving means 500a over the first row block 100a and the second row block 200a, and the micro And a chip holder 300a on which the PCR chip 1 is mounted. The chip holder 300a is a module in which the micro PCR chip 1 is mounted on the real time PCR device 2000. The inner wall of the chip holder 300a has the micro PCR chip 1 so that the micro PCR chip 1 does not leave the chip holder 300a when the nucleic acid amplification reaction is performed by the real-time PCR device 2000. It may have a shape or structure for fixed mounting with the outer wall of. The chip holder 300a is operably connected to the driving means 500a. In addition, the micro PCR chip 1 may be detachable to the chip holder (300a).
상기 구동 수단(500a)은 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 좌우 및/또는 상하 이동 가능하게 하는 모든 수단을 포함한다. 상기 구동 수단(500a)의 좌우 이동에 의해, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에서 왕복 운동이 가능하고, 상기 구동 수단(500a)의 상하 이동에 의해, 상기 PCR 칩(10)이 장착된 칩 홀더(300a)는 상기 제1 열 블록(100a)과 제2 열 블록(200a)에 접촉 및 분리될 수 있다. 도 16에 도시된 실시간 PCR 장치(2000)의 구동 수단(500a)은 좌우 방향으로 연장된 레일(510a), 및 상기 레일(510a)을 통해 좌우 방향으로 슬라이딩 이동가능하게 배치되고, 상하 방향으로 슬라이딩 이동 가능한 연결 부재(520a)를 포함하고, 상기 연결 부재(520a)의 일 말단은 상기 칩 홀더가 배치된다. 상기 구동 수단(500a)의 좌우 및/또는 상하 이동은 상기 PCR 장치의 내부 또는 외부에 구동가능하게 배치된 제어 수단(도시되지 않음)에 의해 제어될 수 있고, 상기 제어 수단은 PCR의 변성 단계와 어닐링 및 연장 (혹은 증폭) 단계를 위한 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)와 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 사이의 접촉 및 분리를 제어할 수 있다.The driving means 500a is configured to allow the chip holder 300a on which the micro PCR chip 1 is mounted to move left and right and / or up and down over the first row block 100a and the second row block 200a. Means; By the left and right movement of the driving means 500a, the chip holder 300a on which the micro PCR chip 1 is mounted can reciprocate between the first row block 100a and the second row block 200a. In addition, by the vertical movement of the driving means 500a, the chip holder 300a on which the PCR chip 10 is mounted is in contact with and separated from the first row block 100a and the second row block 200a. Can be. The driving means 500a of the real-time PCR apparatus 2000 shown in FIG. 16 is disposed to be slidably movable in the left and right directions through the rail 510a extending in the left and right directions, and the rail 510a, and in the vertical direction. And a movable connecting member 520a, wherein one end of the connecting member 520a is disposed with the chip holder. The left and right and / or vertical movement of the driving means 500a may be controlled by a control means (not shown), which is operably disposed inside or outside the PCR device, and the control means may be modified with a modification step of PCR. It is possible to control the contact and separation between the chip holder 300a on which the micro PCR chip 1 is mounted and the first row block 100a and the second row block 200a for the annealing and extension (or amplification) steps. Can be.
도 17은 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치(2000)의 칩 홀더의 이동에 의한 핵산 증폭 반응의 각 단계를 도시한다. 상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응은 하기 단계에 의한다. 17 illustrates each step of the nucleic acid amplification reaction by the movement of the chip holder of the real-time PCR device 2000 according to another embodiment of the present invention. Nucleic acid amplification reaction by the real-time PCR device 2000 is based on the following steps.
먼저, 상기 마이크로 PCR 칩(1)에 핵산, 예를 들어 이중 가닥 DNA, 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드 프라이머, DNA 중합효소, 삼인산화데옥시리보뉴클레오티드(deoxyribonucleotide triphosphates, dNTP), PCR 완충액(PCR buffer)를 포함하는 샘플 용액을 도입하고, 상기 PCR 칩(10)을 상기 칩 홀더(300a)에 장착하는 단계를 수행한다. 그 후 또는 이와 동시에 상기 제1 열 블록(100a)을 변성 단계를 위한 온도, 예를 들어, 90℃ 내지 100℃로 가열 및 유지하고, 바람직하게는 95℃로 가열 및 유지하는 단계를 수행한다. 상기 제2 열 블록(200)을 어닐링 및 연장 (혹은 증폭) 단계를 위한 온도, 예를 들어, 55℃ 내지 75℃로 가열 및 유지하고, 바람직하게는 72℃로 가열 및 유지하는 단계를 수행한다. 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 하향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a)에 접촉시켜 PCR의 제1 변성 단계를 수행한다(x 단계). 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 상향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a)으로부터 분리시켜 PCR의 제1 변성 단계를 종료하고, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제2 열 블록(200a)의 위로 이동시키는 단계를 수행한다(y 단계). 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 하향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제2 열 블록(100a)에 접촉시켜 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계를 수행한다(z 단계). 마지막으로, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 상향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제2 열 블록(100a)으로부터 분리시켜 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계를 종료하고, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제1 열 블록(100a)의 위로 이동시킨 후 상기 x, y, z 단계를 반복함으로써, 핵산 증폭 반응을 수행한다(순환 단계).First, a nucleic acid, for example, double-stranded DNA, an oligonucleotide primer having a sequence complementary to a specific nucleotide sequence to be amplified, DNA polymerase, deoxyribonucleotide triphosphates, dNTP in the micro PCR chip 1 ), A sample solution including a PCR buffer (PCR buffer) is introduced, and the PCR chip 10 is mounted on the chip holder 300a. Thereafter or at the same time, the first heat block 100a is heated and maintained at a temperature for the modification step, for example, 90 ° C. to 100 ° C., preferably at 95 ° C. Heating and maintaining the second thermal block 200 at a temperature for annealing and extending (or amplifying), for example, 55 ° C. to 75 ° C., preferably at 72 ° C. . Thereafter, the micro PCR chip 1 is moved downward by controlling the connecting member 520a of the driving means 500a to move the chip holder 300a on which the micro PCR chip 1 is mounted in the first row. Contacting block 100a performs a first denaturation step of PCR (step x). Thereafter, the micro PCR chip 1 is moved upward by controlling the connecting member 520a of the driving means 500a to move the chip holder 300a on which the micro PCR chip 1 is mounted in the first row. Separate from block 100a to end the first denaturing step of PCR, and control the connecting member 520a of the drive means 500a to move the micro PCR chip 1 above the second row block 200a. (Y step). Thereafter, the micro PCR chip 1 is moved downward by controlling the connecting member 520a of the driving means 500a to move the chip holder 300a on which the micro PCR chip 1 is mounted to the second row. The block 100a is contacted to perform the first annealing and extension (or amplification) step of the PCR (step z). Lastly, the micro PCR chip 1 is moved upward by controlling the connecting member 520a of the driving means 500a to move the chip holder 300a on which the micro PCR chip 1 is mounted to the second row. Separate from block 100a to terminate the first annealing and extension (or amplification) step of the PCR, and control the connecting member 520a of the driving means 500a to control the micro PCR chip 1 in a first row block. The nucleic acid amplification reaction is performed by repeating steps x, y, and z after moving up to 100a (circulation step).
도 18은 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)를 이용하여 실시간으로 핵산 증폭 반응을 관찰하는 단계를 도시한다. 상기 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 배치되되, 상기 마이크로 PCR 칩(1)이 상기 구동 수단(500a)에 의해 상기 제1 열 블록(100a)과 제2 열 블록(200a) 간 이동시 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(700a, 800a), 구체적으로 광원(700a) 및 광 검출부(800a)를 포함한다. 즉, 상기 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 광원(700a)이 배치되고, 상기 칩 홀더(300a) 위에 상기 광원(700a)으로부터 방출되는 광을 검출하기 위한 광 검출부(800a)가 배치되거나, 또는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 광원(700a)으로부터 방출되는 광을 검출하기 위한 광 검출부(800a)가 배치되고, 상기 칩 홀더(300a) 위에 광원(700a)이 배치될 수 있다. 또한, 상기 광 검출부(800a)는 상기 구동 수단(500a) 위에 배치되고, 상기 구동 수단(900a)은 상기 광원(700a)으로부터 방출되는 광을 통과시키기 위한 관통부(530a)가 배치될 수 있다.18 illustrates a step of observing a nucleic acid amplification reaction in real time using a real time PCR apparatus 2000 according to another embodiment of the present invention. The real-time PCR device 2000 is disposed between the first row block 100a and the second row block 200a, wherein the micro PCR chip 1 is driven by the driving means 500a by the driving unit 500a. Optical detection modules 700a and 800a implemented to detect an optical signal generated from a PCR amplification product inside the PCR reaction chamber 10 of the micro PCR chip 1 when moving between 100a and the second row block 200a. Specifically, the light source 700a and the light detector 800a are included. That is, in the real-time PCR apparatus 2000, a light source 700a is disposed between the first row block 100a and the second row block 200a and is emitted from the light source 700a on the chip holder 300a. The light detector 800a is disposed to detect the light to be used, or the light detector 800a is configured to detect light emitted from the light source 700a between the first and second row blocks 100a and 200a. ) May be disposed, and the light source 700a may be disposed on the chip holder 300a. In addition, the light detector 800a may be disposed on the driving means 500a, and the through means 530a may be disposed on the driving means 900a to allow the light emitted from the light source 700a to pass therethrough.
상기 광원(700a) 및 광 검출부(800a)의 배치에 의해, 상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응시 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 실시간으로 검출할 수 있도록 한다. 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 검출하기 위해서는 상기 마이크로 PCR 칩(1)에 도입되는 샘플 용액에 별도의 형광 물질을 더 첨가할 수 있다. 상기 광원(700a)은 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이의 이격된 공간에 가능한 넓게 분포하도록 배치되고, 가능한 동일한 광을 방출하도록 배치된다. 상기 광원(700a)은 상기 광원(700a)으로부터 방출되는 광을 포집하는 렌즈(도시되지 않음) 및 특정 파장대의 광을 여과하는 광 필터(도시되지 않음)와 구동가능하게 연결 배치될 수 있다. By arranging the light source 700a and the light detector 800a, the nucleic acid amplification reaction can be detected in real time in the micro PCR chip 1 during the nucleic acid amplification reaction by the real-time PCR device 2000. do. In order to detect the degree of nucleic acid amplification in the micro PCR chip 1, a separate fluorescent substance may be further added to the sample solution introduced into the micro PCR chip 1. The light source 700a is disposed to be as wide as possible in the spaced space between the first column block 100a and the second column block 200a and is arranged to emit the same light as much as possible. The light source 700a may be operably connected to a lens (not shown) that collects light emitted from the light source 700a and an optical filter (not shown) that filters light of a specific wavelength band.
상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응시 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 실시간으로 검출하는 단계는 아래와 같다.The nucleic acid amplification reaction by the real time PCR device 2000 detects the degree of nucleic acid amplification in the micro PCR chip 1 in real time.
상기 PCR의 제1 변성 단계의 종료 후 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제1 열 블록(100a)의 위로부터 제2 열 블록(200a)의 위로 이동시키거나, 또는 상기 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계의 종료 후 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제2 열 블록(200a)의 위로부터 제1 열 블록(200a)의 위로 이동시키는 경우, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이의 이격된 공간 상에 정지시키는 단계를 수행한다. 그 후, 상기 광원(700a)으로부터 광을 방출시키고, 상기 방출된 광은 상기 마이크로 PCR 칩(1), 구체적으로 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버)를 통과하고, 이 경우 상기 PCR 반응 챔버 내의 핵산의 증폭에 의해 발생하는 광신호를 상기 광 검출부(800a)가 검출한다. 이 경우 상기 광 투과성 재질의 마이크로 PCR 칩(1)을 통과한 광은 상기 구동 수단(500a), 구체적으로 상기 레일(510a)에 배치된 관통부(530a)를 통과하여 상기 광출부(800a)에 도달할 수 있다. 따라서, 상기 PCR의 각 순환 단계가 진행되는 동안 상기 반응 채널 내에서 (형광 물질이 결합된) 핵산의 증폭에 의한 반응 결과를 실시간으로 모니터링함으로써 초기 반응 샘플에 포함되어 있는 표적 핵산의 양을 실시간으로 측정 및 분석할 수 있다.After completion of the first denaturation step of the PCR, the connecting member 520a of the driving means 500a is controlled to move the micro PCR chip 1 from above the first row block 100a to the second row block 200a. The micro PCR chip 1 is moved to a second row block by moving the upper portion of the PCR or controlling the connecting member 520a of the driving means 500a after the end of the first annealing and extension (or amplification) step. When moving from the top of the 200a to the first row block 200a, the chip holder 300a on which the micro PCR chip 1 is mounted is controlled to control the connecting member 520a of the driving means 500a. A step of stopping on the spaced space between the first row block 100a and the second row block 200a is performed. Thereafter, light is emitted from the light source 700a, and the emitted light passes through the micro PCR chip 1, specifically, the PCR reaction chamber of the micro PCR chip 1, in this case, the PCR reaction. The light detector 800a detects an optical signal generated by amplification of the nucleic acid in the chamber. In this case, the light passing through the micro-PCR chip 1 of the light transmissive material passes through the driving means 500a, specifically, the penetrating portion 530a disposed on the rail 510a to the light emitting portion 800a. Can be reached. Thus, during each cycle of the PCR, the amount of target nucleic acid contained in the initial reaction sample is monitored in real time by monitoring the result of the reaction by amplification of the nucleic acid (fluorescent material bound) in the reaction channel in real time. Can be measured and analyzed.
구현예Embodiment
1. 마이크로 PCR 칩의 제조1. Preparation of Micro PCR Chips
도 12와 같이, 플라스틱 재질로 평판 형상의 제1 내지 제3 판(100, 200, 300)을 준비하였다. 상기 제1 판(100)은 0.5 mm의 두께로 제조하였고, 상기 제2 판(200)은 2 mm의 두께로 하되, 19개의 PCR 반응 챔버(10)를 중앙 원형 영역에 집적시켜 제조하였고, 상기 제3 판(300)은 2 mm의 두께로 하되, 그 하단 면에 상기 중앙 원형 영역에 대응하게 원형 홈을 구현하고, 상기 19개의 PCR 반응 챔버(10) 내부를 향해 돌출되도록 광 투과부(25)를 형성하여 제조하였다. 아울러, 상기 제3 판(300)의 원형 홈 및 광 투과부(50)에 대응하여 결합할 수 있는 플렉서블 패킹부(50)를 제조하여 상기 제3 판(300)의 하단 면에 부착시켰다. 그 후, 상기 제1 판(100) 상부에 양면 접착 테이프를 접착하고 상기 제2 판(200)을 상기 제1 판(100)의 상부에 부착하였다. 이 경우 상기 양면 접착 테이프 이외에 열 접합, 초음파 접합, 자외선 접합, 용매 접합 방법 등을 통해서도 상기 제1 판(100)과 상기 제2 판(200)을 부착시킬 수 있음은 물론이다. 그 후, 상기 제2 판(200)의 부착에 의해 형성된 19개의 PCR 반응 챔버(10)에 PCR 시료 및 시약을 주입하고, 상기 플렉서블 패킹부(50)가 부착된 상기 제3 판(300)을 상기 제2 판(200) 상부에 부착하여 상기 PCR 반응 챔버(10)를 밀봉하였다. 도 19에 따르면, 본 구현예에 있어서, 완성된 마이크로 PCR 칩(1)을 확인할 수 있다. 도 19의 A 그림은 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 외관이고, B 그림은 A 그림의 마이크로 PCR 칩(1)에서 제3 판(300)의 투시도가 반영된 외관이고, C 그림은 B 그림의 마이크로 PCR 칩(1)의 중앙 원형 영역에 19개의 단위 모듈(50)이 배치된 상태를 도시하는 확대 도면이다.As illustrated in FIG. 12, first to third plates 100, 200, and 300 having a flat plate shape were prepared from a plastic material. The first plate 100 was manufactured to a thickness of 0.5 mm, and the second plate 200 was made to have a thickness of 2 mm, but was prepared by integrating 19 PCR reaction chambers 10 in a central circular region. The third plate 300 has a thickness of 2 mm, and implements a circular groove on the bottom surface of the third plate 300 to correspond to the central circular region, and protrudes toward the inside of the 19 PCR reaction chambers 10. It was prepared by forming. In addition, a flexible packing part 50 that can be coupled to correspond to the circular groove and the light transmitting part 50 of the third plate 300 was manufactured and attached to the bottom surface of the third plate 300. Thereafter, a double-sided adhesive tape was adhered to the upper portion of the first plate 100 and the second plate 200 was attached to the upper portion of the first plate 100. In this case, the first plate 100 and the second plate 200 may be attached to each other through a thermal bonding, an ultrasonic bonding, an ultraviolet bonding, a solvent bonding method, etc. in addition to the double-sided adhesive tape. Thereafter, PCR samples and reagents are injected into nineteen PCR reaction chambers 10 formed by the attachment of the second plate 200, and the third plate 300 to which the flexible packing unit 50 is attached is placed. The PCR reaction chamber 10 was sealed by attaching an upper portion of the second plate 200. According to FIG. 19, in this embodiment, the completed micro PCR chip 1 can be confirmed. 19A is an appearance of a micro PCR chip 1 according to an embodiment of the present invention, and B is an appearance in which a perspective view of the third plate 300 is reflected in the micro PCR chip 1 of FIG. FIG. C is an enlarged view showing a state where 19 unit modules 50 are arranged in the central circular region of the micro PCR chip 1 of FIG.
2. 실시간 PCR 수행2. Real time PCR
상기 PCR 시료 및 시약은 인플루엔자 A 바이러스 (New Influenza A virus)에 관한 것으로서, 인플루엔자 A 바이러스 (New Influenza A virus)의 게놈 RNA는 질병관리본부로부터 분양받았다. 분양받은 게놈 RNA와 함께 Invitrogen 사의 SupterScriptⅢ First-strand Synthesis System for RT-PCR kit를 사용하여 역전사 반응액을 조성하고, 역전사 반응을 진행한 다음, cDNA를 합성하였다. 역전사 반응에 사용된 역전사 반응액의 조성 및 cDNA 합성 조건을 하기 표 1 및 표 2에 기재하였다.The PCR samples and reagents are related to Influenza A virus, and the genomic RNA of Influenza A virus was distributed from the Center for Disease Control. The reverse transcription reaction solution was prepared using Invitrogen's SupterScript III First-strand Synthesis System for RT-PCR kit together with the pre-generated RNA, the reverse transcription reaction was performed, and cDNA was synthesized. The composition of the reverse transcription reaction solution and cDNA synthesis conditions used in the reverse transcription reaction are shown in Tables 1 and 2 below.
표 1
항목 농도
게놈 RNA 5 ul 이상
프라이머(2 uM) 0.1 mM
10 mM dNTPs mix 0.5 mM
DEPC-treated water 20 ul
10X RT Buffer 1X
26 mM MgCl2 2.5 mM
RnaseOUT(40 U/ul) 40 U
SuperScriptⅢ RT(200 U/ul) 200 U
Table 1
Item density
Genomic RNA 5 ul or more
Primer (2 uM) 0.1 mM
10 mM dNTPs mix 0.5 mM
DEPC-treated water 20 ul
10X RT Buffer 1X
26 mM MgCl 2 2.5 mM
RnaseOUT (40 U / ul) 40 U
SuperScript III RT (200 U / ul) 200 U
표 2
과정 온도 및 시간
Denaturation 65 ℃
ice, 1 min
Annealing 반응액과 mixing
cDNA 합성 50 ℃, 90 min
Terminal reaction 85 ℃, 5 min
Remove RNA Rnase H 첨가, 37 ℃, 20 min
TABLE 2
process Temperature and time
Denaturation 65 ℃
ice, 1 min
Annealing Reaction solution and mixing
cDNA synthesis 50 ℃, 90 min
Terminal reaction 85 ° C, 5 min
Remove RNA Rnase H added, 37 ° C., 20 min
그 후, 상기 인플루엔자 A 바이러스 검출을 위해 사용되는 프라이머는 GC%를 40 내지 60%가 되도록 하고, Tm 값 65 내지 75℃ 조건이 되도록 하여 Primer 3를 통해 제작하고, 제작한 프라이머를 제노텍(주)에 의뢰하여 합성하였다. 그 후, 상기 인플루엔자 A 바이러스에 대한 프라이머의 검출의 확인을 위해, 상기 합성 인플루엔자 A 바이러스의 cDNA를 주형으로 하여 PCR을 수행하였다. 하기 표 3 및 표 4에 상기 PCR에 사용한 PCR 시료 및 시약의 조성 및 수행한 PCR 조건을 나타냈다. 각각의 PCR 시료 및 시약은 아래 표의 조성에 따르고, 총 부피 16 ㎕가 되도록 하였다.Subsequently, the primers used for the influenza A virus detection were prepared using Primer 3 with GC% of 40 to 60%, Tm value of 65 to 75 ° C, and the prepared primers manufactured by Genotech (Note). Was synthesized. Then, PCR was performed using the cDNA of the synthetic influenza A virus as a template to confirm the detection of the primer for the influenza A virus. Tables 3 and 4 show the compositions of the PCR samples and reagents used in the PCR and the PCR conditions performed. Each PCR sample and reagent were according to the composition in the table below and brought to a total volume of 16 μl.
표 3
항목 부피
2X PCR Master mix(중합효소, dNTP) 8 ㎕
주형 (cDNA) 1.6 ㎕
프라이머(정방향/역방향) 10uM 1.6 ㎕ / 1.6 ㎕
증류수(DW) 3.2 ㎕
TABLE 3
Item volume
2X PCR Master mix (Polymerase, dNTP) 8 μl
Template (cDNA) 1.6 μl
Primer (Forward / Reverse) 10uM 1.6 μl / 1.6 μl
Distilled Water (DW) 3.2 μl
표 4
반응온도 반응시간
Pre-denaturation(95℃) 8 sec
P1(95℃, 제1 열 블록) 3 sec
P2(72℃, 제1 열 블록) 6 sec
Cycle(2 step) 30회, 20분 이내, CCD(5 sec) 포함
Table 4
Reaction temperature Reaction time
Pre-denaturation (95 ℃) 8 sec
P1 (95 degreeC, 1st heat block) 3 sec
P2 (72 ° C, first heat block) 6 sec
Cycle (2 step) 30 times, within 20 minutes with CCD (5 sec)
3. 결과3. Results
PCR 수행 결과는 도 20에 따른 PCR 결과의 형광 사진 및 도 21 내지 23에 따른 실시간 PCR 결과 그래프(X축: cycle 수, Y축: 형광도)를 통해 확인했다. 도 20에 따르면, 상기 마이크로 PCR 칩(1)의 단위 모듈(50)별 형광 신호가 흰 점으로 선명하게 확인된다. 이 경우, 도 20의 마이크로 PCR 칩(1)의 제1 영역(①)은 도 21의 그래프, 제2 영역(②)은 도 22의 그래프, 제3 영역(③)은 도 23의 그래프와 대응된다. 그 결과, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1) 및 실시간 PCR 장치(2000)를 이용하면 실시간 PCR 결과가 정확하고 신속하게 측정될 수 있음을 확인할 수 있다.PCR performance results were confirmed through a fluorescence picture of the PCR result according to FIG. 20 and a real-time PCR result graph (X-axis: cycle number, Y-axis: fluorescence) according to FIGS. 21 to 23. According to FIG. 20, the fluorescence signal for each unit module 50 of the micro PCR chip 1 is clearly identified as a white dot. In this case, the first region ① of the micro PCR chip 1 of FIG. 20 corresponds to the graph of FIG. 21, the second region ② corresponds to the graph of FIG. 22, and the third region ③ corresponds to the graph of FIG. 23. do. As a result, using the micro PCR chip 1 and the real-time PCR device 2000 according to an embodiment of the present invention it can be confirmed that the real-time PCR results can be measured accurately and quickly.

Claims (13)

  1. 상단 면이 개방된 PCR 반응 챔버(chamber); 및A PCR reaction chamber with an open top surface; And
    상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버의 내부를 향해 돌출되되 광 경로를 따라 연장된 광 투과성 재질의 광 투과부를 구비하는 덮개(cover);A light transmissive material which contacts the open top surface of the PCR reaction chamber to seal the open top surface and protrudes toward the inside of the PCR reaction chamber from a portion of the sealing surface which is in contact with the open top surface and extends along the optical path A cover having a light transmitting portion of the cover;
    를 포함하는, 마이크로 PCR 칩(Micro-Polymerase Chain Reaction chip).Including, a micro PCR chip (Micro-Polymerase Chain Reaction chip).
  2. 제1항에 있어서,The method of claim 1,
    상기 PCR 반응 챔버는 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현된 것을 특징으로 하는 마이크로 PCR 칩.The PCR reaction chamber is a micro PCR chip, characterized in that implemented to have a liquid sample capacity of 10 μl or less.
  3. 제2항에 있어서,The method of claim 2,
    상기 PCR 반응 챔버는 5 내지 8 ㎕의 액체 샘플을 수용하는 것을 특징으로 하는 마이크로 PCR 칩.The PCR reaction chamber is a micro PCR chip, characterized in that for receiving 5 to 8 μl of liquid samples.
  4. 제1항에 있어서,The method of claim 1,
    상기 광 투과부는 상기 밀폐 면의 중앙에 배치된 것을 특징으로 하는 마이크로 PCR 칩.The light transmitting part is a micro PCR chip, characterized in that disposed in the center of the sealing surface.
  5. 제1항에 있어서,The method of claim 1,
    상기 광 투과부는 상기 PCR 반응 챔버의 하단 바닥 면에 닿거나, 상기 PCR 반응 챔버의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현된 것을 특징으로 하는 마이크로 PCR 칩.The light transmitting part is a micro-PCR chip, characterized in that the contact to the bottom surface of the PCR reaction chamber, or implemented to a part spaced upwardly from the bottom bottom surface of the PCR reaction chamber.
  6. 제1항에 있어서,The method of claim 1,
    상기 덮개는 상기 광 투과부를 관통하여 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부를 더 구비하는 것을 특징으로 하는 마이크로 PCR 칩.The cover further includes a hole that penetrates through the light transmitting part and a flexible packing part which contacts the open top surface of the PCR reaction chamber to seal the open top surface. chip.
  7. 제1항에 있어서,The method of claim 1,
    상기 PCR 반응 챔버 및 상기 덮개로 구성된 단위 모듈을 2 이상 구비하는 것을 특징으로 하는 마이크로 PCR 칩.Micro PCR chip comprising two or more unit modules consisting of the PCR reaction chamber and the cover.
  8. 제1항에 있어서,The method of claim 1,
    평판 형상을 갖는 것을 특징으로 하는 마이크로 PCR 칩.Micro PCR chip, characterized in that it has a flat plate shape.
  9. 제1항에 있어서,The method of claim 1,
    평판 형상의 제1 판;A flat plate-shaped first plate;
    상기 제1 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버를 구비하는 평판 형상의 제2 판; 및A second plate having a flat plate shape disposed on the first plate, the plate having the PCR reaction chamber; And
    상기 제2 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부를 구비하는 덮개 역할을 수행하는 제3 판;A third plate disposed on an upper portion of the second plate, the third plate serving to cover a top end surface of the PCR reaction chamber to seal the open top surface, and having a light transmitting part;
    을 포함하는 것을 특징으로 하는 마이크로 PCR 칩.Micro PCR chip comprising a.
  10. 제9항에 있어서,The method of claim 9,
    상기 제2 판과 제3 판 사이에 상기 광 투과부를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부를 더 포함하는 것을 특징으로 하는, 마이크로 PCR 칩.And a hole surrounding the light transmitting part between the second plate and the third plate, and a flexible packing part which contacts the open top surface of the PCR reaction chamber to seal the open top surface. Made, micro PCR chip.
  11. 제1항에 있어서,The method of claim 1,
    상기 PCR 반응 챔버로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부(60)를 더 포함하는 것을 특징으로 하는 마이크로 PCR 칩.Micro PCR chip, characterized in that further comprises a heat dissipation unit (60) implemented to discharge heat generated from the PCR reaction chamber to the outside.
  12. 제1항에 따른 마이크로 PCR 칩;Micro PCR chip according to claim 1;
    상기 마이크로 PCR 칩의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록; 및One or more thermal blocks implemented to thermally contact at least one side of the micro PCR chip; And
    상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈;An optical detection module implemented to detect an optical signal generated from a PCR amplification product inside a PCR reaction chamber of the micro PCR chip;
    을 포함하는, 실시간 PCR 장치.Including, real-time PCR device.
  13. 제1항에 따른 마이크로 PCR 칩;Micro PCR chip according to claim 1;
    기판 상에 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제1 열 블록;A first thermal block disposed on a substrate and configured to be in thermal contact with the micro PCR chip;
    상기 기판 상에 상기 제1 열 블록과 이격 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제2 열 블록; A second thermal block disposed on the substrate and spaced apart from the first thermal block, and configured to be in thermal contact with the micro PCR chip;
    상기 제1 열 블록 및 제2 열 블록 위로 구동 수단에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩이 장착된 칩 홀더; 및A chip holder movable left and right and / or up and down by a driving means over the first row block and the second row block, and on which the micro PCR chip is mounted; And
    상기 제1 열 블록과 제2 열 블록 사이에 배치되되, 상기 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 제1 열 블록과 제2 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈;A PCR amplification product disposed between the first row block and the second row block, wherein the micro PCR chip is moved between the first row block and the second row block by the driving means; An optical detection module implemented to detect an optical signal originating from the optical signal;
    을 포함하는, 실시간 PCR 장치.Including, real-time PCR device.
PCT/KR2013/009343 2012-10-19 2013-10-18 Micro pcr chip and real-time pcr device comprising same WO2014062033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120116873A KR102003784B1 (en) 2012-10-19 2012-10-19 micro chip for polymerase chain reaction and real-time PCR device comprising the same
KR10-2012-0116873 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014062033A1 true WO2014062033A1 (en) 2014-04-24

Family

ID=50488517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009343 WO2014062033A1 (en) 2012-10-19 2013-10-18 Micro pcr chip and real-time pcr device comprising same

Country Status (2)

Country Link
KR (1) KR102003784B1 (en)
WO (1) WO2014062033A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423723B1 (en) * 2020-08-27 2022-07-21 성균관대학교산학협력단 Apparatus for detecting nucleic acid based on plasmonic well and method for fabricating the same using Roll-to-Roll processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015674A (en) * 1994-04-29 2000-01-18 Perkin-Elmer Corporation Applied Biosystems Division Apparatus and method for detecting nucleic acid amplification products
KR20030096877A (en) * 2002-06-18 2003-12-31 (주)바이오니아 Apparatus for real time monitoring of products of nucleic acid amplification reaction
US20060128009A1 (en) * 1998-05-16 2006-06-15 Cerrone Anthony L Instrument for monitoring polymerase chain reaction of DNA
KR20110118572A (en) * 2010-04-23 2011-10-31 나노바이오시스 주식회사 Device for amplify nucleic acid comprising two heating block
WO2012015165A2 (en) * 2010-07-30 2012-02-02 나노바이오시스(주) Pcr apparatus including an optically transmissive heat block

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239742A (en) * 2010-05-20 2011-12-01 Seiko Epson Corp Microfluidic chip, microfluidic chip set and nucleic acid analysis kit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015674A (en) * 1994-04-29 2000-01-18 Perkin-Elmer Corporation Applied Biosystems Division Apparatus and method for detecting nucleic acid amplification products
US20060128009A1 (en) * 1998-05-16 2006-06-15 Cerrone Anthony L Instrument for monitoring polymerase chain reaction of DNA
KR20030096877A (en) * 2002-06-18 2003-12-31 (주)바이오니아 Apparatus for real time monitoring of products of nucleic acid amplification reaction
KR20110118572A (en) * 2010-04-23 2011-10-31 나노바이오시스 주식회사 Device for amplify nucleic acid comprising two heating block
WO2012015165A2 (en) * 2010-07-30 2012-02-02 나노바이오시스(주) Pcr apparatus including an optically transmissive heat block

Also Published As

Publication number Publication date
KR20140050446A (en) 2014-04-29
KR102003784B1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2011132977A2 (en) Pcr device including two heating blocks
US20190224684A1 (en) Apparatus and method for segmented thermal cycler
WO2015102379A1 (en) Ultra-high speed and real-time pcr device on basis of lab-on-a-chip for detecting food poisoning bacteria of agricultural food, and food poisoning detection method using same
JP6087293B2 (en) Assay cartridge and method of using the same
WO2014148877A1 (en) Primer set for detecting food poisoning, pcr apparatus using same, and method for detecting food poisoning using same
WO2016105073A1 (en) Pcr apparatus comprising repeated sliding means, and pcr method using same
US9651492B2 (en) Optical detector
US20130034857A1 (en) Optical analysis apparatus and optical analysis method
US10620123B2 (en) Fluorescence detection instrument
KR101456646B1 (en) Kit and method for detecting food-borne bacteria
WO2012015165A2 (en) Pcr apparatus including an optically transmissive heat block
WO2009054647A2 (en) Portable analyzing apparatus based on pcr
KR20120137054A (en) Fluidic pcr chip comprising heating block of repetitively disposed heater unit and pcr apparatus comprising the same
WO2014104771A1 (en) Micro-pcr chip comprising primer set for detecting food poisoning, real-time pcr device comprising same, and method for detecting food poisoning using same
WO2014062033A1 (en) Micro pcr chip and real-time pcr device comprising same
KR20030096877A (en) Apparatus for real time monitoring of products of nucleic acid amplification reaction
KR20130086893A (en) Device for polymerase chain reaction to amplify nucleic acid comprising light transmitting heating block
WO2019182407A1 (en) High-speed polymerase chain reaction analysis plate
WO2014104770A1 (en) Primer set for detecting food poisoning, pcr apparatus using same, and method for detecting food poisoning therewith
KR20120139205A (en) Fluidic pcr apparatus comprising heating block of repetitively disposed heater unit
KR20110137090A (en) Light transmittable temperature control device and polymerase chain reaction apparatus with the same
WO2013180406A1 (en) Primer set for detecting foot and mouth disease according to serum type, pcr device using same, and method for detecting foot and mouth disease by using same
KR20130081948A (en) Kit and method for detecting new influenza a virus
WO2022114816A1 (en) Thermal cycler
KR101969076B1 (en) Chip for real-time polymerase chain reaction implemented by optical-noise removal element, and device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847372

Country of ref document: EP

Kind code of ref document: A1